Conducting field studies for testing pesticide leaching models
Smith, Charles N.; Parrish, Rudolph S.; Brown, David S.
1990-01-01
A variety of predictive models are being applied to evaluate the transport and transformation of pesticides in the environment. These include well known models such as the Pesticide Root Zone Model (PRZM), the Risk of Unsaturated-Saturated Transport and Transformation Interactions for Chemical Concentrations Model (RUSTIC) and the Groundwater Loading Effects of Agricultural Management Systems Model (GLEAMS). The potentially large impacts of using these models as tools for developing pesticide management strategies and regulatory decisions necessitates development of sound model validation protocols. This paper offers guidance on many of the theoretical and practical problems encountered in the design and implementation of field-scale model validation studies. Recommendations are provided for site selection and characterization, test compound selection, data needs, measurement techniques, statistical design considerations and sampling techniques. A strategy is provided for quantitatively testing models using field measurements.
Study of gap conductance model for thermo mechanical fully coupled finite element model
International Nuclear Information System (INIS)
Kim, Hyo Cha; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun
2012-01-01
accurately, gap conductance model for thermomechanical fully coupled FE should be developed. However, gap conductance in FE can be difficult issue in terms of convergence because all elements which are positioned in gap have different gap conductance at each iteration step. It is clear that our code should have gap conductance model for thermo-mechanical fully coupled FE in three-dimension. In this paper, gap conductance model for thermomechanical coupled FE has been built using commercial FE code to understand gap conductance model in FE. We coded commercial FE code using APDL because it does not have iterative gap conductance model. Through model, convergence parameter and characteristics were studied
Dynamical mechanisms of conducted vasoreactivity: minimalistic modeling study
Kuryshova, Ekaterina A.; Rogatina, Kristina V.; Postnov, Dmitry E.
2018-04-01
Endothelial cells are cells lining the inner surface of the blood and lymphatic vessels, they separate the bloodstream from the deeper layers of the vascular wall. Earlier endothelium was considered only as a passive barrier between blood and tissues. However, it has now become apparent that endothelial cells, specifically reacting to different molecular signals generated locally and remotely, perform a variety of functions. Simulation of large vascular networks requires the development of specialized models of autoregulation of vascular tone. On the one hand, such models should have a strong support for cellular dynamics, on the other - be as computationally efficient as possible. A model of a two-dimensional cylindrical array of endothelial cells is proposed on the basis of the integral description by means of the whole-cell CVC. The process of propagation of hyperpolarizing and depolarizing pulses is investigated depending on the statistics of cell distribution between the two main types. Endothelial cells are considered as a dynamic system possessing bistability. Based on the articles, the results of the distribution of the resting-potential values were repeated, the propagation of the hyperpolarizing pulse was observed, the endothelial cell chain supported the propagation of the wave switching to a hyperpolarized state, and then the return wave returned to its original state.
Comparison study of different head model structures with homogeneous/inhomogeneous conductivity
International Nuclear Information System (INIS)
Wen, P.; Li, Y.
2001-01-01
Most of the human head models used in dipole localisation research, which have been reported in the literature to date, assume a simplified cranial structure wherein the head is modelled as a set of distinct homogenous tissue compartments. The inherent inhomogeneity of the tissues has so far been ignored in these models due to the difficulties involved in obtaining the conductivity characteristics with sufficiently high enough spatial resolution throughout the head. A technique for developing an inhomogeneous head model based on the generation of pseudo-conductivity values from the existing but sparse conductivity values is proposed in this paper. Comparative studies are conducted on different model structures and different mechanisms for generating the pseudo conductivities. An evaluation of the results of these studies as reported in this paper, shows that contrary to current simplifying assumptions, tissue inhomogeneity has a major influence on the computation of electrical potential distributions in the head. Brain electrical activity is spatially distributed in three dimensions in the head and evolves with time. Electroencephalography (EEG) is a widely used noninvasive technique which measures the potential distribution on the scalp caused by the brain electrical activity. A number of interesting correlations between features of the recorded EEG waveforms and various aspects of attention memory and linguistic tAS/Ks have been discovered. These correlations are estimated by comparing, for a given brain function, the recorded EEGs against the scalp potentials obtained from the computation of an electric field model of the head. The accuracy of these estimates depends not only on such factors as EEG measured errors but also, more importantly, on how closely the head model approximates the physiological head. This has spurred interest in the use of a more realistic head geometry with more accurate conductivity values which would use the detailed anatomical
Thermal conductivity model for powdered materials under vacuum based on experimental studies
Directory of Open Access Journals (Sweden)
N. Sakatani
2017-01-01
Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.
Panda, Saswati; Sahoo, D. D.; Rout, G. C.
2018-04-01
We report here a tight binding model for colossal magnetoresistive (CMR) manganites to study the pseudo gap (PG) behavior near Fermi level. In the Kubo-Ohata type DE model, we consider first and second nearest neighbor interactions for transverse spin fluctuations in core band and hopping integrals in conduction band, in the presence of static band Jahn-Teller distortion. The model Hamiltonian is solved using Zubarev's Green's function technique. The electron density of states (DOS) is found out from the Green's functions. We observe clear PG near Fermi level in the electron DOS.
Energy Technology Data Exchange (ETDEWEB)
Daam, Michiel A., E-mail: mdaam@isa.utl.pt [Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon (Portugal); Van den Brink, Paul J., E-mail: Paul.vandenbrink@wur.nl [Alterra, Wageningen University and Research centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Wageningen University, Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)
2011-04-15
Little research has been done so far into the environmental fate and side effects of pesticides in the tropics. In addition, those studies conducted in tropical regions have focused almost exclusively on single species laboratory tests. Hence, fate and effects of pesticides on higher-tier levels have barely been studied under tropical conditions. To address this lack of knowledge, four outdoor aquatic model ecosystem experiments using two different test systems were conducted in Thailand evaluating the insecticide chlorpyrifos, the herbicide linuron and the fungicide carbendazim. Results of these experiments and comparisons of recorded fate and effects with temperate studies have been published previously. The present paper discusses the pros and cons of the methodologies applied and provides indications for i) possible improvements; ii) important aspects that should be considered when performing model ecosystem experiments in the tropics; iii) future research. - Research highlights: > Methodologies used overall seemed adequate to evaluate pesticide stress. > Identification and sampling of tropical macroinvertebrates should be improved. > Additional studies needed for different compounds and greater geographical scale. > Different exposure regimes and ecosystem types should be simulated. > Trophic interrelationship and recovery potential need to be evaluated. - Methodologies for conducting model ecosystem studies in the tropics.
Electrowetting on dielectric: experimental and model study of oil conductivity on rupture voltage
Zhao, Qing; Tang, Biao; Dong, Baoqin; Li, Hui; Zhou, Rui; Guo, Yuanyuan; Dou, Yingying; Deng, Yong; Groenewold, Jan; Henzen, Alexander Victor; Zhou, Guofu
2018-05-01
Electrowetting on dielectric devices uses a conducting (water) and insulating (oil) liquid phase in conjunction on a dielectric layer. In these devices, the wetting properties of the liquid phases can be manipulated by applying an electric field. The electric field can rupture the initially flat oil film and promotes further dewetting of the oil. Here, we investigate a problem in the operation of electrowetting on dielectric caused by a finite conductivity of the oil. In particular, we find that the voltage at which the oil film ruptures is sensitive to the application of relatively low DC voltages prior to switching. Here, we systematically investigate this dependence using controlled driving schemes. The mechanism behind these history effects point to charge transport processes in the dielectric and the oil, which can be modeled and characterized by a decay time. To quantify the effects the typical response timescales have been measured with a high-speed video camera. The results have been reproduced in simulations. In addition, a simplified yet accurate equivalent circuit model is developed to analyze larger data sets more conveniently. The experimental data support the hypothesis that each pixel can be characterized by a single decay time. We studied an ensemble of pixels and found that they showed a rather broad distribution of decay times with an average value of about 440 ms. This decay time can be interpreted as a discharge timescale of the oil, not to be confused with discharge of the entire system which is generally much faster (<1 ms). Through the equivalent circuit model, we also found that variations in the fluoropolymer (FP) conductivity cannot explain the distribution of decay times, while variations in oil conductivity can.
Experimental and modeling study of forest fire effect on soil thermal conductivity
Kathleen M. Smits; Elizabeth Kirby; William J. Massman; Scott Baggett
2016-01-01
An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire heated soils, comprehensive data that evaluate the long-term effect of extreme heating from a fire on the soil thermal conductivity are limited....
A model study of tunneling conductance spectra of ferromagnetically ordered manganites
Panda, Saswati; Kar, J. K.; Rout, G. C.
2018-02-01
We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.
Study on models for gap conductance between fuel and sheath for CANDU reactors
International Nuclear Information System (INIS)
Lee, K.M.; Ohn, M.Y.; Lim, H.S.; Choi, J.H.; Hwang, S.T.
1995-01-01
The gap conductance between the fuel and the sheath depends strongly on the gap width and has a significant influence on the amount of initial stored energy. The modified Ross and Stoute gap conductance model in ELESTRES is based on a simplified thermal deformation model for steady-state fuel temperature calculations. A review on a series of experiments reveals that fuel pellets crack, relocate, and are eccentrically positioned within the sheath rather than solid concentric cylinders. In this paper, the two recently-proposed gap conductance models (offset gap model and relocated gap model) are described and are applied to calculate the fuel-sheath gap conductances under experimental conditions and normal operating conditions in CANDU reactors. The good agreement between the experimentally-inferred and calculated gap conductance values demonstrates that the modified Ross and Stoute model was implemented correctly in ELESTRES. The predictions of the modified Ross and Stoute model provide conservative values for gap heat transfer and fuel surface temperature compared to the offset gap and relocated gap models for a limiting power envelope. (author)
Summary report on UO_{2} thermal conductivity model refinement and assessment studies
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lashley, Jason Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bell, B. D.C. [Imperial College, London (United Kingdom); Grimes, R. W. [Imperial College, London (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-03
Uranium dioxide (UO_{2}) is the most commonly used fuel in light water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, therefore, governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models were replaced with models that incorporate explicit thermal conductivity degradation mechanisms during fuel burn-up. This approach is able to represent the degradation of thermal conductivity due to each individual defect type, rather than the overall burn-up measure typically used which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO_{2} thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham type interatomic potential and a potential that combines the many-body embedded atom method potential with Morse-Buckingham pair potentials. Potential parameters for UO_{2+x} and ZrO_{2} are developed for the latter potential. Physical insights from the resonant phonon-spin scattering mechanism due to spins on the magnetic uranium ions have been introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high
Hagymási, I.; Itai, K.; Sólyom, J.
2012-06-01
We investigate an extended version of the periodic Anderson model (the so-called periodic Anderson-Hubbard model) with the aim to understand the role of interaction between conduction electrons in the formation of the heavy-fermion and mixed-valence states. Two methods are used: (i) variational calculation with the Gutzwiller wave function optimizing numerically the ground-state energy and (ii) exact diagonalization of the Hamiltonian for short chains. The f-level occupancy and the renormalization factor of the quasiparticles are calculated as a function of the energy of the f orbital for a wide range of the interaction parameters. The results obtained by the two methods are in reasonably good agreement for the periodic Anderson model. The agreement is maintained even when the interaction between band electrons, Ud, is taken into account, except for the half-filled case. This discrepancy can be explained by the difference between the physics of the one- and higher-dimensional models. We find that this interaction shifts and widens the energy range of the bare f level, where heavy-fermion behavior can be observed. For large-enough Ud this range may lie even above the bare conduction band. The Gutzwiller method indicates a robust transition from Kondo insulator to Mott insulator in the half-filled model, while Ud enhances the quasiparticle mass when the filling is close to half filling.
Reviewing Instructional Studies Conducted Using Video Modeling to Children with Autism
Acar, Cimen; Diken, Ibrahim H.
2012-01-01
This study explored 31 instructional research articles written using video modeling to children with autism and published in peer-reviewed journals. The studies in this research have been reached by searching EBSCO, Academic Search Complete, ERIC and other Anadolu University online search engines and using keywords such as "autism, video modeling,…
International Nuclear Information System (INIS)
Ishiyama, Shintaro
2004-01-01
Target plate model (35 mm x 25 mm x 100 mm) of divertor device for fusion reactor was fabricated using low activated and light material, Si/xSiC Metal Matrix Composite (MMC) and high strength and thermal conductive SiC. This model has bonding structure of armor tile (25 mm x 25 mm x 10 mmt) of Hot Pressed (HP) and Hot Isostatic Pressed (HIP) Si/SiC (10 wt%)-MMC and substrate (25 mm x 25 mm x 100 mm) of SiC/BeO (1 wt%) with water cooling channel (φ15 mm). Armor tile material, Si/10SiC-MMC shows high thermal conductive and low resistivity with over 200 MPa peak bending strength at high temperature. This material behaves super plasticity over peak temperature corresponding to peak bending strength and low temperature brittleness of this material was improved to degrade DBTT to 673 K by optimization of Hot Press (HP) and Hot Isostatic Press (HIP) conditions. Substrate body material, SiC/1BeO behaves major characteristics of high bending strength over 500 MPa, high density of 3.2 g/cm 3 and high thermal conductivity of 270 W/m·K at room temperature. Target plate model with water cooling by 293 K and 2 MPa pressurized water at 1 m/s was exposed under 5 MW/m 2 x 30 s high heat flux H + ion beam and showed very good cooling performance and no damage was found after this test. (author)
Geomechanical/Geochemical Modeling Studies Conducted within the International DECOVALEX Project
International Nuclear Information System (INIS)
Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.; Barr, D.; Chijimatsu, M.; Kolditz, O.; Liu, Q.; Oda, Y.; Wang, W.; Xie, M.; Zhang, C.
2005-01-01
The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysis of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status
Geomechanical/Geochemical Modeling Studies Conducted Within the International DECOVALEX Project
International Nuclear Information System (INIS)
J.T. Birkholzer; J. Rutqvist; E.L. Sonnenthal; D. Barr; M.Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; M. Xie; C. Zhang
2006-01-01
The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysis of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status
International Nuclear Information System (INIS)
Arani, Ali Akbar Abbasian; Azemati, Ali Akbar; Rezaee, Mohammad; Hadavand, Behzad Shirkavand
2017-01-01
Natural convection in enclosures containing nanofluids is important in physical and environmental applications. Different models for conduction have been developed because of the importance of this phenomenon in natural convection in enclosures. In this study, effects of conduction models of Chon, Corcione, Khanafer, and Koo and Kleinstreuer on the natural convection inside a trapezoidal enclosure with hot and cold walls are evaluated numerically. The enclosure contains Al_2O_3-water nanofluid with variable properties. Effects of the conduction models on fluid flow, natural convection, variations in volume fraction, and diameter of nanoparticles in the models, as well as the variations in the Rayleigh number, are examined. Results show that at Rayleigh numbers of 105 and 106, the maximum and minimum values of the average Nusselt number are obtained using the models of Khanafer and Chon, respectively. In all models, the average Nusselt number presents upward and downward trends when the volume fraction of nanoparticles increases but decreases when the di- ameter of the nanoparticles increases. At Ra = 105 in all models, as the volume fraction of nanoparticles increases, the nanofluid provides a higher average Nusselt number compared with the base fluid. By contrast, at Ra = 106, at volume fractions larger than 0.01 and using the model of Chon, the average Nusselt number of the nanofluid is lower compared with that of the base fluid.
Evanoff, Bradley; Kymes, Steve
2010-06-01
The aim of this study was to evaluate the costs associated with pre-employment nerve conduction testing as a screening tool for carpal tunnel syndrome (CTS) in the workplace. We used a Markov decision analysis model to compare the costs associated with a strategy of screening all prospective employees for CTS and not hiring those with abnormal nerve conduction, versus a strategy of not screening for CTS. The variables included in our model included employee turnover rate, the incidence of CTS, the prevalence of median nerve conduction abnormalities, the relative risk of developing CTS conferred by abnormal nerve conduction screening, the costs of pre-employment screening, and the worker's compensation costs to the employer for each case of CTS. In our base case, total employer costs for CTS from the perspective of the employer (cost of screening plus costs for workers' compensation associated with CTS) were higher when screening was used. Median costs per employee position over five years were US$503 for the screening strategy versus US$200 for a no-screening strategy. A sensitivity analysis showed that a strategy of screening was cost-beneficial from the perspective of the employer only under a few circumstances. Using Monte Carlo simulation varying all parameters, we found a 30% probability that screening would be cost-beneficial. A strategy of pre-employment screening for CTS should be carefully evaluated for yield and social consequences before being implemented. Our model suggests such screening is not appropriate for most employers.
Thermal conductivity model for nanofiber networks
Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui
2018-02-01
Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.
Thermal conductivity model for nanofiber networks
Energy Technology Data Exchange (ETDEWEB)
Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
2018-02-28
Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.
Sampaio, Filipa; Barendregt, Jan J; Feldman, Inna; Lee, Yong Yi; Sawyer, Michael G; Dadds, Mark R; Scott, James G; Mihalopoulos, Cathrine
2017-12-29
Parenting programmes are the recommended treatments of conduct disorders (CD) in children, but little is known about their longer term cost-effectiveness. This study aimed to evaluate the population cost-effectiveness of one of the most researched evidence-based parenting programmes, the Triple P-Positive Parenting Programme, delivered in a group and individual format, for the treatment of CD in children. A population-based multiple cohort decision analytic model was developed to estimate the cost per disability-adjusted life year (DALY) averted of Triple P compared with a 'no intervention' scenario, using a health sector perspective. The model targeted a cohort of 5-9-year-old children with CD in Australia currently seeking treatment, and followed them until they reached adulthood (i.e., 18 years). Multivariate probabilistic and univariate sensitivity analyses were conducted to incorporate uncertainty in the model parameters. Triple P was cost-effective compared to no intervention at a threshold of AU$50,000 per DALY averted when delivered in a group format [incremental cost-effectiveness ratio (ICER) = $1013 per DALY averted; 95% uncertainty interval (UI) 471-1956] and in an individual format (ICER = $20,498 per DALY averted; 95% UI 11,146-39,470). Evidence-based parenting programmes, such as the Triple P, for the treatment of CD among children appear to represent good value for money, when delivered in a group or an individual face-to-face format, with the group format being the most cost-effective option. The current model can be used for economic evaluations of other interventions targeting CD and in other settings.
Modeling liver electrical conductivity during hypertonic injection.
Castellví, Quim; Sánchez-Velázquez, Patricia; Moll, Xavier; Berjano, Enrique; Andaluz, Anna; Burdío, Fernando; Bijnens, Bart; Ivorra, Antoni
2018-01-01
Metastases in the liver frequently grow as scattered tumor nodules that neither can be removed by surgical resection nor focally ablated. Previously, we have proposed a novel technique based on irreversible electroporation that may be able to simultaneously treat all nodules in the liver while sparing healthy tissue. The proposed technique requires increasing the electrical conductivity of healthy liver by injecting a hypersaline solution through the portal vein. Aiming to assess the capability of increasing the global conductivity of the liver by means of hypersaline fluids, here, it is presented a mathematical model that estimates the NaCl distribution within the liver and the resulting conductivity change. The model fuses well-established compartmental pharmacokinetic models of the organ with saline injection models used for resuscitation treatments, and it considers changes in sinusoidal blood viscosity because of the hypertonicity of the solution. Here, it is also described a pilot experimental study in pigs in which different volumes of NaCl 20% (from 100 to 200 mL) were injected through the portal vein at different flow rates (from 53 to 171 mL/minute). The in vivo conductivity results fit those obtained by the model, both quantitatively and qualitatively, being able to predict the maximum conductivity with a 14.6% average relative error. The maximum conductivity value was 0.44 second/m, which corresponds to increasing 4 times the mean basal conductivity (0.11 second/m). The results suggest that the presented model is well suited for predicting on liver conductivity changes during hypertonic saline injection. Copyright © 2017 John Wiley & Sons, Ltd.
Conducting Simulation Studies in Psychometrics
Feinberg, Richard A.; Rubright, Jonathan D.
2016-01-01
Simulation studies are fundamental to psychometric discourse and play a crucial role in operational and academic research. Yet, resources for psychometricians interested in conducting simulations are scarce. This Instructional Topics in Educational Measurement Series (ITEMS) module is meant to address this deficiency by providing a comprehensive…
Thermal conductivity model for nanoporous thin films
Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui
2018-03-01
Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.
Buczkowski, Krzysztof; Basinska, Małgorzata A; Ratajska, Anna; Lewandowska, Katarzyna; Luszkiewicz, Dorota; Sieminska, Alicja
2017-01-27
Tobacco smoking is the single most important modifiable factor in increased morbidity and premature mortality. Numerous factors-including genetics, personality, and environment-affect the development and persistence of tobacco addiction, and knowledge regarding these factors could improve smoking cessation rates. This study compared personality traits between never, former, and current smokers, using the Five-Factor Model of Personality in a country with a turbulent smoking reduction process. : In this cross-sectional study, 909 Polish adults completed the Revised Neuroticism-Extraversion-Openness Personality Inventory. Our results showed that current smokers' scores for extraversion, one of the five global dimensions of personality, were higher relative to never smokers. Neuroticism, openness to experience, agreeableness, and conscientiousness did not differ significantly according to smoking status. Facet analysis, which described each dimension in detail, showed that current smokers' activity and excitement seeking (facets of extraversion) scores were higher relative to those of never and former smokers. In turn, current smokers' dutifulness and deliberation (facets of conscientiousness) scores were lower than those found in former and never smokers. Never smokers scored the highest in self-consciousness (a facet of neuroticism) and compliance (a component of agreeableness). The study conducted among Polish individuals showed variation in personality traits according to their smoking status; however, this variation differed from that reported in countries in which efforts to reduce smoking had begun earlier relative to Poland. Knowledge regarding personality traits could be useful in designing smoking prevention and cessation programs tailored to individuals' needs.
Homogenized thermal conduction model for particulate foods
Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel
2002-01-01
International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...
Model calculation of thermal conductivity in antiferromagnets
Energy Technology Data Exchange (ETDEWEB)
Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.
2015-11-01
A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.
Erskine, Holly E; Ferrari, Alize J; Nelson, Paul; Polanczyk, Guilherme V; Flaxman, Abraham D; Vos, Theo; Whiteford, Harvey A; Scott, James G
2013-12-01
The most recent Global Burden of Disease Study (GBD 2010) is the first to include attention-deficit/hyperactivity disorder (ADHD) and conduct disorder (CD) for burden quantification. We present the epidemiological profiles of ADHD and CD across three time periods for 21 world regions. A systematic review of global epidemiology was conducted for each disorder (based on a literature search of the Medline, PsycInfo and EMBASE databases). A Bayesian metaregression tool was used to derive prevalence estimates by age and sex in three time periods (1990, 2005 and 2010) for 21 world regions including those with little or no data. Prior expert knowledge and covariates were applied to each model to adjust suboptimal data. Final prevalence output for ADHD were adjusted to reflect an equivalent value if studies had measured point prevalence using multiple informants while final prevalence output for CD were adjusted to reflect a value equivalent to CD only. Prevalence was pooled for males and females aged 5-19 years with no difference found in global prevalence between the three time periods. Male prevalence of ADHD in 2010 was 2.2% (2.0-2.3) while female prevalence was 0.7% (0.6-0.7). Male prevalence of CD in 2010 was 3.6% (3.3-4.0) while female prevalence was 1.5% (1.4-1.7). ADHD and CD were estimated to be present worldwide with ADHD prevalence showing some regional variation while CD prevalence remained relatively consistent worldwide. We present the first prevalence estimates of both ADHD and CD globally and for all world regions. Data were sparse with large parts of the world having no estimates of either disorder. Epidemiological studies are urgently needed in certain parts of the world. Our findings directly informed burden quantification for GBD 2010. As mental disorders gained increased recognition after the first GBD study in 1990, the inclusion of ADHD and CD in GBD 2010 ensures their importance will be recognized alongside other childhood disorders. © 2013 The
Directory of Open Access Journals (Sweden)
Beecham Jennifer
2011-10-01
Full Text Available Abstract Background Conduct disorders are the most common psychiatric disorders in children and may persist into adulthood in about 50% of cases. The costs to society are high and impact many public sector agencies. Parenting programmes have been shown to positively affect child behaviour, but little is known about their potential long-term cost-effectiveness. We therefore estimate the costs of and longer-term savings from evidence-based parenting programmes for the prevention of persistent conduct disorder. Methods A decision-analytic Markov model compares two scenarios: 1 a 5-year old with clinical conduct disorder receives an evidence-based parenting programme; 2 the same 5-year old does not receive the programme. Cost-savings analysis is performed by comparing the probability that conduct disorder persists over time in each scenario, adopting both a public sector and a societal perspective. If the intervention is successful in reducing persistent conduct disorder, cost savings may arise from reduced use of health services, education support, social care, voluntary agencies and from crimes averted. Results Results strongly suggest that parenting programmes reduce the chance that conduct disorder persists into adulthood and are cost-saving to the public sector within 5-8 years under base case conditions. Total savings to society over 25 years are estimated at £16,435 per family, which compares with an intervention cost in the range of £952-£2,078 (2008/09 prices. Conclusions Effective implementation of evidence-based parenting programmes is likely to yield cost savings to the public sector and society. More research is needed to address evidence gaps regarding the current level of provision, longer-term effectiveness and questions of implementation, engagement and equity.
Electrodiagnosis and nerve conduction studies.
Posuniak, E A
1984-08-01
The use of electrodiagnostic techniques in evaluation of complaints in the lower extremities provides an objective method of assessment. A basic understanding of principles of neurophysiology, EMG and NCV methodology, and neuropathology of peripheral nerves greatly enhances physical diagnosis and improves the state of the art in treatment of the lower extremity, especially foot and ankle injuries. Familiarity with the method of reporting electrodiagnostic studies and appreciation of the electromyographer's interpretation of the EMG/NCV studies also reflects an enhanced fund of knowledge, skills, and attitudes as pertains to one's level of professional expertise. Information regarding the etiology of positive sharp waves, fibrillation potentials, fasciculation, and normal motor action potentials and conduction studies serves as a sound basis for the appreciation of the categories of nerve injury. Competence in understanding the degree of axonal or myelin function or dysfunction in a nerve improve one's effectiveness not only in medical/surgical treatment but in prognostication of recovery of function. A review of the entrapment syndromes in the lower extremity with emphasis on tarsal tunnel syndrome summarizes the most common nerve entrapments germane to the practice of podiatry. With regard to tarsal tunnel syndrome, the earliest electrodiagnostic study to suggest compression was reported to be the EMG of the foot and leg muscles, even before prolonged nerve latency was noted.
Kalman filter-based gap conductance modeling
International Nuclear Information System (INIS)
Tylee, J.L.
1983-01-01
Geometric and thermal property uncertainties contribute greatly to the problem of determining conductance within the fuel-clad gas gap of a nuclear fuel pin. Accurate conductance values are needed for power plant licensing transient analysis and for test analyses at research facilities. Recent work by Meek, Doerner, and Adams has shown that use of Kalman filters to estimate gap conductance is a promising approach. A Kalman filter is simply a mathematical algorithm that employs available system measurements and assumed dynamic models to generate optimal system state vector estimates. This summary addresses another Kalman filter approach to gap conductance estimation and subsequent identification of an empirical conductance model
Optical conductivity of the Hubbard model
International Nuclear Information System (INIS)
Vicente Alvarez, J.J.; Balseiro, C.A.; Ceccatto, H.A.
1996-07-01
We study the response to a static electric field (charge stiffness) and the frequency-dependent conductivity of the Hubbard model in a resonant-valence-bond-type paramagnetic phase. This phase is described by means of a charge and spin rotational-invariant approach, based on a mixed fermion-boson representation of the original strongly correlated electrons. We found that the Mott transition at half filling is well described by the charge stiffness behaviour, and that the values for this quantity off half filling agree reasonably well with numerical results. Furthermore, for the frequency-dependent conductivity we trace back the origin of the band which appears inside the Hubbard gap to magnetic pair breaking. This points to a magnetic origin of midinfrared band in high-T c compounds, with no relation to superconductivity. (author). 12 refs, 2 tabs
Electron conductivity model for dense plasmas
International Nuclear Information System (INIS)
Lee, Y.T.; More, R.M.
1984-01-01
An electron conductivity model for dense plasmas is described which gives a consistent and complete set of transport coefficients including not only electrical conductivity and thermal conductivity, but also thermoelectric power, and Hall, Nernst, Ettinghausen, and Leduc--Righi coefficients. The model is useful for simulating plasma experiments with strong magnetic fields. The coefficients apply over a wide range of plasma temperature and density and are expressed in a computationally simple form. Different formulas are used for the electron relaxation time in plasma, liquid, and solid phases. Comparisons with recent calculations and available experimental measurement show the model gives results which are sufficiently accurate for many practical applications
Hopping models for ion conduction in noncrystals
DEFF Research Database (Denmark)
Dyre, Jeppe; Schrøder, Thomas
2007-01-01
semiconductors). These universalities are subject of much current interest, for instance interpreted in the context of simple hopping models. In the present paper we first discuss the temperature dependence of the dc conductivity in hopping models and the importance of the percolation phenomenon. Next......, the experimental (quasi)universality of the ac conductivity is discussed. It is shown that hopping models are able to reproduce the experimental finding that the response obeys time-temperature superposition, while at the same time a broad range of activation energies is involved in the conduction process. Again...
Energy Technology Data Exchange (ETDEWEB)
Arani, Ali Akbar Abbasian; Azemati, Ali Akbar; Rezaee, Mohammad [University of Kashan, Kashan (Iran, Islamic Republic of); Hadavand, Behzad Shirkavand [Islamic Azad University, Abadan (Iran, Islamic Republic of)
2017-05-15
Natural convection in enclosures containing nanofluids is important in physical and environmental applications. Different models for conduction have been developed because of the importance of this phenomenon in natural convection in enclosures. In this study, effects of conduction models of Chon, Corcione, Khanafer, and Koo and Kleinstreuer on the natural convection inside a trapezoidal enclosure with hot and cold walls are evaluated numerically. The enclosure contains Al{sub 2}O{sub 3}-water nanofluid with variable properties. Effects of the conduction models on fluid flow, natural convection, variations in volume fraction, and diameter of nanoparticles in the models, as well as the variations in the Rayleigh number, are examined. Results show that at Rayleigh numbers of 105 and 106, the maximum and minimum values of the average Nusselt number are obtained using the models of Khanafer and Chon, respectively. In all models, the average Nusselt number presents upward and downward trends when the volume fraction of nanoparticles increases but decreases when the di- ameter of the nanoparticles increases. At Ra = 105 in all models, as the volume fraction of nanoparticles increases, the nanofluid provides a higher average Nusselt number compared with the base fluid. By contrast, at Ra = 106, at volume fractions larger than 0.01 and using the model of Chon, the average Nusselt number of the nanofluid is lower compared with that of the base fluid.
Characterising and modelling extended conducted electromagnetic emission
CSIR Research Space (South Africa)
Grobler, Inus
2013-06-01
Full Text Available , such as common mode and differential mode separation, calibrated with an EMC ETS-Lindgren current probe. Good and workable model accuracies were achieved with the basic Step-Up and Step-Down circuits over the conducted emission frequency band and beyond...
Radiation enhanced conduction in insulators: computer modelling
International Nuclear Information System (INIS)
Fisher, A.J.
1986-10-01
The report describes the implementation of the Klaffky-Rose-Goland-Dienes [Phys. Rev. B.21 3610,1980] model of radiation-enhanced conduction and describes the codes used. The approach is demonstrated for the data for alumina of Pells, Buckley, Hill and Murphy [AERE R.11715, 1985]. (author)
A new thermal conductivity model for nanofluids
Energy Technology Data Exchange (ETDEWEB)
Koo, Junemoo; Kleinstreuer, Clement [Department of Mechanical and Aerospace Engineering (United States)], E-mail: ck@eos.ncsu.edu
2004-12-15
In a quiescent suspension, nanoparticles move randomly and thereby carry relatively large volumes of surrounding liquid with them. This micro-scale interaction may occur between hot and cold regions, resulting in a lower local temperature gradient for a given heat flux compared with the pure liquid case. Thus, as a result of Brownian motion, the effective thermal conductivity, k{sub eff}, which is composed of the particles' conventional static part and the Brownian motion part, increases to result in a lower temperature gradient for a given heat flux. To capture these transport phenomena, a new thermal conductivity model for nanofluids has been developed, which takes the effects of particle size, particle volume fraction and temperature dependence as well as properties of base liquid and particle phase into consideration by considering surrounding liquid traveling with randomly moving nanoparticles.The strong dependence of the effective thermal conductivity on temperature and material properties of both particle and carrier fluid was attributed to the long impact range of the interparticle potential, which influences the particle motion. In the new model, the impact of Brownian motion is more effective at higher temperatures, as also observed experimentally. Specifically, the new model was tested with simple thermal conduction cases, and demonstrated that for a given heat flux, the temperature gradient changes significantly due to a variable thermal conductivity which mainly depends on particle volume fraction, particle size, particle material and temperature. To improve the accuracy and versatility of the k{sub eff}model, more experimental data sets are needed.
Geometric model for softwood transverse thermal conductivity. Part I
Hong-mei Gu; Audrey Zink-Sharp
2005-01-01
Thermal conductivity is a very important parameter in determining heat transfer rate and is required for developing of drying models and in industrial operations such as adhesive cure rate. Geometric models for predicting softwood thermal conductivity in the radial and tangential directions were generated in this study based on obervation and measurements of wood...
Huang, Ming Xia; Wang, Jing; Tang, Jian Zhao; Yu, Qiang; Zhang, Jun; Xue, Qing Yu; Chang, Qing; Tan, Mei Xiu
2016-11-18
The suitability of four popular empirical and semi-empirical stomatal conductance models (Jarvis model, Ball-Berry model, Leuning model and Medlyn model) was evaluated based on para-llel observation data of leaf stomatal conductance, leaf net photosynthetic rate and meteorological factors during the vigorous growing period of potato and oil sunflower at Wuchuan experimental station in agro-pastoral ecotone in North China. It was found that there was a significant linear relationship between leaf stomatal conductance and leaf net photosynthetic rate for potato, whereas the linear relationship appeared weaker for oil sunflower. The results of model evaluation showed that Ball-Berry model performed best in simulating leaf stomatal conductance of potato, followed by Leuning model and Medlyn model, while Jarvis model was the last in the performance rating. The root-mean-square error (RMSE) was 0.0331, 0.0371, 0.0456 and 0.0794 mol·m -2 ·s -1 , the normalized root-mean-square error (NRMSE) was 26.8%, 30.0%, 36.9% and 64.3%, and R-squared (R 2 ) was 0.96, 0.61, 0.91 and 0.88 between simulated and observed leaf stomatal conductance of potato for Ball-Berry model, Leuning model, Medlyn model and Jarvis model, respectively. For leaf stomatal conductance of oil sunflower, Jarvis model performed slightly better than Leuning model, Ball-Berry model and Medlyn model. RMSE was 0.2221, 0.2534, 0.2547 and 0.2758 mol·m -2 ·s -1 , NRMSE was 40.3%, 46.0%, 46.2% and 50.1%, and R 2 was 0.38, 0.22, 0.23 and 0.20 between simulated and observed leaf stomatal conductance of oil sunflower for Jarvis model, Leuning model, Ball-Berry model and Medlyn model, respectively. The path analysis was conducted to identify effects of specific meteorological factors on leaf stomatal conductance. The diurnal variation of leaf stomatal conductance was principally affected by vapour pressure saturation deficit for both potato and oil sunflower. The model evaluation suggested that the stomatal
Multiscale Modeling of UHTC: Thermal Conductivity
Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Modeling of heat conduction via fractional derivatives
Fabrizio, Mauro; Giorgi, Claudio; Morro, Angelo
2017-09-01
The modeling of heat conduction is considered by letting the time derivative, in the Cattaneo-Maxwell equation, be replaced by a derivative of fractional order. The purpose of this new approach is to overcome some drawbacks of the Cattaneo-Maxwell equation, for instance possible fluctuations which violate the non-negativity of the absolute temperature. Consistency with thermodynamics is shown to hold for a suitable free energy potential, that is in fact a functional of the summed history of the heat flux, subject to a suitable restriction on the set of admissible histories. Compatibility with wave propagation at a finite speed is investigated in connection with temperature-rate waves. It follows that though, as expected, this is the case for the Cattaneo-Maxwell equation, the model involving the fractional derivative does not allow the propagation at a finite speed. Nevertheless, this new model provides a good description of wave-like profiles in thermal propagation phenomena, whereas Fourier's law does not.
Electrical conductivity modeling in fractal non-saturated porous media
Wei, W.; Cai, J.; Hu, X.; Han, Q.
2016-12-01
The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.
Model of thermal conductivity of anisotropic nanodiamond
International Nuclear Information System (INIS)
Dudnik, S.F.; Kalinichenko, A.I.; Strel'nitskij, V.E.
2014-01-01
Dependence of thermal conductivity of nanocrystalline diamond on grain size and shape is theoretically investigated. Nanodiamond is considered as two-phase material composed of diamond grains characterizing by three main dimensions and segregated by thin graphite layers with electron, phonon or hybrid thermal conductivity. Influence of type of thermal conductance and thickness of boundary layer on thermal conductivity of nanodiamond is analyzed. Derived dependences of thermal conductivity on grain dimensions are compared with experimental data
Study of thermal conductivity of multilayer insulation
Energy Technology Data Exchange (ETDEWEB)
Dutta, D; Sundaram, S; Nath, G K; Sethuram, N P; Chandrasekharan, T; Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)
1994-06-01
This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author). 3 refs., 3 figs.
Study of thermal conductivity of multilayer insulation
International Nuclear Information System (INIS)
Dutta, D.; Sundaram, S.; Nath, G.K.; Sethuram, N.P.; Chandrasekharan, T.; Varadarajan, T.G.
1994-01-01
This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author)
DEFF Research Database (Denmark)
Henriksen, Jens Henrik Sahl
1985-01-01
A model of lymphatic conductivity (i.e. flow rate per unit pressure difference = conductance) based on protein-kinetic and haemodynamic measurements is described. The model is applied to data from patients with cirrhosis and from pigs with different haemodynamic abnormalities in the hepatosplanch......A model of lymphatic conductivity (i.e. flow rate per unit pressure difference = conductance) based on protein-kinetic and haemodynamic measurements is described. The model is applied to data from patients with cirrhosis and from pigs with different haemodynamic abnormalities...... compatible with increased sinusoidal wall tightening and fibrosis in the interstitial space of the liver. The model presented supports the so-called 'lymph-imbalance' theory of ascites formation according to which a relatively insufficient lymph drainage is important in the pathogenesis of hepatic ascites....
Connectivity ranking of heterogeneous random conductivity models
Rizzo, C. B.; de Barros, F.
2017-12-01
To overcome the challenges associated with hydrogeological data scarcity, the hydraulic conductivity (K) field is often represented by a spatial random process. The state-of-the-art provides several methods to generate 2D or 3D random K-fields, such as the classic multi-Gaussian fields or non-Gaussian fields, training image-based fields and object-based fields. We provide a systematic comparison of these models based on their connectivity. We use the minimum hydraulic resistance as a connectivity measure, which it has been found to be strictly correlated with early time arrival of dissolved contaminants. A computationally efficient graph-based algorithm is employed, allowing a stochastic treatment of the minimum hydraulic resistance through a Monte-Carlo approach and therefore enabling the computation of its uncertainty. The results show the impact of geostatistical parameters on the connectivity for each group of random fields, being able to rank the fields according to their minimum hydraulic resistance.
Proton Conductivity Studies on Biopolymer Electrolytes
International Nuclear Information System (INIS)
Harun, N. I.; Sabri, N. S.; Rosli, N. H. A.; Taib, M. F. M.; Saaid, S. I. Y.; Kudin, T. I. T.; Ali, A. M. M.; Yahya, M. Z. A.
2010-01-01
Proton conducting solid biopolymer electrolyte membranes consisting of methyl cellulose (MC) and different wt.% of ammonium nitrate (NH 4 NO 3 ) were prepared by solution cast technique. Impedance spectroscopy was carried out to study electrical characteristics of bulk materials. The ionic conductivity of the prepared samples was calculated using the bulk resistance (R b ) obtained from impedance spectroscopy plot. The highest ionic conductivity obtained was 1.17x10 -4 Scm -1 for the sample with composition ratio of MC(50): NH 4 NO 3 (50). To enhance the ionic conductivity, propylene carbonate (PC) and ethylene carbonate (EC) plasticizers were introduced. It was found that the ionic conductivity of polymer electrolyte membranes increased with the increase in plasticizers concentration. The ionic conductivities of solid polymer electrolytes based on MC-NH 4 NO 3 -PC was enhanced up to 4.91x10 -3 Scm -1 while for the MC-NH 4 NO 3 -EC system, the highest conductivity was 1.74x10 -2 Scm -1 . The addition of more plasticizer however decreases in mechanical stability of the membranes.
Zhang, Yumei; Wang, Chunxue; Zhao, Xingquan; Chen, Hongyan; Han, Zaizhu; Wang, Yongjun
2010-09-01
In contrast with disorders of comprehension and spontaneous expression, conduction aphasia is characterized by poor repetition, which is a hallmark of the syndrome. There are many theories on the repetition impairment of conduction aphasia. The disconnection theory suggests that a damaged in the arcuate fasciculus, which connects Broca's and Wernicke's area, is the cause of conduction aphasia. In this study, we examined the disconnection theory. We enrolled ten individuals with conduction aphasia and ten volunteers, and analysed their arcuate fasciculus using diffusion tensor imaging (DTI) and obtained fractional anisotropy (FA) values. Then, the results of the left hemisphere were compared with those of the right hemisphere, and the results of the conduction aphasia cases were compared with those of the volunteers. There were significant differences in the FA values between the left and right hemispheres of volunteers and conduction cases. In volunteers, there was an increase in fiber in the left hemisphere compared with the right hemisphere, whereas there was an increase in fiber in the right hemisphere compared with the left hemisphere in conduction aphasia patients. The results of diffusion tensor tractography suggested that the configuration of the arcuate fasciculus was different between conduction aphasia patients and volunteers, suggesting that there was damage to the arcuate fasciculus of conduction aphasia cases. The damage seen in the arcuate fasciculus of conduction aphasia cases in this study supports the Wernicke-Geschwind disconnection theory. A disconnection between Broca's area and Wernicke's area is likely to be one mechanism of conduction aphasia repetition impairment.
Energy Technology Data Exchange (ETDEWEB)
Kang, Hyung-sun; Koh, Young Ha; Jin, Jae Sik [Chosun College of Science and Technology, Gwangju (Korea, Republic of)
2017-06-15
The aim of this study is to understand the phonon transfer characteristics of a silicon thin film transistor. For this purpose, the Joule heating mechanism was considered through the electron-phonon interaction model whose validation has been done. The phonon transport characteristics were investigated in terms of phonon mean free path for the variations in the device power and silicon layer thickness from 41 nm to 177 nm. The results may be used for developing the thermal design strategy for achieving reliability and efficiency of the silicon-on-insulator (SOI) transistor, further, they will increase the understanding of heat conduction in SOI systems, which are very important in the semiconductor industry and the nano-fabrication technology.
Theoretical studies of ionic conductivity of crosslinked chitosan membranes
Energy Technology Data Exchange (ETDEWEB)
Chavez, Ernesto Lopez [Programa de Ingenieria Molecular y Nuevos Materiales, Universidad Autonoma de la Ciudad de Mexico, Fray Servando Teresa de Mier 92, 1er. Piso, Col Centro, Mexico D.F. CP 06080 (Mexico); Oviedo-Roa, R.; Contreras-Perez, Gustavo; Martinez-Magadan, Jose Manuel [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, CP 07730 Mexico D.F. (Mexico); Castillo-Alvarado, F.L. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 de la UPALM, Colonia Lindavista, Mexico D.F. CP 07738 (Mexico)
2010-11-15
Ionic conductivity of crosslinked chitosan membranes was studied using techniques of molecular modeling and simulation. The COMPASS force field was used. The simulation allows the description of the mechanism of ionic conductivity along the polymer matrix. The theoretical results obtained are compared with experimental results for chitosan membranes. The analysis suggests that the conduction mechanism is portrayed by the overlapping large Polaron tunneling model. In addition, when the chitosan membrane was crosslinked with an appropriate degree of crosslinking its ionic conductivity, at room temperature, was increased by about one order of magnitude. The chitosan membranes can be used as electrolytes in solid state batteries, electric double layer capacitors and fuel cells. (author)
Measurements and Modeling of Conducted EMI in a Buck Chopper
International Nuclear Information System (INIS)
Fakhfakh, L.; Abid, S.; Ammous, A.
2011-01-01
The high increase of power electronic devices use (speed control, lighting, heating, automotive, etc...) requires the electrical, thermal and electromagnetic behavior studies. In this paper we developed a model to predict the conducted EMI level in a DC/DC converter. Measurement methodology was done using a network analyzer in order to evaluate the equivalent impedance model of each converter element. The full circuit model is then implemented in the Saber-trademark simulation tool using time domain simulation followed by fast Fourier transformation (FFT) in the frequency range 150 KHz -100 MHz. A comparison between simulation results and those obtained by measurements is used to validate the developed model. (author)
Microscale Heat Conduction Models and Doppler Feedback
International Nuclear Information System (INIS)
Hawari, Ayman I.; Ougouag, Abderrafi
2015-01-01
The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.
An examination of the developmental propensity model of conduct problems.
Rhee, Soo Hyun; Friedman, Naomi P; Corley, Robin P; Hewitt, John K; Hink, Laura K; Johnson, Daniel P; Smith Watts, Ashley K; Young, Susan E; Robinson, JoAnn; Waldman, Irwin D; Zahn-Waxler, Carolyn
2016-05-01
The present study tested specific hypotheses advanced by the developmental propensity model of the etiology of conduct problems in the Colorado Longitudinal Twin Study, a prospective, longitudinal, genetically informative sample. High negative emotionality, low behavioral inhibition, low concern and high disregard for others, and low cognitive ability assessed during toddlerhood (age 14 to 36 months) were examined as predictors of conduct problems in later childhood and adolescence (age 4 to 17 years). Each hypothesized antisocial propensity dimension predicted conduct problems, but some predictions may be context specific or due to method covariance. The most robust predictors were observed disregard for others (i.e., responding to others' distress with active, negative responses such as anger and hostility), general cognitive ability, and language ability, which were associated with conduct problems reported by parents, teachers, and adolescents, and change in observed negative emotionality (i.e., frustration tolerance), which was associated with conduct problems reported by teachers and adolescents. Furthermore, associations between the most robust early predictors and later conduct problems were influenced by the shared environment rather than genes. We conclude that shared environmental influences that promote disregard for others and detract from cognitive and language development during toddlerhood also predispose individuals to conduct problems in later childhood and adolescence. The identification of those shared environmental influences common to early antisocial propensity and later conduct problems is an important future direction, and additional developmental behavior genetic studies examining the interaction between children's characteristics and socializing influences on conduct problems are needed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Simple Predictive Models for Saturated Hydraulic Conductivity of Technosands
DEFF Research Database (Denmark)
Arthur, Emmanuel; Razzaghi, Fatemeh; Møldrup, Per
2012-01-01
Accurate estimation of saturated hydraulic conductivity (Ks) of technosands (gravel-free, coarse sands with negligible organic matter content) is important for irrigation and drainage management of athletic fields and golf courses. In this study, we developed two simple models for predicting Ks......-Rammler particle size distribution (PSD) function. The Ks and PSD data of 14 golf course sands from literature as well as newly measured data for a size fraction of Lunar Regolith Simulant, packed at three different dry bulk densities, were used for model evaluation. The pore network tortuosity......-connectivity parameter (m) obtained for pure coarse sand after fitting to measured Ks data was 1.68 for both models and in good agreement with m values obtained from recent solute and gas diffusion studies. Both the modified K-C and R-C models are easy to use and require limited parameter input, and both models gave...
Electrical conductivity study on polythiophenes films
International Nuclear Information System (INIS)
Youm, I.; Cadene, M.
