WorldWideScience

Sample records for modeling rivers lakes

  1. Water level management of lakes connected to regulated rivers: An integrated modeling and analytical methodology

    Science.gov (United States)

    Hu, Tengfei; Mao, Jingqiao; Pan, Shunqi; Dai, Lingquan; Zhang, Peipei; Xu, Diandian; Dai, Huichao

    2018-07-01

    Reservoir operations significantly alter the hydrological regime of the downstream river and river-connected lake, which has far-reaching impacts on the lake ecosystem. To facilitate the management of lakes connected to regulated rivers, the following information must be provided: (1) the response of lake water levels to reservoir operation schedules in the near future and (2) the importance of different rivers in terms of affecting the water levels in different lake regions of interest. We develop an integrated modeling and analytical methodology for the water level management of such lakes. The data-driven method is used to model the lake level as it has the potential of producing quick and accurate predictions. A new genetic algorithm-based synchronized search is proposed to optimize input variable time lags and data-driven model parameters simultaneously. The methodology also involves the orthogonal design and range analysis for extracting the influence of an individual river from that of all the rivers. The integrated methodology is applied to the second largest freshwater lake in China, the Dongting Lake. The results show that: (1) the antecedent lake levels are of crucial importance for the current lake level prediction; (2) the selected river discharge time lags reflect the spatial heterogeneity of the rivers' impacts on lake level changes; (3) the predicted lake levels are in very good agreement with the observed data (RMSE ≤ 0.091 m; R2 ≥ 0.9986). This study demonstrates the practical potential of the integrated methodology, which can provide both the lake level responses to future dam releases and the relative contributions of different rivers to lake level changes.

  2. Simulation models for water pollution in rivers and lakes; Suishitsu osen no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hosomi, M. [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1996-11-05

    Rivers, lakes, and dam lakes are taken up as fields related to urban environment, and simulation models for water pollution control is introduced which are considered to be important for controlling water quality. In connection with rivers, a model showing the relationship between organic contamination and DO (dissolved oxygen) as well as an analyzed example of the use of continuous data of easy-to-measure DO are introduced. DO and pH in urban rivers sometimes exceed the environmental standards in the dry season. The cause is greater effect of biofilm adhesion at the river bed due to elongated staying time, and the establishment of the maintained river flow rate must be reviewed. One of the problems of ecological models is the deficiency of the data for the verification of the ecological models, and arrangement to solve the problem is required. Although it is admitted that simulation of phytoplankton in which neural network is employed has just started, it is expected to become an effective means for the study of phenomena which can not be elucidated by the modeling using normal numeric models. 7 refs., 13 figs.

  3. Modelling nitrogen transformation and removal in mara river basin wetlands upstream of lake Victoria

    Science.gov (United States)

    Mayo, Aloyce W.; Muraza, Marwa; Norbert, Joel

    2018-06-01

    Lake Victoria, the largest lake in Africa, is a resource of social-economic potential in East Africa. This lake receives water from numerous tributaries including Mara River, which contributes about 4.8% of the total Lake water inflow. Unfortunately, Mara River basin faces environmental problems because of intensive settlement, agriculture, overgrazing in the basin and mining activities, which has lead to water pollution in the river, soil erosion and degradation, decreased soil fertility, loss of vegetation cover, decreased water infiltration capacity and increased sedimentation. One of the pollutants carried by the river includes nitrogen, which has contributed to ecological degradation of the Lake Victoria. Therefore this research work was intended to determine the effectiveness of Mara River wetland for removal of nitrogen and to establish nitrogen removal mechanisms in the wetland. To predict nitrogen removal in the wetland, the dynamics of nitrogen transformation was studied using a conceptual numerical model that takes into account of various processes in the system using STELLA II version 9.0®2006 software. Samples of model input from water, plants and sediments were taken for 45 days and were analyzed for pH, temperature, and DO in situ and chemical parameters such as NH3-N, Org-N, NO2-N, and NO3-N were analyzed in the laboratory in accordance with Standard methods. For plants, the density, dominance, biomass productivity and TN were determined and for sediments TN was analyzed. Inflow into the wetland was determined using stage-discharge relationship and was found to be 734,400 m3/day and the average wetland volume was 1,113,500 m3. Data collected by this study were used for model calibration of nitrogen transformation in this wetland while data from another wetland were used for model validation. It was found that about 37.8% of total nitrogen was removed by the wetland system largely through sedimentation (26.6%), plant uptake (6.6%) and

  4. HYDROLOGIC MODELLING OF KATSINA-ALA RIVER BASIN: AN EMERGING SCENARIO FROM LAKE NYOS THREAT

    Directory of Open Access Journals (Sweden)

