WorldWideScience

Sample records for modeling structure-property relationships

  1. Cement-aggregate compatibility and structure property relationships including modelling

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, H.M.; Xi, Y.

    1993-07-15

    The role of aggregate, and its interface with cement paste, is discussed with a view toward establishing models that relate structure to properties. Both short (nm) and long (mm) range structure must be considered. The short range structure of the interface depends not only on the physical distribution of the various phases, but also on moisture content and reactivity of aggregate. Changes that occur on drying, i.e. shrinkage, may alter the structure which, in turn, feeds back to alter further drying and shrinkage. The interaction is dynamic, even without further hydration of cement paste, and the dynamic characteristic must be considered in order to fully understand and model its contribution to properties. Microstructure and properties are two subjects which have been pursued somewhat separately. This review discusses both disciplines with a view toward finding common research goals in the future. Finally, comment is made on possible chemical reactions which may occur between aggregate and cement paste.

  2. Quantitative structure-property relationship modeling of Grätzel solar cell dyes.

    Science.gov (United States)

    Venkatraman, Vishwesh; Åstrand, Per-Olof; Alsberg, Bjørn Kåre

    2014-01-30

    With fossil fuel reserves on the decline, there is increasing focus on the design and development of low-cost organic photovoltaic devices, in particular, dye-sensitized solar cells (DSSCs). The power conversion efficiency (PCE) of a DSSC is heavily influenced by the chemical structure of the dye. However, as far as we know, no predictive quantitative structure-property relationship models for DSSCs with PCE as one of the response variables have been reported. Thus, we report for the first time the successful application of comparative molecular field analysis (CoMFA) and vibrational frequency-based eigenvalue (EVA) descriptors to model molecular structure-photovoltaic performance relationships for a set of 40 coumarin derivatives. The results show that the models obtained provide statistically robust predictions of important photovoltaic parameters such as PCE, the open-circuit voltage (V(OC)), short-circuit current (J(SC)) and the peak absorption wavelength λ(max). Some of our findings based on the analysis of the models are in accordance with those reported in the literature. These structure-property relationships can be applied to the rational structural design and evaluation of new photovoltaic materials.

  3. Understanding quantitative structure-property relationships uncertainty in environmental fate modeling.

    Science.gov (United States)

    Sarfraz Iqbal, M; Golsteijn, Laura; Öberg, Tomas; Sahlin, Ullrika; Papa, Ester; Kovarich, Simona; Huijbregts, Mark A J

    2013-04-01

    In cases in which experimental data on chemical-specific input parameters are lacking, chemical regulations allow the use of alternatives to testing, such as in silico predictions based on quantitative structure-property relationships (QSPRs). Such predictions are often given as point estimates; however, little is known about the extent to which uncertainties associated with QSPR predictions contribute to uncertainty in fate assessments. In the present study, QSPR-induced uncertainty in overall persistence (POV ) and long-range transport potential (LRTP) was studied by integrating QSPRs into probabilistic assessments of five polybrominated diphenyl ethers (PBDEs), using the multimedia fate model Simplebox. The uncertainty analysis considered QSPR predictions of the fate input parameters' melting point, water solubility, vapor pressure, organic carbon-water partition coefficient, hydroxyl radical degradation, biodegradation, and photolytic degradation. Uncertainty in POV and LRTP was dominated by the uncertainty in direct photolysis and the biodegradation half-life in water. However, the QSPRs developed specifically for PBDEs had a relatively low contribution to uncertainty. These findings suggest that the reliability of the ranking of PBDEs on the basis of POV and LRTP can be substantially improved by developing better QSPRs to estimate degradation properties. The present study demonstrates the use of uncertainty and sensitivity analyses in nontesting strategies and highlights the need for guidance when compounds fall outside the applicability domain of a QSPR.

  4. Chlorophenol sorption on multi-walled carbon nanotubes: DFT modeling and structure-property relationship analysis.

    Science.gov (United States)

    Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy

    2017-02-01

    The presence of chlorophenols in drinking water can be hazardous to human health. Understanding the mechanisms of adsorption under specific experimental conditions would be beneficial when developing methods to remove toxic substances from drinking water during water treatment in order to limit human exposure to these contaminants. In this study, we investigated the sorption of chlorophenols on multi-walled carbon nanotubes using a density functional theory (DFT) approach. This was applied to study selected interactions between six solvents, five types of nanotubes, and six chlorophenols. Experimental data were used to construct structure-adsorption relationship (SAR) models that describe the recovery process. Specific interactions between solvents and chlorophenols were taken into account in the calculations by using novel specific mixture descriptors.

  5. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling

    Science.gov (United States)

    Martinetti, Luca

    relation between the observed power-law exponent and molecular structure was established. The measured low-frequency response, originating from the incipient glass transition of the A domains, was exploited and extrapolated to lower frequencies via a sequential application of the fractional Maxwell model and the fractional Zener model. With only a few, physically meaningful material parameters a realistic description of the A--B--A self-similar relaxation was obtained over a frequency range much broader than the experimental window and not accessible via time-temperature superposition. The relationship between large-strain response and network structure of A--B--A triblocks was investigated, by examining (1) the effect of linear relaxation mechanisms on the tensile behavior, (2) the sources of elastic and viscoelastic nonlinearities, and (3) the strain rate dependence of the ultimate properties. For the first time in the literature, the complex high-dimensional rheological signature of chewing gum was analyzed, especially in response to nonlinear and unsteady deformations in both shear and extension. A unique rheological fingerprint was obtained that is sufficient to provide a new robust definition of chewing gum that is independent of specific molecular composition. (Abstract shortened by ProQuest.).

  6. Multi-objective Modeling and Assessment of Partition Properties: A GA-Based Quantitative Structure-Property Relationship Approach

    Institute of Scientific and Technical Information of China (English)

    印春生; 刘新会; 郭卫民; 刘树深; 韩朔暌; 王连生

    2003-01-01

    In this work a multi-objective quantitative structure-property relationship (QSPR) analysis approach was reported based on the study on three partition properties of 50 aromatic sulfur-containing carboxylates. Here multi-objectives ( properties )were taken as a vector for QSPR modeling. The quantitative correlations for partition properties were developed using a ge-netic algorithm-based variable-selection approach with quantum descriptors, derived from AM1-based calculations.With the QSPR models, the aqueous solubmty, octanol/water partition coefficients and reversed-phase HPLC capacity factors of sulfur-contalning compounds were estimated and predicted.Using GA-based multivariate linear regression with cross-vali-dation procedure, a set of the most promising descriptors was selegted from a pool of 28 quantum chemical semi-empirical de-scriptors, incloding steric and electronic types, to integrally build QSPR models. The selected molecular descriptors includ-ed the net charges on carboxyl group (Qoc), the 2nd power of net ehnrges on nitrogen atoms (QN2), the net atomic charge on the sulfur atoms (Qs), the van der Waals volume of molecule (V), the most positive net atomic charge on hydrogen atoms(QH) and the measure of polarity and polarizability (π),which were main factors affecting the distribution processes of the compounds under study. The statistically best QSPR models of six descriptors were simultaneously obtained by GA-based linear regression analysis. With the selected descriptors and the QSPR equations, mechanisms of partition action of the Sulfur-containing carboxylates were able to be investigated and inter-preted.

  7. Quantitative Structure-Property Relationship Research of Main Group Compounds

    Institute of Scientific and Technical Information of China (English)

    LEI Kelin; WANG Zhendong

    2006-01-01

    New approaches were applied to improve the molecular connectivity indices mχv. The vertex valence is redefined and it was reasonable for hydrogen atom. The distances between vertices were used to propose novel connectivity topological indexes. The vertices and the distances in a molecular graph were taken into account in this definition. The linear regression was used to develop the structural property models. The results indicate that the novel connectivity topological indexes are useful model parameters for Quantitative Structure-Property Relationship(QSPR) analysis.

  8. Structure Property Relationships of Carboxylic Acid Isosteres.

    Science.gov (United States)

    Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo

    2016-04-14

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.

  9. The Relationship Between Star-formation Activity and Galaxy Structural Properties in CANDELS and a Semi-analytic Model

    CERN Document Server

    Brennan, Ryan; Somerville, Rachel S; Barro, Guillermo; Bluck, Asa F L; Taylor, Edward N; Wuyts, Stijn; Bell, Eric F; Dekel, Avishai; Faber, Sandra; Ferguson, Henry C; Koekemoer, Anton M; Kurczynski, Peter; McIntosh, Daniel H; Newman, Jeffrey A; Primack, Joel

    2016-01-01

    We study the correlation of galaxy structural properties with their location relative to the SFR-M* correlation, also known as the star formation "main sequence" (SFMS), in the CANDELS and GAMA surveys and in a semi-analytic model (SAM) of galaxy formation. We first study the distribution of median Sersic index, effective radius, star formation rate (SFR) density and stellar mass density in the SFR-M* plane. We then define a redshift dependent main sequence and examine the medians of these quantities as a function of distance from this main sequence, both above (higher SFRs) and below (lower SFRs). Finally, we examine the distributions of distance from the main sequence in bins of these quantities. We find strong correlations between all of these galaxy structural properties and the distance from the SFMS, such that as we move from galaxies above the SFMS to those below it, we see a nearly monotonic trend towards higher median Sersic index, smaller radius, lower SFR density, and higher stellar density. In the...

  10. The relationship between star formation activity and galaxy structural properties in CANDELS and a semi-analytic model

    Science.gov (United States)

    Brennan, Ryan; Pandya, Viraj; Somerville, Rachel S.; Barro, Guillermo; Bluck, Asa F. L.; Taylor, Edward N.; Wuyts, Stijn; Bell, Eric F.; Dekel, Avishai; Faber, Sandra; Ferguson, Henry C.; Koekemoer, Anton M.; Kurczynski, Peter; McIntosh, Daniel H.; Newman, Jeffrey A.; Primack, Joel

    2017-02-01

    We study the correlation of galaxy structural properties with their location relative to the SFR-M* correlation, also known as the star formation `star-forming main sequence' (SFMS), in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey and Galaxy and Mass Assembly Survey and in a semi-analytic model (SAM) of galaxy formation. We first study the distribution of median Sérsic index, effective radius, star formation rate (SFR) density and stellar mass density in the SFR-M* plane. We then define a redshift-dependent main sequence and examine the medians of these quantities as a function of distance from this main sequence, both above (higher SFRs) and below (lower SFRs). Finally, we examine the distributions of distance from the main sequence in bins of these quantities. We find strong correlations between all of these galaxy structural properties and the distance from the SFMS, such that as we move from galaxies above the SFMS to those below it, we see a nearly monotonic trend towards higher median Sérsic index, smaller radius, lower SFR density, and higher stellar density. In the SAM, bulge growth is driven by mergers and disc instabilities, and is accompanied by the growth of a supermassive black hole which can regulate or quench star formation via active galactic nucleus feedback. We find that our model qualitatively reproduces the trends described above, supporting a picture in which black holes and bulges co-evolve, and active galactic nucleus feedback plays a critical role in moving galaxies off of the SFMS.

  11. Structure Property Relationships of Biobased Epoxy Resins

    Science.gov (United States)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  12. Quantitative structure-property relationship modeling of water-to-wet butyl acetate partition coefficient of 76 organic solutes using multiple linear regression and artificial neural network.

    Science.gov (United States)

    Dashtbozorgi, Zahra; Golmohammadi, Hassan

    2010-12-01

    The main aim of this study was the development of a quantitative structure-property relationship method using an artificial neural network (ANN) for predicting the water-to-wet butyl acetate partition coefficients of organic solutes. As a first step, a genetic algorithm-multiple linear regression model was developed; the descriptors appearing in this model were considered as inputs for the ANN. These descriptors are principal moment of inertia C (I(C)), area-weighted surface charge of hydrogen-bonding donor atoms (HACA-2), Kier and Hall index (order 2) ((2)χ), Balaban index (J), minimum bond order of a C atom (P(C)) and relative negative-charged SA (RNCS). Then a 6-4-1 neural network was generated for the prediction of water-to-wet butyl acetate partition coefficients of 76 organic solutes. By comparing the results obtained from multiple linear regression and ANN models, it can be seen that statistical parameters (Fisher ratio, correlation coefficient and standard error) of the ANN model are better than that regression model, which indicates that nonlinear model can simulate the relationship between the structural descriptors and the partition coefficients of the investigated molecules more accurately.

  13. Linear and nonlinear quantitative structure-property relationship models for solubility of some anthraquinone, anthrone and xanthone derivatives in supercritical carbon dioxide.

    Science.gov (United States)

    Hemmateenejad, Bahram; Shamsipur, Mojtaba; Miri, Ramin; Elyasi, Maryam; Foroghinia, Farzaneh; Sharghi, Hashem

    2008-03-03

    A quantitative structure-property relation (QSPR) study was conducted on the solubility in supercritical fluid carbon dioxide (SCF-CO2) of some recently synthesized anthraquinone, anthrone and xanthone derivatives. The data set consisted of 29 molecules in various temperatures and pressures, which form 1190 solubility data. The combined data splitting-feature selection (CDFS) strategy, which previously developed in our research group, was used as descriptor selection and model development method. Modeling of the relationship between selected molecular descriptors and solubility data was achieved by linear (multiple linear regression; MLR) and nonlinear (artificial neural network; ANN) methods. The QSPR models were validated by cross-validation as well as application of the models to predict the solubility of three external set compounds, which did not have contribution in model development steps. Both linear and nonlinear methods resulted in accurate prediction whereas more accurate results were obtained by ANN model. The respective root mean square error of prediction obtained by MLR and ANN models were 0.284 and 0.095 in the term of logarithm of g solute m(-3) of SCF-CO2. A comparison was made between the models selected by CDFS method and the conventional stepwise feature selection method. It was found that the latter produced models with higher number of descriptors and lowered prediction ability, thus it can be considered as an over-fitted model.

  14. Structure-Property Relationships in Intercalated Graphite.

    Science.gov (United States)

    1982-10-01

    phonon dispersion relations) G. Timp, Graduate Student (electron microscopy, high field magneto- resistance, modeling) L. Salamanca -Riba, Graduate...transition, in agreement with Monte Carlo calculations based on 2-dimensional models. 3.3.3 Fermi Surface Measurements To determine the electronic...Intercalation Compounds", M. Shayegan, M. Elahy, L. Salamanca -Riba, J. Heremans, C. Nicolini, and G. Dresselhaus, Bulletin APS 27, 342 (1982). 45

  15. Quantitative structure-property relationships of retention indices of some sulfur organic compounds using random forest technique as a variable selection and modeling method.

    Science.gov (United States)

    Goudarzi, Nasser; Shahsavani, Davood; Emadi-Gandaghi, Fereshteh; Chamjangali, Mansour Arab

    2016-10-01

    In this work, a noble quantitative structure-property relationship technique is proposed on the basis of the random forest for prediction of the retention indices of some sulfur organic compounds. In order to calculate the retention indices of these compounds, the theoretical descriptors produced using their molecular structures are employed. The influence of the significant parameters affecting the capability of the developed random forest prediction power such as the number of randomly selected variables applied to split each node (m) and the number of trees (nt ) is studied to obtain the best model. After optimizing the nt and m parameters, the random forest model conducted for m = 70 and nt = 460 was found to yield the best results. The artificial neural network and multiple linear regression modeling techniques are also used to predict the retention index values for these compounds for comparison with the results of random forest model. The descriptors selected by the stepwise regression and random forest model are used to build the artificial neural network models. The results achieved showed the superiority of the random forest model over the other models for prediction of the retention indices of the studied compounds.

  16. Structure property relationships in various filled polymers

    Science.gov (United States)

    Yu, Jiong

    The toughness of impact modified poly(vinyl chloride) (PVC) compounds was examined using a modified Charpy test. Increasing impact speed resulted in a quasi-brittle to ductile transition in all PVC compounds. In the quasi-brittle region, a PVC of 56,000 Mw fractured through a craze-like damage zone that could be described by a modified Dugdale model. Furthermore, the same molecular weight PVC modified with either 10 pph chlorinated polyethylene (CPE) or 10 pph methylmethacrylate-butadiene-styrene (MBS) impact modifier also conformed to the Dugdale model with the craze-like damage zone. It was found that CPE effectively improved the impact performance of PVC by shifting the quasi-brittle to ductile transition to a higher loading rate. Compared to CPE, MBS was found to be a better impact modifier and resulted in a higher quasi-brittle to ductile transition loading rate in the same PVC matrix. Fracture initiation toughness of all the materials was described by the Hayes-Williams modification of the Dugdale model. The intrinsic brittle fracture energy obtained by extrapolation to zero craze length was determined only by the PVC matrix and was independent of the impact modifier. However, the kinetics of craze growth, and hence the response to rapid loading, depended on the impact modifier. Increasing molecular weight of the PVC resin resulted in a more complex damage zone that was not amendable to the Dugdale analysis. A new in-situ infusion method was used to incorporate small amounts (ca. 1wt%) of metal and metal oxide particles into a polymer matrix. Nano-sized particles were observed by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Oxygen (O2) and carbon dioxide (CO2) transport properties of the infused materials were investigated using a dynamic diffusion approach in which both testing and purge gases can be controlled. It was discovered that trace amounts (ca. 2%) of hydrogen (H2) in the purge gas was sufficient to considerably

  17. Towards the Application of Structure-Property Relationship Modeling in Materials Science: Predicting the Seebeck Coefficient for Ionic Liquid/Redox Couple Systems.

    Science.gov (United States)

    Sosnowska, Anita; Barycki, Maciej; Gajewicz, Agnieszka; Bobrowski, Maciej; Freza, Sylwia; Skurski, Piotr; Uhl, Stefanie; Laux, Edith; Journot, Tony; Jeandupeux, Laure; Keppner, Herbert; Puzyn, Tomasz

    2016-06-01

    This work focuses on determining the influence of both ionic-liquid (IL) type and redox couple concentration on Seebeck coefficient values of such a system. The quantitative structure-property relationship (QSPR) and read-across techniques are proposed as methods to identify structural features of ILs (mixed with LiI/I2 redox couple), which have the most influence on the Seebeck coefficient (Se ) values of the system. ILs consisting of small, symmetric cations and anions with high values of vertical electron binding energy are recognized as those with the highest values of Se . In addition, the QSPR model enables the values of Se to be predicted for each IL that belongs to the applicability domain of the model. The influence of the redox-couple concentration on values of Se is also quantitatively described. Thus, it is possible to calculate how the value of Se will change with changing redox-couple concentration. The presence of the LiI/I2 redox couple in lower concentrations increases the values of Se , as expected.

  18. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  19. Structure-Property Relationships of Solids in Pharmaceutical Processing

    Science.gov (United States)

    Chattoraj, Sayantan

    Pharmaceutical development and manufacturing of solid dosage forms is witnessing a seismic shift in the recent years. In contrast to the earlier days when drug development was empirical, now there is a significant emphasis on a more scientific and structured development process, primarily driven by the Quality-by-Design (QbD) initiatives of US Food and Drug Administration (US-FDA). Central to such an approach is the enhanced understanding of solid materials using the concept of Materials Science Tetrahedron (MST) that probes the interplay between four elements, viz., the structure, properties, processing, and performance of materials. In this thesis work, we have investigated the relationships between the structure and those properties of pharmaceutical solids that influence their processing behavior. In all cases, we have used material-sparing approaches to facilitate property assessment using very small sample size of materials, which is a pre-requisite in the early stages of drug development when the availability of materials, drugs in particular, is limited. The influence of solid structure, either at the molecular or bulk powder levels, on crystal plasticity and powder compaction, powder flow, and solid-state amorphization during milling, has been investigated in this study. Through such a systematic evaluation, we have captured the involvement of structure-property correlations within a wide spectrum of relevant processing behaviors of pharmaceutical solids. Such a holistic analysis will be beneficial for addressing both regulatory and scientific issues in drug development.

  20. Structure-property relationships in polymers for dielectric capacitors

    Science.gov (United States)

    Gupta, Sahil

    Effective energy storage is a key challenge of the 21st century that has fueled research in the area of energy storage devices. In this dissertation, structure-property relationships have been evaluated for polymers that might be suitable for storing energy in high-energy density, high-temperature capacitors. Firstly, hydroxyl-modified polypropylenes (PPOH) were synthesized by copolymerization of the propylene and undecenyloxytrimethylsilane monomers. The presence of H-bonding in PPOH copolymers increased their glass-transition temperature. Steric hindrance by the comonomer reduced the PP crystal growth rate and crystal size, resulting in a melting point depression. The comonomer was restricted outside the crystalline domains leaving the alpha-monoclinic crystal structure of PP unaffected, but increasing the fold-surface free energy. Crystallization was slower for PPOH copolymers than PP, but exhibited a skewed bell curve as a function of hydroxyl concentration. H-bonding persisted even at melt temperatures up to 250°C resulting in a higher elasticity and viscosity for PPOH copolymers. Secondly, sulfonated poly(ether ether ketone) (HSPEEK) was synthesized by sulfonating PEEK with sulfuric acid, and further neutralized with Zn to obtain ZnSPEEK. The thermal and dielectric properties of SPEEK were compared with PEEK. The glass-transition increased and melting point were high enough to enable the use of polymer at 180°C. The incorporation of sulfonic groups in PEEK increased the dielectric constant. HSPEEK had a higher dielectric constant than ZnSPEEK due to higher dipolar mobility, but the dielectric loss was also higher for HSPEEK due to electrode polarization and DC conduction. These results were consistent with our observations from sulfonated polystyrene (HSPS), which was used as a >model&lang' polymer. Lastly, commercial poly(4-methyl-1-pentene) (P4MP) was characterized to check its viability as a high-temperature polymer dielectric. Thermal stability up to

  1. Bio-related noble metal nanoparticle structure property relationships

    Science.gov (United States)

    Leonard, Donovan Nicholas

    Structure property relationships of noble metal nanoparticles (NPs) can be drastically different than bulk properties of the same metals. This research study used state-of-the-art analytical electron microscopy and scanned probe microscopy to determine material properties on the nanoscale of bio-related Au and Pd NPs. Recently, it has been demonstrated the self-assembly of Au NPs on functionalized silica surfaces creates a conductive surface. Determination of the aggregate morphology responsible for electron conduction was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, changes in the electrical properties of the substrates after low temperature (encapsulate Au NPs. Results indicated the sol-gel deposited SiO2 had a band gap energy of ˜8.9eV, bulk plasmon-peak energy of ˜25.5eV and chemical composition of stoichiometric SiO2. Lastly, an attempt to elicit structure property relationships of novel RNA mediated Pd hexagon NPs was performed. Selected area electron diffraction (SAD), low voltage scanning transmission electron microscopy (LV-STEM), electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) were chosen for characterization of atomic ordering, chemical composition and optoelectronic properties of the novel nanostructures. Data from control experiments found the hexagons could be made without RNA and confirmed the presence of nanocrystalline Pd metal NPs in unpurified Pd2(DBA)3 reagent powder. Furthermore, the study determined the hexagon platelets to have a chemical composition of ˜90at% carbon and ˜10at% Pd and a lattice parameter corresponding to molecular crystals of Pd2(DBA)3 precursor, not Pd metal.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Windows MediaPlayer or RealPlayer.

  2. Oxide Thermoelectric Materials: A Structure-Property Relationship

    Science.gov (United States)

    Nag, Abanti; Shubha, V.

    2014-04-01

    Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity ( ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure-property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron-phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.

  3. Structure-property relationships in graphene/polymer nanocomposites

    Science.gov (United States)

    Iqbal, Muhammad Z.

    Graphene's unique combination of excellent electrical, thermal, and mechanical properties can provide multi-functional reinforcement for polymer nanocomposites. However, poor dispersion of graphene in non-polar polyolefins limits its applications as a universal filler. Thus, the overall goal of this thesis was to improve graphene's dispersion in graphene/polyolefin nanocomposites and develop processing-structure-property relationships. A new polymer matrix was synthesized by blending polyethylene (PE) with oxidized polyethylene (OPE). Inclusion of OPE in PE produced miscible blends, but the miscibility decreased with increasing OPE loading. Meanwhile, the Young's modulus of blends increased with increasing OPE concentration, attributed to decreased long period order in PE and increased crystallinity. In addition, the miscibility of OPE in PE substantially reduced the viscosity of blends. Using thermally reduced graphene (TRG) produced by simultaneous thermal exfoliation and reduction of graphite oxide, electrically conductive nanocomposites were manufactured by incorporating TRG in PE/OPE blends via solution blending. The rheological and electrical percolations decreased substantially to 0.3 and 0.13 vol% of TRG in PE/OPE/TRG nanocomposites compared to 1.0 and 0.3 vol% in PE/TRG nanocomposites. Improved dispersion of TRG in blends was attributed to increased TRG/polymer interactions, leading to high aspect ratio of the dispersed TRG. A universal Brownian dispersion mechanism for graphene was concluded similar to that of carbon nanotubes, following the Doi-Edwards theory. Furthermore, the improved dispersion of TRG correlated with the formation of surface fractals in PE/OPE/TRG nanocomposites, whereas the poor dispersion of TRG in PE led to the formation of only mass fractals. Moreover, graphene and carbon black (CB) were combined as a synergic filler for manufacturing electrically conductive PE nanocomposites. Smaller fractals were observed at lower CB

  4. Structure-property relationships of multiferroic materials: A nano perspective

    Science.gov (United States)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  5. Structure-property relationships of flexible polyurethane foams

    Science.gov (United States)

    Aneja, Ashish

    This study examined several features of flexible polyurethane foams from a structure-property perspective. A major part of this dissertation addresses the issue of connectivity of the urea phase and its influence on mechanical and viscoelastic properties of flexible polyurethane foams and their plaque counterparts. Lithium salts (LiCl and LiBr) were used as additives to systematically alter the phase separation behavior, and hence the connectivity of the urea phase at different scale lengths. Macro connectivity, or the association of the large scale urea rich aggregates typically observed in flexible polyurethane foams was assessed using SAXS, TEM, and AFM. These techniques showed that including a lithium salt in the foam formulation suppressed the formation of the urea aggregates and thus led to a loss in the macro level connectivity of the urea phase. WAXS and FTIR were used to demonstrate that addition of LiCl or LiBr systematically disrupted the local ordering of the hard segments within the microdomains, i.e., it led to a reduction of micro level connectivity or the regularity in segmental packing of the urea phase. Based on these observations, the interaction of the lithium salt was thought to predominantly occur with the urea hard segments, and this hypothesis was confirmed using quantum mechanical calculations. Another feature of this research investigated model trisegmented polyurethanes based on monofunctional polyols, or "monos", with water-extended toluene diisocyanate (TDI) based hard segments. The formulations of the monol materials were maintained similar to those of flexible polyurethane foams with the exceptions that the conventional polyol was substituted by an oligomeric monofunctional polyether of ca. 1000 g/mol molecular weight. Plaques formed from these model systems were shown to be solid materials even at their relatively low molecular weights of 3000 g/mol and less, AFM phase images, for the first time, revealed the ability of the hard

  6. Structure-property relationships in silica-siloxane nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Ulibarri, T.A.; Derzon, D.K.; Wang, L.C.

    1997-03-01

    The simultaneous formation of a filler phase and a polymer matrix via in situ sol-gel techniques provides silica-siloxane nanocomposite materials of high strength. This study concentrates on the effects of temperature and relative humidity on a trimodal polymer system in an attempt to accelerate the reaction as well as evaluate subtle process- structure-property relations. It was found that successful process acceleration is only viable for high humidity systems when using the tin(IV) catalyst dibutyltin dilaurate. Processes involving low humidity were found to be very temperature and time dependent. Bimodal systems were investigated and demonstrated that the presence of a short-chain component led to enhanced material strength. This part of the study also revealed a link between the particle size and population density and the optimization of material properties.

  7. Quantitative Structure-Property Relationship on Prediction of Surface Tension of Nonionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A quantitative structure-property relationship (QSPR) study has been made for the prediction of the surface tension of nonionic surfactants in aqueous solution.The regressed model includes a topological descriptor,the Kier & Hall index of zero order (KH0) of the hydrophobic segment of surfactant and a quantum chemical one,the heat of formation () of surfactant molecules.The established general QSPR between the surface tension and the descriptors produces a correlation coefficient of multiple determination,=0.9877,for 30 studied nonionic surfactants.

  8. Synthesis and quantitative structure-property relationships of side chain-modified hyodeoxycholic acid derivatives.

    Science.gov (United States)

    Sabbatini, Paola; Filipponi, Paolo; Sardella, Roccaldo; Natalini, Benedetto; Nuti, Roberto; Macchiarulo, Antonio; Pellicciari, Roberto; Gioiello, Antimo

    2013-08-30

    Bile acids have emerged as versatile signalling compounds of a complex network of nuclear and membrane receptors regulating various endocrine and paracrine functions. The elucidation of the interconnection between the biological pathways under the bile acid control and manifestations of hepatic and metabolic diseases have extended the scope of this class of steroids for in vivo investigations. In this framework, the design and synthesis of novel biliary derivatives able to modulate a specific receptor requires a deep understanding of both structure-activity and structure-property relationships of bile acids. In this paper, we report the preparation and the critical micellization concentration evaluation of a series of hyodeoxycholic acid derivatives characterized by a diverse side chain length and by the presence of a methyl group at the alpha position with respect to the terminal carboxylic acid moiety. The data collected are instrumental to extend on a quantitative basis, the knowledge of the current structure-property relationships of bile acids and will be fruitful, in combination with models of receptor activity, to design and prioritize the synthesis of novel pharmacokinetically suitable ligands useful in the validation of bile acid-responsive receptors as therapeutic targets.

  9. Synthesis and Quantitative Structure-Property Relationships of Side Chain-Modified Hyodeoxycholic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Antimo Gioiello

    2013-08-01

    Full Text Available Bile acids have emerged as versatile signalling compounds of a complex network of nuclear and membrane receptors regulating various endocrine and paracrine functions. The elucidation of the interconnection between the biological pathways under the bile acid control and manifestations of hepatic and metabolic diseases have extended the scope of this class of steroids for in vivo investigations. In this framework, the design and synthesis of novel biliary derivatives able to modulate a specific receptor requires a deep understanding of both structure-activity and structure-property relationships of bile acids. In this paper, we report the preparation and the critical micellization concentration evaluation of a series of hyodeoxycholic acid derivatives characterized by a diverse side chain length and by the presence of a methyl group at the alpha position with respect to the terminal carboxylic acid moiety. The data collected are instrumental to extend on a quantitative basis, the knowledge of the current structure-property relationships of bile acids and will be fruitful, in combination with models of receptor activity, to design and prioritize the synthesis of novel pharmacokinetically suitable ligands useful in the validation of bile acid-responsive receptors as therapeutic targets.

  10. Quantitative structure property relationships for the adsorption of pharmaceuticals onto activated carbon.

    Science.gov (United States)

    Dickenson, E R V; Drewes, J E

    2010-01-01

    Isotherms were determined for the adsorption of five pharmaceutical residues, primidone, carbamazepine, ibuprofen, naproxen and diclofenac, to Calgon Filtrasorb 300 powdered activated carbon (PAC). The sorption behavior was examined in ultra-pure and wastewater effluent organic matter (EfOM) matrices, where more sorption was observed in the ultra-pure water for PAC doses greater than 10 mg/L suggesting the presence of EfOM hinders the sorption of the pharmaceuticals to the PAC. Adsorption behaviors were described by the Freundlich isotherm model. Quantitative structure property relationships (QSPRs) in the form of polyparameter linear solvation energy relationships were developed for simulating the Freundlich adsorption capacity in both ultra-pure and EfOM matrices. The significant 3D-based descriptors for the QSPRs were the molar volume, polarizability and hydrogen-bond donor parameters.

  11. Quantitative structure-property relationship for predicting chlorine demand by organic molecules.

    Science.gov (United States)

    Luilo, Gebhard B; Cabaniss, Stephen E

    2010-04-01

    Conventional methods for predicting chlorine demand (HOCl(dem)) due to dissolved organic matter (DOM) are based on bulk water quality parameters and ignore structural features of individual molecules that may better indicate reactivity toward the disinfectant. The Quantitative Structure-Property Relationship (QSPR) modeling approach can account for structural properties of individual molecules. Here we report a QSPR for HOCl(dem) based on eight constitutional descriptors. Model compounds with HOCl(dem) ranging from 0.1 to 13.4 mol chlorine per mole compound were divided into a calibration and cross-validation data set (N = 159) and an external validation set (N = 42). The QSPR was calibrated using multiple linear regression in a 5-way leave-many-out approach and has average R(2) = 0.86 and standard error of regression (StdE(reg)) = 1.24 mol HOCl per mole compound and p data set exceeded the critical value, suggesting that these compounds may be overextrapolated. However, root-mean-square error of prediction in the external validation was 1.17 mol HOCl per mole compound, and all compounds were predicted with +/-2.5 standardized residuals (Sresid). Application of the QSPR to model structures of NOM predicts HOCl(dem) comparable to reported measurements from natural water treatment.

  12. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.

    Science.gov (United States)

    Goodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda V; Duchowicz, Pablo R

    2016-06-01

    The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide.

  13. Composition-Structure-Property Relationships in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, M.; Mauro, J.C.

    2012-01-01

    The complicated structural speciation in boroaluminosilicate glasses leads to a mixed network former effect yielding nonlinear variation in many macroscopic properties as a function of chemical composition. Here we study the composition–structure–property relationships in a series of sodium...... boroaluminosilicate glasses from peralkaline to peraluminous compositions by substituting Al2O3 for SiO2. Our results reveal a pronounced change in all the measured physical properties (density, elastic moduli, hardness, glass transition temperature, and liquid fragility) around [Al2O3]–[Na2O]=0. The structural...

  14. Composition-Structure-Property Relationships in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, M.; Mauro, J.C.

    2012-01-01

    boroaluminosilicate glasses from peralkaline to peraluminous compositions by substituting Al2O3 for SiO2. Our results reveal a pronounced change in all the measured physical properties (density, elastic moduli, hardness, glass transition temperature, and liquid fragility) around [Al2O3]–[Na2O]=0. The structural......The complicated structural speciation in boroaluminosilicate glasses leads to a mixed network former effect yielding nonlinear variation in many macroscopic properties as a function of chemical composition. Here we study the composition–structure–property relationships in a series of sodium...

  15. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  16. Structure-Property Relationships of Architectural Coatings by Neutron Methods

    Science.gov (United States)

    Nakatani, Alan

    2015-03-01

    Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.

  17. Structure property relationships for the nonlinear optical response of fullerenes

    Science.gov (United States)

    Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.

    1994-11-01

    We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.

  18. Structure-Property Relationships for Branched Worm-Like Micelles

    Science.gov (United States)

    Beaucage, Gregory; Rai, Durgesh

    2013-03-01

    Micellar solutions can display a wide range of phase structure as a function of counter ion content, surfactant concentration, and the presence of ternary components. Under some conditions, common to consumer products, extended cylindrical structures that display persistence and other chain features of polymers are produced. These worm-like micelles (WLMs) can form branched structures that dynamically change under shear and even in quiescent conditions. The rheology of these branched WLMs is strongly dependent on migration of the branch points, and the dynamics of branch formation and removal. Persistence and other polymer-based descriptions are also of importance. We have recently developed a scattering model for branched polyolefins and other topologically complex materials that can quantify the branching density, branch length, branch functionality and the hyperbranch (branch-on-branch) content of polymers. This work is being extended to study branching in WLMs in work coupled with Ron Larson at UMich to predict rheological properties.

  19. Structural properties of effective potential model by liquid state theories

    Institute of Scientific and Technical Information of China (English)

    Xiang Yuan-Tao; Andrej Jamnik; Yang Kai-Wei

    2010-01-01

    This paper investigates the structural properties of a model fluid dictated by an effective inter-particle oscillatory potential by grand canonical ensemble Monte Carlo (GCEMC) simulation and classical liquid state theories. The chosen oscillatory potential incorporates basic interaction terms used in modeling of various complex fluids which is composed of mesoscopic particles dispersed in a solvent bath, the studied structural properties include radial distribution function in bulk and inhomogeneous density distribution profile due to influence of several external fields. The GCEMC results are employed to test the validity of two recently proposed theoretical approaches in the field of atomic fluids. One is an Ornstein-Zernike integral equation theory approach; the other is a third order + second order perturbation density functional theory. Satisfactory agreement between the GCEMC simulation and the pure theories fully indicates the ready adaptability of the atomic fluid theories to effective model potentials in complex fluids, and classifies the proposed theoretical approaches as convenient tools for the investigation of complex fluids under the single component macro-fluid approximation.

  20. Results from the Use of Molecular Descriptors Family on Structure Property/Activity Relationships

    Directory of Open Access Journals (Sweden)

    Sorana-Daniela Bolboacă

    2007-03-01

    Full Text Available The aim of the paper is to present the results obtained by utilization of an originalapproach called Molecular Descriptors Family on Structure-Property (MDF-SPR andStructure-Activity Relationships (MDF-SAR applied on classes of chemical compoundsand its usefulness as precursors of models elaboration of new compounds with betterproperties and/or activities and low production costs. The MDF-SPR/MDF-SARmethodology integrates the complex information obtained from compound’s structure inunitary efficient models in order to explain properties/activities. The methodology has beenapplied on a number of thirty sets of chemical compounds. The best subsets of moleculardescriptors family members able to estimate and predict property/activity of interest wereidentified and were statistically and visually analyzed. The MDF-SPR/MDF-SAR modelswere validated through internal and/or external validation methods. The estimation andprediction abilities of the MDF-SPR/MDF-SAR models were compared with previousreported models by applying of correlated correlation analysis, which revealed that theMDF-SPR/MDF-SAR methodology is reliable. The MDF-SPR/MDF-SAR methodologyopens a new pathway in understanding the relationships between compound’s structure andproperty/activity, in property/activity prediction, and in discovery, investigation andcharacterization of new chemical compounds, more competitive as costs andproperty/activity, being a method less expensive comparative with experimental methods.

  1. Development of quantitative structure property relationships for predicting the melting point of energetic materials.

    Science.gov (United States)

    Morrill, Jason A; Byrd, Edward F C

    2015-11-01

    The accurate prediction of the melting temperature of organic compounds is a significant problem that has eluded researchers for many years. The most common approach used to develop predictive models entails the derivation of quantitative structure-property relationships (QSPRs), which are multivariate linear relationships between calculated quantities that are descriptors of molecular or electronic features and a property of interest. In this report the derivation of QSPRs to predict melting temperatures of energetic materials based on descriptors calculated using the AM1 semiempirical quantum mechanical method are described. In total, the melting points and experimental crystal structures of 148 energetic materials were analyzed. Principal components analysis was performed in order to assess the relative importance and roles of the descriptors in our QSPR models. Also described are the results of k means cluster analysis, performed in order to identify natural groupings within our study set of structures. The QSPR models resulting from these analyses gave training set R(2) values of 0.6085 (RMSE = ± 15.7 °C) and 0.7468 (RMSE = ± 13.2 °C). The test sets for these clusters had R(2) values of 0.9428 (RMSE = ± 7.0 °C) and 0.8974 (RMSE = ± 8.8 °C), respectively. These models are among the best melting point QSPRs yet published for energetic materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy.

    Science.gov (United States)

    d'Ischia, Marco; Napolitano, Alessandra; Ball, Vincent; Chen, Chun-Teh; Buehler, Markus J

    2014-12-16

    CONSPECTUS: Polydopamine (PDA), a black insoluble biopolymer produced by autoxidation of the catecholamine neurotransmitter dopamine (DA), and synthetic eumelanin polymers modeled to the black functional pigments of human skin, hair, and eyes have burst into the scene of materials science as versatile bioinspired functional systems for a very broad range of applications. PDA is characterized by extraordinary adhesion properties providing efficient and universal surface coating for diverse settings that include drug delivery, microfluidic systems, and water-treatment devices. Synthetic eumelanins from dopa or 5,6-dihydroxyindoles are the focus of increasing interest as UV-absorbing agents, antioxidants, free radical scavengers, and water-dependent hybrid electronic-ionic semiconductors. Because of their peculiar physicochemical properties, eumelanins and PDA hold considerable promise in nanomedicine and bioelectronics, as they are biocompatible, biodegradable, and exhibit suitable mechanical properties for integration with biological tissues. Despite considerable similarities, very few attempts have so far been made to provide an integrated unifying perspective of these two fields of technology-oriented chemical research, and progress toward application has been based more on empirical approaches than on a solid conceptual framework of structure-property relationships. The present Account is an attempt to fill this gap. Following a vis-à-vis of PDA and eumelanin chemistries, it provides an overall view of the various levels of chemical disorder in both systems and draws simple correlations with physicochemical properties based on experimental and computational approaches. The potential of large-scale simulations to capture the macroproperties of eumelanin-like materials and their hierarchical structures, to predict the physicochemical properties of new melanin-inspired materials, to understand the structure-property-function relationships of these materials from

  3. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    Science.gov (United States)

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  4. Prediction of Environmental Properties for Chlorophenols with Posetic Quantitative Super-Structure/Property Relationships (QSSPR

    Directory of Open Access Journals (Sweden)

    Douglas J. Kleinc

    2006-09-01

    Full Text Available Due to their widespread use in bactericides, insecticides, herbicides, andfungicides, chlorophenols represent an important source of soil contaminants. Theenvironmental fate of these chemicals depends on their physico-chemical properties. In theabsence of experimental values for these physico-chemical properties, one can use predictedvalues computed with quantitative structure-property relationships (QSPR. As analternative to correlations to molecular structure we have studied the super-structure of areaction network, thereby developing three new QSSPR models (poset-average, cluster-expansion, and splinoid poset that can be applied to chemical compounds which can behierarchically ordered into a reaction network. In the present work we illustrate these posetQSSPR models for the correlation of the octanol/water partition coefficient (log Kow and thesoil sorption coefficient (log KOC of chlorophenols. Excellent results are obtained for allQSSPR poset models to yield: log Kow, r = 0.991, s = 0.107, with the cluster-expansionQSSPR; and log KOC, r = 0.938, s = 0.259, with the spline QSSPR. Thus, the poset QSSPRmodels predict environmentally important properties of chlorophenols.

  5. Predicting total organic halide formation from drinking water chlorination using quantitative structure-property relationships.

    Science.gov (United States)

    Luilo, G B; Cabaniss, S E

    2011-10-01

    Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (‰<‰1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.

  6. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study.

    Directory of Open Access Journals (Sweden)

    Milan Šoškić

    Full Text Available Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor.

  7. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study.

    Science.gov (United States)

    Šoškić, Milan; Porobić, Ivana

    2016-01-01

    Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor.

  8. SMILES-based quantitative structure-property relationships for half-wave potential of N-benzylsalicylthioamides.

    Science.gov (United States)

    Nesmerak, Karel; Toropov, Andrey A; Toropova, Alla P; Kohoutova, Petra; Waisser, Karel

    2013-09-01

    Optimal descriptors calculated with Simplified Molecular Input Line Entry System (SMILES) notation have been used in quantitative structure-property relationships (QSPR) of half-wave potential of N-benzylsalicylthioamides. The QSPR developed is one-variable model based on the optimal descriptors calculated with the Monte Carlo method. The approach has been checked up with three random splits into the training and test sets. Mechanistic interpretations (structural alerts related to the half-wave potential) of the model are discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Quality of relationships and structural properties of social support networks of female survivors of abuse.

    Science.gov (United States)

    Fry, P S; Barker, L A

    2002-05-01

    The purposes of this study were to examine the structural properties of the social support networks of female survivors of violence and abuse and to investigate the quality of the relationship, and specific level of satisfaction, survivors have with their social support networks. Participants averaged 5.8 persons in their social support networks. Their levels of satisfaction with the emotional, practical, financial, guidance, and socializing support they received from members of their social support networks were higher with respect to close friends and coworkers than with respect to family members and professionals (e.g., attorneys and social workers). The most common type of support provided by close friends who were themselves victims of abuse was emotional, guidance, and socializing support, and the most satisfying support was the financial and practical help that came from parents or family. An interesting finding was the significant presence of men in the survivors' social support networks. Overall satisfaction with the quality of support from the social support networks was high, and satisfaction with support from men was comparable, if not higher, than support from women. Multiple regression models revealed that satisfaction with support networks was a potent predictor of self-esteem, emotional health, and loneliness. Intimacy, especially in terms of exclusiveness and trust or loyalty, with at least a few members of the support network contributed significantly to the variance in self-esteem, emotional health, and loneliness among the abused women. The size of the support network also emerged as a limited contributor to well-being. Implications and applications are discussed for professionals working with female survivors of abuse.

  10. Processing-structure-property relationships of carbon nanotube and nanoplatelet enabled piezoresistive sensors

    Science.gov (United States)

    Luo, Sida

    Individual carbon nanotubes (CNTs) possess excellent piezoresistive performance, which is manifested by the significant electrical resistance change when subject to mechanical deformation. In comparison to individual CNTs, the CNT thin films, formed by a random assembly of individual tubes or bundles, show much lower piezoresistive sensitivity. Given the progress made to date in developing CNT ensemble based-piezoresistive sensors, the related piezoresistive mechanism(s) are still not well understood. The crucial step to obtain a better understanding of this issue is to study the effects of CNT structure in the dispersion on the piezoresistivity of CNT ensemble based-piezoresistive sensors. To reach this goal, my Ph.D. research first focuses on establishing the processing-structure-property relationship of SWCNT thin film piezoresistive sensors. The key accomplishment contains: 1) developing the combined preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) method to quantitatively characterized SWCNT particle size in dispersions under various sonication conditions; 2) designing combined ultrasonication and microfluidization processing protocol for high throughput and large-scale production of high quality SWCNT dispersions; 3) fabricating varied SWCNT thin film piezoresistive sensors through spray coating technique and immersion-drying post-treatment; and 4) investigating the effect of microstructures of SWCNTs on piezoresistivity of SWCNT thin film sensors. This experimental methodology for quantitative and systematic investigation of the processing-structure-property relationships provides a means for the performance optimization of CNT ensemble based piezoresistive sensors. As a start to understand the piezoresistive mechanism, the second focus of my Ph.D. research is studying charge transport behaviors in SWCNT thin films. It was found that the temperature-dependent sheet resistance of SWCNT thin films could be explained by a 3D variable

  11. Structure-Property Relationships of Polymer Brushes in Restricted Geometries and their Utilization as Ultra-Low Lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, Tonya Lynn [Univ. of California, Davis, CA (United States); Faller, Roland [Univ. of California, Davis, CA (United States)

    2015-09-28

    Though polymer films are widely used to modify or tailor the physical, chemical and mechanical properties of interfaces in both solid and liquid systems, the rational design of interface- or surface-active polymer modifiers has been hampered by a lack of information about the behavior and structure-property relationships of this class of molecules. This is especially true for systems in which the role of the polymer is to modify the interaction between two solid surfaces in intimate contact and under load, to cause them to be mechanically coupled (e.g. to promote adhesion and wetting) or to minimize their interaction (e.g. lubrication, colloidal stabilization, etc.). Detailed structural information on these systems has largely been precluded by the many difficulties and challenges associated with direct experimental measurements of polymer structure in these geometries. As a result, many practitioners have been forced to employ indirect measurements or rely wholly on theoretical modeling. This has resulted in an incomplete understanding of the structure-property relationships, which are relied upon for the rational design of improved polymer modifiers. Over the course of this current research program, we made direct measurements of the structure of polymers at the interface between two solid surfaces under confinement and elucidated the fundamental physics behind these phenomena using atomistic and coarse grained simulations. The research has potential to lead to new lubricants and wear reducing agents to improve efficiency.

  12. Quantitative Structure-property Relationship Studies on Amino Acid Conjugates of Jasmonic Acid as Defense Signaling Molecules

    Institute of Scientific and Technical Information of China (English)

    Zu-Guang Li; Ke-Xian Chen; Hai-Ying Xie; Jian-Rong Gao

    2009-01-01

    Jasmonates and related compounds, including amino acid conjugates of jasmonic acid, have regulatory functions in the signaling pathway for plant developmental processes and responses to the complex equilibrium of biotic and abiotic stress.But the molecular details of the signaling mechanism are still poorly understood. Statistically significant quantitative structure-property relationship models (r2 > 0.990) constructed by genetic function approximation and molecular field analysis were generated for the purpose of deriving structural requirements for lipophilicity of amino acid conjugates of jasmonic acid. The best models derived in the present study provide some valuable academic information in terms of the 213D-descriptors influencing the lipophilicity, which may contribute to further understanding the mechanism of exogenous application of jasmonates in their signaling pathway and designing novel analogs ofjasmonic acid as ecological pesticides.

  13. Structure-property relationships in the design, assembly and applications of polyelectrolyte multilayer thin films

    Science.gov (United States)

    Rmaile, Hassan H.

    Ultrathin films consisting of an alternating sequence of positively and negatively charged polyelectrolytes have been prepared by means of the electrostatic layer-by-layer sequential assembly technique. To augment their typical applications in the water treatment, personal care as well as the pulp and paper industry, the structure and the design of these polyelectrolytes were tailored synthetically to satisfy the requirements of different types of applications. Some were used for surface modifications, hydrophobic and hydrophilic coatings, corrosion protection, conducting and biocompatible surfaces. Others were found to be very efficient for membrane and chromatographic applications. The ease with which these multilayer coatings can be constructed, their robustness and stability make them very good candidates for industrial applications. The dissertation focuses mainly on the structure-property relationships of these polyelectrolytes and their corresponding thin films. Various polyelectrolytes were synthesized or modified in a strategic approach and gave novel and promising properties. Some of them exhibited permeabilities that were higher than any membranes reported in the literature. Also, some are potentially very useful for designing drug delivery systems such as tablets or encapsulations since they were shown to control the permeability of sample drugs and vitamins very efficiently based on their sensitivity to pH changes. Other synthesized polyelectrolytes proved to be very effective in preventing protein adsorption or promoting cell growth and differentiation. Some systems were very useful as robust stationary phases for simple chiral separations in capillary electrochromatography. Along with modifications and improvements, the approach might one day be applied commercially for chiral separations using high performance liquid chromatography and replace currently used stationary phases. Last but not least, the potential for these polyelectrolytes and their

  14. Structure-property relationships in self-assembling peptide hydrogels, homopolypeptides and polysaccharides

    Science.gov (United States)

    Hule, Rohan A.

    The main objective of this dissertation is to investigate quantitative structure-property relationships in a variety of molecular systems including de novo designed peptides, peptide amphiphiles, polysaccharides and high molecular weight polypeptides. Peptide molecules consisting of 20 amino acids were designed to undergo thermally triggered intramolecular folding into asymmetric beta-hairpins and intermolecular self-assembly via a strand swapping mechanism into physically crosslinked fibrillar hydrogels. The self-assembly mechanism was confirmed by multiple characterization techniques such as circular dichroism and FITR spectroscopy, atomic force and transmission electron microscopy and small angle neutron scattering. Three distinct fibrillar nanostructures, i.e. non-twisted, twisted and laminated were produced, depending on the degree of strand asymmetry and peptide registry. Differences in the fibrillar morphology have a direct consequence on the mechanical properties of the hydrogels, with the laminated hydrogels exhibiting a significantly higher elastic modulus as compared to the twisted or non-twisted fibrillar hydrogels. SANS and cryo-TEM data reveal that the self-assembled fibrils form networks that are fractal in nature. Models employed to elucidate the fractal behavior can relate changes in the correlation lengths, low q (network), and high q (fibrillar) fractal exponents to the distinct fibrillar nanomorphology. The fractal dimension of the networks varies significantly, from a mass to a surface fractal and can be directly related to the local fibrillar morphology and changes in the peptide concentration. Transitions in the fractal behavior seen in the high q regime can be attributed to self-assembly kinetics. An identical model can be used to establish a direct correlation between the bulk properties and changes in both, the network density and underlying morphology, of a modified peptide-based hydrogel. As in the case of asymmetric peptides, changes in

  15. A Quantitative Structure Property Relationship for Prediction of Flash Point of Alkanes Using Molecular Connectivity Indices

    Institute of Scientific and Technical Information of China (English)

    Morteza Atabati; Reza Emamalizadeh

    2013-01-01

    Many structure-property/activity studies use graph theoretical indices,which are based on the topological properties of a molecule viewed as a graph.Since topological indices can be derived directly from the molecular structure without any experimental effort,they provide a simple and straightforward method for property prediction.In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (x),modified molecular connectivity indices (mx(1)h) and valance molecular connectivity indices (mxv),with mxv calculated using the hydrogen perturbation.A stepwise Multiple Linear Regression (MLR) method was used to select the best indices.The predicted flash points are in good agreement with the experimental data,with the average absolute deviation 4.3 K.

  16. Absorbability, Mechanism and Structure-Property Relationship of Three Phenolic Acids from the Flowers of Trollius chinensis

    Directory of Open Access Journals (Sweden)

    Xiu-Wen Wu

    2014-11-01

    Full Text Available The absorption properties, mechanism of action, and structure-property relationship of three phenolic acids isolated from the flowers of Trollius chinensis Bunge, namely, proglobeflowery acid (PA, globeflowery acid (GA and trolloside (TS, were investigated using the human Caco-2 cell monolayer model. The results showed that these three phenolic acids were transported across the Caco-2 cell monolayer in a time and concentration dependent manner at the Papp level of 10−5 cm/s, and their extent of absorption correlated with their polarity and molecular weight. In conclusion, all three of these compounds were easily absorbed through passive diffusion, which implied their high bioavailability and significant contribution to the effectiveness of T. chinensis.

  17. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.

    Science.gov (United States)

    Lei, Ting; Wang, Jie-Yu; Pei, Jian

    2014-04-15

    Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using

  18. Localized surface plasmon resonance induced structure-property relationships of metal nanostructures

    Science.gov (United States)

    Vilayurganapathy, Subramanian

    The confluence of nanotechnology and plasmonics has led to new and interesting phenomena. The industrial need for fast, efficient and miniature devices which constantly push the boundaries on device performance tap into the happy marriage between these diverse fields. Designing devices for real life application that give superior performance when compared with existing ones are enabled by a better understanding of their structure-property relationships. Among all the design constraints, without doubt, the shape and size of the nanostructure along with the dielectric medium surrounding it has the maximum influence on the response and thereby the performance of the device. Hence a careful study of the above mentioned parameters is of utmost importance in designing efficient devices. In this dissertation, we synthesize and study the optical properties of nanostructures of different shapes and size. In particular, we estimated the plasmonic near field enhancement via surface-enhanced Raman scattering (SERS) and 2-photon Photoemission electron microscopy (2P-PEEM). We synthesized the nanostructures using four different techniques. One synthesis technique, the thermal growth method was employed to grow interesting Ag and Au nanostructures on Si. The absence of toxic chemicals during nanostructure synthesis via the thermal growth technique opens up myriad possibilities for applications in the fields of biomedical science, bioengineering, drug delivery among others along with the huge advantage of being environment friendly. The other three synthesis techniques (ion implantation, Electrodeposition and FIB lithography) were chosen with the specific goal of designing novel plasmonic metal, metal hybrid nanostructures as photocathode materials in next generation light sources. The synthesis techniques for these novel nanostructures were dictated by the requirement of high quantum efficiency, robustness under constant irradiation and coherent unidirectional electron emission

  19. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  20. Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS filled PS nanocomposites

    Directory of Open Access Journals (Sweden)

    J. J. Schwab

    2012-07-01

    Full Text Available The polyhedral oligomeric silsesquioxane (POSS additivated polystyrene (PS based nanocomposites were prepared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocomposites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS matrix was estimated by the calculated theoretical solubility parameters, considering the Hoy’s method and by morphology analysis. Minor difference between the solubility parameter of POSS and the matrix means better compatibility and no aggregation tendency. Furthermore, the POSS loading leads to a decrease of the rigidity, of the glass transition temperature and of the damping factor of the nanocomposite systems. The loading of different POSS molecules with open cage leads to a more pronounced effect on all the investigated properties that the loading of the POSS molecules with closed cage. Moreover, the melt properties are significantly influenced by the type of inorganic framework, by the type of the pendent organic groups and by the interaction between the POSS organic groups and the host matrix, while, the solid state properties appears to be influenced more by the kind of cage.