1994-10-01
The electrical conduction mechanism of two classes of polythiophenes: polythiophene (PT) and poly(3-methylthiophene) (PMT) films containing various levels of doping counter-ions was investigated. The temperature dependence of electrical conductivity obeys the Mott equation based on variable range hopping. The dimension of the variable range hopping is correlated with the structure of the conducting polymer. It seems for these polymers that carrier transport via mobile conjugational defects does not play a detectable role. (author). 17 refs, 3 figs, 1 tab
2017-05-01
the exit interview conducted at the conclusion of the testing period. Appendix B summarizes the recommendations the craftmasters made for improving ...the “Go/No-Go” condition. Unlike USACE applications , where that scenario is known by interviewing harbor pilots, the Go/No-Go conditions are...summarizes a proof-of-concept study for demonstrating the application of these technologies to allow commanders to determine the feasibility of surface
Thermal conductivity model of vibro-packed fuel
International Nuclear Information System (INIS)
Yeon Soo, Kim
2001-01-01
In an effort to dispose of excess weapons grade plutonium accumulated in the cold war era in the United States and the Russian Federation, one method currently under investigation is the conversion of the plutonium into mixed oxide (MOX) reactor fuel for LWRs and fast reactors in the Russian Federation. A fuel option already partly developed at the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad is that of vibro-packed MOX. Fuel rod fabrication using powder vibro-packing is attractive because it includes neither a process too complex to operate in glove boxes (or remotely), nor a waste-producing step necessary for the conventional pellet rod fabrication. However, because of its loose bonding between fuel particles at the beginning of life, vibro-packed MOX fuel has a somewhat less effective thermal conductivity than fully sintered pellet fuel, and undergoes more restructuring. Helium would also likely be pressurized in vibro-packed MOX fuel rods for LWRs to enhance initial fuel thermal conductivity. The combination of these two factors complicates development of an accurate thermal conductivity model. But clearly in order to predict fuel thermomechanical responses during irradiation of vibro-packed MOX fuel, fuel thermal conductivity must be known. The Vibropac fuel of interest in this study refers the fuel that is compacted with irregular fragments of mixed oxide fuel. In this paper, the thermal-conductivity models in the literature that dealt with relatively similar situations to the present case are examined. Then, the best model is selected based on accuracy of prediction and applicability. Then, the selected model is expanded to fit the various situations of interest. (author)
Conductive solar wind models in rapidly diverging flow geometries
International Nuclear Information System (INIS)
Holzer, T.E.; Leer, E.
1980-01-01
A detailed parameter study of conductive models of the solar wind has been carried out, extending the previous similar studies of Durney (1972) and Durney and Hundhausen (1974) by considering collisionless inhibition of thermal conduction, rapidly diverging flow geometries, and the structure of solutions for the entire n 0 -T 0 plane (n 0 and T 0 are the coronal base density and temperature). Primary emphasis is placed on understanding the complex effects of the physical processes operative in conductive solar wind models. There are five points of particular interest that have arisen from the study: (1) neither collisionless inhibition of thermal conduction nor rapidly diverging flow geometries can significantly increase the solar wind speed at 1 AU; (2) there exists a firm upper limit on the coronal base temperature consistent with observed values of the coronal base pressure and solar wind mass flux density; (3) the principal effect of rapidly diverging flow geometries is a decrease in the solar wind mass flux density at 1 AU and an increase in the mass flux density at the coronal base; (4) collisionless inhibition of thermal conduction can lead to a solar wind flow speed that either increases or decreases with increasing coronal base density (n 0 ) and temperature (T 0 , depending on the region of the n 0 -T 0 plane considered; (5) there is a region of the n 0 -T/sub o/ plane at high coronal base densities where low-speed, high-mass-flux, transonic solar wind flows exist: a region not previously considered
Studies on conductance of uranyl soaps
International Nuclear Information System (INIS)
Mehrotra, K.N.; Sharma, M.; Gahlaut, A.S.
1987-01-01
Specific conductance of uranyl soaps in dimethylformamide indicates two critical micelle concentrations CMC(I) and CMC(II). The value of CMC(II) decreases with the increase in chain length of the soap, whereas CMC(I) does not vary at all. The results show that the soaps behave as simple electrolyte. The major conductance at infinite dilution (μsub(o)) and dissociation constant (K) of these soaps have been evaluated. (author). 12 refs
Phonon studies of intercalated conductive polymers
Energy Technology Data Exchange (ETDEWEB)
Prassides, K; Bell, C J [School of Chemistry and Molecular Sciences, Univ. of Sussex, Brighton (United Kingdom); Dianoux, A J [Inst. Laue-Langevin, 38 - Grenoble (France); Chunguey, Wu; Kanatzidis, M G [Dept. of Chemistry, Michigan State Univ., East Lansing (United States)
1992-06-01
The phonon density-of-states of FeOCl, the conductive form of polyaniline and the intercalation compound (polyaniline)[sub 0.20]FeOCl(I) have been measured by the neutron time-of-flight technique. The results are discussed in the light of the conducting and structural properties of the materials. Compound I is oxidised by standing in air and the neutron measurements reveal substantial changes in the inorganic host skeleton. (orig.).
Configurational Model for Conductivity of Stabilized Fluorite Structure Oxides
DEFF Research Database (Denmark)
Poulsen, Finn Willy
1981-01-01
The formalism developed here furnishes means by which ionic configurations, solid solution limits, and conductivity mechanisms in doped fluorite structures can be described. The present model differs markedly from previous models but reproduces qualitatively reality. The analysis reported...
Soil hydraulic properties near saturation, an improved conductivity model
DEFF Research Database (Denmark)
Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren
2006-01-01
of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences....... Optimising a matching factor (k0) improved the fit considerably whereas optimising the l-parameter in the vGM model improved the fit only slightly. The vGM was improved with an empirical scaling function to account for the rapid increase in conductivity near saturation. Using the improved models...
Excitation model of pacemaker cardiomyocytes of cardiac conduction system
Grigoriev, M.; Babich, L.
2015-11-01
Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.
Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites
Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.
2010-01-01
Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity
Overview of thermal conductivity models of anisotropic thermal insulation materials
Skurikhin, A. V.; Kostanovsky, A. V.
2017-11-01
Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.
Modelling electrolyte conductivity in a water electrolyzer cell
DEFF Research Database (Denmark)
Caspersen, Michael; Kirkegaard, Julius Bier
2012-01-01
An analytical model describing the hydrogen gas evolution under natural convection in an electrolyzer cell is developed. Main purpose of the model is to investigate the electrolyte conductivity through the cell under various conditions. Cell conductivity is calculated from a parallel resistor...
Development of irradiated UO2 thermal conductivity model
International Nuclear Information System (INIS)
Lee, Chan Bock; Bang Je-Geon; Kim Dae Ho; Jung Youn Ho
2001-01-01
Thermal conductivity model of the irradiated UO 2 pellet was developed, based upon the thermal diffusivity data of the irradiated UO 2 pellet measured during thermal cycling. The model predicts the thermal conductivity by multiplying such separate correction factors as solid fission products, gaseous fission products, radiation damage and porosity. The developed model was validated by comparison with the variation of the measured thermal diffusivity data during thermal cycling and prediction of other UO 2 thermal conductivity models. Since the developed model considers the effect of gaseous fission products as a separate factor, it can predict variation of thermal conductivity in the rim region of high burnup UO 2 pellet where the fission gases in the matrix are precipitated into bubbles, indicating that decrease of thermal conductivity by bubble precipitation in rim region would be significantly compensated by the enhancing effect of fission gas depletion in the UO 2 matrix. (author)
Conductivity studies on microwave synthesized glasses
Indian Academy of Sciences (India)
It has been found that conductivity in these glasses changes from the predominantly 'ionic' to predominantly 'electronic' depending upon the chemical composition. ... Indian Institute of Science, Bangalore 560012, India; Department of Physics, Sree Siddaganga College of Arts, Science and Commerce, Tumkur University, ...
Neuroscience Investigations: An Overview of Studies Conducted
Reschke, Millard F.
1999-01-01
The neural processes that mediate human spatial orientation and adaptive changes occurring in response to the sensory rearrangement encountered during orbital flight are primarily studied through second and third order responses. In the Extended Duration Orbiter Medical Project (EDOMP) neuroscience investigations, the following were measured: (1) eye movements during acquisition of either static or moving visual targets, (2) postural and locomotor responses provoked by unexpected movement of the support surface, changes in the interaction of visual, proprioceptive, and vestibular information, changes in the major postural muscles via descending pathways, or changes in locomotor pathways, and (3) verbal reports of perceived self-orientation and self-motion which enhance and complement conclusions drawn from the analysis of oculomotor, postural, and locomotor responses. In spaceflight operations, spatial orientation can be defined as situational awareness, where crew member perception of attitude, position, or motion of the spacecraft or other objects in three-dimensional space, including orientation of one's own body, is congruent with actual physical events. Perception of spatial orientation is determined by integrating information from several sensory modalities. This involves higher levels of processing within the central nervous system that control eye movements, locomotion, and stable posture. Spaceflight operational problems occur when responses to the incorrectly perceived spatial orientation are compensatory in nature. Neuroscience investigations were conducted in conjunction with U. S. Space Shuttle flights to evaluate possible changes in the ability of an astronaut to land the Shuttle or effectively perform an emergency post-landing egress following microgravity adaptation during space flights of variable length. While the results of various sensory motor and spatial orientation tests could have an impact on future space flights, our knowledge of
A model for gap conductance in nuclear fuel rods
International Nuclear Information System (INIS)
Loyalka, S.K.
1982-01-01
Computation of nuclear reactor fuel behavior under normal and off-normal conditions is influenced by gap conductance models. These models should provide accurate results for heat transfer for arbitrary gap widths and gas mixtures and should be based on considerations of the kinetic theory of gases. There has been considerable progress in the study of heat transfer in a simple gas for arbitrary Knudsen numbers (Kn = l/similar to d, where l is a meanfree-path and similar d is the gap width) in recent years. Using these recent results, a simple expression for heat transfer in a gas mixture (enclosed between parallel plates) for an arbitrary Knudsen number has been constructed, and a new model for gap conductance has been proposed. The latter reproduces the free molecular (small gap, Kn >> 1) and the jump limits (large gaps, Kn << 1) correctly, and it provides fairly accurate results for arbitrary gap widths. The new model is suitable for use in large fuel behavior computer programs
Thermal Conductivity of the Potential Repository Horizon Model Report
International Nuclear Information System (INIS)
Ramsey, J.
2002-01-01
The purpose of this report is to assess the spatial variability and uncertainty of thermal conductivity in the host horizon for the proposed repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). The Tptpul is the layer directly above the repository host layers, which consist of the Tptpmn, Tptpll, and the Tptpln. Current design plans indicate that the largest portion of the repository will be excavated in the Tptpll (Board et al. 2002 [157756]). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large scale (cm-m) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity and perhaps repository system performance as well. To assess the spatial variability and uncertainty of thermal conductivity, a model is proposed that is functionally dependent on the volume fraction of lithophysae and the thermal conductivity of the matrix portion of the rock. In this model, void space characterized as lithophysae is assumed to be air-saturated under all conditions, while void space characterized as matrix may be either water- or air-saturated. Lithophysae are assumed to be air-saturated under all conditions since the units being studied are all located above the water table in the region of interest, and the relatively strong capillary forces of the matrix will, under most conditions, preferentially retain any moisture present in the rock
International Nuclear Information System (INIS)
Shukur, M F; Yusof, Y M; Zawawi, S M M; Illias, H A; Kadir, M F Z
2013-01-01
This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH 4 SCN). The sample containing 40 wt% NH 4 SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10 −4 S cm −1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10 −3 S cm −1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (E a ) was calculated for both systems and it is found that the sample with 40 wt% NH 4 SCN in the salted system obtained an E a value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH 4 SCN salt. Changes in the C–O stretching vibration band intensity are observed at 1067 cm −1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems. (paper)
Shukur, M. F.; Yusof, Y. M.; Zawawi, S. M. M.; Illias, H. A.; Kadir, M. F. Z.
2013-11-01
This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH4SCN). The sample containing 40 wt% NH4SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10-4 S cm-1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10-3 S cm-1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (Ea) was calculated for both systems and it is found that the sample with 40 wt% NH4SCN in the salted system obtained an Ea value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH4SCN salt. Changes in the C-O stretching vibration band intensity are observed at 1067 cm-1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems.
Stability and special solutions to the conducting dusty gas model
International Nuclear Information System (INIS)
Calmelet, C.J.
1987-01-01
Models of the flow of a dusty, conducting and non-conducting gas are examined. Exact solutions for a conducting dusty gas model in the presence of a magnetic field are developed for two different flow domains. The exact solutions are calculated in the cases of negligible and non-negligible induced magnetic field. Stability theorems are developed which depend on the flow parameters of the dusty gas and the magnetic field. In particular, a universal stability theorem is obtained when the dusty gas flow is electrically conducting in the presence of an applied magnetic field, and the dust particles are non-uniformly distributed
Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation
Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.
2012-12-01
This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.
Scanning tunneling spectroscopy study of DNA conductivity
Czech Academy of Sciences Publication Activity Database
Kratochvílová, Irena; Král, Karel; Bunček, M.; Nešpůrek, Stanislav; Todorciuc, Tatiana; Weiter, M.; Navrátil, J.; Schneider, Bohdan; Pavluch, J.
2008-01-01
Roč. 6, č. 3 (2008), s. 422-426 ISSN 1895-1082 R&D Projects: GA AV ČR KAN401770651; GA MŠk OC 137; GA AV ČR KAN400720701; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505; CEZ:AV0Z40550506 Keywords : molecular electronics * DNA * scanning tunneling microscopy * conductivity * charge carrier transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.448, year: 2008
Study on thermal conductive BN/novolac resin composites
International Nuclear Information System (INIS)
Li, Shasha; Qi, Shuhua; Liu, Nailiang; Cao, Peng
2011-01-01
Highlights: → Boron nitride (BN) particles were used to modify novolac resin. → BN particles were pretreated by γ-aminopropyltriethoxysilane. → The thermal conductivity trend of composite almost agrees with the predicted data from the Maxwell-Eucken model. → At BN concentration of 80 wt.%, thermal conductivity value of composite is 4.5 times that of pure novolac resin. → Combined use of the larger and smaller particles with a mass ratio of 1:2 provides the composites with the maximum thermal conductivity among the testing systems. → The composite thermal property also increases with an increase in the BN concentration. - Abstract: In this study, γ-aminopropyltriethoxysilane-treated boron nitride (BN) particles were used to modify novolac resin. The effect of varying the BN concentration, particle size, and hybrid BN fillers with the binary particle size distribution on the thermal conductivity of the composites was investigated. Scanning electron microscopy (SEM) imaging showed homogeneously dispersed treated BN particles in the matrix. Furthermore, the thermal conductivity increased as the BN concentration was increased. This behavior was also observed when the filler size was increased. Experimentally obtained thermal conductivity values agree with the predicted data from the Maxwell-Eucken model well at less than 70 wt.% BN loading. A larger particle size BN-filled novolac resin exhibits a higher thermal conductivity than a smaller particle size BN-filled one. The combined use of 0.5 and 15 μm particles with a mass ratio of 2:1 achieved the maximum thermal conductivity among the testing systems. The thermal resistance properties of the composites were also studied.
Multi-channel grouping techniques for conducting reactor safety studies
International Nuclear Information System (INIS)
Waltar, A.E.; Wilburn, N.P.
1975-01-01
In conducting safety studies for postulated unprotected accidents in an LMFBR system, it is common practice to employ multi-channel coupled neutronics, thermal hydraulics computer programs such as SAS3A or MELT-III. The multichannel feature of such code systems is important if the natural fuel failure incoherencies and the resulting sodium void/fuel motion reactivity feedbacks--which have strong spatial variations--are to be properly modeled. Because of the large amounts of computer time associated with many channel runs, however, there is a strong incentive to conduct parametric studies with as few channels as possible. The paper presented is focused on methods successfully employed to accomplish this end for a study of the hypothetical unprotected transient overpower accident conducted for the FFTF
Numerical Modeling of Electrical Contact Conductance of Rough Bodies
Directory of Open Access Journals (Sweden)
M. V. Murashov
2015-01-01
Full Text Available Since the beginning of the 20th century to the present time, efforts have been made to develop a model of the electrical contact conductance. The development of micro- and nanotechnologies make contact conductance problem more essential. To conduct borrowing from a welldeveloped thermal contact conductance models on the basis of thermal and electrical conductivity analogy is often not possible due to a number of fundamental differences. While some 3Dmodels of rough bodies deformation have been developed in one way or another, a 3D-model of the electrical conductance through rough bodies contact is still not. A spatial model of electrical contact of rough bodies is proposed, allows one to calculate the electrical contact conductance as a function of the contact pressure. Representative elements of the bodies are parallelepipeds with deterministic roughness on the contacting surfaces. First the non-linear elastic-plastic deformation of rough surface under external pressure is solved using the finite element software ANSYS. Then the solution of electrostatic problem goes on the same finite element mesh. Aluminum AD1 is used as the material of the contacting bodies with properties that account for cold work hardening of the surface. The numerical model is built within the continuum mechanics and nanoscale effects are not taken into account. The electrical contact conductance was calculated on the basis of the concept of electrical resistance of the model as the sum of the electrical resistances of the contacting bodies and the contact itself. It was assumed that there is no air in the gap between the bodies. The dependence of the electrical contact conductance on the contact pressure is calculated as well as voltage and current density distributions in the contact bodies. It is determined that the multi-asperity contact mode, adequate to real roughness, is achieved at pressures higher than 3MPa, while results within the single contact spot are
Modelling the effect of hydration on skin conductivity.
Davies, L; Chappell, P; Melvin, T
2017-08-01
Electrical signals are recorded from and sent into the body via the skin in a number of applications. In practice, skin is often hydrated with liquids having different conductivities so a model was produced in order to determine the relationship between skin impedance and conductivity. A model representing the skin was subjected to a variety of electrical signals. The parts of the model representing the stratum corneum were given different conductivities to represent different levels of hydration. The overall impedance and conductivity of the cells did not vary at frequencies below 40 kHz. Above 40 kHz, levels of increased conductivity caused the overall impedance to decrease. The variation in impedance with conductivity between 5 and 50 mSm -1 can be modelled quadratically while variation in impedance with conductivity between 5 and 5000 mSm -1 can be modelled with a double exponential decay. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Finite element model for heat conduction in jointed rock masses
International Nuclear Information System (INIS)
Gartling, D.K.; Thomas, R.K.
1981-01-01
A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points
Current amplification models of sensorineurall and conductive hearing loss
Ostojić, Sanja; Mikić, Branka; Mirić, Danica
2012-01-01
The main function of a hearing aid is to improve auditory and language abilities of hearing impaired users. The amplification model has to be adapted according to age, degree and type of hearing loss. The goal of this paper is to analyze the current amplification models of sensorineural and conductive hearing loss which can provide a high quality of speech perception and sounds at any degree of hearing loss. The BAHA is a surgically implantable system for treatment of conductive hearing loss ...
Fractional Heat Conduction Models and Thermal Diffusivity Determination
Directory of Open Access Journals (Sweden)
Monika Žecová
2015-01-01
Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.
Computational study of NMDA conductance and cortical oscillations in schizophrenia
Directory of Open Access Journals (Sweden)
Kubra eKomek Kirli
2014-10-01
Full Text Available N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia. The illness is also characterized by gamma oscillatory disturbances, which can be evaluated with precise frequency specificity employing auditory cortical entrainment paradigms. This computational study investigates how synaptic NMDA hypofunction may give rise to network level oscillatory deficits as indexed by entrainment paradigms. We developed a computational model of a local cortical circuit with pyramidal cells and fast-spiking interneurons (FSI, incorporating NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA, and γ-aminobutyric acid (GABA synaptic kinetics. We evaluated the effects of varying NMDA conductance on FSIs and pyramidal cells, as well as AMPA to NMDA ratio. We also examined the differential effects across a broad range of entrainment frequencies as a function of NMDA conductance. Varying NMDA conductance onto FSIs revealed an inverted-U relation with network gamma whereas NMDA conductance onto the pyramidal cells had a more monotonic relationship. Varying NMDA vs. AMPA conductance onto FSIs demonstrated the necessity of AMPA in the generation of gamma while NMDA receptors had a modulatory role. Finally, reducing NMDA conductance onto FSI and varying the stimulus input frequency reproduced the specific reductions in gamma range (~40 Hz as observed in schizophrenia studies. Our computational study showed that reductions in NMDA conductance onto FSIs can reproduce similar disturbances in entrainment to periodic stimuli within the gamma range as reported in schizophrenia studies. These findings provide a mechanistic account of how specific cellular level disturbances can give rise to circuitry level pathophysiologic disturbance in schizophrenia.
The use of conduction model in laser weld profile computation
Grabas, Bogusław
2007-02-01
Profiles of joints resulting from deep penetration laser beam welding of a flat workpiece of carbon steel were computed. A semi-analytical conduction model solved with Green's function method was used in computations. In the model, the moving heat source was attenuated exponentially in accordance with Beer-Lambert law. Computational results were compared with those in the experiment.
Modeling the overall heat conductive and convective properties of open-cell graphite foam
International Nuclear Information System (INIS)
Tee, C C; Yu, N; Li, H
2008-01-01
This work develops analytic models on the overall thermal conductivity, pressure drop and overall convective heat transfer coefficient of graphite foam. The models study the relationship between the overall heat conductive and convective properties, and foam microstructure, temperature, foam surface friction characteristics and cooling fluid properties. The predicted thermal conductivity, convective heat transfer coefficient and pressure drop agree well with experimental data
Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes
International Nuclear Information System (INIS)
Bao, W S; Meguid, S A; Zhu, Z H; Meguid, M J
2011-01-01
We have developed an improved three-dimensional (3D) percolation model to investigate the effect of the alignment of carbon nanotubes (CNTs) on the electrical conductivity of nanocomposites. In this model, both intrinsic and contact resistances are considered, and a new method of resistor network recognition that employs periodically connective paths is developed. This method leads to a reduction in the size effect of the representative cuboid in our Monte Carlo simulations. With this new technique, we were able to effectively analyze the effects of the CNT alignment upon the electrical conductivity of nanocomposites. Our model predicted that the peak value of the conductivity occurs for partially aligned rather than perfectly aligned CNTs. It has also identified the value of the peak and the corresponding alignment for different volume fractions of CNTs. Our model works well for both multi-wall CNTs (MWCNTs) and single-wall CNTs (SWCNTs), and the numerical results show a quantitative agreement with existing experimental observations.
Random resistor network model of minimal conductivity in graphene.
Cheianov, Vadim V; Fal'ko, Vladimir I; Altshuler, Boris L; Aleiner, Igor L
2007-10-26
Transport in undoped graphene is related to percolating current patterns in the networks of n- and p-type regions reflecting the strong bipolar charge density fluctuations. Finite transparency of the p-n junctions is vital in establishing the macroscopic conductivity. We propose a random resistor network model to analyze scaling dependencies of the conductance on the doping and disorder, the quantum magnetoresistance and the corresponding dephasing rate.
Schwinger effect and negative differential conductivity in holographic models
Directory of Open Access Journals (Sweden)
Shankhadeep Chakrabortty
2015-01-01
Full Text Available The consequences of the Schwinger effect for conductivity are computed for strong coupling systems using holography. The one-loop diagram on the flavor brane introduces an O(λNc imaginary part in the effective action for a Maxwell flavor gauge field. This in turn introduces a real conductivity in an otherwise insulating phase of the boundary theory. Moreover, in certain regions of parameter space the differential conductivity is negative. This is computed in the context of the Sakai–Sugimoto model.
Thermal conductivity of the Lennard-Jones chain fluid model.
Galliero, Guillaume; Boned, Christian
2009-12-01
Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8values of the Lennard-Jones chain fluid model merge on the same "universal" curve when plotted as a function of the excess entropy. Furthermore, it is shown that the reduced configurational thermal conductivity of the Lennard-Jones chain fluid model is approximately proportional to the reduced excess entropy for all fluid states and all chain lengths.
URGAP: A gap conductance model for transient conditions
International Nuclear Information System (INIS)
Lassmann, K.; Pazdera, F.
1983-01-01
A gap conductance model, URGAP, has been developed with contributions from solid, fluid and radiation heat transfer components. Model parameters are easily available, independent of different combinations of material surfaces. The model parameters were fitted to 388 data points under reactor conditions. For model verification, another 274 data points of steel-steel and aluminium-aluminium interfaces, respectively, were used. For minor surface roughnesses normally prevailing in reactor fuel elements the model asymptotically yields Ross' and Stoute's model for the open gap, which is thus confirmed. Materials data were carefully checked over a wide range of temperatures. Special attention was paid to the contact term for high temperatures. Thus, the model can be applied to transients. The URGAP model is being used successfully in several codes (e.g. URANUS, SSYST). (author)
DEFF Research Database (Denmark)
Henriksen, J H
1985-01-01
compatible with increased sinusoidal wall tightening and fibrosis in the interstitial space of the liver. The model presented supports the so-called 'lymph-imbalance' theory of ascites formation according to which a relatively insufficient lymph drainage is important in the pathogenesis of hepatic ascites....
Numerical modeling of thermal conductive heating in fractured bedrock.
Baston, Daniel P; Falta, Ronald W; Kueper, Bernard H
2010-01-01
Numerical modeling was employed to study the performance of thermal conductive heating (TCH) in fractured shale under a variety of hydrogeological conditions. Model results show that groundwater flow in fractures does not significantly affect the minimum treatment zone temperature, except near the beginning of heating or when groundwater influx is high. However, fracture and rock matrix properties can significantly influence the time necessary to remove all liquid water (i.e., reach superheated steam conditions) in the treatment area. Low matrix permeability, high matrix porosity, and wide fracture spacing can contribute to boiling point elevation in the rock matrix. Consequently, knowledge of these properties is important for the estimation of treatment times. Because of the variability in boiling point throughout a fractured rock treatment zone and the absence of a well-defined constant temperature boiling plateau in the rock matrix, it may be difficult to monitor the progress of thermal treatment using temperature measurements alone. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
Conductivity modeling of gas sensors based on copper ...
African Journals Online (AJOL)
The main objective of this work is to study the electronic conductivity of copper ... applications, such as gas sensors [11 - 13], catalysts [14], solar cells [15], .... solid systems and adopted to examine the mechanism of the adsorption process [38].
Modeling of the effective thermal conductivity of sintered porous pastes
Ordonez-Miranda, J.; Hermens, M.; Nikitin, I.; Kouznetsova, V.G.; Volz, S.
2014-01-01
The thermal conductivity of sintered porous pastes of metals is modelled, based on an analytical and a numerical approach. The first method arises from the differential effective medium theory and considers the air voids as ellipsoidal pores of different sizes, while second one is based on the
Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.
1982-01-01
The model was a 1/6.5-size, semipan version of a wing proposed for an executive-jet-transport airplane. The model was tested with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers (M) from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M=0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5 percent, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect.
International Nuclear Information System (INIS)
Lazo, E.; Diez, E.
2010-01-01
In this work we study the behavior of the allowed and forbidden frequencies in disordered classical dual transmission lines when the values of capacitances {C j } are distributed according to a ternary model with long-range correlated disorder. We introduce the disorder from a random sequence with a power spectrum S(k)∝k -(2α-1) , where α≥0.5 is the correlation exponent. From this sequence we generate an asymmetric ternary map using two map parameters b 1 and b 2 , which adjust the occupancy probability of each possible value of the capacitances C j ={C A, C B, C C, }. If the sequence of capacitance values is totally at random α=0.5 (white noise), the electrical transmission line is in the non-conducting state for every frequency ω. When we introduce long-range correlations in the distribution of capacitances, the electrical transmission lines can change their conducting properties and we can find a transition from the non-conducting to conducting state for a fixed system size. This implies the existence of critical values of the map parameters for each correlation exponent α. By performing finite-size scaling we obtain the asymptotic value of the map parameters in the thermodynamic limit for any α. With these data we obtain a phase diagram for the symmetric ternary model, which separates the non-conducting state from the conducting one. This is the fundamental result of this Letter. In addition, introducing one or more impurities in random places of the long-range correlated distribution of capacitances, we observe a dramatic change in the conducting properties of the electrical transmission lines, in such a way that the system jumps from conducting to non-conducting states. We think that this behavior can be considered as a possible mechanism to secure communication.
K. S. Reddy; P Karthikeyan
2010-01-01
A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II) to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν) on the structure composition factor (ψ) of the food materials is studied. Th...
Oxygen reduction kinetics on mixed conducting SOFC model cathodes
Energy Technology Data Exchange (ETDEWEB)
Baumann, F.S.
2006-07-01
The kinetics of the oxygen reduction reaction at the surface of mixed conducting solid oxide fuel cell (SOFC) cathodes is one of the main limiting factors to the performance of these promising systems. For ''realistic'' porous electrodes, however, it is usually very difficult to separate the influence of different resistive processes. Therefore, a suitable, geometrically well-defined model system was used in this work to enable an unambiguous distinction of individual electrochemical processes by means of impedance spectroscopy. The electrochemical measurements were performed on dense thin film microelectrodes, prepared by PLD and photolithography, of mixed conducting perovskite-type materials. The first part of the thesis consists of an extensive impedance spectroscopic investigation of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) microelectrodes. An equivalent circuit was identified that describes the electrochemical properties of the model electrodes appropriately and enables an unambiguous interpretation of the measured impedance spectra. Hence, the dependencies of individual electrochemical processes such as the surface exchange reaction on a wide range of experimental parameters including temperature, dc bias and oxygen partial pressure could be studied. As a result, a comprehensive set of experimental data has been obtained, which was previously not available for a mixed conducting model system. In the course of the experiments on the dc bias dependence of the electrochemical processes a new and surprising effect was discovered: It could be shown that a short but strong dc polarisation of a LSCF microelectrode at high temperature improves its electrochemical performance with respect to the oxygen reduction reaction drastically. The electrochemical resistance associated with the oxygen surface exchange reaction, initially the dominant contribution to the total electrode resistance, can be reduced by two orders of magnitude. This &apos
Two-dimensional modeling of conduction-mode laser welding
International Nuclear Information System (INIS)
Russo, A.J.
1984-01-01
WELD2D is a two-dimensional finite difference computer program suitable for modeling the conduction-mode welding process when the molten weld pool motion can be neglected. The code is currently structured to treat butt-welded geometries in a plane normal to the beam motion so that dissimilar materials may be considered. The surface heat transfer models used in the code include a Gaussian beam or uniform laser source, and a free electron theory reflectance calculation. Temperature-dependent material parameters are used in the reflectance calculation. Measured cold reflection data are used to include surface roughness or oxide effects until melt occurs, after which the surface is assumed to be smooth and clean. Blackbody reradiation and a simple natural convection model are also included in the upper surface boundary condition. Either an implicit or explicit finite-difference representation of the heat conduction equation in an enthalpy form is solved at each time step. This enables phase transition energies to be easily and accurately incorporated into the formulation. Temperature-dependent 9second-order polynominal dependence) thermal conductivities are used in the conduction calculations. Constant values of specific heat are used for each material phase. At present, material properties for six metals are included in the code. These are: aluminium, nickel, steel, molybdenum, copper and silicon
Magnetotelluric Forward Modeling and Inversion In 3 -d Conductivity Model of The Vesuvio Volcano
Spichak, V.; Patella, D.
Three-dimensional forward modeling of MT fields in the simplified conductivity model of the Vesuvio volcano (T=0.1, 1, 10, 100 and 1000s) indicates that the best image of the magma chamber could be obtained basing on the pseudo-section of the determinant apparent resitivity phase as well as on the real and imaginary components of the electric field. Another important result of the studies conducted is that it was demonstrated the principal opportunity of detection and contouring the magma chamber by 2-D pseudo-sections constructed basing on the data transforms mentioned above. Bayesian three-dimensional inversion of synthetic MT data in the volcano model indicates that it is possible to determine the depth and vertical size of the magma chamber, however, simultaneous detection of the conductivity distribution inside the domain of search is of pure quality. However, if the geometrical parameters of the magma chamber are determined in advance, it becomes quite realistic to find out the conductivity distribution inside. The accuracy of such estimation strongly depends on the uncertainty in its prior value: the more narrow is the prior conductivity palette the closer could be the posterior conductivity distribution to the true one.
A thermal conductivity model for U-Si compounds
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-02
U_{3}Si_{2} is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO_{2} in commercial light water reactors (LWRs). One of its main benefits compared to UO_{2} is higher thermal conductivity that increases with temperature. This increase is contrary to UO_{2}, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U_{3}Si_{2}, as compared to the phonon mechanism responsible for thermal transport in UO_{2}. The phonon thermal conductivity in UO_{2} is unusually low for a fluorite oxide due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U_{3}Si_{2} as well as other U-Si compounds has been measured experimentally [1-4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO_{2} this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U_{3}Si_{2} thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO_{2} (semi-conductor) and U_{3}Si_{2} (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-Si compounds with the goal of capturing the effect of damage in U_{3}Si_{2}. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.
Modeling conductive cooling for thermally stressed dairy cows.
Gebremedhin, Kifle G; Wu, Binxin; Perano, K
2016-02-01
Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anisotropic modelling of the electrical conductivity of fractured bedrock
International Nuclear Information System (INIS)
Flykt, M.J.; Sihvola, A.H.; Eloranta, E.H.
1995-01-01
The electromagnetic characterization of fractured bedrock is of importance when studying the final disposal of nuclear waste. The different types of discontinuities at all scales in rocks can be viewed as an inhomogeneity. In some cases there are reasons to assume the influence of the discontinuities on electrical conductivity is anisotropic in character. The effort has been made to use electromagnetic mixing rules in the definition of an equivalent homogeneous anisotropic conductivity tensor for such fractured rock mass. (author) (16 refs., 6 figs.)
Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites
Fasanella, Nicholas A.; Sundararaghavan, Veera
2016-05-01
The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.
W. J. Massman; J. M. Frank; N. B. Reisch
2008-01-01
Heating any soil during a sufficiently intense wild fire or prescribed burn can alter that soil irreversibly, resulting in many significant, and well studied, long-term biological, chemical, and hydrological effects. On the other hand, much less is known about how fire affects the thermal properties and the long-term thermal regime of soils. Such knowledge is important...
Terrain And Laboratory Conductivity Studies Of Flood Plains Of ...
African Journals Online (AJOL)
A shallow electromagnetic study (electrical conductivity and magnetic susceptibility measurements) and laboratory conductivity sampling of the flood plains of Oluwatuyi/Oshinle area of Akure have been undertaken. This is with the aim of correlating the terrain conductivity mapping with laboratory measurements to establish ...
Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores
Directory of Open Access Journals (Sweden)
Xu Shixin
2014-01-01
Full Text Available Gramicidin A is a small and well characterized peptide that forms an ion channel in lipid membranes. An important feature of gramicidin A (gA pore is that its conductance is affected by the electric charges near the its entrance. This property has led to the application of gramicidin A as a biochemical sensor for monitoring and quantifying a number of chemical and enzymatic reactions. Here, a mathematical model of conductance changes of gramicidin A pores in response to the presence of electrical charges near its entrance, either on membrane surface or attached to gramicidin A itself, is presented. In this numerical simulation, a two dimensional computational domain is set to mimic the structure of a gramicidin A channel in the bilayer surrounded by electrolyte. The transport of ions through the channel is modeled by the Poisson-Nernst-Planck (PNP equations that are solved by Finite Element Method (FEM. Preliminary numerical simulations of this mathematical model are in qualitative agreement with the experimental results in the literature. In addition to the model and simulations, we also present the analysis of the stability of the solution to the boundary conditions and the convergence of FEM method for the two dimensional PNP equations in our model.
Optimizing a gap conductance model applicable to VVER-1000 thermal–hydraulic model
International Nuclear Information System (INIS)
Rahgoshay, M.; Hashemi-Tilehnoee, M.
2012-01-01
Highlights: ► Two known conductance models for application in VVER-1000 thermal–hydraulic code are examined. ► An optimized gap conductance model is developed which can predict the gap conductance in good agreement with FSAR data. ► The licensed thermal–hydraulic code is coupled with the gap conductance model predictor externally. -- Abstract: The modeling of gap conductance for application in VVER-1000 thermal–hydraulic codes is addressed. Two known models, namely CALZA-BINI and RELAP5 gap conductance models, are examined. By externally linking of gap conductance models and COBRA-EN thermal hydraulic code, the acceptable range of each model is specified. The result of each gap conductance model versus linear heat rate has been compared with FSAR data. A linear heat rate of about 9 kW/m is the boundary for optimization process. Since each gap conductance model has its advantages and limitation, the optimized gap conductance model can predict the gap conductance better than each of the two other models individually.
Institute of Scientific and Technical Information of China (English)
Dong-dong DENG; Ying-lan GONG; Guo-fa SHOU; Pei-feng JIAO; Heng-gui ZHANG; Xue-song YE; Ling XIA
2012-01-01
In order to better understand biatrial conduction,investigate various conduction pathways,and compare the differences between isotropic and anisotropic conductions in human atria,we present a simulation study of biatrial conduction with known/assumed conduction pathways using a recently developed human atrial model.In addition to known pathways:(1) Bachmann's bundle (BB),(2) limbus of fossa ovalis (LFO),and (3) coronary sinus (CS),we also hypothesize that there exist two fast conduction bundles that connect the crista terminalis (CT),LFO,and CS.Our simulation demonstrates that use of these fast conduction bundles results in a conduction pattern consistent with experimental data.The comparison of isotropic and anisotropoic conductions in the BB case showed that the atrial working muscles had small effect on conduction time and conduction speed,although the conductivities assigned in anisotropic conduction were two to four times higher than the isotropic conduction.In conclusion,we suggest that the hypothesized intercaval bundles play a significant role in the biatrial conduction and that myofiber orientation has larger effects on the conduction system than the atrial working muscles.This study presents readers with new insights into human atrial conduction.
Fractional single-phase-lagging heat conduction model for describing anomalous diffusion
Directory of Open Access Journals (Sweden)
T.N. Mishra
2016-03-01
Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.
Energy Technology Data Exchange (ETDEWEB)
Midttoemme, Kirsti
1997-12-31
The thermal conductivity of sedimentary rocks is an important parameter in basin modelling as the main parameter controlling the temperature within a sedimentary basin. This thesis presents measured thermal conductivities, mainly on clay- and mudstone. The measured values are compared with values obtained by using thermal conductivity models. Some new thermal conductivity models are developed based on the measured values. The values obtained are less than most previously published values. In a study of unconsolidated sediments a constant deviation was found between thermal conductivities measured with a needle probe and a divided bas apparatus. Accepted thermal conductivity models based on the geometric mean model fail to predict the thermal conductivity of clay- and mudstone. Despite this, models based on the geometric mean model, where the effect of porosity is taken account of by the geometric mean equation, seem to be the best. Existing models underestimate the textural influence on the thermal conductivity of clay- and mudstone. The grain size was found to influence the thermal conductivity of artificial quartz samples. The clay mineral content seems to be a point of uncertainty in both measuring and modelling thermal conductivity. A good universal thermal conductivity model must include many mineralogical and textural factors. Since this is difficult, different models restricted to specific sediment types and textures are suggested to be the best solution to obtain realistic estimates applicable in basin modelling. 243 refs., 64 figs., 31 tabs.
Current amplification models of sensorineurall and conductive hearing loss
Directory of Open Access Journals (Sweden)
Ostojić Sanja
2012-01-01
Full Text Available The main function of a hearing aid is to improve auditory and language abilities of hearing impaired users. The amplification model has to be adapted according to age, degree and type of hearing loss. The goal of this paper is to analyze the current amplification models of sensorineural and conductive hearing loss which can provide a high quality of speech perception and sounds at any degree of hearing loss. The BAHA is a surgically implantable system for treatment of conductive hearing loss that works through direct bone conduction. BAHA is used to help people with chronic ear infections, congenital external auditory canal atresia and single sided deafness who cannot benefit from conventional hearing aids. The last generation of hearing aid for sensorineural hearing loss is cochlear implant. Bimodal amplification improves binaural hearing. Hearing aids alone do not make listening easier in all situations. The things that can interfere with listening are background noises, distance from a sound and reverberation or echo. The device used most often today is the Frequency Modulated (FM system.
Directory of Open Access Journals (Sweden)
K. S. Reddy
2010-01-01
Full Text Available A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν on the structure composition factor (ψ of the food materials is studied. The models are compared with the experimental data of various foods at the initial freezing temperature. The effective thermal conductivity estimated by the Maxwell-Eucken-I + Present model shows good agreement with the experimental data with a minimum average deviation of ±8.66% and maximum deviation of ±42.76% of Series + Present Model. The combined models have advantages over other empirical and semiempirical models.
Electronic conductivity studies on oxyhalide glasses containing TMO
Energy Technology Data Exchange (ETDEWEB)
Vijayatha, D. [R& D Center, Bharatiar University, Coimbatore, Tamil Nadu (India); Department of Physics, Gurunanak Institute of Technology, Hyderabad -040 (India); Viswanatha, R. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Sujatha, B. [Department of Electronics and Communcation, MSRIT, Bangalore 560054 (India); Narayana Reddy, C., E-mail: nivetejareddy@gmail.com [Department of Physics, Sree Siddaganga College of Arts, Science and Commerce, Tumkur 572102 (India)
2016-05-06
Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl{sub 2} – 60 PbO – (40-x) V{sub 2}O{sub 5} (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl{sub 2} containing glasses. The d.c conductivity exhibits Arrhenius behaviour and increases with V{sub 2}O{sub 5} concentration. Analysis of the results is interpreted in view Austin-Mott’s small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.
Studies on conductivity and dielectric properties of polyaniline–zinc ...
Indian Academy of Sciences (India)
Unknown
Abstract. In the present paper, we report electrical conductivity and dielectric studies on the composites of conducting polyaniline (PANI) with crystalline semiconducting ZnS powder, wherein PANI has been taken as inclusion and ZnS crystallites as the host matrix. From the studies, it has been observed that the value of.
LBM estimation of thermal conductivity in meso-scale modelling
International Nuclear Information System (INIS)
Grucelski, A
2016-01-01
Recently, there is a growing engineering interest in more rigorous prediction of effective transport coefficients for multicomponent, geometrically complex materials. We present main assumptions and constituents of the meso-scale model for the simulation of the coal or biomass devolatilisation with the Lattice Boltzmann method. For the results, the estimated values of the thermal conductivity coefficient of coal (solids), pyrolytic gases and air matrix are presented for a non-steady state with account for chemical reactions in fluid flow and heat transfer. (paper)
Modeling and conduct of turbine missile concrete impact experiments
International Nuclear Information System (INIS)
Woodfin, R.L.
1981-01-01
The overall objective of the subject experiments was to provide full scale data on the response of reinforced concrete containment walls to impact and penetration by postulated turbine-produced missiles. These data can be used to validate analytical or scale modeling methods and to assess the applicability of current design formulas to penetration by large, irregularly shaped missiles. These data and results will be used in providing more realistic estimates of turbine missile damage probability in nuclear power plants with a non-peninsula arrangement. This paper describes the derivation of the test matrix and the method of conducting the experiments. (orig./HP)
Dyuryagina, N. S.; Yalovets, A. P.
2017-05-01
Using the Rouse-Fowler (RF) model this work studies the radiation-induced electrical conductivity of a polymer nanocomposite material with spherical nanoparticles against the intensity and exposure time of gamma-ray, concentration and size of nanoparticles. The research has found the energy distribution of localized statesinduced by nanoparticles. The studies were conducted on polymethylmethacrylate (PMMA) with CdS nanoparticles.
Relaxation model of radiation-induced conductivity in polymers
Zhutayeva, Yu. R.; Khatipov, S. A.
1999-05-01
The paper suggests a relaxation model of radiation-induced conductivity (RIC) in polymers. According to the model, the transfer of charges generated in the polymer volume by ionizing radiation takes place with the participation of molecular relaxation processes. The mechanism of electron transport consists in the transfer of the charge directly between traps when they draw close to one another due to the rotation of macromolecule segments. The numerical solutions of the corresponding kinetic equations for different distribution functions Q( τ) of the times of molecular relaxation and for different functions of the probability P( τ, τ') of charge transfer in the `overlapping' regions of the diffusion spheres of the segments are analyzed. The relaxation model provides an explanation of the non-Arrhenius behavior of the RIC temperature dependence, the power dependence of RIC on the dose rate with a power index in the interval 0.5-1.0, the appearance of maxima in the curves of the RIC temporal dependence and their irreversible character in the region of large dose rates (more than 1 Gy/s). The model can be used for interpreting polymer RIC in conditions of kinetic mobility of macromolecules.
Directory of Open Access Journals (Sweden)
D. Lombardozzi
2012-08-01
Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O_{3} concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O_{3} damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O_{3} concentration of 100 parts per billion (ppb. Modifying the V_{cmax} parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O_{3} over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O_{3} on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.
Studies on electrical conductivity of poly phenylene vinylene
International Nuclear Information System (INIS)
Khattab, Asaad F.; Ahmad, Saddam M.
2009-01-01
Four Pp polymers have been synthesized through Wit ting reaction, 1 poly(p-phenylene vinylene), 2 = poly(p phenylene vinylene-co-m-phenylene vinylene), 3 = poly(p-phenylene vinylene-co-o-phenylene vinylene) and 4 poly(p-phenylene-1,5-hexadiene). Electrical conductivity measurements show that the conductivity of polymer 3 is higher than that of polymers 1 and 2. The dihedral angle measurements indicates that the irregularity of polymer chains is the main reason for this fact. The interruption of chain conjugation by aliphatic segments (polymer 4) will increase the conductivity by increasing the chain mobility.The electrical conductivity of the polymers is increased by doping with iodine and by raising the temperature. The effect of annealing with different temperatures on conductivity was studied; the results show that structural conformation of polymeric chain is the main factor affecting electrical conductivity. (author)
In vitro burn model illustrating heat conduction patterns using compressed thermal papers.
Lee, Jun Yong; Jung, Sung-No; Kwon, Ho
2015-01-01
To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.
CONDUCT RESEARCH STOCK MARKET BASED ON MODELS OF ARCH
Directory of Open Access Journals (Sweden)
Ivan Burtnyak
2016-06-01
Full Text Available The purpose of this article is to study the dynamics of the volatility of some indicators of financial market of Ukraine using the methods ARCH modeling. As indicators of the financial market we take the most aggregated variables describing profitability or market price of the portfolio, but not individual assets constituting the portfolio. An indicator of the stock market index stands First Stock Trading System (PFTS. The conditional variance of financial indicators reflecting the level of systemic risk, measures the uncertainty associated with forecasting market dynamics. Key words. Autoregression models, econometric models, stock market, financial instruments, the PFTS index, volatility time series. JEL: C 50
Totally Asymmetric Limit for Models of Heat Conduction
De Carlo, Leonardo; Gabrielli, Davide
2017-08-01
We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.
Wave propagation model of heat conduction and group speed
Zhang, Long; Zhang, Xiaomin; Peng, Song
2018-03-01
In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.
About the free electron model in electric conduction of metals
International Nuclear Information System (INIS)
Hoffmann, C.
1991-01-01
In the model proposed by Drude to describe, among others, the electric conduction in metals, it is supposed that electrons move freely in the material with a time interval between encounters T and a probability distribution g(t). The name, 'electron pause time', will be assigned to the time T with that probability distribution. The calculations made by Drude turned out to be erroneous. The error can be corrected observing that the random variable 'pause time' appearing in this intuitive idea is not the previously defined random variable T, 'electron pause time', but another random variable S, which will be called 'observed pause time' whose probability density is Csg(s), where C is a normalization constant. With this distribution, the characteristics of the distribution, q(u), of the wait time can be obtained. (Author) [es
Studying sustainable development at the intersection of conduct and counter-conduct
DEFF Research Database (Denmark)
Lindegaard, Laura Bang
analyses how these documents are participating in the continuous negotiations of the governmental rationalities of global citizenship that are an inevitable part of the dispersed governing of sustainable development. In more detail, the paper analyses how the Danish transportation initiative is co......) that is sensitive to the subtle effects of counter-conduct. The paper reports on an empirical study that tracks the connections between the UN’s Agenda 21 and a ‘local’ Agenda 21 initiative in a rural Danish municipality aiming at ‘greening’ citizens’ everyday transportation practices, and, secondly, the paper...