    J. O. Akinyede

    2012-07-01

    Full Text Available Understanding the hydrologic system surrounding crater lakes is of great importance for prevention of flooding damages, conservation of ecological environment, and assessment of socio-economic impact of dam failure on the civilians in the downstream regions. Lake Nyos is a crater lake formed by volcanic activities at the Oku volcanic field on the Cameroon Volcanic Line. It is a freshwater lake with a maximum depth of 200 meter. In 1986, a limnic eruption at the lake emitted 1.6 million tonnes of carbon dioxide from the bottom of saturated water into the air and suffocated up to 1,800 people and 3,500 livestock at nearby villages. The lake waters are held in place by a natural dam composed of loosely consolidated volcanic rock, which is now at the verge of collapse due to accelerated erosion. This study was carried out to determine the flood risks and vulnerability of population and infrastructure along Katsina-Ala drainage basins. The project integrated both satellite images and field datasets into a hydrologic model for Katsina-Ala River Basin and its vicinity including the Lake Nyos. ArcHydro was used to construct a hydrologic database as 'data models' and MIKE SHE was employed to conduct hydrologic simulations. Vulnerable infrastructures, population and socio-economic activities were identified to assist the Federal and State governments in disaster mitigation and management plans. The result of the project provides comprehensive knowledge of hydrologic system of Katsina-Ala drainage basin to mitigate potential future disasters from a potential dam failure and manage water resources against such disasters.

  5. Forecasting Shaharchay River Flow in Lake Urmia Basin using Genetic Programming and M5 Model Tree

    Directory of Open Access Journals (Sweden)

    S. Samadianfard

    2017-01-01

    Full Text Available Introduction: Precise prediction of river flows is the key factor for proper planning and management of water resources. Thus, obtaining the reliable methods for predicting river flows has great importance in water resource engineering. In the recent years, applications of intelligent methods such as artificial neural networks, fuzzy systems and genetic programming in water science and engineering have been grown extensively. These mentioned methods are able to model nonlinear process of river flows without any need to geometric properties. A huge number of studies have been reported in the field of using intelligent methods in water resource engineering. For example, Noorani and Salehi (23 presented a model for predicting runoff in Lighvan basin using adaptive neuro-fuzzy network and compared the performance of it with neural network and fuzzy inference methods in east Azerbaijan, Iran. Nabizadeh et al. (21 used fuzzy inference system and adaptive neuro-fuzzy inference system in order to predict river flow in Lighvan river. Khalili et al. (13 proposed a BL-ARCH method for prediction of flows in Shaharchay River in Urmia. Khu et al. (16 used genetic programming for runoff prediction in Orgeval catchment in France. Firat and Gungor (11 evaluated the fuzzy-neural model for predicting Mendes river flow in Turkey. The goal of present study is comparing the performance of genetic programming and M5 model trees for prediction of Shaharchay river flow in the basin of Lake Urmia and obtaining a comprehensive insight of their abilities. Materials and Methods: Shaharchay river as a main source of providing drinking water of Urmia city and agricultural needs of surrounding lands and finally one of the main input sources of Lake Urmia is quite important in the region. For obtaining the predetermined goals of present study, average monthly flows of Shaharchay River in Band hydrometric station has been gathered from 1951 to 2011. Then, two third of mentioned

  6. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  7. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia - observations and modeling (Lena River Delta, Siberia)

    Science.gov (United States)

    Boike, J.; Georgi, C.; Kirilin, G.; Muster, S.; Abramova, K.; Fedorova, I.; Chetverova, A.; Grigoriev, M.; Bornemann, N.; Langer, M.

    2015-10-01

    Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop

  8. Nutrient delivery to Lake Winnipeg from the Red-Assiniboine River Basin – A binational application of the SPARROW model

    Science.gov (United States)

    Benoy, Glenn A; Jenkinson, R. Wayne; Robertson, Dale M.; Saad, David A.

    2016-01-01

    Excessive phosphorus (TP) and nitrogen (TN) inputs from the Red–Assiniboine River Basin (RARB) have been linked to eutrophication of Lake Winnipeg; therefore, it is important for the management of water resources to understand where and from what sources these nutrients originate. The RARB straddles the Canada–United States border and includes portions of two provinces and three states. This study represents the first binationally focused application of SPAtially Referenced Regressions on Watershed attributes (SPARROW) models to estimate loads and sources of TP and TN by jurisdiction and basin at multiple spatial scales. Major hurdles overcome to develop these models included: (1) harmonization of geospatial data sets, particularly construction of a contiguous stream network; and (2) use of novel calibration steps to accommodate limitations in spatial variability across the model extent and in the number of calibration sites. Using nutrient inputs for a 2002 base year, a RARB TP SPARROW model was calibrated that included inputs from agriculture, forests and wetlands, wastewater treatment plants (WWTPs) and stream channels, and a TN model was calibrated that included inputs from agriculture, WWTPs and atmospheric deposition. At the RARB outlet, downstream from Winnipeg, Manitoba, the majority of the delivered TP and TN came from the Red River Basin (90%), followed by the Upper Assiniboine River and Souris River basins. Agriculture was the single most important TP and TN source for each major basin, province and state. In general, stream channels (historically deposited nutrients and from bank erosion) were the second most important source of TP. Performance metrics for the RARB SPARROW model are similarly robust compared to other, larger US SPARROW models making it a potentially useful tool to address questions of where nutrients originate and their relative contributions to loads delivered to Lake Winnipeg.