  1. Structure-property relationships of small bandgap conjugated polymers for solar cells.

    Science.gov (United States)

    Hellström, Stefan; Zhang, Fengling; Inganäs, Olle; Andersson, Mats R

    2009-12-01

    Conjugated polymers as electron donors in solar cells based on donor/acceptor combinations are of great interest, partly due to the possibility of converting solar light with a low materials budget. Six small bandgap polymers with optical bandgap ranging from 1.0-1.9 eV are presented in this paper. All polymers utilize an electron donor-acceptor-donor (DAD) segment in the polymer backbone, creating a partial charge-transfer, to decrease the bandgap. The design, synthesis and the optical characteristics as well as the solar cell characteristics of the polymers are discussed. The positions of the energy levels of the conjugated polymer relative to the electron acceptor are of significant importance and determine not only the driving force for exciton dissociation but also the maximum open-circuit voltage. This work also focuses on investigating the redox behavior of the described conjugated polymers and electron acceptors using square wave voltammetry. Comparing the electrochemical data gives important information of the structure-property relationships of the polymers.

  2. Thermoelectric plastics: from design to synthesis, processing and structure-property relationships.

    Science.gov (United States)

    Kroon, Renee; Mengistie, Desalegn Alemu; Kiefer, David; Hynynen, Jonna; Ryan, Jason D; Yu, Liyang; Müller, Christian

    2016-11-07

    Thermoelectric plastics are a class of polymer-based materials that combine the ability to directly convert heat to electricity, and vice versa, with ease of processing. Potential applications include waste heat recovery, spot cooling and miniature power sources for autonomous electronics. Recent progress has led to surging interest in organic thermoelectrics. This tutorial review discusses the current trends in the field with regard to the four main building blocks of thermoelectric plastics: (1) organic semiconductors and in particular conjugated polymers, (2) dopants and counterions, (3) insulating polymers, and (4) conductive fillers. The design and synthesis of conjugated polymers that promise to show good thermoelectric properties are explored, followed by an overview of relevant structure-property relationships. Doping of conjugated polymers is discussed and its interplay with processing as well as structure formation is elucidated. The use of insulating polymers as binders or matrices is proposed, which permit the adjustment of the rheological and mechanical properties of a thermoelectric plastic. Then, nanocomposites of conductive fillers such as carbon nanotubes, graphene and inorganic nanowires in a polymer matrix are introduced. A case study examines poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, which up to now have shown the most promising thermoelectric performance. Finally, a discussion of the advantages provided by bulk architectures e.g. for wearable applications highlights the unique advantages that thermoelectric plastics promise to offer.

  3. Probing structure-property relationships in perpendicularly magnetized Fe/Cu(001) using MXLD and XPD

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, T.R.; Waddill, G.D. [Univ. of Missouri, Rolla, MO (United States); Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Magnetic X-ray Linear Dichroism (MXLD) in Photoelectron Spectroscopy and X-Ray Photoelectron Diffraction (XPD) of the Fe 3p core level have been used to probe the magnetic structure-property relationships of perpendicularly magnetized Fe/Cu(001), in an element-specific fashion. A strong MEXLD effect was observed in the high resolution photoelectron spectroscopy of the Fe 3p at {open_quotes}normal{close_quotes} emission and was used to follow the loss of perpendicular ferromagnetic ordering as the temperature was raised toward room temperature. In parallel with this, {open_quotes}Forward Focussing{close_quotes} in XPD was used as a direct measure of geometric structure in the overlayer. These results and the implications of their correlation will be discussed. Additionally, an investigation of the effect of Mn doping of the Fe/Cu(001) will be described. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  4. Structure property relationships of nitride superlattice hard coatings prepared by pulsed laser deposition

    Science.gov (United States)

    Patel, Nitin

    Today, more than 40% of all cutting tools used in machining applications are covered with coatings. Coatings improve wear resistance, increase tool life, enable use at higher speed, and broaden the application range. Superlattices, where thin layers (typically deposited in an alternating fashion, are widely used commercially. Importantly, the hardness value of a superlattice (e.g. TiN/AlN) can significantly exceed the rule of mixture value. Superlattice coatings built from crystallographically dissimilar materials are not widely studied but hold promise for improvements in performance by allowing for both hardness and toughness to be simultaneously optimized. This is what this thesis is concerned with: a structure-property comparison of isostructural superlattices with corresponding non-isostructural superlattices. In order to grow both isostructural and non-isostructural superlattices from the same set of materials, it is necessary to grow monolithic films in different phases. Towards this end, the synthesis of different phases of AlN, (Ti,Al)N, TaN, and TiN was investigated. Films were grown by pulsed laser deposition in two different chambers that had different base pressures to study the effect of background gases on the phases and orientations of the films. Growth of AlN and (Ti,Al)N films is strongly affected in a chamber that had a base pressure of 10-6 Torr, but the films adopt their stable nitride structures in a chamber with the lower base pressure of 10-8 Torr. TaN adopts either the cubic rock salt structure or its stable hexagonal structure, depending on the growth temperature, while TiN grows as rock salt in all conditions. Single crystal epitaxial superlattices were then grown with different compositions, periodicities, and crystallographic orientations to compare the effect of chemistry, nanostructure, and crystallographic texture on hardness. Finally, the structure-property relationships of non-isostructural (cubic/hexagonal) superlattices are

  5. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    Science.gov (United States)

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  6. Unraveling Structure-Property Relationships in Polymer Blends for Intelligent Materials Design

    Science.gov (United States)

    Irwin, Matthew Tyler

    Block polymers provide an accessible route to structured, composite materials by combining two or more components with disparate mechanical, chemical, and electrical properties into a single bulk material with nanoscale domains. However, the characteristic lengthscale of these systems is limited, and the choice of components is restricted to those that are able to undergo microstructural ordering at accessible temperatures. This thesis details routes to overcoming these limitations through the addition of a lithium salt, a blend of homopolymers, or both. Chapter 2 describes a study wherein complex sphere phases such as the Frank-Kasper sigma phase can be observed in otherwise disordered asymmetric block polymers through the addition of a lithium salt. Chapter 3 discusses the development and characterization of a ternary polymer blend of an AB diblock copolymer and A and B homopolymers doped with a lithium salt. Detailed characterization showed that doping blends that are otherwise disordered with lithium salt induced microstructural ordering and largely recovers the phase behavior of traditional ternary polymer blends. A systematic study of the ionic conductivity of the blends at a fixed salt concentration demonstrates that, at a given composition, disordered, yet highly structured blends consistently exhibit better conductivity than polycrystalline morphologies with long range order. Chapter 4 extends the methodology of Chapter 3 and details a systematic study of the effects of cross-linker concentration on the performance of polymer electrolyte membranes produced via polymerization-induced microphase separation that exhibit a highly structured, globally disordered microstructure. Finally, Chapter 5 details efforts to develop a water filtration membrane using a polyethylene template derived from a polymeric bicontinuous microemulsion. Throughout all of this work, the goal is to better understand structure-property relationships at the molecular level in order to

  7. Hybrid Mixed Media Nonwovens: An Investigation of Structure-Property Relationships

    Science.gov (United States)

    Hollowell, Kendall Birckhead

    There have been myriad studies on utilizing bicomponent splittables produced through spunbond/spunlace processes. These production methods have proven to yield microfibers which increase the surface area of the nonwoven structures. There has been recent focus on studying the microfibers within these nonwoven structures as well as using a multiplicity of deniers of fibers within the nonwoven. There have also been studies on producing nonwovens with fibers of differing cross-sectional shapes and diameters. The purpose of this study is to examine the properties of a nonwoven structure, marrying the concepts of multi-denier fibers with multi-shaped fibers in two configurations: three-layer and alternating. The basis for this study will be US Patent 6,964,931 B2 "Method of making Continuous Filament Web with Statistical Filament Distribution" as well as US Patent 7,981,336 B2 "Process of Making Mixed Fibers and Nonwoven Fabrics". This study addresses the melt-spinning and hydroentanglement of nonwoven webs made from bicomponent fibers in three-layer and alternating configurations. The bicomponent cross-sections that will be used include 16-segmented pie and 7-islands-in-the-sea. In this study the establishment of the utility of mixed media nonwovens will take place through property and structure analysis in order to determine the inherent properties of the mixed media structures as well as the structure-property relationships of the nonwoven fabric. Property and structure analysis will also take place on mixed media structures containing poly(lactic acid) as a sacrificial component in the bicomponent fiber after optimizing the removal conditions of the poly(lactic acid) in a sodium hydroxide (NaOH) bath.

  8. Structure-Property Relationships of Solid State Additive Manufactured Aluminum Alloy 2219 and Inconel 625

    Science.gov (United States)

    Rivera Almeyda, Oscar G.

    in the three directions and an average grain size of 2.5 microns. EBSD PFs showed that the material has a strong torsional fiber A texture in the top of the build, and this texture gets weaker in the middle and bottom sections. TEM showed that there are no theta' precipitates in the as-deposited cross-section, therefore no precipitation strengthening should be expected. Strain rate and stress state dependence was study, and in both tension and compression, with an increase in strain rate, the YS increase and the UTS decreased. Ductile fracture surface was observed on specimens tested to failure in both QS and HR. The AFS AA2219 processing-structure-property relations are being studied in this investigation to address the stress-state and strain rate dependence of AFS AA2219 with an internal sate variable (ISV) plasticity-damage model to capture the different yield stress, work hardening and failure strain in the AFS AA2219 for high fidelity modeling of AFS components. The ISV plasticity model successfully captured the material behavior in tension, compression, tension-followed-by-compression and compression-followed-by-tension experiments. Furthermore, the damage parameters of the model were calibrated using the final void density measured from the fracture surfaces.

  9. A NON-LINEAR STRUCTURE-PROPERTY MODEL FOR OCTANOL-WATER PARTITION COEFFICIENT.

    Science.gov (United States)

    Yerramsetty, Krishna M; Neely, Brian J; Gasem, Khaled A M

    2012-10-25

    Octanol-water partition coefficient (K(ow)) is an important thermodynamic property used to characterize the partitioning of solutes between an aqueous and organic phase and has importance in such areas as pharmacology, pharmacokinetics, pharmacodynamics, chemical production and environmental toxicology. We present a non-linear quantitative structure-property relationship model for determining K(ow) values of new molecules in silico. A total of 823 descriptors were generated for 11,308 molecules whose K(ow) values are reported in the PhysProp dataset by Syracuse Research. Optimum network architecture and its associated inputs were identified using a wrapper-based feature selection algorithm that combines differential evolution and artificial neural networks. A network architecture of 50-33-35-1 resulted in the least root-mean squared error (RMSE) in the training set. Further, to improve on single-network predictions, a neural network ensemble was developed by combining five networks that have the same architecture and inputs but differ in layer weights. The ensemble predicted the K(ow) values with RMSE of 0.28 and 0.38 for the training set and internal validation set, respectively. The ensemble performed reasonably well on an external dataset when compared with other popular K(ow) models in the literature.

  10. The Structural Properties of Sexual Fantasies for Sexual Offenders: A Preliminary Model

    Science.gov (United States)

    Gee, Dion; Ward, Tony; Belofastov, Aleksandra; Beech, Anthony

    2006-01-01

    While the phenomenon of sexual fantasy has been researched extensively, little contemporary inquiry has investigated the structural properties of sexual fantasy within the context of sexual offending. In this study, a qualitative analysis was used to develop a descriptive model of the phenomena of sexual fantasy during the offence process.…

  11. Prediction on Critical Micelle Concentration of Nonionic Surfactants in Aqueous Solution: Quantitative Structure-Property Relationship Approach

    Institute of Scientific and Technical Information of China (English)

    王正武; 黄东阳; 宫素萍; 李干佐

    2003-01-01

    In order to predict the critical micelle concentration (cmc) of nonionic surfactants in aqueous solution, a quantitative structure-property relationship (QSPR) was found for 77 nonionic surfactants belonging to eight series. The best-regressed model contained four quantum-chemical descriptors, the heat of formation (△H), the molecular dipole moment (D), the energy of the lowest unoccupied molecular orbital (ELUMO) and the energy of the highest occupied molecular orbital (EHOMO) of the surfactant molecule; two constitutional descriptors, the molecular weight of surfactant (M) and the number of oxygen and nitrogen atoms (nON ) of the hydrophilic fragment of surfactant molecule; and one topological descriptor, the Kier & Hall index of zero order (KH0) of the hydrophobic fragment of the surfactant. The established general QSPR between Ig (cmc) and the descriptors produced a relevant coefficient of multiple determination: R2=0.986. When cross terms were considered, the corresponding best model contained five descriptors ELUMO, D,KH0, M and a cross term nON·KH0, Which also produced the same coefficient as the seven-parameter model.

  12. The Structure-property Relationships of D-π-A BODIPY Dyes for Dye-sensitized Solar Cells.

    Science.gov (United States)

    Mao, Mao; Song, Qin-Hua

    2016-04-01

    BODIPY dyes have attracted considerable attention as potential photosensitizers in dye-sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D-π-A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure-property relationships of D-π-A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6-modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure-property relationships give valuable information and guidelines for designing new D-π-A BODIPY dyes for DSSCs.

  13. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    Science.gov (United States)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  14. Modeling adsorption properties of structurally deformed metal-organic frameworks using structure-property map.

    Science.gov (United States)

    Jeong, WooSeok; Lim, Dae-Woon; Kim, Sungjune; Harale, Aadesh; Yoon, Minyoung; Suh, Myunghyun Paik; Kim, Jihan

    2017-07-25

    Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure-property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure-property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure-property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure-property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost.

  15. Quantitative structure-property relationship of aromatic sulfur-containing carboxylates

    Institute of Scientific and Technical Information of China (English)

    LIU Xin-hui; YANG Zhi-feng; WANG Lian-sheng

    2003-01-01

    Based on quantum chemical calculations, TLSER model (theoretical linear solvation energy relationships) and atomic charge approach were applied to model the partition properties(water solubility and octanol/water partition coefficient) of 96 aromatic sulfur-containing carboxylates, including phenylthio, phenylsulfinyl and phenylsulfonyl carboxylates. In comparison with TLSER models, the atomic charge models are more accurate and reliable to predict the partition properties of the kind of compounds. For the atomic charge models, the molecular descriptors are molecular surface area( S ), molecular shape( O ), weight( Mw ), net charges on carboxyl group( QOC ), net charges of nitrogen atoms(Q N), and the most negative atomic charge( q- ) of the solute molecule. For water solubility (log Sw ) and octanol/water partition coefficient(log Kow), the correction coefficients r2adj(adjusted for degrees of freedom) are 0.936 and 0.938, and the standard deviations are 0.364 and 0.223, respectively.

  16. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    Science.gov (United States)

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs.

  17. Quantitative structure-property relationship study of acidity constants of some 9,10-anthraquinone derivatives using multiple linear regression and partial least-squares procedures.

    Science.gov (United States)

    Shamsipur, M; Hemmateenejad, B; Akhond, M; Sharghi, H

    2001-07-06

    A quantitative structure-property relationship study is suggested for the prediction of acidity constants of some recently synthesized 9,10-anthraquinone derivatives in binary methanol-water mixtures. Modeling of the acidity constant of the anthraquinones as a function of physicochemical parameters and mole fraction of methanol was established by means of the partial least-squares algorithm based on singular value decomposition (PLS-SVD) and multiple linear regression. The PLS-SVD procedure resulted in a better prediction ability and was found to be insensitive to noneffective descriptors. The classification of anthraquinones by the calculated descriptors was established.

  18. Specific catalysis of asparaginyl deamidation by carboxylic acids: kinetic, thermodynamic, and quantitative structure-property relationship analyses.

    Science.gov (United States)

    Connolly, Brian D; Tran, Benjamin; Moore, Jamie M R; Sharma, Vikas K; Kosky, Andrew

    2014-04-07

    Asparaginyl (Asn) deamidation could lead to altered potency, safety, and/or pharmacokinetics of therapeutic protein drugs. In this study, we investigated the effects of several different carboxylic acids on Asn deamidation rates using an IgG1 monoclonal antibody (mAb1*) and a model hexapeptide (peptide1) with the sequence YGKNGG. Thermodynamic analyses of the kinetics data revealed that higher deamidation rates are associated with predominantly more negative ΔS and, to a lesser extent, more positive ΔH. The observed differences in deamidation rates were attributed to the unique ability of each type of carboxylic acid to stabilize the energetically unfavorable transition-state conformations required for imide formation. Quantitative structure property relationship (QSPR) analysis using kinetic data demonstrated that molecular descriptors encoding for the geometric spatial distribution of atomic properties on various carboxylic acids are effective determinants for the deamidation reaction. Specifically, the number of O-O and O-H atom pairs on carboxyl and hydroxyl groups with interatomic distances of 4-5 Å on a carboxylic acid buffer appears to determine the rate of deamidation. Collectively, the results from structural and thermodynamic analyses indicate that carboxylic acids presumably form multiple hydrogen bonds and charge-charge interactions with the relevant deamidation site and provide alignment between the reactive atoms on the side chain and backbone. We propose that carboxylic acids catalyze deamidation by stabilizing a specific, energetically unfavorable transition-state conformation of l-asparaginyl intermediate II that readily facilitates bond formation between the γ-carbonyl carbon and the deprotonated backbone nitrogen for cyclic imide formation.

  19. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond.

    Science.gov (United States)

    Hybertsen, Mark S; Venkataraman, Latha

    2016-03-15

    Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure-function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, the scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics. Such link groups (amines, methylsuflides, pyridines, etc.) maintain a stable lone pair configuration that selectively bonds to specific, undercoordinated transition metal atoms available following rupture of a metal point contact in the STM-BJ experiments. This basic chemical principle rationalizes the observation of highly reproducible conductance signatures. Subsequently, the method has been extended to probe a variety of physical phenomena ranging from basic I-V characteristics to more complex properties such as thermopower and electrochemical response. By adapting the technique to a conducting cantilever atomic force microscope (AFM-BJ), simultaneous measurement of the mechanical characteristics of nanoscale junctions as they

  20. Structure-property relationships of dissimilar friction stir welded aluminum alloys

    Science.gov (United States)

    Quinones, Rogie Irwin Rodriguez

    In this work, the relationship between microstructure and mechanical properties of dissimilar friction stir welded AA6061-to-AA7050 aluminum alloys were evaluated. Experimental results from this study revealed that static strength increased with the tool rotational speed and was correlated with the material intermixing. Fully-reversed low cycle fatigue experimental results showed an increase in the strain hardening properties as well as the number of cycles-to-failure as the tool rotational speed was increased. Furthermore, under both static and cyclic loading, fracture of the joint was dominated by the AA6061 alloy side of the weld. In addition, inspection of the fatigue surfaces revealed that cracks initiated from intermetallic particles located near the surface. In order to determine the corrosion resistance of the dissimilar joint, corrosion defects were produced on the crown surface of the weld by static immersion in 3.5% NaCl for various exposure times. Results revealed localized corrosion damage in the thermo-mechanically affected and heat affected zones. Results demonstrated a decrease in the fatigue life, with evidence of crack initiation at the corrosion defects; however, the fatigue life was nearly independent of the exposure time. This can be attributed to total fatigue life dominated by incubation time. Furthermore, two types of failure were observed: fatigue crack initiation in the AA6061 side at high strain amplitudes (>0.3%); and fatigue crack initiation in the AA7050 side at low strain amplitudes (friction stir welded joints in order to capture the crack initiation and propagation in as-welded and pre-corroded conditions. Good correlation between experimental fatigue results and the model was achieved based on the variation in the initial defect size, microstructure, and mechanical properties of the dissimilar friction stir welded AA6061-to-AA7050 aluminum alloys.

  1. Structure/Property Relationships of Siloxane-Based Liquid Crystalline Materials

    Science.gov (United States)

    1992-05-01

    AD-A266 676 IImNflhIIIII WL-TR-92-4051 STRUCIUREIPROPERTY RELATIONSHIPS OF SILOXANE- BASED LIQUID CRYSTALLINE MATERIALS Timothy J. Bunning Herbert E...FUNDING NUMBERSSTRUCTURE/PROPERTY RELATIONSHIPS OF SILOXANE-BASED P: 612 LIQUID CRYSTALLINE MATERIALS PR: 624022 TA: 04 6 AUTHOR(S) W: 0 B unning, T.J...TY UISP1CTM D B DistbuationlI -vi Availability Codes Avail and/or Dist Special -Il V. SYNTHESIZED SILOXANE LIOUD CRYSTALLINE MATERIALS (Results and

  2. Synthesis and Structure-Property Relationships of Phosphole-Based π Systems and Their Applications in Organic Solar Cells.

    Science.gov (United States)

    Matano, Yoshihiro

    2015-06-01

    Phosphole is a chemically tunable heterole, and its π-conjugated derivatives are potential candidates for optoelectronic materials. This account describes recent developments in the synthesis and structure-property relationships of π-conjugated phosphole derivatives made by my research group. Thiophene-phosphole-styrene, phosphole-acetylene-arene, oligophosphole, polyphosphole, areno[c]phosphole, and phosphole-heterole π systems are synthesized using titanacycle-mediated metathesis and palladium-catalyzed cross-coupling reactions. The structural, optical, and electrochemical properties of selected compounds are discussed. Initial results on some applications of thiophene-phosphole copolymers, acenaphtho[c]phospholes, and amine-terthiophene-phosphole donor-π-acceptor dyes in organic solar cells are described. These results give valuable information and guidelines for designing new phosphorus-containing organic materials for molecular electronics.

  3. ANALYSIS OF THE STRUCTURAL PROPERTIES OF THE SOLUTIONS TO SPEED GRADIENT TRAFFIC FLOW MODEL

    Institute of Scientific and Technical Information of China (English)

    JIANG Rui; WU Qingsong

    2004-01-01

    In this paper, we carry out an analysis of the structural properties of the solutions to the speed gradient (SG) traffic flow model. Under the condition that the relaxation effect can be neglected, it is shown that a 1-shock or a 1-rarefaction is associated with the first characteristic, but on the other hand, a contact discontinuity rather than a 2-shock or a 2-rarefaction is associated with the second characteristic. Since the existence of a 2-shock or 2-rarefaction violates the physical mechanism of the traffic flow, the SG model is more reasonable. If the relaxation effect cannot be neglected, it is somewhat difficult to carry out the analytical analysis and the numerical simulation results should be obtained.

  4. A quantitative structure- property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods

    Directory of Open Access Journals (Sweden)

    Sarkhosh Maryam

    2012-05-01

    Full Text Available Abstract A quantitative structure-property relationship (QSPR study is suggested for the prediction of retention times of volatile organic compounds. Various kinds of molecular descriptors were calculated to represent the molecular structure of compounds. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR and artificial neural network (ANN. The stepwise regression was used for the selection of the variables which gives the best-fitted models. After variable selection ANN, MLR methods were used with leave-one-out cross validation for building the regression models. The prediction results are in very good agreement with the experimental values. MLR as the linear regression method shows good ability in the prediction of the retention times of the prediction set. This provided a new and effective method for predicting the chromatography retention index for the volatile organic compounds.

  5. Solvent effects on the structure-property relationship of anticonvulsant hydantoin derivatives: A solvatochromic analysis

    Directory of Open Access Journals (Sweden)

    Trišović Nemanja

    2011-10-01

    Full Text Available Abstract Considering the pharmaceutical importance of hydantoins, a set of 25 derivatives of phenytoin, nirvanol and 5-methyl-5-phenylhydantoin, the lipophilicities of which were gradually increased by the introduction of different alkyl, cycloalkyl and alkenyl groups in position N3, was synthesized. Their properties under consideration were either estimated empirically, by UV/Vis spectroscopy, or calculated using established medicinal chemistry software. The UV absorption spectra of the investigated compounds were recorded in the region from 200 to 400 nm, in selected solvents of different polarities. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions were analyzed by means of the linear solvation energy relationship (LSER concept proposed by Kamlet and Taft. Furthermore, the relationships between solvent-solute interactions and selected structural features of the solutes, which are believed to markedly affect the processes of absorption, distribution, metabolism, excretion and toxicity (ADMETox, were discussed. Satisfactory correlations were found between hydrogen bonding properties and solute size and the in silico calculated bioactivity descriptors, in particular %Abs. (human intestinal absorption, log BB (blood-brain barrier permeation and log kA (protein binding affinities parameters. In view of the results of this study, the investigated hydantoin derivatives met the pharmacokinetic criteria for pre-selection as drug candidates and qualified them for the pharmacodynamic phase of antiepileptic drug development.

  6. S09 Symposium KK, Structure-Property Relationships in Biomineralized and Biomimetic Composites

    Energy Technology Data Exchange (ETDEWEB)

    David Kisailus; Lara Estroff; Himadri S. Gupta; William J. Landis; Pablo D. Zavattieri

    2010-06-07

    The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. This symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.

  7. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles

    KAUST Repository

    Luxenhofer, Robert

    2011-07-01

    The family of poly(2-oxazoline)s (POx) is being increasingly investigated in the context of biomedical applications. We tested the relative cytotoxicity of POx and were able to confirm that these polymers are typically not cytotoxic even at high concentrations. Furthermore, we report structure-uptake relationships of a series of amphiphilic POx block copolymers that have different architectures, molar mass and chain termini. The rate of endocytosis can be fine-tuned over a broad range by changing the polymer structure. The cellular uptake increases with the hydrophobic character of the polymers and is observed even at nanomolar concentrations. Considering the structural versatility of this class of polymers, the relative ease of preparation and their stability underlines the potential of POx as a promising platform candidate for the preparation of next-generation polymer therapeutics.

  8. Motif based hierarchical random graphs: structural properties and critical points of an Ising model

    CERN Document Server

    Kotorowicz, M; 10.5488/CMP.14.13801

    2011-01-01

    A class of random graphs is introduced and studied. The graphs are constructed in an algorithmic way from five motifs which were found in [Milo R., Shen-Orr S., Itzkovitz S., Kashtan N., Chklovskii D., Alon U., Science, 2002, 298, 824-827]. The construction scheme resembles that used in [Hinczewski M., A. Nihat Berker, Phys. Rev. E, 2006, 73, 066126], according to which the short-range bonds are non-random, whereas the long-range bonds appear independently with the same probability. A number of structural properties of the graphs have been described, among which there are degree distributions, clustering, amenability, small-world property. For one of the motifs, the critical point of the Ising model defined on the corresponding graph has been studied.

  9. ProMT: effective human promoter prediction using Markov chain model based on DNA structural properties.

    Science.gov (United States)

    Xiong, Dapeng; Liu, Rongjie; Xiao, Fen; Gao, Xieping

    2014-12-01

    The core promoters play significant and extensive roles for the initiation and regulation of DNA transcription. The identification of core promoters is one of the most challenging problems yet. Due to the diverse nature of core promoters, the results obtained through existing computational approaches are not satisfactory. None of them considered the potential influence on performance of predictive approach resulted by the interference between neighboring TSSs in TSS clusters. In this paper, we sufficiently considered this main factor and proposed an approach to locate potential TSS clusters according to the correlation of regional profiles of DNA and TSS clusters. On this basis, we further presented a novel computational approach (ProMT) for promoter prediction using Markov chain model and predictive TSS clusters based on structural properties of DNA. Extensive experiments demonstrated that ProMT can significantly improve the predictive performance. Therefore, considering interference between neighboring TSSs is essential for a wider range of promoter prediction.

  10. A study of structure-property relationships in layered copper oxides

    CERN Document Server

    Hyatt, N

    2000-01-01

    described in Chapter Five. This investigation demonstrates that several intimate structure-compressibility relationships exist in these materials. Chapter Six continues the theme of high pressure crystallography, and examines, in detail, the crystal structure of HgBa sub 2 CuO sub 4 sub + subdelta using high pressure neutron diffraction methods. This study indicates that the pressure induced increase in T sub c observed in HgBa sub 2 CuO sub 4 sub + subdelta, may be related to pressure induced relief of structural strain at the interface between the rock-salt and perovskite type layers of this material. Chapter Seven examines the crystal structure of Hg sub 0 sub . sub 8 Cr sub 0 sub . sub 2 Ba sub 2 CuO sub 4 sub + subdelta under ambient and applied pressure. This study shows that significant distortions arise in the crystal structure of HgBa sub 2 CuO sub 4 sub + subdelta when linear HgO sub 2 units are substituted by tetrahedral CrO sub 4 units. Finally, Chapter Eight describes a simple method for the fabr...

  11. FOOD PROCESSING TECHNOLOGY AS A MEDIATOR OF FUNCTIONALITY. STRUCTURE-PROPERTY-PROCESS RELATIONSHIPS

    Directory of Open Access Journals (Sweden)

    Ester Betoret

    2015-02-01

    Full Text Available During the last years, the food industry has been facing technical and economic changes both in society and in the food processing practices, paying high attention to food products that meet the consumers´ demands. In this direction, the study areas in food process and products have evolved mainly from safety to other topics such as quality, environment or health. The improvement of the food products is now directed towards ensuring nutritional and specific functional benefits. Regarding the processes evolution, they are directed to ensure the quality and safety of environmentally friendly food products produced optimizing the use of resources, minimally affecting or even enhancing their nutritional and beneficial characteristics. The product structure both in its raw form and after processing plays an important role maintaining, enhancing and delivering the bioactive compounds in the appropriate target within the organism. The aim of this review is to make an overview on some synergistic technologies that can constitute a technological process to develop functional foods, enhancing the technological and/or nutritional functionality of the food products in which they are applied. More concretely, the effect of homogenization, vacuum impregnation and drying operations on bioactive compounds have been reviewed, focusing on the structure changes produced and its relationship on the product functionality, as well as on the parameters and the strategies used to quantify and increase the achieved functionality.

  12. Experimental and theoretical study on the structure-property relationship of novel 1-aryl-3-methylsuccinimides

    Science.gov (United States)

    Banjac, Nebojša R.; Božić, Bojan Đ.; Mirković, Jelena M.; Vitnik, Vesna D.; Vitnik, Željko J.; Valentić, Nataša V.; Ušćumlić, Gordana S.

    2017-02-01

    A series of ten 1-aryl-3-methylsuccinimides was synthesized and their solvatochromic properties were studied in a set of fifteen binary solvent mixtures. The solute-solvent interactions were analyzed on the basis of the linear solvation energy relationship (LSER) concept proposed by Kamlet and Taft. The electronic effect of the substituents on the UV-Vis absorption and NMR spectra was analyzed using the simple Hammett equation. Moreover, the B3LYP, CAM-B3LYP, and M06-2X functionals using the 6-311G(d,p) basic set have been assessed in light of the position of experimental absorption maxima obtained for these compounds. The integration grid effects have also been evaluated. An interpretation of the substituent-effect transmission through the molecular skeleton and the nature of the HOMO and LUMO orbitals based on quantum-chemical calculations is given. The values of partial atomic charges from the atomic polar tenzors (APT), natural population analysis (NBO), and charges fit to the electrostatic potential using the B3LYP, CAM-B3LYP, and M06-2X methods are produced and correlated with different experimental properties. In order to estimate the chemical activity of the molecule, the molecular electrostatic potential (MEP) surface map is calculated for the optimized geometry of 1-phenyl-3-methylsuccinimide.

  13. Structure - Property Relationships of Furanyl Thermosetting Polymer Materials Derived from Biobased Feedstocks

    Science.gov (United States)

    Hu, Fengshuo

    Biobased thermosetting polymers have drawn significant attention due to their potential positive economic and ecological impacts. New materials should mimic the rigid, phenylic structures of incumbent petroleum-based thermosetting monomers and possess superior thermal and mechanical properties. Furans and triglycerides derived from cellulose, hemicellulose and plant oils are promising candidates for preparing such thermosetting materials. In this work, furanyl diepoxies, diamines and di-vinyl esters were synthesized using biobased furanyl materials, and their thermal and mechanical properties were investigated using multiple techniques. The structure versus property relationship showed that, compared with the prepared phenylic analogues, biobased furanyl thermosetting materials possess improved glassy storage modulus (E '), advanced fracture toughness, superior high-temperature char yield and comparable glass transition temperature (Tg) properties. An additive molar function analysis of the furanyl building block to the physical properties, such as Tg and density, of thermosetting polymers was performed. The molar glass transition function value (Yg) and molar volume increment value (Va,i) of the furanyl building block were obtained. Biobased epoxidized soybean oil (ESO) was modified using different fatty acids at varying molar ratios, and these prepared materials dramatically improved the critical strain energy release rate (G1c) and the critical stress intensity factor (K1c) values of commercial phenylic epoxy resins, without impairing their Tg and E ' properties. Overall, it was demonstrated that biobased furans and triglycerides possess promising potential for use in preparing high-performance thermosetting materials, and the established methodologies in this work can be utilized to direct the preparation of thermosetting materials with thermal and mechanical properties desired for practical applications.

  14. Structure-property relationships: Synthesis and characterization of Perovskite-related transition metal oxides

    Science.gov (United States)

    Whaley, Louis

    The fundamental structural component of perovskite-related phases is the octahedrally coordinated transition metal ion, symbolized as BO6 . Corner-sharing networks of BO6 octahedra are present in perovskites and related Ruddlesden-Popper Phases, ABO3 and AO(ABO 3)n, respectively. Face-sharing octahedra arranged into columns are characteristic of hexagonal, perovskite-related phases, and the relationship will be described in detail in Chapter 1. Edge sharing octahedra are characteristic of Keggin- and Lindquist-type polyoxometallates, which at first glance, seem unconnected from perovskites. However, Chapter 1 will show the deep connections among all of the phases mentioned above, by starting with perovskite phases. Temperature- and field-dependent, magnetic and electronic transitions are linked to the structure by overlap of metal d-orbitals with oxygen 2p orbitals, and (in special cases) direct d-d overlap. A mixed-transition metal oxide with two or more type of B ions provides an environment in which dissimilar B-ion orbitals can interact via exchange of charge carriers (hole or electron transport). The general goal in choosing two B ions is to provide an opportunity for the large combined magnetic moment and a low barrier to hopping of charge carriers, achieved by pairing a 3d-ion having 3 to 5 unpaired d-electrons, with a 4d or 5d transition metal ion, having 1 or 2 unpaired electrons, such as Fe(III) and Mo(V), which have compatible reduction potentials (i.e., they can co-exist in the same oxide, and exchange takes place with a low barrier). This research includes the following systems: an n = 2 Ruddlesden-Popper (RP) phase, Sr3Fe5/4Mo3/4O6.9, containing 3-7% Sr2FeMoO6, as intergrowths (not separate crystal grains, by high-resolution transmission electron microscopy), and G-type antiferromagnetism below 150°K and a "partial spin-reorientation transition" by powder neutron diffraction (PND), not previously reported for n = 2 RP phases in the Sr-Fe-Mo-O system

  15. Structure-property relationships in multilayered polymeric system and olefinic block copolymers

    Science.gov (United States)

    Khariwala, Devang

    Chapter 1. The effect of tie-layer thickness on delamination behavior of polypropylene/tie-layer/Nylon-6 multilayers is examined in this study. Various maleated polypropylene resins were compared for their effectiveness as tie-layers. Delamination failure occurred cohesively in all the multilayer systems. Two adhesion regimes were defined based on the change in slope of the linear relationship between the delamination toughness and the tie-layer thickness. The measured delamination toughness of the various tie-layers was quantitatively correlated to the damage zone length formed at the crack tip. In addition, the effect of tie-layer thickness on the multilayer tensile properties was correlated with the delamination behavior. The fracture strain of the multilayers decreased with decreasing tie-layer thickness. Examination of the prefracture damage mechanism of stretched multilayers revealed good correlation with the delamination toughness of the tie-layers. In thick tie-layers (>2microm) the delamination toughness of the tie-layers was large enough to prevent delamination of multilayers when they were stretched. In the thin tie-layers (organized lamellar crystals with the orthorhombic unit cell and high melting temperature. The lamellae are organized into space-filling spherulites in all compositions even in copolymers with only 18 wt% hard block. The morphology is consistent with crystallization from a miscible melt. Crystallization of the hard blocks forces segregation of the noncrystallizable soft blocks into the interlamellar regions. Good separation of hard and soft blocks in the solid state is confirmed by distinct and separate beta- and alpha-relaxations in all the block copolymers. Compared to statistical ethylene-octene copolymers, the blocky architecture imparts a substantially higher crystallization temperature, a higher melting temperature and a better organized crystalline morphology, while maintaining a lower glass transition temperature. The

  16. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... of information that is inaccessible by purely experimental means, and these structures, in turn, strongly suggest that a bifunctional reaction mechanism for alkaline HER will be operative at the interface between the films, the metal substrates, and the surrounding aqueous medium. This bifunctionality produces...... important changes in the calculated barriers of key elementary reaction steps, including water activation and dissociation, as compared to traditional monofunctional Pt surfaces. The successful identification of the structures of thin metal films and three-phase boundary catalysts is not only an important...

  17. Structure-property relationships of carboxymethyl hydroxypropyl guar gum in water and a hyperentanglement parameter.

    Science.gov (United States)

    Szopinski, Daniel; Kulicke, Werner-Michael; Luinstra, Gerrit A

    2015-03-30

    The viscoelastic properties of carboxymethyl hydroxypropyl guar gum (CMHPG) in aqueous solution were determined as function of concentration and of molecular weight, using SEC/MALLS/dRI and viscometry. The chain is more rigid as in native guar as was deduced from the molecular parameter in dilute solution. Superstructures are formed in moderately concentrated solutions as is shown from the comparison of steady state shear and small amplitude oscillatory shear (SAOS) experiments. The shear rate dependent viscosity of CMHPG can satisfactorily be described by the Carreau-Yasuda model with the rheological parameters (η0, λ0, n, b) obtained from the evaluation of viscosity data. A quantitative hyperentanglement parameter is introduced to account for the differences in responses in shear and SAOS experiments.

  18. Atomically resolved tomography to directly inform simulations for structure-property relationships

    Science.gov (United States)

    Moody, Michael P.; Ceguerra, Anna V.; Breen, Andrew J.; Cui, Xiang Yuan; Gault, Baptiste; Stephenson, Leigh T.; Marceau, Ross K. W.; Powles, Rebecca C.; Ringer, Simon P.

    2014-11-01

    Microscopy encompasses a wide variety of forms and scales. So too does the array of simulation techniques developed that correlate to and build upon microstructural information. Nevertheless, a true nexus between microscopy and atomistic simulations is lacking. Atom probe has emerged as a potential means of achieving this goal. Atom probe generates three-dimensional atomistic images in a format almost identical to many atomistic simulations. However, this data is imperfect, preventing input into computational algorithms to predict material properties. Here we describe a methodology to overcome these limitations, based on a hybrid data format, blending atom probe and predictive Monte Carlo simulations. We create atomically complete and lattice-bound models of material specimens. This hybrid data can then be used as direct input into density functional theory simulations to calculate local energetics and elastic properties. This research demonstrates the role that atom probe combined with theoretical approaches can play in modern materials engineering.

  19. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J. Lawrence [School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO (United States) and School of Dentistry, University of Missouri-Kansas City, Kansas City, MO (United States)]. E-mail: katzjl@umkc.edu; Misra, Anil [School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO (United States); Spencer, Paulette [School of Dentistry, University of Missouri-Kansas City, Kansas City, MO (United States); Wang, Yong [School of Dentistry, University of Missouri-Kansas City, Kansas City, MO (United States); Bumrerraj, Sauwanan [School of Medicine, Khon Kaen University, Khon Kaen (Thailand); Nomura, Tsutomu [School of Dentistry, Niigata University, Niigata (Japan); Eppell, Steven J. [Case School of Engineering, Case Western Reserve University, Cleveland, OH (United States); Tabib-Azar, Massood [Case School of Engineering, Case Western Reserve University, Cleveland, OH (United States)

    2007-04-15

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin-enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level.

  20. Hydrogen storage in metal-organic frameworks: An investigation of structure-property relationships

    Science.gov (United States)

    Rowsell, Jesse

    Metal-organic frameworks (MOFs) have been identified as candidate hydrogen storage materials due to their ability to physisorb large quantities of small molecules. Thirteen compounds (IRMOF-1, -2, -3, -6, -8, -9, -11, -13, -18, -20, MOF-74, MOF-177 and HKUST-1) have been prepared and fully characterized for the evaluation of their dihydrogen (H2) adsorption properties. All compounds display approximately type I isotherms with no hysteresis at 77 K up to 1 atm. The amount adsorbed ranges from 0.89 to 2.54 wt%; however, saturation is not achieved under these conditions. The influences of link functionalization, catenation and topology are examined for the eleven MOFs composed of Zn4O(O2C-)6 clusters. Enhanced H2 uptake by catenated compounds is rationalized by increased overlap of the surface potentials within their narrower pores. This is corroborated by the larger isosteric heat of adsorption of IRMOF-11 compared to IRMOF-1. Inelastic neutron scattering spectroscopic analysis of four Zn4O-based materials (IRMOF-1, -8, -11, and MOF-74) under a range of H2 loading suggests the presence of multiple localized adsorption sites on both the inorganic and organic moieties. To determine the structural details of the adsorption sites, variable temperature single crystal X-ray diffraction was used to analyze adsorbed argon and dinitrogen molecules in IRMOF-1. The principle binding site was found to be the same for both adsorbates and is located on faces of the octahedral Zn4O(O2C-)6 clusters with close contacts to three carboxylate groups. A total of eight symmetry-independent adsorption sites were identified for argon at 30 K. Similar sites were observed for dinitrogen, suggesting that they are good model adsorbates for the behaviour of dihydrogen. Two additional materials composed of inorganic clusters with coordinatively unsaturated metal sites (MOF-74, HKUST-1) were examined and their increased capacities and isosteric heats of adsorption provide further evidence that the

  1. Kinetic Control of Aqueous Hydrolysis: Modulating Structure/Property Relationships in Inorganic Crystals

    Science.gov (United States)

    Neilson, James R.

    2011-12-01

    A grand challenge in materials science and chemistry revolves around the preparation of materials with desired properties by controlling structure on multiple length scales. Biology approaches this challenge by evolving tactics to transform soluble precursors into materials and composites with macro-scale and atomic precision. Studies of biomineralization in siliceous sponges led to the discovery of slow, catalytic hydrolysis of molecular precursors in the biogenesis of silica skeletal elements with well defined micro- and nano-scale architectures. However, the role of aqueous hydrolysis in the limit of kinetic control is not well understood; this allows us to form a central hypothesis: that the kinetics of hydrolysis modulate the structures of materials and their properties. As a model system, the diffusion of a simple hydrolytic catalyst (such as ammonia) across an air-water interface into a metal salt solution reproduces some aspects of the chemistry found in biomineralization, namely kinetic and vectorial control. Variation of the catalyst concentration modulates the hydrolysis rate, and thus alters the resulting structure of the inorganic crystals. Using aqueous solutions of cobalt(II) chloride, each product (cobalt hydroxide chloride) forms with a unique composition, despite being prepared from identical mother liquors. Synchrotron X-ray total scattering methods are needed to locate the atomic positions in the material, which are not aptly described by a traditional crystallographic unit cell due to structural disorder. Detailed definition of the structure confirms that the hydrolysis conditions systematically modulate the arrangement of atoms in the lattice. This tightly coupled control of crystal formation and knowledge of local and average structures of these materials provides insight into the unusual magnetic properties of these cobalt hydroxides. The compounds studied show significant and open magnetization loops with little variation with composition

  2. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.

    Science.gov (United States)

    Parinet, Julien; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gerald; Höhener, Patrick

    2015-09-01

    We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel.

  3. Invariants and Other Structural Properties of Biochemical Models as a Constraint Satisfaction Problem

    Directory of Open Access Journals (Sweden)

    Soliman Sylvain

    2012-05-01

    Full Text Available Abstract Background We present a way to compute the minimal semi-positive invariants of a Petri net representing a biological reaction system, as resolution of a Constraint Satisfaction Problem. The use of Petri nets to manipulate Systems Biology models and make available a variety of tools is quite old, and recently analyses based on invariant computation for biological models have become more and more frequent, for instance in the context of module decomposition. Results In our case, this analysis brings both qualitative and quantitative information on the models, in the form of conservation laws, consistency checking, etc. thanks to finite domain constraint programming. It is noticeable that some of the most recent optimizations of standard invariant computation techniques in Petri nets correspond to well-known techniques in constraint solving, like symmetry-breaking. Moreover, we show that the simple and natural encoding proposed is not only efficient but also flexible enough to encompass sub/sur-invariants, siphons/traps, etc., i.e., other Petri net structural properties that lead to supplementary insight on the dynamics of the biochemical system under study. Conclusions A simple implementation based on GNU-Prolog's finite domain solver, and including symmetry detection and breaking, was incorporated into the BIOCHAM modelling environment and in the independent tool Nicotine. Some illustrative examples and benchmarks are provided.

  4. Composition-structure-property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses.

    Science.gov (United States)

    Zhang, Xiaofang; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-04-01

    Non-classical ionomer glasses like those based on zinc-boron-germanium glasses are of special interest in a variety of medical applications owning to their unique combination of properties and potential therapeutic efficacy. These features may be of particular benefit with respect to the utilization of glass ionomer cements for minimally invasive dental applications such as the atruamatic restorative treatment, but also for expanded clinical applications in orthopedics and oral-maxillofacial surgery. A unique system of zinc-boron-germanium-based glasses (10 compositions in total) has been designed using a Design of Mixtures methodology. In the first instance, ionomer glasses were examined via differential thermal analysis, X-ray diffraction, and (11)B MAS NMR spectroscopy to establish fundamental composition - structure-property relationships for the unique system. Secondly, cements were synthesized based on each glass and handling characteristics (working time, Wt, and setting time, St) and compression strength were quantified to facilitate the development of both experimental and mathematical composition-structure-property relationships for the new ionomer cements. The novel glass ionomer cements were found to provide Wt, St, and compression strength in the range of 48-132 s, 206-602 s, and 16-36 MPa, respectively, depending on the ZnO/GeO2 mol fraction of the glass phase. A lower ZnO mol fraction in the glass phase provides higher glass transition temperature, higher N4 rate, and in combination with careful modulation of GeO2 mol fraction in the glass phase provides a unique approach to extending the Wt and St of glass ionomer cement without compromising (in fact enhancing) compression strength. The data presented in this work provide valuable information for the formulation of alternative glass ionomer cements for applications within and beyond the dental clinic, especially where conventional approaches to modulating working time and strength exhibit co

  5. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    Science.gov (United States)

    Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.

    2017-04-01

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

  6. Dicyanovinyl-substituted oligothiophenes: Structure-property relationships and application in vacuum-processed small molecule organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, Roland; Reinold, Egon; Mishra, Amaresh; Mena-Osteritz, Elena; Baeuerle, Peter [Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm (Germany); Ziehlke, Hannah; Koerner, Christian; Leo, Karl; Riede, Moritz [Institute of Applied Photophysics, TU Dresden, Mommsenstrasse 13, 01062 Dresden (Germany); Weil, Matthias [Institut fuer Chemische Technologien und Analytik, Abteilung Strukturchemie, Technische Universitaet Wien, Getreidemarkt 9/164-SC, 1060 Vienna (Austria); Tsaryova, Olga; Weiss, Andre; Uhrich, Christian; Pfeiffer, Martin [Heliatek GmbH, Treidlerstr. 3, 01139 Dresden (Germany)

    2011-03-08

    Efficient synthesis of a series of terminally dicyanovinyl (DCV)-substituted oligothiophenes, DCVnT 1-6, without solubilizing side chains synthesized via a novel convergent approach and their application as electron donors in vacuum-processed m-i-p-type planar and p-i-n-type bulk heterojunction organic solar cells is described. Purification of the products via gradient sublimation yields thermally highly stable organic semiconducting materials in single crystalline quality which allows for X-ray structure analysis. Important insights into the packing features and intermolecular interactions of these promising solar cell materials are provided. Optical absorption spectra and electrochemical properties of the oligomers are investigated and valuable structure-property relationships deduced. Photovoltaic devices incorporating DCVnTs 4-6 showed power conversion efficiencies up to 2.8% for planar and 5.2% for bulk heterojunction organic solar cells under full sun illumination (mismatch corrected simulated AM 1.5G sunlight). The 5.2% efficiency shown here represents one of the highest values ever reported for organic vacuum-deposited single heterojunction solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    Science.gov (United States)

    Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.

    2016-12-01

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

  8. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives.

    Science.gov (United States)

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q (2) values of 0.753 and 0.770, and r (2) values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2'-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure-property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature.

  9. Water solubility of selected C9-C18 alkanes using a slow-stir technique: Comparison to structure - property models.

    Science.gov (United States)

    Letinski, Daniel J; Parkerton, Thomas F; Redman, Aaron D; Connelly, Martin J; Peterson, Brian

    2016-05-01

    Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 μg/L to 250 μg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes.

  10. Structure-Property Characterization of the Crinkle-Leaf Peach Wood Phenotype: A Future Model System for Wood Properties Research?

    Science.gov (United States)

    Wiedenhoeft, Alex C.; Arévalo, Rafael; Ledbetter, Craig; Jakes, Joseph E.

    2016-09-01

    Nearly 400 million years of evolution and field-testing by the natural world has given humans thousands of wood types, each with unique structure-property relationships to study, exploit, and ideally, to manipulate, but the slow growth of trees makes them a recalcitrant experimental system. Variations in wood features of two genotypes of peach ( Prunus persica L.) trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Crinkle-leaf is a naturally-occurring mutation in which wood strength is altered in conjunction with an easily observed `crinkling' of the leaves' surface. Trees from three vigor classes (low growth rate, average growth rate, and high growth rate) of each genotype were sampled. No meaningful tendency of dissimilarities among the different vigor classes was found, nor any pattern in features in a genotype-by-vigor analysis. Wild-type trees exhibited longer vessels and fibers, wider rays, and slightly higher specific gravity. Neither cell wall mechanical properties measured with nanoindentation nor cell wall histochemical properties were statistically or observably different between crinkle-leaf and wild-type wood. The crinkle-leaf mutant has the potential to be a useful model system for wood properties investigation and manipulation if it can serve as a field-observable vegetative marker for altered wood properties.

  11. A model study on color and related structural properties of cured porcine batters

    NARCIS (Netherlands)

    Palombo, R.

    1990-01-01

    Color, determined by tristimulus colorimeters, and related structural properties, i.e., microstructure, surface rheology, and bulk rheology, of cured porcine meat batters were studied.

    Effects of various processing factors (such as, temperature, air pressure during chopping, and

  12. A model study on color and related structural properties of cured porcine batters.

    NARCIS (Netherlands)

    Palombo, R.

    1990-01-01

    Color, determined by tristimulus colorimeters, and related structural properties, i.e., microstructure, surface rheology, and bulk rheology, of cured porcine meat batters were studied.Effects of various processing factors (such as, temperature, air pressure during chopping, and cutter type) on chang

  13. Endochin optimization: structure-activity and structure-property relationship studies of 3-substituted 2-methyl-4(1H)-quinolones with antimalarial activity.

    Science.gov (United States)

    Cross, R Matthew; Monastyrskyi, Andrii; Mutka, Tina S; Burrows, Jeremy N; Kyle, Dennis E; Manetsch, Roman

    2010-10-14

    Since the 1940s endochin and analogues thereof were known to be causal prophylactic and potent erythrocytic stage agents in avian models. Preliminary screening in a current in vitro assay identified several 4(1H)-quinolones with nanomolar EC(50) against erythrocytic stages of multidrug resistant W2 and TM90-C2B isolates of Plasmodium falciparum. Follow-up structure-activity relationship (SAR) studies on 4(1H)-quinolone analogues identified several key features for biological activity. Nevertheless, structure-property relationship (SPR) studies conducted in parallel revealed that 4(1H)-quinolone analogues are limited by poor solubilities and rapid microsomal degradations. To improve the overall efficacy, multiple 4(1H)-quinolone series with varying substituents on the benzenoid quinolone ring and/or the 3-position were synthesized and tested for in vitro antimalarial activity. Several structurally diverse 6-chloro-2-methyl-7-methoxy-4(1H)-quinolones with EC(50) in the low nanomolar range against the clinically relevant isolates W2 and TM90-C2B were identified with improved physicochemical properties while maintaining little to no cross-resistance with atovaquone.

  14. Structure/property relationships of the thermoelectric oxyselenides (Bi1-xAxCuOSe) (A=Ba and Ca)

    Science.gov (United States)

    Wong-Ng, Winnie; Yan, Yonggao; Kaduk, James A.; Tang, Xin F.

    2017-10-01

    The crystal structures, solid solution limit, and powder X-ray reference diffraction patterns for two 'natural superlattice' series Bi1-xBaxCuOSe (x = 0.05, 0.075, 0.1, 0.2, and 0.3), and Bi1-xCaxCuOSe (x = 0, 0.05, 0.075, 0.1, 0.2 and 0.3) have been determined. The structure/property relationships of these thermoelectric materials are summarized. As the ionic radius of Ba2+ is greater than that of Bi3+, the unit cell volume, V, of Bi1-xBaxCuOSe increases progressively from x = 0 to x = 0.2 (from 137.868 (5) Å3 to 141.194 (10) Å3, respectively). However, even though the ionic radius of Ca2+ is smaller than that of Bi3+, the unit cell volumes, V, of Bi1-xCaxCuOSe also show an increasing trend as a function of x (137.868 (5) Å3 to 139.295 (12) Å3 from x = 0 to 0.3, respectively) due to the relatively large increase in c parameter. The structure of Bi1-xAxCuOSe (A = Ba and Ca) can be considered as built from [Bi2(1-x)A2xO2]2(1-x)+ layers normal to the c-axis alternating with fluorite-like [Cu2Se2]2(1-x)- layers in the c-direction. The substitutions of Ba and Ca on the Bi site of Bi1-xAxCuOSe lead to the weakening of the 'bonding' between the [Bi2(1-x)A2xO2]2(1-x)+ and the [Cu2Se2]2(1-x)- layers (a decrease of Columbic force), resulting in an increase of the c-axis parameter and V. Powder X-ray diffraction patterns of Bi1-xAxCuOSe were submitted for inclusion in the Powder Diffraction File (PDF).