Fundamental principles of conducting a surgery economic analysis study.
Kotsis, Sandra V; Chung, Kevin C
2010-02-01
The use of economic evaluation in surgery is scarce. Economic evaluation is used even less so in plastic surgery, in which health-related quality of life is of particular importance. This article, part of a tutorial series on evidence-based medicine, focuses on the fundamental principles of conducting a surgery economic analysis. The authors include the essential aspects of conducting a surgical cost-utility analysis by considering perspectives, costs, outcomes, and utilities. The authors also describe and give examples of how to conduct the analyses (including calculating quality-adjusted life-years and discounting), how to interpret the results, and how to report the results. Although economic analyses are not simple to conduct, a well-conducted one provides many rewards, such as recommending the adoption of a more effective treatment. For comparing and interpreting economic analysis publications, it is important that all studies use consistent methodology and report the results in a similar manner.
AC Conductivity Studies of Lithium Based Phospho Vanadate Glasses
International Nuclear Information System (INIS)
Nagendra, K.; Babu, G. Satish; Gowda, Veeranna; Reddy, C. Narayana
2011-01-01
Glasses in the system xLi 2 SO 4 -20Li 2 O-(80-x) [80P 2 O 5 -20V 2 O 5 ](5≥x≥20 mol%) has been prepared by melt quenching method. Dc and ac conductivity has been studied over a wide range of frequency (10 Hz to 10 MHz) and temperature (298 K-523 K). The dc conductivity found to increase with increase of Li 2 SO 4 concentration. The ac conductivities have been fitted to the Almond-West type single power law equation σ(ω) = σ(0)+Aω s where 's' is the power law exponent. The ac conductivity found to increase with increase of Li 2 SO 4 concentration. An attempt is made to elucidate the enhancement of lithium ion conduction in phosphor-vanadate glasses by considering the expansion of network structure.
Thermal conductivity at the nanoscale: A molecular dynamics study
Lyver, John W., IV
With the growing use of nanotechnology and nanodevices in many fields of engineering and science, a need for understanding the thermal properties of such devices has increased. The ability for nanomaterials to conduct heat is highly dependent on the purity of the material, internal boundaries due to material changes and the structure of the material itself. Experimentally measuring the heat transport at the nanoscale is extremely difficult and can only be done as a macro output from the device. Computational methods such as various Monte Carlo (MC) and molecular dynamics (MD) techniques for studying the contribution of atomic vibrations associated with heat transport properties are very useful. The Green--Kubo method in conjunction with Fourier's law for calculating the thermal conductivity, kappa, has been used in this study and has shown promise as one approach well adapted for understanding nanosystems. Investigations were made of the thermal conductivity using noble gases, modeled with Lennard-Jones (LJ) interactions, in solid face-centered cubic (FCC) structures. MC and MD simulations were done to study homogeneous monatomic and binary materials as well as slabs of these materials possessing internal boundaries. Additionally, MD simulations were done on silicon carbide nanowires, nanotubes, and nanofilaments using a potential containing two-body and three-body terms. The results of the MC and MD simulations were matched against available experimental and other simulations and showed that both methods can accurately simulate real materials in a fraction of the time and effort. The results of the study show that in compositionally disordered materials the selection of atomic components by their mass, hard-core atomic diameter, well depth, and relative concentration can change the kappa by as much as an order of magnitude. It was found that a 60% increase in mass produces a 25% decrease in kappa. A 50% increase in interatomic strength produces a 25% increase in
Thin inclusion approach for modelling of heterogeneous conducting materials
Lavrov, Nikolay; Smirnova, Alevtina; Gorgun, Haluk; Sammes, Nigel
Experimental data show that heterogeneous nanostructure of solid oxide and polymer electrolyte fuel cells could be approximated as an infinite set of fiber-like or penny-shaped inclusions in a continuous medium. Inclusions can be arranged in a cluster mode and regular or random order. In the newly proposed theoretical model of nanostructured material, the most attention is paid to the small aspect ratio of structural elements as well as to some model problems of electrostatics. The proposed integral equation for electric potential caused by the charge distributed over the single circular or elliptic cylindrical conductor of finite length, as a single unit of a nanostructured material, has been asymptotically simplified for the small aspect ratio and solved numerically. The result demonstrates that surface density changes slightly in the middle part of the thin domain and has boundary layers localized near the edges. It is anticipated, that contribution of boundary layer solution to the surface density is significant and cannot be governed by classic equation for smooth linear charge. The role of the cross-section shape is also investigated. Proposed approach is sufficiently simple, robust and allows extension to either regular or irregular system of various inclusions. This approach can be used for the development of the system of conducting inclusions, which are commonly present in nanostructured materials used for solid oxide and polymer electrolyte fuel cell (PEMFC) materials.
A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments
Ma, Yanbao
2014-12-01
Nondiffusive heat transfer has attracted intensive research interests in last 50 years because of its importance in fundamental physics and engineering applications. It has unique features that cannot be described by the Fourier law. However, current studies of nondiffusive heat transfer still focus on studying the effective thermal conductivity within the framework of the Fourier law due to a lack of a well-accepted replacement. Here, we show that nondiffusive heat conduction can be characterized by two inherent material properties: a diffusive thermal conductivity and a ballistic transport length. We also present a two-parameter heat conduction model and demonstrate its validity in different pump-probe experiments. This model not only offers new insights of nondiffusive heat conduction but also opens up new avenues for the studies of nondiffusive heat transfer outside the framework of the Fourier law.
High pressure studies of ionic conductivity in solids
International Nuclear Information System (INIS)
Samara, G.A.
1979-01-01
The pressure dependence of the ionic conductivity provides information about the volume relaxation associated with the formation of lattice defects as well as with the diffusive motion of these defects, and thereby helps elucidate the conduction process. Pressure results on a variety of crystals will be discussed with emphasis on recent results on crystals with large lattice polarizabilities and soft phonon modes. Pressure is shown to be an important--sometimes essential, variable in the study of ionic transport processes
A protocol for conducting rainfall simulation to study soil runoff.
Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B
2014-04-03
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.
Electrical studies on silver based fast ion conducting glassy materials
International Nuclear Information System (INIS)
Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.
2014-01-01
Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag 2 O−[(1−x)B 2 O 3 −xTeO 2 ] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO 2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10 −2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries
Directory of Open Access Journals (Sweden)
S. Kalia
2014-04-01
Full Text Available Gum ghatti-cl-poly(acrylamide-aniline interpenetrating network (IPN was synthesized by a two-step aqueous polymerization method, in which aniline monomer was absorbed into the network of gum ghatti-cl-poly(acrylamide and followed by a polymerization reaction between aniline monomers. Initially, semi-IPN based on acrylamide and gum ghatti was prepared by free-radical copolymerization in aqueous media with optimized process parameters, using N,N'-methylenebis-acrylamide, as cross-linker and ammonium persulfate, as an initiator system. Optimum reaction conditions affording maximum percentage swelling were: solvent [mL] =12, Acrylamide (AAm [mol•L–1] = 1.971, Ammonium peroxydisulfate (APS [mol•L–1] = 0.131•10–1, N,N'-methylene-bis-acrylamide (MBA [mol•L–1] = 0.162•10–1, reaction time [min] = 210, temperature [°C] = 100 and pH = 7.0. The resulting IPN was doped with different protonic acids. The effect of the doping has been investigated on the conductivity and surface morphology of the IPN hydrogel. The maximum conductivity was observed with 1.5N HClO4 concentration. The morphological, structural and electrical properties of the candidate polymers were studied using scanning electron micrscopy (SEM, Fourier transform infrared spectroscopy FTIR and two-probe method, respectively.
Six Conductivity Values to Use in the Bidomain Model of Cardiac Tissue.
Johnston, Barbara M
2016-07-01
The aim of this work is to produce a consistent set of six conductivity values for use in the bidomain model of cardiac tissue. Studies in 2007 by Hooks et al. and in 2009 by Caldwell et al. have found that, in the directions longitudinal:transverse:normal (l:t:n) to the cardiac fibers, ratios of bulk conductivities and conduction velocities are each approximately in the ratio 4:2:1. These results are used here as the basis for a method that can find sets of six normalized bidomain conductivity values. It is found that the ratios involving transverse and normal conductivities are quite consistent, allowing new light to be shed on conductivity in the normal direction. For example, it is found that the ratio of transverse to normal conductivity is much greater in the intracellular (i) than the extracellular (e) domain. Using parameter values from experimental studies leads to the proposal of a new nominal six conductivity dataset: gil=2.4, gel=2.4, git=0.35, get=2.0, gin=0.08, and gen=1.1 (all in mS/cm). When it is used to model partial thickness ischaemia, this dataset produces epicardial potential distributions in accord with experimental studies in an animal model. It is, therefore, suggested that the dataset is suitable for use in numerical simulations. Since the bidomain approach is the most commonly used method for modeling cardiac electrophysiological phenomena, new information about conductivity in the normal direction, as well as a consistent set of six conductivity values, is valuable for researchers who perform simulation studies.
Laser ablation under different electron heat conduction models in inertial confinement fusion
Li, Shuanggui; Ren, Guoli; Huo, Wen Yi
2018-06-01
In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.
Metal-insulator transition and Frohlich conductivity in the Su-Schrieffer-Heeger model
Michielsen, K.F L; de Raedt, H.A.
1996-01-01
A quantum molecular dynamics technique is used to study the single-particle density of states, Drude weight, optical conductivity and flux quantization in the Su-Schrieffer-Heeger (SSH) model. Our simulation data show that the SSH model has a metal-insulator transition away from half-filling. In the
Structure-conductivity studies in polymer electrolytes containing multivalent cations
International Nuclear Information System (INIS)
Aziz, M.
1996-05-01
Understanding the structure - conductivity relationship is of paramount importance for the development of polymer electrolytes. The present studies present the techniques found useful in the elucidation of structure - conductivity relationship in PEO n :ZnBr 2 (n = 8, 1000, 2000, 3000, 4000 and 5000) and PEO n :FeBr x (n= 8, 20 and 50; x = 2 and 3). Local structural studies have been undertaken using X-ray absorption fine structures (XAFS) which includes extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES). EXAFS provides interatomic distance and coordination numbers of the nearest neighbours and results from the EXAFS studies showed that high conductivity is associated with stretched M - O interatomic distance. In the studies on ultra dilute Zn samples it was found that the cation is highly solvated by the heteroatom forming a tightly bound environment which inhibits local segmental motion thus impeding ion migration. XANES studies on the PEO and modified PEO complexes of NiBr 2 revealed the sensitivity of XANES to the structural differences. XANES on Zn and Fe samples also revealed the sensitivity to changes in interatomic distances reflected in shifts of the white line. The complementary nature of EXAFS and XANES was reflected in the studies conducted. Morphological studies were undertaken employing differential scanning calorimetry (DSC), variable temperature polarising microscopy (VTPM) and atomic force microscopy (AFM). DSC evidences helped to explain the texture of the iron samples during the drying process, and showed transitions between low melting, PEO and high melting spherulites, and VTPM is able to visualise the spherulites present in the samples. AFM has successfully imaged the as cast PEO 8 :FeBr 2 sample and the surface effect causing extra resistance in the impedance spectra could be seen. Conductivity studies were carried out using a.c. impedance spectra. Fe(ll) samples exhibit the typical semicircle
Acoustical study of electro- and thermal conductivity of liquid metals
International Nuclear Information System (INIS)
Tekuchev, V.V.; Rygalov, L.N.; Ivanova, I.V.; Barashkov, B.I.
2003-01-01
One established a link between electrical, elastic and structural properties of electronic smelts. One calculated polyterms of resistance and thermal conductivity of liquid metals (Be, Cd, U, V, Mo, Cr, rare-earth metals) on the basis of data covering both melting and boiling points. For some metals the values were obtained for the first time. To analyze kinetic properties of metals under high temperatures one should apply complex many-particles model representations and efficient computing equipment. It is pointed out that essential problems blocking efforts to tackle the mentioned task result in necessity to find simple though approximate models describing satisfactorily properties of metals [ru
International Nuclear Information System (INIS)
Ling, Ziye; Chen, Jiajie; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo
2015-01-01
Highlights: • Expanded graphite can improve thermal conductivity of RT44HC by 20–60 times. • Thermal conductivity of PCM/EG composites keeps constant before/after melting. • Thermal conductivity of PCMs nearly doubled during phase changing. • Thermal conductivity of composite PCM increases with density and percentage of EG. • The simple model predicts thermal conductivity of EG-based composites accurately. - Abstract: This work studies factors that affect the thermal conductivity of an organic phase change material (PCM), RT44HC/expanded graphite (EG) composite, which include: EG mass fraction, composite PCM density and temperature. The increase of EG mass fraction and bulk density will both enhance thermal conductivity of composite PCMs, by up to 60 times. Thermal conductivity of RT44HC/EG composites remains independent on temperature outside the phase change range (40–45 °C), but nearly doubles during the phase change. The narrow temperature change during the phase change allows the maximum heat flux or minimum temperature for heat source if attaching PCMs to a first (constant temperature) or second (constant heat flux) thermal boundary. At last, a simple thermal conductivity model for EG-based composites is put forward, based on only two parameters: mass fraction of EG and bulk density of the composite. This model is validated with experiment data presented in this paper and in literature, showing this model has general applicability to any composite of EG and poor thermal conductive materials
Electrical spectroscopy studies of two new siloxanic proton conducting membranes
Energy Technology Data Exchange (ETDEWEB)
Di Noto, Vito [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy)]. E-mail: vito.dinoto@unipd.it; Vittadello, Michele [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Zago, Vanni [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Pace, Giuseppe [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Vidali, Maurizio [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy)
2006-01-20
This contribution is focused on the conductivity study and the protonic transfer investigation of two new siloxanic membranes. The conductivity of the systems has been studied within the temperature range 5 deg. C {<=} T {<=} 145 deg. C, both for pristine and hydrated membranes. Membrane A has been hydrated up to 33.12% in weight, while in B up to 27.76%. The conductivity of these membranes has shown a temperature dependence of the Arrhenius type variable in the interval 1.6 x 10{sup -4} {<=} {sigma} {sub A} {<=} 2.3 x 10{sup -3} S cm{sup -1} and 1.3 x 10{sup -5} {<=} {sigma} {sub B} {<=} 2.9 x 10{sup -4} S cm{sup -1}, respectively, for A and B. In particular, conductivities of 2 x 10{sup -3} S cm{sup -1} (A) and of 2 x 10{sup -4} S cm{sup -1} (B) at 125 deg. C were observed. The conductivity mechanism was investigated by using broad band electrical spectroscopy in the region between 40 Hz and 10 MHz. This study, for both the materials has shown the presence at low frequencies (10{sup 2} {<=} f {sub {beta}} {<=} 10{sup 4} Hz) of {beta} relaxations related to the sulphonic side chain dynamics. The activation energy measured for this molecular dynamics is about {approx_equal}30 kJ mol{sup -1} and corresponds to the typical interaction energy associated with hydrogen bonding. Furthermore, it was observed that the activation energies determined from the conductivity measurements are 12 and 14 kJ mol{sup -1}, respectively, for A and B. This shows that the protonic conductivity is strongly influenced by the side chain dynamics and that the charge migration occurs through an ion hopping mechanism between different regions, consisting of micro-clusters of hydration water coordinated with the polar sulphonic groups of the side chains. The comparable activation energies and the values of the conductivity demonstrate that in these systems the conductivity is proportional to the concentration of the sulphonic groups. This shows also that these kinds of membranes, with a high
Electrical spectroscopy studies of two new siloxanic proton conducting membranes
International Nuclear Information System (INIS)
Di Noto, Vito; Vittadello, Michele; Zago, Vanni; Pace, Giuseppe; Vidali, Maurizio
2006-01-01
This contribution is focused on the conductivity study and the protonic transfer investigation of two new siloxanic membranes. The conductivity of the systems has been studied within the temperature range 5 deg. C ≤ T ≤ 145 deg. C, both for pristine and hydrated membranes. Membrane A has been hydrated up to 33.12% in weight, while in B up to 27.76%. The conductivity of these membranes has shown a temperature dependence of the Arrhenius type variable in the interval 1.6 x 10 -4 ≤ σ A ≤ 2.3 x 10 -3 S cm -1 and 1.3 x 10 -5 ≤ σ B ≤ 2.9 x 10 -4 S cm -1 , respectively, for A and B. In particular, conductivities of 2 x 10 -3 S cm -1 (A) and of 2 x 10 -4 S cm -1 (B) at 125 deg. C were observed. The conductivity mechanism was investigated by using broad band electrical spectroscopy in the region between 40 Hz and 10 MHz. This study, for both the materials has shown the presence at low frequencies (10 2 ≤ f β ≤ 10 4 Hz) of β relaxations related to the sulphonic side chain dynamics. The activation energy measured for this molecular dynamics is about ≅30 kJ mol -1 and corresponds to the typical interaction energy associated with hydrogen bonding. Furthermore, it was observed that the activation energies determined from the conductivity measurements are 12 and 14 kJ mol -1 , respectively, for A and B. This shows that the protonic conductivity is strongly influenced by the side chain dynamics and that the charge migration occurs through an ion hopping mechanism between different regions, consisting of micro-clusters of hydration water coordinated with the polar sulphonic groups of the side chains. The comparable activation energies and the values of the conductivity demonstrate that in these systems the conductivity is proportional to the concentration of the sulphonic groups. This shows also that these kinds of membranes, with a high concentration of SO 3 H are necessary in order to obtain materials with a high protonic conductivity with the capacity to
Considerations when conducting e-Delphi research: a case study.
Toronto, Coleen
2017-06-22
Background E-Delphi is a way to access a geographically dispersed group of experts. It is similar to other Delphi methods but conducted online. E-research methodologies, such as the e-Delphi method, have yet to undergo significant critical discussion. Aim To highlight some of the challenges nurse researchers may wish to consider when using e-Delphi in their research. Discussion This paper provides details about the author's approach to conducting an e-Delphi study in which a group of health literacy nurse experts (n=41) used an online survey platform to identify and prioritise essential health literacy competencies for registered nurses. Conclusion This paper advances methodological discourse about e-Delphi by critically assessing an e-Delphi case study. The online survey platform used in this study was advantageous for the researcher and the experts: the experts could participate at any time and place where the internet was available; the researcher could efficiently access a national group of experts, track responses and analyse data in each round. Implications for practice E-Delphi studies create opportunities for nurse researchers to conduct research nationally and internationally. Before conducting an e-Delphi study, researchers should carefully consider the design and methods for collecting data, to avoid challenges that could potentially compromise the quality of the findings. Researchers are encouraged to publish details about their approaches to e-Delphi studies, to advance the state of the science.
Comparative study of ion conducting pathways in borate glasses
International Nuclear Information System (INIS)
Hall, Andreas; Swenson, Jan; Adams, Stefan
2006-01-01
The conduction pathways in metal-halide doped silver, lithium, and sodium diborate glasses have been examined by bond valence analysis of reverse Monte Carlo (RMC) produced structural models of the glasses. Although all glass compositions have basically the same short-range structure of the boron-oxygen network, it is evident that the intermediate-range structure is strongly dependent on the type of mobile ion. The topography of the pathways and the coordination of the pathway sites differ distinctly between the three glass systems. The mobile silver ions in the AgI-doped glass tend to be mainly iodine-coordinated and travel in homogeneously distributed pathways located in salt-rich channels of the borate network. In the NaCl-doped glass, there is an inhomogeneous spatial distribution of pathways that reflects the inhomogeneous introduction of salt ions into the glass. However, since the salt clusters are not connected, no long-range conduction pathways are formed without including also oxygen-rich regions. The pathways in the LiCl-doped glass are slightly more evenly distributed compared to the NaCl-doped glass (but not as ordered as in the AgI-doped glass), and the regions of mainly oxygen-coordinated pathway sites are of higher importance for the long-range migration. In order to more accurately investigate how these differences in the intermediate-range order of the glasses affect the ionic conductivity, we have compared the realistic structure models to more or less randomized structures. An important conclusion from this comparison is that we find no evidence that a pronounced intermediate-range order in the atomic structure or in the network of conduction pathways, as in the AgI-doped glass, is beneficial for the dc conductivity
International Nuclear Information System (INIS)
Mehta, Siddharth; Chauhan, K. Prashanth; Kanagaraj, S.
2011-01-01
Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Though many attempts have been made to investigate the abnormal high thermal conductivity of nanofluids, the existing models cannot precisely predict the same. An attempt has been made to develop a model for predicting the thermal conductivity of different types of nanofluids. The model presented here is derived based on the fact that thermal conductivity of nanofluids depends on thermal conductivity of particle and fluid as well as micro-convective heat transfer due to Brownian motion of nanoparticles. Novelty of the article lies in giving a unique equation which predicts thermal conductivity of nanofluids for different concentrations and particle sizes which also correctly predicts the trends observed in experimental data over a wide range of particle sizes, temperatures, and particle concentrations.
Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level
Guan, Kang; Wu, Jianqing; Cheng, Laifei
2016-01-01
The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130
Comparative study of electron conduction in azulene and naphthalene
Indian Academy of Sciences (India)
Wintec
tional or electronic devices. Recent advances in experi- mental techniques have allowed ... stimulates us to study the electronic conduction in azulene molecule and to compare that with its isomer, naphthalene. ..... ernment of India, for funding and (SD) acknowledges CSIR,. Government of India, for a research fellowship.
Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation
International Nuclear Information System (INIS)
Dou, Nicholas G.; Minnich, Austin J.
2016-01-01
Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials
Code of Conduct for wind-power projects - Feasibility study
International Nuclear Information System (INIS)
Strub, P.; Ziegler, Ch.
2009-02-01
This final report deals with the results of a feasibility study concerning the development of a Code of Conduct for wind-power projects. The aim is to strengthen the acceptance of wind-power by the general public. The necessity of new, voluntary market instruments is discussed. The urgency of development in this area is quoted as being high, and the authors consider the feasibility of the definition of a code of conduct as being proven. The code of conduct can, according to the authors, be of use at various levels but primarily in project development. Further free-enterprise instruments are also suggested that should help support socially compatible and successful market development. It is noted that the predominant portion of those questioned are prepared to co-operate in further work on the subject
a.c. conductance study of polycrystal C60
International Nuclear Information System (INIS)
Yan Feng; Wang Yening; Huang Yineng; Gu Min; Zhang Qingming; Shen Huimin
1995-01-01
The a.c. (1 60 polycrystal (grain size 30 nm) has been studied from 100 to 350 K. Below 150 K, the a.c. conductance is nearly proportional to the temperature and frequency. This is proposed to be due to the hopping of localized states around the Fermi level. Above 200 K, the a.c. conductance exhibits a rapid increase with temperature, and shows a thermally activated behaviour with an activation energy of 0.389 eV below a certain temperature and 0.104 eV above it. A frequency dependent conductance at a fixed temperature is also obtained with a power law σ similar ω s (s∼0.8). For a sample of normal grain size, we have measured a peak near 250 K and a much smaller conductance. These results indicate that the defective na ture of our sample (small grain size, disorder or impurities) plays an important role for the transport properties. The existence of nanocrystals in the sample may give rise to localized states and improve its a.c. conductance. The two activation energies can be attributed to the coexistence of the crystalline and amorphous phases of C 60 . ((orig.))
Fractional model for heat conduction in polar bear hairs
Directory of Open Access Journals (Sweden)
Wang Qing-Li
2012-01-01
Full Text Available Time-fractional differential equations can accurately describe heat conduction in fractal media, such as wool fibers, goose down and polar bear hair. The fractional complex transform is used to convert time-fractional heat conduction equations with the modified Riemann-Liouville derivative into ordinary differential equations, and exact solutions can be easily obtained. The solution process is straightforward and concise.
Energy Technology Data Exchange (ETDEWEB)
Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)
2003-01-01
As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single
Structural, dielectric and a.c. conductivity study of Sb2O3 thin film ...
Indian Academy of Sciences (India)
X-ray diffraction; a.c. conductivity; dielectric properties; complex electric modulus. ... the study disordered systems because of the unusual temper- ..... energy. tunnelling model suggested by Wang et al [31], (s) should decrease with increase in ...
Revanasiddappa, M.; Swamy, D. Siddalinga; Vinay, K.; Ravikiran, Y. T.; Raghavendra, S. C.
2018-05-01
The present work is an investigation of dc conduction behaviour of conducting polyaniline/fly ash nano particles blended in polyvinyl Alcohol (PANI/PVA/FA) synthesized via in-situ polymerization technique using (NH4)2S2O8 as an oxidising agent with varying fly ash cenosphere by 10, 20, 30, 40 and 50 wt%. The structural characterization of the synthesised polymer composites was examined using FT-IR, XRD and SEM techniques. Dc conductivity as a function of temperature has been measured in the temperature range from 302K - 443K. The increase of conductivity with increasing temperature reveals semiconducting behaviour of the composites and shows an evidence for the transport properties of the composites.
Singh, Nikhilendra
A novel approach for the electrodeposition of conducting polymers and conducting polymer-inorganic composite materials is presented. The approach shows that conducting polymers, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) can be electrodeposited by the application of a cathodic bias that generates an oxidizing agent, NO+, via the in-situ reduction of nitrate anions. This new cathodic polymerization method allows for the deposition of PPy and PEDOT as three dimensional, porous films composed of spherical polymer particles. The method is also suitable for the co-deposition of inorganic species producing conducting polymer-inorganic composite electrodes. Such composites are used as high surface area electrodes in Li-ion batteries, electrochemical hydrogen evolution and in the development of various other conducting polymer-inorganic composite electrodes. New Sn-PPy and Sb-PPy composite electrodes where Sn and Sb nanoparticles are well dispersed among the PPy framework are reported. These structures allow for decreased stress during expansion and contraction of the active material (Sn, Sb) during the alloying and de-alloying processes of a Li-ion battery anode, significantly alleviating the loss of active material due to pulverization processes. The new electrochemical synthesis mechanism allows for the fabrication of Sn-PPy and Sb-PPy composite electrodes directly from a conducting substrate and eliminates the use of binding materials and conducting carbon used in modern battery anodes, which significantly simplifies their fabrication procedures. Platinum (Pt) has long been identified as the most efficient catalyst for electrochemical water splitting, while nickel (Ni) is a cheaper, though less efficient alternative to Pt. A new morphology of PPy attained via the aforementioned cathodic deposition method allows for the use of minimal quantities of Pt and Ni dispersed over a very high surface area PPy substrate. These composite electrodes
Bentonite electrical conductivity: a model based on series–parallel transport
Lima, Ana T.
2010-01-30
Bentonite has significant applications nowadays, among them as landfill liners, in concrete industry as a repairing material, and as drilling mud in oil well construction. The application of an electric field to such perimeters is under wide discussion, and subject of many studies. However, to understand the behaviour of such an expansive and plastic material under the influence of an electric field, the perception of its electrical properties is essential. This work serves to compare existing data of such electrical behaviour with new laboratorial results. Electrical conductivity is a pertinent parameter since it indicates how much a material is prone to conduct electricity. In the current study, total conductivity of a compacted porous medium was established to be dependent upon density of the bentonite plug. Therefore, surface conductivity was addressed and a series-parallel transport model used to quantify/predict the total conductivity of the system. © The Author(s) 2010.
The modelling and measurement of super-conducting rock joints
International Nuclear Information System (INIS)
Barton, N.; Makurat, A.; Vik, G.; Loset, F.
1985-01-01
Rock joints exhibiting exceptionally high conductivity have been responsible for severe inflows (10-50 m 3 /min.) and flooding in recent Norwegian tunneling projects. These events may be explained by channeling of flow in partially outwashed mineral fillings, associated with deep weathering in ancient basement rocks. There is also evidence to suggest extensional strain with consistent relationships to regional faulting patterns (Selmer-Olsen 1981). Hydraulic fractures making connection with joint systems that are sheared as a result of increased fluid pressure, has been deduced as the mechanism explaining unusually large fluid losses in the geothermal project in Cornwall, England (Pine and Batchelor, 1984). Such mechanisms also introduce uncertainty into water flood and MHF stimulation treatment of fractured oil and gas reservoirs, particularly when principal stress and joint orientations are poorly understood due to coring and stress measurement problems in weak, overstressed reservoir rocks. The possibility of permanent disposal of nuclear waste in crystalline rock, has also focussed attention on highly conductive (''super-conducting'') joints in nuclear waste programmes in Canada, the USA and in Europe. The bi-modal distributions of joint spacing, continuity, apertures and conductivities resulting from the discovery of super-conducting joints has important implications for the location of planned repositories, due to their dramatic impact on potential transport times. In the laboratory a class of super-conducting joints can be created by shear displacement that causes dilation when shearing non-planar features. Recent biaxial shear testing of rock joints recovered in jointed core has identified a strong coupling of conductivity and shear displacement. The theoretical predictions of constitutive relationships for coupled flow in rock joints (Barton et al. 1985) have been broadly verified
International Nuclear Information System (INIS)
Blomberg, L.G.; Marklund, G.T.
1988-03-01
A numerical model for the calculation of ionospheric convection patterns from given distributions of field-aligned current and ionospheric conductivity is described. The model includes a coupling between the conductivity and the field-aligned current, so that the conductivity peaks in regions of upward current, as usually observed by measurements. The model is very flexible in that the input distributions, the field-aligned current and the conductivity, have been parameterized in a convenient way. From the primary model output, namely the ionospheric electrostatic potential (or convection) in the corotating frame, a number of other quantities can be computed. These include: the potential in a Sun-fixed frame, the distribution of ionospheric (horizontal) current, and the Joule heating in the ionosphere. This model has been used together with input data inferred from satellite measurements to calculate the high-latitude potential distribution prevailing during a particular event. The model potential variation along the satellite orbit was found to be in excellent agreement with the measured electric field. The model has also been used to study some fundamental properties of the electrodynamics of the high-latitude ionosphere. The results of these different applications of the model have been published separately. (With 23 refs.) (authors)
Multi-sphere unit cell model to calculate the effective thermal conductivity in pebble bed reactors
International Nuclear Information System (INIS)
Van Antwerpen, W.; Rousseau, P.G.; Du Toit, C.G.
2010-01-01
A proper understanding of the mechanisms of heat transfer, fluid flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature Pebble Bed Reactor (PBR). While the gas flows predominantly in the axial direction through the bed, the total effective thermal conductivity is a lumped parameter that characterises the total heat transfer in the radial direction through the packed bed. The study of the effective thermal conductivity is important because it forms an intricate part of the self-acting decay heat removal chain, which is directly related to the PBR safety case. The effective thermal conductivity is the summation of various heat transport phenomena. These are the enhanced thermal conductivity due to turbulent mixing as the fluid passes through the voids between pebbles, heat transfer due to the movement of the solid spheres and thermal conduction and thermal radiation between the spheres in a stagnant fluid environment. In this study, the conduction and radiation between the spheres are investigated. Firstly, existing correlations for the effective thermal conductivity are investigated, with particular attention given to its applicability in the near-wall region. Several phenomena in particular are examined namely: conduction through the spheres, conduction through the contact area between the spheres, conduction through the gas phase and radiation between solid surfaces. A new approach to simulate the effective thermal conductivity for randomly packed beds is then presented, namely the so-called Multi-sphere Unit Cell Model. The model is validated by comparing the results with that obtained in experiments. (authors)
Molecular dynamics study on interfacial thermal conductance of unirradiated and irradiated SiC/C
International Nuclear Information System (INIS)
Wang, Qingyu; Wang, Chenglong; Zhang, Yue; Li, Taosheng
2014-01-01
SiC f /SiC composite materials have been considered as candidate structural materials for several types of advanced nuclear reactors. Both experimental and computer simulations studies have revealed the degradation of thermal conductivity for this material after irradiation. The objective of this study is to investigate the effect of SiC/graphite interface structure and irradiation on the interfacial thermal conductance by using molecular dynamics simulation. Five SiC/graphite composite models were created with different interface structures, and irradiation was introduced near the interfaces. Thermal conductance was calculated by means of reverse-NEMD method. Results show that there is a positive correlation between the interfacial energy and interfacial C–Si bond quantity, and irradiated models showed higher interfacial energy compared with their unirradiated counterparts. Except the model with graphite atom plane parallel to the interface, the interfacial thermal conductance of unirradiated and irradiated (1000 eV) models, increases as the increase of interfacial energy, respectively. For all irradiated models, lattice defects are of importance in impacting the interfacial thermal conductance depending on the interface structure. For the model with graphite layer parallel to the interface, the interfacial thermal conductance increased after irradiation, for the other models the interfacial thermal conductance decreased. The vibrational density of states of atoms in the interfacial region was calculated to analyze the phonon mismatch at the interface
Whole plantar nerve conduction study with disposable strip electrodes.
Hemmi, Shoji; Kurokawa, Katsumi; Nagai, Taiji; Okamoto, Toshio; Murakami, Tatsufumi; Sunada, Yoshihide
2016-02-01
A new method to evaluate whole plantar nerve conduction with disposable strip electrodes (DSEs) is described. Whole plantar compound nerve action potentials (CNAPs) were recorded at the ankle. DSEs were attached to the sole for simultaneous stimulation of medial and lateral plantar nerves. We also conducted medial plantar nerve conduction studies using an established method and compared the findings. Whole plantar CNAPs were recorded bilaterally from 32 healthy volunteers. Mean baseline to peak amplitude for CNAPs was 26.9 ± 11.8 μV, and mean maximum conduction velocity was 65.8 ± 8.3 m/s. The mean amplitude of CNAPs obtained by our method was 58.2% higher than that of CNAPs obtained by the Saeed method (26.9 μV vs. 17.0 μV; P < 0.0001). The higher mean amplitude of whole plantar CNAPs obtained by our method suggests that it enables CNAPs to be obtained easily, even in elderly people. © 2015 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Huslage, J; Buechi, F N; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
Two perfluorosulfonic acid membranes, Nafion{sup R} 105 and Nafion{sup R} 115 with the same thickness but different equivalent weights (EW = 1000 g/eq. resp. 1100 g/eq.) were characterised by conductivity measurements at different water vapour activities in the temperature range of 25-70{sup o}C. The results demonstrate that a lower membrane equivalent weight opens the possibility to obtain the needed proton conductivity at lower water vapour activity. This is especially important for those fuel cell applications, in which the cell is operated without external humidification of the fuel gases. (author) 5 figs., 5 refs.
A micro-convection model for thermal conductivity of nanofluids
Indian Academy of Sciences (India)
Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of ...
de Lusignan, Simon; Cashman, Josephine; Poh, Norman; Michalakidis, Georgios; Mason, Aaron; Desombre, Terry; Krause, Paul
2012-01-01
Medical research increasingly requires the linkage of data from different sources. Conducting a requirements analysis for a new application is an established part of software engineering, but rarely reported in the biomedical literature; and no generic approaches have been published as to how to link heterogeneous health data. Literature review, followed by a consensus process to define how requirements for research, using, multiple data sources might be modeled. We have developed a requirements analysis: i-ScheDULEs - The first components of the modeling process are indexing and create a rich picture of the research study. Secondly, we developed a series of reference models of progressive complexity: Data flow diagrams (DFD) to define data requirements; unified modeling language (UML) use case diagrams to capture study specific and governance requirements; and finally, business process models, using business process modeling notation (BPMN). These requirements and their associated models should become part of research study protocols.
International Nuclear Information System (INIS)
Burkes, Douglas E.; Casella, Andrew M.; Huber, Tanja K.
2015-01-01
Highlights: • Hsu equation provides best thermal conductivity estimate of U–Mo dispersion fuel. • Simple model considering interaction layer formation was coupled with Hsu equation. • Interaction layer thermal conductivity is not the most important attribute. • Effective thermal conductivity is mostly influenced by interaction layer formation. • Fuel particle distribution also influences the effective thermal conductivity. - Abstract: The Global Threat Reduction Initiative Program continues to develop existing and new test reactor fuels to achieve the maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix, porosity that forms during fabrication of the fuel plates or rods, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation, dispersed particle size, and volume fraction of dispersed phase in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be as important in determining the effective conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the dispersed particle distribution by minimizing interaction
Paper use in research ethics applications and study conduct.
Chakladar, Abhijoy; Eckstein, Sue; White, Stuart M
2011-02-01
Application for Research Ethics Committee (REC) approval and the conduct of medical research is paper intensive. This retrospective study examined all applications to a single REC in the south of England over one year. It estimated the mass of paper used, comparing the proportional paper consumption of different trial types and during different stages of the research process, quantifying the consumption in terms of carbon dioxide emissions. In 2009, 68 trials were submitted to the REC. Total paper consumption for the REC process and study conduct was 176,150 sheets of A4 paper (879 kg), equivalent to an estimated 11.5 million sheets (88 tonnes, 2100 trees) a year for the U.K.; the REC process accounted for 26.4%. REC applications and the conduct of approved trials generate considerable environmental impact through paper consumption contributing to the NHS's carbon footprint. Paper use might be reduced through the implementation of digital technologies and revised research methods, namely changing attitudes in both researchers and ethics committees.
Location and social context does matter when conducting consumer studies!
DEFF Research Database (Denmark)
Andersen, Barbara Vad; Kraggerud, Hilde; Bruun Brockhoff, Per
2015-01-01
an adequate level of research conducted in realistic eating contexts. In the aim to study how location and social context affected consumers’ feeling of food satisfaction and physical well-being a study was set up with, combined yoghurt with muesli products in two settings; a) in a sensory lab facility (n...... of food satisfaction. Test products were two variants of yoghurt (differing in protein content) and two variants of muesli (a berry and a nut variant) eaten as combined products. An effect of location context (lab- vs. natural context) was found for immediate post intake rating of hunger, fullness...
Thermal conductivity of granular porous media: A pore scale modeling approach
Directory of Open Access Journals (Sweden)
R. Askari
2015-09-01
Full Text Available Pore scale modeling method has been widely used in the petrophysical studies to estimate macroscopic properties (e.g. porosity, permeability, and electrical resistivity of porous media with respect to their micro structures. Although there is a sumptuous literature about the application of the method to study flow in porous media, there are fewer studies regarding its application to thermal conduction characterization, and the estimation of effective thermal conductivity, which is a salient parameter in many engineering surveys (e.g. geothermal resources and heavy oil recovery. By considering thermal contact resistance, we demonstrate the robustness of the method for predicting the effective thermal conductivity. According to our results obtained from Utah oil sand samples simulations, the simulation of thermal contact resistance is pivotal to grant reliable estimates of effective thermal conductivity. Our estimated effective thermal conductivities exhibit a better compatibility with the experimental data in companion with some famous experimental and analytical equations for the calculation of the effective thermal conductivity. In addition, we reconstruct a porous medium for an Alberta oil sand sample. By increasing roughness, we observe the effect of thermal contact resistance in the decrease of the effective thermal conductivity. However, the roughness effect becomes more noticeable when there is a higher thermal conductivity of solid to fluid ratio. Moreover, by considering the thermal resistance in porous media with different grains sizes, we find that the effective thermal conductivity augments with increased grain size. Our observation is in a reasonable accordance with experimental results. This demonstrates the usefulness of our modeling approach for further computational studies of heat transfer in porous media.
Measurement and Modelling of MIC Components Using Conductive Lithographic Films
Shepherd, P. R.; Taylor, C.; Evans l, P. S. A.; Harrison, D. J.
2001-01-01
Conductive Lithographic Films (CLFs) have previously demonstrated useful properties in printed mi-crowave circuits, combining low cost with high speed of manufacture. In this paper we examine the formation of various passive components via the CLF process, which enables further integration of printed microwave integrated circuits. The printed components include vias, resistors and overlay capacitors, and offer viable alternatives to traditional manufacturing processes for Microwave Inte-grate...
Guidelines for Conducting Positivist Case Study Research in Information Systems
Directory of Open Access Journals (Sweden)
Graeme Shanks
2002-11-01
Full Text Available The case study research approach is widely used in a number of different ways within the information systems community. This paper focuses on positivist, deductive case study research in information systems. It provides clear definitions of important concepts in positivist case study research and illustrates these with an example research study. A critical analysis of the conduct and outcomes of two recently published positivist case studies is reported. One is a multiple case study that validated concepts in a framework for viewpoint development in requirements definition. The other is a single case study that examined the role of social enablers in enterprise resource planning systems implementation. A number of guidelines for successfully undertaking positivist case study research are identified including developing a clear understanding of key concepts and assumptions within the positivist paradigm; providing clear and unambiguous definitions of the units and interactions when using any theory; carefully defining the boundary of the theory used in the case study; using hypotheses rather than propositions in the empirical testing of theory; using fuzzy or probabilistic propositions in recognising that reality can never be perfectly known; selecting case studies carefully, particularly single case studies; and recognising that generalisation from positivist, single case studies is inherently different from generalisation from single experiments. When properly undertaken, positivist, deductive case study research is a valuable research approach for information systems researchers, particularly when used within pluralist research programs that use a number of different research approaches from different paradigms.
Nerve conduction and excitability studies in peripheral nerve disorders
DEFF Research Database (Denmark)
Krarup, Christian; Moldovan, Mihai
2009-01-01
counterparts in the peripheral nervous system, in some instances without peripheral nervous system symptoms. Both hereditary and acquired demyelinating neuropathies have been studied and the effects on nerve pathophysiology have been compared with degeneration and regeneration of axons. SUMMARY: Excitability......PURPOSE OF REVIEW: The review is aimed at providing information about the role of nerve excitability studies in peripheral nerve disorders. It has been known for many years that the insight into peripheral nerve pathophysiology provided by conventional nerve conduction studies is limited. Nerve...... excitability studies are relatively novel but are acquiring an increasingly important role in the study of peripheral nerves. RECENT FINDINGS: By measuring responses in nerve that are related to nodal function (strength-duration time constant, rheobase and recovery cycle) and internodal function (threshold...
2014-01-01
Background Before considering whether to use a multivariable (diagnostic or prognostic) prediction model, it is essential that its performance be evaluated in data that were not used to develop the model (referred to as external validation). We critically appraised the methodological conduct and reporting of external validation studies of multivariable prediction models. Methods We conducted a systematic review of articles describing some form of external validation of one or more multivariable prediction models indexed in PubMed core clinical journals published in 2010. Study data were extracted in duplicate on design, sample size, handling of missing data, reference to the original study developing the prediction models and predictive performance measures. Results 11,826 articles were identified and 78 were included for full review, which described the evaluation of 120 prediction models. in participant data that were not used to develop the model. Thirty-three articles described both the development of a prediction model and an evaluation of its performance on a separate dataset, and 45 articles described only the evaluation of an existing published prediction model on another dataset. Fifty-seven percent of the prediction models were presented and evaluated as simplified scoring systems. Sixteen percent of articles failed to report the number of outcome events in the validation datasets. Fifty-four percent of studies made no explicit mention of missing data. Sixty-seven percent did not report evaluating model calibration whilst most studies evaluated model discrimination. It was often unclear whether the reported performance measures were for the full regression model or for the simplified models. Conclusions The vast majority of studies describing some form of external validation of a multivariable prediction model were poorly reported with key details frequently not presented. The validation studies were characterised by poor design, inappropriate handling
Cell percolation model for electrical conduction of granular superconducting composites. 2
International Nuclear Information System (INIS)
Horvath, G.; Bankuti, J.
1990-01-01
The percolation of the electrical conductivity of the uniform cells is studied in an in-situ elongated granular superconducting composite on the basis of the uniform cell model improved previously. The critical temperatures are determined in the macroscopic superconducting state of the two- and the three-dimensional composites. (author)
DEFF Research Database (Denmark)
Qin, Nan; Xu, Zhao
2008-01-01
in the discontinuous conducting mode (DCM). The new wind turbine model with the variable speed control of the PMSG based on duty cycle control of the boost converter has been developed in Matlab Simulink. Simulation studies show that DCM working mode of the boost converter provides more flexibility in controlling...
Model of electrical conductivity of skeletal muscle based on tissue structure
Gielen, F.L.H.; Cruts, H.E.P.; Alberts, B.A.; Boon, K.L.; Wallinga, W.; Boom, H.B.K.
1986-01-01
Recent experiments carried out in our laboratory with the four-electrode method showed that the electrical conductivity of skeletal muscle tissue depends on the frequency of the injected current and the distance between the current electrodes. A model is proposed in order to study these effects. The
Improved gap conductance model for the TRAC code
International Nuclear Information System (INIS)
Hatch, S.W.; Mandell, D.A.
1980-01-01
The purpose of the present work, as indicated earlier, is to improve the present constant fuel clad spacing in TRAC-P1A without significantly increasing the computer costs. It is realized that the simple model proposed may not be accurate enough for some cases, but for the initial calculations made the DELTAR model improves the predictions over the constant Δr results of TRAC-P1A and the additional computing costs are negligible
Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film
International Nuclear Information System (INIS)
Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn
2005-09-01
In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells
Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity
Directory of Open Access Journals (Sweden)
J. Behmanesh
2015-06-01
Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.
Structural conceptual models of water-conducting features at Aespoe
International Nuclear Information System (INIS)
Bossart, P.; Mazurek, M.; Hermansson, Jan
1998-01-01
Within the framework of the Fracture Classification and Characterization Project (FCC), water conducting features (WCF) in the Aespoe tunnel system and on the surface of Aespoe Island are being characterized over a range of scales. The larger-scale hierarchies of WCF are mostly constituted of fault arrays, i.e. brittle structures that accommodated episodes of shear strain. The smaller-scale WCF (contained within blocks 1 m. Structural evidence indicates that the fractures within the TRUE-1 block constitute an interconnected system with a pronounced anisotropy
Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study
Energy Technology Data Exchange (ETDEWEB)
Bresme, F., E-mail: f.bresme@imperial.ac.uk [Chemical Physics Section, Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom and Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Biddle, J. W.; Sengers, J. V.; Anisimov, M. A. [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)
2014-04-28
We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.
Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study
International Nuclear Information System (INIS)
Bresme, F.; Biddle, J. W.; Sengers, J. V.; Anisimov, M. A.
2014-01-01
We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures
Study of conduction aphasia by positron emission tomography
Energy Technology Data Exchange (ETDEWEB)
Shoji, Mikio; Harigawa, Yasuo; Kawarabayashi, Takeshi; Hirai, Shunsaku; Tamada, Junpei.
1988-04-01
We reported two cases of conduction aphasia with distinctive language disorder from early stage of stroke, as well as their cerebral blood flow and oxygen consumption investigated with PET. The case was a 72-year-old right handed man whose speech disturbance began acutely. On admission, neurological examination revealed hand pronation sign on the right and speech disturbance. Other neurological findings including cortical functions were normal. Brain CT scan showed low density area in the white matter of the left supramarginal gyrus. The diagnosis was cerebral infarction. The case 2 was a 64-year-old right handed man. He suffered right hemiparesis 2 months before. Neurological examination revealed mild right hemiparesis and speech disturbance. Other cortical functions were noncontributory. Brain CT scan showed old subcortical infarction of the left frontal lobe and new cerebral infarction. with supramarginal gyrus. The low density area of the supramarginal cortex extended into the subcortical white matter. The language performances in these two cases were similar. Two patients were definitely fluent, but the verbal output was contaminated by paraphasias which were predominantly literal. They performed poorly when attempting to repeat despite good comprehension. Thus, the primary characteristics of conduction aphasia were present. PET studies resulted as follows. 1) rCBF reduced 36 % in the supramarginal cortex, 50 % in the white matter. 2) rCMRO/sub 2/ reduced 37 % in the supramarginal cortex, 45 % in the white matter. 3) The CBF and the CMRO/sub 2/ images indicated that cerebral blood flow and oxygen consumption reduced in wider range of area than that shown by brain CT. These results indicated that not only the cortex but also the white matter were damaged in conduction aphasia and several methods including PET should be used to determine the locus of abnormality in conduction aphasia.