  9. DISSOLVED OXYGEN MODELLING USING ARTIFICIAL NEURAL NETWORK: A CASE OF RIVER NZOIA, LAKE VICTORIA BASIN, KENYA

    Directory of Open Access Journals (Sweden)

    Edwin Kimutai Kanda

    2016-11-01

    Full Text Available River Nzoia in Kenya, due to its role in transporting industrial and municipal wastes in addition to agricultural runoff to Lake Victoria, is vulnerable to pollution. Dissolved oxygen is one of the most important indicators of water pollution. Artificial neural network (ANN has gained popularity in water quality forecasting. This study aimed at assessing the ability of ANN to predict dissolved oxygen using four input variables of temperature, turbidity, pH and electrical conductivity. Multilayer perceptron network architecture was used in this study. The data consisted of 113 monthly values for the input variables and output variable from 2009–2013 which were split into training and testing datasets. The results obtained during training and testing were satisfactory with R2 varying from 0.79 to 0.94 and RMSE values ranging from 0.34 to 0.64 mg/l which imply that ANN can be used as a monitoring tool in the prediction of dissolved oxygen for River Nzoia considering the non-correlational relationship of the input and output variables. The dissolved oxygen values follow seasonal trend with low values during dry periods.

  10. Hydrological River Drought Analysis (Case Study: Lake Urmia Basin Rivers

    Directory of Open Access Journals (Sweden)

    Mohammad Nazeri Tahrudi

    2017-02-01

    to investigatethe accuracy of this method, 3 methods (moment, maximum likelihood and Logarithm of applied moment observations were used and 4 mentioned methods for all of rivers were calculated. The most river drought relating to Gadar-Chai river with 1742 million cubic meters low volume and the lowest of it relating to Mardoq-Chai river with 68 million cubic meters low volume in 10000 year return period. After Gadar-Chai river the most low volume of discharge relating the Zarineh-rood river. Two Zarineh-rood and Gadar-Chai rivers among other rivers have a higher average discharge. Log Normal III, Gamma, Wikeby and GEV distributions have a good fitting on river flows data and no difference in investigation models that corresponded with Mosaedi et al (13 and NazeriTahroudi et al (15. The results of Grifits (7 also introduced the Wikeby distribution has a better than Beta distribution. Lee (12 also with evaluation the rainfall frequency in the study the rainfall concentration properties in Chia-Nan (Taiwan introduced the Log Pearson type III as the best distribution function between the common distribution function. Results of Chi-Squared test in methods of parameter estimation showed that all methods are acceptable. Conclusion: Drought occurrence can be estimated bythe analysis of historical data for different regions and using the results of predicting problems can be reduced. In this research daily river flow of Lake Urmia basin applied to calculate drought volume of rivers. Log Pearson III distribution selected among current hydrological distribution functions for fitting drought volume of rivers. Using selected distribution function and Sundry Average Moment method for estimating parameters return period of drought from 2 to 10000 years extracted. Results showed that volume of drought for Shahar-chai , Barandoz-chai, Nazlu-Chai, Mahabad-Chai, Rozeh-Chai, Gadar-chai, Simineh-rood, Zola-chai, Aji-chai, Sofi-chai, Leilan-chai and Mardoq-chay rivers in the return

  11. DNR 100K Lakes and Rivers

    Data.gov (United States)

    Minnesota Department of Natural Resources — Polygons representing hydrographic features (lakes, ponds, some rivers, and open water areas) originating from the USGS 1:100,000 (100K)DLG (Digital Line Graph)...

  12. Modeling river discharge and sediment transport in the Wax Lake-Atchafalaya basin with remote sensing parametrization.

    Science.gov (United States)

    Simard, M.; Liu, K.; Denbina, M. W.; Jensen, D.; Rodriguez, E.; Liao, T. H.; Christensen, A.; Jones, C. E.; Twilley, R.; Lamb, M. P.; Thomas, N. A.