  15. A novel approach to study the structure-property relationships and applications in living systems of modular Cu2+ fluorescent probes

    Science.gov (United States)

    She, Mengyao; Yang, Zheng; Hao, Likai; Wang, Zhaohui; Luo, Tianyou; Obst, Martin; Liu, Ping; Shen, Yehua; Zhang, Shengyong; Li, Jianli

    2016-08-01

    A series of Cu2+ probe which contains 9 probes have been synthesized and established. All the probes were synthesized using Rhodamine B as the fluorophore, conjugated to various differently substituted cinnamyl aldehyde with C=N Schiff base structural motif as their core moiety. The structure-property relationships of these probes have been investigated. The change of optical properties, caused by different electronic effect and steric effect of the recognition group, has been analyzed systematically. DFT calculation simulation of the Ring-Close and Ring-Open form of all the probes have been employed to illuminate, summarize and confirm these correlations between optical properties and molecular structures. In addition, biological experiment demonstrated that all the probes have a high potential for both sensitive and selective detection, mapping of adsorbed Cu2+ both in vivo and environmental microbial systems. This approach provides a significant strategy for studying structure-property relationships and guiding the synthesis of probes with various optical properties.

  16. A review of quantitative structure-property relationships for the fate of ionizable organic chemicals in water matrices and identification of knowledge gaps.

    Science.gov (United States)

    Nolte, Tom M; Ragas, Ad M J

    2017-03-22

    Many organic chemicals are ionizable by nature. After use and release into the environment, various fate processes determine their concentrations, and hence exposure to aquatic organisms. In the absence of suitable data, such fate processes can be estimated using Quantitative Structure-Property Relationships (QSPRs). In this review we compiled available QSPRs from the open literature and assessed their applicability towards ionizable organic chemicals. Using quantitative and qualitative criteria we selected the 'best' QSPRs for sorption, (a)biotic degradation, and bioconcentration. The results indicate that many suitable QSPRs exist, but some critical knowledge gaps remain. Specifically, future focus should be directed towards the development of QSPR models for biodegradation in wastewater and sediment systems, direct photolysis and reaction with singlet oxygen, as well as additional reactive intermediates. Adequate QSPRs for bioconcentration in fish exist, but more accurate assessments can be achieved using pharmacologically based toxicokinetic (PBTK) models. No adequate QSPRs exist for bioconcentration in non-fish species. Due to the high variability of chemical and biological species as well as environmental conditions in QSPR datasets, accurate predictions for specific systems and inter-dataset conversions are problematic, for which standardization is needed. For all QSPR endpoints, additional data requirements involve supplementing the current chemical space covered and accurately characterizing the test systems used.

  17. An Investigation of the Structure-Property Relationships for High Performance Thermoplastic Matrix, Carbon Fiber Composites with a Tailored Polyimide Interphase

    OpenAIRE

    Gardner, Slade Havelock II

    1998-01-01

    The aqueous suspension prepregging technique was used to fabricate PEEK and PPS matrix composites with polyimide interphases of tailored properties. The structure-property relationships of Ultem-type polyimide and BisP-BTDA polyimide which were made from various water soluble polyamic acid salts were studied. The molecular weight of the polyimides was shown to be dependant upon the selection of the base used for making the polyamic acid salt. The development of an Ultem-type polyimide with...

  18. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods.

    Science.gov (United States)

    Kolb, Brian; Lentz, Levi C; Kolpak, Alexie M

    2017-04-26

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. The result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. This work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet's ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.

  19. Navigating Organo-Lead Halide Perovskite Phase Space via Nucleation Kinetics toward a Deeper Understanding of Perovskite Phase Transformations and Structure-Property Relationships.

    Science.gov (United States)

    Williams, Spencer T; Chueh, Chu-Chen; Jen, Alex K-Y

    2015-07-01

    Organo-lead halide perovskite photovoltaics have developed faster than our understanding of the material itself. Using the vast body of work on perovskite processing created in just the past few years, it is possible to create a better picture of this material's complex phase-transformation behavior. This concept paper summarizes and correlates the current understanding of structural intermediates, kinetic controls, and structure-property relationships of organo-lead iodide perovskites. To this end, a new way of graphically relating information is developed, allowing the simultaneous mapping of schematic kinetic relationships between all currently prevailing perovskite deposition and growth techniques.

  20. On the Development and Use of Large Chemical Similarity Networks, Informatics Best Practices and Novel Chemical Descriptors Towards Materials Quantitative Structure Property Relationships

    Science.gov (United States)

    Krein, Michael

    After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright cheating in the form of explicitly removing data to fit models. These actions do not serve the community well, nor are they beneficial to future predictions based on established models. In practice, in order to select combinations of descriptors and machine learning methods that might work best, one must consider the nature and size of the training and test datasets, be aware of existing hypotheses about the data, and resist the temptation to bias structure representation and modeling to explicitly fit the hypotheses. The definition and application of these best practices is important for obtaining actionable modeling outcomes, and for setting user expectations of modeling accuracy when predicting the endpoint values of unknowns. A wide variety of statistical learning approaches, descriptor types, and model validation strategies are explored herein, with the goals of helping end users understand the factors involved in creating and using QSPR models effectively, and to better understand relationships within the data, especially by looking at the problem space from multiple perspectives. Molecular relationships are commonly envisioned in a continuous high-dimensional space of numerical descriptors, referred to as chemistry space. Descriptor and similarity metric choice influence the partitioning of this space into regions corresponding to local structural similarity. These regions, known as domains of applicability, are most likely to be successfully modeled by a QSPR. In Chapter 2, the network topology and scaling relationships of several chemistry spaces are thoroughly investigated. Chemistry spaces studied include the

  1. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    Science.gov (United States)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  2. 2D Quantitative Structure-Property Relationship Study of Mycotoxins by Multiple Linear Regression and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Fereshteh Shiri

    2010-08-01

    Full Text Available In the present work, support vector machines (SVMs and multiple linear regression (MLR techniques were used for quantitative structure–property relationship (QSPR studies of retention time (tR in standardized liquid chromatography–UV–mass spectrometry of 67 mycotoxins (aflatoxins, trichothecenes, roquefortines and ochratoxins based on molecular descriptors calculated from the optimized 3D structures. By applying missing value, zero and multicollinearity tests with a cutoff value of 0.95, and genetic algorithm method of variable selection, the most relevant descriptors were selected to build QSPR models. MLRand SVMs methods were employed to build QSPR models. The robustness of the QSPR models was characterized by the statistical validation and applicability domain (AD. The prediction results from the MLR and SVM models are in good agreement with the experimental values. The correlation and predictability measure by r2 and q2 are 0.931 and 0.932, repectively, for SVM and 0.923 and 0.915, respectively, for MLR. The applicability domain of the model was investigated using William’s plot. The effects of different descriptors on the retention times are described.

  3. Quantitative structure-property relationship studies for collision cross sections of 579 singly protonated peptides based on a novel descriptor as molecular graph fingerprint (MoGF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Peng [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China) and College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)], E-mail: ggootc@163.com; Tian Feifei [College of Bioengineering, Chongqing University, Chongqing 400044 (China); Li Zhiliang [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China) and State Key Laboratory of Chemo/Biosensing and Chemometrics, Changsha 410082 (China)], E-mail: ggootc@163.com

    2007-08-10

    Aiming at ion mobility spectrometry (IMS), computer-assisted ion mobility prediction (CAIMP) has been recently developed to simulate and predict diverse IMS behaviors in assistance of mathematics and computer science. Of that, quantitative structure-property relationship (QSPR) plays a vital role, dedicating to predict properties of unknown samples by creating statistical model based on known samples. In QSPR, the key lies in how to transform structural characteristics of target compounds into a group of numerical codes. In consideration that future IMS applications may mainly focus on intricate drug/biological systems, a novel molecular structural characterization method referring to molecular graphic fingerprint (MoGF) is proposed in this paper. In MoGF approach, radical distribution function is employed to map intrinsic interatomic correlations into a coordinate system according to a reasonable sampling interval, thus forming the characteristic graph curve which is rich in information on molecular structural characteristics, possessing of great merits in easy calculation, independent of experiments, large information contents, explicit structural meanings and intuitive expressions, etc. Consequently, MoGF is utilized to QSPR studies on 579 singly protonated peptide collision cross sections, and the constructed partial least square (PLS) regression model is confirmed to be robust and predictable by rigorous both internal and external validations, with statistics as r{sup 2} = 0.991, q{sup 2} = 0.990, RMSEE = 5.526, RMSCV = 5.572, q{sub ext}{sup 2}=0.990, r{sub ext}{sup 2}=0.990, r{sub 0,ext}{sup 2}=0.990, r{sub 0,ext}{sup '2}=0.990, k = 1.003, k' = 0.996 and RMSEP = 5.561, respectively.

  4. Study on the structure-properties relationship of natural rubber/SiO2 composites modified by a novel multi-functional rubber agent

    Directory of Open Access Journals (Sweden)

    S. Y. Yang

    2014-06-01

    Full Text Available Vulcanization property and structure-properties relationship of natural rubber (NR/silica (SiO2 composites modified by a novel multi-functional rubber agent, N-phenyl- N'-(γ-triethoxysilane-propyl thiourea (STU, are investigated in detail. Results from the infrared spectroscopy (IR and X-ray photoelectron spectroscopy (XPS show that STU can graft to the surface of SiO2 under heating, resulting in a fine-dispersed structure in the rubber matrix without the connectivity of SiO2 particles as revealed by transmission electron microscopy (TEM. This modification effect reduces the block vulcanization effect of SiO2 for NR/SiO2/STU compounds under vulcanization process evidently. The 400% modulus and tensile strength of NR/SiO2/STU composites are much higher than that of NR/SiO2/TU composites, although the crystal index at the stretching ratio of 4 and crosslinking densities of NR/SiO2 composites are almost the same at the same dosage of SiO2. Consequently, a structure-property relationship of NR/SiO2/STU composites is proposed that the silane chain of STU can entangle with NR molecular chains to form an interfacial region, which is in accordance with the experimental observations quite well.

  5. Effect of Fe(3)O(4) on the sedimentation and structure-property relationship of starch under different pHs.

    Science.gov (United States)

    Palanikumar, S; Siva, P; Meenarathi, B; Kannammal, L; Anbarasan, R

    2014-06-01

    The nanosized ferrite (Fe3O4) was synthesized and characterized by analytical techniques such as Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, fluorescence spectroscopy and transmission electron microscopy (TEM). The structure-property relationship of starch was studied under three different pHs namely 3.8, 7.1 and 12.5. The starch treated under acidic condition was degraded. In a similar manner, the structure-property relationship of starch in the presence of ferrite nanoparticles at three different pHs, as mentioned above was studied. The starch/ferrite nanocomposite prepared under acidic condition showed a degraded structure. Further, the polymer/nanocomposite systems were characterized by analytical techniques such as FTIR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vibrating sample measurement (VSM), TEM and scanning electron microscopy (SEM). Finally, the settling velocity of starch under three different pHs both in the presence and absence of Fe3O4 was carried out to ensure the role of pH and effect of Fe3O4 on the settling velocity of starch.

  6. Solvent effects on the absorption spectra of potentially pharmacologically active 5-alkyl-5-arylhydantoins: A structure-property relationship study

    Directory of Open Access Journals (Sweden)

    Hmuda Sleem F.

    2013-01-01

    Full Text Available To obtain an insight into the interactions of potential anticonvulsant drugs with their surrounding, two series of 5-methyl-5-aryl- and 5-ethyl-5-arylhydantoins were synthesized and their absorption spectra were recorded in the region from 200 to 400 nm in a set of selected solvents. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima shifts were analyzed by means of the linear solvation energy relationship (LSER concept of Kamlet and Taft. The ratio of the contributions of specific and nonspecific solvent-solute interactions were correlated with the corresponding ADME properties of the studied compounds. The correlation equations were combined with different physicochemical parameters to generate new equations, which demonstrate the reasonable relationships between solvent-solute interactions and the structure-activity parameters. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  7. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.; Romano, Flavio; Doye, Jonathan P. K., E-mail: jonathan.doye@chem.ox.ac.uk [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Randisi, Ferdinando [Life Sciences Interface Doctoral Training Center, South Parks Road, Oxford OX1 3QU (United Kingdom); Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Šulc, Petr [Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065 (United States); Ouldridge, Thomas E. [Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ (United Kingdom); Tsukanov, Roman; Nir, Eyal [Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva (Israel); Louis, Ard A. [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2015-06-21

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.

  8. Energetic N-Nitramino/N-Oxyl-Functionalized Pyrazoles with Versatile π-π Stacking: Structure-Property Relationships of High-Performance Energetic Materials.

    Science.gov (United States)

    Yin, Ping; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2016-11-07

    N-Nitramino/N-oxyl functionalization strategies were employed to investigate structure-property relationships of energetic materials. Based on single-crystal diffraction data, π-π stacking of pyrazole backbones can be tailored effectively by energetic functionalities, thereby resulting in diversified energetic compounds. Among them, hydroxylammonium 4-amino-3,5-dinitro-1H-pyrazol-1-olate and dipotassium N,N'-(3,5-dinitro-1H-pyrazol-1,4-diyl)dinitramidate, with unique face-to-face π-π stacking, can be potentially used as a high-performance explosive and an energetic oxidizer, respectively. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural properties of Potts model partition functions and chromatic polynomials for lattice strips

    Science.gov (United States)

    Chang, Shu-Chiuan; Shrock, Robert

    2001-07-01

    The q-state Potts model partition function (equivalent to the Tutte polynomial) for a lattice strip of fixed width Ly and arbitrary length Lx has the form Z(G,q,v)=∑ j=1N Z,G,λ c Z,G,j(λ Z,G,j) L x, where v is a temperature-dependent variable. The special case of the zero-temperature antiferromagnet ( v=-1) is the chromatic polynomial P( G, q). Using coloring and transfer matrix methods, we give general formulas for C X,G=∑ j=1N X,G,λ c X,G,j for X= Z, P on cyclic and Möbius strip graphs of the square and triangular lattice. Combining these with a general expression for the (unique) coefficient cZ, G, j of degree d in q: c (d)=U 2d( q/2) , where Un( x) is the Chebyshev polynomial of the second kind, we determine the number of λZ, G, j's with coefficient c( d) in Z( G, q, v) for these cyclic strips of width Ly to be n Z(L y,d)=(2d+1)(L y+d+1) -1{2L y}/{L y-d } for 0⩽ d⩽ Ly and zero otherwise. For both cyclic and Möbius strips of these lattices, the total number of distinct eigenvalues λZ, G, j is calculated to be N Z,L y,λ = {2L y}/{L y}. Results are also presented for the analogous numbers nP( Ly, d) and NP, Ly, λ for P( G, q). We find that nP( Ly,0)= nP( Ly-1,1)= MLy-1 (Motzkin number), nZ( Ly,0)= CLy (the Catalan number), and give an exact expression for NP, Ly, λ. Our results for NZ, Ly, λ and NP, Ly, λ apply for both the cyclic and Möbius strips of both the square and triangular lattices; we also point out the interesting relations NZ, Ly, λ=2 NDA, tri, Ly and NP, Ly, λ=2 NDA, sq, Ly, where NDA, Λ, n denotes the number of directed lattice animals on the lattice Λ. We find the asymptotic growths NZ, Ly, λ∼ Ly-1/24 Ly and NP, Ly, λ∼ Ly-1/23 Ly as Ly→∞. Some general geometric identities for Potts model partition functions are also presented.

  10. Mixing and structural properties of model polymer solutions: Molecular theory and simulation

    Science.gov (United States)

    McDaniels, Brian S.

    1999-12-01

    Recent advances in new single-site catalysts continue to fuel an already growing polymer market. As the market increases, a better understanding of polymers becomes critical. The majority of this understanding has been acquired through experimentation. While important, experimentation may be expensive and time consuming. Thus, it is desirable to predict polymer properties from molecular level characteristics. While a large amount of work has been performed in the area of overall properties of pure and mixture fluids, little work has been done in the area of mixing properties. Our initial effort into this area includes investigating the ability of the compressible Flory, generalized Flory dimer, and interpolating equations of state to predict mixing properties of a model polymer system. In determining the accuracy of the equations, Monte Carlo simulations have been performed in the Gibbs ensemble. A problem in the simulation of these systems, limited access to sampling space, has occurred and an established remedy has been discussed. We have determined that the most effective solution to the problem is a combination of conventional moves and the established correction. Predictions of the overall pressure, osmotic pressure, activity coefficient and Flory Chi parameter have been compared with simulation results, good agreement occurs at high densities, long chain lengths, and high chain concentrations except for the compressible Flory equation of state which only provides qualitatively correct predictions for the mixing properties. The structure of the fluid also is discussed. An increase in the packing fraction results in chain contraction. The addition of a monomeric solvent causes solvation in low to medium packing fraction fluids. Because the addition of solvent increases the packing fraction, the chains also contract. The effect of increasing packing fraction is stronger than the addition of solvent. The monomeric solvent forms clusters over the range of

  11. STRUCTURE-PROPERTY RELATIONSHIP OF POLYELECTROLYTES AND ITS APPLICATION IN STABILIZING DRILLING-MUD IN PRESENCE OF SALTS

    Institute of Scientific and Technical Information of China (English)

    LI Zhuomei; ZHANG Xuexin; XIE Zhiming; HUANG Yuhui

    1990-01-01

    A new polyelectrolyte (SPU) has been prepared. It can depress the water-loss of drilling-mud much more effective than the commonly used acrylic polyelectrolytes even in 30% NaCl solution.SPU has phenyl group in the backbone with -SO3- in the side chain while the acrylic polyelectrolytes have C- C and -COO- respectively. there exists an intrinsic relationship between the structure of polymer and its tolerance to salts. It has been found: 1 ) The adsorption amount of polymer on clay is related closely to the flexibility of polymer chain. 2) The salt-tolerance of -SO3-is superior to -COO-. 3) Both SPU-mud and HPAN-mud are plastic fluids. The dependence of yield point on salts relates to the molecular weight of polymer and hydration of ionogenic group,which is quite different for SPU-mud and HPAN-mud. 4) The extent of raising zeta-potential of base-mud by SPU is greater than by HPAN, but the extent of dropping zeta-potential of SPU-mud by NaCl is smaller than HPAN-mud. According to these results we suppose the salt-tolerance of SPU-mud is attributed mainly to hydration of -SO3- and that of HPAN-mud mainly to network structure formed in the drilling-mud.

  12. Analyis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy.

    Science.gov (United States)

    Sirichaisit, Jutarat; Brookes, Victoria L; Young, Robert J; Vollrath, Fritz

    2003-01-01

    The molecular deformation of both silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks has been studied using a combination of mechanical deformation and Raman spectroscopy. The stress/strain curves for both kinds of silk showed elastic behavior followed by plastic deformation. It was found that both materials have well-defined Raman spectra and that some of the bands in the spectra shift to lower frequency under the action of tensile stress or strain. The band shift was linearly dependent upon stress for both types of silk fiber. This observation provides a unique insight into the effect of tensile deformation upon molecular structure and the relationship between structure and mechanical properties. Two similar bands in the Raman spectra of both types of silk in the region of 1000-1300 cm(-1) had significant identical rates of Raman band shift of about 7 cm(-1)/GPa and 14 cm(-1)/GPa demonstrating the similarity between the silk fibers from two different animals.

  13. Establishing Structure Property Relationship in Drug Partitioning into and Release from Niosomes: Physical Chemistry Insights with Anti-Inflammatory Drugs.

    Science.gov (United States)

    Dasgupta, Moumita; Kishore, Nand

    2017-08-31

    Understanding physical chemistry underlying interactions of drugs with delivery formulations is extremely important in devising effective drug delivery systems. The partitioning and release kinetics of diclofenac sodium and naproxen from Brij 30 and Triton X-100 niosomal formulations have been addressed based on structural characterization, partitioning energetics and release kinetics, thus establishing relationship between structures and observed properties. Both the drugs partition in nonpolar regions of TX-100 niosomes via stacking of aromatic rings. The combined effects of interactions of the drugs with polar head groups and the rigidity of the niosome vesicles determine entry and partitioning of drugs into niosomes. The observed slower rate of release of the drugs from the drug encapsulated niosomes of TX-100 than those of Brij 30, suggest stable complexation of drugs in the nonpolar interior of the former. No release of drugs from the niosomes was observed till 24 h even upon varying pH conditions without SDS. However SDS in drug loaded niosomes led to release of drugs in as early as 6 h. The sustained pattern of in vitro release kinetics of the drugs thus observed from our niosomal preparations suggest these vesicular systems to be promising for pharamaceutical applications as potential drug delivery vehicles.

  14. Shedding Light on Structure-Property Relationships for Conjugated Microporous Polymers: The Importance of Rings and Strain.

    Science.gov (United States)

    Zwijnenburg, Martijn A; Cheng, Ge; McDonald, Tom O; Jelfs, Kim E; Jiang, Jia-Xing; Ren, Shijie; Hasell, Tom; Blanc, Frédéric; Cooper, Andrew I; Adams, Dave J

    2013-10-08

    The photophysical properties of insoluble porous pyrene networks, which are central to their function, differ strongly from those of analogous soluble linear and branched polymers and dendrimers. This can be rationalized by the presence of strained closed rings in the networks. A combined experimental and computational approach was used to obtain atomic scale insight into the structure of amorphous conjugated microporous polymers. The optical absorption and fluorescence spectra of a series of pyrene-based materials were compared with theoretical time-dependent density functional theory predictions for model clusters. Comparison of computation and experiment sheds light on the probable structural chromophores in the various materials.

  15. Molecular dynamics simulations of structure-property relationships of Tween 80 surfactants in water and at interfaces.

    Science.gov (United States)

    Tang, Xueming; Huston, Kyle J; Larson, Ronald G

    2014-11-13

    We build a united atom model for Tween 80 (polyoxyethylene sorbitan oleates), based on the GROMOS53A6(OXY+D) force field, and apply it to two stereoisomers, three constitutional isomers, and three structures with one, two, and three tails, to represent components in the Tween 80 commercial mixture. In a preassembled micelle containing 60 molecules, the distribution of Tween tail and ethylene oxide head groups is found to be insensitive to stereoisomerization but sensitive to changes in relative lengths of the four polyoxyethylene head groups. At the air-water and oil-water interfaces, the interfacial tension is significantly lower for the constitutional isomer with a shorter W headgroup, which attaches the tail to the sorbitan ring, and for Tween 80 isomers with more than one tail group. The results indicate the possible scope for improvement in the design of polyoxyethylene sorbitan oleates with improved surface tension reduction or better spreading at the oil-water interface. We also report surfactant component distribution profiles within preassembled micelles and at interfaces that can be used for validating coarse-grained surfactant models needed for simulation of self-assembly of Tween 80 surfactant mixtures.

  16. Structure-property relationships of solid polymeric catalysts: isopropanol dehydration to propylene catalyzed by sulfonated polyethylene-grafted styrene

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C.A.

    1979-01-01

    Isopropanol dehydration to propylene catalyzed by sulfonated polyethylene-grafted styrene was used to measure the effects on the catalytic activity of structural charges induced in the membranes by constant-rate, cold drawing by 75, 150, and 200 3< of their initial lengths. The form of the rate expression for the reaction with undrawn and drawn membranes at 100/sup 0/C and 1 atm under differential reaction conditions was the same and could be explained by a concerted reaction mechanism involving intermediate isopropanol hydrogen bonded to about four -SO/sub 3/H groups. The maximum reaction rate (based on catalyst acidity) increased by approx. 80% from the undrawn membrane to the 150% drawn membrane and then decreased by approx. 70% from the maximum observed for the 150% drawn membrane to the 200% drawn membrane. A structural model was developed on the basis that the -SO/sub 3/H groups are confined to the amorphous phase due to steric exclusion but that they redistribute to more favorable arrangements during drawing. Model predictions were supported by X-ray and birefringence studies.

  17. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure-Property Relationship and Biological Imaging.

    Science.gov (United States)

    Zhang, Qiong; Tian, Xiaohe; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2017-02-23

    The application of two-photon absorption (2PA) materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1) The two-photon absorption cross-section (δ) of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2) Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3) Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA properties. The metal

  18. Variable range hopping in single-wall carbon nanotube thin films: a processing-structure-property relationship study.

    Science.gov (United States)

    Luo, Sida; Liu, Tao; Benjamin, Shermane M; Brooks, James S

    2013-07-09

    By varying the ultrasonication and ultracentrifugation conditions, single-walled carbon nanotube (SWCNT) dispersions with a broad range of SWCNT length and diameter (L = 342-3330 nm; d = 0.5-12 nm) were prepared and characterized by a preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) technique. The well-characterized dispersions were then fabricated into SWCNT thin films by spray coating. Combined optical, spectroscopic, and temperature-dependent electrical measurements were performed to study the effect of SWCNT structures on the charge transport behavior of SWCNT thin films. Regardless of SWCNT size in the dispersion and the thin film thickness, the three-dimensional variable range hopping (3D VRH) conduction model was found to be appropriate in explaining the temperature-dependent sheet resistance results for all SWCNT thin films prepared in this study. More importantly, with the SWCNT structural information determined by the PUM method, we were able to identify a strong correlation between the length of SWCNTs and the 3D VRH parameter T0, the Mott characteristic temperature. When the SWCNT length is less than ∼700 nm, the T0 of SWCNT thin films shows a drastic increase, but when the length is greater than ~700 nm, T0 is only weakly dependent on the SWCNT length. Under the framework of traditional VRH, we further conclude that the electron localization length of SWCNT thin films shows a similar dependence on the SWCNT length.

  19. Structure-property relationships in cubic cuprous iodide: A novel view on stability, chemical bonding, and electronic properties

    Science.gov (United States)

    Pishtshev, A.; Karazhanov, S. Zh.

    2017-02-01

    Based on the combination of density functional theory and theory-group methods, we performed systematic modeling of γ-CuI structural design at the atomistic level. Being started from the metallic copper lattice, we treated a crystal assembly as a stepwise iodination process characterized in terms of a sequence of intermediate lattice geometries. These geometries were selected and validated via screening of possible structural transformations. The genesis of chemical bonding was studied for three structural transformations by analyzing the relevant changes in the topology of valence electron densities. We determined structural trends driven by metal-ligand coupling. This allowed us to suggest the improved scenario of chemical bonding in γ-CuI. In particular, the unconventional effect of spatial separation of metallic and covalent interactions was found to be very important with respect to the preferred arrangements of valence electrons in the iodination process. We rigorously showed that useful electronic and optical properties of γ-CuI originate from the combination of two separated bonding patterns—strong covalency established in I-Cu tetrahedral connections and noncovalent interactions of copper cores is caused by the 3d10 closed-shell electron configurations. The other finding of ours is that the self-consistency of the GW calculations is crucial for correctly determining the dynamic electronic correlations in γ-CuI. Detail reinvestigation of the quasi-particle energy structure by means of the self-consistent GW approach allowed us to explain how p-type electrical conductivity can be engineered in the material.

  20. Structure-property relationships in cubic cuprous iodide: A novel view on stability, chemical bonding, and electronic properties.

    Science.gov (United States)

    Pishtshev, A; Karazhanov, S Zh

    2017-02-14

    Based on the combination of density functional theory and theory-group methods, we performed systematic modeling of γ-CuI structural design at the atomistic level. Being started from the metallic copper lattice, we treated a crystal assembly as a stepwise iodination process characterized in terms of a sequence of intermediate lattice geometries. These geometries were selected and validated via screening of possible structural transformations. The genesis of chemical bonding was studied for three structural transformations by analyzing the relevant changes in the topology of valence electron densities. We determined structural trends driven by metal-ligand coupling. This allowed us to suggest the improved scenario of chemical bonding in γ-CuI. In particular, the unconventional effect of spatial separation of metallic and covalent interactions was found to be very important with respect to the preferred arrangements of valence electrons in the iodination process. We rigorously showed that useful electronic and optical properties of γ-CuI originate from the combination of two separated bonding patterns-strong covalency established in I-Cu tetrahedral connections and noncovalent interactions of copper cores is caused by the 3d(10) closed-shell electron configurations. The other finding of ours is that the self-consistency of the GW calculations is crucial for correctly determining the dynamic electronic correlations in γ-CuI. Detail reinvestigation of the quasi-particle energy structure by means of the self-consistent GW approach allowed us to explain how p-type electrical conductivity can be engineered in the material.

  1. Notes on quantitative structure-property relationships (QSPR), part 3: density functions origin shift as a source of quantum QSPR algorithms in molecular spaces.

    Science.gov (United States)

    Carbó-Dorca, Ramon

    2013-04-05

    A general algorithm implementing a useful variant of quantum quantitative structure-property relationships (QQSPR) theory is described. Based on quantum similarity framework and previous theoretical developments on the subject, the present QQSPR procedure relies on the possibility to perform geometrical origin shifts over molecular density function sets. In this way, molecular collections attached to known properties can be easily used over other quantum mechanically well-described molecular structures for the estimation of their unknown property values. The proposed procedure takes quantum mechanical expectation value as provider of causal relation background and overcomes the dimensionality paradox, which haunts classical descriptor space QSPR. Also, contrarily to classical procedures, which are also attached to heavy statistical gear, the present QQSPR approach might use a geometrical assessment only or just some simple statistical outline or both. From an applied point of view, several easily reachable computational levels can be set up. A Fortran 95 program: QQSPR-n is described with two versions, which might be downloaded from a dedicated web site. Various practical examples are provided, yielding excellent results. Finally, it is also shown that an equivalent molecular space classical QSPR formalism can be easily developed.

  2. Supramolecular Dimerization and [2 + 2] Photocycloaddition Reactions of Crown Ether Styryl Dyes Containing a Tethered Ammonium Group: Structure-Property Relationships.

    Science.gov (United States)

    Ushakov, Evgeny N; Vedernikov, Artem I; Lobova, Natalia A; Dmitrieva, Svetlana N; Kuz'mina, Lyudmila G; Moiseeva, Anna A; Howard, Judith A K; Alfimov, Michael V; Gromov, Sergey P

    2015-12-31

    Molecular self-assembly is an effective strategy for controlling the [2 + 2] photocycloaddition reaction of olefins. The geometrical properties of supramolecular assemblies are proven to have a critical effect on the efficiency and selectivity of this photoreaction both in the solid state and in solution, but the role of other factors remains poorly understood. Convenient supramolecular systems to study the structure-property relationships are pseudocyclic dimers spontaneously formed by styryl dyes containing a crown ether moiety and a remote ammonium group. New dyes of this type were synthesized to investigate the effects of structural and electronic factors on the quantitative characteristics of supramolecular dimerization and [2 + 2] photocycloaddition in solution. Variable structural parameters for the styryl dyes were the size and structure of macrocyclic moiety, the nature of heteroaromatic residue, and the length of the ammonioalkyl group attached to this residue. Quantum chemical calculations of the pseudocyclic dimers were performed in order to interpret the relationships between the structure of the ammonium dyes and the efficiency of the supramolecular photoreaction. One of the dimeric complexes was obtained in the crystalline state and studied by X-ray diffraction. The results obtained demonstrate that the photocycloaddition in the pseudocyclic dimers can be dramatically affected by the electronic structure of the styryl moieties, as dependent on the electron-donating ability of the substituents on the benzene ring, and by the conformational flexibility of the pseudocycle, which determines the mobility of the olefinic bonds. The significance of electronic factors is highlighted by the fact that the photocycloaddition quantum yield in geometrically similar dimeric structures varies from ≤10(-4) to 0.38. The latter value is unusually high for olefins in solution.

  3. An Analytical Model to Extract Wind Turbine Blade Structural Properties for Optimization and Up-scaling Studies

    NARCIS (Netherlands)

    Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.

    2010-01-01

    A wind turbine blade has a complex shape and consists of different elements with dissimilar material properties. To do any aeroelastic simulation, the structural properties of the blade such as stiffnesses and mass per unit length should be known in advance, and extracting these properties is a diff

  4. Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling

    KAUST Repository

    Burkhardt, Stephen E.

    2013-01-22

    The full realization of a renewable energy strategy hinges upon electrical energy storage (EES). EES devices play a key role in storing energy from renewable sources (which are inherently intermittent), to efficient transmission (e.g., grid load-leveling), and finally into the electrification of transportation. Organic materials represent a promising class of electrode active materials for Li-ion and post-Li-ion batteries. Organics consist of low-cost, lightweight, widely available materials, and their properties can be rationally tuned using the well-established principles of organic chemistry. Within the class of organic EES materials, carboxylates distinguish themselves for Li-ion anode materials based on their observed thermal stability, rate capability, and high cyclability. Further, many of the carboxylates studied to date can be synthesized from renewable or waste feedstocks. This report begins with a preliminary molecular density-functional theory (DFT) study, in which the calculated molecular properties of a set of 12 known Li-ion electrode materials based on carboxylate and carbonyl redox couples are compared to literature data. Based on the agreement between theoretical and experimental data, an expanded study was undertaken to identify promising materials and establish design principles for anodes based on Li-carboxylate salts. Predictive computational studies represent an important step forward for the identification of organic anode materials. © 2012 American Chemical Society.

  5. Modelling Structure-Property Relationship for Copolymers by Structured Representation of Repeating Units

    Science.gov (United States)

    Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Starita, Antonina; Solaro, Roberto; Tiné, Maria R.

    2009-08-01

    We report here a recent study on the prediction by recursive neural network of the glass transition temperature of (meth)acrylic copolymers, for which appropriate structured representations are proposed. It is shown that the flexibility of such description allows for simultaneously treating different classes of compounds as well as accounting for different average properties such as tacticity and molar composition.

  6. Structure-property relationships of an electron beam cured model urethane prepolymer

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, E. (Virginia Polytechnic Inst. and State Univ., Blacksburg); Wilkes, G.; Park, K.

    1981-10-01

    A semicrystalline urethane prepolymer derived from polycaprolactone was crosslinked below and above the melt to different levels using electron beam radiation. Studies at room temperature on the systems crosslinked under ambient conditions, which is below the melting temperature, show that changes in mechanical properties which occur as the electron beam dose is increased are due principally to the increase in crosslink density and to the changes in the crosslinking mechanism. Specifically, crosslinking takes place mainly at the acrylate double bonds or may also occur along the polymer backbone. All systems, however, are semicrystalline and possess a spherulitic texture. Mechanical and rheo-optical testing above the melt on these same systems indicate that at extensions up to 125% classical rubber elasticity theory and photoelasticity theory is obeyed. Isothermal crystallization kinetics measurements show that the rate of crystallization decreases as the electron beam dose is raised. When the systems are crosslinked above the melt again a spherulitic texture results. Mechanical testing above the melting temperature on the prepolymer crosslinked up to 4 Mrad shows that at elongations up to 125% classical rubber elasticity theory is obeyed. At room temperature these latter crosslinked systems exhibited a lower modulus compared to the materials crosslinked below the melt. Polarizing optical microscopy carried out above the melting temperature strongly suggested that no order was present in these systems during crosslinking in contrast to those crosslinked below the melting temperature.

  7. Quantitative structure-property relationship study of the solubility of thiazolidine-4-carboxylic acid derivatives using ab initio and genetic algorithm-partial least squares

    Institute of Scientific and Technical Information of China (English)

    Ali Niazi; Saeed Jameh-Bozorghi; Davood Nori-Shargh

    2007-01-01

    A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4-carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the solubility of thiazolidine4-carboxylic acid derivatives as a function of molecular structures was established by means of the partial least squares (PLS). The subset of descriptors, which resulted in the low prediction error, was selected by genetic algorithm. This model was applied for the prediction of the solubility of some thiazolidine-4-carboxylic acid derivatives, which were not in the modeling procedure. The relative errors of prediction lower that -4% was obtained by using GA-PLS method. The resulted model showed high prediction ability with RMSEP of 3.8836 and 2.9500 for PLS and GA-PLS models, respectively.

  8. Investigation of the structure/property relationship of spray-formed 7XXX series high-strength aluminum alloys and their metal matrix composites

    Science.gov (United States)

    Sharma-Judd, Malavika M.

    2000-12-01

    The purpose of this investigation was to identify the structure/property relationship of spray formed 7XXX series alloys. High solute, ultra-high strength 7XXX series aluminum alloys with solute contents close to equilibrium solid solubility limits of the Al-Zn-Mg-Cu system have been produced by rapid solidification using spray deposition. The process yields massive preforms directly from the liquid state. Various elements, including chromium, manganese, silver, zirconium and scandium, were incorporated to produce a variety of microstructures and mechanical properties. SiC particulate was added to these same alloy compositions to produce metal matrix composites (MMCs). The resulting extruded products in the T6 and T7 conditions were evaluated and compared. Under peak-aged conditions in the unreinforced materials, strengths in excess of 860 MPa were achieved, with one alloy exceeding 900 MPa. Apart from the elongation to failure, the mechanical properties of the composite materials were equal to or superior to those of their unreinforced counterparts. The superior strength properties of the spray formed alloys were attributed to two major substructures with different scale; nanometer sized eta ' metastable precipitates and slightly larger, but finely distributed dispersoids. The large volume fraction of plate-like eta' precipitates (average size 58A, ranging up to 73 A in diameter) were identified as having a hexagonal structure with lattice parameters a = 0.488 nm and c = 1.376. The remarkable strengthening is predominantly attributed to precipitation hardening. The enhanced mechanical properties of the MMC materials are attributed to the increased dislocation density, and thus, a higher concentration of structural particles compared to the unreinforced materials. Higher gas-to-metal ratios of 4.45, as opposed to lower gas-to-metal ratios of 1.95 produced a refined grain structure with an evenly distributed second phase. In both unreinforced and MMC materials

  9. A Quantitative Structure-Property Relationship (QSPR Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    Directory of Open Access Journals (Sweden)

    Bin Cheng

    2011-04-01

    Full Text Available A quantitative structure–property relationship (QSPR analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP, n-octanol–water partition coefficient (lg POW, water solubility (lg W and the chromatographic retention indices (RI on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI, previously developed by Cao, the novel molecular polarizability effect index (MPEI combined with odd-even index (OEI, the sum eigenvalues of bond-connecting matrix (SX1CH previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99 and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable.

  10. Study of physicochemical interaction of aryloxyaminopropanol derivatives with teicoplanin and vancomycin phases in view of quantitative structure-property relationship studies.

    Science.gov (United States)

    Boronová, Katarína; Lehotay, Jozef; Hroboňová, Katarína; Armstrong, Daniel W

    2013-08-02

    The aim of this work was to study the physicochemical interactions between chiral stationary phases and chiral molecules and to elucidate which of the specific interactions are more or less important. The HPLC separation of 58 aryloxyaminopropanols was performed on two chiral stationary phases containing the macrocyclic antibiotics teicoplanin or vancomycin and using a methanol/acetonitrile/acetic acid/triethylamine mobile phase (volume ratios 45/55/0.3/0.2). The resolution of enantiomers (Rij) as the target variable was predicted for the mentioned kind of compounds by means of thoroughly selected descriptors provided by the applied Dragon software. The created QSPR models can be considered as a way to explore and discover new relationships or interactions between the quantitative structure and resolution of enantiomers. For calculation and validation of the QSPR models, different modelling methodologies were applied based on MLR (multiple linear regression) and ANN (artificial neural network) techniques. Both methods exhibit an ability for successful prediction of the enantioresolution characteristics of the studied molecules. The results seem to demonstrate that it is possible to predict resolution values of enantiomeric separations of related compounds on given chromatographic systems.

  11. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives

    Directory of Open Access Journals (Sweden)

    Gao JS

    2015-03-01

    Full Text Available Jia-Suo Gao,1* Xu-Peng Tong,2* Yi-Qun Chang,1 Yu-Xuan He,1 Yu-Dan Mei,1 Pei-Hong Tan,1 Jia-Liang Guo,1 Guo-Chao Liao,3 Gao-Keng Xiao,1 Wei-Min Chen,1 Shu-Feng Zhou,4 Ping-Hua Sun1 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China; 2College of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China; 3Department of Chemistry, Wayne State University, Detroit, Michigan, USA; 4College of Pharmacy, University of South Florida, Tampa, FL, USA *These authors contributed equally to this work Abstract: Factor IXa (FIXa, a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure–activity relationship (3D-QSAR and three-dimensional quantitative structure–selectivity relationship (3D-QSSR models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q2 values of 0.753 and 0.770, and r2 values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2'-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the

  12. Quantitative Structure-Property Relationship of the Critical Micelle Concentration of Different Classes of Surfactants%多种类表面活性剂临界胶束浓度定量构效关系

    Institute of Scientific and Technical Information of China (English)

    朱志臣; 王强; 贾青竹; 汤红梅; 马沛生

    2013-01-01

      表面活性剂的临界胶束浓度(CMC)是个非常重要的物质特性参数, CMC在研究表面活性剂的工业应用和生物利用方面发挥着关键作用.本工作提出了一个新的拓扑指数—扩展距离矩阵,建立了一个稳定的构效关系模型,并对175种表面活性剂的临界胶束浓度进行了计算预测.结果表明,基于新的拓扑指数建立的构效关系模型计算临界胶束浓度能给出稳定可靠的预测结果,其预测结果相关性系数R2(training set)=0.9295,平均相对偏差ARD(training set)=8.20%, R2(testing set)=0.9257, ARD(testing set)=6.76%.与文献中模型预测结果的对比表明,本工作在稳定性和可靠性上均有显著改善.%Critical micel e concentration (CMC) is one of the most useful parameters for the characterization of surfactants; thus, CMC plays an important role in the investigation of the surfactantsʹproperties for industrial applications and biological utilizations. The fol owing study presents a stable and accurate structure-property relationship model for the prediction of CMC for a diverse set of 175 surfactants using a new topological index, the extended distance matrix. Research indicates that the new model based on this topological index is very efficient and provides satisfactory results. The high-quality prediction model is evidenced by an R2 (square correlation coefficient) value of 0.9295 and an average relative difference (ARD) value of 8.20% for the training set, an R2 value of 0.9257 and an ARD value of 6.76% for the testing set. Comparison results with reference models demonstrate that this new method based on the topological index results in significant improvements, both in accuracy and stability for predicting CMC of surfactants.

  13. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.

    Science.gov (United States)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-05-07

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the

  14. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    Science.gov (United States)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified.An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic

  15. The comparison of different approaches to the modeling of the structural properties σ-phase of Fe-Cr system

    Science.gov (United States)

    Udovsky, A. L.; Kupavtsev, M. V.

    2016-04-01

    The three- sub-lattice model (3SLM) for description of atom's distribution of two components with different coordination numbers (12, 14 and 15), into σ-phase structure depended on composition and temperature is depictured in this paper. Energetic parameters of 3SLM were calculated by fitting procedure fixed to results obtained by ab-initio calculations conducted for paramagnetic states of differently ordered complexes stayed at the sigma- phase's crystal structure for Fe-Cr system at 0 K. Respective algorithm and computer program have allowed to calculate an atom distribution of components upon the sub-lattices of σ-phase at 300 - 1100 K. The temperature dependences of filling atoms on the model three sub-lattices for alloys compositions 40, 50 and 60 at. % Fe was calculated. There is satisfactory agreement between calculated results and the experimental data obtained by neutron and structural research methods. The equilibrium between BCC solutions and σ- phase of Fe-Cr system was calculated. The satisfactory consent of results of calculation with experimental data for education temperature σ- phases from BCC- solution and some divergences with experiments is received at 800 K.

  16. Phase interaction in the metal-oxide melts-gas system the modeling of structure, properties and processes

    CERN Document Server

    Boronenkov, V; Leontiev, L

    2012-01-01

    This monograph describes mathematical models that enable prediction of phase compositions for various technological processes, as developed on the base of a complex physico-chemical analysis of reaction. It studies thermodynamics and kinetics of specific stages of complex pyrometallurgical processes involving boron, carbon, sulfur, tungsten, phosphorus, and many more, as well as their exposure to all sorts of factors. First and foremost, this enables to optimize processes and technologies at the stage of design, while traditional empirical means of development of new technologies are basically incapable of providing an optimal solution. Simulation results of metals and alloys production, welding and coating technologies allow obtaining materials with pre-given composition, structure and properties in a cost-saving and conscious manner. Moreover, a so-called "inverse problem", i.e., selecting source materials which would ensure the required results, cannot be solved by any other means.

  17. A review of the structure-property relationships in lead-free piezoelectric (1-x)Na0.5Bi0.5TiO3-(x)BaTiO3

    Science.gov (United States)

    McQuade, Ryan R.; Dolgos, Michelle R.

    2016-10-01

    Piezoelectric materials are increasingly being investigated for energy harvesting applications where (1-x)Na0.5Bi0.5TiO3-(x)BaTiO3 (NBT-BT) is an important lead-free piezoelectric material with potential to be used as an actuator in energy harvesting devices. Much effort has been put into modifying NBT-BT to tune the properties for specific applications, but there is currently no consensus regarding the structure-property relationships in this material, making targeted, rational design a major challenge. In this review, we will summarize the current body of knowledge of NBT-BT and discuss contradicting studies, unresolved problems, and future directions in the field.

  18. Predictivity Approach for Quantitative Structure-Property Models. Application for Blood-Brain Barrier Permeation of Diverse Drug-Like Compounds

    Directory of Open Access Journals (Sweden)

    Sorana D. Bolboacă

    2011-07-01

    Full Text Available The goal of the present research was to present a predictivity statistical approach applied on structure-based prediction models. The approach was applied to the domain of blood-brain barrier (BBB permeation of diverse drug-like compounds. For this purpose, 15 statistical parameters and associated 95% confidence intervals computed on a 2 × 2 contingency table were defined as measures of predictivity for binary quantitative structure-property models. The predictivity approach was applied on a set of compounds comprised of 437 diverse molecules, 122 with measured BBB permeability and 315 classified as active or inactive. A training set of 81 compounds (~2/3 of 122 compounds assigned randomly was used to identify the model and a test set of 41 compounds was used as the internal validation set. The molecular descriptor family on vertices cutting was the computation tool used to generate and calculate structural descriptors for all compounds. The identified model was assessed using the predictivity approach and compared to one model previously reported. The best-identified classification model proved to have an accuracy of 69% in the training set (95%CI [58.53–78.37] and of 73% in the test set (95%CI [58.32–84.77]. The predictive accuracy obtained on the external set proved to be of 73% (95%CI [67.58–77.39]. The classification model proved to have better abilities in the classification of inactive compounds (specificity of ~74% [59.20–85.15] compared to abilities in the classification of active compounds (sensitivity of ~64% [48.47–77.70] in the training and external sets. The overall accuracy of the previously reported model seems not to be statistically significantly better compared to the identified model (~81% [71.45–87.80] in the training set, ~93% [78.12–98.17] in the test set and ~79% [70.19–86.58] in the external set. In conclusion, our predictivity approach allowed us to characterize the model obtained on the investigated

  19. Quantitative structure-property relationships of electroluminescent materials: Artificial neural networks and support vector machines to predict electroluminescence of organic molecules

    Indian Academy of Sciences (India)

    Alana Fernandes Golin; Ricardo Stefani

    2013-12-01

    Electroluminescent compounds are extensively used as materials for application in OLED. In order to understand the chemical features related to electroluminescence of such compounds, QSPR study based on neural network model and support vector machine was developed on a series of organic compounds commonly used in OLED development. Radial-basis function-SVM model was able to predict the electroluminescence with good accuracy ( = 0.90). Moreover, RMSE of support vector machine model is approximately half of RMSE observed for artificial neural networks model, which is significant from the point of view of model precision, as the dataset is very small. Thus, support vector machine is a good method to build QSPR models to predict the electroluminescence of materials when applied to small datasets. It was observed that descriptors related to chemical bonding and electronic structure are highly correlated with electroluminescence properties. The obtained results can help in understating the structural features related to the electroluminescence, and supporting the development of new electroluminescent materials.

  20. Optimization of 1,2,3,4-tetrahydroacridin-9(10H)-ones as antimalarials utilizing structure-activity and structure-property relationships.

    Science.gov (United States)

    Cross, R Matthew; Maignan, Jordany R; Mutka, Tina S; Luong, Lisa; Sargent, Justin; Kyle, Dennis E; Manetsch, Roman

    2011-07-14

    Antimalarial activity of 1,2,3,4-tetrahydroacridin-9(10H)-ones (THAs) has been known since the 1940s and has garnered more attention with the development of the acridinedione floxacrine (1) in the 1970s and analogues thereof such as WR 243251 (2a) in the 1990s. These compounds failed just prior to clinical development because of suboptimal activity, poor solubility, and rapid induction of parasite resistance. Moreover, detailed structure-activity relationship (SAR) studies of the THA core scaffold were lacking and SPR studies were nonexistent. To improve upon initial findings, several series of 1,2,3,4-tetrahydroacridin-9(10H)-ones were synthesized and tested in a systematic fashion, examining each compound for antimalarial activity, solubility, and permeability. Furthermore, a select set of compounds was chosen for microsomal stability testing to identify physicochemical liabilities of the THA scaffold. Several potent compounds (EC(50) < 100 nM) were identified to be active against the clinically relevant isolates W2 and TM90-C2B while possessing good physicochemical properties and little to no cross-resistance.

  1. Structure-property relationship for in vitro siRNA delivery performance of cationic 2-hydroxypropyl-β-cyclodextrin: PEG-PPG-PEG polyrotaxane vectors.

    Science.gov (United States)

    Badwaik, Vivek D; Aicart, Emilio; Mondjinou, Yawo A; Johnson, Merrell A; Bowman, Valorie D; Thompson, David H

    2016-04-01

    Nanoparticle-mediated siRNA delivery is a promising therapeutic approach, however, the processes required for transport of these materials across the numerous extracellular and intracellular barriers are poorly understood. Efficient delivery of siRNA-containing nanoparticles would ultimately benefit from an improved understanding of how parameters associated with these barriers relate to the physicochemical properties of the nanoparticle vectors. We report the synthesis of three Pluronic(®)-based, cholesterol end-capped cationic polyrotaxanes (PR(+)) threaded with 2-hydroxypropyl-β-cyclodextrin (HPβCD) for siRNA delivery. The biological data showed that PR(+):siRNA complexes were well tolerated (∼90% cell viability) and produced efficient silencing (>80%) in HeLa-GFP and NIH 3T3-GFP cell lines. We further used a multi-parametric approach to identify relationships between the PR(+) structure, PR(+):siRNA complex physical properties, and biological activity. Small angle X-ray scattering and cryoelectron microscopy studies reveal periodicity and lamellar architectures for PR(+):siRNA complexes, whereas the biological assays, ζ potential measurements, and imaging studies suggest that silencing efficiency is influenced by the effective charge ratio (ρeff), polypropylene oxide (PO) block length, and central PO block coverage (i.e., rigidity) of the PR(+) core. We infer from our findings that more compact PR(+):siRNA nanostructures arising from lower molecular weight, rigid rod-like PR(+) polymer cores produce improved silencing efficiency relative to higher molecular weight, more flexible PR(+) vectors of similar effective charge. This study demonstrates that PR(+):siRNA complex formulations can be produced having higher performance than Lipofectamine(®) 2000, while maintaining good cell viability and siRNA sequence protection in cell culture.

  2. Structure-Property Relationship for the Pharmacological and Toxicological Activity of Heterocyclic Compounds%多种类杂环化合物的药理和毒理活性系数构效关系

    Institute of Scientific and Technical Information of China (English)

    朱志臣; 王强; 贾青竹; 夏淑倩; 马沛生

    2014-01-01

    Heterocyclic molecules play a crucial role in health care and in pharmaceutical drug design. A large number of drugs used in Western medical practice are heterocyclic molecules. In this study, a set of norm indexes of the extended distance matrix are proposed. From these a stable and accurate structure-property relationship model was developed for the prediction of the aryl hydrocarbon receptor binding affinity (pEC50) of dibenzofurans and the mutagenic potency (lnR) of aromatic and heteroaromatic amines. Our results indicate that the new model, based on these norm indexes, provides very satisfactory results, and that the average absolute differences for pEC50 prediction and lnR prediction were 0.403 and 0.702 with r2 (square correlation coefficient) values of 0.876 and 0.779, respectively. A comparison of these results with other methods demonstrates that our method, based only on the same mathematical model, performed better in terms of both accuracy and stability.%杂环类化合物在卫生保健和药物分子设计领域发挥关键作用,在西药中占有重要地位.本工作针对扩展距离矩阵提出了一组范数指数,基于扩展距离矩阵的范数指数构建了一个新的构效关系模型,并对杂环类化合物二苯并呋喃的芳烃受体亲和性(pEC50)以及芳香和杂环芳香胺的诱导有机体变异力(lnR)进行了计算预测.结果表明,基于扩展距离矩阵范数指数建立的构效关系模型可以很好地预测pEC50和lnR.其中, pEC50预测结果的平均绝对误差(AAD)为0.403,相关性系数r2=0.876, lnR预测结果的AAD为0.702, r2=0.779.与其他预测方法的对比结果表明,本工作不仅能够利用一个完全相同的数学表达模型同时对pEC50和lnR进行预测,而且预测结果在准确性和稳定性上都有显著改善.

  3. Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach

    Science.gov (United States)

    Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk

    2017-03-01

    Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.

  4. Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach

    Science.gov (United States)

    Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk

    2017-05-01

    Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.

  5. Structure-property relationships of mullite-SiC-Al{sub 2}O{sub 3}–ZrO{sub 2} composites developed during carbothermal reduction of aluminosilicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Seifollahzadeh, P., E-mail: Pseifollahzadeh.mat@stu.yazd.ac.ir; Kalantar, M.; Ghasemi, S.S.

    2015-10-25

    Evolution of SiC and ZrO{sub 2} in the matrix of Al{sub 2}O{sub 3} or mullite have been reported to enhance a higher toughness, good thermal shock resistance (lowering thermal expansion and improving thermal conductivity) and improved creep resistance of composite materials. In this study, the structure-property relationships of mullite-Al{sub 2}O{sub 3} matrix composites have been investigated in conjunction with the evolution of reinforcing phases such as SiC–ZrO{sub 2} by an economical heat treatment process called carbothermal reduction of inorganic minerals (Kaolinite, Andalusite, Zircon). The influence of starting materials in relation with the variation in molar ratio of C/SiO{sub 2} on the phase composition, microstructures, physical and mechanical properties have been studied. Light microscopy has been supplemented with scanning electron microscopy, XRD analysis, differential thermal and thermal gravity analysis to follow the structure-property relationships. The experimental results show that with increasing of C/SiO{sub 2} ratio in starting materials, very fine SiC whiskers have been formed in the microstructures. Moreover, the densification and strength are considerable higher for ZrO{sub 2} + SiC containing composites in comparison to that of only SiC added ones. Furthermore, it has been found that the appropriate ratio of C/SiO{sub 2} with the associated firing temperature to develop a higher densification and SiC crystallization have been related to the 3.5, 1550 °C for kaolinite, 3.5, 1450 °C for zircon and 5.5, 1600 °C for andalusite containing composite samples, respectively. - Highlights: • In-situ formation of SiC whiskers in matrix of alumina + mullite composites. • Advantage of availability, abundance and economical for starting materials. • Lack of environmental problems in comparable of utilization of whiskers directly. • A mixture of coke and alumina as a protective layer instead of inert atmosphere. • Fabrication of advanced

  6. Structure-Property Relationships in Intercalated Graphite.

    Science.gov (United States)

    1984-10-15

    2% 293 (1984). 45. "Raman Microprobe Studies of the Structure of SbCls-Graphite Intercalation Compounds’, L.E. McNeil, J. Steinbeck , L. Salamanca-Riba...Using the Rutherford Backscattering-Channeling Teachnique’, G. Braunstein, B. Elman, J. Steinbeck , M.S. Dresseihaus, T. Venkatesan and B. Wilkens, to be...8217Razuan Mcroprobe Observation of Intercalate Contraction In Graphite Inter- calation Compounds’, L.E. McNeil, J. Steinbeck , L. Salamancar-Riba, and G

  7. Structure-Property Relationships in Intercalated Graphite.

    Science.gov (United States)

    1985-07-10

    and . vermicular graphite host materials. Detailed TEM results show that the glassy phase is induced by the electron beam irradiation through a...sample thickness could be related to the observation of a glass phase, experiments were carried out using both kish and vermicular graphite host materials

  8. Structure-properties relationships in polymeric fibres

    NARCIS (Netherlands)

    Penning, Jan Paul

    1994-01-01

    Dit proefschrift beschrijft een onderzoek naar de samenhang tussen de struktuur en de mechanische eigenschappen van polymere vezels, met als centrale vraag hoe men deze eigenschappen het best kan beschrijven op grond van de vezelstruktuur en hoe deze struktuur onstaat tijdens de diverse stappen van

  9. Structure-Property Relationship of Thermoset Nanocomposites

    NARCIS (Netherlands)

    Faraz, M.I.