A study of conduction aphasia by positron emission tomography
International Nuclear Information System (INIS)
Shoji, Mikio; Harigawa, Yasuo; Kawarabayashi, Takeshi; Hirai, Shunsaku; Tamada, Junpei.
1988-01-01
We reported two cases of conduction aphasia with distinctive language disorder from early stage of stroke, as well as their cerebral blood flow and oxygen consumption investigated with PET. The case was a 72-year-old right handed man whose speech disturbance began acutely. On admission, neurological examination revealed hand pronation sign on the right and speech disturbance. Other neurological findings including cortical functions were normal. Brain CT scan showed low density area in the white matter of the left supramarginal gyrus. The diagnosis was cerebral infarction. The case 2 was a 64-year-old right handed man. He suffered right hemiparesis 2 months before. Neurological examination revealed mild right hemiparesis and speech disturbance. Other cortical functions were noncontributory. Brain CT scan showed old subcortical infarction of the left frontal lobe and new cerebral infarction. with supramarginal gyrus. The low density area of the supramarginal cortex extended into the subcortical white matter. The language performances in these two cases were similar. Two patients were definitely fluent, but the verbal output was contaminated by paraphasias which were predominantly literal. They performed poorly when attempting to repeat despite good comprehension. Thus, the primary characteristics of conduction aphasia were present. PET studies resulted as follows. 1) rCBF reduced 36 % in the supramarginal cortex, 50 % in the white matter. 2) rCMRO 2 reduced 37 % in the supramarginal cortex, 45 % in the white matter. 3) The CBF and the CMRO 2 images indicated that cerebral blood flow and oxygen consumption reduced in wider range of area than that shown by brain CT. These results indicated that not only the cortex but also the white matter were damaged in conduction aphasia and several methods including PET should be used to determine the locus of abnormality in conduction aphasia. (author)
A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging.
Wu, Zhanxiong; Liu, Yang; Hong, Ming; Yu, Xiaohui
2018-06-01
The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity. Graphical abstract ᅟ.
International Nuclear Information System (INIS)
Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith
2005-01-01
In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity
DEFF Research Database (Denmark)
Krøigård, Thomas; Gaist, David; Otto, Marit
2014-01-01
SUMMARY: The reproducibility of variables commonly included in studies of peripheral nerve conduction in healthy individuals has not previously been analyzed using a random effects regression model. We examined the temporal changes and variability of standard nerve conduction measures in the leg...... reexamined after 2 and 26 weeks. There was no change in the variables except for a minor decrease in sural nerve sensory action potential amplitude and a minor increase in tibial nerve minimal F-wave latency. Reproducibility was best for peroneal nerve distal motor latency and motor conduction velocity......, sural nerve sensory conduction velocity, and tibial nerve minimal F-wave latency. Between-subject variability was greater than within-subject variability. Sample sizes ranging from 21 to 128 would be required to show changes twice the magnitude of the spontaneous changes observed in this study. Nerve...
Applicability of common stomatal conductance models in maize under varying soil moisture conditions.
Wang, Qiuling; He, Qijin; Zhou, Guangsheng
2018-07-01
In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Study of growth mechanism of conducting polymers by pulse radiolysis
International Nuclear Information System (INIS)
Coletta, Cecilia
2016-01-01
Today conductive polymers have many applications in several devices. For these reasons they have received much attention in recent years. Despite intensive research, the mechanism of conducting polymers growth is still poorly understood and the methods of polymerization are limited to two principal ways: chemical and electrochemical synthesis. On the other hand, the complex properties of polymers can be controlled only if a good knowledge of polymerization process is acquired. In this case, it is possible to control the process during the synthesis (functionalization, hydrophilicity, chain length, doping level), and consequently to improve the conductive properties of the synthesized polymers. Water radiolysis represents an easy and efficient method of synthesis comparing to chemical and electrochemical polymerization routes. It enables the polymerization under soft conditions: ambient temperature and pressure, without any external dopant. Among all conductive polymers, poly(3, 4-ethylenedioxy-thiophene) (PEDOT, a derivative of poly-thiophene) and poly-Pyrrole (PPy) have gained some large scale applications for their chemical and physical proprieties. The aim of the present work was the synthesis of PEDOT and PPy in aqueous solution and the study of their growth mechanism by pulsed radiolysis. Thanks to the electron accelerator ELYSE, the use of pulsed radiolysis coupled with time-resolved absorption spectroscopy allowed to study the kinetics of polymerization. The first transient species involved in the mechanism were identified by time resolved spectroscopy and the rate constants were determined. First, the reaction of hydroxyl radicals onto EDOT and Py monomers was studied, as well as the corresponding radiation induced polymerization. Then, the study was transposed to others oxidizing radicals such as CO3 .- , N 3 . and SO 4 .- at different pHs. This approach allowed to check and to highlight the influence of oxidizing species onto the first transient species
International Nuclear Information System (INIS)
Op de Beeck, M.; De Bock, M.; Vandermeiren, K.; Temmerman, L. de; Ceulemans, R.
2010-01-01
In this study we tested and compared a multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model in their ability to predict stomatal conductance to ozone (g st ) using leaf-level data from oilseed rape (Brassica napus L.) and broccoli (Brassica oleracea L. var. italica Plenck). For oilseed rape, the multiplicative model and the coupled model were able to explain 72% and 73% of the observed g st variance, respectively. For broccoli, the models were able to explain 53% and 51% of the observed g st variance, respectively. These results support the coupled semi-empirical stomatal-photosynthesis model as a valid alternative to the multiplicative stomatal model for O 3 flux modelling, in terms of predictive performance. - A multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model performed equally well when tested against leaf-level data for oilseed rape and broccoli.
Theories of conduct disorder: a causal modelling analysis
Krol, N.P.C.M.; Morton, J.; Bruyn, E.E.J. De
2004-01-01
Background: If a clinician has to make decisions on diagnosis and treatment, he or she is confronted with a variety of causal theories. In order to compare these theories a neutral terminology and notational system is needed. The Causal Modelling framework involving three levels of description –
On the Kubo-Greenwood model for electron conductivity
Dufty, James; Wrighton, Jeffrey; Luo, Kai; Trickey, S. B.
2018-02-01
Currently, the most common method to calculate transport properties for materials under extreme conditions is based on the phenomenological Kubo-Greenwood method. The results of an inquiry into the justification and context of that model are summarized here. Specifically, the basis for its connection to equilibrium DFT and the assumption of static ions are discussed briefly.
International Nuclear Information System (INIS)
Blomberg, L.G.; Marklund, G.T.
1991-08-01
A numerical model for the calculation of ionospheric convection patterns from given distributions of field-aligned current and ionospheric conductivity is described. The model includes a coupling between the conductivity and the field-aligned current, so that the conductivity peaks in regions of upward current, as is usually observed by measurements. The model is very flexible in that the input distributions, the field-aligned current and the conductivity, have been parametrized in a convenient way. From the primary model output, namely the ionospheric electrostatic potential (or convection) in the corotating frame, a number of other quantities can be computed. These include; the potential in the inertial frame (the transformation takes into account the non-alignment of the Earths magnetic and geographic axes), the potential in the magnetospheric equatorial plane (projected using either a dipole magnetic field model or the Tsyganenko-Usmanov model, and the assumption of either vanishing parallel electric field or a proportionality between parallel potential and upward field-aligned current), the distribution of ionospheric (horizontal) current, and the Joule heating in the ionosphere. This model has been used together with a new snapshot technique to calculate the high-latitude potential distribution prevailing during a particular event by combining information from global auroral images and local measurements of fields and particles. The model potential variation along the satellite orbit was found to be in excellent agreement with that calculated from the measured electric field. The model has also been used to study some fundamental properties of the electrodynamics of the high-latitude ionosphere. The results of these different applications of the model have been published separately. (au) (39 refs.)
Phrenic nerve conduction studies: normative data and technical aspects
Directory of Open Access Journals (Sweden)
Analucia Abreu Maranhão
Full Text Available ABSTRACT Objective: The aim of the present study was to define normative data of phrenic nerve conduction parameters of a healthy population. Methods: Phrenic nerve conduction studies were performed in 27 healthy volunteers. Results: The normative limits for expiratory phrenic nerve compound muscle action potential were: amplitude (0.47 mv - 0.83 mv, latency (5.74 ms - 7.10 ms, area (6.20 ms/mv - 7.20 ms/mv and duration (18.30 ms - 20.96 ms. Inspiratory normative limits were: amplitude (0.67 mv - 1.11 mv, latency (5.90 ms - 6.34 ms, area (5.62 ms/mv - 6.72 ms/mv and duration (13.77 ms - 15.37 ms. Conclusion: The best point of phrenic nerve stimulus in the neck varies among individuals between the medial and lateral border of the clavicular head of the sternocleidomastoid muscle and stimulation of both sites, then choosing the best phrenic nerve response, seems to be the appropriate procedure.
Phrenic nerve conduction studies: normative data and technical aspects.
Maranhão, Analucia Abreu; Carvalho, Sonia Regina da Silva; Caetano, Marcelo Ribeiro; Alamy, Alexandre Hofke; Peixoto, Eduardo Mesquita; Filgueiras, Pedro Del Esporte Peçanha
2017-12-01
The aim of the present study was to define normative data of phrenic nerve conduction parameters of a healthy population. Phrenic nerve conduction studies were performed in 27 healthy volunteers. The normative limits for expiratory phrenic nerve compound muscle action potential were: amplitude (0.47 mv - 0.83 mv), latency (5.74 ms - 7.10 ms), area (6.20 ms/mv - 7.20 ms/mv) and duration (18.30 ms - 20.96 ms). Inspiratory normative limits were: amplitude (0.67 mv - 1.11 mv), latency (5.90 ms - 6.34 ms), area (5.62 ms/mv - 6.72 ms/mv) and duration (13.77 ms - 15.37 ms). The best point of phrenic nerve stimulus in the neck varies among individuals between the medial and lateral border of the clavicular head of the sternocleidomastoid muscle and stimulation of both sites, then choosing the best phrenic nerve response, seems to be the appropriate procedure.
Conducting Simulation Studies in the R Programming Environment.
Hallgren, Kevin A
2013-10-12
Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.
Heat conduction in caricature models of the Lorentz gas
International Nuclear Information System (INIS)
Kramli, A.; Simanyi, N.; Szasz, D.
1987-01-01
Heat transport coefficients are calculated for various random walks with internal states (the Markov partition of the Sinai billiard connects these walks with the Lorentz gas among a periodic configuration of scatterers). Models with reflecting or absorbing barriers and also those without or with local thermal equilibrium are investigated. The method is unified and is based on the Keldysh expansion of the resolvent of a matrix polynomial
Wagner, Graham A.
This study sought to determine whether there are national training needs among staff of conductive education programs in New Zealand. Conductive education is a unified system of education for children and adults with a motor disorder whose disability has been caused by damage to the central nervous system. The study, which focuses primarily on…
Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed
Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.
2018-02-01
Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.
Conducting Simulation Studies in the R Programming Environment
Directory of Open Access Journals (Sweden)
Kevin A. Hallgren
2013-10-01
Full Text Available Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtainingaccurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted toresearchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulationstudies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a the use of simulations to answer a novel question about statistical analysis, (b the use of simulations to estimate statistical power, and (c the use of simulations to obtain confidence intervals of parameter estimates throughbootstrapping. Results and fully annotated syntax from these examples are provided.
Transient heat conduction in a pebble fuel applying fractional model
International Nuclear Information System (INIS)
Gomez A, R.; Espinosa P, G.
2009-10-01
In this paper we presents the equation of thermal diffusion of temporary-fractional order in the one-dimensional space in spherical coordinates, with the objective to analyze the heat transference between the fuel and coolant in a fuel element of a Pebble Bed Modular Reactor. The pebble fuel is the heterogeneous system made by microsphere constitutes by U O, pyrolytic carbon and silicon carbide mixed with graphite. To describe the heat transfer phenomena in the pebble fuel we applied a constitutive law fractional (Non-Fourier) in order to analyze the behaviour transient of the temperature distribution in the pebble fuel with anomalous thermal diffusion effects a numerical model is developed. (Author)
A reconstruction of Maxwell model for effective thermal conductivity of composite materials
International Nuclear Information System (INIS)
Xu, J.Z.; Gao, B.Z.; Kang, F.Y.
2016-01-01
Highlights: • Deficiencies were found in classical Maxwell model for effective thermal conductivity. • Maxwell model was reconstructed based on potential mean-field theory. • Reconstructed Maxwell model was extended with particle–particle contact resistance. • Predictions by reconstructed Maxwell model agree excellently with experimental data. - Abstract: Composite materials consisting of high thermal conductive fillers and polymer matrix are often used as thermal interface materials to dissipate heat generated from mechanical and electronic devices. The prediction of effective thermal conductivity of composites remains as a critical issue due to its dependence on considerably factors. Most models for prediction are based on the analog between electric potential and temperature that satisfy the Laplace equation under steady condition. Maxwell was the first to derive the effective electric resistivity of composites by examining the far-field spherical harmonic solution of Laplace equation perturbed by a sphere of different resistivity, and his model was considered as classical. However, a close review of Maxwell’s derivation reveals that there exist several controversial issues (deficiencies) inherent in his model. In this study, we reconstruct the Maxwell model based on a potential mean-field theory to resolve these issues. For composites made of continuum matrix and particle fillers, the contact resistance among particles was introduced in the reconstruction of Maxwell model. The newly reconstructed Maxwell model with contact resistivity as a fitting parameter is shown to fit excellently to experimental data over wide ranges of particle concentration and mean particle diameter. The scope of applicability of the reconstructed Maxwell model is also discussed using the contact resistivity as a parameter.
Mathematical modelling of pasta dough dynamic viscosity, thermal conductivity and diffusivity
Directory of Open Access Journals (Sweden)
Andrei Ionuţ SIMION
2015-08-01
Full Text Available This work aimed to study the mathematical variation of three main thermodynamic properties (dynamic viscosity, thermal conductivity and thermal diffusivity of pasta dough obtained by mixing wheat semolina and water with dough humidity and deformation speed (for dynamic viscosity, respectively with dough humidity and temperature (for thermal diffusivity and conductivity. The realized regression analysis of existing graphical data led to the development of mathematical models with a high degree of accuracy. The employed statistical tests (least squares, relative error and analysis of variance revealed that the obtained equations are able to describe and predict the tendency of the dough thermodynamic properties.
Energy Technology Data Exchange (ETDEWEB)
Glenn E McCreery; Keith G Condie
2006-09-01
The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. The present document addresses experimental modeling of flow and thermal mixing phenomena of importance during normal or reduced power operation and during a loss of forced reactor cooling (pressurized conduction cooldown) scenario. The objectives of the experiments are, 1), provide benchmark data for assessment and improvement of codes proposed for NGNP designs and safety studies, and, 2), obtain a better understanding of related phenomena, behavior and needs. Physical models of VHTR vessel upper and lower plenums which use various working fluids to scale phenomena of interest are described. The models may be used to both simulate natural convection conditions during pressurized conduction cooldown and turbulent lower plenum flow during normal or reduced power operation.
Modeling and inverse feedforward control for conducting polymer actuators with hysteresis
International Nuclear Information System (INIS)
Wang, Xiangjiang; Alici, Gursel; Tan, Xiaobo
2014-01-01
Conducting polymer actuators are biocompatible with a small footprint, and operate in air or liquid media under low actuation voltages. This makes them excellent actuators for macro- and micro-manipulation devices, however, their positioning ability or accuracy is adversely affected by their hysteresis non-linearity under open-loop control strategies. In this paper, we establish a hysteresis model for conducting polymer actuators, based on a rate-independent hysteresis model known as the Duhem model. The hysteresis model is experimentally identified and integrated with the linear dynamics of the actuator. This combined model is inverted to control the displacement of the tri-layer actuators considered in this study, without using any external feedback. The inversion requires an inverse hysteresis model which was experimentally identified using an inverse neural network model. Experimental results show that the position tracking errors are reduced by more than 50% when the hysteresis inverse model is incorporated into an inversion-based feedforward controller, indicating the potential of the proposed method in enabling wider use of such smart actuators. (paper)
Spiral field inhibition of thermal conduction in two-fluid solar wind models
International Nuclear Information System (INIS)
Nerney, S.; Barnes, A.
1978-01-01
The two-fluid solar wind equations, including inhibition of heat conduction by the spiral magnetic field, have been solved for steady radial flow, and the results are compared with those of our previous study of two-fluid models with straight interplanetary field lines. The main effects of the spiral field conduction cutoff are to bottle up electron heat inside 1 AU and to produce adiabatic electron (an proton) temperature profiles at large heliocentric distances. Otherwise, the spiral field models are nearly identical with straight field models with the same temperatures and velocity at 1 AU, except for models associated with very low coronal base densities (n 0 approx.10 6 cm -3 at 1R/sub s/). Low base density spiral models give a nearly isothermal electron temperature profile over 50--100 AU together with high velocities and temperatures at 1 AU. In general, high-velocity models do not agree well with observed high-velocity streams: lower-velocity states can be represented reasonably well at 1 AU, but only for very high proton temperatures (T/sub p/approx.2T/sub e/) at the coronal base. For spherically symmetric base conditions the straight field and spiral field models can be regarded, in lowest order, as approximations to the polar and equatorial three-dimensional flows, respectively. This viewpoint suggests a pole to equator electron temperature gradient in the region 1-10 AU, which would be associated with a meridional velocity of approx.0.5-1.0 km/s, diverging away from the equatorial plane. The formalism developed in this paper shows rather stringent limits to the mass loss rate for conductively driven winds and, in particular, illustrates that putative T Tauri outflows could not be conductively driven
Study of the Kinetics of an S[subscript N]1 Reaction by Conductivity Measurement
Marzluff, Elaine M.; Crawford, Mary A.; Reynolds, Helen
2011-01-01
Substitution reactions, a central part of organic chemistry, provide a model system in physical chemistry to study reaction rates and mechanisms. Here, the use of inexpensive and readily available commercial conductivity probes coupled with computer data acquisition for the study of the temperature and solvent dependence of the solvolysis of…
Site-scale groundwater flow modelling of Aberg and upscaling of conductivity
International Nuclear Information System (INIS)
Walker, Douglas; Gylling, Bjoern
2002-04-01
A recent performance assessment study of spent nuclear fuel disposal in Sweden, Safety Report 1997 (SR 97) included modelling of flow and transport in fractured host rocks. Hydraulic conductivity measurements in this system exhibit a strong scale dependence that needed to be addressed when determining the mean and variogram of the hydraulic conductivity for finite-difference blocks and when nesting site-scale models within regional scale models. This study applies four upscaling approaches to the groundwater flow models of Aberg, one of the hypothetical SR 97 repositories. The approaches are: 1) as in SR 97, empirically upscaling the mean conductivity via the observed scale dependence of measurements, and adjusting the covariance via numerical regularisation; 2) empirically upscaling as in SR 97, but considering fracture zones as two-dimensional features; 3) adapting the effective conductivity of stochastic continuum mechanics to upscale the mean, and geostatistical regularisation for variogram; and 4) the analytical approach of Indelman and Dagan. These four approaches are evaluated for their effects on simple measures of repository performance including the canister flux, the advective travel time from representative canister locations to the ground surface, and the F-quotient. A set of sensitivity analyses suggest that the results of the SR 97 Aberg Base Case are insensitive to minor computational changes and to the changes in the properties of minor fracture zones. The comparison of alternative approaches to upscaling indicates that, for the methods examined in this study, the greatest consistency of boundary flows between the regional and site-scale models was achieved when using the scale dependence of hydraulic conductivity observed at Aespoe for the rock domains, the hydraulic conductivities of the large-scale interference tests for the conductor domain, and a numerical regularisation based on Moye's formula for the variogram. The assumption that the
Modelling of stomatal conductance and ozone deposition flux of Norway Spruce using deposition model
Czech Academy of Sciences Publication Activity Database
Zapletal, M.; Chroust, P.; Večeřa, Zbyněk; Mikuška, Pavel; Cudlín, Pavel; Urban, Otmar; Pokorný, Radek; Czerný, Radek; Janouš, Dalibor; Taufarová, Klára
2009-01-01
Roč. 12, 2-3 (2009), s. 75-81 ISSN 1335-339X R&D Projects: GA MŽP SP/1B7/189/07 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z40310501 Keywords : ozone concentration * ozone deposition * stomatal conductance * deposition velocity * resistance model * tropo-spheric ozone Subject RIV: DG - Athmosphere Sciences, Meteorology
Recovery from distal ulnar motor conduction block injury: serial EMG studies.
Montoya, Liliana; Felice, Kevin J
2002-07-01
Acute conduction block injuries often result from nerve compression or trauma. The temporal pattern of clinical, electrophysiologic, and histopathologic changes following these injuries has been extensively studied in experimental animal models but not in humans. Our recent evaluation of a young man with an injury to the deep motor branch of the ulnar nerve following nerve compression from weightlifting exercises provided the opportunity to follow the course and recovery of a severe conduction block injury with sequential nerve conduction studies. The conduction block slowly and completely resolved, as did the clinical deficit, over a 14-week period. The reduction in conduction block occurred at a linear rate of -6.1% per week. Copyright 2002 Wiley Periodicals, Inc.
A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions
Energy Technology Data Exchange (ETDEWEB)
Koo, J; Kang, Y [Department of Mechanical Engineering Kyung Hee University, 1, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Kleinstreuer, C [Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, 3211 Broughton Hall, Raleigh, NC 27695-7910 (United States)], E-mail: jmkoo@khu.ac.kr
2008-09-17
It has been experimentally demonstrated that suspensions of carbon nanotubes (CNTs) and nanofibers (CNFs) significantly increase the thermal conductivity of nanofluids; however, a physically sound theory of the underlying phenomenon is still missing. In this study, the nonlinear nature of the effective thermal conductivity enhancement with the particle concentration of CNT and CNF nanofluids is explained physically using the excluded volume concept. Specifically, the number of contacting CNTs and CNFs could be calculated by using the excluded volume concept, where the distance for heat to travel in a cylinder between the contacting cylinders in the thermal network of percolating CNTs and CNFs increased with the excluded volume. In contrast to the effective thermal conductivity model of Sastry et al (2008 Nanotechnology 19 055704) the present revised model could reproduce the nonlinear increase of the thermal conductivity with particle concentration, as well as the dependence on the diameter and aspect ratio of the CNTs and CNFs. It was found that the alignment of CNTs and CNFs due to the long range repulsion force decreases the excluded volume, leading to both the convex and concave nonlinear as well as linear increase of the thermal conductivity with particle concentration. The difference between various carrier fluids of the suspensions could be explained as the result of the change in the excluded volume in different base fluids.
Two and Three-Phases Fractal Models Application in Soil Saturated Hydraulic Conductivity Estimation
Directory of Open Access Journals (Sweden)
ELNAZ Rezaei abajelu
2017-03-01
Full Text Available Introduction: Soil Hydraulic conductivity is considered as one of the most important hydraulic properties in water and solutionmovement in porous media. In recent years, variousmodels as pedo-transfer functions, fractal models and scaling technique are used to estimate the soil saturated hydraulic conductivity (Ks. Fractal models with two subset of two (solid and pore and three phases (solid, pore and soil fractal (PSF are used to estimate the fractal dimension of soil particles. The PSF represents a generalization of the solid and pore mass fractal models. The PSF characterizes both the solid and pore phases of the porous material. It also exhibits self-similarity to some degree, in the sense that where local structure seems to be similar to the whole structure.PSF models can estimate interface fractal dimension using soil pore size distribution data (PSD and soil moisture retention curve (SWRC. The main objective of this study was to evaluate different fractal models to estimate the Ksparameter. Materials and Methods: The Schaapetal data was used in this study. The complex consists of sixty soil samples. Soil texture, soil bulk density, soil saturated hydraulic conductivity and soil particle size distribution curve were measured by hydrometer method, undistributed soil sample, constant head method and wet sieve method, respectively for all soil samples.Soil water retention curve were determined by using pressure plates apparatus.The Ks parameter could be estimated by Ralws model as a function of fractal dimension by seven fractal models. Fractal models included Fuentes at al. (1996, Hunt and Gee (2002, Bird et al. (2000, Huang and Zhang (2005, Tyler and Wheatcraft (1990, Kutlu et al. (2008, Sepaskhah and Tafteh (2013.Therefore The Ks parameter can be estimated as a function of the DS (fractal dimension by seven fractal models (Table 2.Sensitivity analysis of Rawls model was assessed by making changes±10%, ±20% and±30%(in input parameters
Modeling of cross-plane interface thermal conductance between graphene nano-ribbons
International Nuclear Information System (INIS)
Varshney, Vikas; Lee, Jonghoon; Farmer, Barry L; Voevodin, Andrey A; Roy, Ajit K
2014-01-01
Using non-equilibrium molecular dynamics for thermal energy transfer, we investigate the interfacial thermal conductance between non-covalently interacting graphene nano-ribbons (GNRs) of varying lengths and widths in a cross-contact (x-shaped) geometry. Our results show that the out-of-plane conductance between GNRs can vary significantly (up to a factor of 4) depending upon their geometric parameters. We observe that when plotted against aspect ratio, the predicted interface thermal conductance values fit excellently on a single master-plot with a logarithmic scaling, suggesting the importance of GNR aspect ratio towards thermal conductance. We propose a model based on incorporating different thermal conductance characteristics of edge and inner interacting regions which predicts the observed logarithmic dependence on aspect ratio. We also study the effect of graphene edge roughness, temperature, and strain on out-of-plane thermal conductance and discuss the observed results based on local vibrational characteristics of atoms within interacting region, number of interacting phonons, and the degree to which they interact across the interaction zone. (paper)
Studies on Enhancing Transverse Thermal Conductivity Carbon/Carbon Composites
National Research Council Canada - National Science Library
Manocha, Lalit M; Manocha, Satish M; Roy, Ajit
2007-01-01
The structure derived potential properties of Graphite such as high stiffness coupled with high thermal conductivity and low coefficient of thermal expansion have been better achieved in Carbon fibers...
Heat conduction in graphene: experimental study and theoretical interpretation
International Nuclear Information System (INIS)
Ghosh, S; Nika, D L; Pokatilov, E P; Balandin, A A
2009-01-01
We review the results of our experimental investigation of heat conduction in suspended graphene and offer a theoretical interpretation of its extremely high thermal conductivity. The direct measurements of the thermal conductivity of graphene were performed using a non-contact optical technique and special calibration procedure with bulk graphite. The measured values were in the range of ∼3000-5300 W mK -1 near room temperature and depended on the lateral dimensions of graphene flakes. We explain the enhanced thermal conductivity of graphene as compared to that of bulk graphite basal planes by the two-dimensional nature of heat conduction in graphene over the whole range of phonon frequencies. Our calculations show that the intrinsic Umklapp-limited thermal conductivity of graphene grows with the increasing dimensions of graphene flakes and can exceed that of bulk graphite when the flake size is on the order of a few micrometers. The detailed theory, which includes the phonon-mode-dependent Gruneisen parameter and takes into account phonon scattering on graphene edges and point defects, gives numerical results that are in excellent agreement with the measurements for suspended graphene. Superior thermal properties of graphene are beneficial for all proposed graphene device applications.
A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance.
Dai, Yongjiu; Dickinson, Robert E.; Wang, Ying-Ping
2004-06-01
The energy exchange, evapotranspiration, and carbon exchange by plant canopies depend on leaf stomatal control. The treatment of this control has been required by land components of climate and carbon models. Physiological models can be used to simulate the responses of stomatal conductance to changes in atmospheric and soil environments. Big-leaf models that treat a canopy as a single leaf tend to overestimate fluxes of CO2 and water vapor. Models that differentiate between sunlit and shaded leaves largely overcome these problems.A one-layered, two-big-leaf submodel for photosynthesis, stomatal conductance, leaf temperature, and energy fluxes is presented in this paper. It includes 1) an improved two stream approximation model of radiation transfer of the canopy, with attention to singularities in its solution and with separate integrations of radiation absorption by sunlit and shaded fractions of canopy; 2) a photosynthesis stomatal conductance model for sunlit and shaded leaves separately, and for the simultaneous transfers of CO2 and water vapor into and out of the leaf—leaf physiological properties (i.e., leaf nitrogen concentration, maximum potential electron transport rate, and hence photosynthetic capacity) vary throughout the plant canopy in response to the radiation weight time-mean profile of photosynthetically active radiation (PAR), and the soil water limitation is applied to both maximum rates of leaf carbon uptake by Rubisco and electron transport, and the model scales up from leaf to canopy separately for all sunlit and shaded leaves; 3) a well-built quasi-Newton Raphson method for simultaneous solution of temperatures of the sunlit and shaded leaves.The model was incorporated into the Common Land Model (CLM) and is denoted CLM 2L. It was driven with observational atmospheric forcing from two forest sites [Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) and Boreal Ecosystem Atmosphere Study (BOREAS)] for 2 yr of simulation. The
Liu, Bing; Wang, Hui; Qin, Qing-Hua
2018-01-14
Tiny hollow glass microsphere (HGM) can be applied for designing new light-weighted and thermal-insulated composites as high strength core, owing to its hollow structure. However, little work has been found for studying its own overall thermal conductivity independent of any matrix, which generally cannot be measured or evaluated directly. In this study, the overall thermal conductivity of HGM is investigated experimentally and numerically. The experimental investigation of thermal conductivity of HGM powder is performed by the transient plane source (TPS) technique to provide a reference to numerical results, which are obtained by a developed three-dimensional two-step hierarchical computational method. In the present method, three heterogeneous HGM stacking elements representing different distributions of HGMs in the powder are assumed. Each stacking element and its equivalent homogeneous solid counterpart are, respectively, embedded into a fictitious matrix material as fillers to form two equivalent composite systems at different levels, and then the overall thermal conductivity of each stacking element can be numerically determined through the equivalence of the two systems. The comparison of experimental and computational results indicates the present computational modeling can be used for effectively predicting the overall thermal conductivity of single HGM and its powder in a flexible way. Besides, it is necessary to note that the influence of thermal interfacial resistance cannot be removed from the experimental results in the TPS measurement.
International Nuclear Information System (INIS)
Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Mohamed, Abdellatif Belhadj
2007-01-01
We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-10 6 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T 0 , density of states at the Fermi level (N(E F )), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σ ac (ω,T) A(T)ω s(T,ω) , which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems
Model surface conductivity effect for the electromagnetic heat shield in re-entry flight
International Nuclear Information System (INIS)
Matsuda, Atsushi; Otsu, Hirotaka; Kawamura, Masaaki; Konigorski, Detlev; Takizawa, Yuji; Abe, Takashi
2008-01-01
Effects of model surface conductivity on shock layer enhancement by an applied magnetic field in weakly ionized supersonic plasma flow with a large Hall parameter (β∼300) was investigated experimentally. The shock layer structures of test models of two kinds were measured using laser absorption spectroscopy, in the large Hall parameter situation. One was an insulated model; the other was a conductive spherical blunt model. The shock layer enhancement phenomenon by the applied magnetic field was more pronounced for the insulated model than for the conductive model. This tendency agrees with the computational fluid dynamics result, at least qualitatively
A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations
Marschall, Jochen; Cooper, D. M. (Technical Monitor)
1995-01-01
A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.
Directory of Open Access Journals (Sweden)
Hyeon Seo
Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.
A study of frequency effects on conductivity measurements
International Nuclear Information System (INIS)
Nurul Ain Ahmad Latif; Mahmood Dollah; Mohd Khidir Kamaron; Suaib Ibrahim
2010-01-01
In eddy current testing (ET), different measurement can be carry out through the selection of the test frequency. In conductivity measurement, the selection of eddy current test frequencies permits to select the specific material properties to be measured. The test frequency selected should be sufficient high that eddy current penetration is limited only to fraction of the test material thickness. This paper describes the effects of test frequency on the conductivity measurement. This experiment done by applying different values of test frequency which is 20 kHz, 100 kHz and 1 MHz. (author)
Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons.
Directory of Open Access Journals (Sweden)
Charles F Babbs
Full Text Available This study explores in detail the functional consequences of subtle retraction and detachment of myelin around the nodes of Ranvier following mild-to-moderate crush or stretch mediated injury. An equivalent electrical circuit model for a series of equally spaced nodes of Ranvier was created incorporating extracellular and axonal resistances, paranodal resistances, nodal capacitances, time varying sodium and potassium currents, and realistic resting and threshold membrane potentials in a myelinated axon segment of 21 successive nodes. Differential equations describing membrane potentials at each nodal region were solved numerically. Subtle injury was simulated by increasing the width of exposed nodal membrane in nodes 8 through 20 of the model. Such injury diminishes action potential amplitude and slows conduction velocity from 19.1 m/sec in the normal region to 7.8 m/sec in the crushed region. Detachment of paranodal myelin, exposing juxtaparanodal potassium channels, decreases conduction velocity further to 6.6 m/sec, an effect that is partially reversible with potassium ion channel blockade. Conduction velocity decreases as node width increases or as paranodal resistance falls. The calculated changes in conduction velocity with subtle paranodal injury agree with experimental observations. Nodes of Ranvier are highly effective but somewhat fragile devices for increasing nerve conduction velocity and decreasing reaction time in vertebrate animals. Their fundamental design limitation is that even small mechanical retractions of myelin from very narrow nodes or slight loosening of paranodal myelin, which are difficult to notice at the light microscopic level of observation, can cause large changes in myelinated nerve conduction velocity.
Conductivity studies in SnO–NaPO 3 glasses
Indian Academy of Sciences (India)
D.c. activation barriers seem to reflect the structural changes in system. A.c. conductivity analysis has revealed that while the power law exponent, , seem to bear correlation to the structural changes, the exponent of the stretched exponential function describing the dielectric relaxation is largely insensitive to the structure.
Conductivity studies of lithium zinc silicate glasses with varying ...
Indian Academy of Sciences (India)
WINTEC
Values of activation energy derived from σd.c., ωh and τ are almost equal within the ... materials can be changed by varying the proportion of the .... The solid line is a guide to the eye. ... does not show a maximum as d.c. conductivity drops to a.
Experimental study of effective thermal conductivity of stainless steel fiber felt
International Nuclear Information System (INIS)
Li, W.Q.; Qu, Z.G.
2015-01-01
An experimental apparatus was designed to measure the effective thermal conductivity of porous stainless steel fiber felt under different operating pressures. The total effective thermal conductivity was studied by analyzing matrix heat conduction, air natural convection, and matrix thermal radiation at ambient pressure. The contribution of air natural convection was experimentally obtained by changing the ambient pressure to vacuum condition and the solid matrix heat conduction was evaluated using a theoretical model. The ratios of the three mechanisms to the total effective thermal conductivity were approximately 40%, 37.9%, and 22.1%, respectively. In addition, the effects of fiber diameter and porosity on the three mechanisms and on the total effective thermal conductivity were studied. The air natural convection was found to gradually intensify when the operating pressure increases from vacuum condition (15 Pa) to ambient pressure (1.0 × 10 5 Pa). With an increase in fiber diameter under fixed porosity, the solid matrix heat conduction remained unchanged, and air natural convection and thermal radiation decreased, thereby resulting in reduced effective thermal conductivity. With an increase in porosity under fixed fiber diameter, the air natural convection was almost unchanged, and solid matrix heat conduction and thermal radiation were reduced, thereby resulting in reduced effective thermal conductivity. - Highlights: • Matrix conduction, radiation and air convection were in the same order of magnitude. • Air natural convection was suppressed by reducing operating pressure. • Intensity of air convection was more sensitive to fiber diameter than porosity. • Surface area and permeability was comparable in air convection as fiber diameter fixed. • Interfacial area exerted dominant role in radiation and air convection as porosity fixed
Elson, Edward
2009-01-01
A theory of control of cellular proliferation and differentiation in the early development of metazoan systems, postulating a system of electrical controls "parallel" to the processes of molecular biochemistry, is presented. It is argued that the processes of molecular biochemistry alone cannot explain how a developing organism defies a stochastic universe. The demonstration of current flow (charge transfer) along the long axis of DNA through the base-pairs (the "pi-way) in vitro raises the question of whether nature may employ such current flows for biological purposes. Such currents might be too small to be accessible to direct measurement in vivo but conduction has been measured in vitro, and the methods might well be extended to living systems. This has not been done because there is no reasonable model which could stimulate experimentation. We suggest several related, but detachable or independent, models for the biological utility of charge transfer, whose scope admittedly outruns current concepts of thinking about organization, growth, and development in eukaryotic, metazoan systems. The ideas are related to explanations proposed to explain the effects demonstrated on tumors and normal tissues described in Article I (this issue). Microscopic and mesoscopic potential fields and currents are well known at sub-cellular, cellular, and organ systems levels. Not only are such phenomena associated with internal cellular membranes in bioenergetics and information flow, but remarkable long-range fields over tissue interfaces and organs appear to play a role in embryonic development (Nuccitelli, 1992 ). The origin of the fields remains unclear and is the subject of active investigation. We are proposing that similar processes could play a vital role at a "sub-microscopic level," at the level of the chromosomes themselves, and could play a role in organizing and directing fundamental processes of growth and development, in parallel with the more discernible fields and
Gap Conductance model Validation in the TASS/SMR-S code using MARS code
International Nuclear Information System (INIS)
Ahn, Sang Jun; Yang, Soo Hyung; Chung, Young Jong; Lee, Won Jae
2010-01-01
Korea Atomic Energy Research Institute (KAERI) has been developing the TASS/SMR-S (Transient and Setpoint Simulation/Small and Medium Reactor) code, which is a thermal hydraulic code for the safety analysis of the advanced integral reactor. An appropriate work to validate the applicability of the thermal hydraulic models within the code should be demanded. Among the models, the gap conductance model which is describes the thermal gap conductivity between fuel and cladding was validated through the comparison with MARS code. The validation of the gap conductance model was performed by evaluating the variation of the gap temperature and gap width as the changed with the power fraction. In this paper, a brief description of the gap conductance model in the TASS/SMR-S code is presented. In addition, calculated results to validate the gap conductance model are demonstrated by comparing with the results of the MARS code with the test case
Energy Technology Data Exchange (ETDEWEB)
Stigsson, Martin
2009-12-15
The objectives of this report is to investigate the frequency of fractures assumed to be water conductive, i.e. open or partly open and directly or indirectly connected to a source. Also the distribution of total transmissivity in 100 m and 20 m horizontal sections and 8 m vertical sections is calculated. The report is only intended to serve as input to the SER, Site Engineering Report, at Laxemar and Forsmark. The input data for the analyses is taken, as is, from the Discrete Fracture Network sections in published reports. No evaluation that the model parameters are appropriate for the task or sensitivity analysis is performed. The tunnels and deposition holes are modelled as scanlines which is a very coarse approximation, but it may give some rough estimation of the frequency of the water bearing features, especially for the larger ones, and the total transmissivity in a section
International Nuclear Information System (INIS)
Stigsson, Martin
2009-12-01
The objectives of this report is to investigate the frequency of fractures assumed to be water conductive, i.e. open or partly open and directly or indirectly connected to a source. Also the distribution of total transmissivity in 100 m and 20 m horizontal sections and 8 m vertical sections is calculated. The report is only intended to serve as input to the SER, Site Engineering Report, at Laxemar and Forsmark. The input data for the analyses is taken, as is, from the Discrete Fracture Network sections in published reports. No evaluation that the model parameters are appropriate for the task or sensitivity analysis is performed. The tunnels and deposition holes are modelled as scanlines which is a very coarse approximation, but it may give some rough estimation of the frequency of the water bearing features, especially for the larger ones, and the total transmissivity in a section
Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart
2014-01-01
In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687
International Nuclear Information System (INIS)
Norman, S.
1992-04-01
The origin of this study was to find a good, or even the best, stochastic model for the hydraulic conductivity field at the Finnsjoe site. The conductivity field in question are regularized, that is upscaled. The reason for performing regularization of measurement data is primarily the need for long correlation scales. This is needed in order to model reasonably large domains that can be used when describing regional groundwater flow accurately. A theory of regularization is discussed in this report. In order to find the best model, jacknifing is employed to compare different stochastic models. The theory for this method is described. In the act of doing so we also take a look at linear predictor theory, so called kriging, and include a general discussion of stochastic functions and intrinsic random functions. The statistical inference methods for finding the models are also described, in particular regression, iterative generalized regression (IGLSE) and non-parametric variogram estimators. A large amount of results is presented for a regularization scale of 36 metre. (30 refs.) (au)
Conduction mechanism studies on electron transfer of disordered system
Institute of Scientific and Technical Information of China (English)
徐慧; 宋祎璞; 李新梅
2002-01-01
Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended state to the localized state with the increase of the site points and the disordered degree of the system. When electric field is exerted, the electrons transfer from one localized state to another one. The conductivity is induced by the electron transfer. The authors derive the formula of electron conductivity and find the electron hops between localized states whose energies are close to each other, whereas localized positions differ from each other greatly. At low temperature the disordered system has the character of the negative differential dependence of resistivity and temperature.
Time domain NMR and conductivity study of apple pectin biopolymers
International Nuclear Information System (INIS)
Mattos, Ritamara I.; Souto, Sergio; Tambelli, Caio E.
2015-01-01
This communication presents results of "1H nuclear magnetic resonance of continuous distributions of spin-spin relaxation time (T_2) and A.C. conductivity of apple pectin biopolymers plasticized with glycerol and containing acetic acid. The continuous distributions reveals up to three components of spin-spin relaxation times (T_2). The two short T_2 components were associated with protons of pectin polymer chain and the longer T_2 can be attributed with the protons of the glycerol. The conductivity values increase with glycerol concentration with maximum at 7.9 x 10"-"4 S cm"-"1 for sample with 3.0 g of glycerol at 83 deg C. The behavior of activation energy and T_2 continuous distribution indicate an increase of proton mobility due the structural changes caused by glycerol addition. (author)
Ionic conductivity studies of gel polyelectrolyte based on ionic liquid
Energy Technology Data Exchange (ETDEWEB)
Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)
2008-04-01
Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)
Point kinetics model with one-dimensional (radial) heat conduction formalism
International Nuclear Information System (INIS)
Jain, V.K.
1989-01-01
A point-kinetics model with one-dimensional (radial) heat conduction formalism has been developed. The heat conduction formalism is based on corner-mesh finite difference method. To get average temperatures in various conducting regions, a novel weighting scheme has been devised. The heat conduction model has been incorporated in the point-kinetics code MRTF-FUEL. The point-kinetics equations are solved using the method of real integrating factors. It has been shown by analysing the simulation of hypothetical loss of regulation accident in NAPP reactor that the model is superior to the conventional one in accuracy and speed of computation. (author). 3 refs., 3 tabs
Discrete Element Modeling Results of Proppant Rearrangement in the Cooke Conductivity Cell
Energy Technology Data Exchange (ETDEWEB)
Earl Mattson; Hai Huang; Michael Conway; Lisa O' Connell
2014-02-01
The study of propped fracture conductivity began in earnest with the development of the Cooke cell which later became part of the initial API standard. Subsequent developments included a patented multicell design to conduct 4 tests in a press at the same time. Other modifications have been used by various investigators. Recent studies by the Stim-Lab proppant consortium have indicated that the flow field across a Cooke proppant conductivity testing cell may not be uniform as initially believed which resulted is significantly different conductivity results. Post test analysis of low temperature metal alloy injections at the termination of proppant testing prior to the release of the applied stress suggest that higher flow is to be expected along the sides and top of the proppant pack than compared to the middle of the pack. To evaluate these experimental findings, a physics-based two-dimensional (2-D) discrete element model (DEM) was developed and applied to simulate proppant rearrangement during stress loading in the Cooke conductivity cell and the resulting porosity field. Analysis of these simulations are critical to understanding the impact of modification to the testing cell as well as understanding key proppant conductivity issues such as how these effects are manifested in proppant concentration testing results. The 2-D DEM model was constructed to represent a realistic cross section of the Cooke cell with a distribution of four material properties, three that represented the Cooke cell (steel, sandstone,square rings), and one representing the proppant. In principle, Cooke cell materials can be approximated as assemblies of independent discrete elements (particles) of various sizes and material properties that interact via cohesive interactions, repulsive forces, and frictional forces. The macroscopic behavior can then be modeled as the collective behavior of many interacting discrete elements. This DEM model is particularly suitable for modeling proppant
Directory of Open Access Journals (Sweden)
Asir Intisar Khan
2015-12-01
Full Text Available The thermal conductivity of graphene nanoribbons (GNRs has been investigated using equilibrium molecular dynamics (EMD simulation based on Green-Kubo (GK method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO. Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.
DART model for thermal conductivity of U3Si2 Aluminum dispersion fuel
International Nuclear Information System (INIS)
Rest, J.; Snelgrove, J.L.; Hofman, G.L.
2004-01-01
This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminum dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values. (author)
DART model for thermal conductivity of U3Si2 aluminum dispersion fuel
International Nuclear Information System (INIS)
Rest, J.; Snelgrove, J.L.; Hofman, G.L.
1995-09-01
This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminium dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values
Near omni-conductors and insulators: Alternant hydrocarbons in the SSP model of ballistic conduction
Fowler, P.W.; Sciriha, I.; Borg, M.; Seville, V.E.; Pickup, B.T.
2017-01-01
Within the source-and-sink-potential model, a complete characterisation is obtained for the conduction behaviour of alternant π-conjugated hydrocarbons (conjugated hydrocarbons without odd cycles). In this model, an omni-conductor has a molecular graph that conducts at the Fermi level irrespective of the choice of connection vertices. Likewise, an omni-insulator is a molecular graph that fails to conduct for any choice of connections. We give a comprehensive classification of possible combina...
International Nuclear Information System (INIS)
Dordevic, S.V.
2012-01-01
Inverse Fourier Transform of optical conductivity is used for studies of quasiparticle relaxation in Heavy Fermions in time domain. We demonstrate the usefulness of the procedure on model spectra and then use it to study quasiparticle relaxation in two Heavy Fermions YbFe 4 Sb 12 and CeRu 4 Sb 12 . Optical conductivity in time domain reveals details of quasiparticle relaxation close to the Fermi level, not readily accessible from the spectra in the frequency domain. In particular, we find that the relaxation of heavy quasiparticles does not start instantaneously, but typically after a few hundred femto-seconds.
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiaoliang; Zheng, Jie; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn
2016-05-15
In our precious study, a prediction model, which calculates the effective thermal conductivity k{sub eff} of mono-sized pebble beds, has been developed and validated. Based on this model, here the effects of these influencing factors such as pebble size, thermal radiation, contact area, filling gas, gas flow, gas pressure, etc. on the k{sub eff} of randomly packed fusion pebble beds are studied and analyzed. The pebble beds investigated include Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3}, Li{sub 2}O, Be and BeO pebble beds. In the current study, many important and meaningful conclusions are derived and some of them are similar to the existing research results. Particularly, some critters that under which conditions the effect of some influencing factors can be neglected or should be considered are also presented.
International Nuclear Information System (INIS)
Sitprasert, Chatcharin; Dechaumphai, Pramote; Juntasaro, Varangrat
2009-01-01
The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for
Factors influencing childhood conduct disorders: Study of 43 cases
Directory of Open Access Journals (Sweden)
Jalili B
2000-08-01
Full Text Available Conduct disorders are a group of behavior disorders in which the basic rights of others or major age appropriate social norms or rules are violated. To evaluate the factors influencing childhood conduct disorders, we reviewed records of 43 cases (84% boys, mean age 11 years referred to Shahid Esmaili psychiatric hospital, Tehran. All patients fulfilled diagnostic criteria of DSMIV. 15 variables were included; Age and sex and step of patient among sibling, parental educational level, social class of the family, medical and psychiatric history of entire family members and the kind of therapy. The most frequent complaints were aggressiveness, stealing and lying. The dominant age group was 10-14 years. The most frequent family members were 5. Most of the children were 2nd child of the family. The most often educational level of the parents were illiteracy followed by primary school educated. Most of the patients were of low to intermediate socioeconomic classes. The most effective therapy was behavior modification along with appropriate medications.