    2013-01-01

    In this thesis we report the synthesis, characterization and thermo-mechanical properties of a high-temperature resistant themoset nanocomposite system based on an aero-space-grade Bismaleimide resin. Various processing techniques with various fillers are used. The emphasis is on establishing the re

  10. Elucidating the structure-property relationships of donor-π-acceptor dyes for dye-sensitized solar cells (DSSCs) through rapid library synthesis by a one-pot procedure.

    Science.gov (United States)

    Fuse, Shinichiro; Sugiyama, Sakae; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Katoh, Ryuzi; Kaiho, Tatsuo; Takahashi, Takashi

    2014-08-18

    The creation of organic dyes with excellent high power conversion efficiency (PCE) is important for the further improvement of dye-sensitized solar cells. We wish to describe the rapid synthesis of a 112-membered donor-π-acceptor dye library by a one-pot procedure, evaluation of PCEs, and elucidation of structure-property relationships. No obvious correlations between ε, and the η were observed, whereas the HOMO and LUMO levels of the dyes were critical for η. The dyes with a more positive E(HOMO), and with an E(LUMO)<-0.80 V, exerted higher PCEs. The proper driving forces were crucial for a high J(sc), and it was the most important parameter for a high η. The above criteria of E(HOMO) and E(LUMO) should be useful for creating high PCE dyes; nevertheless, that was not sufficient for identifying the best combination of donor, π, and acceptor blocks. Combinatorial synthesis and evaluation was important for identifying the best dye.

  11. 脂肪族含氧有机物沸点的定量构效关系%Quantitative structure-property relationship of normal boiling point of aliphatic oxygen-containing organic compounds

    Institute of Scientific and Technical Information of China (English)

    刘万强; 曹晨忠

    2012-01-01

    The descriptors of polarizability effect index (PEI),the number of effective carbon (Nc,e(f)> the differences in PEI and Nc,eff between the branching chain and straight chain isomers,SPEI and δ Nc,eff,are derived from molecular structure. The quantitative structure-property relationships (QSPRs) between these descriptors and boiling points of 520 aliphatic alcohols,ethers,aldehydes,ketones,acids,and esters were obtained separately. The QSPRs between these descriptors and boiling points were developed for 520 aliphatic oxygen-containing organic compounds by best subsets regression method. For the training set,the correlation coefficient R2 is 0. 9946 and the standard deviation GO is 6. 70 K. For the test set,R2 is 0. 9857 and s is 6. 10 K. The average relative error is 1. 19%. According to the regression equation,the influences of the number of effective carbon of alkyl,the role of functional groups and their interaction on the boiling point were analyzed. These results showed a good correlation between the boiling points of organic compounds and these descriptors derived from PEI for aliphatic alcohols,ethers,aldehydes,ketones,acids,and esters.

  12. An investigation of the structure-property relationships in ionic polymer polymer composites (IP2Cs) manufactured by polymerization in situ of PEDOT/PSS on Nafion®117

    Science.gov (United States)

    Di Pasquale, G.; Graziani, S.; Messina, F. G.; Pollicino, A.; Puglisi, R.; Umana, E.

    2014-03-01

    Ionic polymer polymer composites (IP2Cs) are all-organic electroactive polymers (EAPs) that show sensing and actuation capabilities when a deformation or a voltage is applied, respectively. They are fabricated starting from an ionic polymer coated on both sides with a conducting polymer as electrode element. In this work, poly(3,4-ethylendioxytiophene)-poly-(styrenesulfonate) (PEDOT/PSS) has been polymerized directly on Nafion®117 membrane and devices have been manufactured varying the polymerization time. Water and ethylene glycol (EG) have been used as solvents. The obtained IP2Cs have been characterized using thermal and mechanical analyses and electromechanically tested. The results have shown that in IP2Cs manufactured by polymerization in situ the PEDOT/PSS layer adheres very strongly on the Nafion®117 film, improving the possibility of rehydrating the devices after use. Moreover, taking into account that the different polymerization times influence the uniformity of the surface of the organic electrode and, consequently, both device stiffness and electrode conductivity, the structure-property relationships of the obtained devices have been investigated. The influence of the different solvents inside the devices has also been studied when IP2Cs have been used as actuators or sensors. Reported results show that it is possible to modulate the performances of IP2Cs by varying some manufacture parameters and the solvent.

  13. Structure-property relationship of 3-(4-substituted benzyl)-1,3-diazaspiro[4.4]nonane-2,4-diones as new potentional anticonvulsant agents. An experimental and theoretical study

    Science.gov (United States)

    Lazić, Anita M.; Božić, Bojan Đ.; Vitnik, Vesna D.; Vitnik, Željko J.; Rogan, Jelena R.; Radovanović, Lidija D.; Valentić, Nataša V.; Ušćumlić, Gordana S.

    2017-01-01

    The structure-property relationship of newly synthesized 3-(4-substituted benzyl)-1,3-diazaspiro [4.4]nonane-2,4-diones was studied by experimental and calculated methods. The prepared compounds were characterized by UV-Vis, FT-IR, 1H NMR and 13C NMR spectroscopy and elemental analysis. The crystal structure was elucidated by single-crystal X-ray diffraction. The 3-benzyl-1,3-diazaspiro[4.4]nonane-2,4-dione crystallizes in triclinic P-1 space group, with two crystallographically independent molecules in the asymmetric unit. Cyclopentane ring adopts an envelope conformation. A three-dimensional crystal packing is governed by hydrogen N-H⋯O bonds, numerous C-H⋯O/N and C-H … π interactions between neighboring molecules. Density functional theory (DFT) calculations with B3LYP and M06-2X methods using 6-311++G(d,p) basis set were performed to provide structural and spectroscopic information. Comparisons between experimental and calculated UV-Vis spectral properties suggest that the monomeric form of the investigated spirohydantoins is dominant in all used solvents. The effects of substituents on the absorption spectra of spirohydantoins are interpreted by correlation of absorption frequencies with Hammett equation. The lipophilicities of the investigated molecules were estimated by calculation of their log P values. Some of the spirohydantoins synthesized in this work, exhibit the lipophilicities comparable to the standard medicine anticonvulsant drug Phenytoin. The results obtained in this investigation afford guidelines for the preparation of new derivatives of spirohydantoin as potential anticonvulsant agents and for better understanding the structure-activity relationship.

  14. Some Structural Properties of SAT

    Institute of Scientific and Technical Information of China (English)

    刘田

    2000-01-01

    The following four conjectures about structural properties of SAT are studied in this paper. (1) SAT ∈ PSPARSE∩NP; (2) SAT ∈ SRTDtt; (3) SAT ∈ PbttAPP; (4) FPSttAT = FPSATlog. It is proved that some pairs of these conjectures imply P = NP, for example, if SAT ∈ PSPARSE∩NP and SAT ∈ PbttAPP, or if SAT ∈ SRTDtt and SAT ∈ PbttAPP, then P = NP. This improves previous results in literature.

  15. Cellulose nanomaterials review: structure, properties and nanocomposites.

    Science.gov (United States)

    Moon, Robert J; Martini, Ashlie; Nairn, John; Simonsen, John; Youngblood, Jeff

    2011-07-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).

  16. 部分有机锡化合物定量结构-性质关系研究%Study of selected organotin compounds′ quantitative structure-property relationship

    Institute of Scientific and Technical Information of China (English)

    全燮; 陈景文; 王帅杰; 陈硕; 薛大明; 赵雅芝

    2001-01-01

    应用偏最小二乘(PLS)算法,采用量子化学PM3算法计算得到的量子化学参数,得到了部分有机锡化合物的正辛醇-水分配系数(logKow)的定量结构-性质关系(QSPR)模型.应用该模型,可以对其他有机锡分子的log Kow进行初步预测.影响有机锡分子log Kow大小的主要因素是分子的大小;相对分子质量较大的分子,其log Kow值较大.此外,分子最高占据轨道能(Ehomo)对有机锡化合物log Kow的大小也有一定的影响;Ehomo较大的分子,其log Kow值也较大.%By means of Partial Least Squares (PLS) method, based on thequantum chemical descriptors computed from PM3 Hamiltonian, quantitative structure-property relationship (QSPR) on logarithm of n-octanol-water partition coefficient (log Kow) of selected organotin compounds was obtained. The QSPR obtained c an be used for the initial prediction of other organotin compounds. The size of the molecules is a main factor affecting the log Kow. Organotin compounds with large molecular weight usually have great log Kow values. In addition, the effect of the energy of the highest occupied molecular orbital (Ehomo) on the log Kow cannot be neglected. Organotin compounds with large Ehomo tend to have great log Kow values.

  17. Molecular-Level Control of Ciclopirox Olamine Release from Poly(ethylene oxide)-Based Mucoadhesive Buccal Films: Exploration of Structure-Property Relationships with Solid-State NMR.

    Science.gov (United States)

    Urbanova, Martina; Gajdosova, Marketa; Steinhart, Miloš; Vetchy, David; Brus, Jiri

    2016-05-02

    polymorphic form, Form I, which exhibited reduced dissolution kinetics. The bioavailability of CPX olamine formulated as PEO-based MBFs can thus be effectively controlled by inducing the complete dispersion and/or microsegregation and nanocrystallization of CPX olamine in the polymer matrix. Solid-state NMR spectroscopy is an efficient tool for exploring structure-property relationships in these complex pharmaceutical solids.

  18. Predicting small molecule fluorescent probe localization in living cells using QSAR modeling. 1. Overview and models for probes of structure, properties and function in single cells.

    Science.gov (United States)

    Horobin, R W; Rashid-Doubell, F; Pediani, J D; Milligan, G

    2013-11-01

    Small molecule fluorochromes (synonyms: biosensors, chemosensors, fluorescent probes, vital stains) are widely used to investigate the structure, composition, physicochemical properties and biological functions of living cells, tissues and organisms. Selective entry and accumulation within particular cells and cellular structures are key processes for achieving these diverse objectives. Despite the complexities, probes routinely are applied using standard protocols, often without experimenter awareness of what factors that control accumulation and localization. The mechanisms of many such selective accumulations, however, now are known. Moreover, the influence of physicochemical properties of probes on their uptake and localization often can be defined numerically, hence predicted, using quantitative structure activity relations (QSAR) models with its required numerical structure parameters (or "descriptors"). The state of the art of this approach is described. Available QSAR models are summarized for uptake into cells and localization in the cytosol, endoplasmic reticulum, generic biomembranes, Golgi apparatus, lipid droplets, lysosomes/endosomes, mitochondria, eukaryotic nuclei (histones and DNA), plasma membrane, and ribosomal RNA (cytoplasmic and nucleolar). Integration of such core models to both aid understanding and troubleshooting of current fluorescent probes and to assist the design of novel probes is outlined and illustrated using case examples. Limitations and generic problems arising with this approach and comments on application of such approaches to xenobiotics other than probes, e.g., drugs and herbicides, together with a brief note about an alternative approach to prediction, are given.

  19. Mixture designs to assess composition-structure-property relationships in SiO₂-CaO-ZnO-La₂O₃-TiO₂-MgO-SrO-Na₂O glasses: potential materials for embolization.

    Science.gov (United States)

    Kehoe, Sharon; Langman, Maxine; Werner-Zwanziger, Ulli; Abraham, Robert J; Boyd, Daniel

    2013-09-01

    Embolization with micron-sized particulates is widely applied to treat uterine fibroids. The objective of this work was to develop mixture designs to predict materials composition-structure-property relationships for the SiO₂-CaO-ZnO-La₂O₃-TiO₂-MgO-SrO-Na₂O glass system and compare its fundamental materials properties (density and cytocompatibility), against a state-of-the-art embolic agent (contour polyvinyl alcohol) to assess the potential of these materials for embolization therapies. The glass structures were evaluated using ²⁹Si MAS NMR to identify chemical shift and line width; the particulate densities were determined using helium pycnometry and the cell viabilities were assessed via MTT assay. ²⁹Si MAS NMR results indicated peak maxima for each glass in the range of -82.3 ppm to -89.9 ppm; associated with Q² to Q³ units in silicate glasses. All experimental embolic compositions showed enhanced in vitro compatibility in comparison to Contour PVA with the exceptions of ORP9 and ORP11 (containing no TiO₂). In this study, optimal compositions for cell viability were obtained for the following compositional ranges: 0.095-0.188 mole fraction ZnO; 0.068-0.159 mole fraction La₂O₃; 0.545-0.562 mole fraction SiO₂ and 0.042-0.050 mole fraction TiO₂. To ensure ease of producibility in obtaining good melts, a maximum loading of 0.068 mole fraction La₂O₃ is required. This is confirmed by the desirability approach, for which the only experimental composition (ORP5) of the materials evaluated was presented as an optimum composition; combining high cell viability with ease of production (0.188 mole fraction ZnO; 0.068 mole fraction La₂O₃; 0.562 mole fraction SiO₂ and 0.042 mole fraction TiO₂).

  20. Structural Properties of Realistic Cultural Space Distributions

    CERN Document Server

    Babeanu, Alexandru-Ionut; Garlaschelli, Diego

    2015-01-01

    An interesting sociophysical research problem consists of the compatibility between collective social behavior in the short term and cultural diversity in the long term. Recently, it has been shown that, when studying a model of short term collective behavior in parallel with one of long term cultural diversity, one is lead to the puzzling conclusion that the 2 aspects are mutually exclusive. However, the compatibility is restored when switching from the randomly generated cultural space distribution to an empirical one for specifying the initial conditions in those models. This calls for understanding the extent to which such a compatibility restoration is independent of the empirical data set, as well as the relevant structural properties of such data. Firstly, this work shows that the restoration patterns are largely robust across data sets. Secondly, it provides a possible mechanism explaining the restoration, for the special case when the cultural space is formulated only in terms of nominal variables. T...

  1. Structure-Property Relations in Nonferrous Metals

    Science.gov (United States)

    Russell, Alan; Loong Lee, Kok

    2005-05-01

    A long-awaited text that fills the void in non-ferrous metallurgy literature While most undergraduate metallurgy textbooks focus on iron, the most commercially important metallic element, Structure-Property Relations in Nonferrous Metals is a comprehensive textbook covering the remaining eighty-two nonferrous metals. Designed to be readily accessible to materials engineering students at all academic levels, the text describes the relationships between the atomic-, crystal-, and micro-structures of nonferrous metals, and such physical behaviors as strength, ductility, electrical conductivity, and corrosion. In order to capture and retain students' interest, the authors maintain a strong focus on practical application. Each chapter supplements fundamental concepts with engaging examples from actual engineering case studies and industrial projects, directly relating content to real-world application. Part One describes the general concepts of crystal- and micro-structures and the implications of these structures for the mechanical, thermal, and electronic properties of nonferrous metals, intermetallic compounds, and metal matrix composites. Chapters focus on such relevant topics as: Point, line, and planar defects and their effects on a material's properties Dislocations and strengthening mechanisms Fracture and fatigue Strain rate effects and creep Deviations from classic crystallinity Processing methods Composites and intermetallic compounds Part Two builds on Part One by exploring how the concepts presented define the properties of a particular metallic element and its alloys, and how these properties contribute to the engineering uses of each nonferrous metal. An accompanying ftp site contains homework problems, appendices, bibliographies, and tables of data indicating the nations producing metallic elements and the quantities produced. Structure-Property Relations in Nonferrous Metals is a valuable reference for both students in undergraduate metallurgy courses

  2. Analysis and prediction of nutritional requirements using structural properties of metabolic networks and support vector machines.

    Science.gov (United States)

    Tamura, Takeyuki; Christian, Nils; Takemoto, Kazuhiro; Ebenhöh, Oliver; Akutsu, Tatsuya

    2010-01-01

    Properties of graph representation of genome scale metabolic networks have been extensively studied. However, the relationship between these structural properties and functional properties of the networks are still very unclear. In this paper, we focus on nutritional requirements of organisms as a functional property and study the relationship with structural properties of a graph representation of metabolic networks. In order to examine the relationship, we study to what extent the nutritional requirements can be predicted by using support vector machines from structural properties, which include degree exponent, edge density, clustering coefficient, degree centrality, closeness centrality, betweenness centrality and eigenvector centrality. Furthermore, we study which properties are influential to the nutritional requirements.

  3. Analysis on the Logarithmic Model of Relationships

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The logarithmic model is often used to describe the relationships between factors.It often gives good statistical characteristics.Yet,in the process of modeling of soil and water conservation,we find out that this“good”model cannot guarantee good result.In this paper we make an inquiry into the intrinsic reasons.It is shown that the logarithmic model has the property of enlarging or reducing model errors,and the disadvantages of the logarithmic model are analyzed.

  4. Relationships between models of concurrency

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Sassone, Vladimiro; Winskel, Glynn

    1994-01-01

    Models for concurrency can be classified with respect to the three relevant parameters: behaviour/system, interleaving/noninterleaving, linear/branching time. When modelling a process, a choice concerning such parameters corresponds to choosing the level of abstraction of the resulting semantics....... The classifications are formalized through the medium of category theory....

  5. Modelers and policymakers : improving the relationships.

    Energy Technology Data Exchange (ETDEWEB)

    Karas, Thomas H.

    2004-06-01

    On April 22 and 23, 2004, a diverse group of 14 policymakers, modelers, analysts, and scholars met with some 22 members of the Sandia National Laboratories staff to explores ways in which the relationships between modelers and policymakers in the energy and environment fields (with an emphasis on energy) could be made more productive for both. This report is not a transcription of that workshop, but draws very heavily on its proceedings. It first describes the concept of modeling, the varying ways in which models are used to support policymaking, and the institutional context for those uses. It then proposes that the goal of modelers and policymakers should be a relationship of mutual trust, built on a foundation of communication, supported by the twin pillars of policy relevance and technical credibility. The report suggests 20 guidelines to help modelers improve the relationship, followed by 10 guidelines to help policymakers toward the same goal.

  6. Adaptive regression for modeling nonlinear relationships

    CERN Document Server

    Knafl, George J

    2016-01-01

    This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...

  7. Intermetallics structures, properties, and statistics

    CERN Document Server

    Steurer, Walter

    2016-01-01

    The focus of this book is clearly on the statistics, topology, and geometry of crystal structures and crystal structure types. This allows one to uncover important structural relationships and to illustrate the relative simplicity of most of the general structural building principles. It also allows one to show that a large variety of actual structures can be related to a rather small number of aristotypes. It is important that this book is readable and beneficial in the one way or another for everyone interested in intermetallic phases, from graduate students to experts in solid-state chemistry/physics/materials science. For that purpose it avoids using an enigmatic abstract terminology for the classification of structures. The focus on the statistical analysis of structures and structure types should be seen as an attempt to draw the background of the big picture of intermetallics, and to point to the white spots in it, which could be worthwhile exploring. This book was not planned as a textbook; rather, it...

  8. A generic model of dyadic social relationships.

    Science.gov (United States)

    Favre, Maroussia; Sornette, Didier

    2015-01-01

    We introduce a model of dyadic social interactions and establish its correspondence with relational models theory (RMT), a theory of human social relationships. RMT posits four elementary models of relationships governing human interactions, singly or in combination: Communal Sharing, Authority Ranking, Equality Matching, and Market Pricing. To these are added the limiting cases of asocial and null interactions, whereby people do not coordinate with reference to any shared principle. Our model is rooted in the observation that each individual in a dyadic interaction can do either the same thing as the other individual, a different thing or nothing at all. To represent these three possibilities, we consider two individuals that can each act in one out of three ways toward the other: perform a social action X or Y, or alternatively do nothing. We demonstrate that the relationships generated by this model aggregate into six exhaustive and disjoint categories. We propose that four of these categories match the four relational models, while the remaining two correspond to the asocial and null interactions defined in RMT. We generalize our results to the presence of N social actions. We infer that the four relational models form an exhaustive set of all possible dyadic relationships based on social coordination. Hence, we contribute to RMT by offering an answer to the question of why there could exist just four relational models. In addition, we discuss how to use our representation to analyze data sets of dyadic social interactions, and how social actions may be valued and matched by the agents.

  9. 求职过程的微观分析:结构特征模型%A Micro-Analysis of the Job-Search Process: A Structural Property Model

    Institute of Scientific and Technical Information of China (English)

    张顺; 郭小弦

    2012-01-01

    Job-search process and status attainment are crucial aspects of labor market research and have long attracted scholarly attention from both economists and sociologists. Since 1960s, research in both economics and sociology has addressed these issues from different perspectives, of which the human capital theory, status-attainment model, and labor market segmentation theory are important parts. This paper puts these theoretical perspectives in the job-search process against the background of China's social transformation.Based on the classic theories, the study is about the differences in the influencing forces for attaining individual economic and social statuses. This paper has three main objectives.. 1) to differentially treat attaining social status and economic status due to their different mechanisms; 2) to apply the classic theories to the micro-process of job search in transitional China and explain the variability in status attainment outcomes with the structural property indices at the point Of hiring so that the empirical results are more convincing; and 3) to construct a status attainment model for the job-searching process in an institutionally segmented labor market in the context of transitional Chinese society. The main findings show that once structural property variables are held constant, the educational rate of return is significantly smaller, indicating the importance of structural factors in status attainment. Ascribed factors have significantly different effects on both economic and social statuses in contrast to achieved factors, In an institutionally segmented labor market, ascribed and achieved factors differ significantly in their impact on job-search outcomes.%本文将人力资本理论、地位获得模型和劳动力市场分割理论置于中国社会转型背景下的微观求职过程,研究经济地位与社会地位获得影响因素的差异性。研究发现,在控制了其他特征结构变量之后,教育回报率显

  10. A generic model of dyadic social relationships.

    Directory of Open Access Journals (Sweden)

    Maroussia Favre

    Full Text Available We introduce a model of dyadic social interactions and establish its correspondence with relational models theory (RMT, a theory of human social relationships. RMT posits four elementary models of relationships governing human interactions, singly or in combination: Communal Sharing, Authority Ranking, Equality Matching, and Market Pricing. To these are added the limiting cases of asocial and null interactions, whereby people do not coordinate with reference to any shared principle. Our model is rooted in the observation that each individual in a dyadic interaction can do either the same thing as the other individual, a different thing or nothing at all. To represent these three possibilities, we consider two individuals that can each act in one out of three ways toward the other: perform a social action X or Y, or alternatively do nothing. We demonstrate that the relationships generated by this model aggregate into six exhaustive and disjoint categories. We propose that four of these categories match the four relational models, while the remaining two correspond to the asocial and null interactions defined in RMT. We generalize our results to the presence of N social actions. We infer that the four relational models form an exhaustive set of all possible dyadic relationships based on social coordination. Hence, we contribute to RMT by offering an answer to the question of why there could exist just four relational models. In addition, we discuss how to use our representation to analyze data sets of dyadic social interactions, and how social actions may be valued and matched by the agents.

  11. Structural properties of screened Coulomb balls

    CERN Document Server

    Bonitz, M; Arp, O; Golubnychiy, V; Baumgartner, H; Ludwig, P; Piel, A; Filinov, A

    2005-01-01

    Small three-dimensional strongly coupled charged particles in a spherical confinement potential arrange themselves in a nested shell structure. By means of experiments, computer simulations and theoretical analysis, it is shown that their structural properties depend on the type of interparticle forces. Using an isotropic Yukawa interaction, quantitative agreement for shell radii and occupation is obtained.

  12. Cellulose nanomaterials review: structure, properties and nanocomposites

    Science.gov (United States)

    Robert J. Moon; Ashlie Martini; John Nairn; John Simonsen; Jeff Youngblood

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The...

  13. Thermodynamic watershed hydrological model: Constitutive relationship

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The representative elementary watershed (REW) approach proposed by Reggiani et al. was the first attempt to develop scale adaptable equations applicable directly at the macro scale. Tian et al. extended the initial definition of REW for simulating the energy related processes, and re-organized the deriving procedure of balance equations so that additional sub-regions and substances could be easily incorpo-rated. The resultant ordinary differential equation set can simulate various hydro-logical processes in a physically reasonable way. However, constitutive and geo-metric relationships have not been developed for Tian et al.’s equation set, which are necessary for the thermodynamic watershed hydrological model to apply in hydrological modeling practice. In this work, the constitutive equations for mass exchange terms and momentum exchange terms were developed as well as geo-metric relationships. The closed ordinary differential equation set with nine equa-tions was finally obtained.

  14. Thermodynamic watershed hydrological model: Constitutive relationship

    Institute of Scientific and Technical Information of China (English)

    TIAN FuQiang; HU HePing; LEI ZhiDong

    2008-01-01

    The representative elementary watershed (REW) approach proposed by Reggiani et al. Was the first attempt to develop scale adaptable equations applicable directly at the macro scale. Tian et al. Extended the initial definition of REW for simulating the energy related processes, and re-organized the deriving procedure of balance equations so that additional sub-regions and substances could be easily incorpo- rated. The resultant ordinary differential equation set can simulate various hydro- logical processes in a physically reasonable way. However, constitutive and geo- metric relationships have not been developed for Tian et al.'s equation set, which are necessary for the thermodynamic watershed hydrological model to apply in hydrological modeling practice. In this work, the constitutive equations for mass exchange terms and momentum exchange terms were developed as well as geo- metric relationships. The closed ordinary differential equation set with nine equations was finally obtained.

  15. Finite Element Estimation of Meteorite Structural Properties

    Science.gov (United States)

    Hart, Kenneth Arthur

    2015-01-01

    The goal of the project titled Asteroid Threat Assessment at NASA Ames Research Center is to develop risk assessment tools. The expertise in atmospheric entry in the Entry Systems and Technology Division is being used to describe the complex physics of meteor breakup in the atmosphere. The breakup of a meteor is dependent on its structural properties, including homogeneity of the material. The present work describes an 11-week effort in which a literature survey was carried for structural properties of meteoritic material. In addition, the effect of scale on homogeneity isotropy was studied using a Monte Carlo approach in Nastran. The properties were then in a static structural response simulation of an irregularly-shape meteor (138-scale version of Asteroid Itokawa). Finally, an early plan was developed for doctoral research work at Georgia Tech. in the structural failure fragmentation of meteors.

  16. RaptorX-Property: a web server for protein structure property prediction.

    Science.gov (United States)

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-07-08

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction.

  17. Cellulose nanomaterials review: structure, properties and nanocomposites

    OpenAIRE

    Moon, Robert J.; Martini, Ashlie; Nairn, John; Simonsen, John; Youngblood, Jeffrey

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction...

  18. The structural properties of sustainable, continuous change

    DEFF Research Database (Denmark)

    Håkonsson, Dorthe Døjbak; Klaas, Johann Peter; Carroll, Timothy

    2013-01-01

    Recent studies show that the relationship between structure and inertia in changing environments may be more complex than previously held and that the theoretical logics tying inertia with flexibility and efficiency remain incomplete. Using a computational model, this article aims to clarify this...... inertia. These are important insights, because they suggest that with the right design, organizations may be both more flexible and reliable than commonly believed....

  19. Process, structure, property and applications of metallic glasses

    Directory of Open Access Journals (Sweden)

    B. Geetha Priyadarshini

    2016-07-01

    Full Text Available Metallic glasses (MGs are gaining immense technological significance due to their unique structure-property relationship with renewed interest in diverse field of applications including biomedical implants, commercial products, machinery parts, and micro-electro-mechanical systems (MEMS. Various processing routes have been adopted to fabricate MGs with short-range ordering which is believed to be the genesis of unique structure. Understanding the structure of these unique materials is a long-standing unsolved mystery. Unlike crystalline counterpart, the outstanding properties of metallic glasses owing to the absence of grain boundaries is reported to exhibit high hardness, excellent strength, high elastic strain, and anti-corrosion properties. The combination of these remarkable properties would significantly contribute to improvement of performance and reliability of these materials when incorporated as bio-implants. The nucleation and growth of metallic glasses is driven by thermodynamics and kinetics in non-equilibrium conditions. This comprehensive review article discusses the various attributes of metallic glasses with an aim to understand the fundamentals of relationship process-structure-property existing in such unique class of material.

  20. Supervisor's Interactive Model of Organizational Relationships

    Science.gov (United States)

    O'Reilly, Frances L.; Matt, John; McCaw, William P.

    2014-01-01

    The Supervisor's Interactive Model of Organizational Relationships (SIMOR) integrates two models addressed in the leadership literature and then highlights the importance of relationships. The Supervisor's Interactive Model of Organizational Relationships combines the modified Hersey and Blanchard model of situational leadership, the…

  1. THREE-DIMENSIONAL QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP (3D-QSPR) MODELS FOR PREDICTION OF THERMODYNAMIC PROPERTIES OF POLYCHLORINATED BIPHENYLS (PCBS): ENTHALPY OF SUBLIMATION. (R826133)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Rational Formulation of Alternative Fuels using QSPR Methods: Application to Jet Fuels Développement d’un outil d’aide à la formulation des carburants alternatifs utilisant des méthodes QSPR (Quantitative Structure Property Relationship: application aux carburéacteurs

    Directory of Open Access Journals (Sweden)

    Saldana D.A.

    2013-06-01

    Full Text Available Alternative fuels are a promising solution for road transport but also for aircraft. In the aviation field, a huge amount of work has been done in the past years with the approval to use up to 50 % by volume of SPK (Synthetic Paraffinic Kerosene in blends with conventional fossil Jet A-1. SPK are Fischer-Tropsch (FT fuels but also Hydroprocessed Esters and Fatty Acids (HEFA. However, these alternative fuels can have different chemical properties depending on the process used for their production. These properties include normal to iso paraffin ratio, carbon chain length and level of branching. R&D studies of alternative fuels are based on the evaluation of products coming from identified production processes. However, it appears that a better way of studying them could be firstly to determine the best chemical composition regarding aviation problems and secondly to find the best process and finishing process in order to obtain such a product. The objective of this work is to design a tool that aims to guide the future formulation of alternative fuels for aviation through the prediction of targeted physical properties. Thus, it is proposed to apply a methodology that identifies relationships between the structure and properties of a molecule (QSPR for Quantitative Structure Property Relationship, with the aim of establishing predictive models. These models will be built for hydrocarbons (normal and iso paraffins, naphthenes, aromatics, etc. and oxygenated compounds (esters and alcohols. For aviation, oxygenated compounds are not considered as a drop-in fuel. It could be seen as a disruptive solution in a long term view. There are concerns with oxygenates in aviation that are covered in this paper such as the flash point but others such as the energetic content, the water affinity that are not taken into account in this paper. The properties currently studied are flash point, cetane number, density and viscosity. The data sets will contain data

  3. Structure-property relationships of novel microwave dielectric ceramics with low sintering temperatures: (Na(0.5x)Bi(0.5x)Ca(1-x))MoO(4).

    Science.gov (United States)

    Guo, Jing; Zhou, Di; Li, Yong; Shao, Tao; Qi, Ze-Ming; Jin, Biao-Bing; Wang, Hong

    2014-08-21

    A novel series of microwave dielectric ceramics (Na0.5xBi0.5xCa1-x)MoO4 (0 ≤ x ≤ 0.6) was synthesized by the solid state reaction method. The crystal structures, microstructures, dielectric responses, and vibrational properties were investigated using X-ray diffraction, scanning electron microscopy, a microwave network analyzer, and terahertz, Raman and infrared spectroscopies. All the samples could be sintered well below 850 °C and a scheelite solid solution could be formed without any secondary phase. At x = 0.5 and x = 0.6, low-firing (750-775 °C) high performance microwave dielectric materials were obtained with permittivities of 19.1-21.9, Q × f values of 20 660-22 700 GHz, and near-zero temperature coefficients. The factors affecting microwave dielectric properties were discussed based on the vibrational data. As revealed by Raman spectroscopy, the disorder degree grows with x rising, which might increase the permittivities and decrease the Q × f values. The infrared spectra were analyzed using the classical harmonic oscillator model, and the complex dielectric responses gained from the fits were extrapolated down to the microwave and THz range. It is believed that the external vibration modes located at low frequencies dominate the main dielectric polarization contributions, especially the Na-O/Bi-O translational mode. This result indicates that the microwave dielectric properties of (Na0.5xBi0.5xCa1-x)MoO4 ceramics mainly depend on the behavior of AO8 polyhedra.

  4. Structural properties of small rhodium clusters

    Science.gov (United States)

    Soon, Yee Yeen; Lim, Thong Leng; Yoon, Tiem Leong

    2015-04-01

    We report a systematic study of the structural properties of rhodium clusters at the atomistic level. A novel global-minimum search algorithm, known as parallel tempering multicanonical basin hopping plus genetic algorithm (PTMBHGA), is used to obtain the geometrical structures with lowest minima at the semi-empirical level where Gupta potential is used to describe the atomic interaction among the rhodium atoms. These structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The structures are optimized for different spin multiplicities. The ones with lowest energies will be taken as ground-state structures. In most cases, we observe only minor changes in the geometry and bond length of the clusters as a result of DFT-level re-optimization. Only in some limited cases, the initial geometries obtained from the PTMBHGA are modified by the re-optimization. The variation of structural properties, such as ground-state geometry, symmetry and binding energy, with respect to the cluster size is studied and agreed well with other results available in the literature.

  5. Structural properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a systematic study of the structural properties of rhodium clusters at the atomistic level. A novel global-minimum search algorithm, known as parallel tempering multicanonical basin hopping plus genetic algorithm (PTMBHGA), is used to obtain the geometrical structures with lowest minima at the semi-empirical level where Gupta potential is used to describe the atomic interaction among the rhodium atoms. These structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The structures are optimized for different spin multiplicities. The ones with lowest energies will be taken as ground-state structures. In most cases, we observe only minor changes in the geometry and bond length of the clusters as a result of DFT-level re-optimization. Only in some limited cases, the initial geometries obtained from the PTMBHGA are modified by the re-optimization. The variation of structural properties, such as ground-state geometry, symmetry and binding energy, with respect to the cluster size is studied and agreed well with other results available in the literature.

  6. Structural properties of prokaryotic promoter regions correlate with functional features.

    Science.gov (United States)

    Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris

    2014-01-01

    The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  7. Structural properties of prokaryotic promoter regions correlate with functional features.

    Directory of Open Access Journals (Sweden)

    Pieter Meysman

    Full Text Available The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  8. Structure-Property Relationships in Polycyanurate / Graphene Networks

    Science.gov (United States)

    2015-12-12

    Motivation • Sequentially Prepared Graphene Types • Polycyanurate / GO Composite Preparation • Composite Morphology • Composite Mechanical and Physical...Composites Sample Kq (KIC) (psi·in1/2) LECy 988 ± 311 1 wt% GO 1353 ± 75 1 wt% TRGO 1270 ± 208 • The extent of reinforcement does appear to correlate with

  9. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.

    Science.gov (United States)

    Solanki, Archana; Mehta, Jayen; Thakore, Sonal

    2014-09-22

    Biocompatible and biodegradable polyurethanes (PUs) based on castor oil and polypropylene glycols (PPGs) were prepared using various carbohydrate crosslinkers: monosaccharide (glucose), disaccharide (sucrose) and polysaccharides (starch and cellulose). The mechanical and thermal properties were investigated and interpreted on the basis of SEM study. The advantage of incorporating various carbohydrates is to have tunable mechanical properties and biodegradability due to variety in their structure. The glass transition temperature and sorption behavior were dominated by the type of polyol than by the type of crosslinker. All the PUs were observed to be biodegradable as well as non-cytotoxic as revealed by MTT assay in normal lung cell line L132. The study supports the suitability of carbohydrates as important components of biocompatible PUs for development of biomedical devices.

  10. Processing-structure-properties relationships in PLA nanocomposite films

    Science.gov (United States)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  11. Structure-property-function relationships in triple helical collagen hydrogels

    CERN Document Server

    Tronci, Giuseppe; Russell, Stephen J; Wood, David J

    2012-01-01

    In order to establish defined biomimetic systems, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) as aromatic, bifunctional segment. Following investigation on molecular organization and macroscopic properties, material functionalities, i.e. degradability and bioactivity, were addressed, aiming at elucidating the potential of this collagen system as mineralization template. Functionalised collagen hydrogels demonstrated a preserved triple helix conformation. Decreased swelling ratio and increased thermo-mechanical properties were observed in comparison to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls. Ph-crosslinked samples displayed no optical damage and only a slight mass decrease (~ 4 wt.-%) following 1-week incubation in simulated body fluid (SBF), while nearly 50 wt.-% degradation was observed in EDC-crosslinked collagen. SEM/EDS revealed amorphous mineral deposition, whereby increased calcium phosphate ratio was suggested in hydrogels with increased Ph content...

  12. RaptorX-Property: a web server for protein structure property prediction

    OpenAIRE

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-01-01

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent acce...

  13. Thermodynamic and structural properties of Bi-based liquid alloys

    Science.gov (United States)

    Yadav, S. K.; Jha, L. N.; Adhikari, D.

    2015-10-01

    Thermodynamic and microscopic structural properties of two Bi-based liquid alloys, such as In-Bi at 900 K and Tl-Bi at 750 K have been studied employing the regular associated solution model. We have estimated the mole fractions of the complexes and the free monomers assuming the existence of complexes In2 Bi in In-Bi melt and TlBi in Tl-Bi melt. The thermodynamic properties have been studied by computing the Gibbs free energy of mixing, enthalpy of mixing, entropy of mixing and activities of the monomers. The compositional contributions of the heat associated with the formation of complexes and the heat of mixing of the monomers to the net enthalpy change has also been studied. The structural properties of the liquid alloys have been studied by computing concentration fluctuation in the long-wavelength limit, chemical short-range order parameter and the ratio of mutual to intrinsic diffusion coefficients. For both of the alloy systems, the theoretical as well as the experimental values of SCC (0) are found to be lower than the corresponding ideal values over the whole composition range, indicating the hetero-coordinating nature of Bi-In and Bi-Tl alloy melts. All the interaction energy parameters are found to be negative and temperature dependent, and both the alloy systems are found to be weakly interacting.

  14. Model identification for DNA sequence-structure relationships.

    Science.gov (United States)

    Hawley, Stephen Dwyer; Chiu, Anita; Chizeck, Howard Jay

    2006-11-01

    We investigate the use of algebraic state-space models for the sequence dependent properties of DNA. By considering the DNA sequence as an input signal, rather than using an all atom physical model, computational efficiency is achieved. A challenge in deriving this type of model is obtaining its structure and estimating its parameters. Here we present two candidate model structures for the sequence dependent structural property Slide and a method of encoding the models so that a recursive least squares algorithm can be applied for parameter estimation. These models are based on the assumption that the value of Slide at a base-step is determined by the surrounding tetranucleotide sequence. The first model takes the four bases individually as inputs and has a median root mean square deviation of 0.90 A. The second model takes the four bases pairwise and has a median root mean square deviation of 0.88 A. These values indicate that the accuracy of these models is within the useful range for structure prediction. Performance is comparable to published predictions of a more physically derived model, at significantly less computational cost.

  15. High-pressure structural properties of tetramethylsilane

    Science.gov (United States)

    Zhen-Xing, Qin; Xiao-Jia, Chen

    2016-02-01

    High-pressure structural properties of tetramethylsilane are investigated by synchrotron powder x-ray diffraction at pressures up to 31.1 GPa and room temperature. A phase with the space group of Pnma is found to appear at 4.2 GPa. Upon compression, the compound transforms to two following phases: the phase with space groups of P21/c at 9.9 GPa and the phase with P2/m at 18.2 GPa successively via a transitional phase. The unique structural character of P21/c supports the phase stability of tetramethylsilane without possible decomposition upon heavy compression. The appearance of the P2/m phase suggests the possible realization of metallization for this material at higher pressure. Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (Grant No. 708070), the Fundamental Research Funds for the Central Universities, South China University of Technology (Grant No. 2014ZZ0069), the National Natural Science Foundation of China (Grant No. 51502189), and the Doctoral Project of Taiyuan University of Science and Technology, China (Grant No. 20132010).

  16. Structural Properties of Green Tea Catechins.

    Science.gov (United States)

    Botten, Dominic; Fugallo, Giorgia; Fraternali, Franca; Molteni, Carla

    2015-10-08

    Green tea catechins are polyphenols which are believed to provide health benefits; they are marketed as health supplements and are studied for their potential effects on a variety of medical conditions. However, their mechanisms of action and interaction with the environment at the molecular level are still not well-understood. Here, by means of atomistic simulations, we explore the structural properties of four green tea catechins, in the gas phase and water solution: specifically, (-)-epigallocatechin-3-gallate, which is the most abundant, (-)-epicatechin-3-gallate, (-)-epigallocatechin-3-O-(3-O-methyl)-gallate, and (-)-epigallocatechin. We characterize the free energy conformational landscapes of these catechins at ambient conditions, as a function of the torsional degrees of freedom of the pholyphenolic rings, determining the stable conformers and their connections. We show that these free energy landscapes are only subtly influenced by the interactions with the solvent and by the structural details of the polyphenolic rings. However, the number and position of the hydroxyl groups (or their sustituents) and the presence/absence of the galloyl moiety have significant impact on the selected catechin solvation shells and hydrogen bond capabilities, which are ultimately linked to their ability to interact with and affect the biological environment.

  17. Investigation and prediction of protein precipitation by polyethylene glycol using quantitative structure-activity relationship models.

    Science.gov (United States)

    Hämmerling, Frank; Ladd Effio, Christopher; Andris, Sebastian; Kittelmann, Jörg; Hubbuch, Jürgen

    2017-01-10

    Precipitation of proteins is considered to be an effective purification method for proteins and has proven its potential to replace costly chromatography processes. Besides salts and polyelectrolytes, polymers, such as polyethylene glycol (PEG), are commonly used for precipitation applications under mild conditions. Process development, however, for protein precipitation steps still is based mainly on heuristic approaches and high-throughput experimentation due to a lack of understanding of the underlying mechanisms. In this work we apply quantitative structure-activity relationships (QSARs) to model two parameters, the discontinuity point m* and the β-value, that describe the complete precipitation curve of a protein under defined conditions. The generated QSAR models are sensitive to the protein type, pH, and ionic strength. It was found that the discontinuity point m* is mainly dependent on protein molecular structure properties and electrostatic surface properties, whereas the β-value is influenced by the variance in electrostatics and hydrophobicity on the protein surface. The models for m* and the β-value exhibit a good correlation between observed and predicted data with a coefficient of determination of R(2)≥0.90 and, hence, are able to accurately predict precipitation curves for proteins. The predictive capabilities were demonstrated for a set of combinations of protein type, pH, and ionic strength not included in the generation of the models and good agreement between predicted and experimental data was achieved.

  18. Inclusion of Switching Behaviour into Relationship Marketing Model

    DEFF Research Database (Denmark)

    Alnaimi, Husam; Jones, Richard; Perkins, Helen

    2011-01-01

    Relationship marketing authors have attempted to develop distinct models suitable for investigating relationship marketing in different contexts. However, there is no agreement as yet about the antecedents that best capture the characteristics of the relational exchange that influences relationship...... marketing. Maintaining a long-term relationship with a customer is one of the fundamental factors determining the value that the customer provides to the company. A serious threat to achieving a long-term relationship is the customer’s switching behaviour. This study develops a theoretical model...... of relationship marketing, which includes customers’ switching behaviour (switchers and stayers), as a vital construct to understand the relationship development process between customers and service providers. Also, hypotheses to specify the association between the underlying models’ constructs were presented...

  19. Testing causal models of the relationship between childhood gender atypical behaviour and parent-child relationship.

    Science.gov (United States)

    Alanko, Katarina; Santtila, Pekka; Salo, Benny; Jern, Patrik; Johansson, Ada; Sandnabba, N Kenneth

    2011-06-01

    An association between childhood gender atypical behaviour (GAB) and a negative parent-child relationship has been demonstrated in several studies, yet the causal relationship of this association is not fully understood. In the present study, different models of causation between childhood GAB and parent-child relationships were tested. Direction of causation modelling was applied to twin data from a population-based sample (n= 2,565) of Finnish 33- to 43-year-old twins. Participants completed retrospective self-report questionnaires. Five different models of causation were then fitted to the data: GAB → parent-child relationship, parent-child relationship → GAB, reciprocal causation, a bivariate genetic model, and a model assuming no correlation. It was found that a model in which GAB and quality of mother-child, and father-child relationship reciprocally affect each other best fitted the data. The findings are discussed in light of how we should understand, including causality, the association between GAB and parent-child relationship.

  20. Information retrieval models foundations and relationships

    CERN Document Server

    Roelleke, Thomas

    2013-01-01

    Information Retrieval (IR) models are a core component of IR research and IR systems. The past decade brought a consolidation of the family of IR models, which by 2000 consisted of relatively isolated views on TF-IDF (Term-Frequency times Inverse-Document-Frequency) as the weighting scheme in the vector-space model (VSM), the probabilistic relevance framework (PRF), the binary independence retrieval (BIR) model, BM25 (Best-Match Version 25, the main instantiation of the PRF/BIR), and language modelling (LM). Also, the early 2000s saw the arrival of divergence from randomness (DFR).Regarding in

  1. CORAL: quantitative structure-activity relationship models for estimating toxicity of organic compounds in rats.

    Science.gov (United States)

    Toropova, A P; Toropov, A A; Benfenati, E; Gini, G; Leszczynska, D; Leszczynski, J

    2011-09-01

    For six random splits, one-variable models of rat toxicity (minus decimal logarithm of the 50% lethal dose [pLD50], oral exposure) have been calculated with CORAL software (http://www.insilico.eu/coral/). The total number of considered compounds is 689. New additional global attributes of the simplified molecular input line entry system (SMILES) have been examined for improvement of the optimal SMILES-based descriptors. These global SMILES attributes are representing the presence of some chemical elements and different kinds of chemical bonds (double, triple, and stereochemical). The "classic" scheme of building up quantitative structure-property/activity relationships and the balance of correlations (BC) with the ideal slopes were compared. For all six random splits, best prediction takes place if the aforementioned BC along with the global SMILES attributes are included in the modeling process. The average statistical characteristics for the external test set are the following: n = 119 ± 6.4, R(2) = 0.7371 ± 0.013, and root mean square error = 0.360 ± 0.037. Copyright © 2011 Wiley Periodicals, Inc.

  2. Structure - property relations of high-temperature composite polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, R.J.; Jurek, R.J.; Larive, D.E. [Michigan Molecular Institute, Midland, MI (United States); Tung, C.M. [Northrop Corp., Hawthorne, CA (United States); Donnellan, T. [Naval Air Development Center, Warminster, PA (United States)

    1993-12-31

    The structure-deformation-failure mode-mechanical property relations of high-temperature thermoplastic polyimide and thermoset bismaleimide (BMI) polymeric matrices and their composites will be discussed. In the case of polyimides, the effects of test temperature, thermal history, strain rate, type of filler, and filler volume fraction on structure - property relations will be discussed. For BMIs we report systematic Fourier transform infrared spectroscopy and differential scanning calorimetry studies of the cure reactions as a function of chemical composition and time - temperature cure conditions and then describe the resultant cross-linked network structure based on our understanding of the cure reactions. The optimization of the BMI matrix toughness will be considered in terms of network structure and process-induced matrix microcracking. We also describe optimization of composite prepreg, lamination and postcure conditions based on cure kinetics, and their relationship to the BMI viscosity-time-temperature profiles. The critical processing-performance limitations of high-temperature polymer matrices will be critically discussed, and toughening approaches to address these limitations, such as toughness over a wide temperature range, will be presented. 7 refs., 2 figs., 1 tab.

  3. Quantitative Structure-Property Relationship for Polychlorinated Biphenyls: Toxicity and Structure by Density Functional Theory%基于密度泛函理论计算的多氯联苯毒性的定量结构-性质关系研究

    Institute of Scientific and Technical Information of China (English)

    龙杰义; 易海波; 刘星楷; 汪易非

    2012-01-01

    Polychlorinated biphenyls(PCBs) with hydrophobicity,lipophilicity and high toxicity,are a group of synthetic persistent organic contaminants,and have caused people widespread concern.In this work,density functional theory(DFT) was employed to calculate some structural parameters of PCBs,such as the negative charge density of the benzene ring(Q),ELUMO,electrophilicity index(ω),and the relationship of toxicity of PCBs with coplanarity,the number of substituted chlorines(NCl),Q,and ω was also investigated.Using SPSS17 program,the relevancy of these structural parameters with n-octanol-water partition coefficients(KOW) was analyzed,and multiple linear regression equations of lg KOW for PCBs were constructed.Tests of these quantitative structure-property relationship(QSPR) equations were performed to ensure the stability using cross-validation method,and those equations were also used to predict the toxicity of PCBs.The established QSPR equation based on NCl and ω is simple and reliable,and the predicted lg KOWvalues of PCBs agree well with experimental results.%多氯联苯(PCBs)是一类人工合成的难降解有机物,疏水亲油、毒性大,引起了人们普遍关注.通过密度泛函理论(DFT)计算获得PCBs苯环上的负电荷密度(Q)、最低空轨道能量(ELUMO)、亲电指数(ω)等结构参数,并分析了PCBs毒性与其苯环间的共平面性、氯原子取代数(NCl)、Q以及ω等结构参数之间的关系.采用SPSS17统计软件分析了上述结构参数与PCBs毒性表征量正辛醇-水分配系数(KOW)的关联度,并构建lg KOW的多元线性回归方程.采用"交叉检验"方法检验所构建的lg KOW定量结构-性质关系(QSPR)方程的稳定性,并用于预测PCBs的毒性.由NCl和ω构造出的QSPR方程简单实用、可靠,PCBs的lg KOW计算值与实验结果吻合良好.

  4. Investigating Supervisory Relationships and Therapeutic Alliances Using Structural Equation Modeling

    Science.gov (United States)

    DePue, Mary Kristina; Lambie, Glenn W.; Liu, Ren; Gonzalez, Jessica

    2016-01-01

    The authors used structural equation modeling to examine the contribution of supervisees' supervisory relationship levels to therapeutic alliance (TA) scores with their clients in practicum. Results showed that supervisory relationship scores positively contributed to the TA. Client and counselor ratings of the TA also differed.

  5. The Relationships between Modelling and Argumentation from the Perspective of the Model of Modelling Diagram

    Science.gov (United States)

    Mendonça, Paula Cristina Cardoso; Justi, Rosária

    2013-01-01

    Some studies related to the nature of scientific knowledge demonstrate that modelling is an inherently argumentative process. This study aims at discussing the relationship between modelling and argumentation by analysing data collected during the modelling-based teaching of ionic bonding and intermolecular interactions. The teaching activities…

  6. Models of Shared Leadership: Evolving Structures and Relationships.

    Science.gov (United States)

    Hallinger, Philip; Richardson, Don

    1988-01-01

    Explores potential changes in the power relationships among teachers and principals. Describes and analyzes the following models of teacher decision-making: (1) Instructional Leadership Teams; (2) Principals' Advisory Councils; (3) School Improvement Teams; and (4) Lead Teacher Committees. (FMW)

  7. Relationship Management: Towards a Holistic model

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2006-01-01

     This contribution provides a ground plan for managing the networked enterprise as a central aspect in 21st century organizations. It builds upon and synthesizes parts of the literature, but provides novel insights from this synthesis as well, using a model, that links three generic network...... management tasks with three levels of management, identifying 9 focus areas. Rather than distinguishing between the management of external and internal resources, integration of external and internal resources are in focus, meaning that all managerial tasks hold consequences both internally and externally...

  8. Generative Models for Global Collaboration Relationships

    CERN Document Server

    Ciftcioglu, Ertugrul N; Basu, Prithwish

    2016-01-01

    When individuals interact with each other and meaningfully contribute toward a common goal, it results in a collaboration, as can be seen in many walks of life such as scientific research, motion picture production, or team sports. The artifacts resulting from a collaboration (e.g. papers, movies) are best captured using a hypergraph model, whereas the relation of who has collaborated with whom is best captured via an abstract simplicial complex (SC). In this paper, we propose a generative algorithm GeneSCs for SCs modeling fundamental collaboration relations, primarily based on preferential attachment. The proposed network growth process favors attachment that is preferential not to an individual's degree, i.e., how many people has he/she collaborated with, but to his/her facet degree, i.e., how many maximal groups or facets has he/she collaborated within. Unlike graphs, in SCs, both facet degrees (of nodes) and facet sizes are important to capture connectivity properties. Based on our observation that sever...

  9. Structure properties of evolutionary spatially embedded networks

    Science.gov (United States)

    Hui, Z.; Li, W.; Cai, X.; Greneche, J. M.; Wang, Q. A.

    2013-04-01

    This work is a modeling of evolutionary networks embedded in one or two dimensional configuration space. The evolution is based on two attachments depending on degree and spatial distance. The probability for a new node n to connect with a previous node i at distance r follows aki∑jkj+(1-a)rni-α∑jrnj-α, where ki is the degree of node i, α and a are tunable parameters. In spatial driven model (a=0), the spatial distance distribution follows the power-law feature. The mean topological distance l and the clustering coefficient C exhibit phase transitions at same critical values of α which change with the dimensionality d of the embedding space. When a≠0, the degree distribution follows the "shifted power law" (SPL) which interpolates between exponential and scale-free distributions depending on the value of a.

  10. Structural Properties and Phonon dispertion of NACl

    Directory of Open Access Journals (Sweden)

    R. Khoda-Bakhsh

    2001-06-01

    Full Text Available   Although many phenomena in condensed matter Physics can be understood on the basis of a model, there are also considerable number of physical properties of solid which can not be explained except in the framework of lattice dynamics.   We have calculated the phonon frequencies of Na Cl, using an approach which is a combination of frozen phonon and force constants methods in the framework of density functional pseudopotential theory. The dispersion relation curves, were calculated along symmetry direction Δ,  Σ  and  Ù. We also calculated Grunesein parameters for all modes at X and L points in Brillion zone. The calcutions are made in the framework of density functional and pseudopotential theory, using super cell method, with the valence orbitals expanded in plane waves.

  11. Application of the relationship marketing model in tourist firms

    Directory of Open Access Journals (Sweden)

    I. Sowier-Kasprzyk

    2014-09-01

    Full Text Available The aim of the article. The following paper presents the model of the relationship marketing in tourist services. The results of the analysis. In the first part the theoretical basis knowledge (the elements and results about relationship marketing have been presented. Apart from that the theory of strategic learning of that form of marketing and the essence of the loyalty programmes have been showed. The second part has been devoted to the tourist services and their specialty. In the third part the model of the relationship marketing in tourism itself is presented. The model consists of the interactions between the tourism company and the closer and further environment. The main elements of the interaction system within the relationship marketing are the integrated elements of marketing which are communicated with the use of media to the receivers (customers. In the relationship marketing, in the contrary to the traditional marketing, there is the use of the database which is the basis for the building of the loyalty programmes. Conclusions and directions of further researches. The paper is concluded in refer to the tourist companies as far as the use of marketing instruments connected with implementing relationship marketing in the tourist company is concerned.

  12. Structure Property Studies for Additively Manufactured Parts

    Energy Technology Data Exchange (ETDEWEB)

    Milenski, Helen M [Univ. of Mexico, Los Alamos, NM (United States); Schmalzer, Andrew Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelly, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-17

    Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractive methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.

  13. Personality, Relationship Conflict, and Teamwork-Related Mental Models

    Science.gov (United States)

    Vîrgă, Delia; CurŞeu, Petru Lucian; Maricuţoiu, Laurenţiu; Sava, Florin A.; Macsinga, Irina; Măgurean, Silvia

    2014-01-01

    This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested in 48 groups were analyzed using a multilevel modeling approach. Our results show that the experience of relationship conflict leads to a negative shift from the pre-task to the post-task teamwork-related mental models. Moreover, the results indicate that conscientiousness buffered the negative association between relationship conflict and the change in teamwork-related mental models. Our results did not support the hypothesized moderating effect of agreeableness and show that the detrimental effect of relationship conflict on the shift in teamwork-related mental models is accentuated for group members scoring low rather than high on neuroticism. These findings open new research venues for exploring the association between personality, coping styles and change in teamwork-related mental models. PMID:25372143

  14. A speed-flow relationship model of highway traffic flow

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; LI Wei; REN Gang

    2005-01-01

    In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship for each highway class based upon a large number of traffic data collected from the field. Then by analyzing the traffic flow dissipation mechanism under peak hour over-saturated traffic conditions, the speed flow relationship model structures for each highway class are reviewed under different traffic load conditions. Through curve-fitting of large numbers of observed data, functional equations of general speed-flow relationship models for each highway class under any traffic load conditions are established. The practical model parameters for each highway class under different design speeds are also put forward. This model is successful in solving the speed-forecasting problem of the traffic flow under peak hour over-saturated conditions. This provides the theoretical bases for the development of projects related to highway network planning, economic analysis, etc.

  15. Personality, relationship conflict, and teamwork-related mental models.

    Science.gov (United States)

    Vîrgă, Delia; Curşeu, Petru Lucian; CurŞeu, Petru Lucian; Maricuţoiu, Laurenţiu; Sava, Florin A; Macsinga, Irina; Măgurean, Silvia

    2014-01-01

    This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested in 48 groups were analyzed using a multilevel modeling approach. Our results show that the experience of relationship conflict leads to a negative shift from the pre-task to the post-task teamwork-related mental models. Moreover, the results indicate that conscientiousness buffered the negative association between relationship conflict and the change in teamwork-related mental models. Our results did not support the hypothesized moderating effect of agreeableness and show that the detrimental effect of relationship conflict on the shift in teamwork-related mental models is accentuated for group members scoring low rather than high on neuroticism. These findings open new research venues for exploring the association between personality, coping styles and change in teamwork-related mental models.

  16. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  17. Structural properties of proteins specific to the myelin sheath.

    Science.gov (United States)

    Kursula, P

    2008-02-01

    The myelin sheath is an insulating membrane layer surrounding myelinated axons in vertebrates, which is formed when the plasma membrane of an oligodendrocyte or a Schwann cell wraps itself around the axon. A large fraction of the total protein in this membrane layer is comprised of only a small number of individual proteins, which have certain intriguing structural properties. The myelin proteins are implicated in a number of neurological diseases, including, for example, autoimmune diseases and peripheral neuropathies. In this review, the structural properties of a number of myelin-specific proteins are described.

  18. Effect of wet grinding on structural properties of ball clay

    Science.gov (United States)

    Purohit, A.; Hameed, A.; Chander, S.; Nehra, S. P.; Singh, P.; Dhaka, M. S.

    2015-05-01

    In this paper, the effect of wet grinding on structural properties of ball clay is undertaken. The wet grinding treatment was performed employing ball and vibro mills for different time spells of 2, 4, 8 and 16 hours. The structural properties were carried out using X-ray diffraction (XRD). The structure of ground samples is found to be simple cubic. The crystallographic parameters are calculated and slight change in lattice constant, inter planner spacing and particle size is observed with grinding treatment. The results are in agreement with the available literature.

  19. Modeling the Relationships between Subdimensions of Environmental Literacy

    Science.gov (United States)

    Genc, Murat; Akilli, Mustafa

    2016-01-01

    The aim of this study is to demonstrate the relationships between subdimensions of environmental literacy using Structural Equation Modeling (SEM). The study was conducted by the analysis of students' answers to questionnaires data using SEM. Initially, Kaiser-Meyer-Olkin and Bartlett's tests were done to test appropriateness of subdimensions to…

  20. Violence in Young Adolescents' Relationships: A Path Model

    Science.gov (United States)

    Josephson, Wendy L.; Proulx, Jocelyn B.

    2008-01-01

    A structural equation model based on social cognitive theory was used to predict relationship violence from young adolescents' knowledge, self-efficacy, attitudes, and alternative conflict strategies (n = 143 male and 147 female grade 7-9 students). A direct causal effect was supported for violence-tolerant attitudes and psychologically aggressive…

  1. Event-Entity-Relationship Modeling in Data Warehouse Environments

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    We use the event-entity-relationship model (EVER) to illustrate the use of entity-based modeling languages for conceptual schema design in data warehouse environments. EVER is a general-purpose information modeling language that supports the specification of both general schema structures and multi......-dimensional schemes that are customized to serve specific information needs. EVER is based on an event concept that is very well suited for multi-dimensional modeling because measurement data often represent events in multi-dimensional databases...

  2. Modeling time-lagged reciprocal psychological empowerment-performance relationships.

    Science.gov (United States)

    Maynard, M Travis; Luciano, Margaret M; D'Innocenzo, Lauren; Mathieu, John E; Dean, Matthew D

    2014-11-01

    Employee psychological empowerment is widely accepted as a means for organizations to compete in increasingly dynamic environments. Previous empirical research and meta-analyses have demonstrated that employee psychological empowerment is positively related to several attitudinal and behavioral outcomes including job performance. While this research positions psychological empowerment as an antecedent influencing such outcomes, a close examination of the literature reveals that this relationship is primarily based on cross-sectional research. Notably, evidence supporting the presumed benefits of empowerment has failed to account for potential reciprocal relationships and endogeneity effects. Accordingly, using a multiwave, time-lagged design, we model reciprocal relationships between psychological empowerment and job performance using a sample of 441 nurses from 5 hospitals. Incorporating temporal effects in a staggered research design and using structural equation modeling techniques, our findings provide support for the conventional positive correlation between empowerment and subsequent performance. Moreover, accounting for the temporal stability of variables over time, we found support for empowerment levels as positive influences on subsequent changes in performance. Finally, we also found support for the reciprocal relationship, as performance levels were shown to relate positively to changes in empowerment over time. Theoretical and practical implications of the reciprocal psychological empowerment-performance relationships are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  3. Some Structure Properties of the Cyclic Fuzzy Group Family

    Institute of Scientific and Technical Information of China (English)

    Hacl Akta(s); Naim (C)a(g)man

    2005-01-01

    In crisp environment, the notion of cyclic group on a set is well known. We study an extension of this classical notion to the fuzzy sets to define the concept of cyclic fuzzy subgroups. By using these cyclic fuzzy subgroups, we then define a cyclic fuzzy group family and investigate its structure properties.

  4. Reducing Behavioural to Structural Properties of Programs with Procedures

    NARCIS (Netherlands)

    Gurov, D.; Huisman, M.; Jones, N.D.; Müller-Olm, M.

    2009-01-01

    There is an intimate link between program structure and behaviour. Exploiting this link to phrase program correctness problems in terms of the structural properties of a program graph rather than in terms of its unfoldings is a useful strategy for making analyses more tractable. This paper presents

  5. Relationship duration moderates associations between attachment and relationship quality: meta-analytic support for the temporal adult romantic attachment model.

    Science.gov (United States)

    Hadden, Benjamin W; Smith, C Veronica; Webster, Gregory D

    2014-02-01

    Although research has examined associations between attachment dimensions and relationship outcomes, theory has ignored how these associations change over time in adult romantic relationships. We proposed the Temporal Adult Romantic Attachment (TARA) model, which predicts that the negative associations between anxious and avoidant attachment on one hand and relationship satisfaction and commitment on the other will be more negative as relationship durations increase. Meta-analyses largely confirmed that negative associations between both insecure attachment dimensions and both relationship outcomes were more negative among longer relationship durations in cross-sectional samples. We also explored gender differences in these associations. The present review not only integrates the literature on adult attachment and romantic relationship satisfaction/commitment but also highlights the importance of relationship duration as a key moderator of the associations among these variables. We discuss the broad implications of these effects and our meta-analytic findings for the TARA model, attachment theory, and romantic relationships.

  6. Dyadic Empathy, Dyadic Coping, and Relationship Satisfaction: A Dyadic Model

    Directory of Open Access Journals (Sweden)

    Christine Levesque

    2014-02-01

    Full Text Available The purpose of the present study was to investigate a theoretical model specifying the direct and indirect associations between dyadic empathy, dyadic coping, and relationship satisfaction in a sample of 187 heterosexual couples. Dyadic and structural aspects of mediation were tested using the Actor-Partner Interdependence Model. Results revealed that greater levels of an individual’s own propensity for dyadic empathy (i.e., one’s ability to experience empathic concern and perspective-taking significantly predicted greater levels of an individual’s own dyadic coping strategies among both male and female participants. Moreover, increased levels of an individual’s own dyadic coping strategies significantly predicted a similar greater degree of an individual’s own relationship satisfaction. Furthermore, results also provide support for the possible mediating role that an individual’s own dyadic coping strategies may hold in explaining the links between an individual’s own empathic concern and an individual’s own relationship satisfaction among male participants. With regard to the dyadic components of the study’s model, findings indicated that perspective-taking among males significantly improve their female partners’ propensity to employ positive dyadic coping strategies. Moreover, empathic concern among female participants was found to improve their male partners’ dyadic coping strategies. Findings suggest the potential utility of examining dyadic coping as a means to expand clinical and empirical insights regarding the links between dyadic empathy and relationship satisfaction.

  7. Structural properties of hydrogen isotopes in solid phase in the context of inertial confinement fusion

    Directory of Open Access Journals (Sweden)

    Guerrero Carlo

    2013-11-01

    Full Text Available Quality of Deuterium-Tritium capsules is a critical aspect in Inertial Confinement Fusion. In this work, we present a Quantum Molecular Dynamics methodology able to model hydrogen isotopes and their structural molecular organisation at extreme pressures and cryogenic temperatures (< 15 K. Our study sets up the basis for a future analysis on the mechanical and structural properties of DT-ice in inertial confinement fusion (ICF target manufacturing conditions.

  8. The relationship between psoriasis and depression: A multiple mediation model.

    Science.gov (United States)

    Łakuta, Patryk; Marcinkiewicz, Kamil; Bergler-Czop, Beata; Brzezińska-Wcisło, Ligia

    2016-12-01

    This study examined the relationship between psoriasis and depression, proposing a multiple mediation model to analyse the relationship. A total of 193 patients with psoriasis aged 20-67 years completed the Beck Depression Inventory, the Stigmatization Scale, the Appearance Schemas Inventory-Revised, and the Body Emotions Scale. The Body Surface Area index was used to assess severity of psoriasis. Serial multiple mediation analysis revealed that experiences of stigmatization, maladaptive beliefs about appearance and its salience to one's self-evaluation, and negative emotional attitudes towards the body, jointly, sequentially mediated the relationship between the presence of skin lesions of psoriasis and depressive symptoms. These results highlight the importance of the associations between stigmatization and cognitive and affective aspects of body image in relation to depression in patients with psoriasis. We suggest that prevention and intervention programs for psoriasis patients that target body image enhancement would be worthy of further research.

  9. Role of lateral growth on the structural properties of high temperature GaN layer

    Institute of Scientific and Technical Information of China (English)

    GAO ZhiYuan; HAO Yue; LI PeiXian; ZHANG JinCheng

    2009-01-01

    The role of lateral growth on the structural properties of high temperature (HT) GaN epitaxial layer has been investigated by means of transmission electron microscopy (TEM) and X-ray diffraction (XRD).Variations of the lateral growth rate of HT GaN in metal-organic chemical vapor deposition (MOCVD)can be obtained by changing the Ⅴ/Ⅲ ratio. It is found that under higher lateral growth rate, dislocation is easier to bend into subgrains away from c axis, and the position where bend occurs is closer to the buffer layer, however, dislocation density does not show to monotonically vary with increasing lateral growth rate. A model concerning the GaN growth dynamics and dislocation bending mechanics has been proposed to explain the correlation between lateral growth and the structural properties of GaN.

  10. Role of lateral growth on the structural properties of high temperature GaN layer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The role of lateral growth on the structural properties of high temperature(HT) GaN epitaxial layer has been investigated by means of transmission electron microscopy(TEM) and X-ray diffraction(XRD).Variations of the lateral growth rate of HT GaN in metal-organic chemical vapor deposition(MOCVD) can be obtained by changing the V/Ⅲ ratio.It is found that under higher lateral growth rate,dislocation is easier to bend into subgrains away from c axis,and the position where bend occurs is closer to the buffer layer,however,dislocation density does not show to monotonically vary with increasing lateral growth rate.A model concerning the GaN growth dynamics and dislocation bending mechanics has been proposed to explain the correlation between lateral growth and the structural properties of GaN.

  11. Thermal, dielectric and structural properties of Enceladus' leading face

    Science.gov (United States)

    Le Gall, Alice; Bonnefoy, Léa; Leyrat, Cedric; Janssen, Michael A.

    2016-10-01

    The Cassini RADAR was initially designed to examine the surface of Titan through the veil of its optically-opaque atmosphere. However, it is occasionally used to observe airless Saturn's moons from long range and, less frequently, during targeted flybys. In particular, the 16th targeted encounter of Enceladus (Nov. 6, 2011, flyby E16) was dedicated to the RADAR instrument which then acquired data for over 4 hours. This paper focuses on the mid-resolution (0.1-0.6REnceladus) and low-resolution polarized data (0.6-1.0REnceladus) collected during the E16 flyby in the radiometry mode of the RADAR, mainly on the leading side of the moon.In its passive mode, the RADAR records the thermal emission at 2-cm wavelength from, likely, the first meters of an icy surface. Ries and Janssen (2015) first analyzed the E16 mid-resolution radiometry observation and reported on a large-scale emissivity anomaly, possibly associated with the seemingly young tectonized Leading Hemisphere Terrain mapped by Crow-Willard and Pappalardo (2015). With the goal of further investigating the extension of the anomaly region and providing constrains on the thermal, dielectric and structural properties of Enceladus' near surface, we have re-examined this dataset as well as observations acquired in two orthogonal polarizations with the help of a thermal model. This thermal model accounts for both diurnal and seasonal variations of the incident flux, including eclipses which is of importance for the E16 observations partially occurred during a solar eclipse by Saturn.Preliminary results suggest that the average thermal inertia of the near surface of Enceladus' leading face is relatively low, as low as 40 Jm-2K-1s-1/2 . This value does not depart much from the one inferred from measurements in the IR suggesting that the surface of Enceladus is covered by a very porous regolith, at least a few meters thick. In agreement, with this interpretation, the degree of volume scattering (i.e., high

  12. [Relationship between two models of personality in old individuals].

    Science.gov (United States)

    Calvet, Benjamin; Bricaud, Magali; Clément, Jean-Pierre

    2014-12-01

    The relationships between the seven dimensions of the Cloninger psychobiological model and the five factors of the Costa and McCrae model were examined in 54 elderly subjects from the French general population. The dimensions of temperament (novelty seeking, harm avoidance, reward dependence) and character (determination, cooperation, transcendence) from the Cloninger's model were measured by the temperament and character inventory whereas the five factors of Costa and McCrae model (neuroticism, extraversion, openness to experience, agreeableness and conscientiousness) were evaluated using the NEO PI-R. Multiple regression analyses show that some dimensions of the temperament and character inventory predict some dimensions of the Big five and vice versa. Therefore we suggest that the Big five model could be related to brain monoaminergic activities.

  13. Relationship Marketing results: proposition of a cognitive mapping model

    Directory of Open Access Journals (Sweden)

    Iná Futino Barreto

    2015-12-01

    Full Text Available Objective - This research sought to develop a cognitive model that expresses how marketing professionals understand the relationship between the constructs that define relationship marketing (RM. It also tried to understand, using the obtained model, how objectives in this field are achieved. Design/methodology/approach – Through cognitive mapping, we traced 35 individual mental maps, highlighting how each respondent understands the interactions between RM elements. Based on the views of these individuals, we established an aggregate mental map. Theoretical foundation – The topic is based on a literature review that explores the RM concept and its main elements. Based on this review, we listed eleven main constructs. Findings – We established an aggregate mental map that represents the RM structural model. Model analysis identified that CLV is understood as the final result of RM. We also observed that the impact of most of the RM elements on CLV is brokered by loyalty. Personalization and quality, on the other hand, proved to be process input elements, and are the ones that most strongly impact others. Finally, we highlight that elements that punish customers are much less effective than elements that benefit them. Contributions - The model was able to insert core elements of RM, but absent from most formal models: CLV and customization. The analysis allowed us to understand the interactions between the RM elements and how the end result of RM (CLV is formed. This understanding improves knowledge on the subject and helps guide, assess and correct actions.

  14. Relationship model and supporting activities of JIT, TQM and TPM

    OpenAIRE

    Nuttapon SaeTong; Ketlada Kitiwanwong; Jirarat Teeravaraprug

    2011-01-01

    This paper gives a relationship model and supporting activities of Just-in-time (JIT), Total Quality Management (TQM),and Total Productive Maintenance (TPM). By reviewing the concepts, 5S, Kaizen, preventive maintenance, Kanban, visualcontrol, Poka-Yoke, and Quality Control tools are the main supporting activities. Based on the analysis, 5S, preventive maintenance,and Kaizen are the foundation of the three concepts. QC tools are required activities for implementing TQM, whereasPoka-Yoke and v...

  15. Incentive Model Based on Cooperative Relationship in Sustainable Construction Projects

    Directory of Open Access Journals (Sweden)

    Guangdong Wu

    2017-07-01

    Full Text Available Considering the cooperative relationship between owners and contractors in sustainable construction projects, as well as the synergistic effects created by cooperative behaviors, a cooperative incentive model was developed using game theory. The model was formulated and analyzed under both non-moral hazard and moral hazard situations. Then, a numerical simulation and example were proposed to verify the conclusions derived from the model. The results showed that the synergistic effect increases the input intensity of one party’s resource transfer into the increase of marginal utility of the other party, thus the owner and contractor are willing to enhance their levels of effort. One party’s optimal benefit allocation coefficient is positively affected by its own output efficiency, and negatively affected by the other party’s output efficiency. The effort level and expected benefits of the owner and contractor can be improved by enhancing the cooperative relationship between the two parties, as well as enhancing the net benefits of a sustainable construction project. The synergistic effect cannot lower the negative effect of moral hazard behaviors during the implementation of sustainable construction projects. Conversely, the higher levels of the cooperative relationship, the wider the gaps amongst the optimal values under both non-moral hazard and moral hazard situations for the levels of effort, expected benefits and net project benefits. Since few studies to date have emphasized the effects of cooperative relationship on sustainable construction projects, this study constructed a game-based incentive model to bridge the gaps. This study contributes significant theoretical and practical insights into the management of cooperation amongst stakeholders, and into the enhancement of the overall benefits of sustainable construction projects.

  16. An Integrative Model of the Management of Hospital Physician Relationships

    OpenAIRE

    J. TRYBOU; P. GEMMEL; Annemans, L; -

    2010-01-01

    Hospital Physician Relationships (HPRs) are of major importance to the health care sector. Drawing on agency theory and social exchange theory, we argue that both economic and noneconomic integration strategies are important to effective management of HPRs. We developed a model of related antecedents and outcomes and conducted a systematic review to assess the evidence base of both integration strategies and their interplay. We found that more emphasis should be placed on financial risk shari...

  17. Establishment and analysis of global gridded Tm Ts relationship model

    Institute of Scientific and Technical Information of China (English)

    Zeying Lan; Bao Zhang; Yichao Geng

    2016-01-01

    In ground-based GPS meteorology, Tm is a key parameter to calculate the conversion factor that can convert the zenith wet delay (ZWD) to precipitable water vapor (PWV). It is generally acknowledged that Tm is in an approximate linear relationship with surface temperature Ts, and the relationship presents regional variation. This paper employed sliding average method to calculate correlation coefficients and linear regression co-efficients between Tm and Ts at every 2? ? 2.5? grid point using Ts data from European Centre for Medium-Range Weather Forecasts (ECMWF) and Tm data from “GGOS Atmo-sphere”, yielding the grid and bilinear interpolation-based TmGrid model. Tested by Tm and Ts grid data, Constellation Observation System of Meteorology, Ionosphere, and Climate (COSMIC) data and radiosonde data, the TmGrid model shows a higher accuracy relative to the Bevis Tm ? Ts relationship which is widely used nowadays. The TmGrid model will be of certain practical value in high-precision PWV calculation.

  18. Structural Properties of Liquid SiC during Rapid Solidification

    Directory of Open Access Journals (Sweden)

    WanJun Yan

    2013-01-01

    Full Text Available The rapid solidification of liquid silicon carbide (SiC is studied by molecular dynamic simulation using the Tersoff potential. The structural properties of liquid and amorphous SiC are analyzed by the radial distribution function, angular distribution function, coordination number, and visualization technology. Results show that both heteronuclear and homonuclear bonds exist and no atomic segregation occurs during solidification. The bond angles of silicon and carbon atoms are distributed at around 109° and 120°, respectively, and the average coordination number is <4. Threefold carbon atoms and fourfold silicon atoms are linked together by six typical structures and ultimately form a random network of amorphous structure. The simulated results help understand the structural properties of liquid and amorphous SiC, as well as other similar semiconductor alloys.

  19. Liposomes: structure, properties and methods of curative administration in organism

    Directory of Open Access Journals (Sweden)

    M. A. Kisyakova

    2010-07-01

    Full Text Available A review of data from scientific sources, devoted to problems of liposomes’ structure, properties and processes of formation was made. Advantages of liposomes used for medical purposes are shown. Methods of liposomes administration in an organism are characterised. Data on mechanisms of interaction between liposomes and cells, peculiarities of liposomes’ lipids composition and dependence of its tropism to definite organs and tissues are generalised.

  20. Using machine learning to model dose-response relationships.

    Science.gov (United States)

    Linden, Ariel; Yarnold, Paul R; Nallamothu, Brahmajee K

    2016-12-01

    Establishing the relationship between various doses of an exposure and a response variable is integral to many studies in health care. Linear parametric models, widely used for estimating dose-response relationships, have several limitations. This paper employs the optimal discriminant analysis (ODA) machine-learning algorithm to determine the degree to which exposure dose can be distinguished based on the distribution of the response variable. By framing the dose-response relationship as a classification problem, machine learning can provide the same functionality as conventional models, but can additionally make individual-level predictions, which may be helpful in practical applications like establishing responsiveness to prescribed drug regimens. Using data from a study measuring the responses of blood flow in the forearm to the intra-arterial administration of isoproterenol (separately for 9 black and 13 white men, and pooled), we compare the results estimated from a generalized estimating equations (GEE) model with those estimated using ODA. Generalized estimating equations and ODA both identified many statistically significant dose-response relationships, separately by race and for pooled data. Post hoc comparisons between doses indicated ODA (based on exact P values) was consistently more conservative than GEE (based on estimated P values). Compared with ODA, GEE produced twice as many instances of paradoxical confounding (findings from analysis of pooled data that are inconsistent with findings from analyses stratified by race). Given its unique advantages and greater analytic flexibility, maximum-accuracy machine-learning methods like ODA should be considered as the primary analytic approach in dose-response applications. © 2016 John Wiley & Sons, Ltd.

  1. Selecting an optimal mixed products using grey relationship model

    Directory of Open Access Journals (Sweden)

    Farshad Faezy Razi

    2013-06-01

    Full Text Available This paper presents an integrated supplier selection and inventory management using grey relationship model (GRM as well as multi-objective decision making process. The proposed model of this paper first ranks different suppliers based on GRM technique and then determines the optimum level of inventory by considering different objectives. To show the implementation of the proposed model, we use some benchmark data presented by Talluri and Baker [Talluri, S., & Baker, R. C. (2002. A multi-phase mathematical programming approach for effective supply chain design. European Journal of Operational Research, 141(3, 544-558.]. The preliminary results indicate that the proposed model of this paper is capable of handling different criteria for supplier selection.

  2. Military-related posttraumatic stress disorder and intimate relationship behaviors: a developing dyadic relationship model.

    Science.gov (United States)

    Gerlock, April A; Grimesey, Jackie; Sayre, George

    2014-07-01

    The protracted conflict in Iraq and Afghanistan and an all-volunteer military has resulted in multiple war zone deployments for many service members. While quick redeployment turnaround has left little time for readjustment for either the service member or family, dealing with the long-term sequelae of combat exposure often leaves families and intimate partners ill-prepared for years after deployments. Using a modified grounded theory approach, digitally recorded couple interviews of 23 couples were purposefully selected from a larger sample of 441 couples to better understand the impact of war zone deployment on the couple. The veteran sample was recruited from a randomly selected cohort of men in treatment for posttraumatic stress disorder (PTSD). Overall, it was found when veterans experiencing deployment-related PTSD reenter or start new intimate relationships they may bring with them a unique cluster of interrelated issues which include PTSD symptoms, physical impairment, high rates of alcohol and/or drug abuse, and psychological and physical aggression. These factors contributed to a dynamic of exacerbating conflict. How these couples approached relationship qualities of mutuality, balanced locus of control and weakness tolerance across six axes of caregiving, disability, responsibility, trauma, communication, and community impacted the couple's capacity to communicate and resolve conflict. This dyadic relationship model is used to help inform implications for clinical practice. © 2013 American Association for Marriage and Family Therapy.

  3. Modeling relationships between calving traits: a comparison between standard and recursive mixed models

    Directory of Open Access Journals (Sweden)

    Gianola Daniel

    2010-01-01

    Full Text Available Abstract Background The use of structural equation models for the analysis of recursive and simultaneous relationships between phenotypes has become more popular recently. The aim of this paper is to illustrate how these models can be applied in animal breeding to achieve parameterizations of different levels of complexity and, more specifically, to model phenotypic recursion between three calving traits: gestation length (GL, calving difficulty (CD and stillbirth (SB. All recursive models considered here postulate heterogeneous recursive relationships between GL and liabilities to CD and SB, and between liability to CD and liability to SB, depending on categories of GL phenotype. Methods Four models were compared in terms of goodness of fit and predictive ability: 1 standard mixed model (SMM, a model with unstructured (covariance matrices; 2 recursive mixed model 1 (RMM1, assuming that residual correlations are due to the recursive relationships between phenotypes; 3 RMM2, assuming that correlations between residuals and contemporary groups are due to recursive relationships between phenotypes; and 4 RMM3, postulating that the correlations between genetic effects, contemporary groups and residuals are due to recursive relationships between phenotypes. Results For all the RMM considered, the estimates of the structural coefficients were similar. Results revealed a nonlinear relationship between GL and the liabilities both to CD and to SB, and a linear relationship between the liabilities to CD and SB. Differences in terms of goodness of fit and predictive ability of the models considered were negligible, suggesting that RMM3 is plausible. Conclusions The applications examined in this study suggest the plausibility of a nonlinear recursive effect from GL onto CD and SB. Also, the fact that the most restrictive model RMM3, which assumes that the only cause of correlation is phenotypic recursion, performs as well as the others indicates that the

  4. Modeling the Relationship between Texture Semantics and Textile Images

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    2011-09-01

    Full Text Available Texture semantics, which is the kind of feelings that the texture feature of an image would arouse in people, is important in texture analysis. In this paper, we study the relationship between texture semantics and textile images, and propose a novel parametric mapping model to predict texture semantics from textile images. To represent rich texture semantics and enable it to participate in computation, 2D continuous semantic space, where the axes correspond to hard-soft and warm-cool, is first adopted to quantitatively describe texture semantics. Then texture features of textile images are extracted using Gabor decomposition. Finally, the mapping model between texture features and texture semantics in the semantic space is built using three different methods: linear regression, k-nearest neighbor (KNN and multi-layered perceptron (MLP. The performance of the proposed mapping model is evaluated with a dataset of 1352 textile images. The results confirm that the mapping model is effective and especially KNN and MLP reach the good performance. We further apply the mapping model to two applications: automatic textile image annotation with texture semantics and textile image search based on texture semantics. The subjective experimental results are consistent with human perception, which verifies the effectiveness of the proposed mapping model. The proposed model and its applications can be applied to various automation systems in commercial textile industry.

  5. Examining the Relationship between Physical Models and Students' Science Practices

    Science.gov (United States)

    Miller, Alison Riley

    Scientists engage with practices like model development and use, data analysis and interpretation, explanation construction, and argumentation in order to expand the frontiers of science, so it can be inferred that students' engagement with science practices may help them deepen their own science understanding. As one of three dimensions on which the Next Generation Science Standards is built, science practices are recognized as an important component of science instruction. However, the contexts in which these practices happen are under-researched. Furthermore, research on science practices among students tends to focus on one or two practices in isolation when, in reality, students and scientists tend to engage with multiple overlapping practices. This study focused on identifying and characterizing multiple science practices as eighth and ninth-grade Earth Science students participated in a small group collaborative problem solving activity both with and without the use of a physical model. This study found a range of sophistication in the observed science practices as well as a relationship between the frequency of those practices and the accuracy of the groups' outcomes. Based on this relationship, groups were assigned to one of three categories. Further analysis revealed that model use varied among the three categories of groups. Comparisons across these three group categories suggest that there may be a bootstrapping relationship between students' engagement with science practices and the development of their content understanding. This metaphor of bootstrapping is used to represent how students may develop deeper science content understanding through engagement with science practices and concurrently develop greater facility with science practices as they learn science content. Implications are presented for curriculum designers, teachers and teacher educators. These include recommendations for curriculum design that encourage structured opportunities for

  6. China's Marriage Law: a model for family responsibilities and relationships.

    Science.gov (United States)

    Hare-Mustin, R T

    1982-12-01

    China's Marriage Law of 1981 is presented with a brief commentary. The law encompasses the responsibilities of spouses, parents, children, grandparents, and siblings to one another. The new law is contrasted with the 1950 Marriage Law, which prohibited such feudal practices of former times as arranged marriages and child betrothals. The 1981 law is concerned with equality and the lawful needs of women, children, and the aged. Family planning is encouraged. Divorce is made easier to obtain. Adoptees and stepchildren are provided for. The law provides a legislative model for personal relationships.

  7. Relationship model and supporting activities of JIT, TQM and TPM

    Directory of Open Access Journals (Sweden)

    Nuttapon SaeTong

    2011-02-01

    Full Text Available This paper gives a relationship model and supporting activities of Just-in-time (JIT, Total Quality Management (TQM,and Total Productive Maintenance (TPM. By reviewing the concepts, 5S, Kaizen, preventive maintenance, Kanban, visualcontrol, Poka-Yoke, and Quality Control tools are the main supporting activities. Based on the analysis, 5S, preventive maintenance,and Kaizen are the foundation of the three concepts. QC tools are required activities for implementing TQM, whereasPoka-Yoke and visual control are necessary activities for implementing TPM. After successfully implementing TQM andTPM, Kanban is needed for JIT.

  8. Dynamic causal modelling of brain-behaviour relationships.

    Science.gov (United States)

    Rigoux, L; Daunizeau, J

    2015-08-15

    In this work, we expose a mathematical treatment of brain-behaviour relationships, which we coin behavioural Dynamic Causal Modelling or bDCM. This approach aims at decomposing the brain's transformation of stimuli into behavioural outcomes, in terms of the relative contribution of brain regions and their connections. In brief, bDCM places the brain at the interplay between stimulus and behaviour: behavioural outcomes arise from coordinated activity in (hidden) neural networks, whose dynamics are driven by experimental inputs. Estimating neural parameters that control network connectivity and plasticity effectively performs a neurobiologically-constrained approximation to the brain's input-outcome transform. In other words, neuroimaging data essentially serves to enforce the realism of bDCM's decomposition of input-output relationships. In addition, post-hoc artificial lesions analyses allow us to predict induced behavioural deficits and quantify the importance of network features for funnelling input-output relationships. This is important, because this enables one to bridge the gap with neuropsychological studies of brain-damaged patients. We demonstrate the face validity of the approach using Monte-Carlo simulations, and its predictive validity using empirical fMRI/behavioural data from an inhibitory control task. Lastly, we discuss promising applications of this work, including the assessment of functional degeneracy (in the healthy brain) and the prediction of functional recovery after lesions (in neurological patients).

  9. PERANCANGAN MODEL BASIS DATA SISTEM OPERASIONAL BERBASISKAN CUSTOMER RELATIONSHIP MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Tanty Oktavia

    2013-11-01

    Full Text Available Data is a very important asset for a company since it describes the companys running processes. Database as a part of the information system components provides a big influence in helping data integration in a company. Therefore, we need a system which can facilitate the availability of data to be processed and used as needed, This study takes a company engaged in the sale of bike and spare parts, namely PT TDI, as the object of the study. At this time, PT TDI uses an integrated system in helping the company's operations. Along with the vision and mission, PT TDI intends to build a new operating system by applying the concept of Customer Relationship Management (CRM which is believed to assist the company in maintaining relationships with customers using web-based platform. It aims to facilitate interaction with customers so that it can be done anytime and anywhere. This study implements the database design life cycle adjusted to the component aspects of CRM. The result achieved is a model that combines database CRM systems that can help companies improve relationships with customers.

  10. Investigating the Relationship between Students' Views of Scientific Models and Their Development of Models

    Science.gov (United States)

    Cheng, Meng-Fei; Lin, Jang-Long

    2015-10-01

    Understanding the nature of models and engaging in modeling practice have been emphasized in science education. However, few studies discuss the relationships between students' views of scientific models and their ability to develop those models. Hence, this study explores the relationship between students' views of scientific models and their self-generated models, and also whether views of models and modeling practice may be influenced by other factors, such as science learning performance and interest. The participants were 402 ninth-grade students in Taiwan. Data were collected using the Students' Understanding of Models in Science (SUMS) survey and students' self-evaluations of their own science learning interests and performance on a Likert-scale. The students' self-developed models explaining why three different magnetic phenomena occur were also evaluated on a schema of five levels, from lower (observational and fragmented models) to higher (microscopic and coherent models).The results reveal that most students' models remained only at the level of description of observable magnetic phenomena. A small number of the students were able to visualize unseen mechanisms, but these models were fragmented. However, several students with better science learning performance were able to develop coherent microscopic models to explain the three magnetic phenomena. The analyses indicated that most sub-factors of the SUMS survey were positively correlated with students' self-developed models, science learning performance and science learning interest. This study provides implications for teaching the nature of models and modeling practice.

  11. Model and parameter uncertainty in IDF relationships under climate change

    Science.gov (United States)

    Chandra, Rupa; Saha, Ujjwal; Mujumdar, P. P.

    2015-05-01

    Quantifying distributional behavior of extreme events is crucial in hydrologic designs. Intensity Duration Frequency (IDF) relationships are used extensively in engineering especially in urban hydrology, to obtain return level of extreme rainfall event for a specified return period and duration. Major sources of uncertainty in the IDF relationships are due to insufficient quantity and quality of data leading to parameter uncertainty due to the distribution fitted to the data and uncertainty as a result of using multiple GCMs. It is important to study these uncertainties and propagate them to future for accurate assessment of return levels for future. The objective of this study is to quantify the uncertainties arising from parameters of the distribution fitted to data and the multiple GCM models using Bayesian approach. Posterior distribution of parameters is obtained from Bayes rule and the parameters are transformed to obtain return levels for a specified return period. Markov Chain Monte Carlo (MCMC) method using Metropolis Hastings algorithm is used to obtain the posterior distribution of parameters. Twenty six CMIP5 GCMs along with four RCP scenarios are considered for studying the effects of climate change and to obtain projected IDF relationships for the case study of Bangalore city in India. GCM uncertainty due to the use of multiple GCMs is treated using Reliability Ensemble Averaging (REA) technique along with the parameter uncertainty. Scale invariance theory is employed for obtaining short duration return levels from daily data. It is observed that the uncertainty in short duration rainfall return levels is high when compared to the longer durations. Further it is observed that parameter uncertainty is large compared to the model uncertainty.

  12. Modeling the Relationship Between Social Network Activity, Inactivity, and Growth

    CERN Document Server

    Ribeiro, Bruno

    2013-01-01

    Online Social Networks (OSNs) are multi-billion dollar enterprises. Surprisingly, little is known about the mechanisms that drive them to growth, stability, or death. This study sheds light on these mechanisms. We are particularly interested in OSNs where current subscribers can invite new users to join the network (e.g., Facebook, LinkedIn). Measuring the relationship between subscriber activity and network growth of a large OSN over five years, we formulate three hypotheses that together describe the observed OSN subscriber behavior. We then provide a model (and extensions) that simultaneously satisfies all three hypotheses. Our model provides deep insights into the dynamics of subscriber activity, inactivity, and network growth rates, even predicting four types of OSNs with respect to subscriber activity evolution. Finally, we present activity data of nearly thirty OSN websites, measured over five years, and show that the observed activity is well described by one of the four activity time series predicted...

  13. Mechanical and structural properties of sputtered Ni/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kumar, M.; Boeni, P.; Tixier, S.; Clemens, D.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Ni/Ti bilayers have been prepared by dc-magnetron sputtering in order to study their mechanical and structural properties. A remarkable reduction of stress is observed when the Ni layers are sputtered reactively in argon with a high partial pressure of air. The high angle x-ray diffraction studies show a tendency towards amorphisation of the Ni layers with increasing air flow. The low angle measurements indicate a substantial reduction of interdiffusion resulting in smoother interfaces with increasing air content. (author) 2 figs., 2 refs.

  14. Structure-property relations in polymers: Spectroscopy and performance

    Energy Technology Data Exchange (ETDEWEB)

    Urban, M.W.; Craver, C.D. [eds.

    1993-12-31

    The `Structure-Property Relations in Polymers` volume was developed from a symposium sponsored by the Division of Polymeric Materials: Science and Engineering at the 201st National Meeting of the American Chemical Society in April, 1991. Topics discussed are related to: Fundamental Concepts in Spectroscopy Polymers; Crystalline Polymers and Copolymers; Surfaces and Interfaces of Polymers; Spectroscopic Approaches to Polymers in Solutions and Polymer Networks; Spectroscopy and Thermally Induced process in Polymers; and Polymer Analysis and Surface Modification. The volume details new spectroscopic methods of analysis including Fourier Transform Infrared, Raman, Vibrational Spectroscopy, and Fluorescence Methods. Several papers cover the effects of radiation on polymers.

  15. A Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success

    Science.gov (United States)

    Luong, Ming; Stevens, Jeff

    2015-01-01

    The Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success, a theoretical stages-of-growth model, explains long-term success in IT outsourcing relationships. Research showed the IT outsourcing relationship life cycle consists of four distinct, sequential stages: contract, transition, support, and partnership. The model was…

  16. Type II Supernovae: Model Light Curves and Standard Candle Relationships

    Science.gov (United States)

    Kasen, Daniel; Woosley, S. E.

    2009-10-01

    A survey of Type II supernovae explosion models has been carried out to determine how their light curves and spectra vary with their mass, metallicity, and explosion energy. The presupernova models are taken from a recent survey of massive stellar evolution at solar metallicity supplemented by new calculations at subsolar metallicity. Explosions are simulated by the motion of a piston near the edge of the iron core and the resulting light curves and spectra are calculated using full multi-wavelength radiation transport. Formulae are developed that describe approximately how the model observables (light curve luminosity and duration) scale with the progenitor mass, explosion energy, and radioactive nucleosynthesis. Comparison with observational data shows that the explosion energy of typical supernovae (as measured by kinetic energy at infinity) varies by nearly an order of magnitude—from 0.5 to 4.0 × 1051 ergs, with a typical value of ~0.9 × 1051 ergs. Despite the large variation, the models exhibit a tight relationship between luminosity and expansion velocity, similar to that previously employed empirically to make SNe IIP standardized candles. This relation is explained by the simple behavior of hydrogen recombination in the supernova envelope, but we find a sensitivity to progenitor metallicity and mass that could lead to systematic errors. Additional correlations between light curve luminosity, duration, and color might enable the use of SNe IIP to obtain distances accurate to ~20% using only photometric data.

  17. Object relationship notation (ORN) for database applications enhancing the modeling and implementation of associations

    CERN Document Server

    Ehlmann, Bryon K

    2009-01-01

    Conceptually, a database consists of objects and relationships. Object Relationship Notation (ORN) is a simple notation that more precisely defines relationships by combining UML multiplicities with uniquely defined referential actions. ""Object Relationship Notation (ORN) for Database Applications: Enhancing the Modeling and Implementation of Associations"" shows how ORN can be used in UML class diagrams and database definition languages (DDLs) to better model and implement relationships and thus more productively develop database applications. For the database developer, it presents many exa

  18. THREE-DIMENSIONAL QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP (3D-QSPR) MODELS FOR PREDICTION OF THERMODYNAMIC PROPERTIES OF POLYCHLORINATED BIPHENYLS (PCBS): ENTHALPIES OF FUSION AND THEIR APPLICATION TO ESTIMATES OF ENTHALPIES OF SUBLIMATION AND AQUEOUS SOLUBILITIES. (R826133)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Structure-property relationship modeling for linear chain polymers by Fuzzy set theory%直链聚合物的结构性质关系的模糊集理论方法建模

    Institute of Scientific and Technical Information of China (English)

    孙红; 唐应武; 吴国是; 张复实; 陈锡侨

    2003-01-01

    将模糊集理论方法用于直链聚合物的结构性质关系建模,构造了两个模型.一个是直链聚合物的基团法描述的结构参数与其12种性质间定量关系的模型(模型1F);一个是直链聚合物的连接性指数描述的结构参数与其12种性质间定量关系的模型(模型2F).两个模型给出的12种性质的拟合误差(拟合值与实验值间的标准偏差)分别是:V(298K)为15.1(模型1F)/58.4(模型2F)cc/mole,Ecoh为6.580/17.838 KJ/mole,δ为0.8225/3.2168(J/cc)0.5,Fd为274/491 J0.5cm1.5/mole,Tg为30/77 K,Ps为23/66(cc/mole)(dyn/cm)1/4,n为0.0125/0.0951,ζ为9/24 10-6 cc/mole,UR为570/1240 cm10/3/(sec1/3mole),UH为549/1428 cm10/3/(sec1/3mole),Hηsum为511/1729 gJ1/3/mole4/3,Yd,1/2为10.5/27.1 K*kg/mole.结果表明,所建立的模型可用于预测,且为聚合物结构性质关系建模引入了一个新的数学工具.

  20. 直链聚合物的结构性质关系的人工神经网络建模%Structure-property relationship modeling for linear chain polymers by artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    孙红; 唐应武; 吴国是; 张复实; 陈锡侨

    2003-01-01

    应用人工神经网络构造了2个直链聚合物的结构性质关系模型.一个是直链聚合物的基团均值法描述的结构参数与其12种性质间定量关系的模型(模型1A);一个是直链聚合物的连接性指数描述的结构参数与其12种性质间定量关系的模型(模型2A).讨论了2个模型的参数设置,而2个模型给出的聚合物的12种性质的拟合误差(拟合值与实验值间的标准偏差)分别是:V(298K)为18.9(模型1A)/40.5(模型2A)cc/mole,Ecoh为8.019/11.122KJ/mole,δ为0.74/2.17(J/cc)0.5,Fd为228/235 J0.5cm1.5/mole,Tg为27/52 K,Ps为25/37(cc/mole)(dyn/cm)1/4,n为0.0140/0.5191,ζ为7.45/5.36 10-5cc/mole,UR为727/593 cm10/3/(sec1/3mole),UH为568/674 cm10/3/(sec1/3mole),Hμsum为649/719gJ1/3/mo1e4/3,y d,1/2为10.6/10.5 K*kg/mole.结果表明,所建立的模型可用于直链聚合物性质的预测,而人工神经网络确实是聚合物结构性质关系研究中的一个有利的数学工具.

  1. Structure properties and Noether symmetries for super-long elastic slender rod

    Institute of Scientific and Technical Information of China (English)

    Fu Jing-Li; Zhao Wei-Jia; Weng Yu-Quan

    2008-01-01

    DNA is a nucleic acid molecule with double-helical structures that are special symmetrical structures attracting great attention of numerous researchers. The super-long elastic slender rod, an important structural model of DNA and other long-train molecules, is a useful tool in analysing the symmetrical properties and the stabilities of DNA. This paper studies the structural properties of a super-long elastic slender rod as a structural model of DNA by using Kirchhoff's analogue technique and presents the Noether symmetries of the model by using the method of infinitesimal transformation. Based on Kirchhoff's analogue it analyses the generalized Hamilton canonical equations. The infinitesimal transformations with respect to the radial coordinate, the generalized coordinates, and the quasi-momenta of the model are introduced. The Noether symmetries and conserved quantities of the model are obtained.

  2. Examining Asymmetrical Relationships of Organizational Learning Antecedents: A Theoretical Model

    Directory of Open Access Journals (Sweden)

    Ery Tri Djatmika

    2016-02-01

    Full Text Available Global era is characterized by highly competitive advantage market demand. Responding to the challenge of rapid environmental changes, organizational learning is becoming a strategic way and solution to empower people themselves within the organization in order to create a novelty as valuable positioning source. For research purposes, determining the influential antecedents that affect organizational learning is vital to understand research-based solutions given for practical implications. Accordingly, identification of variables examined by asymmetrical relationships is critical to establish. Possible antecedent variables come from organizational and personal point of views. It is also possible to include a moderating one. A proposed theoretical model of asymmetrical effects of organizational learning and its antecedents is discussed in this article.

  3. Data Relationships: Towards a Conceptual Model of Scientific Data Catalogs

    Science.gov (United States)

    Hourcle, J. A.

    2008-12-01

    As the amount of data, types of processing and storage formats increase, the total number of record permutations increase dramatically. The result is an overwhelming number of records that make identifying the best data object to answer a user's needs more difficult. The issue is further complicated as each archive's data catalog may be designed around different concepts - - anything from individual files to be served, series of similarly generated and processed data, or something entirely different. Catalogs may not only be flat tables, but may be structured as multiple tables with each table being a different data series, or a normalized structure of the individual data files. Merging federated search results from archives with different catalog designs can create situations where the data object of interest is difficult to find due to an overwhelming number of seemingly similar or entirely unwanted records. We present a reference model for discussing data catalogs and the complex relationships between similar data objects. We show how the model can be used to improve scientist's ability to quickly identify the best data object for their purposes and discuss technical issues required to use this model in a federated system.

  4. Using structural equation modeling to investigate relationships among ecological variables

    Science.gov (United States)

    Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.

    2000-01-01

    Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0

  5. A Commentary on the Relationship between Model Fit and Saturated Path Models in Structural Equation Modeling Applications

    Science.gov (United States)

    Raykov, Tenko; Lee, Chun-Lung; Marcoulides, George A.; Chang, Chi

    2013-01-01

    The relationship between saturated path-analysis models and their fit to data is revisited. It is demonstrated that a saturated model need not fit perfectly or even well a given data set when fit to the raw data is examined, a criterion currently frequently overlooked by researchers utilizing path analysis modeling techniques. The potential of…

  6. Structural properties of maize hybrids established by infrared spectra

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2015-01-01

    Full Text Available This paper discusses the application of the infrared (IR spectroscopy method for determination of structural properties of maize hybrid grains. The IR spectrum of maize grain has been registered in the following hybrids: ZP 341, ZP 434 and ZP 505. The existence of spectral bands varying in both number and intensity, as well as their shape, frequency and kinetics have been determined. They have been determined by valence oscillations and deformation oscillations of the following organic compounds: alkanes, alkenes, alkynes, amides, alcohols, ethers, carboxylic acids, esters and aldehydes and ketones, characteristic for biogenic compounds such as carbohydrates, proteins and lipids. In this way, possible changes in the grain structure of observed maize hybrids could be detected.

  7. Nanocomposites: synthesis, structure, properties and new application opportunities

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Cury Camargo

    2009-03-01

    Full Text Available Nanocomposites, a high performance material exhibit unusual property combinations and unique design possibilities. With an estimated annual growth rate of about 25% and fastest demand to be in engineering plastics and elastomers, their potential is so striking that they are useful in several areas ranging from packaging to biomedical applications. In this unified overview the three types of matrix nanocomposites are presented underlining the need for these materials, their processing methods and some recent results on structure, properties and potential applications, perspectives including need for such materials in future space mission and other interesting applications together with market and safety aspects. Possible uses of natural materials such as clay based minerals, chrysotile and lignocellulosic fibers are highlighted. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors of the aerospace, automotive, electronics and biotechnology industries.

  8. Studies on structural properties of clay magnesium ferrite nano composite

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Singh, Mandeep [Department of Chemistry, Punjab Agricultural University, Ludhiana-141004 (India); Jeet, Kiran, E-mail: kiranjeet@pau.edu; Kaur, Rajdeep [Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana-141004 (India)

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  9. STUDY OF GUSTATORY AND STRUCTURAL PROPERTIES OF KEFIR PRODUCT

    Directory of Open Access Journals (Sweden)

    MILENA H. MOMCHILOVA

    2012-06-01

    Full Text Available The subject of the study is the improvement of Kefir culture. For this investigation it was used Kefir culture and two series of experiments were carried out. Yeasts from probiotic strain Saccharomyces boulardii were added in the first series and the lactic acid bacteria (LAB of Streptococcus thermophilus strain, with a polysaccharide activity were added to Kefir culture in the second series. The fermentation conditions were 30°C, duration 16 hours and cooling 4 hours up to 4°C. The characteristics of Kefir were analyzed by determination of: pH, acidity, qualitative reaction for existence of diacetyl, cell number of LAB and yeasts. The structural properties of Kefir were evaluated by microscopic study.

  10. TECHNIQUES FOR THE STUDY OF THE STRUCTURAL PROPERTIES.

    Energy Technology Data Exchange (ETDEWEB)

    FERNANDEZ-GARCIA, M.; RODRIGUEZ, J.A.; MARTINEZ-ARIAS, A.; HANSON, J.C.

    2006-06-30

    The evolution of our understanding of the behavior of oxide nanostructures depends heavily on the structural information obtained from a wide range of physical methods traditionally used in solid state physics, surface science and inorganic chemistry. In this chapter, we describe several techniques that are useful for the characterization of the structural properties of oxide nanostructures: X-ray diffraction (XRD) and scattering, X-ray absorption fine structure (XAFS), Raman spectroscopy, transmission electron microscopy (TEM), scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The ultimate goal is to obtain information about the spatial arrangement of atoms in the nanostructures with precise interatomic distances and bond angles. This may not be possible for complex systems and one may get only partial information about the local geometry or morphology.

  11. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    Energy Technology Data Exchange (ETDEWEB)

    PaBlick, C.; Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.; Johnson, J.A.; Schweizer, S. (U. Halle); (Bergische); (Tennessee-C)

    2012-10-10

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl2) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu3+ is more strongly reduced to Eu2+, in particular, when doped as a chloride instead of fluoride compound. The Eu2+-to-Eu3+ doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu2+ fraction leads to a BaCl2 phase transition from hexagonal to orthorhombic structure at a lower temperature.

  12. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    Energy Technology Data Exchange (ETDEWEB)

    Passlick, C. [Centre for Innovation Competence SiLi-nano registered , Martin Luther University of Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3, 06120 Halle (Saale) (Germany); Mueller, O.; Luetzenkirchen-Hecht, D.; Frahm, R. [Bergische Universitaet Wuppertal, Gaussstrasse 20, 42097 Wuppertal (Germany); Johnson, J. A. [Department of Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, Tennessee 37388 (United States); Schweizer, S. [Centre for Innovation Competence SiLi-nano registered , Martin Luther University of Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3, 06120 Halle (Saale) (Germany); Fraunhofer Center for Silicon Photovoltaics CSP, Walter-Huelse-Str. 1, 06120 Halle (Saale) (Germany)

    2011-12-01

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl{sub 2}) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu{sup 3+} is more strongly reduced to Eu{sup 2+}, in particular, when doped as a chloride instead of fluoride compound. The Eu{sup 2+}-to-Eu{sup 3+} doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu{sup 2+} fraction leads to a BaCl{sub 2} phase transition from hexagonal to orthorhombic structure at a lower temperature.

  13. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium.

    Science.gov (United States)

    Paßlick, C; Müller, O; Lützenkirchen-Hecht, D; Frahm, R; Johnson, J A; Schweizer, S

    2011-12-01

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl(2)) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu(3+) is more strongly reduced to Eu(2+), in particular, when doped as a chloride instead of fluoride compound. The Eu(2+)-to-Eu(3+) doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu(2+) fraction leads to a BaCl(2) phase transition from hexagonal to orthorhombic structure at a lower temperature.

  14. Molecular structure-property correlations from optical nonlinearity and thermal-relaxation dynamics.

    Science.gov (United States)

    Bhattacharyya, Indrajit; Priyadarshi, Shekhar; Goswami, Debabrata

    2009-02-01

    We apply ultrafast single beam Z-scan technique to measure saturation absorption coefficients and nonlinear-refraction coefficients of primary alcohols at 1560 nm. The nonlinear effects result from vibronic transitions and cubic nonlinear-refraction. To measure the pure total third-order nonlinear susceptibility, we removed thermal effects with a frequency optimized optical-chopper. Our measurements of thermal-relaxation dynamics of alcohols, from 1560 nm thermal lens pump and 780 nm probe experiments revealed faster and slower thermal-relaxation timescales, respectively, from conduction and convection. The faster timescale accurately predicts thermal-diffusivity, which decreases linearly with alcohol chain-lengths since thermal-relaxation is slower in heavier molecules. The relation between thermal-diffusivity and alcohol chain-length confirms structure-property relationship.