Scanning Ion Conductance Microscopy for Studying Biological Samples
Directory of Open Access Journals (Sweden)
Irmgard D. Dietzel
2012-11-01
Full Text Available Scanning ion conductance microscopy (SICM is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume. Furthermore, SICM has been combined with various techniques such as fluorescence microscopy or patch clamping to reveal localized information about proteins or protein functions. This review details the various advantages and pitfalls of SICM and provides an overview of the recent developments and applications of SICM in biological imaging. Furthermore, we show that in principle, a combination of SICM and ion selective micro-electrodes enables one to monitor the local ion activity surrounding a living cell.
Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.
Directory of Open Access Journals (Sweden)
R R Poznanski
Full Text Available A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage' have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by
International Nuclear Information System (INIS)
La Pointe, P.R.
1994-11-01
This report describes the comparison of stationary and non-stationary geostatistical models for the purpose of inferring block-scale hydraulic conductivity values from packer tests at Aespoe. The comparison between models is made through the evaluation of cross-validation statistics for three experimental designs. The first experiment consisted of a 'Delete-1' test previously used at Finnsjoen. The second test consisted of 'Delete-10%' and the third test was a 'Delete-50%' test. Preliminary data analysis showed that the 3 m and 30 m packer test data can be treated as a sample from a single population for the purposes of geostatistical analyses. Analysis of the 3 m data does not indicate that there are any systematic statistical changes with depth, rock type, fracture zone vs non-fracture zone or other mappable factor. Directional variograms are ambiguous to interpret due to the clustered nature of the data, but do not show any obvious anisotropy that should be accounted for in geostatistical analysis. Stationary analysis suggested that there exists a sizeable spatially uncorrelated component ('Nugget Effect') in the 3 m data, on the order of 60% of the observed variance for the various models fitted. Four different nested models were automatically fit to the data. Results for all models in terms of cross-validation statistics were very similar for the first set of validation tests. Non-stationary analysis established that both the order of drift and the order of the intrinsic random functions is low. This study also suggests that conventional cross-validation studies and automatic variogram fitting are not necessarily evaluating how well a model will infer block scale hydraulic conductivity values. 20 refs, 20 figs, 14 tabs
International Nuclear Information System (INIS)
Yang Yuching; Chang Winjin; Fang Tehua; Fang Shihchung
2008-01-01
In this study, a general methodology for determining the thermal conductance between the probe tip and the workpiece during microthermal machining using Scanning Thermal Microscopy (SThM) has been proposed. The processing system was considered as an inverse heat conduction problem with an unknown thermal conductance. Temperature dependence for the material properties and thermal conductance in the analysis of heat conduction is taken into account. The conjugate gradient method is used to solve the inverse problem. Furthermore, this methodology can also be applied to estimate the thermal contact conductance in other transient heat conduction problems, like metal casting process, injection molding process, and electronic circuit systems
Energy Technology Data Exchange (ETDEWEB)
Strub, P. [Pierre Strub, freischaffender Berater, Binningen (Switzerland); Ziegler, Ch. [Inter Act, Basel (Switzerland)
2009-02-15
This final report deals with the results of a feasibility study concerning the development of a Code of Conduct for wind-power projects. The aim is to strengthen the acceptance of wind-power by the general public. The necessity of new, voluntary market instruments is discussed. The urgency of development in this area is quoted as being high, and the authors consider the feasibility of the definition of a code of conduct as being proven. The code of conduct can, according to the authors, be of use at various levels but primarily in project development. Further free-enterprise instruments are also suggested that should help support socially compatible and successful market development. It is noted that the predominant portion of those questioned are prepared to co-operate in further work on the subject
Design study of a normal conducting helical snake for AGS
Takano, Junpei; Okamura, Masahiro; Roser, Thomas; MacKay, William W; Luccio, Alfredo U; Takano, Koji
2004-01-01
A new normal conducting snake magnet is being fabricated for the Alternate Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). In the Relativistic Heavy Ion Collider (RHIC) project, a superconducting type helical dipole magnets had been developed and it performed successfully in high-energy polarized proton acceleration. The new AGS helical snake has the same basic magnetic structure but is more complicated. To achieve no beam shift and no beam deflection in one magnetic device, helical pitches and rotating angles were carefully calculated. Compared to a superconducting magnet, a normal warm magnet must have a large cross- sectional area of conductors which make it difficult to design a magnet with large helical pitch. We developed a modified window frame structure to accommodate the large number of conductors. Its three dimensional magnetic field was simulated by using OPERA3D/TOSCA. 3 Refs.
A Model of Thermal Conductivity for Planetary Soils: 1. Theory for Unconsolidated Soils
Piqueux, S.; Christensen, P. R.
2009-01-01
We present a model of heat conduction for mono-sized spherical particulate media under stagnant gases based on the kinetic theory of gases, numerical modeling of Fourier s law of heat conduction, theoretical constraints on the gas thermal conductivity at various Knudsen regimes, and laboratory measurements. Incorporating the effect of the temperature allows for the derivation of the pore-filling gas conductivity and bulk thermal conductivity of samples using additional parameters (pressure, gas composition, grain size, and porosity). The radiative and solid-to-solid conductivities are also accounted for. Our thermal model reproduces the well-established bulk thermal conductivity dependency of a sample with the grain size and pressure and also confirms laboratory measurements finding that higher porosities generally lead to lower conductivities. It predicts the existence of the plateau conductivity at high pressure, where the bulk conductivity does not depend on the grain size. The good agreement between the model predictions and published laboratory measurements under a variety of pressures, temperatures, gas compositions, and grain sizes provides additional confidence in our results. On Venus, Earth, and Titan, the pressure and temperature combinations are too high to observe a soil thermal conductivity dependency on the grain size, but each planet has a unique thermal inertia due to their different surface temperatures. On Mars, the temperature and pressure combination is ideal to observe the soil thermal conductivity dependency on the average grain size. Thermal conductivity models that do not take the temperature and the pore-filling gas composition into account may yield significant errors.
Myers, Joshua; Kei, Joseph; Aithal, Sreedevi; Aithal, Venkatesh; Driscoll, Carlie; Khan, Asaduzzaman; Manuel, Alehandrea; Joseph, Anjali; Malicka, Alicja N
2018-03-03
Wideband acoustic immittance (WAI) is an emerging test of middle-ear function with potential applications for neonates in screening and diagnostic settings. Previous large-scale diagnostic accuracy studies have assessed the performance of WAI against evoked otoacoustic emissions, but further research is needed using a more stringent reference standard. Research into suitable quantitative techniques to analyze the large volume of data produced by WAI is still in its infancy. Prediction models are an attractive method for analysis of multivariate data because they provide individualized probabilities that a subject has the condition. A clinically useful prediction model must accurately discriminate between normal and abnormal cases and be well calibrated (i.e., give accurate predictions). The present study aimed to develop a diagnostic prediction model for detecting conductive conditions in neonates using WAI. A stringent reference standard was created by combining results of high-frequency tympanometry and distortion product otoacoustic emissions. High-frequency tympanometry and distortion product otoacoustic emissions were performed on both ears of 629 healthy neonates to assess outer- and middle-ear function. Wideband absorbance and complex admittance (magnitude and phase) were measured at frequencies ranging from 226 to 8000 Hz in each neonate at ambient pressure using a click stimulus. Results from one ear of each neonate were used to develop the prediction model. WAI results were used as logistic regression predictors to model the probability that an ear had outer/middle-ear dysfunction. WAI variables were modeled both linearly and nonlinearly, to test whether allowing nonlinearity improved model fit and thus calibration. The best-fitting model was validated using the opposite ears and with bootstrap resampling. The best-fitting model used absorbance at 1000 and 2000 Hz, admittance magnitude at 1000 and 2000 Hz, and admittance phase at 1000 and 4000 Hz modeled
Directory of Open Access Journals (Sweden)
ADRIANA RITA SALINAS
2010-01-01
Full Text Available The objective of this work was to study the behavior of ten soybean [Glycine max (L. Merr.] cultivars using the electrical conductivity (EC test by the comparison of curves of the accumulative electrolyte leakage along the time and to establish the statistical model that allow the best adjust of the curves. Ten soybean cultivars were used and they were mechanically harvested in 2004 in the EEA Oliveros, Santa Fe, Argentina. Measurements of EC were made for 100 individual seeds of each cultivar during 20 hours of immersion at intervals of 1 hour using an equipment that permit an individual seed analysis (Seed Automatic Analyzer SAD 9000S. There were proposed two statistical models to study the EC along the time of the 10 cultivars studied using SAS Statistics Program, to select the model that better allow us to understand the EC behavior along the time. Model 1 allowed to make comparisons of EC along the time between cultivars and to study the influence of the production environment on the physiological quality of soybean seeds. The time to reach the stabilization of the EC must not be lower than 19 hours for the different cultivars.
Energy Technology Data Exchange (ETDEWEB)
Flukiger, F
2005-10-15
This work is motivated by tightness technological problems associated with metallic gasket. The objective is a better understanding of leakage mechanisms, through the development of new computational tools. In this study, the aperture field between two rough surfaces in contact is described by a short correlated isotropic random Gaussian process. The system is studied as a set of independent elementary surfaces. Joint conductances are evaluated from a statistical study on those elementary surfaces. A computational code is developed using a network approach based on lubrication theory estimation of local conductances. The global conductance computation becomes analogous to an electrical problem for which the resistances are distributed on a random network. The network is built from the identification of the aperture field critical points. Maxima are linked through saddle points. Bond conductances are estimated at the aperture field saddle points. First, a purely plastic model of deformations is considered. Near percolation threshold the conductances display a power behaviour. Far from percolation threshold, numerical results are favourably compared with an effective medium approximation. Secondly, we study the impact of elastic deformations. A computational code based on Boussinesq approximation is coupled to the network approach. The results indicate a significant impact of elastic deformations on conductances. Finally, the network approach is adapted to simulate quasi-static drainage thanks to a classical invasion percolation algorithm. A good comparison between previous experiments and numerical predictions is obtained. (author)
MHD studies conducted at the U-25 Facility (V)
International Nuclear Information System (INIS)
1977-01-01
The U-25 facility research status is summarized. The main rated parameters of the U-25 facility have been attained, and the main stages of the facility shakedown are briefly discussed. Experimental studies have recently been focused on design of the RM frame channel, development of a method for processing experimental data obtained at the U-25 facility, study of the seed injection/removal system, and steam generator studies
Convective and conduction heat transfer study on a mig-type electron gun
International Nuclear Information System (INIS)
Patire Junior, H.; Barroso, J.J.
1996-01-01
A convective and conducting heat transfer study of a magnetron injection electron gun has been made to minimize the temperature distribution in the gun elements while keeping the required operating temperature at 1000 0 C of the emitter. Appropriate materials were selected to reduce thermal losses and to improve the gun design from a constructional point of view aiming at extending the capabilities of the electron gun. A thermal probe to determine the air velocity and the convective heat transfer coefficient has been constructed to determine the external boundary condition of the ceramic shell and external flanges. A study the contact resistance for all the gun elements has been made to minimize the conduction thermal losses. A software has been used to simulate a thermal model considering the three processes of thermal transfer, namely, conduction, convection and radiation and the influence of the physical properties of the materials used. (author). 7 refs., 5 figs., 1 tab
International Nuclear Information System (INIS)
Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard
2013-01-01
Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory’s BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO 2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release
Development and Analysis of Patient-Based Complete Conducting Airways Models.
Directory of Open Access Journals (Sweden)
Rafel Bordas
Full Text Available The analysis of high-resolution computed tomography (CT images of the lung is dependent on inter-subject differences in airway geometry. The application of computational models in understanding the significance of these differences has previously been shown to be a useful tool in biomedical research. Studies using image-based geometries alone are limited to the analysis of the central airways, down to generation 6-10, as other airways are not visible on high-resolution CT. However, airways distal to this, often termed the small airways, are known to play a crucial role in common airway diseases such as asthma and chronic obstructive pulmonary disease (COPD. Other studies have incorporated an algorithmic approach to extrapolate CT segmented airways in order to obtain a complete conducting airway tree down to the level of the acinus. These models have typically been used for mechanistic studies, but also have the potential to be used in a patient-specific setting. In the current study, an image analysis and modelling pipeline was developed and applied to a number of healthy (n = 11 and asthmatic (n = 24 CT patient scans to produce complete patient-based airway models to the acinar level (mean terminal generation 15.8 ± 0.47. The resulting models are analysed in terms of morphometric properties and seen to be consistent with previous work. A number of global clinical lung function measures are compared to resistance predictions in the models to assess their suitability for use in a patient-specific setting. We show a significant difference (p < 0.01 in airways resistance at all tested flow rates in complete airway trees built using CT data from severe asthmatics (GINA 3-5 versus healthy subjects. Further, model predictions of airways resistance at all flow rates are shown to correlate with patient forced expiratory volume in one second (FEV1 (Spearman ρ = -0.65, p < 0.001 and, at low flow rates (0.00017 L/s, FEV1 over forced vital capacity (FEV1
A model for the electric conduction in metal/poly-TiO2/metal structure
Hossein-Babaei, Faramarz; Alaei-Sheini, Navid-
2017-12-01
Intensely studied memristive devices have M‧/MO/M″ structures, wherein MO is a nanometer-sized metal oxide crystallite sandwiched between the M‧ and M″ metal electrodes. The most widely used oxide for this purpose is TiO2 and the electrodes are of noble metals such as platinum, silver, and gold. The memristive features of the device is believed to originate from the motion of the ionized oxygen vacancies within the oxide crystal. The operation of the device is further complicated by the motion of the mobile cations originating from the metal electrodes. The complexity of the device performance increases further when the noble metal electrodes form Schottky barriers at their junctions with TiO2, as the conduction takes place through these energy barriers. In a recent publication, the authors have shown that, owing to the ohmicity of the Ti/TiO2 junctions, electronic observations on the devices with Ti/TiO2/Ti structure can be easier to model. The presented model clarified that in a Ti/poly-TiO2/Ti structure, the ionic motion and the electronic conduction take place on the TiO2 grain surfaces and grain boundaries rather than the grain interiors. Here, we show that the suggested model has important implications for chemical sensor design and fabrication.
Some Effective Tight-Binding Models for Electrons in DNA Conduction: A Review
International Nuclear Information System (INIS)
Yamada, H.; Iguchi, K.
2010-01-01
Quantum transport for DNA conduction has been widely studied with interest in application as a candidate in making nanowires as well as interest in the scientific mechanism. In this paper, we review recent works concerning the electronic states and the conduction/transfer in DNA polymers. We have mainly investigated the energy-band structure and the correlation effects of localization property in the two- and three-chain systems (ladder model) with long-range correlation as a simple model for electronic property in a double strand of DNA by using the tight-bindingmodel. In addition, we investigated the localization properties of electronic states in several actual DNA sequences such as bacteriophages of Escherichia coli, human-chromosome 22, compared with those of the artificial disordered sequences with correlation. The charge-transfer properties for poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA polymers are also presented in terms of localization lengths within the frameworks of the polaron models due to the coupling between the charge carriers and the lattice vibrations of the double strand of DNA
Comparative study of atrial fibrillation and AV conduction in mammals
Meijler, F.L.; Tweel, I. van der
1987-01-01
Atrial fibrillation is one ofthe most common cardiac arrhythmias in humans. It a1so occurs quite frequent1y in dogs and horses. Comparative study of this arrhythmia may contribute to better understanding of the pathophysiologica1 mechanisms involved. In this study, we present a quantitative
Common fluoroscopic studies in radiology : conduct and analysis method
International Nuclear Information System (INIS)
Valverde Sanchez, Allan
2011-01-01
A countless number of radiological procedures, that have involved the use of fluoroscopy and contrast media of different indole, have been carried out in all radiology services and medical images of Costa Rica for the diagnosis of diseases or conditions, in both adults and in children. Fluoroscopic studies, often called special or contrast studies, have had particular conditions for its realization. Some from the medical point of view: adequate training in the technical and cognitive development when evaluating the images to not miss important details. Other by the patient: adequate preparation to achieve the best images for optimal diagnosis. For example, adequate bowel preparation is essential for a barium enema, to cooperation by the patient to meet specific indications that the physician dictates when swallowing postures or just when you are prompted. Criteria have been met and unified for contrast studies in different hospitals and clinics. The indications, contra, method, technique of procedure, points to remember, number of images or projections minimum required in the interpretation of contrast studies, as well as a report template of standard and ideal study are presented in a simple, systematic and logical. The manual is intended for residents and attending physicians specialists in radiology and medical imaging including contrast studies more common. Spaces are promoted with current technology studies to set aside more complicated and less sophisticated as have been the fluoroscopic studies; however, in the national reality, access to computerized tomography and magnetic resonance imaging is not as easy. Radiological studies with fluoroscopy performed by trained staff led the treating physician to make sound decisions based on studies relatively simple and easy to do. The tests with the use of fluoroscopic have been named: the esophagogram, gastroduodenal series, gastro intestinal transit, the hysterosalpingography, the cystography and the
Hallez, Hans; Staelens, Steven; Lemahieu, Ignace
2009-10-01
EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.
International Nuclear Information System (INIS)
Hallez, Hans; Staelens, Steven; Lemahieu, Ignace
2009-01-01
EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10 deg. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.
A simple model for conduction band states of nitride-based double heteroestructures
Energy Technology Data Exchange (ETDEWEB)
Gaggero-Sager, L M; Mora-Ramos, M E, E-mail: lgaggero@uaem.m [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)
2009-05-01
In this work we propose an analytical expression for the approximate modeling of the potential energy function describing conduction band bending in III-V nitride quantum wells. It is an alternative approach to the self-consistent Poisson-Schoedinger calculation. The model considers the influence of the many electron system and the built-in electric field inside the well. Hartree and exchange contributions are included along the lines of a local-density Thomas-Fermi-based theory. The effects due to the modulated doping in the barriers is also considered. We report the calculation of the energy spectrum as a function of several input parameters: alloy composition in the barriers, barrier doping concentration, and quantum well width. Our results could be of usefulness in the study of optoelectronic properties in this kind of systems.
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.
Morphology and conductivity studies of a new solid polymer ...
Indian Academy of Sciences (India)
... formation of the polymer–salt complex. The samples with higher salt concentration are softer, less opaque and less smooth compared to the low salt concentration samples. DSC studies show an increase in the glass transition temperature and a decrease in the degree of crystallinity with increase in the salt concentration.
International Nuclear Information System (INIS)
Capilla, J. E.; Rodrigo, J.; Gomez Hernandez, J. J.
2003-01-01
Characterizing the uncertainty of flow and mass transport models requires the definition of stochastic models to describe hydrodynamic parameters. Porosity and hydraulic conductivity (K) are two of these parameters that exhibit a high degree of spatial variability. K is usually the parameter whose variability influence to a more extended degree solutes movement. In fracture media, it is critical to properly characterize K in the most altered zones where flow and solutes migration tends to be concentrated. However, K measurements use to be scarce and sparse. This fact calls to consider stochastic models that allow quantifying the uncertainty of flow and mass transport predictions. This paper presents a convective transport problem solved in a 3D block of fractured crystalline rock. the case study is defined based on data from a real geological formation. As the scarcity of K data in fractures does not allow supporting classical multi Gaussian assumptions for K in fractures, the non multi Gaussian hypothesis has been explored, comparing mass transport results for alternative Gaussian and non-Gaussian assumptions. The latter hypothesis allows reproducing high spatial connectivity for extreme values of K. This feature is present in nature, might lead to reproduce faster solute pathways, and therefore should be modeled in order to obtain reasonably safe prediction of contaminants migration in a geological formation. The results obtained for the two alternative hypotheses show a remarkable impact of the K random function model in solutes movement. (Author) 9 refs
Risk of Suicide Attempt among Adolescents with Conduct Disorder: A Longitudinal Follow-up Study.
Wei, Han-Ting; Lan, Wen-Hsuan; Hsu, Ju-Wei; Bai, Ya-Mei; Huang, Kai-Lin; Su, Tung-Ping; Li, Cheng-Ta; Lin, Wei-Chen; Chen, Tzeng-Ji; Chen, Mu-Hong
2016-10-01
To assess the independent or comorbid effect of conduct and mood disorders on the risk of suicide. The Taiwan National Health Insurance Research Database was used to derive data for 3711 adolescents aged 12-17 years with conduct disorder and 14 844 age- and sex-matched controls between 2001 and 2009. The participants were followed up to the end of 2011, and those who attempted suicide during the follow-up period were identified. Adolescents with conduct disorder had a higher incidence of suicide (0.9% vs 0.1%; P suicide at a younger age (17.38 ± 2.04 vs 20.52 ± 1.70 years of age) than did the controls. The Cox proportional hazards regression model, after adjustment for demographic data and psychiatric comorbidities, determined that conduct disorder was an independent risk factor for subsequent suicide attempts (hazard ratio, 5.17; 95% CI, 2.29-11.70). The sensitivity after those with other psychiatric comorbidities were excluded revealed a consistent finding (hazard ratio, 10.32; 95% CI, 3.71-28.71). Adolescents with conduct disorder had an increased risk of suicide attempts over the next decade. Future studies are required to clarify the underlying pathophysiology and elucidate whether prompt intervention for conduct disorder could reduce this risk. Copyright © 2016 Elsevier Inc. All rights reserved.
DEFF Research Database (Denmark)
Zhu, Huayang; Ricote, Sandrine; Coors, W. Grover
2014-01-01
the computational implementation of a Nernst–Planck–Poisson (NPP) model to represent and interpret conductivity-relaxation measurements. Defect surface chemistry is represented with both equilibrium and finite-rate kinetic models. The experiments and the models are capable of representing relaxations from strongly......A model-based approach is used to interpret equilibrium and transient conductivity measurements for 10% gadolinium-doped ceria: Ce0.9Gd0.1O1.95 − δ (GDC10). The measurements were carried out by AC impedance spectroscopy on slender extruded GDC10 rods. Although equilibrium conductivity measurements...... provide sufficient information from which to derive material properties, it is found that uniquely establishing properties is difficult. Augmenting equilibrium measurements with conductivity relaxation significantly improves the evaluation of needed physical properties. This paper develops and applies...
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments
Zhu, Dongming; Spuckler, Charles M.
2010-01-01
The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.
Field emission study of MWCNT/conducting polymer nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Alvi, M.A., E-mail: maalvee@yahoo.co.in [Department of Physics, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Al-Ghamdi, A.A. [Department of Physics, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Husain, M. [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India)
2014-12-01
MWCNTs/Polypyrrole nanocomposites were synthesized by solution mixing method. These synthesized nanocomposites were studied carefully by Raman Spectroscopy and Scanning Electron Microscopy measurements. The field emission study of MWCNTs/Polypyrrole nanocomposites were performed in diode arrangement under vacuum of the order of 10{sup −5} Torr. The emission current under exploration depends on applied voltage. The prepared nanocomposites depict low turn-on field at 1.4 V/μm that reaches to a maximum emission current density 0.020 mA/cm{sup 2} at 2.4 V/µm, which is calculated from the graph of current density (J) against the applied electric field (E) and from Fowler–Nordheim (F–N) plot.
The equivalent thermal conductivity of lattice core sandwich structure: A predictive model
International Nuclear Information System (INIS)
Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining
2016-01-01
Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.
An improved UO2 thermal conductivity model in the ELESTRES computer code
International Nuclear Information System (INIS)
Chassie, G.G.; Tochaie, M.; Xu, Z.
2010-01-01
This paper describes the improved UO 2 thermal conductivity model for use in the ELESTRES (ELEment Simulation and sTRESses) computer code. The ELESTRES computer code models the thermal, mechanical and microstructural behaviour of a CANDU® fuel element under normal operating conditions. The main purpose of the code is to calculate fuel temperatures, fission gas release, internal gas pressure, fuel pellet deformation, and fuel sheath strains for fuel element design and assessment. It is also used to provide initial conditions for evaluating fuel behaviour during high temperature transients. The thermal conductivity of UO 2 fuel is one of the key parameters that affect ELESTRES calculations. The existing ELESTRES thermal conductivity model has been assessed and improved based on a large amount of thermal conductivity data from measurements of irradiated and un-irradiated UO 2 fuel with different densities. The UO 2 thermal conductivity data cover 90% to 99% theoretical density of UO 2 , temperature up to 3027 K, and burnup up to 1224 MW·h/kg U. The improved thermal conductivity model, which is recommended for a full implementation in the ELESTRES computer code, has reduced the ELESTRES code prediction biases of temperature, fission gas release, and fuel sheath strains when compared with the available experimental data. This improved thermal conductivity model has also been checked with a test version of ELESTRES over the full ranges of fuel temperature, fuel burnup, and fuel density expected in CANDU fuel. (author)
Conduction disturbances after TAVR: Electrophysiological studies and pacemaker dependency.
Makki, Nader; Dollery, Jenn; Jones, Danielle; Crestanello, Juan; Lilly, Scott
Permanent pacemaker (PPM) placement occurs in 5-20% of patients after transcatheter aortic valve replacement (TAVR). Although predictors of pacemaker implantation have been established, features that predispose patients to pacemaker utilization on follow up have not been widely reported. We performed a retrospective review of patients undergoing commercial TAVR between 2011 and 2016. We collated patients that underwent in-hospital PPM implantation and had a follow up of at least 3months. Data abstraction was performed for electrophysiological studies (EPS), pacemaker indication, timing, and device interrogation for pacemaker dependency on follow up. A total of 24 patients received in-hospital PPM post-TAVR (14% of total cohort), and mean follow up was 22months. Indications for PPM included resting complete heart block (CHB; 15/24, 63%), left bundle branch block and abnormal electrophysiological study (EPS; 7/24, 29%), alternating bundle branch block (1/24, 4%) and tachy-brady syndrome (1/24, 4%). Pacemaker dependency (underlying ventricular asystole, complete heart block, or >50% pacing) occurred in 8/24 patients (33%) during follow-up, 7 of whom had resting CHB, and one with CHB invoked during EPS. Pacemaker dependency after TAVR is common among those that exhibited CHB, but not among those with a prolonged HV delay during EPS. Although preliminary, these observations are relevant to management of rhythm disturbances after TAVR, and may inform the practice of EPS-based PPM implantation. Copyright © 2017 Elsevier Inc. All rights reserved.
Thermal conductivity of Al–Cu–Mg–Si alloys: Experimental measurement and CALPHAD modeling
Energy Technology Data Exchange (ETDEWEB)
Zhang, Cong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Du, Yong, E-mail: yong-du@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Liu, Shuhong; Liu, Yuling [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Sundman, Bo. [INSTN, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France)
2016-07-10
Highlights: • The thermal conductivities of Al–x wt% Cu (x = 1, 3, 5, 15 and 30) and Al–y wt% Si (y = 2, 12.5 and 20) alloys were determined. • The reported thermal conductivities of Al–Cu–Mg–Si system were critically reviewed. • The CALPHAD approach was applied for the modeling of thermal conductivity. • The applicability of CALPHAD technique in the modeling of thermal conductivity was discussed. - Abstract: In the present work, the thermal conductivities and microstructure of Al–x wt% Cu (x = 1, 3, 5, 15 and 30) and Al–y wt% Si (y = 2, 12.5 and 20) alloys were investigated by using laser-flash method, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Besides, a CALPHAD (CALculation of PHAse Diagram) approach to evaluate the thermal conductivity of Al–Cu–Mg–Si system was performed. The numerical models for the thermal conductivity of pure elements and stoichiometric phases were described as polynomials, and the coefficients were optimized via PARROT module of Thermal-Calc software applied to the experimental data. The thermal conductivity of (Al)-based solid solutions was described by using Redlich–Kister interaction parameters. For alloys in two-phase region, the interface scattering parameter was proposed in the modeling to describe the impediment of interfaces on the heat transfer. Finally, a set of self-consistent parameters for the description of thermal conductivity in Al–Cu–Mg–Si system was obtained, and comprehensive comparisons between the calculated and measured thermal conductivities show that the experimental information is satisfactorily accounted for by the present modeling.
Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.
Vatcheva, Kristina P; Lee, MinJae; McCormick, Joseph B; Rahbar, Mohammad H
2016-04-01
The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.
Dielectric and electrical conductivity studies of bulk lead (II) oxide (PbO)
Energy Technology Data Exchange (ETDEWEB)
Darwish, A.A.A., E-mail: aaadarwish@gmail.com [Department of Physics, Faculty of Education at Al-Mahweet, Sana’a University, Al-Mahwit (Yemen); Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia); El-Zaidia, E.F.M.; El-Nahass, M.M. [Department of Physics, Faculty of Education, Ain Shams University, Rorxy, Cairo 11757 (Egypt); Hanafy, T.A. [Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia); Department of Physics, Faculty of Science, Fayoum University, 63514 El Fayoum (Egypt); Al-Zubaidi, A.A. [Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia)
2014-03-15
Highlights: • The AC measurements of PbO were measured at temperature range 313–523 K. • The dielectric constants increased with temperature. • The mechanism responsible for AC conduction is electronic hopping. -- Abstract: The dielectric properties, the impedance spectroscopy and AC conductivity of bulk PbO have been investigated as a function of frequency and temperature. The measurements were carried out in the frequency range from 40 to 5 × 10{sup 6} Hz and in temperature range from 313 to 523 K. The frequency response of dielectric constant, ε{sub 1}, and dielectric loss index, ε{sub 2}, as a function of temperature were studied. The values of ε{sub 1} and ε{sub 2} were found to decrease with the increase in frequency. However, they increase with the increase in temperature. The presence of a single arc in the complex modulus spectrum at different temperatures confirms the single-phase character of the PbO. The AC conductivity exhibited a universal dynamic response: σ{sub AC} = Aω{sup s}. The AC conductivity was also found to increase with increasing temperature and frequency. The correlation barrier hopping (CBH) model was found to apply to the AC conductivity data. The calculated values of s were decreased with temperature. This behavior reveals that the conduction mechanism for PbO samples is CBH. The activation energy for AC conductivity decreases with increasing frequency. This confirms that the hopping conduction to the dominant mechanism for PbO samples.
A self-similar model for conduction in the plasma erosion opening switch
International Nuclear Information System (INIS)
Mosher, D.; Grossmann, J.M.; Ottinger, P.F.; Colombant, D.G.
1987-01-01
The conduction phase of the plasma erosion opening switch (PEOS) is characterized by combining a 1-D fluid model for plasma hydrodynamics, Maxwell's equations, and a 2-D electron-orbit analysis. A self-similar approximation for the plasma and field variables permits analytic expressions for their space and time variations to be derived. It is shown that a combination of axial MHD compression and magnetic insulation of high-energy electrons emitted from the switch cathode can control the character of switch conduction. The analysis highlights the need to include additional phenomena for accurate fluid modeling of PEOS conduction
Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid
International Nuclear Information System (INIS)
Shen, L.P.; Wang, H.; Dong, M.; Ma, Z.C.; Wang, H.B.
2012-01-01
A new kind of nanofluid, ZnO-insulated oil nanofluid was prepared from ZnO nanoparticles synthesized by solvothermal method. Electrical property measurement shows that the electrical conductivity increases by 973 times after adding 0.75% volumetric fraction of ZnO nanoparticles into the insulated oil. A linear dependence of the electrical conductivity on the volumetric fraction has been observed, while the temperature dependence of the electrical conductivity reveals a nonlinear relationship. An electrical conductivity model is established for the nanofluid by considering both the Brownian motion and electrophoresis of the ZnO nanoparticles. -- Highlights: ► Stable ZnO-insulated oil nanofluid was successfully prepared. ► The electrical conductivity of the ZnO nanofluid is investigated. ► A new model is established to explain the electrical properties of the nanofluid.
Near omni-conductors and insulators: Alternant hydrocarbons in the SSP model of ballistic conduction
Fowler, Patrick W.; Sciriha, Irene; Borg, Martha; Seville, Victoria E.; Pickup, Barry T.
2017-10-01
Within the source-and-sink-potential model, a complete characterisation is obtained for the conduction behaviour of alternant π-conjugated hydrocarbons (conjugated hydrocarbons without odd cycles). In this model, an omni-conductor has a molecular graph that conducts at the Fermi level irrespective of the choice of connection vertices. Likewise, an omni-insulator is a molecular graph that fails to conduct for any choice of connections. We give a comprehensive classification of possible combinations of omni-conducting and omni-insulating behaviour for molecular graphs, ranked by nullity (number of non-bonding orbitals). Alternant hydrocarbons are those that have bipartite molecular graphs; they cannot be full omni-conductors or full omni-insulators but may conduct or insulate within well-defined subsets of vertices (unsaturated carbon centres). This leads to the definition of "near omni-conductors" and "near omni-insulators." Of 81 conceivable classes of conduction behaviour for alternants, only 14 are realisable. Of these, nine are realised by more than one chemical graph. For example, conduction of all Kekulean benzenoids (nanographenes) is described by just two classes. In particular, the catafused benzenoids (benzenoids in which no carbon atom belongs to three hexagons) conduct when connected to leads via one starred and one unstarred atom, and otherwise insulate, corresponding to conduction type CII in the near-omni classification scheme.
Modeling the legal field of formation of socially responsible conduct among pharmacy specialists
Directory of Open Access Journals (Sweden)
N. O. Tkachenko
2018-03-01
Full Text Available Observation of legal and legislative standards of the company activities is the fundamental principle of social responsibility (SR. The results of the literature analysis show the lack of fundamental research of regulatory and legal support of formation of socially responsible conduct of pharmacists (SRCPh. AIM: modeling the legal framework and determining the completeness and content of the current regulatory and legal framework on formation of a system of SRCPh throughout the professional lifespan development. Materials and methods. The materials of the study were national and international regulatory legal acts, regulating SR, the activities of pharmaceutical organizations (PhO and getting a pharmaceutical education. During the work, such methods as searching information, systematization, content analysis, comparison and generalization were used. During the investigation, we summarized the legal framework that in various aspects forms the socially responsible conduct of the pharmacists throughout the lifespan professional development; and a model of the legal field of this process was formed. A content analysis of this regulatory framework in aspect of responsibility of the PhO and pharmacists with a description of the problem legal questions in the context of SR was carried out. In this article, attention is paid to the basic level of the legal field, within which general principles of social relations are formed in all spheres of the economy. Conclusions. We have formed a model of the legal field formation of a SRCPh system throughout the professional lifespan development. The model is a complex, multilevel system. The regulatory framework in the model is distributed according to two criteria (hierarchical and regulating relations in the system of socially responsible conduct of the pharmacists and includes 27 basic normative legal acts. We have identified problems in the legal field of the basic level of SRCPh formation: the indistinctness
Exploring L1 model space in search of conductivity bounds for the MT problem
Wheelock, B. D.; Parker, R. L.
2013-12-01
Geophysical inverse problems of the type encountered in electromagnetic techniques are highly non-unique. As a result, any single inverted model, though feasible, is at best inconclusive and at worst misleading. In this paper, we use modified inversion methods to establish bounds on electrical conductivity within a model of the earth. Our method consists of two steps, each making use of the 1-norm in model regularization. Both 1-norm minimization problems are framed without approximation as non-negative least-squares (NNLS) problems. First, we must identify a parsimonious set of regions within the model for which upper and lower bounds on average conductivity will be sought. This is accomplished by minimizing the 1-norm of spatial variation, which produces a model with a limited number of homogeneous regions; in fact, the number of homogeneous regions will never be greater than the number of data, regardless of the number of free parameters supplied. The second step establishes bounds for each of these regions with pairs of inversions. The new suite of inversions also uses a 1-norm penalty, but applied to the conductivity values themselves, rather than the spatial variation thereof. In the bounding step we use the 1-norm of our model parameters because it is proportional to average conductivity. For a lower bound on average conductivity, the 1-norm within a bounding region is minimized. For an upper bound on average conductivity, the 1-norm everywhere outside a bounding region is minimized. The latter minimization has the effect of concentrating conductance into the bounding region. Taken together, these bounds are a measure of the uncertainty in the associated region of our model. Starting with a blocky inverse solution is key in the selection of the bounding regions. Of course, there is a tradeoff between resolution and uncertainty: an increase in resolution (smaller bounding regions), results in greater uncertainty (wider bounds). Minimization of the 1-norm of
Development of Multidimensional Gap Conductance model using Virtual Link Gap Element
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-10-15
The gap conductance that determines temperature gradient between pellet and cladding can be quite sensitive to gap thickness. For instance, once the gap size increases up to several micrometers in certain region, difference of pellet surface temperatures increases up to 100 Kelvin. Therefore, iterative thermo-mechanical coupled analysis is required to solve temperature distribution throughout pellet and cladding. Recently, multidimensional fuel performance codes have been being developed in the advanced countries to evaluate thermal behavior of fuel for off normal conditions and DBA(design based accident) conditions using the Finite Element Method (FEM). FRAPCON-FRAPTRAN code system, which is well known as the verified and reliable code, incorporates 1D thermal module and multidimensional mechanical module. In this code, multidimensional gap conductance model is not applied. ALCYONE developed by CEA introduces equivalent heat convection coefficient that represents multidimensional gap conductance as a function of gap thickness. BISON, which is multidimensional fuel performance code developed by INL, owns multidimensional gap conductance model using projected thermal contact. In general, thermal contact algorithm is nonlinear calculation which is expensive approach numerically. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap (VLG) element has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model was evaluated. LWR fuel performance codes should incorporate thermo-mechanical loop to solve gap conductance problem, iteratively. However, gap conductance in multidimensional model is difficult issue owing to its nonlinearity and
Thermal conductivity of group-IV semiconductors from a kinetic-collective model.
de Tomas, C; Cantarero, A; Lopeandia, A F; Alvarez, F X
2014-09-08
The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon-phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range.
Thermal conductivity of group-IV semiconductors from a kinetic-collective model
de Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X.
2014-01-01
The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon–phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range. PMID:25197256
Explaining electric conductivity using the particle-in-a-box model: quantum superposition is the key
Sivanesan, Umaseh; Tsang, Kin; Izmaylov, Artur F.
2017-12-01
Most of the textbooks explaining electric conductivity in the context of quantum mechanics provide either incomplete or semi-classical explanations that are not connected with the elementary concepts of quantum mechanics. We illustrate the conduction phenomena using the simplest model system in quantum dynamics, a particle in a box (PIB). To induce the particle dynamics, a linear potential tilting the bottom of the box is introduced, which is equivalent to imposing a constant electric field for a charged particle. Although the PIB model represents a closed system that cannot have a flow of electrons through the system, we consider the oscillatory dynamics of the particle probability density as the analogue of the electric current. Relating the amplitude and other parameters of the particle oscillatory dynamics with the gap between the ground and excited states of the PIB model allows us to demonstrate one of the most basic dependencies of electric conductivity on the valence-conduction band gap of the material.
International Nuclear Information System (INIS)
Tanaka, Yukihisa; Hasegawa, Takuma; Nakamura, Kunihiko
2007-01-01
In case of construction of repository for radioactive waste near the coastal area, the effect of brine on hydraulic conductivity of bentonite as an engineering barrier should be considered because it is known that the hydraulic conductivity of bentonite increases with increasing in salt concentration of water. Thus, the effect of salinity of water on hydraulic conductivity of bentonite has been conducted experimentally. However, it is necessary to elucidate and to model the mechanism of the phenomenon because various kinds of bentonites may possibly be placed in various salinity of salt water. In this study, a model for evaluating permeability of compacted bentonite is proposed considering a) increase in number of sheets of montomorillonite crystal because of cohesion, b) decrease in viscosity of water in interlayer between sheets of montmorillonite crystal. Quantitative evaluation method for permeability of several kinds of bentonite under brine is proposed based on the model mentioned above. (author)
Thermal Conductivity in Soil: Theoretical Approach by 3D Infinite Resistance Grid Model
Changjan, A.; Intaravicha, N.
2018-05-01
Thermal conductivity in soil was elementary characteristic of soil that conduct heat, measured in terms of Fourier’s Law for heat conduction and useful application in many fields: such as Utilizing underground cable for transmission and distribution systems, the rate of cooling of the cable depends on the thermal properties of the soil surrounding the cable. In this paper, we investigated thermal conductivity in soil by infinite three dimensions (3D) electrical resistance circuit concept. Infinite resistance grid 3D was the grid of resistors that extends to infinity in all directions. Model of thermal conductivity in soil of this research was generated from this concept: comparison between electrical resistance and thermal resistance in soil. Finally, we investigated the analytical form of thermal conductivity in soil which helpful for engineering and science students that could exhibit education with a principle of physics that applied to real situations.
Zheng, Z. M.; Wang, B.
2018-06-01
Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
International Nuclear Information System (INIS)
Folsom, Charles
2015-01-01
Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC of the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50-30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.
DEFF Research Database (Denmark)
Plauborg, Finn; Abrahamsen, Per; Gjettermann, Birgitte
2010-01-01
. Experimental data was compared to simulated results from the new enhanced Daisy model which include modelling 2D soil water flow, abscisic acid (ABA) signalling and its effect on stomatal conductance and hence on transpiration and assimilation, and finally crop yield. The results demonstrated that the enhanced...
Addressing Conduct Disorder in Elementary School Children: An Application of the ASCA National Model
Demanchick, Stephen P.; Rangan, Malathi; Douthit, Kathryn
2006-01-01
The range of management strategies for school counselors dealing with conduct disorder in elementary school children can be expanded through an integration of several of the principles of the ASCA National Model[R]. This paper discusses ways the counselor can use the model to assist struggling children, teachers, administrators, and families as…
Structure, Raman spectra and defect chemistry modelling of conductive pyrochlore oxides
DEFF Research Database (Denmark)
Poulsen, F.W.; Glerup, M.; Holtappels, P.
2000-01-01
-O(x) and V-O on the O site, interstitial oxygens O-i", and delocalised electrons and electron holes. Four mass action law expressions govern such a model. The defect model can rationalise why home-valent doping, i.e. substitution of Zr(4+) by Ce(4+), can lead to an increase in ionic conductivity...
Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics
Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee
We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.
Energy Technology Data Exchange (ETDEWEB)
Thielen, Joerg
2011-07-27
In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. Steps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of immobilizing ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with propylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length. All model compounds were fully characterized, pure and thermally stable up to at least 235 C, covering the requested broad range of glass transition temperatures from -78.1 C up to +6.2 C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity {sigma}{sub dc} and thus indicating comparable salt dissociation and rather independent motion of cations and ions. In general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in
Comparison among Models to Estimate the Shielding Effectiveness Applied to Conductive Textiles
Directory of Open Access Journals (Sweden)
Alberto Lopez
2013-01-01
Full Text Available The purpose of this paper is to present a comparison among two models and its measurement to calculate the shielding effectiveness of electromagnetic barriers, applying it to conductive textiles. Each one, models a conductive textile as either a (1 wire mesh screen or (2 compact material. Therefore, the objective is to perform an analysis of the models in order to determine which one is a better approximation for electromagnetic shielding fabrics. In order to provide results for the comparison, the shielding effectiveness of the sample has been measured by means of the standard ASTM D4935-99.
Absence of local thermal equilibrium in two models of heat conduction
Dhar, Abhishek; Dhar, Deepak
1998-01-01
A crucial assumption in the conventional description of thermal conduction is the existence of local thermal equilibrium. We test this assumption in two simple models of heat conduction. Our first model is a linear chain of planar spins with nearest neighbour couplings, and the second model is that of a Lorentz gas. We look at the steady state of the system when the two ends are connected to heat baths at temperatures T1 and T2. If T1=T2, the system reaches thermal equilibrium. If T1 is not e...
Study of dielectric relaxation and AC conductivity of InP:S single crystal
El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.
2012-07-01
The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.
Bi-national cross-validation of an evidence-based conduct problem prevention model.
Porta, Carolyn M; Bloomquist, Michael L; Garcia-Huidobro, Diego; Gutiérrez, Rafael; Vega, Leticia; Balch, Rosita; Yu, Xiaohui; Cooper, Daniel K
2018-04-01
To (a) explore the preferences of Mexican parents and Spanish-speaking professionals working with migrant Latino families in Minnesota regarding the Mexican-adapted brief model versus the original conduct problems intervention and (b) identifying the potential challenges, and preferred solutions, to implementation of a conduct problems preventive intervention. The core practice elements of a conduct problems prevention program originating in the United States were adapted for prevention efforts in Mexico. Three focus groups were conducted in the United States, with Latino parents (n = 24; 2 focus groups) and professionals serving Latino families (n = 9; 1 focus group), to compare and discuss the Mexican-adapted model and the original conduct problems prevention program. Thematic analysis was conducted on the verbatim focus group transcripts in the original language spoken. Participants preferred the Mexican-adapted model. The following key areas were identified for cultural adaptation when delivering a conduct problems prevention program with Latino families: recruitment/enrollment strategies, program delivery format, and program content (i.e., child skills training, parent skills training, child-parent activities, and child-parent support). For both models, strengths, concerns, barriers, and strategies for overcoming concerns and barriers were identified. We summarize recommendations offered by participants to strengthen the effective implementation of a conduct problems prevention model with Latino families in the United States. This project demonstrates the strength in binational collaboration to critically examine cultural adaptations of evidence-based prevention programs that could be useful to diverse communities, families, and youth in other settings. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Energy Technology Data Exchange (ETDEWEB)
Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-06-01
SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may be calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The comparison of the
Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions
Directory of Open Access Journals (Sweden)
Shu-Nan Li
2017-12-01
Full Text Available Most existing phenomenological heat conduction models are expressed by temperature and heat flux distributions, whose definitions might be debatable in heat conductions with strong non-equilibrium. The constitutive relations of Fourier and hyperbolic heat conductions are here rewritten by the entropy and entropy flux distributions in the frameworks of classical irreversible thermodynamics (CIT and extended irreversible thermodynamics (EIT. The entropic constitutive relations are then generalized by Boltzmann–Gibbs–Shannon (BGS statistical mechanics, which can avoid the debatable definitions of thermodynamic quantities relying on local equilibrium. It shows a possibility of modeling heat conduction through entropic constitutive relations. The applicability of the generalizations by BGS statistical mechanics is also discussed based on the relaxation time approximation, and it is found that the generalizations require a sufficiently small entropy production rate.
Hou, Chang-Yu; Feng, Ling; Seleznev, Nikita; Freed, Denise E
2018-04-11
In this work, we establish an effective medium model to describe the low-frequency complex dielectric (conductivity) dispersion of dilute clay suspensions. We use previously obtained low-frequency polarization coefficients for a charged oblate spheroidal particle immersed in an electrolyte as the building block for the Maxwell Garnett mixing formula to model the dilute clay suspension. The complex conductivity phase dispersion exhibits a near-resonance peak when the clay grains have a narrow size distribution. The peak frequency is associated with the size distribution as well as the shape of clay grains and is often referred to as the characteristic frequency. In contrast, if the size of the clay grains has a broad distribution, the phase peak is broadened and can disappear into the background of the canonical phase response of the brine. To benchmark our model, the low-frequency dispersion of the complex conductivity of dilute clay suspensions is measured using a four-point impedance measurement, which can be reliably calibrated in the frequency range between 0.1 Hz and 10 kHz. By using a minimal number of fitting parameters when reliable information is available as input for the model and carefully examining the issue of potential over-fitting, we found that our model can be used to fit the measured dispersion of the complex conductivity with reasonable parameters. The good match between the modeled and experimental complex conductivity dispersion allows us to argue that our simplified model captures the essential physics for describing the low-frequency dispersion of the complex conductivity of dilute clay suspensions. Copyright © 2018 Elsevier Inc. All rights reserved.
Gnanasekaran, K.; Heijmans, T.; van Bennekom, S.; Woldhuis, H.; Wijnia, S.; de With, G.; Friedrich, H.
2017-01-01
Fused deposition modeling (FDM) is limited by the availability of application specific functional materials. Here we illustrate printing of non-conventional polymer nanocomposites (CNT- and graphene-based polybutylene terephthalate (PBT)) on a commercially available desktop 3D printer leading toward printing of electrically conductive structures. The printability, electrical conductivity and mechanical stability of the polymer nanocomposites before and after 3D printing was evaluated. The res...
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
A model of thermal conductivity for planetary soils: 2. Theory for cemented soils
Piqueux, S.; Christensen, P. R.
2009-09-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions duricrust. The fraction of cement required to fit the thermal data is less than ˜1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface.
Direct ink writing of 3D conductive polyaniline structures and rheological modelling
Holness, F. Benjamin; Price, Aaron D.