  15. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    Science.gov (United States)

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  16. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    Science.gov (United States)

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  17. A Systematic Review of the Effect of Therapists' Internalized Models of Relationships on the Quality of the Therapeutic Relationship.

    Science.gov (United States)

    Steel, Catherine; Macdonald, James; Schroder, Thomas

    2017-05-15

    Previous reviews have found equivocal evidence of an association between therapists' internalized relational models and the therapeutic relationship and have neglected empirical literature based on Sullivan's notion of introject. This review expanded upon previous reviews to examine the effect of therapist internalized relational models on a broader conceptualization of the therapeutic relationship. Systematic search processes identified 22 papers measuring therapist attachment and/or introject and therapeutic relationship: 19 on therapist attachment, 5 on introject with 2 overlapping. Overall, despite heterogeneity in design and variable methodological quality, evidence suggests that therapist attachment affects therapeutic relationship quality, observed in client-rated evaluation, therapist negative countertransference, empathy, and problems in therapy. Interaction effects between client and therapist attachment style were also found. Evidence suggesting that therapist introject also affects therapeutic relationship quality, including therapists' manner and feelings toward their clients, was stronger. Evidence clearly shows that therapists' internalized relational models affect the therapeutic relationship. More research is necessary to clarify exactly how therapist and client internalized relational models interact and translate these findings into clinical practice. © 2017 Wiley Periodicals, Inc.

  18. Thermodynamic stability and structural properties of cluster crystals formed by amphiphilic dendrimers

    Science.gov (United States)

    Lenz, Dominic A.; Mladek, Bianca M.; Likos, Christos N.; Blaak, Ronald

    2016-05-01

    We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For this purpose, we examine in detail the phase behavior and structural properties of model amphiphilic dendrimers of the second generation by means of monomer-resolved computer simulations. On augmenting the density of these systems, a fluid comprised of clusters that contain several overlapping and penetrating macromolecules is spontaneously formed. Upon further compression of the system, a transition to multi-occupancy crystals takes place, the thermodynamic stability of which is demonstrated by means of free-energy calculations, and where the FCC is preferred over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the particles interact exclusively by effective pair potentials, the internal degrees of freedom of these molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster occupation number versus density. The structural properties of the dendrimers in the dense crystals, including their overall sizes and the distribution of monomers are also thoroughly analyzed.

  19. Toward a Life Span Theory of Close Relationships: The Affective Relationships Model

    Science.gov (United States)

    Takahashi, Keiko

    2005-01-01

    This article addresses how close relationships can be conceptualized so that they can be accurately understood over the life span. First, two typical clusters of theories of close relationships, the attachment theory and the social network theory, are compared and discussed with regard to their fundamental but controversial assumptions regarding…

  20. PREFACE: Symmetry and Structural Properties of Condensed Matter

    Science.gov (United States)

    Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara

    2008-03-01

    This volume comprises the proceedings of the Ninth Summer School on Theoretical Physics under the leading title `Symmetry and Structural Properties of Condensed Matter' (SSPCM 2007). The school, organised by Rzeszów University of Technology, Poland, together with AGH University of Science and Technology, Cracow, Poland, in 5-12 September 2007 in Myczkowce. The meeting aimed to continue the series of biannual SSPCM schools (since 1990), and focused on the promotion of some advanced mathematical methods within the physics of condensed matter, with an emphasis on quantum information aspects. The main topics of the SSPCM07 school were the following: Quantum information and computing Finite dimensional Hilbert spaces Generating functions and exactly soluble models The Proceedings are divided into three parts accordingly. These topics can be seen as a natural continuation of the previous SSPCM05 school, aimed at studying interrelations between solid state physics and quantum informatics, as well as an extension of earlier SSPCM meetings, devoted to mathematical tools of condensed matter theory. The school gathered together more than 60 participants from 11 countries and 7 scientific centres in Poland. Some of them were there for the first time, and some had attended nearly all previous meetings. We had advanced researchers as well as their young collaborators and students. Acknowledgements The Organizing Committee wishes to express our gratitude to all participants for several their activities at the school and for creating so friendly and inspiring an atmosphere that one can talk about the term: `SSPCM society'. Special thanks are due to all lecturers, for preparing and presenting their talks, and for several valuable discussions. We also give thanks to all those who prepared manuscripts, giving us thus an opportunity to share their ideas, to all referees who improved significantly the quality of this volume, to all members of our International Advisory Committee, and

  1. Structural properties and thermodynamics of water clusters: a Wang-Landau study.

    Science.gov (United States)

    Yin, Junqi; Landau, D P

    2011-02-21

    The temperature dependence of structural properties and thermodynamic behavior of water clusters has been studied using Wang-Landau sampling. Four potential models, simple point charge/extended (SPC/E), transferable intermolecular potential 3 point (TIP3P), transferable intermolecular potential 4 point (TIP4P), and Gaussian charge polarizable (GCP), are compared for ground states and properties at finite temperatures. Although the hydrogen bond energy and the distance of the nearest-neighbor oxygen pair are significantly different for TIP4P and GCP models, they approach to similar ground state structures and melting transition temperatures in cluster sizes we considered. Comparing with TIP3P, SPC/E model provides properties closer to that of TIP4P and GCP.

  2. Structural properties and thermodynamics of water clusters: A Wang-Landau study

    Science.gov (United States)

    Yin, Junqi; Landau, D. P.

    2011-02-01

    The temperature dependence of structural properties and thermodynamic behavior of water clusters has been studied using Wang-Landau sampling. Four potential models, simple point charge/extended (SPC/E), transferable intermolecular potential 3 point (TIP3P), transferable intermolecular potential 4 point (TIP4P), and Gaussian charge polarizable (GCP), are compared for ground states and properties at finite temperatures. Although the hydrogen bond energy and the distance of the nearest-neighbor oxygen pair are significantly different for TIP4P and GCP models, they approach to similar ground state structures and melting transition temperatures in cluster sizes we considered. Comparing with TIP3P, SPC/E model provides properties closer to that of TIP4P and GCP.

  3. A database approach to information retrieval: The remarkable relationship between language models and region models

    CERN Document Server

    Hiemstra, Djoerd

    2010-01-01

    In this report, we unify two quite distinct approaches to information retrieval: region models and language models. Region models were developed for structured document retrieval. They provide a well-defined behaviour as well as a simple query language that allows application developers to rapidly develop applications. Language models are particularly useful to reason about the ranking of search results, and for developing new ranking approaches. The unified model allows application developers to define complex language modeling approaches as logical queries on a textual database. We show a remarkable one-to-one relationship between region queries and the language models they represent for a wide variety of applications: simple ad-hoc search, cross-language retrieval, video retrieval, and web search.

  4. Modeling the impact of spatial relationships on horizontal curve safety.

    Science.gov (United States)

    Findley, Daniel J; Hummer, Joseph E; Rasdorf, William; Zegeer, Charles V; Fowler, Tyler J

    2012-03-01

    The curved segments of roadways are more hazardous because of the additional centripetalforces exerted on a vehicle, driver expectations, and other factors. The safety of a curve is dependent on various factors, most notably by geometric factors, but the location of a curve in relation to other curves is also thought to influence the safety of those curves because of a driver's expectation to encounter additional curves. The link between an individual curve's geometric characteristics and its safety performance has been established, but spatial considerations are typically not included in a safety analysis. The spatial considerations included in this research consisted of four components: distance to adjacent curves, direction of turn of the adjacent curves, and radius and length of the adjacent curves. The primary objective of this paper is to quantify the spatial relationship between adjacent horizontal curves and horizontal curve safety using a crash modification factor. Doing so enables a safety professional to more accurately estimate safety to allocate funding to reduce or prevent future collisions and more efficiently design new roadway sections to minimize crash risk where there will be a series of curves along a route. The most important finding from this research is the statistical significance of spatial considerations for the prediction of horizontal curve safety. The distances to adjacent curves were found to be a reliable predictor of observed collisions. This research recommends a model which utilizes spatial considerations for horizontal curve safety prediction in addition to current Highway Safety Manual prediction capabilities using individual curve geometric features.

  5. Synthesised model of market orientation-business performance relationship

    Directory of Open Access Journals (Sweden)

    G. Nwokah

    2006-12-01

    Full Text Available Purpose: The purpose of this paper is to assess the impact of market orientation on the performance of the organisation. While much empirical works have centered on market orientation, the generalisability of its impact on performance of the Food and Beverages organisations in the Nigeria context has been under-researched. Design/Methodology/Approach: The study adopted a triangulation methodology (quantitative and qualitative approach. Data was collected from key informants using a research instrument. Returned instruments were analyzed using nonparametric correlation through the use of the Statistical Package for Social Sciences (SPSS version 10. Findings: The study validated the earlier instruments but did not find any strong association between market orientation and business performance in the Nigerian context using the food and beverages organisations for the study. The reasons underlying the weak relationship between market orientation and business performance of the Food and Beverages organisations is government policies, new product development, diversification, innovation and devaluation of the Nigerian currency. One important finding of this study is that market orientation leads to business performance through some moderating variables. Implications: The study recommends that Nigerian Government should ensure a stable economy and make economic policies that will enhance existing business development in the country. Also, organisations should have performance measurement systems to detect the impact of investment on market orientation with the aim of knowing how the organisation works. Originality/Value: This study significantly refines the body of knowledge concerning the impact of market orientation on the performance of the organisation, and thereby offers a model of market orientation and business performance in the Nigerian context for marketing scholars and practitioners. This model will, no doubt, contribute to the body of

  6. Customer relationship management maturity model (CRM3: A model for stepwise implementation

    Directory of Open Access Journals (Sweden)

    Babak Sohrabi

    2010-01-01

    Full Text Available Being multifaceted process, implementing customer relationship management (CRM project has a high risk and uncertainty that must be reduced using planning to get the desirable benefits. As a matter of fact, existing and optimal position must be determined to reduce the gap between them via suitable investment. To identify this gap as well as the way to higher and optimal condition, maturity model can be used. Relying on extended literature, the present paper reviews the existing models and then develops a model for measuring CRM maturity based on CRM critical success factors, CMMI levels and RADAR logic.

  7. Accessing Data Bases Through Interface Views Using a Unified Graph-Oriented Entity-Relationship Model

    DEFF Research Database (Denmark)

    Kraft, Peter; Sørensen, Jens Otto

    Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely. By the ......Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely...

  8. A Model for the Supervisor-Doctoral Student Relationship

    Science.gov (United States)

    Mainhard, Tim; van der Rijst, Roeland; van Tartwijk, Jan; Wubbels, Theo

    2009-01-01

    The supervisor-doctoral student interpersonal relationship is important for the success of a PhD-project. Therefore, information about doctoral students' perceptions of their relationship with their supervisor can be useful for providing detailed feedback to supervisors aiming at improving the quality of their supervision. This paper describes the…

  9. Quantitative genetics model as the unifying model for defining genomic relationship and inbreeding coefficient.

    Science.gov (United States)

    Wang, Chunkao; Da, Yang

    2014-01-01

    The traditional quantitative genetics model was used as the unifying approach to derive six existing and new definitions of genomic additive and dominance relationships. The theoretical differences of these definitions were in the assumptions of equal SNP effects (equivalent to across-SNP standardization), equal SNP variances (equivalent to within-SNP standardization), and expected or sample SNP additive and dominance variances. The six definitions of genomic additive and dominance relationships on average were consistent with the pedigree relationships, but had individual genomic specificity and large variations not observed from pedigree relationships. These large variations may allow finding least related genomes even within the same family for minimizing genomic relatedness among breeding individuals. The six definitions of genomic relationships generally had similar numerical results in genomic best linear unbiased predictions of additive effects (GBLUP) and similar genomic REML (GREML) estimates of additive heritability. Predicted SNP dominance effects and GREML estimates of dominance heritability were similar within definitions assuming equal SNP effects or within definitions assuming equal SNP variance, but had differences between these two groups of definitions. We proposed a new measure of genomic inbreeding coefficient based on parental genomic co-ancestry coefficient and genomic additive correlation as a genomic approach for predicting offspring inbreeding level. This genomic inbreeding coefficient had the highest correlation with pedigree inbreeding coefficient among the four methods evaluated for calculating genomic inbreeding coefficient in a Holstein sample and a swine sample.

  10. Structure-Property Correlations in Microwave Joining of Inconel 718

    Science.gov (United States)

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep; Das, Shantanu

    2015-09-01

    The butt joining of Inconel 718 plates at 981°C solution treated and aged (981STA) condition was carried out using the microwave hybrid heating technique with Inconel 718 powder as a filler material. The developed joints were free from any microfissures (cracks) and were metallurgically bonded through complete melting of the powder particles. The as-welded joints were subjected to postweld heat treatments, including direct-aged, 981STA and 1080STA. The microstructural features of the welded joints were investigated using a field emission-scanning electron microscope equipped with x-ray elemental analysis. Microhardness and room-temperature tensile properties of the welded joints were evaluated. The postweld heat-treated specimens exhibited higher microhardness and tensile strength than the as-welded specimens due to the formation of strengthening precipitates in the microstructure after postweld heat treatments. The microhardness of the fusion zone of the joint in 1080STA condition was higher than all welded conditions due to the complete dissolution of Laves phase after 1080STA treatment. However, the tensile strength of the welded specimen in 981STA condition was higher than all welded conditions. The tensile strength in 1080STA condition was lower than that in 981STA condition because of the grain coarsening that took place after 1080STA condition. The fractography of the fractured surfaces was carried out to determine the structure-property-fracture correlation.

  11. Dielectric and structural properties of ferroelectric betaine arsenate films

    Science.gov (United States)

    Balashova, E. V.; Krichevtsov, B. B.; Zaitseva, N. V.; Yurko, E. I.; Svinarev, F. B.

    2014-12-01

    Ferroelectric films of betaine arsenate and partially deuterated betaine arsenate have been grown by evaporation on LiNbO3, α-Al2O3, and NdGaO3 substrates with a preliminarily deposited structure of interdigitated electrodes, as well as on the Al/glass substrate. This paper presents the results of the examination of the block structure of the films in a polarizing microscope, the X-ray diffraction analysis of their crystal structure, and the investigation of the dielectric properties in a measuring field oriented both parallel and perpendicular to the plane of the film. The transition of the films to the ferroelectric state at T = T c is accompanied by anomalies of the capacitance of the structure, an increase in the dielectric loss, and the appearance of dielectric hysteresis loops. The growth of the films from a solution of betaine arsenate in a heavy water leads to an increase in the ferroelectric transition temperature from T c = 119 K in the films without deuterium to T c = 149 K, which corresponds to the degree of deuteration of approximately 60-70%. The dielectric and structural properties of the films are compared with those of the betaine arsenate single crystals and the previously studied films of betaine phosphite and glycine phosphite.

  12. Experimental Studies of Band-Structure Properties in Bloch Transistors

    Science.gov (United States)

    Flees, Daniel J.

    1998-03-01

    One of the most striking features in small SIS tunnel junctions is the energy-band structure produced by Josephson coupling and charging effects. These energy bands are analogous to Bloch bands in crystalline solids. The superconducting single-electron (Bloch) transistor is the simplest system in which the energy bands can be readily studied. It consists of a superconducting island coupled to a source and drain through two small tunnel junctions. The elastic tunneling of Cooper-Pairs onto the island mixes the discrete charge states of the island. The shapes of the resulting energy bands can be modified by changing the electrostatic energies of these charge states with a voltage applied to a capacitively coupled gate. The maximum zero-voltage current (supercurrent) of each band depends upon the shape of the band and so the gate modulates the supercurrent. Each band has a different characteristic supercurrent modulation, with excited bands generally having lower currents. Thus! we can use the reduction in super current associated with a transition to an excited band to begin probing aip.org/journal_cgi/ getabs?KEY=PRLTAO&cvips=PRLTAO000078000025004817000001&gifs=No>band- structure properties such as the band-gap.(Daniel J. Flees, Siyuan Han, and J.E. Lukens, Phys. Rev. Lett. 78), 4817 (1997).

  13. Structural properties of planar graphs of urban street patterns

    Science.gov (United States)

    Cardillo, Alessio; Scellato, Salvatore; Latora, Vito; Porta, Sergio

    2006-06-01

    Recent theoretical and empirical studies have focused on the structural properties of complex relational networks in social, biological, and technological systems. Here we study the basic properties of twenty 1-square-mile samples of street patterns of different world cities. Samples are turned into spatial valued graphs. In such graphs, the nodes are embedded in the two-dimensional plane and represent street intersections, the edges represent streets, and the edge values are equal to the street lengths. We evaluate the local properties of the graphs by measuring the meshedness coefficient and counting short cycles (of three, four, and five edges), and the global properties by measuring global efficiency and cost. We also consider, as extreme cases, minimal spanning trees (MST) and greedy triangulations (GT) induced by the same spatial distribution of nodes. The measures found in the real and the artificial networks are then compared. Surprisingly, cities of the same class, e.g., grid-iron or medieval, exhibit roughly similar properties. The correlation between a priori known classes and statistical properties is illustrated in a plot of relative efficiency vs cost.

  14. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica Wing and Tail Feathers.

    Directory of Open Access Journals (Sweden)

    Péter L Pap

    Full Text Available Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1 and the sexually dimorphic outermost (Ta6 and monomorphic second outermost (Ta5 tail feathers of barn swallows (Hirundo rustica from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the

  15. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  16. Analyzing the Validity of Relationship Banking through Agent-based Modeling

    Science.gov (United States)

    Nishikido, Yukihito; Takahashi, Hiroshi

    This article analyzes the validity of relationship banking through agent-based modeling. In the analysis, we especially focus on the relationship between economic conditions and both lenders' and borrowers' behaviors. As a result of intensive experiments, we made the following interesting findings: (1) Relationship banking contributes to reducing bad loan; (2) relationship banking is more effective in enhancing the market growth compared to transaction banking, when borrowers' sales scale is large; (3) keener competition among lenders may bring inefficiency to the market.

  17. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Robinson, H; Cai, T; Tagle, D; Li, J

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  18. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations.

    Science.gov (United States)

    Mehere, Prajwalini; Han, Qian; Lemkul, Justin A; Vavricka, Christopher J; Robinson, Howard; Bevan, David R; Li, Jianyong

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using α-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 Å resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  19. Biochemical and structural properties of mouse kynurenine aminotransferase III.

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A; Li, Jianyong

    2009-02-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60 degrees C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  20. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III▿

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A.; Li, Jianyong

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60°C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain. PMID:19029248

  1. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  2. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  3. Treating personality-relationship transactions with respect: narrow facets, advanced models, and extended time frames.

    Science.gov (United States)

    Mund, Marcus; Neyer, Franz J

    2014-08-01

    Contrary to premises of dynamic transactionism, most studies investigating personality-relationship transaction only found personality effects on relationships but failed to find effects of relationship experiences on personality development. The current study reconsiders this issue in 3 ways. First, alongside the broad Big Five characteristics (Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness), specific personality facets were considered to make comparisons with relationships more symmetric. Second, a recent extension of latent change modeling was applied allowing for a theoretically more appropriate model that compensates for the shortcomings of traditionally used cross-lagged panel or growth curve models. Third, personality-relationship transaction was studied from young adulthood to midlife using a 15-year longitudinal study with 654 German adults. Results showed patterns of personality-relationship transaction with the romantic partner, friends, kin, and other interaction partners. Specifically, the development of Neuroticism, Agreeableness, and Conscientiousness and their facets was closely interacting with partner and friend relationships, underlining the importance of these relationships for personality maturation during the adult years. We conclude that relationship effects have often been underestimated in previous studies. They are not bound to specific developmental periods, such as emerging adulthood, but their detection depends on the modeling approach and the analysis level (broad dimensions vs. facets). Relationship effects are most likely to occur in relationships that reflect self-selected life styles and circumstances.

  4. Towards modelling of human relationships:nonlinear dynamical systems in relationships

    OpenAIRE

    Safarov, I. (Ildar)

    2009-01-01

    Abstract This study fills an urgent need for qualitative analyses of relationships resulting in human change. It is a result of sixteen years of independent study by the author. It combines postgraduate study of nonlinear methodology, applied research of children’s pretend play, experience in educational psychology and Gestalt-counselling, as well as the practical training of graduate students at the Karelian State Pedagogical University (Petrozavodsk, Russia), and the Kajaani Department ...

  5. Geometrical Modeling of Woven Fabrics Weavability-Limit New Relationships

    Directory of Open Access Journals (Sweden)

    Dalal Mohamed

    2017-03-01

    Full Text Available The weavability limit and tightness for 2D and 3D woven fabrics is an important factor and depends on many geometric parameters. Based on a comprehensive review of the literature on textile fabric construction and property, and related research on fabric geometry, a study of the weavability limit and tightness relationships of 2D and 3D woven fabrics was undertaken. Experiments were conducted on a representative number of polyester and cotton woven fabrics which have been woven in our workshop, using three machines endowed with different insertion systems (rapier, projectiles and air jet. Afterwards, these woven fabrics have been analyzed in the laboratory to determine their physical and mechanical characteristics using air permeability-meter and KES-F KAWABATA Evaluation System for Fabrics. In this study, the current Booten’s weavability limit and tightness relationships based on Ashenhurst’s, Peirce’s, Love’s, Russell’s, Galuszynskl’s theory and maximum-weavability is reviewed and modified as new relationships to expand their use to general cases (2D and 3D woven fabrics, all fiber materiel, all yarns etc…. The theoretical relationships were examined and found to agree with experimental results. It was concluded that the weavability limit and tightness relationships are useful tools for weavers in predicting whether a proposed fabric construction was weavable and also in predicting and explaining their physical and mechanical properties.

  6. Micromechanical and structural properties of nickel coatings electrodeposited on two different substrates

    Directory of Open Access Journals (Sweden)

    JELENA LAMOVEC

    2009-07-01

    Full Text Available Fine-structured nickel coatings were electrodeposited from a sulfamate-based electrolyte onto different substrates: polycrystalline cold-rolled copper and single crystal silicon with (111 orientation. The influence of the substrate layers and chosen plating conditions on the mechanical and structural properties of these composite structures were investigated by Vickers microhardness testing for different loads. Above a certain critical penetration depth, the measured hardness value was not the hardness of the electrodeposited film, but the so-called “composite hardness”, because the substrate also participated in the plastic deformations during the indentation process. Two composite hardness models (Chicot–Lesage and Korsunsky, constructed on different principles, were chosen and applied to the experimental data in order to distinguish film and substrate hardness. The microhardness values of the electrodeposited nickel layers were mainly influenced by the current density. Increasing the current density led to a decrease in grain size, which resulted in higher values of the microhardness.

  7. Compressibility and Structural Properties of Jadeite, NaAlSi2O6 at High Pressure

    Institute of Scientific and Technical Information of China (English)

    Xiuling Wu; Xiaoyu Fan; Fei Qin; Dawei Meng; Xiaoling Zhang; Long Chen; Weiping Liu; Jianping Zheng

    2013-01-01

    The structural properties of jadeite at high pressures (0.000 1-30 GPa) are investigated using plane-wave pseudopotential density functional theory method.As a function of pressure,the monoclinic cell parameters were calculated and the compressibility coefficients are 0.0026,0.0023 and 0.0026 GPa-1,respectively.The bond length,bond angle and distortion variation were studied in order to obtain the information of polyhedral compression.The pressure-volume equation of state was considered in order to obtain the bulk modulus K0.Comparison between the calculated K0 values and the experimental data suggested that the model provides reasonable insights into crystallographic and physical properties of jadeite.

  8. Neutron beam applications; technical development for thermodynamic and structural properties of micelles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon Chul; Suh, Song Hyuck; Min, Yoong Ki; Ahn, Eun Ju [Andong National University, Andong (Korea)

    2002-03-01

    Two non-ionic surfactants, which are the non-ionic surfactants with the polydisperse properties and non-ionic surfactant with the ellipsoidal structure, and which were measured by the small-angle neutron scattering installed in the Korea Atomic Energy Research Institute have been analyzed by using the IGOR Program code. Through the analysis of the SANS data, the strengths and weaknesses of the IGOR program code have been tested in details. To reinforce the IGOR program, the computer programs which are based on the Percus-Yevick, hypernetted-chain, Rogers-Young, and density functional approximation have been developed for the model micelles, and their results have been compared with the computer simulations. It is expected that this study would be applied to study the thermodynamic and structural properties of polymers with the complex structure. 22 refs., 20 figs., 7 tabs. (Author)

  9. Structural properties of RF-magnetron sputtered Cu{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azanza Ricardo, C.L.; D' Incau, M.; Leoni, M. [Department of Materials Engineering and Industrial Technologies, University of Trento, 38123 via Mesiano 77, Trento (Italy); Malerba, C. [ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Department of Materials Engineering and Industrial Technologies, University of Trento, 38123 via Mesiano 77, Trento (Italy); Mittiga, A. [ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Scardi, P., E-mail: Paolo.Scardi@unitn.it [Department of Materials Engineering and Industrial Technologies, University of Trento, 38123 via Mesiano 77, Trento (Italy)

    2011-10-31

    Cuprous oxide thin films were produced on soda-lime glass substrates using reactive RF-magnetron sputtering. The influence of deposition parameters and temperature on composition and structural properties of the single layers was extensively studied using X-ray diffraction. The control over microstructure and residual stresses is possible by changing reactive gas pressure and deposition temperature. Fiber textured Cu2O films showing a [100] preferred orientation and a fraction of untextured domains can be obtained: suitable modeling taking this microstructure into account shows the presence of a strong compressive stress decreasing with the temperature. Highly reproducible films can be obtained, whose microstructure is preserved when sputtering on tungsten and zinc oxide substrates.

  10. Melting curves and structural properties of tantalum from the modified-Z method

    Science.gov (United States)

    Liu, C. M.; Xu, C.; Cheng, Y.; Chen, X. R.; Cai, L. C.

    2015-12-01

    The melting curves and structural properties of tantalum (Ta) are investigated by molecular dynamics simulations combining with potential model developed by Ravelo et al. [Phys. Rev. B 88, 134101 (2013)]. Before calculations, five potentials are systematically compared with their abilities of producing reasonable compressional and equilibrium mechanical properties of Ta. We have improved the modified-Z method introduced by Wang et al. [J. Appl. Phys. 114, 163514 (2013)] by increasing the sizes in Lx and Ly of the rectangular parallelepiped box (Lx = Ly ≪ Lz). The influences of size and aspect ratio of the simulation box to melting curves are also fully tested. The structural differences between solid and liquid are detected by number density and local-order parameters Q6. Moreover, the atoms' diffusion with simulation time, defects, and vacancies formations in the sample are all studied by comparing situations in solid, solid-liquid coexistence, and liquid state.

  11. Relationship between Business Strategy and Business Model Studied in a Sample of Service Companies

    Directory of Open Access Journals (Sweden)

    Slávik Štefan

    2016-12-01

    Full Text Available A business model and a business strategy are the basic conditions of a company existence. A business model describes and explains how a company works and makes money. A business strategy describes and explains how, where and for what purpose and goal a business model will be used. The research seeks to ascertain whether there is any measurable relationship between a strategy and a model. An identification of this relationship will deepen knowledge of strategic management of the company and it is a reason for further research on the nature of relationship between a model and a strategy.

  12. Team Risk Management: A New Model for Customer-Supplier Relationships

    Science.gov (United States)

    1994-07-01

    Management : A New Model for Customer - Supplier Relationships Ronald P. Higuera "Audrey J. Dorofee Julie A. Walker Ray C. Williams July 1994 ""•// 94...N/A N/A N/A 11. TITLE (Include Secuity Claaaificatioa) Team Risk Management : A New Model for Customer -Supplier Relationships 12. PERSONAL AUTHOR(S...by block number) FIELD GROUP SUB. GR. Customer - Supplier Relationships Risk Team Risk Management 19. ABSTRACT (cominus on = if necesaryd id’y by block

  13. USING STRUCTURAL EQUATION MODELING TO INVESTIGATE RELATIONSHIPS AMONG ECOLOGICAL VARIABLES

    Science.gov (United States)

    This paper gives an introductory account of Structural Equation Modeling (SEM) and demonstrates its application using LISRELmodel utilizing environmental data. Using nine EMAP data variables, we analyzed their correlation matrix with an SEM model. The model characterized...

  14. The Soul Mates Model: A Seven-Stage Model for Couple's Long-Term Relationship Development and Flourishing

    Science.gov (United States)

    De La Lama, Luisa Batthyany; De La Lama, Luis; Wittgenstein, Ariana

    2012-01-01

    This article presents the integrative soul mates relationship development model, which provides the helping professionals with a conceptual map for couples' relationship development from dating, to intimacy, to soul mating, and long-term flourishing. This model is informed by a holistic, a developmental, and a positive psychology conceptualization…

  15. The Soul Mates Model: A Seven-Stage Model for Couple's Long-Term Relationship Development and Flourishing

    Science.gov (United States)

    De La Lama, Luisa Batthyany; De La Lama, Luis; Wittgenstein, Ariana

    2012-01-01

    This article presents the integrative soul mates relationship development model, which provides the helping professionals with a conceptual map for couples' relationship development from dating, to intimacy, to soul mating, and long-term flourishing. This model is informed by a holistic, a developmental, and a positive psychology conceptualization…

  16. Parameterizing amylose chain-length distributions for biosynthesis-structure-property relations.

    Science.gov (United States)

    Nada, Sharif S; Zou, Wei; Li, Changfeng; Gilbert, Robert G

    2017-09-25

    Amylose, one of the components of starch, is a glucose polymer consisting largely of long, linear chains with a few long-chain branch points. The chain-length (molecular weight) distribution (CLD) of the component chains of amylose can provide information on amylose biosynthesis-structure-property relations, as has been done previously by fitting amylopectin CLDs to a model with physically meaningful parameters. Due to the presence of long chains, the CLD of amylose can currently best be obtained by size-exclusion chromatography, a technique that suffers from band-broadening effects which alter the observed distribution. The features of the multiple regions present in amylose chain-length distributions are also difficult to resolve, an issue that combines with band broadening to compound the difficulty of analysis and subsequent parameterization of the structural characteristics of amylose. A new method is presented to fit these distributions with biologically meaningful parameters in a way that accounts for band broadening. This is achieved by assuming that band broadening takes the form of a simple Gaussian over a relatively small region and that chain stoppage is a random process independent of the length of the substrate chain over the same region; these assumptions are relatively weak and expected to be frequently applicable. The method provides inbuilt consistency tests for its applicability to a given data set and, in cases where it is applicable, allows for the first nonempirical parameterization of amylose biosynthesis-structure-property relations from CLDs by using parameters directly linked to the activities of the enzymes responsible for chain growth and chain stoppage. Graphical abstract Model calculation illustrating the method described and showing the division between the three characteristic regions of a typical amylose chain-length distribution.

  17. Relationship modeling of shareholders and management in the ecologically corporate governance

    Directory of Open Access Journals (Sweden)

    T.V. Pimonenko

    2012-03-01

    Full Text Available Determine whether to use various models to determine the features of formation and evolution of the relationship between certain categories of contractors in business corporations. The model that reflects the features of the relationship between owners and managers of companies in order is proposed and helps to motivate the implementation of corporate environmental management and audit.

  18. Design, synthesis, and characterization of new phosphazene related materials, and study the structure property correlations

    Science.gov (United States)

    Tian, Zhicheng

    The work described in this thesis is divided into three major parts, and all of which involve the exploration of the chemistry of polyphosphazenes. The first part (chapters 2 and 3) of my research is synthesis and study polyphoshazenes for biomedical applications, including polymer drug conjugates and injectable hydrogels for drug or biomolecule delivery. The second part (chapters 4 and 5) focuses on the synthesis of several organic/inorganic hybrid polymeric structures, such as diblock, star, brush and palm tree copolymers using living cationic polymerization and atom transfer radical polymerization techniques. The last part (chapters 6 and 7) is about exploratory synthesis of new polymeric structures with fluorinated side groups or cycloaliphatic side groups, and the study of new structure property relationships. Chapter 1 is an outline of the fundamental concepts for polymeric materials, as such the history, important definitions, and some introductory material for to polymer chemistry and physics. The chemistry and applications of phopshazenes is also briefly described. Chapter 2 is a description of the design, synthesis, and characterization of development of a new class of polymer drug conjugate materials based on biodegradable polyphosphazenes and antibiotics. Poly(dichlorophosphazene), synthesized by a thermal ring opening polymerization, was reacted with up to 25 mol% of ciprofloxacin or norfloxacin and three different amino acid esters (glycine, alanine, or phenylalanine) as cosubstituents via macromolecular substitutions. Nano/microfibers of several selected polymers were prepared by an electrospinning technique. Chapter 3 is concerned with the development of a class of injectable and biodegradable hydrogels based on water-soluble poly(organophosphazenes) containing oligo(ethylene glycol) methyl ethers and glycine ethyl esters. The hydrogels can be obtained by mixing alpha-cyclodextrin aqueous solution and poly(organophosphazenes) aqueous solution in

  19. Structural properties of superconducting Bi-2223/Ag tapes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalck Andersen, L.

    2001-05-01

    The structural properties of silver clad high-T{sub c} superconducting ceramic tapes of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) have been investigated by means of synchrotron X-ray diffraction (including the 3DXRD microscope setup), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDS). By synchrotron X-ray diffraction in situ studies of the phase development during the transformation of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub x} (Bi-2212) into Bi-2223, the stoichiometry changes and the texture have been performed during annealing in 8% O{sub 2} and in air. Furthermore, an annealing with two high temperature cycles has been performed to study the equilibrium phenomena. During heating (Ca,Sr){sub 2}PbO{sub 4} decomposes at temperatures between 700 deg. C and 840 deg.C. Simultaneously, the Bi-2212 lattice contracts, indicating an incorporation of Pb. Moreover, the grain mis-alignment decreases significantly. In air we have observed that Bi-2212 partly dissociates into (Ca,Sr){sub 2}CuO{sub 3} and a liquid at temperatures above 812 deg. C. At the annealing temperature Bi-2212 and (Ca,Sr){sub 2}CuO{sub 3} react with the liquid to form Bi-2223. The transformation mechanism is discussed. During cooling below {approx}750 deg.C (Ca,Sr){sub 2}CuO{sub 3} and the liquid mainly transform into Bi-2201. Below {approx}780 deg. C Bi-2223 decomposes to 3221. In addition, a two-step cooling experiment and a decomposition study have been performed in 8% O{sub 2}. By TEM the grain and colony size in the c-axis direction, the angles of c-axis tilt grain boundaries and the intergrowth content are investigated. A fully processed tape has on average 50% thicker grains than a tape after the 1st annealing. The angles of c-axis tilt grain boundaries are on average 14 deg. and 26 deg. for the fully processed tape and the tape after the 1st annealing, respectively. The intergrowth content (15%) and

  20. Modeling Best Practice through Online Learning: Building Relationships

    Science.gov (United States)

    Cerniglia, Ellen G.

    2011-01-01

    Students may fear that they will feel unsupported and isolated when engaged in online learning. They don't know how they will be able to build relationships with their teacher and classmates solely based on written words, without facial expressions, tone of voice, and other nonverbal communication cues. Traditionally, online learning required…

  1. Analyzing Cultural Models in Adolescent Accounts of Romantic Relationships

    Science.gov (United States)

    Milbrath, Constance; Ohlson, Brightstar; Eyre, Stephen L.

    2009-01-01

    Research on academic achievement has led the way in demonstrating how culturally constructed meanings shape adolescent scholastic behavior. The aim of this research is to move this standpoint of analysis more centrally into the area of adolescent dating and sexuality by focusing on the cultural components of adolescent romantic relationships. This…

  2. The Force-Frequency Relationship: Insights from Mathematical Modeling

    Science.gov (United States)

    Puglisi, Jose L.; Negroni, Jorge A.; Chen-Izu, Ye; Bers, Donald M.

    2013-01-01

    The force-frequency relationship has intrigued researchers since its discovery by Bowditch in 1871. Many attempts have been made to construct mathematical descriptions of this phenomenon, beginning with the simple formulation of Koch-Wesser and Blinks in 1963 to the most sophisticated ones of today. This property of cardiac muscle is amplified by…

  3. Adolescents' working models and styles for relationships with parents, friends, and romantic partners.

    Science.gov (United States)

    Furman, Wyndol; Simon, Valerie A; Shaffer, Laura; Bouchey, Heather A

    2002-01-01

    This study examined the links among adolescents' representations of their relationships with parents, friends, and romantic partners. Sixty-eight adolescents were interviewed three times to assess their working models for each of these types of relationships. Working models of friendships were related to working models of relationships with parents and romantic partners. Working models of relationships with parents and romantic partners were inconsistently related. A similar pattern of results was obtained for self-report measures of relational styles for the three types of relationships. Perceived experiences were also related. Specifically, support in relationships with parents tended to be related to support in romantic relationships and friendships, but the latter two were unrelated. On the other hand, self and other controlling behaviors in friendships were related to corresponding behaviors in romantic relationships. Negative interactions in the three types of relationships also tended to be related. Taken together, the findings indicate that the representations of the three types of relationships are distinct, yet related. Discussion focuses on the nature of the links among the three.

  4. Theory of the electronic and structural properties of solid state oxides

    Energy Technology Data Exchange (ETDEWEB)

    Chelikowsky, J.R.

    1990-01-01

    Studies on electronic and structural properties of solid state oxides continued. This quarter, studies have concentrated on silica. Progress is discussed in the following sections: interatomic potentials and the structural properties of silica; chemical reactivity and covalent/metallic bonding on Si clusters; and surface and thermodynamic interatomic forces fields for silicon. 64 refs., 20 figs., 5 tabs. (CBS)

  5. Relationship Model of Personality, Communication, Student Engagement, and Learning Satisfaction

    Directory of Open Access Journals (Sweden)

    Dorothea Ariani

    2015-12-01

    Full Text Available This study aims to examine the engagement as a mediating variable of the relationship between personality and communication with satisfaction. This study was conducted at business school in Indonesia with 307 students who are still active as a respondent. Survey research was conducted over four months by questionnaire that has been well-established that was taken and modified from previous studies. The results of this study indicate that student engagement mediates the relationship between personality and communication as independent variables and satisfaction as the dependent variable. Extroversion personality and communication significantly positive effect on student engagement in all three dimensions (vigor, dedication, and absorption. In addition, this study also showed that engagement and satisfaction are two different variables, but correlated, and there was no difference in terms of gender differences involvement.

  6. Learning Transcriptional Regulatory Relationships Using Sparse Graphical Models

    OpenAIRE

    Xiang Zhang; Wei Cheng; Jennifer Listgarten; Carl Kadie; Shunping Huang; Wei Wang; David Heckerman

    2012-01-01

    Understanding the organization and function of transcriptional regulatory networks by analyzing high-throughput gene expression profiles is a key problem in computational biology. The challenges in this work are 1) the lack of complete knowledge of the regulatory relationship between the regulators and the associated genes, 2) the potential for spurious associations due to confounding factors, and 3) the number of parameters to learn is usually larger than the number of available microarray e...

  7. Modelling the relationship between body fat and the BMI.

    Science.gov (United States)

    Mills, T C; Gallagher, D; Wang, J; Heshka, S

    2007-01-01

    OBJECTIVE: Given the increasing concerns about the levels of obesity being reached throughout the world, this paper analyses the relationship between the most common index of obesity, the BMI, and levels of body fat. RESEARCH METHODS AND PROCEDURES: The statistical relationship, in terms of functional form, between body fat and BMI is analysed using a large data set which can be categorized by race, sex and age. RESULTS: Irrespective of race, body fat and BMI are linearly related for males, with age entering logarithmically and with a positive effect on body fat. Caucasian males have higher body fat irrespective of age, but African American males' body fat increases with age faster than that of Asians and Hispanics. Age is not a significant predictor of body fat for females, where the relationship between body fat and BMI is nonlinear except for Asians. Caucasian females have higher predicted body fat than other races, except at low BMIs, where Asian females are predicted to have the highest body fat. DISCUSSION: Using BMIs to make predictions about body fat should be done with caution, as such predictions will depend upon race, sex and age and can be relatively imprecise. The results are of practical importance for informing the current debate on whether standard BMI cut-off values for overweight and obesity should apply to all sex and racial groups given that these BMI values are shown to correspond to different levels of adiposity in different groups.

  8. DESIGNING A MODEL OF CUSTOMER RELATIONSHIP MANAGEMENT FOR A MOBILE PHONE COMPANY

    Directory of Open Access Journals (Sweden)

    BRUTU MĂDĂLINA

    2015-07-01

    Full Text Available Customer relationship management refers to establishing, maintaining, developing and optimizing the relations between an organization and its customers and focuses on understanding and meeting its customers’ wishes and demands, the core items of the business strategy of any performant company. This paper aims at designing and testing a model of customer relationship management applicable within a mobile phone company. Starting from this purpose, the main objectives of the research were: presenting the concept of customer relationship management; the importance of companies’ orientation to the market; identifying a model of customer relationship management and, not least, analyzing the efficiency of this model. The results lead to the conclusion that the model of customer relationship management is extremely effective in the mobile phone industry, bringing significant profits.

  9. Structure-property relationships in ABA copolymer gels with A homopolymer additions

    Science.gov (United States)

    Seitz, Michelle; Rottsolk, Rebecca; Page, Kirt; Shull, Kenneth

    2009-03-01

    ABA acrylic triblock copolymers with poly(methyl methacrylate) endblocks and poly(butyl acrylate) midblocks transition from free flowing liquids to elastic solids with decreasing temperature in alcohol solvents. Homopolymer PMMA chains can be solubilized in the micelle cores if they are shorter than the endblocks. Indentation and compression tests were used to determine gel's modulus and large strain behavior. Gels with volume fractions of PMMA less than ˜0.2 are highly elastic and have moduli dictated by stretching of bridging midblocks. At higher PMMA contents, gels exhibit greater permanent deformation and moduli over an order of magnitude larger than would be expected from rubber elasticity alone. Small angle X-ray and neutron scattering and mean field simulations were used to correlate changes in gel structure and micelle morphology with the addition of homopolymer.

  10. Structure-Property Relationships of Poly(lactide)-based Triblock and Multiblock Copolymers

    Science.gov (United States)

    Panthani, Tessie Rose

    Replacing petroleum-based plastics with alternatives that are degradable and synthesized from annually renewable feedstocks is a critical goal for the polymer industry. Achieving this goal requires the development of sustainable analogs to commodity plastics which have equivalent or superior properties (e.g. mechanical, thermal, optical etc.) compared to their petroleum-based counterparts. This work focuses on improving and modulating the properties of a specific sustainable polymer, poly(lactide) (PLA), by incorporating it into triblock and multiblock copolymer architectures. The multiblock copolymers in this work are synthesized directly from dihydroxy-terminated triblock copolymers by a simple step-growth approach: the triblock copolymer serves as a macromonomer and addition of stoichiometric quantities of either an acid chloride or diisocyanate results in a multiblock copolymer. This work shows that over wide range of compositions, PLA-based multiblock copolymers have superior mechanical properties compared to triblock copolymers with equivalent chemical compositions and morphologies. The connectivity of the blocks within the multiblock copolymers has other interesting consequences on properties. For example, when crystallizable poly(L-lactide)-based triblock and multiblock copolymers are investigated, it is found that the multiblock copolymers have much slower crystallization kinetics. Additionally, the total number of blocks connected together is found to effect the linear viscoelastic properties as well as the alignment of lamellar domains under uniaxial extension. Finally, the synthesis and characterization of pressure-sensitive adhesives based upon renewable PLA-containing triblock copolymers and a renewable tackifier is detailed. Together, the results give insight into the effect of chain architecture, composition, and morphology on the mechanical behavior, thermal properties, and rheological properties of PLA-based materials.

  11. The structure-property relationships of powder processed Fe-Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Paul D. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  12. Structure/Property Relationships of Cyanate Ester Resins from Renewable Sources

    Science.gov (United States)

    2013-04-11

    PA #13158 13. SUPPLEMENTARY NOTES Viewgraph for the ACS Spring 2013 National Meeting, New Orleans, LA, 10 April 2013. 14. ABSTRACT This work presents...Winding / RTM Compatible with Thermoplastic Tougheners and Nanoscale Reinforcements Good Flame, Smoke, & Toxicity Characteristics Low Water Uptake

  13. Structure-Property Relationships for Optimal Thermo-Mechanical Performance in Organic Cyanate Ester

    Science.gov (United States)

    2013-02-05

    DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for Public Release; Distribution Unlimited. PA #13029 13. SUPPLEMENTARY NOTES Briefing Charts...Viscosity Suitable for Filament Winding / RTM Compatible with Thermoplastic Tougheners and Nanoscale Reinforcements Good Flame, Smoke, & Toxicity

  14. New Synthetic Methods and Structure-Property Relationships in Neptunium, Plutonium, and Americium Borates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht-Schmitt, Thomas Edward

    2013-09-14

    The past three years of support by the Heavy Elements Chemistry Program have been highly productive in terms of advanced degrees awarded, currently supported graduate students, peer-reviewed publications, and presentations made at universities, national laboratories, and at international conferences. Ph.D. degrees were granted to Shuao Wang and Juan Diwu, who both went on to post-doctoral appointments at the Glenn T. Seaborg Center at Lawrence Berkeley National Laboratory with Jeff Long and Ken Raymond, respectively. Pius Adelani completed his Ph.D. with me and is now a post-doc with Peter C. Burns. Andrea Alsobrook finished her Ph.D. and is now a post-doc at Savannah River with Dave Hobbs. Anna Nelson completed her Ph.D. and is now a post-doc with Rod Ewing at the University of Michigan. As can be gleaned from this list, students supported by the Heavy Elements Chemistry grant have remained interested in actinide science after leaving my program. This follows in line with previous graduates in this program such as Richard E. Sykora, who did his post-doctoral work at Oak Ridge National Laboratory with R. G. Haire, and Amanda C. Bean, who is a staff scientist at Los Alamos National Laboratory, and Philip M. Almond and Thomas C. Shehee, who are both staff scientists at Savannah River National Laboratory, Gengbang Jin who is a staff scientist at Argonne National Lab, and Travis Bray who has been a post-doc at both LBNL and ANL. Clearly this program is serving as a pipe-line for students to enter into careers in the national laboratories. About half of my students depart the DOE complex for academia or industry. My undergraduate researchers also remain active in actinide chemistry after leaving my group. Dan Wells was a productive undergraduate of mine, and went on to pursue a Ph.D. on uranium and neptunium chalcogenides with Jim Ibers at Northwestern. After earning his Ph.D., he went directly into the nuclear industry.

  15. Novel multiphase systems based on thermoplastic chitosan: Analysis of the structure-properties relationships

    Science.gov (United States)

    Avérous, Luc; Pollet, Eric

    2016-03-01

    In the last years, biopolymers have attracted great attention. It is for instance the case of chitosan, a linear polysaccharide. It is a deacetylated derivative of chitin, which is the second most abundant polysaccharide found in nature after cellulose. Chitosan has been found to be nontoxic, biodegradable, biofunctional, and biocompatible in addition to having antimicrobial and antifungal properties, and thus has a great potential for environmental (packaging,) or biomedical applications.For preparing chitosan-based materials, only solution casting or similar methods have been used in all the past studies. Solution casting have the disadvantage in low efficiency and difficulty in scaling-up towards industrial applications. Besides, a great amount of environmentally unfriendly chemical solvents are used and released to the environment in this method. The reason for not using a melt processing method like extrusion or kneading in the past studies is that chitosan, like many other polysaccharides such as starch, has very low thermal stability and degrade prior to melting. Therefore, even if the melt processing method is more convenient and highly preferred for industrial production, its adaptation for polysaccharide-based materials remains very difficult. However, our recently published studies has demonstrated the successful use of an innovative melt processing method (internal mixer, extrusion,) as an alternative route to solution casting, for preparing materials based on thermoplastic chitosan. These promising thermoplastic materials, obtained by melt processing, have been the main topic of recent international projects, with partners from different countries Multiphase systems based on various renewable plasticizers have been elaborated and studied. Besides, different blends, and nano-biocomposites based on nanoclays, have been elaborated and fully analyzed. The initial consortium of this vast project was based on an international consortium (Canada, Australia, France). This project is currently ongoing and open, with new international academic partners (Mexico, Brazil and Spain).

  16. Investigating the Structure-Property Relationships of Aqueous Self-Assembled Materials

    Science.gov (United States)

    Krogstad, Daniel Vincent

    The components of all living organisms are formed through aqueous self-assembly of organic and inorganic materials through physical interactions including hydrophobic, electrostatic, and hydrogen bonding. In this dissertation, these physical interactions were exploited to develop nanostructured materials for a range of applications. Peptide amphiphiles (PAs) self-assemble into varying structures depending on the physical interactions of the peptides and tails. PA aggregation was investigated by cryo-TEM to provide insight on the effects of varying parameters, including the number and length of the lipid tails as well as the number, length, charge, hydrophobicity, and the hydrogen bonding ability of the peptides. It was determined that cylindrical micelles are most commonly formed, and that specific criteria must be met in order to form spherical micelles, nanoribbons, vesicles or less ordered aggregates. Controlling the aggregated structure is necessary for many applications---particularly in therapeutics. Additionally, two-headed PAs were designed to act as a catalyst and template for biomimetic mineralization to control the formation of inorganic nanomaterials. Finally, injectable hydrogels made from ABA triblock copolymers were synthesized with the A blocks being functionalized with either guanidinium or sulfonate groups. These oppositely charged polyelectrolyte endblocks formed complex coacervate domains, which served as physical crosslinks in the hydrogel network. The mechanical properties, the network structure, the nature of the coacervate domain and the kinetics of hydrogel formation were investigated as a function of polymer concentration, salt concentration, pH and stoichiometry with rheometry, SAXS and SANS. It was shown that the mechanical properties of the hydrogels was highly dependent on the structural organization of the coacervate domains and that the properties could be tuned with polymer and salt concentration. Polymer and salt concentration were also shown to play roles in determining the size and density of the coacervate domains. Additionally, 20 wt% hydrogels were shown to form through a nucleation and growth pathway, in which the coacervate domains formed within minutes, the BCC structure was predominant within 100 minutes, but the equilibrium structure was not achieved for months. Ultimately, the work presented in this dissertation has resulted in an improved understanding of the physical interactions that are needed for self-assembly and may eventually lead to smarter design of nanomaterials for therapeutic, electronic and mechanical applications.

  17. Structure-property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes.

    Science.gov (United States)

    Wang, Weiguo; Sun, Xiang; Huang, Li; Gao, Yu; Ban, Jinghao; Shen, Lijuan; Chen, Jihua

    2014-01-01

    Organic-inorganic hybrid materials, such as polyhedral oligomeric silsesquioxanes (POSS), have the potential to improve the mechanical properties of the methacrylate-based composites and resins used in dentistry. In this article, nanocomposites of methacryl isobutyl POSS (MI-POSS [bears only one methacrylate functional group]) and methacryl POSS (MA-POSS [bears eight methacrylate functional groups]) were investigated to determine the effect of structures on the properties of dental resin. The structures of the POSS-containing networks were determined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Monofunctional POSS showed a strong tendency toward aggregation and crystallization, while multifunctional POSS showed higher miscibility with the dimethacrylate monomer. The mechanical properties and wear resistance decreased with increasing amounts of MI-POSS, indicating that the MI-POSS agglomerates act as the mechanical weak point in the dental resins. The addition of small amounts of MA-POSS improved the mechanical and shrinkage properties. However, samples with a higher MA-POSS concentration showed lower flexural strength and flexural modulus, indicating that there is a limited range in which the reinforcement properties of MA-POSS can operate. This concentration dependence is attributed to phase separation at higher concentrations of POSS, which affects the structural integrity, and thus, the mechanical and shrinkage properties of the dental resin. Our results show that resin with 3% MA-POSS is a potential candidate for resin-based dental materials.

  18. Tribology, UV degradation, and structure-property-processing relationships of detonation nanodiamond-polyethylene nanocomposites

    Science.gov (United States)

    Tipton, John

    Nanoscale reinforcements offer the possibility of coupling the already proven high strength to weight properties of polymer matrix composites with additional multifunctional properties such as electrical conductivity, thermal conductivity, unique optics, UV/IR radiation absorption, and enhanced wear resistance. This work presents materials based on detonation nanodiamonds dispersed in two types of polyethylene. The work begins with an understanding of nucleation phenomena. It was discovered through isothermal kinetics using differential scanning calorimetry that nanodiamonds act as nucleating agents during polyethylene crystallization. A processing technique to disperse nanodiamonds into very viscous ultra-high molecular weight polyethylene was developed and analyzed. These composites were further studied using dynamic mechanical analysis which showed increases in both stiffness and energy absorbing modes over unfilled UHMWPE. Exposure to UV degradation caused a failure of the polymer microstructure which was found to be caused by residual tensile stresses between the polymer particles formed during processing. These high stress regions were more prone to photo oxidation even though the nanodiamond particles were shown to decrease surface oxidation. Additionally, the tribological properties of UHMWPE/nanodiamond composites were investigated. Ultra-high molecular weight polyethylene is an already proven ultra tough and wear resistant polymer that is used in many high performance thermoplastic applications such as bearings, surfaces (skids/wheels), ropes/nets, and orthopedic implants. This work showed that UHMWPE loaded with 5.0wt% nanodiamonds might be a candidate to replace the currently used crosslinked polyethylene material used in orthopedic implants.

  19. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    CERN Document Server

    Nasef, M M

    2003-01-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures (T sub m and T sub c) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (DELTA H sub m) and the degree of crystallinity (X sub c) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved b...

  20. Structure-property relationship in polyethylene reinforced by polyethylene-grafted multi-walled carbon nanotubes.

    Science.gov (United States)

    Causin, Valerio; Yang, Bing-Xing; Marega, Carla; Goh, Suat Hong; Marigo, Antonio

    2008-04-01

    Polyethylene-grafted multiwalled carbon nanotubes (PE-g-MWNT) were used to reinforce polyethylene (PE). The nanocomposites possessed not only improved stiffness and strength, but also increased ductility and toughness. The effects on the structure and morphology of composites due to pristine multiwalled carbon nanotubes (MWNT) and PE-g-MWNT were studied and compared using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The SAXS long period, crystalline layer thickness and crystallinity of polymer lamellar stacks were found to decrease significantly in MWNT composites, while the decreases were much smaller in PE-g-MWNT composites. PE-g-MWNT allowed a more efficient and unhindered crystallization at a lamellar level, while MWNT disrupted the order of lamellar stacks, probably because of their tendency to aggregate. The SAXS crystallinity and the mechanical properties of the composites showed similar trends as a function of MWNT content. This suggested that the improvement of the interfacial strength between polymer and carbon nanotubes was a result of synergistic effects of better dispersion of the filler, better stress transfer, due to the grafting of polymer and MWNT, and the nucleation of a crystalline phase around MWNT. The latter effect was confirmed by measurements of kinetics of non-isothermal crystallization.

  1. Structure-property relationships in flavour-barrier membranes with reduced high-temperature diffusivity

    Energy Technology Data Exchange (ETDEWEB)

    Heitfeld, Kevin A.; Schaefer, Dale W.

    2010-10-12

    Encapsulation is used to decrease the premature release of volatile flavour ingredients while offering protection against environmental damage such as oxidation, light-induced reactions, etc. Hydroxypropyl cellulose (HPC) is investigated here as a 'smart,' temperature responsive membrane for flavour encapsulation and delivery. Gel films were synthesized and characterized by diffusion and small-angle neutron and X-ray scattering techniques. Increasing temperature typically increases the diffusion rate across a membrane; HPC, however, can be tailored to give substantially improved elevated temperature properties. Scattering results indicate processing conditions have a significant impact on membrane morphology (micro phase separation). Under certain synthetic conditions, micro phase separation is mitigated and the membranes show temperature-independent diffusivity between 25 C and 60 C.

  2. Structure property relationships in gallium oxide thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garten, Lauren M.; Zakutayev, Andriy; Perkins, John D.; Gorman, Brian P.; Ndione, Paul F.; Ginley, David S.

    2016-11-21

    Abstract

  3. Effect of construction of TiO2 nanotubes on platelet behaviors: Structure-property relationships.

    Science.gov (United States)

    Huang, Qiaoling; Yang, Yun; Zheng, Dajiang; Song, Ran; Zhang, Yanmei; Jiang, Pinliang; Vogler, Erwin A; Lin, Changjian

    2017-03-15

    Blood compatibility of TiO2 nanotubes (TNTs) has been assessed in rabbit platelet-rich plasma (PRP), which combines activation of both blood plasma coagulation and platelets. We find that (i) amorphous TiO2 nanotubes (TNTs) with relatively larger outer diameters led to reduced platelet adhesion/activation, (ii) TNTs with relatively smaller outer diameters in a predominately rutile phase also inhibited platelet adhesion and activation, and (iii) a pervasive fibrin network formed on larger outer diameter TNTs in a predominately anatase phase. Thus, this study suggests that combined effect of crystalline phase and surface chemistry controls blood-contact behavior of TNTs. A more comprehensive mechanism is proposed for understanding hemocompatibility of TiO2 which might prove helpful as a guide to prospective design of TiO2-based biomaterials.

  4. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications.

    Science.gov (United States)

    Bazban-Shotorbani, Salime; Hasani-Sadrabadi, Mohammad Mahdi; Karkhaneh, Akbar; Serpooshan, Vahid; Jacob, Karl I; Moshaverinia, Alireza; Mahmoudi, Morteza

    2017-02-27

    pH-responsive polymers contain ionic functional groups as pendants in their structure. The total number of charged groups on polymer chains determines the overall response of the system to changes in the external pH. This article reviews various pH-responsive polymers classified as polyacids (e.g., carboxylic acid based polymers, sulfonamides, anionic polysaccharides, and anionic polypeptides) and polybases (e.g., polyamines, pyridine and imidazole containing polymers, cationic polysaccharides, and cationic polypeptides). We correlate the pH variations in the body at the organ level (e.g., gastrointestinal tract and vaginal environment), tissue level (e.g., cancerous and inflamed tissues), and cellular level (e.g., sub-cellular organelles), with the intrinsic properties of pH-responsive polymers. This knowledge could help to select more effective ('smart') polymeric systems based on the biological target. Considering the pH differences in the body, various drug delivery systems can be designed by utilizing smart biopolymeric compounds with the required pH-sensitivity. We also review the pharmaceutical application of pH-responsive polymeric carriers including hydrogels, polymer-drug conjugates, micelles, dendrimers, and polymersomes.

  5. Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship.

    Science.gov (United States)

    Bittmann, Birgit; Haupert, Frank; Schlarb, Alois Karl

    2011-01-01

    By the insertion of nanoparticles into a polymer matrix a considerable improvement of mechanical properties can be achieved. Therefore, a homogeneous distribution of fillers within the matrix is required. In the present paper the dispersion of TiO(2)-nanoparticles in a DGEBA (diglycidyl ether of bisphenol A) epoxy resin by means of an ultrasonic horn was studied. The systematic examination of process parameters of a previous study was completed in order to determine the optimum processing window leading to a good dispersion result without degrading the molecular structure of the epoxy resin. Therefore, particle sizes were examined using a dynamic light scattering device, and the effect of the ultrasonic treatment on the resin was surveyed by FT-IR spectroscopy (Fourier transform infrared spectroscopy). Furthermore, the mechanical performance of the nanocomposites was examined for various contents of TiO(2)-nanoparticles to show that the materials prepared by ultrasonic dispersion show an improved property's profile. In order to understand the reinforcing mechanisms of nanoparticles in the polymer matrix providing improved mechanical properties, scanning electron microscope (SEM) pictures of the fracture surfaces of the samples were carried out, which revealed that nanocomposites show a significantly rougher surface than the neat epoxy resin. This indicates a change in the fracture mechanisms.

  6. Structure-property relationship of ceramic coatings on metals produced by laser processing

    NARCIS (Netherlands)

    de Hosson, J.T.M.; van den Burg, M.; Mazumder, J; Conde, O; Villar, R; Steen, W

    1996-01-01

    This paper concentrates on the mechanical performance of various ceramic coatings of Cr2O3 on steel (SAF2205), as produced by CO2 laser processing. The thickness of the coating that can be applied by laser coating is limited to about 200 mu m setting a limit to the maximum strain energy release rate

  7. Structure-property relationships of curved aromatic materials from first principles.

    Science.gov (United States)

    Zoppi, Laura; Martin-Samos, Layla; Baldridge, Kim K

    2014-11-18

    CONSPECTUS: Considerable effort in the past decade has been extended toward achieving computationally affordable theoretical methods for accurate prediction of the structure and properties of materials. Theoretical predictions of solids began decades ago, but only recently have solid-state quantum techniques become sufficiently reliable to be routinely chosen for investigation of solids as quantum chemistry techniques are for isolated molecules. Of great interest are ab initio predictive theories for solids that can provide atomic scale insights into properties of bulk materials, interfaces, and nanostructures. Adaption of the quantum chemical framework is challenging in that no single theory exists that provides prediction of all observables for every material type. However, through a combination of interdisciplinary efforts, a richly textured and substantive portfolio of methods is developing, which promise quantitative predictions of materials and device properties as well as associated performance analysis. Particularly relevant for device applications are organic semiconductors (OSC), with electrical conductivity between that of insulators and that of metals. Semiconducting small molecules, such as aromatic hydrocarbons, tend to have high polarizabilities, small band-gaps, and delocalized π electrons that support mobile charge carriers. Most importantly, the special nature of optical excitations in the form of a bound electron-hole pairs (excitons) holds significant promise for use in devices, such as organic light emitting diodes (OLEDs), organic photovoltaics (OPVs), and molecular nanojunctions. Added morphological features, such as curvature in aromatic hydrocarbon structure, can further confine the electronic states in one or more directions leading to additional physical phenomena in materials. Such structures offer exploration of a wealth of phenomenology as a function of their environment, particularly due to the ability to tune their electronic character through functionalization. This Account offers discussion of current state-of-the-art electronic structure approaches for prediction of structural, electronic, optical, and transport properties of materials, with illustration of these capabilities from a series of investigations involving curved aromatic materials. The class of curved aromatic materials offers the ability to investigate methodology across a wide range of materials complexity, including (a) molecules, (b) molecular crystals, (c) molecular adsorbates on metal surfaces, and (d) molecular nanojunctions. A reliable pallet of theoretical tools for such a wide array relies on expertise spanning multiple fields. Working together with experimental experts, advancements in the fundamental understanding of structural and dynamical properties are enabling focused design of functional materials. Most importantly, these studies provide an opportunity to compare experimental and theoretical capabilities and open the way for continual improvement of these capabilities.

  8. Symposium KK: Structure-Property Relationships in Biomineralized and Bio-mimetic Composites

    Science.gov (United States)

    2010-04-06

    Canada; 3Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada. 2:45 PM KK2.4 Nano-Porous Sucker Rings from Dosidicus gigas ...Marriott) KK5.1 Microstructural and Biochemical Characterization of the Nano-porous Sucker Rings from Dosidicus gigas James C. Weaver’. Ali Miserez2

  9. New eco-friendly random copolyesters based on poly(propylene cyclohexanedicarboxylate: Structure-properties relationships

    Directory of Open Access Journals (Sweden)

    L. Genovese

    2015-11-01

    Full Text Available A series of novel random copolymers of poly(propylene 1,4-cyclohexanedicarboxylate (PPCE containing neo -pentyl glycol sub-unit (P(PCExNCEy were synthesized and characterized in terms of molecular and solid-state properties. In addition, biodegradability studies in compost have been conducted. The copolymers displayed a high and similar thermal stability with respect to PPCE. At room temperature, all the copolymers appeared as semicrystalline materials: the main effect of copolymerization was a lowering of crystallinity degree (χc and a decrease of the melting temperature compared to the parent homopolymer. In particular, Wide Angle X-Ray diffraction (WAXD measurements indicated that P(PCExNCEy copolymers are characterized by cocrystallization, PNCE counits cocrystallizing in PPCE crystalline phase. Final properties and biodegradation rate of the materials under study were strictly dependent on copolymer composition and χc. As a matter of fact, the elastic modulus and the elongation at break decreased and increased, respectively, as neopentyl glycol cyclohexanedicarboxylate (NCE unit content was increased. The presence of a rigid-amorphous phase was evidenced by means of Dynamic Mechanical Thermal Analysis (DMTA analysis in all the samples under investigation. Lastly, the biodegradation rate of P(PCExNCEy copolymers was found to slightly increase with the increasing of NCE molar content.

  10. Structure-property relationship of regenerated spider silk protein nano/microfibrous scaffold fabricated by electrospinning.

    Science.gov (United States)

    Yu, Qiaozhen; Xu, Shuiling; Zhang, Hong; Gu, Li; Xu, Yepei; Ko, Frank

    2014-11-01

    The regenerated Araneus ventricosus spider dragline silk protein fibrous scaffold with moderate strength and flexibility was fabricated by electrospinning and post treatment with 90 vol % acetone. The effect of collection method on the morphology of regenerated spider silk protein (RSSP) fibrous scaffold, the effects of the post treatment solvents and their concentrations on the molecular conformation, crystallinity and mechanical properties were studied. The results show that the morphology was affected by the solvent used in the coagulation bath. The molecular conformation, crystallinity and mechanical property of this scaffold were strongly affected by the kind of post treatment solvent and slightly influenced by its concentration when it was higher than 50 vol %. The degradation rate of this scaffold was very slow and resulting in little pH change of the degradation medium within 5 months. PC 12 cells were cultured on the electrospun RSSP fibrous scaffold and in its extraction fluid to examine the changes of PC 12 cells after different times of culture. The results show that the electrospun RSSP fibrous scaffold had good biocompatibility with PC 12 cells. © 2013 Wiley Periodicals, Inc.

  11. Examining the Relationship Between Ballistic and Structural Properties of Lightweight Thermoplastic Unidirectional Composite Laminates

    Science.gov (United States)

    2011-08-01

    Kevlar KM2® Style 705 PVB phenolic woven aramid composite was included. A developmental unidirectional thermoplastic aramid fiber, Honeywell... discovery and development of the ARL X Hybrid architecture, which consists of 1) the balance of architecture in the panel being 75% [0°/90°] and 25

  12. Dithiafulvenyl-substituted phenylacetylene derivatives: synthesis and structure-property-reactivity relationships.

    Science.gov (United States)

    Wang, Yunfei; Zhao, Yuming

    2015-10-07

    A series of regioisomers for dithiafulvenyl-substituted phenylacetylene derivatives was synthesized and characterized to show structure-dependent electronic properties and different reactivities in their oxidized states.

  13. Structure-Properties Relationship in Proton Conductive Sulfonated Polystyrene-Polymethyl Methacrylate Block Copolymers.

    Science.gov (United States)

    Rubatat, Laurent; Li, Chaoxu; Dietsch, Herve; Nykainen, Antti; Ruokolainen, Janne; Mezzenga, Raffaele

    2009-03-01

    We report on the dependence of proton conductivity on the morphologies of sulfonated polystyrene-poly(methyl methacrylate) (sPS-PMMA) diblock copolymers. Three diblock copolymers of varying molecular weight and block volume fraction were studied, for each one several sulfonation degrees of the PS block were considered. The investigation of the morphologies of the self-assembled sPS-PMMA diblocks was carried out by means of small angle neutron scattering and transmission electron microscopy. Depending on molecular weight and sulfonation degrees, isotropic phase (ISO), lamellar phase (LAM), cylindrical hexagonal phase (HEX) and hexagonally perforated lamellae (HPL) were observed. Proton conductivity, normalized by the volume fraction of the conductive domains (formed by PS, sPS and water), was shown to rise monotonically with the following sequence of morphologies: ISO to HEX to HPL to LAM.

  14. Structure-property-glass transition relationships in non-isocyanate polyurethanes investigated by dynamic nanoindentation

    Science.gov (United States)

    Weyand, Stephan; Blattmann, Hannes; Schimpf, Vitalij; Mülhaupt, Rolf; Schwaiger, Ruth

    2016-07-01

    Newly developed green-chemistry approaches towards the synthesis of non-isocyanate polyurethane (NIPU) systems represent a promising alternative to polyurethanes (PU) eliminating the need for harmful ingredients. A series of NIPU systems were studied using different nanoindentation techniques in order to understand the influence of molecular parameters on the mechanical behavior. Nanoindentation revealed a unique characteristic feature of those materials, i.e. stiffening with increasing deformation. It is argued that the origin of this observed stiffening is a consequence of the thermodynamic state of the polymer network, the molecular characteristics of the chemical building blocks and resulting anisotropic elastic response of the network structure. Flat-punch nanoindentation was applied in order to characterize the constitutive viscoelastic nature of the materials. The complex modulus shows distinct changes as a function of the NIPU network topology illustrating the influence of the chemical building blocks. The reproducibility of the data indicates that the materials are homogeneous over the volumes sampled by nanoindentation. Our study demonstrates that nanoindentation is very well-suited to investigate the molecular characteristics of NIPU materials that cannot be quantified in conventional experiments. Moreover, the technique provides insight into the functional significance of complex molecular architectures thereby supporting the development of NIPU materials with tailored properties.

  15. Structure-property relationships in Sterculia urens/polyvinyl alcohol electrospun composite nanofibres.

    Science.gov (United States)

    Patra, Niranjan; Martinová, Lenka; Stuchlik, Martin; Černík, Miroslav

    2015-04-20

    Sterculia urens (Gum Karaya) based polyvinyl alcohol (PVA) composite nanofibres have been successfully electrospun after chemical modification of S. urens to increase its solubility. The effect of deacetylated S. urens (DGK) on the morphology, structure, crystallization behaviour and thermal stability was studied for spuned fibres before and after spinning post treatment. An apparent increase in the PVA crystallinity were observed in the PVA-DGK composite nanofibres indicating S. urens induced crystallization of PVA. The pure PVA nanofibre and the nanofibres of PVA-DGK composites were introduced to post electrospinning heat treatment at 150°C for 15 min. The presence of sterculia gum reduced the fibre diameter and distribution of the nanofibres due to the increased stretching of the fibres during spinning. Switching of the thermal behaviour occurs due to post spinning heat treatments.

  16. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    Science.gov (United States)

    Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis.

  17. Exploring the structure-properties relationships of novel polyamide thin film composite membranes

    DEFF Research Database (Denmark)

    Briceño, Kelly; Javakhishvili, Irakli; Guo, Haofei

    Polysulfone (PSU) is a material widely used in the fabrication of membranes for ultrafiltration and as a support for nanofiltration and reverse osmosis membranes. Interfacial polymerization usually combines amine and acid chloride monomers for the fabrication of thin film composite membranes[1...

  18. Polymers for enhanced oil recovery : A paradigm for structure-property relationship in aqueous solution

    NARCIS (Netherlands)

    Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A.

    2011-01-01

    Recent developments in the field of water-soluble polymers aimed at enhancing the aqueous solution viscosity are reviewed. Classic and novel associating water-soluble polymers for enhanced oil recovery (EOR) applications are discussed along with their limitations. Particular emphasis is placed on th

  19. Structure/Property Relationships of Poly(L-lactic Acid/Mesoporous Silica Nanocomposites

    Directory of Open Access Journals (Sweden)

    Javier Gudiño-Rivera

    2013-01-01

    Full Text Available Biodegradable poly(L-lactic acid (PLLA/mesoporous silica nanocomposites were prepared by grafting L-lactic acid oligomer onto silanol groups at the surface of mesoporous silica (SBA-15. The infrared results showed that the lactic acid oligomer was grafted onto the mesoporous silica. Surface characterization of mesoporous silica proved that the grafted oligomer blocked the entry of nitrogen into the mesopores. Thermal analysis measurements showed evidence that, once mixed with PLLA, SBA-15 not only nucleated the PLLA but also increased the total amount of crystallinity. Neat PLLA and its nanocomposites crystallized in the same crystal habit and, as expected, PLLA had a defined periodicity compared with the nanocomposites. This was because the grafted macromolecules on silica tended to cover the lamellar crystalline order. The g-SBA-15 nanoparticles improved the tensile moduli, increasing also the tensile strength of the resultant nanocomposites. Overall, the silica concentration tended to form a brittle material.

  20. Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure property relationships

    Science.gov (United States)

    Naebe, Minoo; Lin, Tong; Staiger, Mark P.; Dai, Liming; Wang, Xungai

    2008-07-01

    Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT-polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde.

  1. Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Naebe, Minoo; Lin Tong; Wang Xungai [Centre for Material and Fibre Innovation, Deakin University, Geelong, VIC 3217 (Australia); Staiger, Mark P [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Dai Liming [Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469 (United States)], E-mail: tong.lin@deakin.edu.au

    2008-07-30

    Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT-polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde.

  2. Composition-structure-properties relationship of strontium borate glasses for medical applications.

    Science.gov (United States)

    Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-07-01

    We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable.

  3. On structure-property relationship in nanostructured bainitic steel subjected to the quenching and partitioning process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ping [Material Science & Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Gao, Guhui, E-mail: gaogh@bjtu.edu.cn [Material Science & Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Han [Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Tan, Zhunli [Material Science & Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Misra, R.DK. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968-0520 (United States); Bai, Bingzhe [Material Science & Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Tsinghua University, Key Laboratory of Advanced Material, School of Material Science and Engineering, Beijing 100084 (China)

    2016-04-20

    We elucidate here the mechanistic contribution of the application of quenching and partitioning (Q&P) concept to a high carbon Mn-Si-Cr steel in obtaining a multiphase microstructure comprising of martensite/austenite and nanostructured bainite (bainitic ferrite and nanometer-sized film-like retained austenite) that exhibited tensile strength of 1923 MPa and total elongation of 18.3%. The excellent mechanical properties are attributed to the enhanced refinement of blocky austenite islands obtained by the Q&P process. The austenite was stabilized by both carbon partitioning from martensite and bainite transformation. Compared with conventional heat treatment to produce nanostructured bainite, the total time is significantly reduced without degradation of mechanical properties.

  4. Rare earth-doped lead borate glasses and transparent glass-ceramics: Structure-property relationship

    Science.gov (United States)

    Pisarski, W. A.; Pisarska, J.; Mączka, M.; Lisiecki, R.; Grobelny, Ł.; Goryczka, T.; Dominiak-Dzik, G.; Ryba-Romanowski, W.

    2011-08-01

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu 3+ and Er 3+ ions. The observed BO 3 ↔ BO 4 conversion strongly depends on the relative PbO/B 2O 3 ratios in glass composition, giving important contribution to the luminescence intensities associated to 5D 0- 7F 2 and 5D 0- 7F 1 transitions of Eu 3+. The near-infrared luminescence and up-conversion spectra for Er 3+ ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er 3+ ions into the orthorhombic PbF 2 crystalline phase, which was identified using X-ray diffraction analysis.

  5. Structure-Property Relationships and the Mixed Network Former Effect in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    compositions by substituting Al2O3 for SiO2. We also investigate the various roles of sodium in the glasses including charge compensation of tetrahedral aluminum and boron atoms and formation of non-bridging oxygen. We find that mechanical properties (density, elastic moduli, and hardness), glass transition...

  6. Selenium-Containing Fused Bicyclic Heterocycle Diselenolodiselenole: Field Effect Transistor Study and Structure-Property Relationship.

    Science.gov (United States)

    Debnath, Sashi; Chithiravel, Sundaresan; Sharma, Sagar; Bedi, Anjan; Krishnamoorthy, Kothandam; Zade, Sanjio S

    2016-07-20

    The first application of the diselenolodiselenole (C4Se4) heterocycle as an active organic field effect transistor materials is demonstrated here. C4Se4 derivatives (2a-2d) were obtained by using a newly developed straightforward diselenocyclization protocol, which includes the reaction of diynes with selenium powder at elevated temperature. C4Se4 derivatives exhibit strong donor characteristics and planar structure (except 2d). The atomic force microscopic analysis and thin-film X-ray diffraction pattern of compounds 2a-2d indicated the formation of distinct crystalline films that contain large domains. A scanning electron microscopy study of compound 2b showed development of symmetrical grains with an average diameter of 150 nm. Interestingly, 2b exhibited superior hole mobility, approaching 0.027 cm(2) V(-1) s(-1) with a transconductance of 9.2 μS. This study correlate the effect of π-stacking, Se···Se intermolecular interaction, and planarity with the charge transport properties and performance in the field effect transistor devices. We have shown that the planarity in C4Se4 derivatives was achieved by varying the end groups attached to the C4Se4 core. In turn, optoelectronic properties can also be tuned for all these derivatives by end-group variation.

  7. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    Science.gov (United States)

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-09

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.

  8. Structure-property relationships in carbon nanotube-polymer systems: Influence of noncovalent stabilization techniques

    Science.gov (United States)

    Liu, Lei

    A variety of experiments were carried out to study the dispersion and microstructure of carbon nanotubes in aqueous suspensions and polymer composites with the goal to improve the electrical conductivity of the composites containing nanotubes. Epoxy composites containing covalently and noncovalently functionalized nanotubes were compared in terms of electrical and mechanical behavior. Covalent functionalization of nanotubes is based on chemical attachments of polyethylenimine (PEI) whereas noncovalent functionalization takes place through physical mixing of nanotubes and PEI. The electrical conductivity is reduced in composites containing covalently functionalized nanotubes due to damage of the tube's conjugated surface that reduces intrinsic conductivity. Conversely, the mechanical properties are always better for epoxy composites containing covalently functionalized nanotubes. Clay particles were used as a rigid dispersing aid for nanotubes in aqueous suspensions and epoxy composites. When both nanotubes and clay were introduced into water by sonication, the suspension is stable for weeks, whereas the nanotubes precipitate almost instantly for the suspension without clay. In epoxy composites, nanotubes form separated clusters of aggregation, whereas a continuous three-dimensional nanotube network is achieved when clay is introduced. Electrical conductivity of the epoxy composite is shown to significantly improve with a small addition of clay and the percolation threshold is simultaneously decreased (from 0.05 wt% nanotubes, when there is no clay, to 0.01 wt% when 2 wt% clay is introduced). The addition of clay can also improve the mechanical properties of the composites, especially at higher clay concentration. Weak polyelectrolytes (i.e., pH-responsive polymers) were also studied for their interaction with nanotubes and the electrical properties of the dried composite films. When dispersed by sonication, Nanotubes show pH-dependent dispersion and stability in poly(acrylic acid) water solution, as evidenced by changes in suspension viscosity and cryo-TEM images. The nanotube suspensions were then dried under ambient conditions and the composite films exhibit tailorable nanotube dispersion as a function of pH. The percolation threshold and maximum electrical conductivity are reduced when the pH is changed from low to high. Some other pH-responsive polymers were also studied, but their pH-dependent viscosity and conductivity were not as large or reversible as poly(acrylic acid).

  9. Structure-Property Relationships and the Mixed Network Former Effect in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    compositions by substituting Al2O3 for SiO2. We also investigate the various roles of sodium in the glasses including charge compensation of tetrahedral aluminum and boron atoms and formation of non-bridging oxygen. We find that mechanical properties (density, elastic moduli, and hardness), glass transition...

  10. Quantitative structure-property relationships for chemical functional use and weight fractions in consumer articles

    Science.gov (United States)

    Chemical functional use -- the functional role a chemical plays in processes or products -- may be a useful heuristic for predicting human exposure potential in that it comprises information about the compound's likely physical properties and the product formulations or articles ...

  11. Composition-structure-property-performance relationship inMn-substituted LiMn2O4

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Craig R.; Richardson, Thomas J.; Gee, B.; Tucker, Mike; Grush, Melissa M.; Bergmann, Uwe; Striebel, Kathryn A.; Cramer, StephenP.; Reimer, Jeffrey A.; Cairns, Elton J.

    2001-03-09

    The spinel LiMn{sub 2}O{sub 4} has been extensively studied as a positive electrode active material in lithium rechargeable batteries. Partial substitution of Mn by another metal has also been the subject of recent study in an effort to improve the cycling performance. In general, the literature has shown that Mn substitution results in improved cycling stability at the expense of capacity (1,2). Resistance to the formation of tetragonal phase upon lithiation of the starting spinel (via a higher nominal Mn oxidation state in the substituted spinel) has been suggested as a mechanism for the improved performance. The degree of substitution is an important factor to optimize in order to minimize capacity loss and costs. The spectroscopic investigations on LiMn{sub 2}O{sub 4} described in the previous paper (LixMn2O4) confirmed that the cooperative Jahn-Teller effect (CJTE) from the [Mn{sup 3+}O{sub 6}] octahedra is the mechanism for the cubic to tetragonal phase transformation. The driving force for the CJTE is based upon the electronic structure, therefore changes in electronic structure should lead to changes in the phase behavior. The fact that the LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} does not form tetragonal phase upon discharging (FUJI3, MUCK?), unlike the 100% Mn{sup 4+} spinel Li{sub 4}Mn{sub 5}O{sub 12} (THAC5), led to the hypothesis that an increased degree of covalency as a source for the behavior. An increased covalence would remove the driving force for the transformation, the increased electronic stability achieved in tetragonally-distorted [Mn{sup 3+}O{sub 6}] octahedra, due to a change in electron density and widening of the Mn 3d bands. The STH field is dependent upon the amount of unpaired spin density transferred between the magnetic (transition-metal) and diamagnetic ions through an intermittent oxygen ion, attributable to overlap and electron transfer effects. Therefore, the magnitude of the STH coupling constant reflects the degree of covalency (GESC, HUAN). In the case of LiMn{sub 2-y}Me{sub y}O{sub 4}, the STH coupling constant characterizes the amount of unpaired spin density transferred to the Li{sup +} from the Mn, Co, or Ni. Similarly, the La/Lb ratio of the Mn L-XES is sensitive to the amount of electron density at the Mn site as a higher ratio indicates that the Mn 3d{sub 5/2} level is more populated (GRUS1). An investigation into the effects of Mn-substitution on the electronic structure along with the ramifications to the phase behavior upon changing lithium content was carried out. To accomplish this, a set of LiMn{sub 2-y}Me{sub y}O{sub 4} with Me = Li, Co, or Ni over a range of y were synthesized, characterized, and subjected to changes in lithium content by various techniques.

  12. Structure-Property Relationships for Polycyanurate Networks Derived from Renewable Sources (Briefing Charts)

    Science.gov (United States)

    2015-08-18

    MATLAB , which centers  the data, but does not require normalization DISTRIBUTION A:  Approved for public release.  Distribution is unlimited.   Example...FS (e.g. an isopropylidene bridge will have FB=1 and  RS=2). A Asymmetric  bridge.  1 if a bridge group is symmetrically substituted along its...unlimited.   Partial least squares regression characteristics as a function of the number of regression components present 15 0% 10% 20% 30% 40% 50% 60% 70

  13. The relationship between cub and loglinear models with latent variables

    NARCIS (Netherlands)

    Oberski, D. L.; Vermunt, J. K.

    2015-01-01

    The "combination of uniform and shifted binomial"(cub) model is a distribution for ordinal variables that has received considerable recent attention and specialized development. This article notes that the cub model is a special case of the well-known loglinear latent class model, an observation tha

  14. A Comparative Structural Equation Modeling Investigation of the Relationships among Teaching, Cognitive and Social Presence

    Science.gov (United States)

    Kozan, Kadir

    2016-01-01

    The present study investigated the relationships among teaching, cognitive, and social presence through several structural equation models to see which model would better fit the data. To this end, the present study employed and compared several different structural equation models because different models could fit the data equally well. Among…

  15. Revising Working Models Across Time: Relationship Situations That Enhance Attachment Security.

    Science.gov (United States)

    Arriaga, Ximena B; Kumashiro, Madoka; Simpson, Jeffry A; Overall, Nickola C

    2017-06-01

    We propose the Attachment Security Enhancement Model (ASEM) to suggest how romantic relationships can promote chronic attachment security. One part of the ASEM examines partner responses that protect relationships from the erosive effects of immediate insecurity, but such responses may not necessarily address underlying insecurities in a person's mental models. Therefore, a second part of the ASEM examines relationship situations that foster more secure mental models. Both parts may work in tandem. We posit that attachment anxiety should decline most in situations that foster greater personal confidence and more secure mental models of the self. In contrast, attachment avoidance should decline most in situations that involve positive dependence and foster more secure models of close others. The ASEM integrates research and theory, suggests novel directions for future research, and has practical implications, all of which center on the idea that adult attachment orientations are an emergent property of close relationships.

  16. Exploring the Relationship between Mathematical Modelling and Classroom Discourse

    Science.gov (United States)

    Redmond, Trevor; Sheehy, Joanne; Brown, Raymond

    2010-01-01

    This paper explores the notion that the discourse of the mathematics classroom impacts on the practices that students engage when modelling mathematics. Using excerpts of a Year 12 student's report on modelling Newton's law of cooling, this paper argues that when students engage with the discourse of their mathematics classroom in a manner that…

  17. Validating the Relationship Qualities of Influence and Persuasion with the Family Social Relations Model.

    Science.gov (United States)

    Hsiung, Rachel Oakley; Bagozzi, Richard P.

    2003-01-01

    Uses the family social relations model (SRM) to test for the personal relationship qualities of influence and persuasion in the family decision-making context of buying a new car. Uncovers patterns in the relationship qualities of influence and persuasion across three decisions families make when buying a new car (i.e., how much to spend, car…

  18. Adapting the Interpersonal Process Model of Intimacy to Enhance the Co-Leader Relationship during Training

    Science.gov (United States)

    Huffman, David D.; Fernando, Delini M.

    2012-01-01

    Group work literature acknowledges that the group co-leader relationship influences the development of group members and the group as a whole. However, little direction has been offered for supervisors of group co-leaders to facilitate the development of the co-leader relationship. Reis and Shaver's (1988) interpersonal process model of intimacy…

  19. Formal Relationships Between Geometrical and Classical Models for Concurrency

    CERN Document Server

    Goubault, Eric

    2010-01-01

    A wide variety of models for concurrent programs has been proposed during the past decades, each one focusing on various aspects of computations: trace equivalence, causality between events, conflicts and schedules due to resource accesses, etc. More recently, models with a geometrical flavor have been introduced, based on the notion of cubical set. These models are very rich and expressive since they can represent commutation between any bunch of events, thus generalizing the principle of true concurrency. While they seem to be very promising - because they make possible the use of techniques from algebraic topology in order to study concurrent computations - they have not yet been precisely related to the previous models, and the purpose of this paper is to fill this gap. In particular, we describe an adjunction between Petri nets and cubical sets which extends the previously known adjunction between Petri nets and asynchronous transition systems by Nielsen and Winskel.

  20. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.

    2015-12-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students' baseline understanding of and their reasoning about plant-ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students' ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant-abiotic relationships, a much smaller group reasoned about plant-abiotic-animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development. This paper is based on data from a doctoral dissertation. An earlier version of this paper was presented at the 2015 international conference for the National Association for Research in Science

  1. Gene-disease relationship discovery based on model-driven data integration and database view definition

    National Research Council Canada - National Science Library

    Yilmaz, S; Jonveaux, P; Bicep, C; Pierron, L; Smaïl-Tabbone, M; Devignes, M.D

    2009-01-01

    .... orthologous or interacting genes. These definitions guide data modelling in our database approach for gene-disease relationship discovery and are expressed as views which ultimately lead to the retrieval of documented sets of candidate genes...

  2. A Conceptual Model of Relationships among Constructivist Learning Environment Perceptions, Epistemological Beliefs, and Learning Approaches

    Science.gov (United States)

    Ozkal, Kudret; Tekkaya, Ceren; Cakiroglu, Jale; Sungur, Semra

    2009-01-01

    This study proposed a conceptual model of relationships among constructivist learning environment perception variables (Personal Relevance, Uncertainty, Critical Voice, Shared Control, and Student Negotiation), scientific epistemological belief variables (fixed and tentative), and learning approach. It was proposed that learning environment…

  3. Accessing Data Bases Through Interface Views Using a Unified Graph-Oriented Entity-Relationship Model

    DEFF Research Database (Denmark)

    Kraft, Peter; Sørensen, Jens Otto

    Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely. By the ......Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely....... By the model almost all parts of a total system can be specified on a conceptual level. The paper focuses on languages by which views corresponding to complex user interfaces are derived, and on the applicability of views in manipulation of stored information. As an overall advantage we claim that working...... with a unified graphic model is more efficient and less error-prone than working with more complex ER models and models based on lexical description. Key terms: Entity-relationship model, path expressions, entity-relationship language, derived interface view, view updates, graphical models....

  4. Data-Model Relationship in Text-Independent Speaker Recognition

    Directory of Open Access Journals (Sweden)

    Stapert Robert

    2005-01-01

    Full Text Available Text-independent speaker recognition systems such as those based on Gaussian mixture models (GMMs do not include time sequence information (TSI within the model itself. The level of importance of TSI in speaker recognition is an interesting question and one addressed in this paper. Recent works has shown that the utilisation of higher-level information such as idiolect, pronunciation, and prosodics can be useful in reducing speaker recognition error rates. In accordance with these developments, the aim of this paper is to show that as more data becomes available, the basic GMM can be enhanced by utilising TSI, even in a text-independent mode. This paper presents experimental work incorporating TSI into the conventional GMM. The resulting system, known as the segmental mixture model (SMM, embeds dynamic time warping (DTW into a GMM framework. Results are presented on the 2000-speaker SpeechDat Welsh database which show improved speaker recognition performance with the SMM.

  5. Investigating The Relationship Between Flourishing And Self-Compassion: A Structural Equation Modeling Approach

    OpenAIRE

    Seydi Ahmet Satici; Recep Uysal; Ahmet Akin

    2013-01-01

    The purpose of this study was to examine the relationships between flourishing and self-compassion. Participants were 347 (194 female and 153 male) university students, between age range of 18-24, who completed a questionnaire package that included the Flourishing Scale and the Self-compassion Scale. The relationships between flourishing and self-compassion were examined using correlation analysis and the hypothesis model was tested through structural equation modeling. In correlation analysi...

  6. Strategic Engagement: New Models of Relationship Management for Academic Librarians

    Science.gov (United States)

    Eldridge, Jeanette; Fraser, Katie; Simmonds, Tony; Smyth, Neil

    2016-01-01

    How do we best bridge the gap between the Library and the diverse academic communities it serves? Librarians need new strategies for engagement. Traditional models of liaison, aligning solutions to disciplines, are yielding to functional specialisms, including a focus on building partnerships. This paper offers a snapshot of realignment across the…

  7. Composition and structural properties of high-silica faujasites

    Energy Technology Data Exchange (ETDEWEB)

    Mishin, I.V.; Baier, G.K.; Klyachko, A.L.; Nissenbaum, V.D.; Dykh, Z.L.; Plakhotnik, V.A.; Borbei, G.

    1988-02-01

    A study has been made of the relationship between extensive dealumination and the composition of the framework of faujasites obtained by treating Y zeolites with EDTA. It has been shown that increasing the Si/Al ratio in the initial zeolites retards the rate of dealumination. After 50% of the Al has been removed, there is an increase in the fraction of the amorphous phase, which is significantly reduced in aluminum relative to the crystalline phase. The difference between the Si/Al ratio in the crystalline and the amorphous phases increases with the degree of dealumination. Extraction of small amounts of aluminum by EDTA increases the thermal stability of the framework, but reduces the thermal stability of the hydroxyl covering of the faujasties.

  8. Probing thermal transitions and structural properties of gluten proteins using ultrasound

    National Research Council Canada - National Science Library

    Elmehdi, H M; Scanlon, M G; Page, J H; Kovacs, M I. P

    2013-01-01

    To probe the thermal and structural properties of gluten proteins using ultrasound.A new ultrasonic approach for characterizing the quality of wheat gluten proteins is described. Low frequency (50 kHz...

  9. Empirical study on structural properties in temporal networks under different time scales

    Science.gov (United States)

    Chen, Duanbing

    2015-12-01

    Many network analyzing methods are usually based on static networks. However, temporal networks should be considered so as to investigate real complex systems deeply since some dynamics on these systems cannot be described by static networks accurately. In this paper, four structural properties in temporal networks are empirically studied, including degree, clustering coefficient, adjacent correlation, and connected component. Three real temporal networks with different time scales are analyzed in this paper, including short message, telephone, and router networks. Moreover, structural properties of these temporal networks are compared with that of corresponding static aggregation networks in the whole time window. Some essential differences of structural properties between temporal and static networks are achieved through empirical analysis. Finally, the effect of structural properties on spreading dynamics under different time scales is investigated. Some interesting results such as turning point of structure evolving time scale corresponding to certain spreading dynamics time scale from the point of view of infected scale are achieved.

  10. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    Science.gov (United States)

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  11. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    Science.gov (United States)

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  12. NONPARAMETRIC FIXED EFFECT PANEL DATA MODELS: RELATIONSHIP BETWEEN AIR POLLUTION AND INCOME FOR TURKEY

    Directory of Open Access Journals (Sweden)

    Rabia Ece OMAY

    2013-06-01

    Full Text Available In this study, relationship between gross domestic product (GDP per capita and sulfur dioxide (SO2 and particulate matter (PM10 per capita is modeled for Turkey. Nonparametric fixed effect panel data analysis is used for the modeling. The panel data covers 12 territories, in first level of Nomenclature of Territorial Units for Statistics (NUTS, for period of 1990-2001. Modeling of the relationship between GDP and SO2 and PM10 for Turkey, the non-parametric models have given good results.

  13. THE RELATIONSHIP BETWEEN MODELS OF QUALITY MANAGEMENT AND CSR

    Directory of Open Access Journals (Sweden)

    CĂTĂLINA SITNIKOV

    2015-03-01

    Full Text Available Lately, the quality management has integrated more and more among its components Corporate Social Responsibility (CSR. With strong roots in the foundation for sustainable development, protection of the environment, issues of social justness and economic growth, CSR raises numerous issues related to obtaining profits, business performance and firms and activities based on the quality of management. From the point of view of the last issues, the models of quality management built on the fundamental principles of quality become the foundation and catalyst for the effective implementation of CSR in organizations. This is the reason why it is necessary to investigate the extent to which quality management models provide frameworks and guidelines for integrating CSR in the management of quality and, moreover, in the management of the organization, with a clear focus on the extent to which the concept can be institutionalized and operated by the organization.

  14. Estimating species - area relationships by modeling abundance and frequency subject to incomplete sampling.

    Science.gov (United States)

    Yamaura, Yuichi; Connor, Edward F; Royle, J Andrew; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-07-01

    Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a

  15. Estimating species – area relationships by modeling abundance and frequency subject to incomplete sampling

    Science.gov (United States)

    Yamaura, Yuichi; Connor, Edward F.; Royle, Andy; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-01-01

    Models and data used to describe species–area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species–area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species–area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density–area relationships and occurrence probability–area relationships can alter the form of species–area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied

  16. Effect of Calcination Temperature on Structural Properties and Photocatalytic Activity of Ceria Nanoparticles Synthesized Employing Chitosan as Template

    Directory of Open Access Journals (Sweden)

    Angela B. Sifontes

    2013-01-01

    Full Text Available Ceria nanoparticles were synthesized employing chitosan as template and thermal treatment at different temperatures (350, 650, and 960°C. The effect of calcination temperature on structural properties and photocatalytic activity of ceria nanopowder was also tested. Degradation of an azo dye, Congo Red (CR as a model aqueous pollutant, was investigated by means of photocatalysis of ceria nanoparticles under visible light irradiation. The influence of catalyst amount, initial CR concentrations, and degradation reaction kinetics were studied. The results were compared with commercial CeO2 at the same degradation conditions.

  17. Supplier-purchaser relationship assessment maturity model: a study of suppliers from an automotive industry

    Directory of Open Access Journals (Sweden)

    Gilberto Zanoni

    2013-05-01

    Full Text Available Operations networks are increasingly demanding in terms of enterprises’ relationships. Strategies and processes integration and capabilities generation between supply chain members become success key factors. This paper proposes a conceptual model for purchaser-supplier relationship maturity level assessment. The maturity levels were developed from a literature review of the stages of the logistics conceptual evolution, from the integration between members of supply chains and from the evolution stages of the supplier-purchaser relationship. This model integrates a measuring system based on the ‘Performance Prism’. The model is tested in enterprises of the automotive industry. The methodology used to test and validate the model is a survey. Results stated that the participant enterprises are generally found in maturity level 3, which is also confirmed by cluster analysis. Maturity level models may help companies in evolutionary trajectories stating references for their change processes.

  18. The relationship of values to adjustment in illness: a model for nursing practice.

    Science.gov (United States)

    Harvey, R M

    1992-04-01

    This paper proposes a model of the relationship between values, in particular health value, and adjustment to illness. The importance of values as well as the need for value change are described in the literature related to adjustment to physical disability and chronic illness. An empirical model, however, that explains the relationship of values to adjustment or adaptation has not been found by this researcher. Balance theory and its application to the abstract and perceived cognitions of health value and health perception are described here to explain the relationship of values like health value to outcomes associated with adjustment or adaptation to illness. The proposed model is based on the balance theories of Heider, Festinger and Feather. Hypotheses based on the model were tested and supported in a study of 100 adults with visible and invisible chronic illness. Nursing interventions based on the model are described and suggestions for further research discussed.

  19. Structural properties of BeO at high pressure

    Indian Academy of Sciences (India)

    Umesh Kumar Sakalle; Anita Singh; Ekta Sharma

    2014-10-01

    In the present paper, we have investigated the phase transition and elastic properties of BeO at high pressure using three-body potential model (TBPM). The present interaction potential consists of longrange coulomb and three-body interactions and short-range overlap repulsion effective up to second neighbour ions. We have studied the phase transition from wurtzite (4) to rock salt (1) for BeO. The phase transition pressure (t) obtained from this approach shows a respectably good agreement with experimental and other theoretical data. We have also computed the collapse of relative volume changes ( (t)/(0)). Three-body potential model has also been used to derive the correct expressions for third-order elastic constants and pressure derivatives of second-order elastic constants for BeO.

  20. Random Overlap Structures: Properties and Applications to Spin Glasses

    CERN Document Server

    Arguin, Louis-Pierre

    2010-01-01

    Random Overlap Structures (ROSt's) are random elements on the space of probability measures on the unit ball of a Hilbert space, where two measures are identified if they differ by an isometry. In spin glasses, they arise as natural limits of Gibbs measures under the appropriate algebra of functions. We prove that the so called `cavity mapping' on the space of ROSt's is continuous, leading to a proof of the stochastic stability conjecture for the limiting Gibbs measures of a large class of spin glass models. Similar arguments yield the proofs of a number of other properties of ROSt's that may be useful in future attempts at proving the ultrametricity conjecture. Lastly, assuming that the ultrametricity conjecture holds, the setup yields a constructive proof of the Parisi formula for the free energy of the Sherrington-Kirkpatrick model by making rigorous a heuristic of Aizenman, Sims and Starr.

  1. [Insect antimicrobial peptides: structures, properties and gene regulation].

    Science.gov (United States)

    Wang, Yi-Peng; Lai, Ren

    2010-02-01

    Insect antimicrobial peptides (AMPs) are an important group of insect innate immunity effectors. Insect AMPs are cationic and contain less than 100 amino acid residues. According to structure, insect AMPs can be divided into a limited number of families. The diverse antimicrobial spectrum of insect AMPs may indicate different modes of action. Research on the model organism Drosophila indicate that insect AMPs gene regulation involves multiple signaling pathways and a large number of signaling molecules.

  2. Structural properties of low-density liquid alkali metals

    Indian Academy of Sciences (India)

    A Akande; G A Adebayo; O Akinlade

    2005-12-01

    The static structure factors of liquid alkali metals have been modelled at temperatures close to their melting points and a few higher temperatures using the reverse Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity, were altered until the experimental diffraction data of the structure factor agrees with the associated model structure factor within the errors. The model generated is then analysed. The position of the first peak of the pair distribution function () does not show any significant temperature dependence and the mean bond lengths can be approximated within an interval of 3.6–5.3 Å, 4.5–6.6 Å, 4.8–6.7 Å and 5.1–7.3 Å for Na, K, Rb and Cs respectively. The cosine bond distributions show similar trend with the flattening up of the first peak with increase in temperature. In addition, the coordination numbers of these liquid metals are high due to the presence of non-covalent bonding between them. On the average, we surmise that the coordination number decreases with increase in temperature.

  3. A Model of Female Sexual Desire: Internalized Working Models of Parent-Child Relationships and Sexual Body Self-Representations.

    Science.gov (United States)

    Cherkasskaya, Eugenia; Rosario, Margaret

    2017-01-24

    The etiology of low female sexual desire, the most prevalent sexual complaint in women, is multi-determined, implicating biological and psychological factors, including women's early parent-child relationships and bodily self-representations. The current study evaluated a model that hypothesized that sexual body self-representations (sexual subjectivity, self-objectification, genital self-image) explain (i.e., mediate) the relation between internalized working models of parent-child relationships (attachment, separation-individuation, parental identification) and sexual desire in heterosexual women. We recruited 614 young, heterosexual women (M = 25.5 years, SD = 4.63) through social media. The women completed an online survey. Structural equation modeling was used. The hypotheses were supported in that the relation between internalized working models of parent-child relationships (attachment and separation-individuation) and sexual desire was mediated by sexual body self-representations (sexual body esteem, self-objectification, genital self-image). However, parental identification was not related significantly to sexual body self-representations or sexual desire in the model. Current findings demonstrated that understanding female sexual desire necessitates considering women's internalized working models of early parent-child relationships and their experiences of their bodies in a sexual context. Treatment of low or absent desire in women would benefit from modalities that emphasize early parent-child relationships as well as interventions that foster mind-body integration.

  4. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    The composition of glass can be varied continuously within their glass-forming regions. This compositional flexibility makes it possible to tailor the properties of a glass for a variety of specific uses. In the industry such tailoring is done on a trial-and-error basis with only the intuition...... also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... capable of ab initio prediction of the oxide glass properties from composition....

  5. Thermodynamic and structural properties of liquid Al-Au alloys

    Science.gov (United States)

    Olajire, B. A.; Musari, A. A.

    2017-08-01

    The mixing properties of liquid Al-Au alloys with respect to the concentration of each constituent is determined using a method based on hard sphere system and pseudo-potential perturbation. These models were used to get relevant information on mixing properties of the Al-Au alloys like the Gibbs energy and the entropy of mixing. The concentration fluctuations, chemical short range order for the hard sphere mixture (quasi-lattice theory) and the activity are calculated to know the extent of order in the liquid alloys. The results revealed that there is a degree of ordering in liquid Al-Au alloy (hetero-coordinated).

  6. Friendship Dynamics: Modelling Social Relationships through a Fuzzy Agent-Based Simulation

    Directory of Open Access Journals (Sweden)

    Samer Hassan

    2011-01-01

    This study shows how to simulate these friendship dynamics in an agent-based model that applies fuzzy sets theory to implement agent attributes, rules, and social relationships, explaining the process in detail. Although in principle it may be thought that the use of fuzzy sets theory makes agent-based modelling more elaborated, in practice it saves the modeller from taking some arbitrary decisions on how to use crisp values for representing properties that are inherently fuzzy. The consequences of applying fuzzy sets and operations to define a fuzzy friendship relationship are compared with a simpler implementation, with crisp values. By integrating agent computational models and fuzzy set theory, this paper provides useful insights into scholars and practitioners to tackle the uncertainty inherent to social relationships in a systematic way.

  7. A Visual Entity-Relationship Model for Constraint-Based University Timetabling

    CERN Document Server

    Abdelraouf, Islam; Gervet, Carmen

    2011-01-01

    University timetabling (UTT) is a complex problem due to its combinatorial nature but also the type of constraints involved. The holy grail of (constraint) programming: "the user states the problem the program solves it" remains a challenge since solution quality is tightly coupled with deriving "effective models", best handled by technology experts. In this paper, focusing on the field of university timetabling, we introduce a visual graphic communication tool that lets the user specify her problem in an abstract manner, using a visual entity-relationship model. The entities are nodes of mainly two types: resource nodes (lecturers, assistants, student groups) and events nodes (lectures, lab sessions, tutorials). The links between the nodes signify a desired relationship between them. The visual modeling abstraction focuses on the nature of the entities and their relationships and abstracts from an actual constraint model.

  8. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.

    2015-01-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often…

  9. The Learning-Teaching Nexus: Modelling the Learning-Teaching Relationship in Higher Education

    Science.gov (United States)

    Knewstubb, Bernadette

    2016-01-01

    The teaching-learning relationship is often described as a conversation. However, many models of teaching and learning depict the worlds of teacher and learner as enclosed and inaccessible, linked by apparently transferred communicative meanings. A new interdisciplinary learning-teaching nexus (LTN) model combines perspectives from higher…

  10. The Impact of Consultation Models on Interpersonal Relationships during Problem Solving

    Science.gov (United States)

    Neall, Michael Timothy

    2012-01-01

    Client-centered and consultee-centered consultation models are predominately used in K-12 schools to meet the needs of at-risk learners and ensure equitable access to educational services. Although the efficacy of both models has significant support in the literature, studies regarding relationships formed during problem solving in consultation…

  11. The Sport Commitment Model: An Investigation of Structural Relationships with Thai Youth Athlete Populations

    Science.gov (United States)

    Choosakul, Chairat; Vongjaturapat, Naruepon; Li, Fuzhong; Harmer, Peter

    2009-01-01

    Grounded in the conceptual framework of the Sport Commitment Model and previous empirical studies conducted in Western countries, this study was designed to (a) test and validate a Thai version of the Athlete Opinion Survey to assess components of the Sport Commitment Model in Thai youth athletes and (b) examine structural relationships among…

  12. STRONGLY CONSISTENT ESTIMATION FOR A MULTIVARIATE LINEAR RELATIONSHIP MODEL WITH ESTIMATED COVARIANCES MATRIX

    Institute of Scientific and Technical Information of China (English)

    Yee LEUNG; WU Kefa; DONG Tianxin

    2001-01-01

    In this paper, a multivariate linear functional relationship model, where the covariance matrix of the observational errors is not restricted, is considered. The parameter estimation of this model is discussed. The estimators are shown to be a strongly consistent estimation under some mild conditions on the incidental parameters.

  13. Predictor Relationships between Values Held by Married Individuals, Resilience and Conflict Resolution Styles: A Model Suggestion

    Science.gov (United States)

    Tosun, Fatma; Dilmac, Bulent

    2015-01-01

    The aim of the present research is to reveal the predictor relationships between the values held by married individuals, resilience and conflict resolution styles. The research adopts a relational screening model that is a sub-type of the general screening model. The sample of the research consists of 375 married individuals, of which 173 are…

  14. Analysis of physicochemical and structural properties determining HIV-1 coreceptor usage.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    Full Text Available The relationship of HIV tropism with disease progression and the recent development of CCR5-blocking drugs underscore the importance of monitoring virus coreceptor usage. As an alternative to costly phenotypic assays, computational methods aim at predicting virus tropism based on the sequence and structure of the V3 loop of the virus gp120 protein. Here we present a numerical descriptor of the V3 loop encoding its physicochemical and structural properties. The descriptor allows for structure-based prediction of HIV tropism and identification of properties of the V3 loop that are crucial for coreceptor usage. Use of the proposed descriptor for prediction results in a statistically significant improvement over the prediction based solely on V3 sequence with 3 percentage points improvement in AUC and 7 percentage points in sensitivity at the specificity of the 11/25 rule (95%. We additionally assessed the predictive power of the new method on clinically derived 'bulk' sequence data and obtained a statistically significant improvement in AUC of 3 percentage points over sequence-based prediction. Furthermore, we demonstrated the capacity of our method to predict therapy outcome by applying it to 53 samples from patients undergoing Maraviroc therapy. The analysis of structural features of the loop informative of tropism indicates the importance of two loop regions and their physicochemical properties. The regions are located on opposite strands of the loop stem and the respective features are predominantly charge-, hydrophobicity- and structure-related. These regions are in close proximity in the bound conformation of the loop potentially forming a site determinant for the coreceptor binding. The method is available via server under http://structure.bioinf.mpi-inf.mpg.de/.

  15. Structural Properties of Gene Promoters Highlight More than Two Phenotypes of Diabetes.

    Science.gov (United States)

    Ionescu-Tîrgovişte, Constantin; Gagniuc, Paul Aurelian; Guja, Cristian

    2015-01-01

    Genome-wide association studies (GWAS) published in the last decade raised the number of loci associated with type 1 (T1D) and type 2 diabetes (T2D) to more than 50 for each of these diabetes phenotypes. The environmental factors seem to play an important role in the expression of these genes, acting through transcription factors that bind to promoters. Using the available databases we examined the promoters of various genes classically associated with the two main diabetes phenotypes. Our comparative analyses have revealed significant architectural differences between promoters of genes classically associated with T1D and T2D. Nevertheless, five gene promoters (about 16%) belonging to T1D and six gene promoters (over 19%) belonging to T2D have shown some intermediary structural properties, suggesting a direct relationship to either LADA (Latent Autoimmune Diabetes in Adults) phenotype or to non-autoimmune type 1 phenotype. The distribution of these promoters in at least three separate classes seems to indicate specific pathogenic pathways. The image-based patterns (DNA patterns) generated by promoters of genes associated with these three phenotypes support the clinical observation of a smooth link between specific cases of typical T1D and T2D. In addition, a global distribution of these DNA patterns suggests that promoters of genes associated with T1D appear to be evolutionary more conserved than those associated with T2D. Though, the image based patterns obtained by our method might be a new useful parameter for understanding the pathogenetic mechanism and the diabetogenic gene networks.

  16. Structural properties of cyanase. Denaturation, renaturation, and role of sulfhydryls and oligomeric structure in catalytic activity.