2018-01-01
The intractable nature of conjugated polymers (CP) leads to practical limitations in the fabrication of CP-based transducers having complex three-dimensional geometries. Conventional CP device fabrication processes have focused primarily on thin-film deposition techniques; this study explores novel additive manufacturing processes specifically developed for CP with the ultimate goal of increasing the functionality of CP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures was enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder to fabricate high-resolution 3D conductive PANI structures. The required processability of PANI was achieved by means of a counterion-induced thermal doping method. The effect of thermal doping on the PANI-DBSA paste by means of a constitutive relationship to describe the paste flow as a function of the thermal doping time is explored. This relationship is incorporated within a flow model to predict the extruded track width as a function of various process parameters including: print speed, gauge pressure, nozzle diameter, and pre-extrusion thermal doping time.
A regularized, model-based approach to phase-based conductivity mapping using MRI.
Ropella, Kathleen M; Noll, Douglas C
2017-11-01
To develop a novel regularized, model-based approach to phase-based conductivity mapping that uses structural information to improve the accuracy of conductivity maps. The inverse of the three-dimensional Laplacian operator is used to model the relationship between measured phase maps and the object conductivity in a penalized weighted least-squares optimization problem. Spatial masks based on structural information are incorporated into the problem to preserve data near boundaries. The proposed Inverse Laplacian method was compared against a restricted Gaussian filter in simulation, phantom, and human experiments. The Inverse Laplacian method resulted in lower reconstruction bias and error due to noise in simulations than the Gaussian filter. The Inverse Laplacian method also produced conductivity maps closer to the measured values in a phantom and with reduced noise in the human brain, as compared to the Gaussian filter. The Inverse Laplacian method calculates conductivity maps with less noise and more accurate values near boundaries. Improving the accuracy of conductivity maps is integral for advancing the applications of conductivity mapping. Magn Reson Med 78:2011-2021, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
A generative modeling approach to connectivity-Electrical conduction in vascular networks
DEFF Research Database (Denmark)
Hald, Bjørn Olav
2016-01-01
The physiology of biological structures is inherently dynamic and emerges from the interaction and assembly of large collections of small entities. The extent of coupled entities complicates modeling and increases computational load. Here, microvascular networks are used to present a novel...... to synchronize vessel tone across the vast distances within a network. We hypothesize that electrical conduction capacity is delimited by the size of vascular structures and connectivity of the network. Generation and simulation of series of dynamical models of electrical spread within vascular networks...... of different size and composition showed that (1) Conduction is enhanced in models harboring long and thin endothelial cells that couple preferentially along the longitudinal axis. (2) Conduction across a branch point depends on endothelial connectivity between branches. (3) Low connectivity sub...
Multi-channel conduction in redox-based resistive switch modelled using quantum point contact theory
Energy Technology Data Exchange (ETDEWEB)
Miranda, E., E-mail: enrique.miranda@uab.cat; Suñé, J. [Departament d' Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona (Spain); Mehonic, A.; Kenyon, A. J. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)
2013-11-25
A simple analytic model for the electron transport through filamentary-type structures in Si-rich silica (SiO{sub x})-based resistive switches is proposed. The model is based on a mesoscopic description and is able to account for the linear and nonlinear components of conductance that arise from both fully and partially formed conductive channels spanning the dielectric film. Channels are represented by arrays of identical scatterers whose number and quantum transmission properties determine the current magnitude in the low and high resistance states. We show that the proposed model not only reproduces the experimental current-voltage (I-V) characteristics but also the normalized differential conductance (dln(I)/dln(V)-V) curves of devices under test.
Liemohn, M.; Ridley, A. J.; Kozyra, J. U.; Gallagher, D. L.; Brandt, P. C.; Henderson, M. G.; Denton, M. H.; Jahn, J. M.; Roelof, E. C.; DeMajistre, R. M.
2004-01-01
Modeling results of the inner magnetosphere showing the influence of the ionospheric conductance on the inner magnetospheric electric fields during the April 17, 2002 magnetic storm are presented. Kinetic plasma transport code results are analyzed in combination with observations of the inner magnetospheric plasma populations, in particular those from the IMAGE satellite. Qualitative and quantitative comparisons are made with the observations from EW, MENA, and HENA, covering the entire energy range simulated by the model (0 to 300 keV). The electric field description, and in particular the ionospheric conductance, is the only variable between the simulations. Results from the data-model comparisons are discussed, detailing the strengths and weaknesses of each conductance choice for each energy channel.
International Nuclear Information System (INIS)
Jeanne, T.
1990-03-01
A conduction model and a radiation model are proposed for the calculation of heat transfer. A multiphase multicomponent medium is considered. The conduction model allows the calculation of heat exchanges between two configurations. The heat flow from each component can be obtained. This model is well adapted to the calculation of thermal shocks in an ensemble of materials. The radiation model shows how the radiative transfers can be calculated in a cylinder composed of two opaque surfaces, with the same axis of rotation, and separated by a transparent medium. The form factors are obtained from Herman and Nusselt methods. The parts of the face-to-face surfaces which are seen and not seen are evaluated [fr
Building Global Capacity for Conducting Operational Research Using the SORT IT Model: Where and Who?
Directory of Open Access Journals (Sweden)
Rony Zachariah
Full Text Available Research capacity is weakest in low and middle-income countries (LMICs where operational research is highly relevant and needed. Structured Operational Research and Training Initiative (SORT IT courses have been developed to train participants to conduct and publish operational research and influence policy and practice. Twenty courses were completed in Asia, Africa, Europe and the South Pacific between 2009 and 2014.In the 20 completed SORT IT courses, to assess where the research was conducted, who was trained, who became facilitators in subsequent courses and course outcomes.A cohort study of completed SORT IT courses.There were 236 participants (41% female including 64 nationalities who conducted research in 59 countries, mostly from Asia and Africa (mean course duration = 9.7 months. Most participants (68% were from government health programs and non-governmental agencies. A total of 213(90% participants completed all milestones successfully with 41(19% becoming subsequent course facilitators, 88% of whom were from LMICs. Of 228 manuscripts submitted to scientific journals, 197(86% were either published or in press; in 86%, the principal investigator (first author was a LMIC national. Papers were published in 23 scientific journals (impact factor 0.5-4.4 and covered 21 disease categories (median publication time = 5.7 months. Published papers (186 had 94,794 cumulative article views/downloads. Article views/downloads for immediate open access articles were double those from closed access journals.The SORT IT model has been effective in training personnel to produce relevant operational research in LMICs. It merits continued commitment and support for further scale-up and development.
Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.
2016-12-01
Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.
Pigot, Corentin; Gilibert, Fabien; Reyboz, Marina; Bocquet, Marc; Zuliani, Paola; Portal, Jean-Michel
2018-04-01
Phase-change memory (PCM) compact modeling of the threshold switching based on a thermal runaway in Poole–Frenkel conduction is proposed. Although this approach is often used in physical models, this is the first time it is implemented in a compact model. The model accuracy is validated by a good correlation between simulations and experimental data collected on a PCM cell embedded in a 90 nm technology. A wide range of intermediate states is measured and accurately modeled with a single set of parameters, allowing multilevel programing. A good convergence is exhibited even in snapback simulation owing to this fully continuous approach. Moreover, threshold properties extraction indicates a thermally enhanced switching, which validates the basic hypothesis of the model. Finally, it is shown that this model is compliant with a new drift-resilient cell-state metric. Once enriched with a phase transition module, this compact model is ready to be implemented in circuit simulators.
The PP ampersand L Nuclear Department model for conducting self-assessments
International Nuclear Information System (INIS)
Murthy, M.L.R.; Vernick, H.R.; Male, A.M.; Burchill, W.E.
1995-01-01
The nuclear department of Pennsylvania Power ampersand Light Company (PP ampersand L) has initiated an aggressive, methodical, self-assessment program. Self-assessments are conducted to prevent problems, improve performance, and monitor results. The assessment activities are conducted by, or for, an individual having responsibility for performing the work being assessed. This individual, or customer, accepts ownership of the assessment effort and commits to implementing the recommendations agreed on during the assessment. This paper discusses the main elements of the assessment model developed by PP ampersand L and the results the model has achieved to date
A Fractal Study on the Effective Thermal Conductivity of Porous Media
Qin, X.; Cai, J.; Wei, W.
2017-12-01
Thermal conduction in porous media has steadily received attention in science and engineering, for instance, exploiting and utilizing the geothermal energy, developing the oil-gas resource, ground water flow in hydrothermal systems and investigating the potential host nuclear wastes, etc. The thermal conductivity is strongly influenced by the microstructure features of porous media. In this work, based on the fractal characteristics of the grains, a theoretical model of effective thermal conductivity is proposed for saturated and unsaturated porous media. It is found that the proposed effective thermal conductivity solution is a function of geometrical parameters of porous media, such as the porosity, fractal dimension of granular matrix and the thermal conductivity of the grains and pore fluid. The model predictions are compared with existing experimental data and the results show that they are in good agreement with existing experimental data. The proposed model may provide a better understanding of the physical mechanisms of thermal transfer in porous media than conventional models.
International Nuclear Information System (INIS)
Jang, Sung-Hwan; Yin, Huiming
2015-01-01
A simplified model is presented to predict the effective electrical conductivity of carbon nanotube(CNT)-polymer composite with different material proportions, which is validated by the experiments of multi-walled CNT/polydimethylsiloxane (PDMS) composites. CNTs are well dispersed in a PDMS matrix, and the mixture is then cured and cast into thin films for electrical characterization. The CNTs are assumed to be statistically uniformly distributed in the PDMS matrix with the three-dimensional (3D) waviness. As the proportion of CNTs increases to a certain level, namely the percolation threshold, the discrete CNTs start to connect with each other, forming a 3D network which exhibits a significant increase of effective electrical conductivity. The eight-chain model has been used to predict the effective electrical conductivity of the composite, in which the contact resistance between CNTs has been considered through the Simmons’ equation. The eight-chain network features can be significantly changed with the modification to mixing process, CNT length and diameter, and CNT clustering and curling. A Gaussian statistics-based formulation is used to calculate the effective length of a single CNT well dispersed in the matrix. The modeling results of effective electrical conductivity agree with the experiments very well, which are highly dependent on a contact resistance between CNTs and the waviness of the CNTs. The effect of inner-nanotube distance and diameter of CNTs on the effective electrical conductivity of the CNT/PDMS composite is also discussed. (paper)
Thermal conductivity degradation analyses of LWR MOX fuel by the quasi-two phase material model
International Nuclear Information System (INIS)
Kosaka, Yuji; Kurematsu, Shigeru; Kitagawa, Takaaki; Suzuki, Akihiro; Terai, Takayuki
2012-01-01
The temperature measurements of mixed oxide (MOX) and UO 2 fuels during irradiation suggested that the thermal conductivity degradation rate of the MOX fuel with burnup should be slower than that of the UO 2 fuel. In order to explain the difference of the degradation rates, the quasi-two phase material model is proposed to assess the thermal conductivity degradation of the MIMAS MOX fuel, which takes into account the Pu agglomerate distributions in the MOX fuel matrix as fabricated. As a result, the quasi-two phase model calculation shows the gradual increase of the difference with burnup and may expect more than 10% higher thermal conductivity values around 75 GWd/t. While these results are not fully suitable for thermal conductivity degradation models implemented by some industrial fuel manufacturers, they are consistent with the results from the irradiation tests and indicate that the inhomogeneity of Pu content in the MOX fuel can be one of the major reasons for the moderation of the thermal conductivity degradation of the MOX fuel. (author)
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
International Nuclear Information System (INIS)
Shin, Dong-ho; Cho, Hyoung-kyu; Tak, Nam-il; Park, Goon-cherl
2014-01-01
A prismatic gas-cooled reactor is promising reactor type in the Nuclear Hydrogen Development and Demonstration (NHDD) project which was launched at KAERI (Korea Atomic Energy Research Institute). One of the most favorable characteristics of a prismatic gas-cooled reactor is its inherent and passive safety. As one of its inherent safety features, the heat flows through the prismatic core radially during the High Pressure Conduction Cooling (HPCC) or Low Pressure Conduction Cooling (LPCC) event and the radial heat transfer cools down the reactor core passively under such conditions. To verify the inherent safety of its design, the GAMMA+ code that is used to analyze VHTR thermo-fluid transients has been developed by KAERI. The code adopts effective thermal conductivity (ETC) model to analyze radial heat transfer in the core as a lumped parameter model. It is because the fuel block has complex geometry with large number of coolant holes and fuel compacts and the detail heat transfer calculations on that geometry needs excessive computation resources. GAMMA+ is adopting the Maxwell-based ETC model, however, there are several ETC models that could be applied to the GAMMA+ code. In this study, several ETC models will be introduced. They will be compared to CFD calculations which have similar condition with the fuel block. And then the most appropriate ETC model will be suggested for calculating the ETC of the fuel block. For the CFD calculation, unit cell tests with simple geometries were conducted. With unit cell test, the applicability of the ETC models were investigated. And proper ETC models were used to calculate the ETC of the fuel block and the results were compared to that of CFD calculation on the fuel block. In this study, the ETC models are introduced and the applicability of the ETC models to VHTR fuel block was investigated. The results of the ETC models were compared to those of CFD calculation. The CFD calculations were conducted for square graphite block
Modeling the Conducting Stably-Stratified Layer of the Earth's Core
Petitdemange, L.; Philidet, J.; Gissinger, C.
2017-12-01
Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.
A simple model of chromospheric evaporation and condensation driven conductively in a solar flare
Energy Technology Data Exchange (ETDEWEB)
Longcope, D. W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2014-11-01
Magnetic energy released in the corona by solar flares reaches the chromosphere where it drives characteristic upflows and downflows known as evaporation and condensation. These flows are studied here for the case where energy is transported to the chromosphere by thermal conduction. An analytic model is used to develop relations by which the density and velocity of each flow can be predicted from coronal parameters including the flare's energy flux F. These relations are explored and refined using a series of numerical investigations in which the transition region (TR) is represented by a simplified density jump. The maximum evaporation velocity, for example, is well approximated by v{sub e} ≅ 0.38(F/ρ{sub co,} {sub 0}){sup 1/3}, where ρ{sub co,} {sub 0} is the mass density of the pre-flare corona. This and the other relations are found to fit simulations using more realistic models of the TR both performed in this work, and taken from a variety of previously published investigations. These relations offer a novel and efficient means of simulating coronal reconnection without neglecting entirely the effects of evaporation.
Energy Technology Data Exchange (ETDEWEB)
Brannon, Sean; Longcope, Dana [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2014-09-01
Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks produced in this manner drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the 'flow reversal point' or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a one-dimensional hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and transition region temperature ratio) on the FRP properties. We find that both of the evaporation characteristics have scaling-law relationships to the varied flare parameters, and we report the scaling exponents for our model. This provides a means of using spectroscopic observations of the chromosphere as quantitative diagnostics of flare energy release in the corona.
International Nuclear Information System (INIS)
MacDonald, P.E.; Broughton, J.M.
1975-03-01
Fuel pellets crack extensively upon irradiation due both to thermal stresses induced by power changes and at high burnup, to accumulation of gaseous fission products at grain boundaries. Therefore, the distance between the fuel and cladding will be circumferentially nonuniform; varying between that calculated for intact operating fuel pellets and essentially zero (fuel segments in contact with the cladding wall). A model for calculation of temperatures in cracked pellets is proposed wherein the effective fuel to cladding gap conductance is calculated by taking a zero pressure contact conductance in series with an annular gap conductance. Comparisons of predicted and measured fuel centerline temperatures at beginning of life and at extended burnup are presented in support of the model. 13 references
Directory of Open Access Journals (Sweden)
Hong Xia
2017-05-01
Full Text Available Abstract In this study, we devote ourselves to establishing a stabilized mixed finite element (MFE reduced-order extrapolation (SMFEROE model holding seldom unknowns for the two-dimensional (2D unsteady conduction-convection problem via the proper orthogonal decomposition (POD technique, analyzing the existence and uniqueness and the stability as well as the convergence of the SMFEROE solutions and validating the correctness and dependability of the SMFEROE model by means of numerical simulations.
Xia, Hong; Luo, Zhendong
2017-01-01
In this study, we devote ourselves to establishing a stabilized mixed finite element (MFE) reduced-order extrapolation (SMFEROE) model holding seldom unknowns for the two-dimensional (2D) unsteady conduction-convection problem via the proper orthogonal decomposition (POD) technique, analyzing the existence and uniqueness and the stability as well as the convergence of the SMFEROE solutions and validating the correctness and dependability of the SMFEROE model by means of numerical simulations.
The two bands model for the high temperature conductivity of the binary rare earth alloys
International Nuclear Information System (INIS)
Borgiel, W.
1983-09-01
The formula for the high temperature spin disorder resistivity for the concentrated Asub(1-x)Bsub(x)C alloys where A,B is an element of Rare Earth (RE) is determined on the basis of two bands model and the coherent potential approximation (CPA). The conductivity given by the 5d bands coming from the RE compounds has been taken into account
Effective Thermal Conductivity For Drift-Scale Models Used In TSPA-SR
Energy Technology Data Exchange (ETDEWEB)
N.D. Francis
2001-01-25
The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with this single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.
Effective Thermal Conductivity For Drift-Scale Models Used In TSPA-SR
International Nuclear Information System (INIS)
N.D. Francis
2001-01-01
The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with this single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models
Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Zhang, G.
2012-01-01
We propose a molecular modeling strategy, which is capable of predicting the conductivity change of emeraldine base polyaniline polymer due to different degree of protonic acid doping. The method is comprised of two key steps: (1) generating the amorphous unit cells with given number of polymer
Quantum Hall conductivity in a Landau type model with a realistic geometry
International Nuclear Information System (INIS)
Chandelier, F.; Georgelin, Y.; Masson, T.; Wallet, J.-C.
2003-01-01
In this paper, we revisit some quantum mechanical aspects related to the quantum Hall effect. We consider a Landau type model, paying a special attention to the experimental and geometrical features of quantum Hall experiments. The resulting formalism is then used to compute explicitly the Hall conductivity from a Kubo formula
Ulbrich, M.; Paluchowski, P.; Muehlsteff, J.; Leonhardt, S.
2012-01-01
Impedance cardiography (ICG) is a simple and cheap method to acquirehemodynamic parameters. In this work, the influence of three dynamic physiological sources has been analyzed using a model of the humanthorax with a high temporal resolution. Therefore, simulations havebeen conducted using the
Development of a LSSVM-GC model for estimating the electrical conductivity of ionic liquids
DEFF Research Database (Denmark)
Gharagheizi, Farhad; Ilani-Kashkouli, Poorandokht; Sattari, Mehdi
2014-01-01
In this communication, an extensive set of 1077 experimental electrical conductivity data for 54 ionic liquids (ILs) was collected from 21 different literature sources. Using this dataset, a reliable least square support vector machine-group contribution (LSSVM-GC) model has been developed, which...
Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...
Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective
International Nuclear Information System (INIS)
Avissar, R.
1993-01-01
Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and,a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a
Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective
International Nuclear Information System (INIS)
Avissar, R.
1993-01-01
Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and, a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a
Martin, Neilson C.; Levy, Florence; Pieka, Jan; Hay, David A.
2006-01-01
Attention Deficit Hyperactivity Disorder (ADHD) commonly co-occurs with Oppositional Defiant Disorder, Conduct Disorder and Reading Disability. Twin studies are an important approach to understanding and modelling potential causes of such comorbidity. Univariate and bivariate genetic models were fitted to maternal report data from 2040 families of…
A comparative study on the effective thermal conductivity of a single size beryllium pebble bed
International Nuclear Information System (INIS)
Abou-Sena, A.; Ying, A.; Abdou, M.
2004-01-01
Solid breeder blankets generally use beryllium-helium pebble beds to ensure sufficient tritium breeding. The data of the effective thermal conductivity, k eff , of beryllium pebble beds is important to the design of fusion blankets. It serves as a database for benchmarking the models of pebble beds. The objective of this paper is to review and compare the available data (obtained by several studies) of the effective thermal conductivity of beryllium pebble beds in order to address the current status of these data. Two comparisons are presented: one for the data of k eff versus bed mean temperature and the second one for the data of k eff versus external applied pressures. The data (k eff versus bed temperature) reported by Enoeda et al., Dalle Donne et al., and UCLA, have a similar particle size and packing fraction. Despite their similarity, the standard deviation values of their data are around 32%. Also, the data of the effective thermal conductivity as a function of mechanical pressure have standard deviation values of ∼50%. From the presented comparisons, significant discrepancies among the available data of k eff of the beryllium pebble beds were observed. These discrepancies may be attributed to the apparent differences among available studies, such as experiment technique, packing fraction, particle characteristics, bed dimensions, and temperature range and gradient across the bed. (author)
Directory of Open Access Journals (Sweden)
Ghazikhanlou-sani K.
2016-06-01
Full Text Available Introduction: There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method: A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA maps were performed using the FSL (FMRI software library software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result: The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690. With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05. Conclusion: DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues. It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.
Ahmad, N. H.; Bakar, N. Y.; Isa, M. I. N.
2017-09-01
Solid biopolymer electrolytes (SBEs) based on 2hydroxyethyl cellulose (2HEC) complexes with dodecyltrimethyl ammonium bromide (DTAB) salt in various composition (wt. %) were successfully prepared by using solution casting technique. The ion - polymer interaction and structural studies have been reported by Fourier transform infrared spectroscopy (FTIR) supported with X - ray diffraction (XRD) and Electrical impedance spectroscopy (EIS). FTIR spectral shows interaction of 2HEC with DTAB happen at peak 2914cm-1, 2848cm-1, 2353cm-1, 2328cm-1, 1720cm-1, 1437cm-1, 1344cm-1, 1198cm-1 1095cm-1 1051cm-1, 912cm-1 and 872cm-1. The interaction of complexes leads to an increase in number of ion jump into neighboring vacant sites until it reaches the highest conductivity at room temperature which is 2.80 x 10-5 Scm-1 for sample containing 9wt. % of DTAB. The temperature dependence of the SBEs system exhibits Arrhenius behavior and the XRD spectral analysis shows the higher salt loading the crystallinity of the SBEs which also increased.
On The Construction of Models for Electrical Conduction in Biological Tissues
International Nuclear Information System (INIS)
Gomez-Aguilar, F.; Bernal-Alvarado, J.; Cordova-Fraga, T.; Rosales-Garcia, J.; Guia-Calderon, M.
2010-01-01
Applying RC circuit theory, a theoretical representation for the electrical conduction in a biological multilayer system was developed. In particular an equivalent circuit for the epidermis, dermis and the subcutaneous tissue was constructed. This model includes an equivalent circuit, inside the dermis, in order to model a small formation like tumor. This work shows the feasibility to apply superficial electrodes to detect subcutaneous abnormalities. The behavior of the model is shown in the form of a frequency response chart. The Bode and Nyquist plots are also obtained. This theoretical frame is proposed to be a general treatment to describe the bioelectrical transport in a three layer bioelectrical system.
Effect of recent popularity on heat-conduction based recommendation models
Li, Wen-Jun; Dong, Qiang; Shi, Yang-Bo; Fu, Yan; He, Jia-Lin
2017-05-01
Accuracy and diversity are two important measures in evaluating the performance of recommender systems. It has been demonstrated that the recommendation model inspired by the heat conduction process has high diversity yet low accuracy. Many variants have been introduced to improve the accuracy while keeping high diversity, most of which regard the current node-degree of an item as its popularity. However in this way, a few outdated items of large degree may be recommended to an enormous number of users. In this paper, we take the recent popularity (recently increased item degrees) into account in the heat-conduction based methods, and propose accordingly the improved recommendation models. Experimental results on two benchmark data sets show that the accuracy can be largely improved while keeping the high diversity compared with the original models.
Model-Based Prediction of Pulsed Eddy Current Testing Signals from Stratified Conductive Structures
International Nuclear Information System (INIS)
Zhang, Jian Hai; Song, Sung Jin; Kim, Woong Ji; Kim, Hak Joon; Chung, Jong Duk
2011-01-01
Excitation and propagation of electromagnetic field of a cylindrical coil above an arbitrary number of conductive plates for pulsed eddy current testing(PECT) are very complex problems due to their complicated physical properties. In this paper, analytical modeling of PECT is established by Fourier series based on truncated region eigenfunction expansion(TREE) method for a single air-cored coil above stratified conductive structures(SCS) to investigate their integrity. From the presented expression of PECT, the coil impedance due to SCS is calculated based on analytical approach using the generalized reflection coefficient in series form. Then the multilayered structures manufactured by non-ferromagnetic (STS301L) and ferromagnetic materials (SS400) are investigated by the developed PECT model. Good prediction of analytical model of PECT not only contributes to the development of an efficient solver but also can be applied to optimize the conditions of experimental setup in PECT
Application of thermal conduction models to deepsea disposal of radioacitve wastes
International Nuclear Information System (INIS)
Schimmel, W.P. Jr.; Hickox, C.E.
1978-03-01
Thermal problems associated with the emplacement of radio-active wastes in the deepsea sedimentary layer have been studied. In particular, the nature of the temperature field surrounding and the interstitial water velocity arising from a buried cask have been examined. Worst case estimates indicate that the velocity will be extremely weak and thus not likely to provide a primary transport mechanism for the radioactive material. This statement will, of course, only apply for moderately low levels of heat generation by the decaying radio nuclides. Because of the low interstitial water velocity, thermal conduction models can be used to predict the temperature field in the surrounding sediments as well as the cask surface temperature. This is equivalent to ''decoupling'' the energy and momentum conservation relationships thus simplifying the solution of the temperature field. The present work considers in come detail the temperature field surrounding a vertical circular ''cylinder'' located a distance below a horizontal, isothermal, plane surface. Actually, the isotherm corresponding to the cask surface is an ellipsoid of revolution but the error will be small for large values of the length to diameter ratio. The resulting expression can be usd to estimate temperature of the cask surface for material degradation studies and the effect of temperature upon the ion transport process in the sediments
The spiral field inhibition of thermal conduction in two-fluid solar wind models
Nerney, S.; Barnes, A.
1978-01-01
The paper reports on two-field models which include the inhibition of thermal conduction by the spiraling interplanetary field to determine whether any of the major conclusions obtained by Nerney and Barnes (1977) needs to be modified. Comparisons with straight field line models reveal that for most base conditions, the primary effect of the inhibition of thermal conduction is the bottling-up of heat in the electrons as well as the quite different temperature profiles at a large heliocentric radius. The spiral field solutions show that coronal hole boundary conditions do not correspond to states of high-speed streams as observed at 1 AU. The two-fluid models suggest that the spiral field inhibition of thermal conduction in the equatorial plane will generate higher gas pressures in comparison with flows along the solar rotation axis (between 1 and 10 AU). In particular, massive outflows of stellar winds, such as outflow from T Tauri stars, cannot be driven by thermal conduction. The conclusions of Nerney and Barnes remain essentially unchanged.
High-conductance states in a mean-field cortical network model
Lerchner, A; Hertz, J
2004-01-01
Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1 due to the tendency of spikes being clustered into bursts. We show that this behavior emerges naturally in a balanced cortical network model with random connectivity and conductance-based synapses. We employ mean field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high conductance states of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1.
On the electrical conductivity for the mixed-valence model with d-f correlations
International Nuclear Information System (INIS)
Borgiel, W.; Matlak, M.
1984-08-01
The static electrical conductivity of mixed-valence systems is calculated in the model of Matlak and Nolting [Solid State Commun., 47, 11 (1983); Z. Phys., B55, 103 (1984)]. The method takes into account the atomic properties more exactly than those connected with bands, and hence emphasizes the ionic aspect of the problem in some way; indeed, the calculations overestimate the atomic properties. Some results are presented in a graph. It is found that the electrical conductivity depends strongly on temperature and the electron-hole attraction constant
International Nuclear Information System (INIS)
Yang, X H; Kuang, J J; Lu, T J; Han, F S; Kim, T
2013-01-01
We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase. (paper)
Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...
Bumgarner, Johnathan R; McCray, John E
2007-06-01
During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.
Ab-initio study of hydrogen technology materials for hydrogen storage and proton conduction
Energy Technology Data Exchange (ETDEWEB)
Luduena, Guillermo Andres
2011-07-01
This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods. In the case of the hydrogen storage system lithium amide/imide (LiNH{sub 2}/Li{sub 2}NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state {sup 1}H-NMR chemical shifts was observed. Specifically, the structure of Li{sub 2}NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus. On the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding
Directory of Open Access Journals (Sweden)
Maliha Noshin
2017-01-01
Full Text Available Equilibrium molecular dynamics simulation using 2nd generation Reactive Bond Order interatomic potential has been performed to model the thermal transport of nanometer sized zigzag defected graphene nanoribbons (GNRs containing several types of vacancies. We have investigated the thermal conductivity of defected GNRs as a function of vacancy concentration within a range of 0.5% to 5% and temperature ranging from 300K to 600K, along with a comparative analysis of those for pristine GNRs. We find that, a vacancy concentration of 0.5% leads to over 90% reduction in the thermal conductivity of GNRs. At low defect concentration, the decay rate is faster but ceases gradually at higher defect concentration. With the increasing temperature, thermal conductivity of defected GNRs decreases but shows less variation in comparison with that of pristine GNRs at higher temperatures. Such comprehensive study on several vacancy type defects in GNRs can provide further insight to tune up the thermal transport characteristics of low dimensional carbon nanostructures. This eventually would encourage the characterization of more stable thermal properties in thermal devices at an elevated temperature as well as the potential applicability of GNRs as thermoelectrics.
International Nuclear Information System (INIS)
Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David
2017-01-01
Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.
Wieser, G.; Emberson, L. D.
It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.
König, S.; Suriyah, M. R.; Leibfried, T.
2017-08-01
A lumped-parameter model for vanadium redox flow batteries, which use metallic current collectors, is extended into a one-dimensional model using the plug flow reactor principle. Thus, the commonly used simplification of a perfectly mixed cell is no longer required. The resistances of the cell components are derived in the in-plane and through-plane directions. The copper current collector is the only component with a significant in-plane conductance, which allows for a simplified electrical network. The division of a full-scale flow cell into 10 layers in the direction of fluid flow represents a reasonable compromise between computational effort and accuracy. Due to the variations in the state of charge and thus the open circuit voltage of the electrolyte, the currents in the individual layers vary considerably. Hence, there are situations, in which the first layer, directly at the electrolyte input, carries a multiple of the last layer's current. The conventional model overestimates the cell performance. In the worst-case scenario, the more accurate 20-layer model yields a discharge capacity 9.4% smaller than that computed with the conventional model. The conductive current collector effectively eliminates the high over-potentials in the last layers of the plug flow reactor models that have been reported previously.
Directory of Open Access Journals (Sweden)
Kleinstreuer Clement
2011-01-01
Full Text Available Abstract Correction to Kleinstreuer C, Feng Y: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Research Letters 2011, 6:229.
Vinay, K.; Shivakumar, K.; Ravikiran, Y. T.; Revanasiddappa, M.
2018-05-01
The present work is an investigation of ac conduction behaviour and dielectric response of Polyaniline/Ag/Graphene/SrTiO3 (PAGS) composite prepared by in-situ chemical oxidative interfacial polymerization using (NH4)2S2O8 as an oxidising agent at 0-5°C. The structural characterization of the samples was examined using FT-IR and XRD techniques. The ac conductivity and dielectric response of synthesized polymer composites were investigated at room temperature in the frequency range varying from 5 × 101 - 5 × 106 Hz using HIOKI make 3532-50 LCR Hi-tester. The ac conductivity increases with increase in frequency and follows the regular trend, the real dielectric constant (ɛ') and imaginary dielectric constant (ɛ'') decreases with increase in frequency and exhibits almost zero dielectric loss at higher frequencies, which suggests that the composite is a lossless material at frequencies beyond 3Hz.
A Collection of Studies Conducted in Education about "Global Warming" Problem
Bozdogan, Aykut Emre
2011-01-01
The studies global warming problem conducted in education discipline in the world and in Turkey were analysed for this study. The literature was reviewed extensively especially through the articles in the indexed journals of Ebsco Host, Science Direct, Taylor and Francis and Web of Science databases and this study was conducted according to the…
Mathematical model for solar drying of potato cylinders with thermal conductivity radially modulated
Trujillo Arredondo, Mariana
2014-05-01
A mathematical model for drying potato cylinders using solar radiation is proposed and solved analytically. The model incorporates the energy balance for the heat capacity of the potato, the radiation heat transfer from the potato toward the drying chamber and the solar radiation absorbed by the potato during the drying process. Potato cylinders are assumed to exhibit a thermal conductivity which is radially modulated. The method of the Laplace transform, with integral Bromwich and residue theorem will be applied and the analytic solutions for the temperature profiles in the potato cylinder will be derived in the form of an infinite series of Bessel functions, when the thermal conductivity is constant; and in the form of an infinite series of Heun functions, when the thermal conductivity has a linear radial modulation. All computations are performed using computer algebra, specifically Maple. It is expected that the analytical results obtained will be useful in food engineering and industry. Our results suggest some lines for future investigations such as the adoption of more general forms of radial modulation for the thermal conductivity of potato cylinders; and possible applications of other computer algebra software such as Maxima and Mathematica.
Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod
Energy Technology Data Exchange (ETDEWEB)
Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Area de Ingenieria en Recursos Energeticos, Iztapalapa (Mexico)
2014-07-01
A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)
Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod
International Nuclear Information System (INIS)
Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G.
2014-01-01
A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)
Practical Issues of Conducting a Q Methodology Study: Lessons Learned From a Cross-cultural Study.
Stone, Teresa Elizabeth; Maguire, Jane; Kang, Sook Jung; Cha, Chiyoung
This article advances nursing research by presenting the methodological challenges experienced in conducting a multination Q-methodology study. This article critically analyzes the relevance of the methodology for cross-cultural and nursing research and the challenges that led to specific responses by the investigators. The use of focus groups with key stakeholders supplemented the Q-analysis results. The authors discuss practical issues and shared innovative approaches and provide best-practice suggestions on the use of this flexible methodology. Q methodology has the versatility to explore complexities of contemporary nursing practice and cross-cultural health research.
International Nuclear Information System (INIS)
Anon.
1982-01-01
Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage
Modeling conduction in host-graft interactions between stem cell grafts and cardiomyocytes.
Chen, Michael Q; Yu, Jin; Whittington, R Hollis; Wu, Joseph C; Kovacs, Gregory T A; Giovangrandi, Laurent
2009-01-01
Cell therapy has recently made great strides towards aiding heart failure. However, while transplanted cells may electromechanically integrate into host tissue, there may not be a uniform propagation of a depolarization wave between the heterogeneous tissue boundaries. A model using microelectrode array technology that maps the electrical interactions between host and graft tissues in co-culture is presented and sheds light on the effects of having a mismatch of conduction properties at the boundary. Skeletal myoblasts co-cultured with cardiomyocytes demonstrated that conduction velocity significantly decreases at the boundary despite electromechanical coupling. In an attempt to improve the uniformity of conduction with host cells, differentiating human embryonic stem cells (hESC) were used in co-culture. Over the course of four to seven days, synchronous electrical activity was observed at the hESC boundary, implying differentiation and integration. Activity did not extend far past the boundary, and conduction velocity was significantly greater than that of the host tissue, implying the need for other external measures to properly match the conduction properties between host and graft tissue.
Mixed conductivity studies in silver oxide based barium vanado-tellurite glasses
International Nuclear Information System (INIS)
Pant, Meenakshi; Kanchan, D.K.; Sharma, Poonam; Jayswal, Manish S.
2008-01-01
The dc conductivity and frequency dependent ac conductivity of the quaternary glass system x(BaO:1.5 Ag 2 O)-(95 - x)V 2 O 5 -5TeO 2 , are reported in the frequency range 1 Hz to 32 MHz in the temperature range from room temperature to 433 K. The dc conductivity measured in high temperature range increased with transition metal oxide content while the activation range decreased. The conductivity arises mainly from polaron hopping between V 4+ and V 5+ ions. High temperature conductivity data satisfy Mott's small polaron hopping model. It is found that a mechanism of non-adiabatic hopping is the most appropriate conduction model for these glasses. A power law behavior σ(ω) = σ dc + Aω n (with 0 < n < 1) is well exhibited by the ac conductivity data of the glasses. The activation energy calculated from both the relaxation time and dc conductivity is found to be nearly same in both the cases. A scaling of the conductivity spectra with respect to temperature and composition is attempted and it is observed that the relaxation dynamics of charge carriers in the present glasses is independent of temperature and composition
Investigation of tDCS volume conduction effects in a highly realistic head model
Wagner, S.; Rampersad, S. M.; Aydin, Ü.; Vorwerk, J.; Oostendorp, T. F.; Neuling, T.; Herrmann, C. S.; Stegeman, D. F.; Wolters, C. H.
2014-02-01
Objective. We investigate volume conduction effects in transcranial direct current stimulation (tDCS) and present a guideline for efficient and yet accurate volume conductor modeling in tDCS using our newly-developed finite element (FE) approach. Approach. We developed a new, accurate and fast isoparametric FE approach for high-resolution geometry-adapted hexahedral meshes and tissue anisotropy. To attain a deeper insight into tDCS, we performed computer simulations, starting with a homogenized three-compartment head model and extending this step by step to a six-compartment anisotropic model. Main results. We are able to demonstrate important tDCS effects. First, we find channeling effects of the skin, the skull spongiosa and the cerebrospinal fluid compartments. Second, current vectors tend to be oriented towards the closest higher conducting region. Third, anisotropic WM conductivity causes current flow in directions more parallel to the WM fiber tracts. Fourth, the highest cortical current magnitudes are not only found close to the stimulation sites. Fifth, the median brain current density decreases with increasing distance from the electrodes. Significance. Our results allow us to formulate a guideline for volume conductor modeling in tDCS. We recommend to accurately model the major tissues between the stimulating electrodes and the target areas, while for efficient yet accurate modeling, an exact representation of other tissues is less important. Because for the low-frequency regime in electrophysiology the quasi-static approach is justified, our results should also be valid for at least low-frequency (e.g., below 100 Hz) transcranial alternating current stimulation.
International Nuclear Information System (INIS)
Shin, Dong-Ho; Cho, Hyoung-Kyu; Tak, Nam-Il; Park, Goon-Cherl
2014-01-01
Effective thermal conductivity models which can be used to analyze the heat transfer phenomena of a prismatic fuel block were evaluated by CFD analysis. In the accident condition of VHTR when forced convection is lost, the heat flows in radial direction through the hexagonal fuel blocks that contain the large number of coolant holes and fuel compacts. Due to the complex geometry of fuel block and radiation heat transfer; the detail heat transfer computation on the fuel block needs excessive computation resources. Therefore, the detail computation isn’t appropriate for the lumped parameter code. The system code such as GAMMA+ adopts effective thermal conductivity model. Despite the complexity in heat transfer modes, the accurate analysis on the heat transfer in fuel block is necessary since it is directly relevant to the integrity of nuclear fuel embedded in fuel block. To satisfy the accurate analysis of complex heat transfer modes with limited computing sources, the credible effective thermal conductivity (ETC) models in which the effects of all of heat transfer modes are lumped is necessary. In this study, various ETC models were introduced and they are evaluated with CFD calculations. It is estimated that Maxwell-based model was the most pertinent one among the introduced ETC models. (author)
On parameterization of heat conduction in coupled soil water and heat flow modelling
Czech Academy of Sciences Publication Activity Database
Votrubová, J.; Dohnal, M.; Vogel, T.; Tesař, Miroslav
2012-01-01
Roč. 7, č. 4 (2012), s. 125-137 ISSN 1801-5395 R&D Projects: GA ČR GA205/08/1174 Institutional research plan: CEZ:AV0Z20600510 Keywords : advective heat flux * dual-permeability model * soil heat transport * soil thermal conductivity * surface energy balance Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.333, year: 2012
Kendler, K. S.; Jacobson, K.; Myers, J. M.; Eaves, L. J.
2014-01-01
Background Conduct disorder (CD) and peer deviance (PD) both powerfully predict future externalizing behaviors. Although levels of CD and PD are strongly correlated, the causal relationship between them has remained controversial and has not been examined by a genetically informative study. Method Levels of CD and PD were assessed in 746 adult male–male twin pairs at personal interview for ages 8–11, 12–14 and 15–17 years using a life history calendar. Model fitting was performed using the Mx program. Results The best-fit model indicated an active developmental relationship between CD and PD including forward transmission of both traits over time and strong causal relationships between CD and PD within time periods. The best-fit model indicated that the causal relationship for genetic risk factors was from CD to PD and was constant over time. For common environmental factors, the causal pathways ran from PD to CD and were stronger in earlier than later age periods. Conclusions A genetically informative model revealed causal pathways difficult to elucidate by other methods. Genes influence risk for CD, which, through social selection, impacts on the deviance of peers. Shared environment, through family and community processes, encourages or discourages adolescent deviant behavior, which, via social influence, alters risk for CD. Social influence is more important than social selection in childhood, but by late adolescence social selection becomes predominant. These findings have implications for prevention efforts for CD and associated externalizing disorders. PMID:17935643
Calculation of the band structure of 2d conducting polymers using the network model
International Nuclear Information System (INIS)
Sabra, M. K.; Suman, H.
2007-01-01
the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)
International Nuclear Information System (INIS)
Dolgoshej, V.B.; Korskanov, V.V.; Karpova, I.L.; Bardash, L.V.
2012-01-01
The dependences of electric conductivities of thermosetting polymer nanocomposites based on epoxy polymer and polycyanurate filled by carbon nanotubes were investigated. Low values of percolation threshold at volume fraction of carbon nanotubes from 0.001 to 0.002 were observed for all samples.Absolute values of the percolation threshold are in good agreement with the results of mathematical modeling. It is established that electrical properties of thermosetting polymer nanocomposites can be characterized in the frame of the same theoretical model despite difference in polymers properties
A general one-dimensional model for conduction-controlled rewetting of a surface
International Nuclear Information System (INIS)
Elias, E.; Yadigaroglu, G.
1977-01-01
A computer-oriented analytical method for predicting the rewetting rate of a hot dry wall is proposed. The wall, which is modeled as a thin flat plate with internal heat generation, receives a variable heat flux from one side while it is cooled from the other side. The model accounts for the large variations of the heat transfer coefficient near the wet front and for the temperature dependence of the thermal and physical properties of the wall. The one-dimensional heat-conduction equation is solved by dividing the quenching zone into small segments of arbitrary temperature increment and constant properties and heat transfer coefficient. A trial-and-error method is developed to predict the velocity of the wet front, the length of the quenching zone and the temperature profile. The one-dimensional models of other authors can be obtained as particular cases of the present model. (Auth.)
A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles
International Nuclear Information System (INIS)
Xu Jie; Yu Boming; Zou Mingqing; Xu Peng
2006-01-01
In this paper we report a new model for predicting the thermal conductivity of nanofluids by taking into account the fractal distribution of nanoparticle sizes and heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids. The proposed model is expressed as a function of the average size of nanoparticles, fractal dimension, concentration of nanoparticles, temperature and properties of fluids. The model shows the reasonable dependences of the thermal conductivity on the temperature of nanofluids, nanoparticle size and concentration. The parameter c introduced in thermal boundary layer depends on fluids, but is independent of nanoparticles added in the fluids. The model predictions are in good agreement with the available experimental data. The model also reveals that there is a critical concentration of 12.6% of nanoparticles at which the contribution from heat convection due to the Brownian movement of nanoparticles reaches the maximum value, below which the contribution from heat convection decreases with the decrease in concentration and above which the contribution from heat convection decreases with the increase in concentration
A prediction model for the effective thermal conductivity of mono-sized pebble beds
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiaoliang; Zheng, Jie; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn
2016-02-15
Highlights: • One new method to couple the contact area with bed strain is developed. • The constant coefficient to correlate the effect of gas flow is determined. • This model is valid for various cases, and its advantages are showed obviously. - Abstract: A model is presented here to predict the effective thermal conductivity of porous medium packed with mono-sized spherical pebbles, and it is valid when pebbles’ size is far less than the characteristic length of porous medium just like the fusion pebble beds. In this model, the influences of parameters such as properties of pebble and gas materials, bed porosity, pebble size, gas flow, contact area, thermal radiation, contact resistance, etc. are all taken into account, and one method to couple the contact areas with bed strains is also developed and implemented preliminarily. Compared with available theoretical models, CFD numerical simulations and experimental data, this model is verified to be successful to forecast the bed effective thermal conductivity in various cases and its advantages are also showed obviously. Especially, the convection in pebble beds is focused on and a constant coefficient C to correlate the effect of gas flow is determined for the fully developed region of beds by numerical simulation, which is close to some experimental data.
DEFF Research Database (Denmark)
Jakobsen, Ida Skytte; Fergusson, David; Horwood, John L.
2012-01-01
This study used dato from a 30-year longitudinal study to esamine the associations between early conduct problems, school achievement and later crime. The analysis showed that, even following extensive adjustment for confounding, both early conduct problems and later educational achievement made...... experimental research is required to ascertain the extent that: a) the educational achievement of young people with early-onset conduct problems can be improved; and b) the extent to which any such improvements translate into reductions in subsequent antisocial behviour....
Energy Technology Data Exchange (ETDEWEB)
Leu, W; Greber, E [Geoform, Geologische Beratungen und Studien AG, Winterthur (Switzerland); Hopkirk, R J [Polydynamics Engineering, Maennedorf (Switzerland); Keller, B [Mengis und Lorenz AG, Luzern (Switzerland); Rybach, L [ETH Hoenggerberg, Zuerich (Switzerland). Inst. fuer Geophysik und Radiometrie
1997-12-01
Detailed knowledge of the geothermal properties (thermal conductivity and specific heat capacity) of the undergorund becomes more and more important with increasing exploitation of geothermal resources by deep vertical borehole heat exchangers or by seasonal storage installations. For this pilot study all existing thermal conductivity data of the Swiss Molasse were compiled and supplemented with new laboratory measurements on core and cutting samples from deep wells (2.5 to 3.0 W/mK). In a second step top-to-bottom thermal conductivity profiles were calculated from geophysical well logs. These profiles show a clear dependence on lithology and variations in thermal conductivity of up to 1 W/mK over 50-200 m thick intervals. In clay-rich lithofacies thermal conductivity is only slightly dependent on the sedimentary architecture, whereas, in sandy facies obvious distinctions are possible. The modelling of a theoretical 750 m long vertical borehole heat exchanger shows that the potential quality of extractable heat increases or decreases by up to 20% by varying the thermal conductivity with only {+-}0.5 W/mK. (orig.) [Deutsch] Fuer die Nutzung geothermischer Ressourcen mit tiefen Erdwaermesonden und saisonalen Speicheranlagen werden detaillierte Kenntnisse der geothermischen Eigenschaften (Waermeleitfaehigkeit und Waemekapazitaet) des Untergrundes zunehmend wichtig. Im Rahmen dieser Pilotstudie wurden saemtliche verfuegbaren Waermeleitfaehigkeits-Daten von Schweizer Molassegesteinen kompiliert und mit Neumessungen an Kern- und Cuttingsmaterial von Tiefbohrungen ergaenzt (2.5 bis 3.0 W/mK). In einem zweiten Schritt wurden Waermeleitfaehigkeits-Profile mit geophysikalischen Bohr-Logs berechnet. Diese Profile zeigen eine deutliche Abhaengigkeit von der Lithologie mit einer Variation der Waermeleitfaehigkeit von bis zu 1 W/mK ueber 50-200 m maechtige Intervalle. In den tonigen Lithologien kann nur eine schwache Abhaengigkeit der Waermeleitfaehigkeit von der sedimentaeren
Modelling of the toroidal asymmetry of poloidal halo currents in conducting structures
International Nuclear Information System (INIS)
Pomphrey, N.; Bialek, J.M.; Part, W.