    Science.gov (United States)

    Little, R M; Anderson, P M

    1987-07-25

    Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to give ammonia and bicarbonate. The enzyme is composed of 8-10 identical subunits (Mr = 17,008). The objective of this study was to clarify some of the structural properties of cyanase for the purpose of understanding the relationship between oligomeric structure and catalytic activity. Circular dichroism studies showed that cyanase has a significant amount of alpha-helix and beta-sheet structure. The one sulfhydryl group per subunit does not react with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) unless cyanase is denatured. Denaturation is apparently complete in 10 M urea or 6 M guanidine hydrochloride, but is significantly reduced in 10 M urea by the presence of azide (analog of cyanate) and is incomplete in 8 M urea. Denatured cyanase could be renatured and reactivated (greater than 85%) by removal of denaturants. Reactivation was greatly facilitated by the presence of certain anions, particularly bicarbonate, and by high ionic strength and protein concentration. The catalytic activity of renatured cyanase was associated only with oligomer. Cyanase that had been denatured in the presence of DTNB to give a cyanase-DTNB derivative could also be renatured at 26 degrees C to give active cyanase-DTNB oligomer. The active oligomeric form of the cyanase-DTNB derivative could be converted reversibly to inactive dimer by lowering the temperature to 4 degrees C or by reduction of the ionic strength and removal of monoanions. These results provide evidence that free sulfhydryl groups are not required for catalytic activity and that catalytic activity may be dependent upon oligomeric structure.

  17. The structural properties of a two-Yukawa fluid: Simulation and analytical results

    Science.gov (United States)

    Broccio, Matteo; Costa, Dino; Liu, Yun; Chen, Sow-Hsin

    2006-02-01

    Standard Monte Carlo simulations are carried out to assess the accuracy of theoretical predictions for the structural properties of a model fluid interacting through a hard-core two-Yukawa potential composed of a short-range attractive well next to a hard repulsive core, followed by a smooth, long-range repulsive tail. Theoretical calculations are performed in the framework provided by the Ornstein-Zernike equation, solved either analytically with the mean spherical approximation (MSA) or iteratively with the hypernetted-chain (HNC) closure. Our analysis shows that both theories are generally accurate in a thermodynamic region corresponding to a dense vapor phase around the critical point. For a suitable choice of potential parameters, namely, when the attractive well is deep and/or large enough, the static structure factor displays a secondary low-Q peak. In this case HNC predictions closely follow the simulation results, whereas MSA results progressively worsen the more pronounced this low-Q peak is. We discuss the appearance of such a peak, also experimentally observed in colloidal suspensions and protein solutions, in terms of the formation of equilibrium clusters in the homogeneous fluid.

  18. Gas-diffusion-layer structural properties under compression via X-ray tomography

    Science.gov (United States)

    Zenyuk, Iryna V.; Parkinson, Dilworth Y.; Connolly, Liam G.; Weber, Adam Z.

    2016-10-01

    There is a need to understand the structure properties of gas-diffusion layers (GDLs) in order to optimize their performance in various electrochemical devices. This information is important for mathematical modelers, experimentalists, and designers. In this article, a comprehensive study of a large set of commercially available GDLs' porosity, tortuosity, and pore-size distribution (PSD) under varying compression is presented in a single study using X-ray computed tomography (CT), which allows for a noninvasive measurement. Porosities and PSDs are directly obtained from reconstructed stacks of images, whereas tortuosity is computed with a finite-element simulation. Bimodal PSDs due to the presence of binder are observed for most of the GDLs, approaching unimodal distributions at high compressions. Sample to sample variability is conducted to show that morphological properties hold across various locations. Tortuosity values are the lowest for MRC and Freudenberg, highest for TGP, and in-between for SGL papers. The exponents for the MRC and Freudenberg tortuosity demonstrate a very small dependence on compression because the shapes of the pores are spherical indicating minimal heterogeneity. From the representative-elementary-volume studies it is shown that domains of 1 × 1 mm in-plane and full thickness in through-plane directions accurately represent GDL properties.

  19. The structural properties of a two-Yukawa fluid: Simulation and analytical results.

    Science.gov (United States)

    Broccio, Matteo; Costa, Dino; Liu, Yun; Chen, Sow-Hsin

    2006-02-28

    Standard Monte Carlo simulations are carried out to assess the accuracy of theoretical predictions for the structural properties of a model fluid interacting through a hard-core two-Yukawa potential composed of a short-range attractive well next to a hard repulsive core, followed by a smooth, long-range repulsive tail. Theoretical calculations are performed in the framework provided by the Ornstein-Zernike equation, solved either analytically with the mean spherical approximation (MSA) or iteratively with the hypernetted-chain (HNC) closure. Our analysis shows that both theories are generally accurate in a thermodynamic region corresponding to a dense vapor phase around the critical point. For a suitable choice of potential parameters, namely, when the attractive well is deep and/or large enough, the static structure factor displays a secondary low-Q peak. In this case HNC predictions closely follow the simulation results, whereas MSA results progressively worsen the more pronounced this low-Q peak is. We discuss the appearance of such a peak, also experimentally observed in colloidal suspensions and protein solutions, in terms of the formation of equilibrium clusters in the homogeneous fluid.

  20. Influence of deposition rate on the structural properties of plasma-enhanced CVD epitaxial silicon

    Science.gov (United States)

    Chen, Wanghua; Cariou, Romain; Hamon, Gwenaëlle; Léal, Ronan; Maurice, Jean-Luc; Cabarrocas, Pere Roca i

    2017-01-01

    Solar cells based on epitaxial silicon layers as the absorber attract increasing attention because of the potential cost reduction. In this work, we studied the influence of the deposition rate on the structural properties of epitaxial silicon layers produced by plasma-enhanced chemical vapor deposition (epi-PECVD) using silane as a precursor and hydrogen as a carrier gas. We found that the crystalline quality of epi-PECVD layers depends on their thickness and deposition rate. Moreover, increasing the deposition rate may lead to epitaxy breakdown. In that case, we observe the formation of embedded amorphous silicon cones in the epi-PECVD layer. To explain this phenomenon, we develop a model based on the coupling of hydrogen and built-in strain. By optimizing the deposition conditions to avoid epitaxy breakdown, including substrate temperatures and plasma potential, we have been able to synthesize epi-PECVD layers up to a deposition rate of 8.3 Å/s. In such case, we found that the incorporation of hydrogen in the hydrogenated crystalline silicon can reach 4 at. % at a substrate temperature of 350 °C. PMID:28262840

  1. Thermodynamics and structural properties of a confined HP protein determined by Wang-Landau simulation

    Science.gov (United States)

    Pattanasiri, Busara; Li, Ying Wai; Landau, David P.; Wüst, Thomas; Triampo, Wannapong

    2013-08-01

    Understanding protein folding confined by surfaces is important for both biological sciences and the development of nanomaterials. In this work, we study the properties of a confined HP model protein by three different types of surfaces, namely, surfaces that attract: (a) all monomers; (b) only P monomers; and (c) only H monomers. The thermodynamic and structural quantities, such as the specific heat, number of surface contacts, and number of hydrophobic pairs, are obtained by using Wang-Landau sampling. The conformational "transitions", specifically, the debridging process and hydrophobic core formation, can be identified based on an analysis of these quantities. We found that these transitions take place at different temperatures, and the ground state configurations show variations in structural properties when different surface type is used. These scenarios are confirmed by snapshots of typical states of the systems. From our study, we conclude that the thermodynamics of these transitions and the structural changes depend on the combined actions of both the composition of the H monomers and the P monomers in the HP chain and the surface types.

  2. Castable thermoplastic urethane elastomers. II. Structure property correlations

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.; Wischmann, K.B.

    1977-01-01

    A liquid casting approach has been used to encapsulate electronic assemblies with specially-developed, soluble urethane elastomers. As a continuation of this work, the present paper correlates macromolecular morphology with both high strain ultimate and low strain dynamic mechanical properties of these thermoplastic elastomers. Although the morphology-property correlations are shown to fit within the general framework of a domain model, the possibility is raised that the liquid casting procedure might give rise to slightly different structural features than the more conventional fabrication methods (e.g., melt processing). It is anticipated that the results of this investigation will help to increase our fundamental understanding of liquid castable elastomers, which have been heretofore neglected to a significant extent.

  3. Structure-Properties of PPE Alloy by Reactive Blending

    Science.gov (United States)

    Furuta, Motonobu; Koyama, Yoshio; Inoue, Takashi

    Poly(phenylene ether) (PPE) is a high temperature polymer (Tg=210°C). Neat PPE is hardly melt-processed below its thermal decomposition temperature. It is believed that the melt-processability is only achieved by blending with polystyrene as a polymeric plasticizer. The polymeric plasticizer sacrifices the heat resistance; the Tg decreases almost linearly with polystyrene content. We found that PPE can react with poly(ethylene-co-glycidylmethacrylate) (EGMA) by melt mixing. Reactive blending of PPE with EGMA yielded an excellent engineering plastic with nice melt-processability, even when a small amount of EGMA (e.g., 5 wt%) was incorporated. The injection molded parts showed high impact strength, high temperature resistance, high tensile strength, and low dielectric loss. It can be classified as a super-engineering plastics. The computer simulation based on a particle-slip model revealed why the melt-processability is attained by the incorporation of polyolefin in pure PPE matrix.

  4. The biomechanical and structural properties of CS2 fimbriae

    CERN Document Server

    Mortezaei, Narges; Zakrisson, Johan; Bullitt, Esther; Andersson, Magnus

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrhea worldwide, and infection of children in underdeveloped countries often leads to high mortality rates. Isolated ETEC express a plethora of colonization factors (fimbriae/pili), of which CFA/I and CFA/II that are assembled via the alternate chaperone pathway (ACP), are amongst the most common. Fimbriae are filamentous structures, whose shafts are primarily composed of helically arranged single pilin-protein subunits, with a unique biomechanical capability allowing them to unwind and rewind. A sustained ETEC infection, under adverse conditions of dynamic shear forces, is primarily attributed to this biomechanical feature of ETEC fimbriae. Recent understandings about the role of fimbriae as virulence factors are pointing to an evolutionary adaptation of their structural and biomechanical features. In this work, we investigated the biophysical properties of CS2 fimbriae from the CFA/II group. Homology modelling its major structural subunit CotA ...

  5. Structural properties of star-like dendrimers in solution

    Energy Technology Data Exchange (ETDEWEB)

    Rathgeber, S. [Forschungszentrum Juelich GmbH, IFF Weiche Materie, 52425 Juelich (Germany); Gast, A.P. [Stanford University, Stanford, CA 94305-5025 (United States); Hedrick, J.L. [IBM Almaden Research Center, San Jose, CA 95120-6099 (United States)

    2002-07-01

    We measured the form factor of star-like poly-{epsilon}-caprolactone dendrimers under good solvent conditions with small-angle neutron scattering (SANS). The parameters varied in the experiment were the dendrimer generation g=1,2,3 and the number of segments between the branching units n=5,10,15,20. The results are discussed in the frame work of the Beaucage model from which we cannot only derive the radius of gyration R{sub g} of the dendrimers but also their fractal dimensions. Decreasing the number of spacer units between the branching points results in a strong stretching of the dendrons. The fractal dimension increases monotonically with increasing generation and spacer number between the limit expected for a low-functionality star P{approx}5/3 (loose, polymeric structure) and that expected for a high-functionality star P{approx}3 (compact shape). (orig.)

  6. Structural properties of star-like dendrimers in solution

    Science.gov (United States)

    Rathgeber, S.; Gast, A. P.; Hedrick, J. L.

    We measured the form factor of star-like poly-ɛ-caprolactone dendrimers under good solvent conditions with small-angle neutron scattering (SANS). The parameters varied in the experiment were the dendrimer generation g=1,2,3 and the number of segments between the branching units n=5,10,15,20. The results are discussed in the frame work of the Beaucage model from which we cannot only derive the radius of gyration Rg of the dendrimers but also their fractal dimensions. Decreasing the number of spacer units between the branching points results in a strong stretching of the dendrons. The fractal dimension increases monotonically with increasing generation and spacer number between the limit expected for a low-functionality star P 5/3 (loose, polymeric structure) and that expected for a high-functionality star P 3 (compact shape).

  7. Using Carl Rogers' person-centered model to explain interpersonal relationships at a school of nursing.

    Science.gov (United States)

    Bryan, Venise D; Lindo, Jascinth; Anderson-Johnson, Pauline; Weaver, Steve

    2015-01-01

    Faculty members are viewed as nurturers within the academic setting and may be able to influence students' behaviors through the formation of positive interpersonal relationships. Faculty members' attributes that best facilitated positive interpersonal relationships according to Carl Rogers' Person-Centered Model was studied. Students (n = 192) enrolled in a 3-year undergraduate nursing program in urban Jamaica were randomly selected to participate in this descriptive cross-sectional study. A 38-item questionnaire on interpersonal relationships with nursing faculty and students' perceptions of their teachers was utilized to collect data. Factor analysis was used to create factors of realness, prizing, and empathetic understanding. Multiple linear regression analysis on the interaction of the 3 factors and interpersonal relationship scores was performed while controlling for nursing students' study year and age. One hundred sixty-five students (mean age: 23.18 ± 4.51years; 99% female) responded. The regression model explained over 46% of the variance. Realness (β = 0.50, P interpersonal relationship scores assigned by the nursing students. Of the total number of respondents, 99 students (60%) reported satisfaction with the interpersonal relationships shared with faculty. Nursing students' perception of faculty members' realness appeared to be the most significant attribute in fostering positive interpersonal relationships.

  8. High-Order Fuzzy Time Series Model Based on Generalized Fuzzy Logical Relationship

    Directory of Open Access Journals (Sweden)

    Wangren Qiu

    2013-01-01

    Full Text Available In view of techniques for constructing high-order fuzzy time series models, there are three methods which are based on advanced algorithms, computational methods, and grouping the fuzzy logical relationships, respectively. The last kind model has been widely applied and researched for the reason that it is easy to be understood by the decision makers. To improve the fuzzy time series forecasting model, this paper presents a novel high-order fuzzy time series models denoted as GTS(M,N on the basis of generalized fuzzy logical relationships. Firstly, the paper introduces some concepts of the generalized fuzzy logical relationship and an operation for combining the generalized relationships. Then, the proposed model is implemented in forecasting enrollments of the University of Alabama. As an example of in-depth research, the proposed approach is also applied to forecast the close price of Shanghai Stock Exchange Composite Index. Finally, the effects of the number of orders and hierarchies of fuzzy logical relationships on the forecasting results are discussed.

  9. Employeeship concept: An interactive model of work relationships focused on leader and follower behaviors

    OpenAIRE

    Bertlett, Johan; Johansson, Curt R; Arvidsson, Marcus

    2011-01-01

    The purpose is to present a theoretical model of the concept employeeship. Employeeship concerns all employees and covers the vertical perspective of work behaviors and relationships between formal leaders and followers, and the horizontal perspective between co-workers on all organizational levels. This enables the study of both formal and informal leadership, authentically recognizing that all employees are possible leaders and that leadership emerges in the relationship between one leading...

  10. Statistical Methods for Detecting and Modeling General Patterns and Relationships in Lifetime Data

    Energy Technology Data Exchange (ETDEWEB)

    Kvaloey, Jan Terje

    1999-04-01

    In this thesis, the author tries to develop methods of detecting and modeling general patterns and relationships in lifetime data. Tests with power against nonmonotonic trends and nonmonotonic co variate effects are considered, and nonparametric regression methods which allow estimation of fairly general nonlinear relationships are studied. Practical uses of some of the methods are illustrated although in a medical rather than engineering or technological context.

  11. Relationship between Physical Disability and Depression by Gender: A Panel Regression Model

    OpenAIRE

    Noh, Jin-Won; Kwon, Young Dae; Park, Jumin; Oh, In-Hwan; Kim, Jinseok

    2016-01-01

    Background Depression in persons with physical disabilities may be more common than in the general population. The purpose of this study was to examine the relationship between physical disability and depression by gender among adults, using a large, nationally representative sample. Methods This study used data from the Korean Longitudinal Study of Aging, Wave one through four, and ran a series of random effect panel regression models to test the relationship between physical disability stat...

  12. Structure-property optimizations in donor polymers via electronics, substituents, and side chains toward high efficiency solar cells.

    Science.gov (United States)

    Uy, Rycel L; Price, Samuel C; You, Wei

    2012-07-26

    Many advances in organic photovoltaic efficiency are not yet fully understood and new insight into structure-property relationships is required to push this technology into broad commercial use. The aim of this article is not to comprehensively review recent work, but to provide commentary on recent successes and forecast where researchers should look to enhance the efficiency of photovoltaics. By lowering the LUMO level, utilizing electron-withdrawing substituents advantageously, and employing appropriate side chains on donor polymers, researchers can elucidate further aspects of polymer-PCBM interactions while ultimately developing materials that will push past 10% efficiency. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural properties of laminated Douglas fir/epoxy composite material

    Energy Technology Data Exchange (ETDEWEB)

    Spera, D.A. (National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center); Esgar, J.B. (Sverdrup Technology, Inc., Cleveland, OH (USA)); Gougeon, M.; Zuteck, M.D. (Gougeon Bros., Bay City, MI (USA))

    1990-05-01

    This publication contains a compilation of static and fatigue and strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 in. by 24 in. in cross section and approximately 30 ft long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications. 9 refs.

  14. Merging functional and structural properties of the monkey auditory cortex

    Directory of Open Access Journals (Sweden)

    Olivier eJoly

    2014-07-01

    Full Text Available Recent neuroimaging studies in primates aim to define the functional properties of auditory cortical areas, especially areas beyond A1, in order to further our understanding of the auditory cortical organization. Precise mapping of functional magnetic resonance imaging (fMRI results and interpretation of their localizations among all the small auditory subfields remains challenging. To facilitate this mapping, we combined here information from cortical folding, micro-anatomy, surface-based atlas and tonotopic mapping. We used for the first time, phase-encoded fMRI design for mapping the monkey tonotopic organization. From posterior to anterior, we found a high-low-high progression of frequency preference on the superior temporal plane. We show a faithful representation of the fMRI results on a locally flattened surface of the superior temporal plane. In a tentative scheme to delineate core versus belt regions which share similar tonotopic organizations we used the ratio of T1-weighted and T2-weighted MR images as a measure of cortical myelination. Our results, presented along a co-registered surface-based atlas, can be interpreted in terms of a current model of the monkey auditory cortex.

  15. Structural properties of laminated Douglas fir/epoxy composite material

    Science.gov (United States)

    Spera, David A.; Esgar, Jack B.; Gougeon, Meade; Zuteck, Michael D.

    1990-01-01

    This publication contains a compilation of static and fatigue strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 by 24 in. in cross section and approximately 30 ft. long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications.

  16. Characterization of subhalo structural properties and implications for dark matter annihilation signals

    Science.gov (United States)

    Moliné, Ángeles; Sánchez-Conde, Miguel A.; Palomares-Ruiz, Sergio; Prada, Francisco

    2017-01-01

    A prediction of the standard ΛCDM cosmology is that dark matter (DM) halos are teeming with numerous self-bound substructure, or subhalos. The precise properties of these subhalos represent important probes of the underlying cosmological model. We use data from Via Lactea II and ELVIS N-body simulations to learn about the structure of subhalos with masses 106 - 1011 h-1M⊙. Thanks to a superb subhalo statistics, we study subhalo properties as a function of distance to host halo center and subhalo mass, and provide a set of fits that accurately describe the subhalo structure. We also investigate the role of subhalos on the search for DM annihilation. Previous work has shown that subhalos are expected to boost the DM signal of their host halos significantly. Yet, these works traditionally assumed that subhalos exhibit similar structural properties than those of field halos, while it is known that subhalos are more concentrated. Building upon our N-body data analysis, we refine the substructure boost model of Sanchez-Conde & Prada (2014), and find boosts that are a factor 2-3 higher. We further refine the model to include unavoidable tidal stripping effects on the subhalo population. For field halos, this introduces a moderate (˜20% - 30%) suppression. Yet, for subhalos like those hosting dwarf galaxy satellites, tidal stripping plays a critical role, the boost being at the level of a few tens of percent at most. We provide a parametrization of the boost for field halos that can be safely applied over a wide halo mass range.

  17. Nuclear structure properties and stellar weak rates for 76Se: Unblocking of the Gamow Teller strength

    Science.gov (United States)

    Nabi, Jameel-Un; Ishfaq, Mavra; Böyükata, Mahmut; Riaz, Muhammad

    2017-10-01

    At finite temperatures (≥ 107K), 76Se is abundant in the core of massive stars and electron capture on 76Se has a consequential role to play in the dynamics of core-collapse. The present work may be classified into two main categories. In the first phase we study the nuclear structure properties of 76Se using the interacting boson model-1 (IBM-1). The IBM-1 investigations include the energy levels, B (E 2) values and the prediction of the geometry. We performed the extended consistent-Q formalism (ECQF) calculation and later the triaxial formalism calculation (constructed by adding the cubic term to the ECQF). The geometry of 76Se can be envisioned within the formalism of the potential energy surface based on the classical limit of IBM-1 model. In the second phase, we reconfirm the unblocking of the Gamow-Teller (GT) strength in 76Se (a test case for nuclei having N > 40 and Z < 40). Using the deformed pn-QRPA model we calculate GT transitions, stellar electron capture cross section (within the limit of low momentum transfer) and stellar weak rates for 76Se. The distinguishing feature of our calculation is a state-by-state evaluation of stellar weak rates in a fully microscopic fashion. Results are compared with experimental data and previous calculations. The calculated GT distribution fulfills the Ikeda sum rule. Rates for β-delayed neutrons and emission probabilities are also calculated. Our study suggests that at high stellar temperatures and low densities, the β+-decay on 76Se should not be neglected and needs to be taken into consideration along with electron capture rates for simulation of presupernova evolution of massive stars.

  18. Structural Properties of Potexvirus Coat Proteins Detected by Optical Methods.

    Science.gov (United States)

    Semenyuk, P I; Karpova, O V; Ksenofontov, A L; Kalinina, N O; Dobrov, E N; Makarov, V V

    2016-12-01

    It has been shown by X-ray analysis that cores of coat proteins (CPs) from three potexviruses, flexible helical RNA-containing plant viruses, have similar α-helical structure. However, this similarity cannot explain structural lability of potexvirus virions, which is believed to determine their biological activity. Here, we used circular dichroism (CD) spectroscopy in the far UV region to compare optical properties of CPs from three potexviruses with the same morphology and similar structure. CPs from Alternanthera mosaic virus (AltMV), potato aucuba mosaic virus (PAMV), and potato virus X (PVX) have been studied in a free state and in virions. The CD spectrum of AltMV virions was similar to the previously obtained CD spectrum of papaya mosaic virus (PapMV) virions, but differed significantly from the CD spectrum of PAMV virions. The CD spectrum of PAMV virions resembled in its basic characteristics the CD spectrum of PVX virions characterized by molar ellipticity that is abnormally low for α-helical proteins. Homology modeling of the CP structures in AltMV, PAMV, and PVX virions was based on the known high-resolution structures of CPs from papaya mosaic virus and bamboo mosaic virus and confirmed that the structures of the CP cores in all three viruses were nearly identical. Comparison of amino acid sequences of different potexvirus CPs and prediction of unstructured regions in these proteins revealed a possible correlation between specific features in the virion CD spectra and the presence of disordered N-terminal segments in the CPs.

  19. The relationship between relational models and individualism and collectivism: evidence from culturally diverse work groups.

    Science.gov (United States)

    Vodosek, Markus

    2009-04-01

    Relational models theory (Fiske, 1991 ) proposes that all thinking about social relationships is based on four elementary mental models: communal sharing, authority ranking, equality matching, and market pricing. Triandis and his colleagues (e.g., Triandis, Kurowski, & Gelfand, 1994 ) have suggested a relationship between the constructs of horizontal and vertical individualism and collectivism and Fiske's relational models. However, no previous research has examined this proposed relationship empirically. The objective of the current study was to test the association between the two frameworks in order to further our understanding of why members of culturally diverse groups may prefer different relational models in interactions with other group members. Findings from this study support a relationship between Triandis' constructs and Fiske's four relational models and uphold Fiske's ( 1991 ) claim that the use of the relational models is culturally dependent. As hypothesized, horizontal collectivism was associated with a preference for equality matching and communal sharing, vertical individualism was related to a preference for authority ranking, and vertical collectivism was related to a preference for authority ranking and communal sharing. However, contrary to expectations, horizontal individualism was not related to a preference for equality matching and market pricing, and vertical individualism was not associated with market pricing. By showing that there is a relationship between Triandis' and Fiske's frameworks, this study closes a gap in relational models theory, namely how culture relates to people's preferences for relational models. Thus, the findings from this study will enable future researchers to explain and predict what relational models are likely to be used in a certain cultural context.

  20. Formative evaluation of a frame-based model of locative relationships in human anatomy.

    Science.gov (United States)

    Bean, C A

    1997-01-01

    The verb structure of narrative text in a gross anatomy textbook was analyzed to identify locative relationships. The 169 locative indicators were organized semantically to construct a frame-based model. The validity and coverage of the model was assessed and compared with the UMLS Semantic Net Relations using a novel test set of 71 indicators. All mapped directly to the frame model, while 60% mapped directly to UMLS.

  1. Fuzzy Time Series Forecasting Model Based on Automatic Clustering Techniques and Generalized Fuzzy Logical Relationship

    Directory of Open Access Journals (Sweden)

    Wangren Qiu

    2015-01-01

    Full Text Available In view of techniques for constructing high-order fuzzy time series models, there are three types which are based on advanced algorithms, computational method, and grouping the fuzzy logical relationships. The last type of models is easy to be understood by the decision maker who does not know anything about fuzzy set theory or advanced algorithms. To deal with forecasting problems, this paper presented novel high-order fuzz time series models denoted as GTS (M, N based on generalized fuzzy logical relationships and automatic clustering. This paper issued the concept of generalized fuzzy logical relationship and an operation for combining the generalized relationships. Then, the procedure of the proposed model was implemented on forecasting enrollment data at the University of Alabama. To show the considerable outperforming results, the proposed approach was also applied to forecasting the Shanghai Stock Exchange Composite Index. Finally, the effects of parameters M and N, the number of order, and concerned principal fuzzy logical relationships, on the forecasting results were also discussed.

  2. Bidirectional Relationship between Chronic Kidney Disease and Periodontal Disease: Structural Equation Modeling

    Science.gov (United States)

    Fisher, Monica A.; Taylor, George W.; West, Brady T.; McCarthy, Ellen T.

    2011-01-01

    Periodontal disease is associated with diabetes, heart disease, and chronic kidney disease (CKD), an effect postulated to be due in part to endovascular inflammation. While a bidirectional relationship between CKD and periodontal disease is plausible, it has not been previously reported in the literature. Over 11 200 adults 18 years or older were identified in the Third National Health and Nutrition Examination Survey. Analyses were conducted in two stages. First, multivariable logistic regression models were fitted to test the hypothesis that periodontal disease was independently associated with CKD. Given the potential that the periodontal disease and CKD relationship may be bidirectional, a two-step analytic approach was used that involved 1) tests for mediation, and 2) structural equation models to examine more complex direct and indirect effects of periodontal disease on CKD, and vice versa. In two separate models periodontal disease (ORAdj =1.62 (95% CI: 1.17-2.26) and edentulism (ORAdj = 1.83 (1.31-2.55) and periodontal disease score (ORAdj = 1.01 (1.01-1.02) were associated with CKD, when simultaneously adjusting for 14 other factors. Three of four structural equation models were most plausible suggesting bidirectional relationships. Collectively, these analyses provide for the first time empirical support for a bidirectional relationship between CKD and periodontal disease, and mediation of that relationship by diabetes duration and hypertension. PMID:20927035

  3. Species-environment relationships and potential for distribution modelling in coastal waters

    Science.gov (United States)

    Snickars, M.; Gullström, M.; Sundblad, G.; Bergström, U.; Downie, A.-L.; Lindegarth, M.; Mattila, J.

    2014-01-01

    Due to increasing pressure on the marine environment there is a growing need to understand species-environment relationships. To provide background for prioritising among variables (predictors) for use in distribution models, the relevance of predictors for benthic species was reviewed using the coastal Baltic Sea as a case-study area. Significant relationships for three response groups (fish, macroinvertebrates, macrovegetation) and six predictor categories (bottom topography, biotic features, hydrography, wave exposure, substrate and spatiotemporal variability) were extracted from 145 queried peer-reviewed field-studies covering three decades and six subregions. In addition, the occurrence of interaction among predictors was analysed. Hydrography was most often found in significant relationships, had low level of interaction with other predictors, but also had the most non-significant relationships. Depth and wave exposure were important in all subregions and are readily available, increasing their applicability for cross-regional modelling efforts. Otherwise, effort to model species distributions may prove challenging at larger scale as the relevance of predictors differed among both response groups and regions. Fish and hard bottom macrovegetation have the largest modelling potential, as they are structured by a set of predictors that at the same time are accurately mapped. A general importance of biotic features implies that these need to be accounted for in distribution modelling, but the mapping of most biotic features is challenging, which currently lowers the applicability. The presence of interactions suggests that predictive methods allowing for interactive effects are preferable. Detailing these complexities is important for future distribution modelling.

  4. The visualization of DHSI based on the relationship model of CL and SA

    Science.gov (United States)

    Wang, Haibo; Guo, Huijuan; Xue, Chengqi

    2013-03-01

    The source and cause of cognitive load (CL) and situation awareness (SA) in digital human-system interface (DHSI) is explained. Based on the analysis of cognitive procedure and the relation of CL and SA, The relationship model of CL and SA in DHSI is put forward. Using the association target and the relationship model of CL and SA, the method and strategy of information visualization of DHSI is presented which is based on the cognitive psychology. Selecting the Boeing 757 autopilot as the case, the comparison of design is shown.

  5. A study of SEC chromatograms on the basis of polymer structure properties

    DEFF Research Database (Denmark)

    curve may exist between the SEC retention volume and polymer structure properties such as hydrodynamic volume, hydrodynamic radius and radius of gyration. Those structure properties can be determined by intrinsic viscosity measurement, dynamic and static light scattering respectively, and the measured...... already been well established, while for nonlinear polymer samples and mixtures of linear and nonlinear polymers, the measured SEC data are often used just qualitatively. The SEC separation process is rather complicated, and a detailed study using finite element method and/or Brownian Dynamics simulation...... values are often certain statistical averages weighted by all the polymers present in the sample. On the other hand, those structure properties and many others can be reasonably estimated by computer simulation techniques such as random walk simulations, self avoiding walk simulations or detailed Monte...

  6. The relationship between market orientation and performance in the hospital industry: a structural equations modeling approach.

    Science.gov (United States)

    Raju, P S; Lonial, S C; Gupta, Y P; Ziegler, C

    2000-06-01

    There is general consensus in the research literature that market orientation is related to organizational performance. This study examines this relationship in the hospital industry. One unique feature of this study is that both market orientation and performance are conceptualized as being multi-dimensional constructs. Hence the technique of Structural Equations Modeling (SEM) is used to examine the relationship. Analyses were based on market orientation and performance data obtained from 175 hospitals in a five-state region of the United States. The SEM results confirm the multi-dimensional nature of both market orientation and performance, and the strong relationship between the constructs. Interestingly, this relationship is found to be much stronger for smaller hospitals than for larger hospitals. Implications for the hospital industry are discussed.

  7. Gene-disease relationship discovery based on model-driven data integration and database view definition.

    Science.gov (United States)

    Yilmaz, S; Jonveaux, P; Bicep, C; Pierron, L; Smaïl-Tabbone, M; Devignes, M D

    2009-01-15

    Computational methods are widely used to discover gene-disease relationships hidden in vast masses of available genomic and post-genomic data. In most current methods, a similarity measure is calculated between gene annotations and known disease genes or disease descriptions. However, more explicit gene-disease relationships are required for better insights into the molecular bases of diseases, especially for complex multi-gene diseases. Explicit relationships between genes and diseases are formulated as candidate gene definitions that may include intermediary genes, e.g. orthologous or interacting genes. These definitions guide data modelling in our database approach for gene-disease relationship discovery and are expressed as views which ultimately lead to the retrieval of documented sets of candidate genes. A system called ACGR (Approach for Candidate Gene Retrieval) has been implemented and tested with three case studies including a rare orphan gene disease.

  8. Coopetitive Supply Chain Relationship Model: Application to the Smartphone Manufacturing Network.

    Science.gov (United States)

    Kwok, Jeremy Jie Ming; Lee, Dong-Yup

    2015-01-01

    Previous researches for understanding supply chain relationship have mostly focused on its vertical collaboration between buyers and suppliers. However, there have been some instances of volatile and stable collaborative relationships amongst competitors such as Apple-Samsung product manufacturer-component supplier relationship and airline alliances, respectively, which is recognized as coopetition. Even though there have been several qualitative studies and a number of game theory models on coopetition, it is rare to find any attempts on quantitative characterization of such coopetitive dynamic behavior in supply chain relationship. Hence, in this work, we formulated a MINLP model mathematically representing coopetitive relationships in a cost efficient supply chain network. In particular, the coopetition factor was newly introduced to measure the degree of coopetition among supply chain players and determine the optimal level of coopetition to engage in. The utility and practicality of the model were strongly demonstrated using a case study of a hypothetical smartphone supply chain network under different scenarios, thus proposing their strategically viable optimal interactions. Therefore, this exploratory study can herald a new era of global coopetitive business.

  9. Coopetitive Supply Chain Relationship Model: Application to the Smartphone Manufacturing Network.

    Directory of Open Access Journals (Sweden)

    Jeremy Jie Ming Kwok

    Full Text Available Previous researches for understanding supply chain relationship have mostly focused on its vertical collaboration between buyers and suppliers. However, there have been some instances of volatile and stable collaborative relationships amongst competitors such as Apple-Samsung product manufacturer-component supplier relationship and airline alliances, respectively, which is recognized as coopetition. Even though there have been several qualitative studies and a number of game theory models on coopetition, it is rare to find any attempts on quantitative characterization of such coopetitive dynamic behavior in supply chain relationship. Hence, in this work, we formulated a MINLP model mathematically representing coopetitive relationships in a cost efficient supply chain network. In particular, the coopetition factor was newly introduced to measure the degree of coopetition among supply chain players and determine the optimal level of coopetition to engage in. The utility and practicality of the model were strongly demonstrated using a case study of a hypothetical smartphone supply chain network under different scenarios, thus proposing their strategically viable optimal interactions. Therefore, this exploratory study can herald a new era of global coopetitive business.

  10. Effect of oxide nanoparticles on structural properties of multiwalled carbon nanotubes

    Science.gov (United States)

    Dhall, Shivani; Jaggi, Neena

    2016-03-01

    A simple chemical precipitation route is reported to partially decorate mutliwalled carbon nanotubes (MWCNTs) with oxide nanoparticles in the present study. X-ray diffraction (XRD), Raman spectroscopy and Scanning electron microscopy (SEM) are used to investigate the structural properties of MWCNTs composite with nickel, cuprous, zinc and tin oxides nanoparticles. Raman analysis confirms that, ZnO nanoparticles attached nanotubes show more ordering of graphene layers as compared to the others because of uniform dispersion of nanoparticles. It is investigated that, adopted route proved helpful to improve the structural properties of the nanotubes.

  11. Converting round tendons to flat tendon constructs: Does the preparation process have an influence on the structural properties?

    Science.gov (United States)

    Domnick, C; Herbort, M; Raschke, M J; Schliemann, B; Siebold, R; Śmigielski, R; Fink, C

    2017-05-01

    The structural properties of hamstring tendon grafts were evaluated in a porcine model, after processing it to a flat shape, to better replace or augment anatomic flat structures (e.g. ACL, MPFL or MCL). In this biomechanical study, porcine flexor tendons were used which have a comparable shape to semitendinosus and gracilis tendons. One part of the tendon was prepared to a flat tendon construct by splitting the tendon longitudinally with a knife to half of the diameter of the tendon. The semi-split tendon was scratched out to a flat shape. The other matched part was tested in its original round shape. The tendons (n = 40) have been fixed in a uniaxial testing machine (Zwick/Roell) by cryo-clamps after preparing the fixed ends by 2-0 polyester sutures (2-0 Ethibond(®) EXCEL, Ethicon, Somerville, NJ). In every specimen, there was a free 60-mm tendon part between both clamps. The tendons have been loaded to failure to evaluate typical biomechanical parameters such as stiffness, yield load and maximum load. No statistically significant differences (n.s.) regarding stiffness, yield load and maximum load between natively round and processed flat tendons could be detected. A prepared flat-shaped tendon does not show any different structural properties compared with an original round tendon. Therefore, a flat tendon seems to be a biomechanical stable graft option for anatomic reconstruction or augmentation of injured natively flat-shaped structures such as MCL, MPFL or ACL.

  12. Exploring the Relationship Between Business Model Innovation, Corporate Sustainability, and Organisational Values within the Fashion Industry

    DEFF Research Database (Denmark)

    Pedersen, Esben Rahbek Gjerdrum; Gwozdz, Wencke; Hvass, Kerli Kant

    2016-01-01

    The objective of this paper is to examine the relationship between business model innovation, corporate sustainability, and the underlying organisational values. Moreover, the paper examines how the three dimensions correlate with corporate financial performance. It is concluded that companies...... with innovative business models are more likely to address corporate sustainability and that business model innovation and corporate sustainability alike are typically found in organisations rooted in values of flexibility and discretion. Business model innovation and corporate sustainability thus seem to have...... their origin in the fundamental principles guiding the organisation. In addition, the study also finds a positive relationship between the core organisational values and financial performance. The analysis of the paper is based on survey responses from 492 managers within the Swedish fashion industry....

  13. New Quantitative Structure-Activity Relationship Models Improve Predictability of Ames Mutagenicity for Aromatic Azo Compounds.

    Science.gov (United States)

    Manganelli, Serena; Benfenati, Emilio; Manganaro, Alberto; Kulkarni, Sunil; Barton-Maclaren, Tara S; Honma, Masamitsu

    2016-10-01

    Existing Quantitative Structure-Activity Relationship (QSAR) models have limited predictive capabilities for aromatic azo compounds. In this study, 2 new models were built to predict Ames mutagenicity of this class of compounds. The first one made use of descriptors based on simplified molecular input-line entry system (SMILES), calculated with the CORAL software. The second model was based on the k-nearest neighbors algorithm. The statistical quality of the predictions from single models was satisfactory. The performance further improved when the predictions from these models were combined. The prediction results from other QSAR models for mutagenicity were also evaluated. Most of the existing models were found to be good at finding toxic compounds but resulted in many false positive predictions. The 2 new models specific for this class of compounds avoid this problem thanks to a larger set of related compounds as training set and improved algorithms.

  14. Uncertainty in the relationship between flow and parameters in models of pollutant transport

    Science.gov (United States)

    Romanowicz, R.; Osuch, M.; Wallis, S.; Napiórkowski, J. J.

    2009-04-01

    Fluorescent dye-tracer studies are usually performed under steady-state flow conditions. However, the model parameters, estimated using the tracer data, depend on the discharges. This paper investigates uncertainties in the relationship between discharges and parameters of a transient storage (TS) and an aggregated dead zone (ADZ) models. We apply a Bayesian statistical approach to derive the cumulative distribution of a range of model parameters conditioned on discharges. The data consist of eighteen tracer concentration profiles taken at different flow values at two cross-sections from the Murray Burn, a stream flowing through the Heriot-Watt University Campus at Riccarton in Edinburgh, Scotland. A number of studies have been reported of the dependence of TS and ADZ model parameters on discharge but there are very few studies on the uncertainty related to that parameterization, which is the aim of this work. As the TS model is purely deterministic and the ADZ model is stochastic, different approaches are required to estimate the uncertainty in the dependence of their parameters on flow. The Generalised Likelihood Uncertainty Estimation (GLUE) approach is suitable for the deterministic models and is therefore applied to the TS model. The method applies Monte Carlo sampling of parameter space used in multiple simulations of a deterministic transient storage model. The relationship between model parameters and flow has the form of a nonlinear regression model based on multiple random realizations of the deterministic transport model. The parameterization of that relationship and its introduction into the TS model allow for the conditioning of parameter estimates and as a result, also model predictions on the whole set of available observations. In the case of the ADZ model, the approach is based on Monte Carlo sampling of ADZ model parameters, taking into account heteroscedastic variance of the observations and estimates of the covariance of the model parameters

  15. The Relationship between Root Mean Square Error of Approximation and Model Misspecification in Confirmatory Factor Analysis Models

    Science.gov (United States)

    Savalei, Victoria

    2012-01-01

    The fit index root mean square error of approximation (RMSEA) is extremely popular in structural equation modeling. However, its behavior under different scenarios remains poorly understood. The present study generates continuous curves where possible to capture the full relationship between RMSEA and various "incidental parameters," such as…

  16. Exploring Reading Comprehension Skill Relationships through the G-DINA Model

    Science.gov (United States)

    Chen, Huilin; Chen, Jinsong

    2016-01-01

    By analysing the test data of 1029 British secondary school students' performance on 20 Programme for International Student Assessment English reading items through the generalised deterministic input, noisy "and" gate (G-DINA) model, the study conducted two investigations on exploring the relationships among the five reading…

  17. The Relationship between the Big-Five Model of Personality and Self-Regulated Learning Strategies

    Science.gov (United States)

    Bidjerano, Temi; Dai, David Yun

    2007-01-01

    The study examined the relationship between the big-five model of personality and the use of self-regulated learning strategies. Measures of self-regulated learning strategies and big-five personality traits were administered to a sample of undergraduate students. Results from canonical correlation analysis indicated an overlap between the…

  18. The love equation: Computational modeling of romantic relationships in French classical drama

    NARCIS (Netherlands)

    Karsdorp, F.; Kestemont, M.; Schöch, C.; Bosch, A.P.J. van den

    2015-01-01

    We report on building a computational model of romantic relationships in a corpus of historical literary texts. We frame this task as a ranking problem in which, for a given character, we try to assign the highest rank to the character with whom (s)he is most likely to be romantically involved. As d

  19. Applying the Nominal Response Model within a Longitudinal Framework to Construct the Positive Family Relationships Scale

    Science.gov (United States)

    Preston, Kathleen Suzanne Johnson; Parral, Skye N.; Gottfried, Allen W.; Oliver, Pamella H.; Gottfried, Adele Eskeles; Ibrahim, Sirena M.; Delany, Danielle

    2015-01-01

    A psychometric analysis was conducted using the nominal response model under the item response theory framework to construct the Positive Family Relationships scale. Using data from the Fullerton Longitudinal Study, this scale was constructed within a long-term longitudinal framework spanning middle childhood through adolescence. Items tapping…

  20. Expanding business-to-business customer relationships : modeling the customer's upgrade decision

    NARCIS (Netherlands)

    Bolton, R.; Lemon, K.N.; Verhoef, P.C.

    2008-01-01

    This article develops a model of a business customer's decision to upgrade service contracts conditional on the decision to renew the contract. It proposes that the firm's upgrade decision is influenced by (1) decision-maker perceptions of the relationship with the supplier, (2) contract-level exper

  1. The Relationship between Victimization at School and Achievement: The Cusp Catastrophe Model for Reading Performance

    Science.gov (United States)

    Sideridis, Georgios D.; Antoniou, Faye; Stamovlasis, Dimitrios; Morgan, Paul L.

    2013-01-01

    We evaluated the relationship between victimization and academic achievement from a nonlinear perspective using a cusp catastrophe model. Participants were 62 students with identified learning disabilities (LD) using statewide criteria in Greece. Students participated in a 2-year cohort-sequential design. Reading assessments involved measures of…

  2. Modeling the Relationship between High School Students' Chemistry Self-Efficacy and Metacognitive Awareness

    Science.gov (United States)

    Kirbulut, Zubeyde Demet

    2014-01-01

    In this study, the relationship between students' chemistry self-efficacy beliefs and metacognitive awareness was investigated utilizing a path model. There were 268 chemistry high school students (59% 10th grade and 41% 11th grade) participated in the study. The students took two-hour chemistry course in the 9th and 10th grade and three-hour…

  3. Exploring Reading Comprehension Skill Relationships through the G-DINA Model

    Science.gov (United States)

    Chen, Huilin; Chen, Jinsong

    2016-01-01

    By analysing the test data of 1029 British secondary school students' performance on 20 Programme for International Student Assessment English reading items through the generalised deterministic input, noisy "and" gate (G-DINA) model, the study conducted two investigations on exploring the relationships among the five reading…

  4. The Relationship between Civic Behavior and Civic Values: A Conceptual Model

    Science.gov (United States)

    Bryant, Alyssa N.; Gayles, Joy Gaston; Davis, Heather A.

    2012-01-01

    This study examined the relationships among college students' civic values and behaviors, college culture, and college involvement, accounting for their pre-college inclinations toward civic responsibility. Using a longitudinal, national dataset comprised of 3,680 college students, the study employed structural equation modeling to identify a…

  5. A High-Dimensional, Multivariate Copula Approach to Modeling Multivariate Agricultural Price Relationships and Tail Dependencies

    Science.gov (United States)

    Xuan Chi; Barry Goodwin

    2012-01-01

    Spatial and temporal relationships among agricultural prices have been an important topic of applied research for many years. Such research is used to investigate the performance of markets and to examine linkages up and down the marketing chain. This research has empirically evaluated price linkages by using correlation and regression models and, later, linear and...

  6. Predictive and Explanatory Relationship Model between Procrastination, Motivation, Anxiety and Academic Achievement

    Science.gov (United States)

    Akpur, Ugur

    2017-01-01

    Purpose: The purpose of this study is to determine the predictive and explanatory relationship model between procrastination, motivation, anxiety and academic achievement of university students. Research Methods: In this study, a causal research design was used. The study group consisted of 211 participants. In order to determine their motivation…

  7. The Relationship between Social Anxiety and Social Support in Adolescents: A Test of Competing Causal Models

    Science.gov (United States)

    Calsyn, Robert J.; Winter, Joel P.; Burger, Gary K.

    2005-01-01

    This study compared the strength of competing causal models in explaining the relationship between perceived support, enacted support, and social anxiety in adolescents. The social causation hypothesis postulates that social support causes social anxiety, whereas the social selection hypothesis postulates that social anxiety causes social support.…

  8. Quantifying relationships between governance, agriculture, and nature: empirical-statistical-and pattern-oriented modeling

    NARCIS (Netherlands)

    Mandemaker, M.

    2014-01-01

    Quantifying relationships between governance, agriculture, and nature: empirical-statistical- and pattern-oriented modeling Abstract An improved understanding of complex processes of both socio-political and economic governance may help to abate neg

  9. Expanding business-to-business customer relationships : modeling the customer's upgrade decision

    NARCIS (Netherlands)

    Bolton, R.; Lemon, K.N.; Verhoef, P.C.

    This article develops a model of a business customer's decision to upgrade service contracts conditional on the decision to renew the contract. It proposes that the firm's upgrade decision is influenced by (1) decision-maker perceptions of the relationship with the supplier, (2) contract-level

  10. The Love Equation : Computational Modeling of Romantic Relationships in French Classical Drama

    NARCIS (Netherlands)

    Karsdorp, F.B.; Kestemont, Mike; Schöch, Christof; van den Bosch, Antal; Finlayson, Mark; Miller, Ben; Lieto, Antonio; Ronfard, Remi

    2015-01-01

    We report on building a computational model of romantic relationships in a corpus of historical literary texts. We frame this task as a ranking problem in which, for a given character, we try to assign the highest rank to the character with whom (s)he is most likely to be romantically involved. As d

  11. The Relationship between Economic Growth and Money Laundering – a Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Daniel Rece

    2009-09-01

    Full Text Available This study provides an overview of the relationship between economic growth and money laundering modeled by a least squares function. The report analyzes statistically data collected from USA, Russia, Romania and other eleven European countries, rendering a linear regression model. The study illustrates that 23.7% of the total variance in the regressand (level of money laundering is “explained” by the linear regression model. In our opinion, this model will provide critical auxiliary judgment and decision support for anti-money laundering service systems.

  12. Learning Item-Attribute Relationship in Q-Matrix Based Diagnostic Classification Models

    CERN Document Server

    Liu, Jingchen; Ying, Zhiliang

    2011-01-01

    Recent surge of interests in cognitive assessment has led to the developments of novel statistical models for diagnostic classification. Central to many such models is the well-known Q-matrix, which specifies the item-attribute relationship. This paper proposes a principled estimation procedure for the Q-matrix and related model parameters. Desirable theoretic properties are established through large sample analysis. The proposed method also provides a platform under which important statistical issues, such as hypothesis testing and model selection, can be addressed.

  13. Some insights for a relationship marketing model integrating SERVQUAL and customer loyalty in dental clinics

    OpenAIRE

    Vargas Perez, Ana Maria; Grijalvo Martin, Maria Mercedes; Mercado Idoeta, Carmelo

    2012-01-01

    The demand of new services, the emergence of new business models, insufficient innovation, underestimation of customer loyalty and reluctance to adopt new management are evidence of the deficiencies and the lack of research about the relations between patients and dental clinics. In this article we propose the structure of a model of Relationship Marketing (RM) in the dental clinic that integrates information from SERVQUAL, Customer Loyalty (CL) and activities of RM and combines the vision of...

  14. Structure-property-processing correlations in freeze-cast composite scaffolds.

    Science.gov (United States)

    Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K

    2013-05-01

    Surprisingly few reports have been published, to date, on the structure-property-processing correlations observed in freeze-cast materials directionally solidified from polymer solutions, or ceramic or metal slurries. The studies that exist focus on properties of sintered ceramics, that is materials whose structure was altered by further processing. In this contribution, we report first results on correlations observed in alumina-chitosan-gelatin composites, which were chosen as a model system to test and compare the effect of particle size and processing parameters on their mechanical properties at a specific composition. Our study reveals that highly porous (>90%) hybrid materials can be manufactured by freeze casting, through the self-assembly of a polymer and a ceramic phase that occurs during directional solidification, without the need of additional processing steps such as sintering or infiltration. It further illustrates that the properties of freeze-cast hybrid materials can independently be tailored at two levels of their structural hierarchy, allowing for the simultaneous optimization of both mechanical and structural requirements. An increase in freezing rate resulted in decreases in lamellar spacing, cell wall thickness, pore aspect ratio and cross-sectional area, as well as increases in both Young's modulus and compressive yield strength. The mechanical properties of the composite scaffolds increased with an increasing particle size. The results show that both structure and mechanical properties of the freeze-cast composites can be custom-designed and that they are thus ideally suited for a large variety of applications that require high porosity at low or medium load-bearing capacity.

  15. Optoelectronic and structural properties of InGaN nanostructures grown by plasma-assisted MOCVD

    Science.gov (United States)

    Seidlitz, Daniel; Senevirathna, M. K. I.; Abate, Y.; Hoffmann, A.; Dietz, N.

    2015-09-01

    This paper presents optoelectronic and structural layer properties of InN and InGaN epilayers grown on sapphire templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPA-MOCVD). Real-time characterization techniques have been applied during the growth process to gain insight of the plasma-assisted decomposition of the nitrogen precursor and associated growth surface processes. Analyzed Plasma Emission Spectroscopy (PES) and UV Absorption Spectroscopy (UVAS) provide detection and concentrations of plasma generated active species (N*/NH*/NHx*). Various precursors have been used to assess the nitrogen-active fragments that are directed from the hollow cathode plasma tube to the growth surface. The in-situ diagnostics results are supplemented with ex-situ materials structures investigation results of nanoscale structures using Scanning Near-field Optical Microscopy (SNOM). The structural properties have been analyzed by Raman spectroscopy and Fourier transform infrared (FTIR) reflectance. The Optoelectronic and optical properties were extracted by modeling the FTIR reflectance (e.g. free carrier concentration, high frequency dielectric constant, mobility) and optical absorption spectroscopy. The correlation and comparison between the in-situ metrology results with the ex-situ nano-structural and optoelectronic layer properties provides insides into the growth mechanism on how plasma-activated nitrogen-fragments can be utilized as nitrogen precursor for group III-nitride growth. The here assessed growth process parameter focus on the temporal precursor exposure of the growth surface, the reactor pressure, substrate temperature and their effects of the properties of the InN and InGaN epilayers.

  16. First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

    Science.gov (United States)

    Liu, Lei; Lv, Chao-Jia; Zhuang, Chun-Qiang; Yi, Li; Liu, Hong; Du, Jian-Guo

    2015-12-01

    The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si-O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507-511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177-212]. The most striking changes are of inter-tetrahedral O-O distances and Si-O-Si angles. The volume of the tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the tetrahedron and the changes in the Si-O-Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dνi/dP) of the 12 Raman frequencies are obtained at 0 GPa-5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth. Project supported by the Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant No. 2012IES010201) and the National Natural Science Foundation of China (Grant Nos. 41174071 and 41373060).

  17. Variance Distribution in Sibling Relationships: Advantages of Multilevel Modeling Using Full Sibling Groups.

    Science.gov (United States)

    Marciniak, Karyn

    2017-03-01

    The majority of research on sibling relationships has investigated only one or two siblings in a family, but there are many theoretical and methodological limitations to this single dyadic perspective. This study uses multiple siblings (541 adults) in 184 families, where 96 of these families had all siblings complete the study, to demonstrate the value in including full sibling groups when conducting research on sibling relationships. Two scales, positivity and willingness to sacrifice, are evaluated with a multilevel model to account for the nested nature of family relationships. The distribution of variance across three levels: relationship, individual, and family are computed, and results indicate that the relationship level explains the most variance in positivity, whereas the individual level explains the majority of variance in willingness to sacrifice. These distributions are affected by gender composition and family size. The results of this study highlight an important and often overlooked element of family research: The meaning of a scale changes based on its distribution of variance at these three levels. Researchers are encouraged to be cognizant of the variance distribution of their scales when studying sibling relationships and to incorporate more full sibling groups into their research methods and study design. © 2015 Family Process Institute.

  18. Infertile Individuals’ Marital Relationship Status, Happiness, and Mental Health: A Causal Model

    Directory of Open Access Journals (Sweden)

    Seyed Habiballah Ahmadi Forooshany

    2014-11-01

    Full Text Available Background: This study examined the causal model of relation between marital relationship status, happiness, and mental health in infertile individuals. Materials and Methods: In this descriptive study, 155 subjects (men: 52 and women: 78, who had been visited in one of the infertility Centers, voluntarily participated in a self-evaluation. Golombok Rust Inventory of Marital Status, Oxford Happiness Questionnaire, and General Health Questionnaire were used as instruments of the study. Data was analyzed by SPSS17 and Amos 5 software using descriptive statistics, independent sample t test, and path analysis. Results: Disregarding the gender factor, marital relationship status was directly related to happiness (p<0.05 and happiness was directly related to mental health, (p<0.05. Also, indirect relation between marital relationship status and mental health was significant (p<0.05. These results were confirmed in women participants but in men participants only the direct relation between happiness and mental health was significant (p<0.05. Conclusion: Based on goodness of model fit in fitness indexes, happiness had a mediator role in relation between marital relationship status and mental health in infertile individuals disregarding the gender factor. Also, considering the gender factor, only in infertile women, marital relationship status can directly and indirectly affect happiness and mental health.

  19. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling.

    Directory of Open Access Journals (Sweden)

    Masanao Sato

    Full Text Available Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2. This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i the components of the network are highly interconnected; and (ii negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector

  20. Unbounded-rate Markov decision processes : structural properties via a parametrisation approach

    NARCIS (Netherlands)

    Blok, H.

    2016-01-01

    This research is interested in optimal control of Markov decision processes (MDPs). Herein a key role is played by structural properties. Properties such as monotonicity and convexity help in finding the optimal policy. Value iteration is a tool to derive such properties in discrete time processes.