1998-01-01
During plasma disruptions, substantial toroidal and poloidal eddy currents are generated in the vacuum vessel and other plasma facing conducting structures. Eddy currents that conduct charge through paths which close through the plasma periphery are called halo currents, and these can be of substantial magnitude. Of particular concern for tokamak design and operation is the observed toroidal asymmetry of the halo current distribution: such an asymmetric distribution leads to problematic non-uniform forces on the conducting structures. The premise is adopted that the source of toroidal asymmetry is the plasma deformation resulting from the non-linear external kink instability that develops during the current quench phase of a disruption. A simple model is presented of the kinked plasma that allows an analytic calculation of the dependence of the toroidal peaking factor (TPF) on the ratio of the halo current to the total toroidal plasma current, I h /I p . Expressions for the TPF as a function of I h /I p are derived for m/n=2/1 and m/n=1/1 helical instabilities. The expressions depend on a single parameter, which measures the amplitude of the saturated state of the kink instability. A comparison with disruption data from experiments shows good agreement. Numerical experiments that simulate non-linear external kinks provide guidance on the values expected for the saturated amplitude. It is proposed that a simple plasma halo model is adequate for assessing the engineering impact of asymmetric halo currents, since the force distribution on the conducting structures depends mainly on the 'resistive distribution' of the eddy currents. A brief description is given of an electromagnetics code that calculates the time development of eddy currents in conducting structures, and the code is applied to two halo current disruption scenarios. These are used to emphasize the importance of having an accurate eddy current calculation to correctly estimate the engineering impact of
Studies of natural and 60Co gamma radio-induced conduction in metaphosphate glasses and silica
International Nuclear Information System (INIS)
Mengual Gil, M.A.
1977-01-01
A study of natural and 60 Co gamma radio-induced conduction in metaphosphate glasses and silica is presented. The experimental study of natural conduction current in metaphosphate glasses in function of temperature enables to observe two different values of the activation energies in the respective temperature ranges T>223K and T [fr
A study on effective thermal conductivity of crystalline layers in layer melt crystallization
International Nuclear Information System (INIS)
Kim, Kwang-Joo; Ulrich, Joachim
2002-01-01
An effective thermal conductivity in layer melt crystallization was explored based on a model considering inclusions inside a crystalline layer during crystal growth, molecular diffusion of inclusions migration due to temperature gradient and heat generation due to recrystallization of inclusions in the crystalline layer. The effective thermal conductivity increases with time, in general, as a result of compactness of the layer. Lower cooling temperature, i.e. greater supercooling, results in a more porous layer with lower effective thermal conductivity. A similar result is seen for the parameter of melt temperature, but less pronounced. A high concentration of the melt results in a high effective thermal conductivity while low concentration yields low effective thermal conductivity. At higher impurity levels in the melt phase, constitutional supercooling becomes more pronounced and unstable growth morphologies occur more easily. Cooling rate and Reynolds number also affect the effective thermal conductivity. The predictions of an effective thermal conductivity agree with the experimental data. The model was applied to estimate the thermal conductivities of the crystalline layer during layer melt crystallization. (author)
de Graaff, Barbara; Neil, Amanda; Sanderson, Kristy; Si, Lei; Yee, Kwang Chien; Palmer, Andrew J
2015-10-01
Hereditary haemochromatosis (HH) is a common genetic condition amongst people of northern European heritage. HH is associated with increased iron absorption leading to parenchymal organ damage and multiple arthropathies. Early diagnosis and treatment prevents complications. Population screening may increase early diagnosis, but no programmes have been introduced internationally: a paucity of health economic data is often cited as a barrier. To conduct a systematic review of all health economic studies in HH. Studies were identified through electronic searching of economic/biomedical databases. Any study on HH with original economic component was included. Study quality was formally assessed. Health economic data were extracted and analysed through narrative synthesis. Thirty-eight studies met the inclusion criteria. The majority of papers reported on costs or cost effectiveness of screening programmes. Whilst most concluded screening was cost effective compared with no screening, methodological flaws limit the quality of these findings. Assumptions regarding clinical penetrance, effectiveness of screening, health-state utility values (HSUVs), exclusion of early symptomatology (such as fatigue, lethargy and multiple arthropathies) and quantification of costs associated with HH were identified as key limitations. Treatment studies concluded therapeutic venepuncture was the most cost-effective intervention. There is a paucity of high-quality health economic studies relating to HH. The development of a comprehensive HH cost-effectiveness model utilising HSUVs is required to determine whether screening is worthwhile.
A time-dependent model to determine the thermal conductivity of a nanofluid
Energy Technology Data Exchange (ETDEWEB)
Myers, T. G., E-mail: tmyers@crm.cat; MacDevette, M. M., E-mail: mmacdevette@crm.cat; Ribera, H. [Centre de Recerca Matematica (Spain)
2013-07-15
In this paper, we analyse the time-dependent heat equations over a finite domain to determine expressions for the thermal diffusivity and conductivity of a nanofluid (where a nanofluid is a fluid containing nanoparticles with average size below 100 nm). Due to the complexity of the standard mathematical analysis of this problem, we employ a well-known approximate solution technique known as the heat balance integral method. This allows us to derive simple analytical expressions for the thermal properties, which appear to depend primarily on the volume fraction and liquid properties. The model is shown to compare well with experimental data taken from the literature even up to relatively high concentrations and predicts significantly higher values than the Maxwell model for volume fractions approximately >1 %. The results suggest that the difficulty in reproducing the high values of conductivity observed experimentally may stem from the use of a static heat flow model applied over an infinite domain rather than applying a dynamic model over a finite domain.
Mathematical Modeling of Electrical Conductivity of Dielectric with Dispersed Metallic Inclusions
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2015-01-01
Full Text Available Composites are increasingly used for application in engineering as structural, thermal protection and functional materials, including dielectrics, because of a wide variety of properties. The relative dielectric constant and the dielectric loss tangent are basic functional characteristics of a composite used as a dielectric. The quantitative level of these characteristics is mainly affected by the properties of the composite matrix and inclusions as well as their shape and volume concentration. Metallic inclusions in a dielectric, which serves as a function of the composite matrix, expand electrical properties of the composite in particular increase its dielectric constant and dielectric loss tangent and thereby greatly expand its application field. Dielectric losses are defined by the imaginary component of the complex value of the relative dielectric constant of the dielectric. At a relatively low vibration frequency of electromagnetic field affecting the dielectric, this value is proportional to the electrical conductivity of the dielectric and inversely proportional to the frequency. In order to predict the expected value of the electric conductivity of the dielectric with metallic inclusions, a mathematical model that properly describes the structure of the composite and the electrical interaction of the matrix and inclusions is required.In the paper, a mathematical model of the electrical interaction of the representative element of the composite structure and a homogeneous isotropic medium with electrical conductivity, which is desired characteristics of the composite, is constructed. Globular shape of the metallic inclusions as an average statistical form of dispersed inclusions with a comparable size in all directions is adopted. The inclusion is covered with a globular layer of electrical insulation to avoid percolation with increasing volume concentration of inclusions. Outer globular layer of representative structure of composite
Energy Technology Data Exchange (ETDEWEB)
Hujova, Miroslava [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Pokorny, Richard [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Klouzek, Jaroslav [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Dixon, Derek R. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Cutforth, Derek A. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Lee, Seungmin [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; McCarthy, Benjamin P. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington
2017-07-10
The heat conductivity of reacting melter feed affects the heat transfer and conversion process in the cold cap (the reacting feed floating on molten glass). To investigate it, we simulated the feed conditions and morphology in the cold-cap by preparing “fast-dried slurry blocks”, formed by rapidly evaporating water from feed slurry poured onto a 200°C surface. A heat conductivity meter was used to measure heat conductivity of samples cut from the fast-dried slurry blocks, samples of a cold cap retrieved from a laboratory-scale melter, and loose dry powder feed samples. Our study indicates that the heat conductivity of the feed in the cold cap is significantly higher than that of loose dry powder feed, resulting from the feed solidification during the water evaporation from the feed slurry. To assess the heat transfer at higher temperatures when feed turns into foam, we developed a theoretical model that predicts the foam heat conductivity based on morphology data from in-situ X-ray computed tomography. The implications for the mathematical modeling of the cold cap are discussed.
Canadian Field Soils IV: Modeling Thermal Conductivity at Dryness and Saturation
Tarnawski, V. R.; McCombie, M. L.; Leong, W. H.; Coppa, P.; Corasaniti, S.; Bovesecchi, G.
2018-03-01
The thermal conductivity data of 40 Canadian soils at dryness (λ _{dry}) and at full saturation (λ _{sat}) were used to verify 13 predictive models, i.e., four mechanistic, four semi-empirical and five empirical equations. The performance of each model, for λ _{dry} and λ _{sat}, was evaluated using a standard deviation ( SD) formula. Among the mechanistic models applied to dry soils, the closest λ _{dry} estimates were obtained by MaxRTCM (it{SD} = ± 0.018 Wm^{-1}\\cdot K^{-1}), followed by de Vries and a series-parallel model (S-{\\vert }{\\vert }). Among the semi-empirical equations (deVries-ave, Advanced Geometric Mean Model (A-GMM), Chaudhary and Bhandari (C-B) and Chen's equation), the closest λ _{dry} estimates were obtained by the C-B model (± 0.022 Wm^{-1}\\cdot K^{-1}). Among the empirical equations, the top λ _{dry} estimates were given by CDry-40 (± 0.021 Wm^{-1}\\cdot K^{-1} and ± 0.018 Wm^{-1}\\cdot K^{-1} for18-coarse and 22-fine soils, respectively). In addition, λ _{dry} and λ _{sat} models were applied to the λ _{sat} database of 21 other soils. From all the models tested, only the maxRTCM and the CDry-40 models provided the closest λ _{dry} estimates for the 40 Canadian soils as well as the 21 soils. The best λ _{sat} estimates for the 40-Canadian soils and the 21 soils were given by the A-GMM and the S-{\\vert }{\\vert } model.
Electronic conductance model in constricted MoS{sub 2} with nanopores
Energy Technology Data Exchange (ETDEWEB)
Sarathy, Aditya [Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Leburton, Jean-Pierre, E-mail: jleburto@illinois.edu [Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States)
2016-02-01
We describe a self-consistent model for electronic transport in a molybdenum di-sulphide (MoS{sub 2}) layer containing a nanopore in a constricted geometry. Our approach is based on a semi-classical thermionic Poisson-Boltzmann technique using a two-valley model within the effective mass approximation to investigate perturbations caused by the nanopore on the electronic current. In particular, we show that the effect of the nanopore on the conductance is reduced as the nanopore is moved from the center to the layer edges. Our model is applied to the detection of DNA translocating through the nanopore, which reveals current features similar to those as predicted in nanopore graphene layers.
International Nuclear Information System (INIS)
Khater, Antoine; Szczesniak, Dominik
2011-01-01
An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.
A deterministic model for the growth of non-conducting electrical tree structures
International Nuclear Information System (INIS)
Dodd, S J
2003-01-01
Electrical treeing is of interest to the electrical generation, transmission and distribution industries as it is one of the causes of insulation failure in electrical machines, switchgear and transformer bushings. In this paper a deterministic electrical tree growth model is described. The model is based on electrostatics and local electron avalanches to model partial discharge activity within the growing tree structure. Damage to the resin surrounding the tree structure is dependent on the local electrostatic energy dissipation by partial discharges within the tree structure and weighted by the magnitudes of the local electric fields in the resin surrounding the tree structure. The model is successful in simulating the formation of branched structures without the need of a random variable, a requirement of previous stochastic models. Instability in the spatial development of partial discharges within the tree structure takes the role of the stochastic element as used in previous models to produce branched tree structures. The simulated electrical trees conform to the experimentally observed behaviour; tree length versus time and electrical tree growth rate as a function of applied voltage for non-conducting electrical trees. The phase synchronous partial discharge activity and the spatial distribution of emitted light from the tree structure are also in agreement with experimental data for non-conducting trees as grown in a flexible epoxy resin and in polyethylene. The fact that similar tree growth behaviour is found using pure amorphous (epoxy resin) and semicrystalline (polyethylene) materials demonstrate that neither annealed or quenched noise, representing material inhomogeneity, is required for the formation of irregular branched structures (electrical trees). Instead, as shown in this paper, branched growth can occur due to the instability of individual discharges within the tree structure
Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials
Energy Technology Data Exchange (ETDEWEB)
Lechman, Jeremy B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bolintineanu, Dan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Erikson, William W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Foiles, Stephen M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kay, Jeffrey J [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phinney, Leslie M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Piekos, Edward S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Specht, Paul Elliott [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wixom, Ryan R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Yarrington, Cole [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-01-01
This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In
Patil, Ravikumar V.; Praveen, D.; Damle, R.
2018-05-01
Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.
Energy Technology Data Exchange (ETDEWEB)
Moscicki, J. K.; Sokolowska, D.; Dziob, D.; Nowak, J. [Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Kwiatkowski, L. [Department of Econometrics and Operations Research, Cracow University of Economics, Rakowicka 27, 31-510 Krakow (Poland)
2014-02-15
A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.
Feasibility study of injection mouldable conductive plastic for the hearing aid applications
DEFF Research Database (Denmark)
Merca, Timea D.den; Lindberg, Torbjörn; Islam, Aminul
2016-01-01
Electrically conductive polymers can combine the advantage of plastic processing with the unique electrical properties which are usually found in metals. This article presents a feasibility study of an electrically conductive plastic for hearing aid antennas. Focus will be placed to critically......) 3D measuring system in comparison with an ideal copper antenna at 2.4 GHz. An analysis of the association between the conductive plastic processing parameters in regards to its electrical performance is discussed and evaluated....
International Nuclear Information System (INIS)
Zanjani, Mehdi B.; Lukes, Jennifer R.
2014-01-01
A computational study of thermal conductivity and phonon dispersion of gold nanocrystal superlattices is presented. Phonon dispersion curves, reported here for the first time from combined molecular dynamics and lattice dynamics calculations, show multiple phononic band gaps and consist of many more dispersion branches than simple atomic crystals. Fully atomistic three dimensional molecular dynamics calculations of thermal conductivity using the Green Kubo method are also performed for the first time on these materials. Thermal conductivity is observed to increase for increasing nanocrystal core size and decrease for increasing surface ligand density. Our calculations predict values in the range 0.1–1 W/m K that are consistent with reported experimental results
High-conductance states in a mean-field cortical network model
DEFF Research Database (Denmark)
Lerchner, Alexander; Ahmadi, Mandana; Hertz, John
2004-01-01
cortical network model with random connectivity and conductance-based synapses. We employ mean-field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high-conductance states......Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1, indicating a tendency toward spikes being clustered. We show that this behavior emerges naturally in a balanced...... of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1. (C) 2004 Elsevier B.V. All rights reserved....
Gap conductance model validation in the TASS/SMR-S code
International Nuclear Information System (INIS)
Ahn, Sang-Jun; Yang, Soo-Hyung; Chung, Young-Jong; Bae, Kyoo-Hwan; Lee, Won-Jae
2011-01-01
An advanced integral pressurized water reactor, SMART (System-Integrated Modular Advanced ReacTor) has been developed by KAERI (Korea Atomic Energy Research and Institute). The purposes of the SMART are sea water desalination and an electricity generation. For the safety evaluation and performance analysis of the SMART, TASS/SMR-S (Transient And Setpoint Simulation/System-integrated Modular Reactor) code, has been developed. In this paper, the gap conductance model for the calculation of gap conductance has been validated by using another system code, MARS code, and experimental results. In the validation, the behaviors of fuel temperature and gap width are selected as the major parameters. According to the evaluation results, the TASS/SMR-S code predicts well the behaviors of fuel temperatures and gap width variation, compared to the MARS calculation results and experimental data. (author)
How do people evaluate social sexual conduct at work? A psycholegal model.
Wiener, R L; Hurt, L E
2000-02-01
The authors tested a psycholegal model of how people evaluate social sexual conduct at work with videotaped reenactments of interviews with alleged complainants, perpetrators, and other workers. Participants (200 full-time male and female workers) were randomly assigned to evaluate the complaints with either the reasonable person or reasonable woman legal standard. Participants answered questions about sexual harassment law and completed the Ambivalent Sexism Inventory. Participants who took the reasonable woman perspective, as compared with those who took the reasonable person perspective, were more likely to find the conduct harassing; this was especially the case among participants high in hostile sexism. Medium-sized gender effects were found in the severe case but were absent in the weaker, more ambiguous case. The implications of these findings for hostile work environment law are discussed.
Understanding the Online : Jewellery Retail Market : an integrated model to conduct SEM
Wu, Yihong
2013-01-01
Research into e-commerce is becoming more and more popular; however the jewellery industry is somewhat special. There are very few studies having adapted a strategic marketing perspective on the online jewellery retail market. This study suggested an integrated online marketing strategy which focuses on the search engine marketing (SEM) approach. A detailed procedure of conducting search engine marketing (SEM) is introduced. Through the method of online questionnaires, with the help of soc...
Accurate Models for Evaluating the Direct Conducted and Radiated Emissions from Integrated Circuits
Directory of Open Access Journals (Sweden)
Domenico Capriglione
2018-03-01
Full Text Available This paper deals with the electromagnetic compatibility (EMC issues related to the direct and radiated emissions from a high-speed integrated circuits (ICs. These emissions are evaluated here by means of circuital and electromagnetic models. As for the conducted emission, an equivalent circuit model is derived to describe the IC and the effect of its loads (package, printed circuit board, decaps, etc., based on the Integrated Circuit Emission Model template (ICEM. As for the radiated emission, an electromagnetic model is proposed, based on the superposition of the fields generated in the far field region by the loop currents flowing into the IC and the package pins. A custom experimental setup is designed for validating the models. Specifically, for the radiated emission measurement, a custom test board is designed and realized, able to highlight the contribution of the direct emission from the IC, usually hidden by the indirect emission coming from the printed circuit board. Measurements of the package currents and of the far-field emitted fields are carried out, providing a satisfactory agreement with the model predictions.
Study of thermal conductivity and thermal rectification in exponential mass graded lattices
Energy Technology Data Exchange (ETDEWEB)
Shah, Tejal N. [Bhavan' s Sheth R.A. College of Science, Khanpur, Ahmedabad 380 001, Gujarat (India); Gajjar, P.N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, Gujarat (India)
2012-01-09
Concept of exponential mass variation of oscillators along the chain length of N oscillators is proposed in the present Letter. The temperature profile and thermal conductivity of one-dimensional (1D) exponential mass graded harmonic and anharmonic lattices are studied on the basis of Fermi–Pasta–Ulam (FPU) β model. Present findings conclude that the exponential mass graded chain provide higher conductivity than that of linear mass graded chain. The exponential mass graded anharmonic chain generates the thermal rectification of 70–75% which is better than linear mass graded materials, so far. Thus instead of using linear mass graded material, the use of exponential mass graded material will be a better and genuine choice for controlling the heat flow at nano-scale. -- Highlights: ► In PRE 82 (2010) 040101, use of mass graded material as a thermal devices is explored. ► Concept of exponential mass graded material is proposed. ► The rectification obtained is about 70–75% which is better than linear mass graded materials. ► The exponential mass graded material will be a better choice for the thermal devices at nano-scale.
Kerr, Alexander; Burt, Timothy; Mullen, Kieran; Glatzhofer, Daniel; Houck, Matthew; Huang, Paul
The use of carbon nanotubes (CNTs) to improve the thermal conductivity of composite materials is thwarted by their large thermal boundary resistance. We study how to overcome this Kapitza resistance by functionalizing CNTs with mixed molecular chains. Certain configurations of chains improve the transmission of thermal vibrations through our systems by decreasing phonon mismatch between the CNTs and their surrounding matrix. Through the calculation of vibrational normal modes and Green's functions, we develop a variety of computational metrics to compare the thermal conductivity (κ) of our systems. We show how different configurations of attached chains affect the samples' κ values by varying chain identity, chain length, number of chains, and heat driver behavior. We vary the parameters to maximize κ. To validate and optimize these metrics, we perform molecular dynamics simulations for comparison. We also present experimental results of composites enhanced with CNTs and make comparisons to the theory. We observe that some composites are thermally improved with the inclusion of CNTs, while others are scarcely changed, in agreement with theoretical models. This work was supported by NSF Grant DMR-1310407.
Energy Technology Data Exchange (ETDEWEB)
Kukkonen, I.; Suppala, I. [Geological Survey of Finland, Espoo (Finland)
1999-01-01
In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into `active` drill hole methods, and `passive` indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial `leak` of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm{sup -1}, temperature recording with 5-7 sensors placed along the probe, and
International Nuclear Information System (INIS)
Kukkonen, I.; Suppala, I.
1999-01-01
In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into 'active' drill hole methods, and 'passive' indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial 'leak' of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm -1 , temperature recording with 5-7 sensors placed along the probe, and
Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.
Wen, Chenyu; Zhang, Zhen; Zhang, Shi-Li
2017-10-27
Nanopores have been explored for various biochemical and nanoparticle analyses, primarily via characterizing the ionic current through the pores. At present, however, size determination for solid-state nanopores is experimentally tedious and theoretically unaccountable. Here, we establish a physical model by introducing an effective transport length, L eff , that measures, for a symmetric nanopore, twice the distance from the center of the nanopore where the electric field is the highest to the point along the nanopore axis where the electric field falls to e -1 of this maximum. By [Formula: see text], a simple expression S 0 = f (G, σ, h, β) is derived to algebraically correlate minimum nanopore cross-section area S 0 to nanopore conductance G, electrolyte conductivity σ, and membrane thickness h with β to denote pore shape that is determined by the pore fabrication technique. The model agrees excellently with experimental results for nanopores in graphene, single-layer MoS 2 , and ultrathin SiN x films. The generality of the model is verified by applying it to micrometer-size pores.
Directory of Open Access Journals (Sweden)
Saad Motahhir
2018-01-01
Full Text Available The first objective of this work is to determine some of the performance parameters characterizing the behavior of a particular photovoltaic (PV panels that are not normally provided in the manufacturers’ specifications. These provide the basis for developing a simple model for the electrical behavior of the PV panel. Next, using this model, the effects of varying solar irradiation, temperature, series and shunt resistances, and partial shading on the output of the PV panel are presented. In addition, the PV panel model is used to configure a large photovoltaic array. Next, a boost converter for the PV panel is designed. This converter is put between the panel and the load in order to control it by means of a maximum power point tracking (MPPT controller. The MPPT used is based on incremental conductance (INC, and it is demonstrated here that this technique does not respond accurately when solar irradiation is increased. To investigate this, a modified incremental conductance technique is presented in this paper. It is shown that this system does respond accurately and reduces the steady-state oscillations when solar irradiation is increased. Finally, simulations of the conventional and modified algorithm are compared, and the results show that the modified algorithm provides an accurate response to a sudden increase in solar irradiation.
Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol-gel route
International Nuclear Information System (INIS)
Nallamuthu, N.; Prakash, I.; Satyanarayana, N.; Venkateswarlu, M.
2011-01-01
Research highlights: → Nanocrystalline La 10 Si 6 O 27 material was synthesized by sol-gel method. → TG/DTA curves predicted the thermal behavior of the material. → FTIR spectra confirmed the formation of SiO 4 and La-O network in the La 10 Si 6 O 27 . → XRD patterns confirmed the formation of pure crystalline La 10 Si 6 O 27 phase. → The grain interior and the grain boundary conductivities are evaluated. - Abstract: Nanocrystalline apatite type structured lanthanum silicate (La 10 Si 6 O 27 ) sample was synthesized by sol-gel process. Thermal behavior of the dried gel of lanthanum silicate sample was studied using TG/DTA. The structural coordination of the dried gel of lanthanum silicate, calcined at various temperatures, was identified from the observed FTIR spectral results. The observed XRD patterns of the calcined dried gel were compared with the ICDD data and confirmed the formation of crystalline lanthanum silicate phase. The average crystalline size of La 10 Si 6 O 27 was calculated using the Scherrer formula and it is found to be ∼80 nm. The observed SEM images of the lanthanum silicate indicate the formation of the spherical particles and the existence of O, Si and La in the lanthanum silicate are confirmed from the SEM-EDX spectrum. The grain and grain boundary conductivities are evaluated by analyzing the measured impedance data, using winfit software, obtained at different temperatures, of La 10 Si 6 O 27 sample. Also, the observed grain and grain boundary conductivity behaviors of the La 10 Si 6 O 27 sample are analysed using brick layer model. The electrical permittivity and electrical modulus were calculated from the measured impedance data and were analyzed by fitting through the Havriliak and Negami function to describe the dielectric relaxation behavior of the nanocrystalline lanthanum silicate.
Ahmed, Muneeb; Liu, Zhengjun; Humphries, Stanley; Goldberg, S Nahum
2008-11-01
To use an established computer simulation model of radiofrequency (RF) ablation to characterize the combined effects of varying perfusion, and electrical and thermal conductivity on RF heating. Two-compartment computer simulation of RF heating using 2-D and 3-D finite element analysis (ETherm) was performed in three phases (n = 88 matrices, 144 data points each). In each phase, RF application was systematically modeled on a clinically relevant template of application parameters (i.e., varying tumor and surrounding tissue perfusion: 0-5 kg/m(3)-s) for internally cooled 3 cm single and 2.5 cm cluster electrodes for tumor diameters ranging from 2-5 cm, and RF application times (6-20 min). In the first phase, outer thermal conductivity was changed to reflect three common clinical scenarios: soft tissue, fat, and ascites (0.5, 0.23, and 0.7 W/m- degrees C, respectively). In the second phase, electrical conductivity was changed to reflect different tumor electrical conductivities (0.5 and 4.0 S/m, representing soft tissue and adjuvant saline injection, respectively) and background electrical conductivity representing soft tissue, lung, and kidney (0.5, 0.1, and 3.3 S/m, respectively). In the third phase, the best and worst combinations of electrical and thermal conductivity characteristics were modeled in combination. Tissue heating patterns and the time required to heat the entire tumor +/-a 5 mm margin to >50 degrees C were assessed. Increasing background tissue thermal conductivity increases the time required to achieve a 50 degrees C isotherm for all tumor sizes and electrode types, but enabled ablation of a given tumor size at higher tissue perfusions. An inner thermal conductivity equivalent to soft tissue (0.5 W/m- degrees C) surrounded by fat (0.23 W/m- degrees C) permitted the greatest degree of tumor heating in the shortest time, while soft tissue surrounded by ascites (0.7 W/m- degrees C) took longer to achieve the 50 degrees C isotherm, and complete ablation
Using framework-based synthesis for conducting reviews of qualitative studies.
Dixon-Woods, Mary
2011-04-14
Framework analysis is a technique used for data analysis in primary qualitative research. Recent years have seen its being adapted to conduct syntheses of qualitative studies. Framework-based synthesis shows considerable promise in addressing applied policy questions. An innovation in the approach, known as 'best fit' framework synthesis, has been published in BMC Medical Research Methodology this month. It involves reviewers in choosing a conceptual model likely to be suitable for the question of the review, and using it as the basis of their initial coding framework. This framework is then modified in response to the evidence reported in the studies in the reviews, so that the final product is a revised framework that may include both modified factors and new factors that were not anticipated in the original model. 'Best fit' framework-based synthesis may be especially suitable in addressing urgent policy questions where the need for a more fully developed synthesis is balanced by the need for a quick answer. Please see related article: http://www.biomedcentral.com/1471-2288/11/29.
On Thermodynamics Problems in the Single-Phase-Lagging Heat Conduction Model
Directory of Open Access Journals (Sweden)
Shu-Nan Li
2016-11-01
Full Text Available Thermodynamics problems for the single-phase-lagging (SPL model have not been much studied. In this paper, the violation of the second law of thermodynamics by the SPL model is studied from two perspectives, which are the negative entropy production rate and breaking equilibrium spontaneously. The methods for the SPL model to avoid the negative entropy production rate are proposed, which are extended irreversible thermodynamics and the thermal relaxation time. Modifying the entropy production rate positive or zero is not enough to avoid the violation of the second law of thermodynamics for the SPL model, because the SPL model could cause breaking equilibrium spontaneously in some special circumstances. As comparison, it is shown that Fourier’s law and the CV model cannot break equilibrium spontaneously by analyzing mathematical energy integral.
International Nuclear Information System (INIS)
Chandra, U.; Galindo, B.J.; Castagnet, A.C.G.
1981-05-01
A conductivity probe and a temperature probe have been developed for in-situ measurements in various hydrological field studies. The conductivity probe has platinum electrodes and is powered with two 12 volt batteries. The sensing element of the temperature probe consists of a resistor of high coefficient of temperature. Response of the conductivity probe is measured in a milliampere mater while the resistance of the thermistor is read by a digital meter. The values of conductivity and temperature are derived from respective calibration. The probes are prototype and their range of measurement can be improved depending upon the requirement of the field problem. (Author) [pt
Oxidation of clean silicon surfaces studied by four-point probe surface conductance measurements
DEFF Research Database (Denmark)
Petersen, Christian Leth; Grey, Francois; Aono, M.
1997-01-01
We have investigated how the conductance of Si(100)-(2 x 1) and Si(111)-(7 x 7) surfaces change during exposure to molecular oxygen. A monotonic decrease in conductance is seen as the (100) surfaces oxidizes. In contract to a prior study, we propose that this change is caused by a decrease in sur...
Mora Cordova, Angel
2018-01-30
One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite\\'s conductivity based on these parameters.
Mora, A.; Han, F.; Lubineau, G.
2018-04-01
One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in the remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite’s conductivity based on these parameters.
Mora Cordova, Angel; Han, Fei; Lubineau, Gilles
2018-01-01
One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite's conductivity based on these parameters.
Directory of Open Access Journals (Sweden)
Hong Liu
2014-01-01
Full Text Available A proton-conductive solid oxide fuel cell (H-SOFC has the advantage of operating at higher temperatures than a PEM fuel cell, but at lower temperatures than a SOFC. This study proposes a mathematical model for an H-SOFC in order to simulate the performance and optimize the flow channel designs. The model analyzes the average mass transfer and species’ concentrations in flow channels, which allows the determination of an average concentration polarization in anode and cathode gas channels, the proton conductivity of electrolyte membranes, as well as the activation polarization. An electrical circuit for the current and proton conduction is applied to analyze the ohmic losses from an anode current collector to a cathode current collector. The model uses relatively less amount of computational time to find the V-I curve of the fuel cell, and thus it can be applied to compute a large amount of cases with different flow channel dimensions and operating parameters for optimization. The modeling simulation results agreed satisfactorily with the experimental results from literature. Simulation results showed that a relatively small total width of flow channel and rib, together with a small ratio of the rib’s width versus the total width, are preferable for obtaining high power densities and thus high efficiency.
Directory of Open Access Journals (Sweden)
Risheng Ding
Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and
Farges, Thomas; Garcia, Geraldine; Blanc, Elisabeth
2010-05-01
propagation of the electromagnetic waves generated by lightning has also been studied in the frequency range 1 kHz-1MHz at distances lower than 1000 km from the lightning source. A propagation model has been developed to determine the ground waves which propagate in a homogenous medium using the analytical expression given by Maclean and Wu [1993]. This approach takes into account the electric finite conductivity and the fact that the Earth is spherical, which allow us to deal with over-the-horizon propagation. We installed in 2008 four stations which were more or less aligned - the maximum distance between two stations was about 870 km. Two stations were located close to the Mediterranean Sea and the two others inside the continent, at the centre of France. This station distribution and the observation period (from August to December) allowed statistical and physical studies, such as the influence of the electric conductivity on wave propagation. Comparison of electric field spectra, measured after propagation only over sea and only over ground, showed clearly the effects of ground conductivity on propagation. Comparison between observations and modelling has been used to evaluate the ground conductivity. In the future we will implement the sky-wave inside our model and validate it with the database.
Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands
Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho
2016-04-01
A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.
Directory of Open Access Journals (Sweden)
H. R. Ehteram
2016-01-01
Full Text Available In this paper the effect of using various models for conductivity and viscosity considering Brownian motion of nanoparticles is investigated. This study is numerically conducted inside a cavity full of Water-Al2O3 nanofluid at the case of mixed convection heat transfer. The effect of some parameters such as the nanoparticle volume fraction, Rayleigh, Richardson and Reynolds numbers has been examined. The governing equations with specified boundary conditions has been solved using finite volume method. A computer code has been prepared for this purpose. The results are presented in form of stream functions, isotherms, Nusselt number and the flow power with and without the Brownian motion taken into consideration. The results show that for all the applied models the stream functions and isotherm have approximately same patterns and no considerable difference has been observed. In all the studied models when considering the Brownian motion, the average Nusselt number is higher than not taking this effect into account. The models of Koo-Kleinstreuer and Li-Kleinstreuer give almost same values for the maximum stream function and average Nusselt number. It is also true about the models of Vajjha-Das and Xiao et al.
Hydration and Proton Conductivity of Ionomers: The Model Case of Sulfonated Aromatic Polymers
Energy Technology Data Exchange (ETDEWEB)
Knauth, Philippe, E-mail: philippe.knauth@univ-amu.fr [Madirel (UMR 7246), CNRS, Aix Marseille Université, Marseille (France); Di Vona, Maria Luisa [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma (Italy)
2014-11-06
The hydration of proton-conducting ionomers is described in terms of a simplified model, where only osmotic and elastic contributions to the Gibbs free energy of hydration are considered. Although only two physically meaningful parameters are used – the deformation parameter, inversely proportional to the elastic modulus of the ionomer, and the free volume parameter – simulated hydration isotherms are in good agreement with the experiment. The proton mobility u inside the electrolyte solution of the ionomer is calculated from the proton conductivity determined at various hydration numbers. Its variation with the proton concentration c reveals the percolation threshold of hydrated nanometric channels and the tortuosity of the membrane. Above the percolation threshold, a power law u ~ c{sup −3} is observed, in agreement with the “universal” law for 3-dimensional percolation. The proton conductivity σ shows at 100°C a maximum of 0.2 S/cm at a hydration number ~90. The σ = f(c) plot allows to predict, which hydration conditions are necessary for a desired area specific resistance.
Hydration and proton conductivity of ionomers: the model case of Sulfonated Aromatic Polymers
Directory of Open Access Journals (Sweden)
Philippe eKnauth
2014-11-01
Full Text Available The hydration of proton-conducting ionomers is described in terms of a simplified model, where only osmotic and elastic contributions to the Gibbs free energy of hydration are considered. Although only two physically meaningful parameters are used - the deformation parameter, inversely proportional to the elastic modulus of the ionomer, and the free volume parameter – simulated hydration isotherms are in good agreement with the experiment. The proton mobility u inside the electrolyte solution of the ionomer is calculated from the proton conductivity determined at various hydration numbers. Its variation with the proton concentration c reveals the percolation threshold of hydrated nanometric channels and the tortuosity of the membrane. Above the percolation threshold, a power law u ~ c-3 is observed, in agreement with the universal law for 3-dimensional percolation. The proton conductivity shows at 100°C a maximum of 0.2 S/cm at a hydration number ~90. The = f(c plot allows to predict which hydration conditions are necessary for a desired area specific resistance.
Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes
Feng, Ya; Inoue, Taiki; An, Hua; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo
2018-05-01
Compared with isolated single-walled carbon nanotubes (SWNTs), thermal conductivity is greatly impeded in SWNT bundles; however, the measurement of the bundle size effect is difficult. In this study, the number of SWNTs in a bundle was determined based on the transferred horizontally aligned SWNTs on a suspended micro-thermometer to quantitatively study the effect of the bundle size on thermal conductivity. Increasing the bundle size significantly degraded the thermal conductivity. For isolated SWNTs, thermal conductivity was approximately 5000 ± 1000 W m-1 K-1 at room temperature, three times larger than that of the four-SWNT bundle. The logarithmical deterioration of thermal conductivity resulting from the increased bundle size can be attributed to the increased scattering rate with neighboring SWNTs based on the kinetic theory.
A composite sphere assemblage model for porous oolitic rocks: Application to thermal conductivity
Directory of Open Access Journals (Sweden)
F. Chen
2017-02-01
Full Text Available The present work is devoted to the determination of linear effective thermal conductivity of porous rocks characterized by an assemblage of grains (oolites coated by a matrix. Two distinct classes of pores, i.e. micropores or intra oolitic pores (oolite porosity and mesopores or inter oolitic pores (inter oolite porosity, are taken into account. The overall porosity is supposed to be connected and decomposed into oolite porosity and matrix porosity. Within the framework of Hashin composite sphere assemblage (CSA models, a two-step homogenization method is developed. At the first homogenization step, pores are assembled into two layers by using self-consistent scheme (SCS. At the second step, the two porous layers constituting the oolites and the matrix are assembled by using generalized self-consistent scheme (GSCS and referred to as three-phase model. Numerical results are presented for data representative of a porous oolitic limestone. It is shown that the influence of porosity on the overall thermal conductivity of such materials may be significant.
International Nuclear Information System (INIS)
Dauvois, Yann
2016-01-01
In the present work, the effective heat transfer properties of fibrous medium are determined by taking into account a coupling of heat conduction and radiation. A virtual, statistically homogeneous, two-phase fibrous sample has been built by stacking finite absorbing cylinders in vacuum. These cylinders are dispersed according to prescribed distribution functions defining the cylinder positions and orientations. Cylinder overlappings are allowed. Extinction, absorption and scattering are characterised by radiative statistical functions which allow the Beerian behaviour of a medium to be assessed (or not). They are accurately determined with a Monte Carlo method. Whereas the gaseous phase exhibits a Beerian behaviour, the fibre phase is strongly non Beerian. The radiative power field deposited within the fibrous material is calculated by resolving a model which couples a Generalized Radiative Transfer Equation (GRTE) and a classic Radiative Transfer Equation (RTE). The model of conduction transfer is based on a random walk method without meshing. The simulation of Brownian motion of walkers in fibres allows the energy equation to be solved. The idea of the method is to characterize the temperature in an elementary volume by the density of walkers, which roam the medium. The problem is governed by boundary conditions; A constant concentration of walkers (or a constant flux) is associated with a fixed temperature (or flux). (author) [fr
Analysis of the Air Force ISO 14001 Pilot Study Conducted by DoD
National Research Council Canada - National Science Library
Harris, Rodney
2000-01-01
The Department of Defense (DoD) conducted an ISO 14001 pilot study with the primary goal of determining how ISO 14001 could help DoD organizations reduce risks, improve compliance with environmental regulations, enhance stewardship...
LENUS (Irish Health Repository)
Neligan, A
2010-01-01
Entrapment neuropathies, particularly those affecting upper limbs, are common reasons for referral for nerve conduction studies (NCS). However, concordance between clinical findings and NCS findings, especially in patients being considered for intervention including decompressive surgery, has not been assessed.
Thermal design studies in superconducting rf cavities: Phonon peak and Kapitza conductance
Directory of Open Access Journals (Sweden)
A. Aizaz
2010-09-01
Full Text Available Thermal design studies of superconducting radio frequency (SRF cavities involve two thermal parameters, namely the temperature dependent thermal conductivity of Nb at low temperatures and the heat transfer coefficient at the Nb-He II interface, commonly known as the Kapitza conductance. During the fabrication process of the SRF cavities, Nb sheet is plastically deformed through a deep drawing process to obtain the desired shape. The effect of plastic deformation on low temperature thermal conductivity as well as Kapitza conductance has been studied experimentally. Strain induced during the plastic deformation process reduces the thermal conductivity in its phonon transmission regime (disappearance of phonon peak by 80%, which may explain the performance limitations of the defect-free SRF cavities during their high field operations. Low temperature annealing of the deformed Nb sample could not recover the phonon peak. However, moderate temperature annealing during the titanification process recovered the phonon peak in the thermal conductivity curve. Kapitza conductance measurements for the Nb-He II interface for various surface topologies have also been carried out before and after the annealing. These measurements reveal consistently increased Kapitza conductance after the annealing process was carried out in the two temperature regimes.
Advances on the time differential three-phase-lag heat conduction model and major open issues
D'Apice, Ciro; Zampoli, Vittorio
2017-07-01
The main purpose of this short contribution is to summarize the recent achievements concerning the so-called time differential three-phase-lag heat conduction model, contextually focusing attention on some of the numerous open problems associated with such an attractive theory. After having briefly recalled the origin of the model at issue, the restrictions upon the delay times and the constitutive tensors able to make it thermodynamically consistent are recalled. Under these hypotheses, the investigation of the well-posedness issue has already provided important results in terms of uniqueness and continuous dependence of the solutions (even related to the thermoelastic case), as well as in terms of existence of a domain of influence of the assigned data in connection with the thermoelastic model. Finally, some of the main problems currently object of investigation are recalled, including the very challenging issues about the different possible choices of Taylor series expansion orders for the constitutive equation, the interaction of the model with energy processes that take place on the nanoscale, with multi-porous materials and with biological systems.
Contribution to the electromagnetic study of conducting polymers and chiral structures
International Nuclear Information System (INIS)
Lafosse, Xavier
1994-01-01
In this work, an electromagnetic characterisation of organic absorptive materials partially made of conductive polymer is presented. Poly-pyrrole-Teflon alloys containing from 0 to 20 pc (in volume) poly-pyrrole were prepared and characterised from dc to 6 GHz. The complex permittivity shows that these materials are absorptive; the dielectric properties strongly depend on the composition and are correctly modelled by a percolation law. A dielectric relaxation was observed for the conductive alloys and this phenomenon is interpreted as the result of an electronic conduction process insured by a charged carriers hopping. A model was developed; it is in good agreement with these results. The difference between the low and high frequency behaviour is also underlined. Microwave chiral structures were manufactured. A cholesteric arrangement of uniaxial slabs was measured in transmission between 4 and 6 GHz; the experimental results are correctly modelled by cascading quadrupolar scattering matrices. New chiral materials were prepared by mixing millimetric helices made of poly-pyrrole with an insulating matrix. These materials exhibit a rotatory power and a good absorption of electromagnetic waves which is connected to the poly-pyrrole concentration. The interest in using conductive polymers to design absorptive chiral materials in the microwave domain is put in evidence and the experimental results are in good agreement with a numerical model; nevertheless, the optimisation of these materials remains difficult. (author) [fr
Study on Thermal Conductivity of Personal Computer Aluminum-Magnesium Alloy Casing
Liao, MeiHong
With the rapid development of computer technology, micro-state atoms by simulating the movement of material to analyze the nature of the macro-state have become an important subject. Materials, especially aluminium-magnesium alloy materials, often used in personal computer case, this article puts forward heat conduction model of the material, and numerical methods of heat transfer performance of the material.
Multiregional coupled conduction--convection model for heat transfer in an HTGR core
International Nuclear Information System (INIS)
Giles, G.E. Jr.; Childs, K.W.; Sanders, J.P.
1978-01-01
HEXEREI is a three-dimensional, coupled conduction-convection heat transfer and multichannel fluid dynamic analysis computer code with both steady-state and transient capabilities. The program was developed to provide thermal-fluid dynamic analysis of a core following the general design for high-temperature gas-cooled reactors (HTGRs); its purpose was to provide licensing evaluations for the U.S. Nuclear Regulatory Commission. In order to efficiently model the HTGR core, the nodal geometry of HEXEREI was chosen as a regular hexagonal array perpendicular to the axis of and bounded by a right circular cylinder. The cylindrical nodal geometry surrounds the hexagonal center portion of the mesh; these two different types of nodal geometries must be connected by interface nodes to complete the accurate modeling of the HTGR core. HEXEREI will automatically generate a nodal geometry that will accurately model a complex assembly of hexagonal and irregular prisms. The accuracy of the model was proven by a comparison of computed values with analytical results for steady-state and transient heat transfer problems. HEXEREI incorporates convective heat transfer to the coolant in many parallel axial flow channels. Forced and natural convection (which permits different flow directions in parallel channels) is included in the heat transfer and fluid dynamic models. HEXEREI incorporates a variety of steady-state and transient solution techniques that can be matched with a particular problem to minimize the computational time. HEXEREI was compared with a code of similar capabilities that was based on a Cartesian mesh. This code modeled only one specific core design, and the mesh spacing was closer than that generated by HEXEREI. Good agreement was obtained with the detail provided by the representations
First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures
International Nuclear Information System (INIS)
Mazumder, Sandip; Li, Ju
2010-01-01
The inability to remove heat efficiently is currently one of the stumbling blocks toward further miniaturization and advancement of electronic, optoelectronic, and micro-electro-mechanical devices. In order to formulate better heat removal strategies and designs, it is first necessary to understand the fundamental mechanisms of heat transport in semiconductor thin films. Modeling techniques, based on first principles, can play the crucial role of filling gaps in our understanding by revealing information that experiments are incapable of. Heat conduction in crystalline semiconductor films occurs by lattice vibrations that result in the propagation of quanta of energy called phonons. If the mean free path of the traveling phonons is larger than the film thickness, thermodynamic equilibrium ceases to exist, and thus, the Fourier law of heat conduction is invalid. In this scenario, bulk thermal conductivity values, which are experimentally determined by inversion of the Fourier law itself, cannot be used for analysis. The Boltzmann Transport Equation (BTE) is a powerful tool to treat non-equilibrium heat transport in thin films. The BTE describes the evolution of the number density (or energy) distribution for phonons as a result of transport (or drift) and inter-phonon collisions. Drift causes the phonon energy distribution to deviate from equilibrium, while collisions tend to restore equilibrium. Prior to solution of the BTE, it is necessary to compute the lifetimes (or scattering rates) for phonons of all wave-vector and polarization. The lifetime of a phonon is the net result of its collisions with other phonons, which in turn is governed by the conservation of energy and momentum during the underlying collision processes. This research project contributed to the state-of-the-art in two ways: (1) by developing and demonstrating a calibration-free simple methodology to compute intrinsic phonon scattering (Normal and Umklapp processes) time scales with the inclusion
International Nuclear Information System (INIS)
Yu, W; Choi, S.U.S.
2004-01-01
We previously developed a renovated Maxwell model for the effective thermal conductivity of nanofluids and determined that the solid/liquid interfacial layers play an important role in the enhanced thermal conductivity of nanofluids. However, this renovated Maxwell model is limited to suspensions with spherical particles. Here, we extend the Hamilton--Crosser model for suspensions of nonspherical particles to include the effect of a solid/liquid interface. The solid/liquid interface is described as a confocal ellipsoid with a solid particle. The new model for the three-phase suspensions is mathematically expressed in terms of the equivalent thermal conductivity and equivalent volume fraction of anisotropic complex ellipsoids, as well as an empirical shape factor. With a generalized empirical shape factor, the renovated Hamilton--Crosser model correctly predicts the magnitude of the thermal conductivity of nanotube-in-oil nanofluids. At present, this new model is not able to predict the nonlinear behavior of the nanofluid thermal conductivity
A study on nanocomposites made of a conducting polymer and metallic nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Mohammed Ahmed Khalil, Rania [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Abdelaziz Mahmoud Abdelaziz, Ramzy [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Strunkus, Thomas; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)
2011-07-01
Conducting polymers offer a unique combination of properties that makes them attractive materials for many electronic applications. PEDOT:PSS is one of the most successful conductive materials which is considered to be highly stable and resisting degradation under typical ambient conditions. In this study, we have prepared two sets of conducting polymer nano-composites. The first set is composed of PEDOT:PSS doped with different aspect ratios of gold nanorod and the other one is PEDOT:PSS doped with different sizes of gold nanosphere. The chemical reduction method was used for preparing the nano-particles. Indeed, gold nanorods and nanosphere which exhibit tunable absorption as a function of their size and aspect ratio, respectively, have tuned the absorption coefficient for PEDOT: PSS. The nature of the dopant as well as the degree of doping has played a significant role in the improvement of the electrical conductivity of conducting polymer.
Experimental study on thermal conductivity of He-Ar binary mixture at low temperatures
International Nuclear Information System (INIS)
Nesterov, N.A.
1977-01-01
The results of the experimental and theoretical investigation of helium-argon mixture thermal conductivity for three concentrations of helium (25,50 and 75%) in the 90-273 K temperature range at 1 atm. pressure are presented. At the calculation of the thermal conductivity coefficients corrections for the heat removal from the heater ends, for radiation and temperature drop in the wall of a glass tube and a measuring cell have been considered. On the basis of the thermal conductivity coefficient values the empiric concentration dependences of the mixture thermal conductivity are obtained by the method of least squares at different temperatures. Experimental data have been compared with theoretical values of thermal conductivity, calculated according to the molecular-kinetic theory. The results of this investigation can be used for determining potential energy of interparticle interaction and studying heat exchange processes at the external flow over body
Study of the thermal conductivity of ZnO nanowires/PMMA composites
International Nuclear Information System (INIS)
Igamberdiev, Kh. T.; Yuldashev, Sh. U.; Cho, H. D.; Kang, T. W.; Rakhimova, Sh. M.; Akhmedov, T. Kh.
2012-01-01
From thermal conductivity measurements on ZnO nanowires (NWs)/poly(methyl methacrylate) PMMA composites, the thermal conductivities of the ZnO nanowires were determined. The thermal conductivity of a ZnO NW decreases considerably with decreasing nanowire diameter, and for a ZnO nanowire with a diameter of 250 nm, the thermal conductivity at room temperature is approximately two times lower than that of bulk ZnO at the same temperature. The results of this study show that the thermal conductivity of a ZnO NW is mainly determined by increased phonon-surface boundary scattering. These results could be useful for the design of ZnO-nanowire-based devices.
Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system
B. Tutmez (Bulent); Z. Hatipoglu (Z.); U. Kaymak (Uzay)
2006-01-01
textabstractElectrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt composition and electrical conductivity. In this
Modelling electrical conductivity of groundwater using and adaptive neuro-fuzzy inference system
Tutmez, B.; Hatipoglu, Z.; Kaymak, U.
2006-01-01
Electrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt composition and electrical conductivity. In this present
Conducting feasibilities in clinical trials: An investment to ensure a good study
Directory of Open Access Journals (Sweden)
Viraj Rajadhyaksha
2010-01-01
Full Text Available Conducting clinical trial feasibility is one of the first steps in clinical trial conduct. This process includes assessing internal and environmental capacity, alignment of the clinical trial in terms of study design, dose of investigational product, comparator, patient type, with the local environment and assessing potential of conducting clinical trial in a specific country. A robust feasibility also ensures a realistic assessment and capability to conduct the clinical trial. For local affiliates of pharmaceutical organizations, and contract research organizations, this is a precursor to study placement and influences the decision of study placement. This article provides details on different types of feasibilities, information which is to be included and relevance of each. The article also aims to provide practical hands-on suggestions to make feasibilities more realistic and informative.
Conducting feasibilities in clinical trials: an investment to ensure a good study.
Rajadhyaksha, Viraj
2010-07-01
Conducting clinical trial feasibility is one of the first steps in clinical trial conduct. This process includes assessing internal and environmental capacity, alignment of the clinical trial in terms of study design, dose of investigational product, comparator, patient type, with the local environment and assessing potential of conducting clinical trial in a specific country. A robust feasibility also ensures a realistic assessment and capability to conduct the clinical trial. For local affiliates of pharmaceutical organizations, and contract research organizations, this is a precursor to study placement and influences the decision of study placement. This article provides details on different types of feasibilities, information which is to be included and relevance of each. The article also aims to provide practical hands-on suggestions to make feasibilities more realistic and informative.
Initial study on in vivo conductivity mapping of breast cancer using MRI.
Shin, Jaewook; Kim, Min Jung; Lee, Joonsung; Nam, Yoonho; Kim, Min-Oh; Choi, Narae; Kim, Sooyeon; Kim, Dong-Hyun
2015-08-01
To develop and apply a method to measure in vivo electrical conductivity values using magnetic resonance imaging (MRI) in subjects with breast cancer. A recently developed technique named MREPT (MR electrical properties tomography) together with a novel coil combination process was used to quantify the conductivity values. The overall technique was validated using a phantom study. In addition, 90 subjects were imaged (50 subjects with previously biopsy-confirmed breast tumor and 40 normal subjects), which was approved by our institutional review board (IRB). A routine clinical protocol, specifically a T2 -weighted FSE (fast spin echo) imaging data, was used for reconstruction of conductivity. By employing the coil combination, the relative error in the conductivity map was reduced from ~70% to 10%. The average conductivity values in breast cancers regions (0.89 ± 0.33S/m) was higher compared to parenchymal tissue (0.43 S/m, P conductivity compared to benign cases (0.56 S/m, n = 5) (P conductivity compared to in situ cancers (0.57 S/m) (P conductivity mapping of breast cancers is feasible using a noninvasive in vivo MREPT technique combined with a coil combination process. The method may provide a tool in the MR diagnosis of breast cancer. © 2014 Wiley Periodicals, Inc.
Pan, Yamin; Liu, Xianhu; Hao, Xiaoqiong; Schubert, Dirk W
2016-11-30
Blends of carbon black (CB)-filled co-continuous immiscible polystyrene/poly(methyl-methacrylate) (PS/PMMA) with a PS/PMMA ratio of 50/50 and CB selectively located in the PS phase have been prepared by melt blending. The simultaneous evolution of conductivity and phase morphology of blend composites was investigated under shear and in the quiescent state at 200 °C. It was found that shear deformation had a significant influence on the conductivity of the unfilled PS/PMMA blend and its composites, which was attributed to the change of phase morphology during shear. After the shear stress of 10 kPa, the conductivity of PS/PMMA blends filled with 2 vol% of CB decreased by about two orders of magnitude and the phase morphology transformed from a fine co-continuous structure into a highly elongated lamellar structure. The deformation of phase morphology and the decrease of conductivity were weakened upon decreasing the shear stress or increasing the CB concentration. During subsequent recovery, pronounced phase structure coarsening was observed in the mixture and the conductivity increased as well. A simple model describing the behavior of conductivity under shear deformation was derived and utilized for the description of the experimental data. For the first time, the Burgers model was used to describe the conductivity, and the viscoelastic and viscoplastic parameters were deduced by fitting the conductivity under shear. The results obtained in this study provide a deeper insight into the evolution of phase structure in the conductive polymer blend composite induced by shear deformation.
Sigfusdottir, Inga Dora; Asgeirsdottir, Bryndis Bjork; Hall, Hildigunnur Anna; Sigurdsson, Jon Fridrik; Young, Susan; Gudjonsson, Gisli H
2017-04-01
To examine the role of family conflict in the relationship between attention deficit hyperactivity disorder (ADHD) and conduct disorder (CD). A cross-sectional national population survey was carried out among 10,838 14-16 year old students in all secondary schools in Iceland. Three latent measures, financial status, ADHD and CD, and one observed measure, family structure, were included in the study. A structural equation model was used to evaluate direct effects between ADHD and CD for four different groups; females and males, experiencing family conflict and those not experiencing family conflict. ADHD was significantly and positively associated with CD for all groups. When controlling for financial status and family structure it was found that ADHD was positively and significantly associated with CD for adolescent females and males not experiencing family conflict as well as for those experiencing family conflict. The link between ADHD and CD was significantly stronger for those adolescents who had experienced family conflict compared to those who had not experienced family conflict. These results suggest that family conflict moderates the association between ADHD and CD for both girls and boys. The results of this study indicate that family environment and ADHD symptoms are important when predicting CD among adolescent youth. Most notably, family conflict exacerbates the effects of ADHD symptoms on CD among both females and males.
Automated crack detection in conductive smart-concrete structures using a resistor mesh model
Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon
2018-03-01
Various nondestructive evaluation techniques are currently used to automatically detect and monitor cracks in concrete infrastructure. However, these methods often lack the scalability and cost-effectiveness over large geometries. A solution is the use of self-sensing carbon-doped cementitious materials. These self-sensing materials are capable of providing a measurable change in electrical output that can be related to their damage state. Previous work by the authors showed that a resistor mesh model could be used to track damage in structural components fabricated from electrically conductive concrete, where damage was located through the identification of high resistance value resistors in a resistor mesh model. In this work, an automated damage detection strategy that works through placing high value resistors into the previously developed resistor mesh model using a sequential Monte Carlo method is introduced. Here, high value resistors are used to mimic the internal condition of damaged cementitious specimens. The proposed automated damage detection method is experimentally validated using a 500 × 500 × 50 mm3 reinforced cement paste plate doped with multi-walled carbon nanotubes exposed to 100 identical impact tests. Results demonstrate that the proposed Monte Carlo method is capable of detecting and localizing the most prominent damage in a structure, demonstrating that automated damage detection in smart-concrete structures is a promising strategy for real-time structural health monitoring of civil infrastructure.
International Nuclear Information System (INIS)
Jayaseelan, S.; Muralidharan, P.; Venkateswarlu, M.; Satyanarayana, N.
2005-01-01
Silverarsenotellurite (SAT), silverphosphotellurite (SPT) and silvervanadotellurite (SVT) quaternary glass systems were prepared with various formers compositions by a melt quenching method. Glass nature, glass transition temperature (T g ) and structure of the prepared glasses were identified respectively by X-ray diffraction (XRD), differential scanning calorimetric (DSC) and Fourier transform infrared (FT-IR) technique. Electrical conductivity studies were carried out by impedance measurement in the frequency range 40 Hz to 100 KHz at different temperatures for all three sets of AgI-Ag 2 O-[TeO 2 -M 2 O 5 ] (M 2 O 5 = As 2 O 5 , P 2 O 5 , V 2 O 5 ) glasses. The high conducting compositions of SAT, SPT and SVT glass samples were fixed from the results of total conductivity (σ t ). Electronic conductivity (σ e ) studies were made on high conducting composition of each glass system by Wagner's polarization method. Total current (i t ) is due to ion and electron. Electronic current (i e ) due to electron were estimated through mobility studies. Ionic conductivity (σ i ) and ionic current (i i ) were calculated respectively using the conductivity (σ t and σ e ) and current (i t and i e ) results for the SAT, SPT and SVT glasses. Transport numbers due to ion (t i ) and electron (t e ) were calculated using the conductivity and mobility results for each glass system. The high conducting composition of the SAT, SPT and SVT glasses were used as solid electrolytes with silver metal as an anode and iodine:graphite (I:C) as a cathode for the fabrication of solid state batteries (SSBs). All the fabricated batteries were characterized by measuring the open circuit voltage (OCV) and polarization properties and estimated the batteries performances
Hegde, Archana V.; Cassidy, Deborah J.
2009-01-01
A qualitative study examining teachers' beliefs regarding developmentally appropriate practices was conducted in the city of Mumbai, India. Twelve kindergarten teacher's were interviewed for this study, and a constant comparative method was used to analyze the interviews. Six themes were identified within this study. The themes highlighted…
Lahey, Benjamin B.; Applegate, Brooks; Chronis, Andrea M.; Jones, Heather A.; Williams, Stephanie Hall; Loney, Jan; Waldman, Irwin D.
2008-01-01
Lahey and Waldman proposed a developmental propensity model in which three dimensions of children's emotional dispositions are hypothesized to transact with the environment to influence risk for conduct disorder, heterogeneity in conduct disorder, and comorbidity with other disorders. To prepare for future tests of this model, a new measure of…
Ahadi, Mohammad; Tam, Mickey; Saha, Madhu S.; Stumper, Jürgen; Bahrami, Majid
2017-06-01
In this work, a new methodology is proposed for measuring the through-plane thermal conductivity of catalyst layers (CLs) in polymer electrolyte membrane fuel cells. The proposed methodology is based on deconvolution of bulk thermal conductivity of a CL from measurements of two thicknesses of the CL, where the CLs are sandwiched in a stack made of two catalyst-coated substrates. Effects of hot-pressing, compression, measurement method, and substrate on the through-plane thermal conductivity of the CL are studied. For this purpose, different thicknesses of catalyst are coated on ethylene tetrafluoroethylene (ETFE) and aluminum (Al) substrates by a conventional Mayer bar coater and measured by scanning electron microscopy (SEM). The through-plane thermal conductivity of the CLs is measured by the well-known guarded heat flow (GHF) method as well as a recently developed transient plane source (TPS) method for thin films which modifies the original TPS thin film method. Measurements show that none of the studied factors has any effect on the through-plane thermal conductivity of the CL. GHF measurements of a non-hot-pressed CL on Al yield thermal conductivity of 0.214 ± 0.005 Wṡm-1ṡK-1, and TPS measurements of a hot-pressed CL on ETFE yield thermal conductivity of 0.218 ± 0.005 Wṡm-1ṡK-1.
Modeling Li-ion conductivity in LiLa(PO{sub 3}){sub 4} powder
Energy Technology Data Exchange (ETDEWEB)
Mounir, Ferhi, E-mail: ferhi.mounir@gmail.com [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Karima, Horchani-Naifer [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Khaled, Ben Saad [Laboratoire de Photovoltaieque, Centre des Recherches et des Technologies de l' Energie, Technopole Borj Cedria, BP No. 95, 2050 Hammam Lif (Tunisia); Mokhtar, Ferid [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia)
2012-07-01
Polycrystalline powder and single-crystal of LiLa(PO{sub 3}){sub 4} are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO{sub 3}){sub 4} powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO{sub 3}){sub 4} are characterized by single-crystal X-ray diffraction. The LiLa(PO{sub 3}){sub 4} structure was found to be isotypic with LiNd(PO{sub 3}){sub 4}. It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) A, b=7.130(3) A, c=9.913(3) A, {beta}=126.37(4) Degree-Sign , V=946.72(6) A{sup 3} and Z=4. The LiLa(PO{sub 3}){sub 4} structure was described as an alternation between spiraling chains (PO{sub 3}){sub n} and (La{sup 3+}, Li{sup +}) cations along the b direction. The small Li{sup +} ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO{sub 8} polyhedra and the polyphosphate chains. The jumping of Li{sup +} through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO{sub 3}){sub 4} and its crystallographic structure was investigated and the most probably transport pathway model was determined.
Modeling Li-ion conductivity in LiLa(PO3)4 powder
International Nuclear Information System (INIS)
Mounir, Ferhi; Karima, Horchani-Naifer; Khaled, Ben Saad; Mokhtar, Férid
2012-01-01
Polycrystalline powder and single-crystal of LiLa(PO 3 ) 4 are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO 3 ) 4 powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO 3 ) 4 are characterized by single-crystal X-ray diffraction. The LiLa(PO 3 ) 4 structure was found to be isotypic with LiNd(PO 3 ) 4 . It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) Å, b=7.130(3) Å, c=9.913(3) Å, β=126.37(4)°, V=946.72(6) Å 3 and Z=4. The LiLa(PO 3 ) 4 structure was described as an alternation between spiraling chains (PO 3 ) n and (La 3+ , Li + ) cations along the b direction. The small Li + ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO 8 polyhedra and the polyphosphate chains. The jumping of Li + through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO 3 ) 4 and its crystallographic structure was investigated and the most probably transport pathway model was determined.
Electrical conductivity measurement and thermogravimetric study of chromium-doped uranium dioxide
International Nuclear Information System (INIS)
Matsui, Tsuneo; Naito, Keiji
1986-01-01
The electrical conductivity and nonstoichiometric composition of (Usub(1-y)Crsub(y))Osub(2+x) (y=0.001 and 0.05) were measured in the range 1173 -17 2 ) -2 Pa by the four inserted wires method and thermogravimetry, respectively. The electrical conductivities of (Usub(1-y)Crsub(y))Osub(2+x) (y=0.01 and 0.05) were about one-order lower than that of UOsub(2+x), probably due to the presence of the chromium ion as an electron donor. The activation energies of (Usub(0.99)Crsub(0.01))Osub(2+x) and (Usub(0.95)Crsub(0.05))Osub(2+x) for the extrinsic conduction in the low oxygen partial pressure region were calculated to be 24.7+-1.3 and 25.9+-1.0 kJ.mol -1 , respectively from the Arrhenius plots of the electrical conductivities. These small values of the activation energy of (Usub(1-y)Crsub(y))Osub(2+x) may suggest the presence of the hopping mechanism for hole conduction, similarly to the case of UOsub(2+x). From the oxygen partial pressure dependences of both the electrical conductivity and the deviation x in (Usub(1-y)Crsub(y))Osub(2+x), the defect structure was discussed with the complex defect model consisting of oxygen vacancies and two kinds of interstitial oxygens. (orig.)
Conductivity studies of Chitosan doped with different ammonium salts: Effect of ion size
Mohan, C. Raja; Senthilkumar, M.; Jayakumar, K.
2015-06-01
In the present investigation influence of ion size on the electrical properties of various ammonium salts of various concentrations doped with Chitosan liquid electrolyte has been studied. The attachment of ammonium salts with Chitosan has been confirmed through FTIR Spectrum. Polarizability is calculated from the refractive index data. Addition of ammonium salts increases the conductivity. It is also observed that increase in ion size, increases the ionic conductivity due to increase in amorphous nature of the material. Increase in concentration leads to increase in conductivity due to the presence of more number of free ions.
Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju
2012-11-29
The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.
A case study to estimate thermal conductivity of ABS in Cold Climate Chamber
Mughal, Umair Najeeb; Makarova, Marina; Virk, Muhammad Shakeel; Polanco Pinerez, Geanette
2015-01-01
Open Access (Romeo Green journal), publishers version / PDF may be used http://www.scirp.org/journal/wjet/ Non steady state thermal conductivity of ABS was estimated using an analytical approach in a Cold Climate Chamber at ?10?C and ?14?C. Two hollow cylinders of ABS of varying thickness were used to estimate the conductivity. The material was porous but the porosity was unknown. This paper is a case study to understand, if it is reasonable to estimate the thermal conductivity using th...
Study of the Pyrrol/Diphenylamine Copolymer by FT-IR spectroscopy and conductivity
Directory of Open Access Journals (Sweden)
Carlos Alberto Perez
2004-01-01
Full Text Available The main goal of this study was to analyze the physical properties of the copolymer formed by the electrochemical deposition of the polydiphenylamine (PDPA on polypyrrole (Ppy and Ppy on PDPA, in different conditions, through the characterization of the materials formed by the resonant Raman, FT-IR and conductivity techniques. The interactions among the species which are present in the new copolymer structure and the changes in electronic conductivity, were verified. The copolymer was also synthesized electrochemically in the presence of iodide species and the material was characterized by FT-IR spectroscopy and conductivity. The role of the dopant was studied in the process of charge transfer between the copolymer-dopant, acting in the stabilization of the species in the polymer backbone and the increase of the electronic conductivity.
Effect of the time window on the heat-conduction information filtering model
Guo, Qiang; Song, Wen-Jun; Hou, Lei; Zhang, Yi-Lu; Liu, Jian-Guo
2014-05-01
Recommendation systems have been proposed to filter out the potential tastes and preferences of the normal users online, however, the physics of the time window effect on the performance is missing, which is critical for saving the memory and decreasing the computation complexity. In this paper, by gradually expanding the time window, we investigate the impact of the time window on the heat-conduction information filtering model with ten similarity measures. The experimental results on the benchmark dataset Netflix indicate that by only using approximately 11.11% recent rating records, the accuracy could be improved by an average of 33.16% and the diversity could be improved by 30.62%. In addition, the recommendation performance on the dataset MovieLens could be preserved by only considering approximately 10.91% recent records. Under the circumstance of improving the recommendation performance, our discoveries possess significant practical value by largely reducing the computational time and shortening the data storage space.
Garcia, Philippe; Pizzi, Elisabetta; Dorado, Boris; Andersson, David; Crocombette, Jean-Paul; Martial, Chantal; Baldinozzi, Guido; Siméone, David; Maillard, Serge; Martin, Guillaume
2017-10-01
Electrical conductivity of UO2+x shows a strong dependence upon oxygen partial pressure and temperature which may be interpreted in terms of prevailing point defects. A simulation of this property along with deviation from stoichiometry is carried out based on a model that takes into account the presence of impurities, oxygen interstitials, oxygen vacancies, holes, electrons and clusters of oxygen atoms. The equilibrium constants for each defect reaction are determined to reproduce the experimental data. An estimate of defect concentrations and their dependence upon oxygen partial pressure can then be determined. The simulations carried out for 8 different temperatures (973-1673 K) over a wide range of oxygen partial pressures are discussed and resulting defect equilibrium constants are plotted in an Arrhenius diagram. This provides an estimate of defect formation energies which may further be compared to other experimental data or ab-initio and empirical potential calculations.
Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter
Directory of Open Access Journals (Sweden)
Ileana Wald
2012-01-01
Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.
International Nuclear Information System (INIS)
Yoo, Jong Sung; Park, Chan Oh; Park, Yong Soo
1995-01-01
The accurate determination of the fuel-cladding gap conductance as functions of rod burnup and power level may be a key to the design and safety analysis of a reactor. The incorporation of a sophisticated gap conductance model into nuclear design code for computing thermal hydraulic feedback effect has not been implemented mainly because of computational inefficiency due to complicated behavior of gap conductance. To avoid the time-consuming iteration scheme, simplification of the gap conductance model is done for the current design model. The simplified model considers only the heat conductance contribution to the gap conductance. The simplification is made possible by direct consideration of the gap conductivity depending on the composition of constituent gases in the gap and the fuel-cladding gap size from computer simulation of representative power histories. The simplified gap conductance model is applied to the various fuel power histories and the predicted gap conductances are found to agree well with the results of the design model
Nerve conduction in relation to vibration exposure - a non-positive cohort study
Directory of Open Access Journals (Sweden)
Nilsson Tohr
2010-07-01
Full Text Available Abstract Background Peripheral neuropathy is one of the principal clinical disorders in workers with hand-arm vibration syndrome. Electrophysiological studies aimed at defining the nature of the injury have provided conflicting results. One reason for this lack of consistency might be the sparsity of published longitudinal etiological studies with both good assessment of exposure and a well-defined measure of disease. Against this background we measured conduction velocities in the hand after having assessed vibration exposure over 21 years in a cohort of manual workers. Methods The study group consisted of 155 male office and manual workers at an engineering plant that manufactured pulp and paper machinery. The study has a longitudinal design regarding exposure assessment and a cross-sectional design regarding the outcome of nerve conduction. Hand-arm vibration dose was calculated as the product of self-reported occupational exposure, collected by questionnaire and interviews, and the measured or estimated hand-arm vibration exposure in 1987, 1992, 1997, 2002, and 2008. Distal motor latencies in median and ulnar nerves and sensory nerve conduction over the carpal tunnel and the finger-palm segments in the median nerve were measured in 2008. Before the nerve conduction measurement, the subjects were systemically warmed by a bicycle ergometer test. Results There were no differences in distal latencies between subjects exposed to hand-arm vibration and unexposed subjects, neither in the sensory conduction latencies of the median nerve, nor in the motor conduction latencies of the median and ulnar nerves. Seven subjects (9% in the exposed group and three subjects (12% in the unexposed group had both pathological sensory nerve conduction at the wrist and symptoms suggestive of carpal tunnel syndrome. Conclusion Nerve conduction measurements of peripheral hand nerves revealed no exposure-response association between hand-arm vibration exposure and
Safe affordable fission engine (SAFE 30) module conductivity test thermal model correlation
International Nuclear Information System (INIS)
Roman, Jose
2001-01-01
The SAFE 30 is a simple, robust space fission power system that is comprised of several independent modules. Each module contains 4 fuel tubes bonded to a central heatpipe. Fission energy is conducted from the fuel tubes to the heatpipe, which in turn transfers the energy to a power conversion system. This paper benchmarks a thermal model of the SAFE 30 with actual test data from simulated SAFE 30 module tests. Two 'dummy' SAFE 30 modules were fabricated - each consisted of 4 1-inch dia. tubes (simulating the fuel tubes) bonded to a central '1' dia. tube (simulating the heatpipe). In the first module the fuel tubes were simply brazed to the heatpipe along the line of contact (leaving void space in the interstices), and in the second module the tubes and heatpipe were brazed via tri-cusps that completely fill the interstices between the tubes. In these tests, fission energy is simulated by placing resistance heaters within each of the 4 fuel tubes. The tests were conducted in a vacuum chamber in 4 configurations: tri-cusps filled with and without an outer insulation wrap, and no tri-cusps with and without an outer insulation wrap. The baseline SAFE 30 configuration uses the brazed tri-cusps. During the tests, the power applied to the heaters was varied in a stepwise fashion, until a steady-state temperature profile was reached. These temperature levels varied between 773 K and 1073 K. To benchmark the thermal model, the input energy and chamber surface temperature were used as boundary conditions for the model. The analytical results from the nodes at the same location as the test thermocouples were plotted again test data to determinate the accuracy of the analysis. The unknown variables on the analysis are the radiation emissivity of the pipe and chamber and the radiation view factor between the module and the chamber. A correlation was determined using a parametric analysis by varying the surface emissivity and view factor until a good match was reached. This
Jackisch, Conrad; Demand, Dominic; Allroggen, Niklas; Loritz, Ralf; Zehe, Erwin
2017-04-01
In order to discuss hypothesis testing in hydrology, the question of the solid foundation of such tests has to be answered. But how certain are we about our measurements of the components of the water balance and the states and dynamics of the complex systems? What implicit assumptions or bias are already embedded in our perception of the processes? How can we find light in the darkness of heterogeneity? We will contribute examples from experimental findings, modelling approaches and landscape analysis to the discussion. Example soil moisture and the soil continuum: The definition of soil moisture as fraction of water in the porous medium assumes locally well-mixed conditions. Moreover, a unique relation of soil water retention presumes instant local thermodynamic equilibrium in the pore water arrangement. We will show findings from soil moisture responses to precipitation events, from irrigation experiments, and from a model study of initial infiltration velocities. The results highlight, that the implicit assumption relating soil moisture state dynamics with actual soil water flow is biased towards the slow end of the actual velocity distribution and rather blind for preferential flow acting in a very small proportion of the pore space. Moreover, we highlight the assumption of a well-defined continuum during the extrapolation of point-scale measurements and why spatially and temporally continuous observation techniques of soil water states are essential for advancing our understanding and development of subsurface process theories. Example hydraulic conductivity: Hydraulic conductivity lies at the heart of hydrological research and modelling. Its values can range across several orders of magnitude at a single site alone. Yet, we often consider it a crisp, effective parameter. We have conducted measurements of soil hydraulic conductivity in the lab and in the field. Moreover, we assessed infiltration capacity and conducted plot-scale irrigation experiments to
International Nuclear Information System (INIS)
Abbas-Aksil, T.; Benamara, S.
2015-01-01
Lyophilized powder (LP) from Algerian arbutus wild berries (Arbutus unedo L.) was obtained. This present paper reports about the dissolution (releasing) properties of LP-based tablets, evaluated through the electric conductivity (EC) of distilled water which is employed as surrounding medium, at three different temperatures (291, 298 and 309 K). In addition to this, secondary physicochemical characteristics such as elementary analysis, color and compressibility were evaluated. Regarding the modeling of ionic transfer, among the three tested models, namely Peleg, Singh et al. and Singh and Kulshestha, the latter seems to be the most appropriate (R2 = 0.99), particularly in the case of compacted tablets under 2000 Pa. The temperature dependence of the dissolution process was also studied applying Arrhenius equation (R2>0.8) which allowed to deduce the activation energy, ranging from 18.7 to 21.4 kJ.mol -1 according to the model and compression force employed. (author)
Quantum hall conductivity in a Landau type model with a realistic geometry II
International Nuclear Information System (INIS)
Chandelier, F.; Georgelin, Y.; Masson, T.; Wallet, J.-C.
2004-01-01
We use a mathematical framework that we introduced in a previous paper to study geometrical and quantum mechanical aspects of a Hall system with finite size and general boundary conditions. Geometrical structures control possibly the integral or fractional quantization of the Hall conductivity depending on the value of NB/2π (N is the number of charge carriers and B is the magnetic field). When NB/2π is irrational, we show that monovaluated wave functions can be constructed only on the graph of a free group with two generators. When NB/2π is rational, the relevant space becomes a punctured Riemann surface. We finally discuss our results from a phenomenological viewpoint
Electrical conductivity and shear viscosity of quark gluon plasma in a quasiparticle model
International Nuclear Information System (INIS)
Srivastava, P.K.; Mohanty, B.
2014-01-01
Relativistic heavy-ion collisions (HIC) have reported the formation of a strongly coupled quark gluon plasma (sQGP). To study the properties of this sQGP is the main focus nowadays. Among these the shear viscosity (η) and electrical conductivity (σ el ) could reflect the transport properties of the medium. By studying the shear viscosity or more specifically shear viscosity to entropy density ratio (η/s), one can understand the nature of interactions among the constituents of the produced medium, it gives a measure of the fluidity. Electrical conductivity represents the linear response of the system to an applied external electric field. The basic question one could ask is that whether the matter created at heavy ion collision experiment is an electrical conductor or an insulator. Recent lattice QCD as well as phenomenological studies have shown that these transport quantities show some kind of minimum in its variation with respect to temperature near the temperature corresponding to the transition from hadronic phase to quark-gluon phase
International Nuclear Information System (INIS)
Muresan, C.
2005-01-01
numerical solution of the Radiative Transfer Equation in diffused part in the case of a mono-dimensional plane geometry. The directional discretizations of each layer are selected in such a way that the discrete directions of one of the layers correspond to those refracted of the close layer and this makes it possible to avoid the use of approximations related to non coincidence of the discrete directions of a layer with those refracted by the close layer. Directional quadratures are then established in an adaptive way in each layer and for each spectral frequency. The results obtained are validated by an approach of Monte Carlo type. The coupling of this model with a Low Reynolds number RANS model will be carried out. This will be done in order to study the convective heat transfers in natural convection for configurations of double facade integration under consideration within the framework of PRI CNRS. The comparison of this model is carried out for experimental configurations of vertical channel type uniformly heated in natural convection. The prospects for this stage are multiple and consist of analyzing the influence of the mode of flow on the thermal pulling of the hybrid components, the effects of the positioning of modules statement, the air gap between the two frontages and the boundary conditions thermal generated by the modules. Lastly, in order to supplement the energy balance of such components and more particularly that governs the thermal behavior of a photosensitive cell, the electric phenomenon of conversion is approached in adequacy with the level of modeling of the coupled thermal transfers radiation - conduction within a PV component. To carry this out, we can consider the local power of spectral radiation absorbed and converted into electric output. (author)
Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.
2013-12-01
In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-04-01
The study, conducted by The M. W. Kellog Company, was funded by the U.S. Trade and Development Agency on behalf of the National Gas Company of Trinidad and Tobago. It shows the results of Project Definition Phase which was implemented as a follow-up to two previous feasibility studies which were conducted for a LNG plant in Trinidad. The objective of this report is to develop a project design basis and implementation plan plus a cost estimate. The study is divided into the following sections: (1) Introduction; (2) Project Design Basis; (3) Seismic Hazard Assessment; (4) Geotechnical; and (5) Environmental Assessment.
International Nuclear Information System (INIS)
Gu, T.; Medy, J.-R.; Volpi, F.; Castelnau, O.; Forest, S.; Hervé-Luanco, E.; Lecouturier, F.; Proudhon, H.; Renault, P.-O.
2017-01-01
Nanostructured and architectured copper niobium composite wires are excellent candidates for the generation of intense pulsed magnetic fields (> 90T) as they combine both high electrical conductivity and high strength. Multi-scaled Cu-Nb wires can be fabricated by accumulative drawing and bundling (a severe plastic deformation technique), leading to a multiscale, architectured and nanostructured microstructure providing a unique set of properties. This work presents a comprehensive multiscale study to predict the anisotropic effective electrical conductivity based on material nanostructure and architecture. Two homogenization methods are applied: a mean-field theory and a full-field approach. The size effect associated with the microstructure refinement is taken into account in the definition of the conductivity of each component in the composites. The multiscale character of the material is then accounted for through an iterative process. Both methods show excellent agreement with each other. The results are further compared, for the first time, with experimental data obtained by the four-point probe technique, and also show excellent agreement. Finally, the qualitative and quantitative understanding provided by these models demonstrates that the microstructure of Cu-Nb wires has a significant effect on the electrical conductivity.
Heat Conductivity Model in the Rock Masses of the Kochani Depression
International Nuclear Information System (INIS)
Karakashev, Deljo; Delipetrov, Todor
2006-01-01
The numerous regional geologic and hydrogeological explorations carried out in the Kochani depression by the end of the last century and those carried out lately indicate that the area possesses large thermal potentiality. The physical analysis presents one physical model which explain the thermal flow and heat conductivity who fluidity yielding in the rock masses of the Kochani depression. The models offer a clear picture on the geothermal energy, which becomes important for the economics in developing and developed countries. The results obtained and the calculations carried out on the heat flow in individual geothermal zones in the Kochani depression made it possible to conclude that the central zone possesses the highest heat flow. This points out to the higher heat circulation in the central part than in the periphery. Based on this it can be said that the major source and the main heat supply in the valley comes from the central part. The north-eastern part of the depression distinguished as a geothermal source is of high capacity in which large amounts of geothermal energy can be exploited. On the other hand, the south-west of the depression is the poorest with regard to thermal energy and heat flow in the rocks compared with the other two zones in the depression. (Author)
Gerster, Samuel; Namer, Barbara; Elam, Mikael; Bach, Dominik R
2018-02-01
Skin conductance responses (SCR) are increasingly analyzed with model-based approaches that assume a linear and time-invariant (LTI) mapping from sudomotor nerve (SN) activity to observed SCR. These LTI assumptions have previously been validated indirectly, by quantifying how much variance in SCR elicited by sensory stimulation is explained under an LTI model. This approach, however, collapses sources of variability in the nervous and effector organ systems. Here, we directly focus on the SN/SCR mapping by harnessing two invasive methods. In an intraneural recording experiment, we simultaneously track SN activity and SCR. This allows assessing the SN/SCR relationship but possibly suffers from interfering activity of non-SN sympathetic fibers. In an intraneural stimulation experiment under regional anesthesia, such influences are removed. In this stimulation experiment, about 95% of SCR variance is explained under LTI assumptions when stimulation frequency is below 0.6 Hz. At higher frequencies, nonlinearities occur. In the intraneural recording experiment, explained SCR variance is lower, possibly indicating interference from non-SN fibers, but higher than in our previous indirect tests. We conclude that LTI systems may not only be a useful approximation but in fact a rather accurate description of biophysical reality in the SN/SCR system, under conditions of low baseline activity and sporadic external stimuli. Intraneural stimulation under regional anesthesia is the most sensitive method to address this question. © 2017 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.
Coggan, Jay S.; Ocker, Gabriel K.; Sejnowski, Terrence J.; Prescott, Steven A.
2011-10-01
Neurons rely on action potentials, or spikes, to relay information. Pathological changes in spike generation likely contribute to certain enigmatic features of neurological disease, like paroxysmal attacks of pain and muscle spasm. Paroxysmal symptoms are characterized by abrupt onset and short duration, and are associated with abnormal spiking although the exact pathophysiology remains unclear. To help decipher the biophysical basis for 'paroxysmal' spiking, we replicated afterdischarge (i.e. continued spiking after a brief stimulus) in a minimal conductance-based axon model. We then applied nonlinear dynamical analysis to explain the dynamical basis for initiation and termination of afterdischarge. A perturbation could abruptly switch the system between two (quasi-)stable attractor states: rest and repetitive spiking. This bistability was a consequence of slow positive feedback mediated by persistent inward current. Initiation of afterdischarge was explained by activation of the persistent inward current forcing the system to cross a saddle point that separates the basins of attraction associated with each attractor. Termination of afterdischarge was explained by the attractor associated with repetitive spiking being destroyed. This occurred when ultra-slow negative feedback, such as intracellular sodium accumulation, caused the saddle point and stable limit cycle to collide; in that regard, the active attractor is not truly stable when the slowest dynamics are taken into account. The model also explains other features of paroxysmal symptoms, including temporal summation and refractoriness.
Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; T.J. Callahan; Ge Sun; J.E. Nettles; J.E. Parsons; M. Miwa
2005-01-01
The U.S. Department of Agriculture Forest Service Center for Forested Wetlands Research has conducted or cooperated in studies designed to improve understanding of fundamental hydrologic and biogeochemical processes that link aquatic and terrestrial ecosystems. Five of these studies are discussed here. The first is based on observations made on long-term experimental...
42 CFR 90.7 - Decision to conduct health effects study.
2010-10-01
... occurred, and any possible health effects resulting from such exposure. (b) Should ATSDR decide, in its... 42 Public Health 1 2010-10-01 2010-10-01 false Decision to conduct health effects study. 90.7... ASSESSMENTS AND HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES ADMINISTRATIVE...
A preliminary study on the thermal conductivity and flammability of WPC based on some tropical woods
International Nuclear Information System (INIS)
Chia, L.H.L.; Chua, P.H.; Lee, E.E.N.
1985-01-01
Selected local woods and their wood-polymer combinations or composites (WPC) were tested for their thermal conductivity and their fire resistance. WPC were prepared by polymerizing monomers 'in situ' in oven dried woods by gamma radiation. The monomers included acrylonitrile (AN), 60% styrene-40% acrylonitrile (STAN), methyl methacrylate (MMA), 95% methyl methacrylate-5% dioxane (MD), and vinylidene chloride (VDC). A reduction in thermal conductivity was exhibited by all the composites prepared. W-PAN showed the greatest reduction in thermal conductivity and W-PSTAN in general showed the least. An explanation is suggested for this behaviour. The polymers PMMA and PMD were found to enhance flammability of the woods while PVDC, PAN, and PSTAN imparted fire resistance to the woods. Of the six local woods studied, Ramin-and-Keruing-polymer composites showed the highest flammable tendencies obtained. The correlation of thermal conductivity to flammability is discussed. (author)
Palmieri, Arianna; Kleinbub, Johann R; Calvo, Vincenzo; Benelli, Enrico; Messina, Irene; Sambin, Marco; Voci, Alberto
2018-03-01
Physiological synchronization (PS) is a phenomenon of simultaneous activity between two persons' physiological signals. It has been associated with empathy, shared affectivity, and efficacious therapeutic relationships. The aim of the present study was to explore the possible connections between PS and the attachment system, seeking preliminary evidence of this link by means of an experimental manipulation of the sense of attachment security in psychotherapists according to a protocol by Mikulincer and Shaver (2001), which has been proven to elicit empathetic behavior. We compared the synchronization of skin-conductance signals in brief psychological interviews between 18 psychodynamic therapists and 18 healthy volunteers. A sense of attachment-security priming was administered to half of the therapists, whereas the other half received a positive-affect control prime. Lag analysis was performed to investigate the "leading" or "following" attitudes of the participants in the two conditions. Mixed-model regressions and evidence-ratio model comparisons were used to investigate the effects of the manipulation on PS. Therapist attachment anxiety and avoidance traits were considered covariates. The attachment-security prime showed a significant effect on PS lag dynamics, but not on overall PS amount. Lag analysis showed that the therapists in the attachment-security condition were significantly more prone to assume a leading attitude in the physiological coupling than the therapists in the control condition. Therapist attachment anxiety and avoidance had no apparent effect. Our result paves the way for further exploration of the clinical relationship from a physiological standpoint. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
International Nuclear Information System (INIS)
Ahn, Byung Tae.
1989-01-01
The first part of this work studies lithium-conducting sulfide glasses for battery applications, while the second part studies the thermodynamic properties of a superconducting oxide compound by using an oxide electrolyte. Lithium conducting glasses based on the SiS 2 -Li 2 S system are possible solid electrolytes for high-energy-density lithium batteries. The foremost requirement for solid electrolytes is that they should have high ionic conductivities. Unfortunately, most crystalline lithium conductors have low ionic conductivities at room temperature. However, glass ionic conductors show higher ionic conductivities than do crystalline forms of the same material. In addition to higher ionic conductivities, glasses appear to have several advantages over crystalline materials. These advantages include isotropic conductivity, absence of grain boundary effects, ease of glass forming, and the potential for a wide range of stability to oxidizing and reducing conditions. Using pyrolitic graphite-coated quartz ampoules, new ternary compounds and glasses in the SiS 2 -Li 2 S system were prepared. Several techniques were used to characterize the materials: powder x-ray diffraction, differential thermal analysis, differential scanning calorimetry, and AC impedance spectroscopy. The measured lithium conductivity of the sulfide glasses was one of the highest among the known solid lithium conductors. Measuring the equilibrium open circuit voltages assisted in determining the electrochemical stabilities of the ternary compounds and glasses with respect to pure Li. A solid-state ionic technique called oxygen coulometric titration was used to measure the thermodynamic stability, the oxygen stoichiometry, and the effects of the oxygen stoichiometry, and the effects of the oxygen stoichiometry and the cooling rate on superconductivity of the YBa 2 Cu 3 O 7-x compound were investigated
Directory of Open Access Journals (Sweden)
Bo Dong
2015-01-01
Full Text Available During geomagnetic disturbances, the telluric currents which are driven by the induced electric fields will flow in conductive Earth. An approach to model the Earth conductivity structures with lateral conductivity changes for calculating geoelectric fields is presented in this paper. Numerical results, which are obtained by the Finite Element Method (FEM with a planar grid in two-dimensional modelling and a solid grid in three-dimensional modelling, are compared, and the flow of induced telluric currents in different conductivity regions is demonstrated. Then a three-dimensional conductivity structure is modelled and the induced currents in different depths and the geoelectric field at the Earth’s surface are shown. The geovoltages by integrating the geoelectric field along specific paths can be obtained, which are very important regarding calculations of geomagnetically induced currents (GIC in ground-based technical networks, such as power systems.
Thompson, Anne; Hollis, Chris; Dagger, David Richards
2003-04-01
This study examines the associations, and possible causal relationship, between mothers' authoritarian attitudes to discipline and child behaviour using cross-sectional and prospective data from a large population sample surveyed in the 1970 British Cohort Study. Results show a clear linear relationship between the degree of maternal approval of authoritarian child-rearing attitudes and the rates of conduct problems at age 5 and age 10. This association is independent of the confounding effects of socio-economic status and maternal psychological distress. Maternal authoritarian attitudes independently predicted the development of conduct problems 5 years later at age 10. The results of this longitudinal study suggest that authoritarian parenting attitudes expressed by mothers may be of significance in the development of conduct problems.
Study of temperature-dependent charge conduction in silicon-nanocrystal/SiO{sub 2} multilayers
Energy Technology Data Exchange (ETDEWEB)
Mavilla, Narasimha Rao; Chavan, Vinayak [National Centre for Photovoltaic Research and Education (NCPRE), Powai, Mumbai 400 076 (India); Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Solanki, Chetan Singh [National Centre for Photovoltaic Research and Education (NCPRE), Powai, Mumbai 400 076 (India); Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Vasi, Juzer [National Centre for Photovoltaic Research and Education (NCPRE), Powai, Mumbai 400 076 (India); Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)
2016-08-01
Silicon-nanocrystals (Si-NCs) realized by SiO{sub x} {sub <} {sub 2}/SiO{sub 2} multilayer (ML) approach have shown promise for realizing tightly-controlled dimensions, thus efficiently exploiting the size-dependent quantum effects for device applications. Unfortunately, the confining insulating barriers (SiO{sub 2} sublayers), instrumental for realizing quantum size effects in Si-NC MLs, can also hinder the charge conduction which is crucial for device applications including Si-NC based tandem solar cells and multi-exciton solar cells. Owing to this, a comprehensive study of conduction mechanisms has been carried out using a thorough analysis of temperature-dependent dark I-V measurements of SiO{sub 2} thin film and Si-NC multilayer samples fabricated by Inductively Coupled Plasma CVD (ICPCVD). As the ML samples consisted of interleaved SiO{sub 2} sublayers, current in SiO{sub 2} thin film has initially been studied to understand the conduction properties of bulk ICPCVD SiO{sub 2}. For 21 nm thick SiO{sub 2} film, conduction is observed to be dominated by Fowler–Nordheim (FN) tunneling for higher electric fields (> 8 MV/cm; independent of temperature), while for lower electric fields (5–8 MV/cm) at higher temperatures, the trap-related Generalized Poole–Frenkel (GPF) is dominant. This signified the role of traps in modifying the conduction in bulk ICPCVD SiO{sub 2} films. We then present the conduction in ML samples. For multilayer samples with SiO{sub 2} sublayer thickness of 1.5 nm and 2.5 nm, Direct Tunneling (DT) is observed to be dominant, while for SiO{sub 2} sublayer thickness of 3.5 nm, Space Charge Limited Conduction (SCLC) with exponential trap distribution is found to be the dominant conduction mechanism. This signifies the role of traps in modifying the conduction in Si-NC multilayer samples and SiO{sub 2} sublayer thickness dependence. - Highlights: • Electrical conduction in SiO{sub 2} film & Si-nanocrystal layers (Si-NCs) is reported. • Si
Haider, Mohammad Faisal; Haider, Md. Mushfique; Yasmeen, Farzana
2016-07-01
Heterogeneous materials, such as composites consist of clearly distinguishable constituents (or phases) that show different electrical properties. Multifunctional composites have anisotropic electrical properties that can be tailored for a particular application. The effective anisotropic electrical conductivity of composites is strongly affected by many parameters including volume fractions, distributions, and orientations of constituents. Given the electrical properties of the constituents, one important goal of micromechanics of materials consists of predicting electrical response of the heterogeneous material on the basis of the geometries and properties of the individual phases, a task known as homogenization. The benefit of homogenization is that the behavior of a heterogeneous material can be determined without resorting or testing it. Furthermore, continuum micromechanics can predict the full multi-axial properties and responses of inhomogeneous materials, which are anisotropic in nature. Effective electrical conductivity estimation is performed by using classical micromechanics techniques (composite cylinder assemblage method) that investigates the effect of the fiber/matrix electrical properties and their volume fractions on the micro scale composite response. The composite cylinder assemblage method (CCM) is an analytical theory that is based on the assumption that composites are in a state of periodic structure. The CCM was developed to extend capabilities variable fiber shape/array availability with same volume fraction, interphase analysis, etc. The CCM is a continuum-based micromechanics model that provides closed form expressions for upper level length scales such as macro-scale composite responses in terms of the properties, shapes, orientations and constituent distributions at lower length levels such as the micro-scale.
Directory of Open Access Journals (Sweden)
Basareddy Sujatha
2017-01-01
Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.
a.c. conductance study of polycrystal C{sub 60}
Energy Technology Data Exchange (ETDEWEB)
Yan Feng [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Wang Yening [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Huang Yineng [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Gu Min [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Zhang Qingming [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure; Shen Huimin [Nanjing Univ. (China). Nat. Lab. of Solid State Microstructure
1995-06-05
The a.c. (1
Studies on the under ground heating in greenhouse. Measuring of thermal conductivity of soil
Energy Technology Data Exchange (ETDEWEB)
Iwao, Toshio; Takeyama, Koichi
1987-12-21
The underground heating system is an effective method of heating a greenhouse, because the system controls directly the temperature of soil near the roots. The thermal conductivity of soil was measured by the steady-state method, and the heat transfer characteristics in soil were examined in this study. In measuring the thermal conductivity through experiments, firstly the thermal conductivity of a reference plate was measured by the steady-state method, then on the basis of the above mentioned result, the thermal conuctivity of soil was obtained by the comparative method. Toyoura standard sands with particle size of 0.21-0.25mm were used as the sample. As the experiment result, the relations between the thermal conductivity of the reference plate (glass) and temperature was made clear, furthermore through the measurements using these relations, it was clarified that the apparent thermal conductivity is influenced by soil water content. It seems that the difference between the apparent thermal conductivity and the real one is caused mainly by a migration of latent heat with a migration of steam. (10 figs, 7 refs)
Lori, S; Bertini, Giovanna; Bastianelli, M; Gabbanini, S; Gualandi, D; Molesti, E; Dani, C
2018-04-10
To study the evolution of sensory-motor nerves in the upper and lower limbs in neurologically healthy preterm infants and to use sensory-motor studies to compare the rate of maturation in preterm infants at term age and full-term healthy neonates. The study comprised 26 neurologically normal preterm infants born at 23-33 weeks of gestational age, who underwent sensory nerve conduction and motor nerve conduction studies from plantar medial and median nerves and from tibial and ulnar nerves, respectively. We repeated the same neurophysiological studies in 19 of the preterm infants every 2 weeks until postnatal term age. The data from the preterm infants at term was matched with a group of ten full-term babies a few days after birth. The motor nerve conduction velocity of the tibial and ulnar nerves showed progressive increases in values in relation to gestational age, but there was a decrease of values in distal latencies and F wave latencies. Similarly, there was a gradual increase of sensory nerve conduction velocity values of the medial plantar