    2017-12-01

    Our goal is to estimate the fluxes of water and sediments throughout the Wax Lake-Atchafalaya basin. This was achieved by parametrization of a set of 1D (HEC-RAS) and 2D (DELFT3D) hydrology models with state of the art remote sensing measurements of water surface elevation, water surface slope and total suspended sediment (TSS) concentrations. The model implementations are spatially explicit, simulating river currents, lateral flows to distributaries and marshes, and spatial variations of sediment concentrations. Three remote sensing instruments were flown simultaneously to collect data over the Wax Lake-Atchafalaya basin, and along with in situ field data. A Riegl Lidar was used to measure water surface elevation and slope, while the UAVSAR L-band radar collected data in repeat-pass interferometric mode to measure water level change within adjacent marshes and islands. These data were collected several times as the tide rose and fell. AVRIS-NG instruments measured water surface reflectance spectra, used to estimate TSS. Bathymetry was obtained from sonar transects and water level changes were recorded by 19 water level pressure transducers. We used several Acoustic Doppler Current Profiler (ADCP) transects to estimate river discharge. The remotely sensed measurements of water surface slope were small ( 1cm/km) and varied slightly along the channel, especially at the confluence with bayous and the intra-coastal waterway. The slope also underwent significant changes during the tidal cycle. Lateral fluxes to island marshes were mainly observed by UAVSAR close to the distributaries. The extensive remote sensing measurements showed significant disparity with the hydrology model outputs. Observed variations in water surface slopes were unmatched by the model and tidal wave propagation was much faster than gauge measurements. The slope variations were compensated for in the models by tuning local lateral fluxes, bathymetry and riverbed friction. Overall, the simpler 1D

  13. Coupled impacts of climate and land use change across a river-lake continuum: insights from an integrated assessment model of Lake Champlain’s Missisquoi Basin, 2000-2040

    Science.gov (United States)

    Zia, Asim; Bomblies, Arne; Schroth, Andrew W.; Koliba, Christopher; Isles, Peter D. F.; Tsai, Yushiou; Mohammed, Ibrahim N.; Bucini, Gabriela; Clemins, Patrick J.; Turnbull, Scott; Rodgers, Morgan; Hamed, Ahmed; Beckage, Brian; Winter, Jonathan; Adair, Carol; Galford, Gillian L.; Rizzo, Donna; Van Houten, Judith

    2016-11-01

    Global climate change (GCC) is projected to bring higher-intensity precipitation and higher-variability temperature regimes to the Northeastern United States. The interactive effects of GCC with anthropogenic land use and land cover changes (LULCCs) are unknown for watershed level hydrological dynamics and nutrient fluxes to freshwater lakes. Increased nutrient fluxes can promote harmful algal blooms, also exacerbated by warmer water temperatures due to GCC. To address the complex interactions of climate, land and humans, we developed a cascading integrated assessment model to test the impacts of GCC and LULCC on the hydrological regime, water temperature, water quality, bloom duration and severity through 2040 in transnational Lake Champlain’s Missisquoi Bay. Temperature and precipitation inputs were statistically downscaled from four global circulation models (GCMs) for three Representative Concentration Pathways. An agent-based model was used to generate four LULCC scenarios. Combined climate and LULCC scenarios drove a distributed hydrological model to estimate river discharge and nutrient input to the lake. Lake nutrient dynamics were simulated with a 3D hydrodynamic-biogeochemical model. We find accelerated GCC could drastically limit land management options to maintain water quality, but the nature and severity of this impact varies dramatically by GCM and GCC scenario.

  14. 33 CFR 162.220 - Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hoover Dam, Lake Mead, and Lake... REGULATIONS § 162.220 Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev. (a) Lake Mead and... the axis of Hoover Dam and that portion of Lake Mohave (Colorado River) extending 4,500 feet...

  15. Treating floodplain lakes of large rivers as study units for variables that vary within lakes; an evaluation using chlorophyll a and inorganic suspended solids data from floodplain lakes of the Upper Mississippi River

    Science.gov (United States)

    Gray, B.R.; Rogala, J.R.; Houser, J.N.

    2013-01-01

    Contiguous floodplain lakes ('lakes') have historically been used as study units for comparative studies of limnological variables that vary within lakes. The hierarchical nature of these studies implies that study variables may be correlated within lakes and that covariate associations may differ not only among lakes but also by spatial scale. We evaluated the utility of treating lakes as study units for limnological variables that vary within lakes based on the criteria of important levels of among-lake variation in study variables and the observation of covariate associations that vary among lakes. These concerns were selected, respectively, to ensure that lake signatures were distinguishable from within-lake variation and that lake-scale effects on covariate associations might provide inferences not available by ignoring those effects. Study data represented chlorophyll a (CHL) and inorganic suspended solids (ISS) data from lakes within three reaches of the Upper Mississippi River. Sampling occurred in summer from 1993 through 2005 (except 2003); numbers of lakes per reach varied from 7 to 19, and median lake area varied from 53 to 101 ha. CHL and ISS levels were modelled linearly, with lake, year and lake x year effects treated as random. For all reaches, the proportions of variation in CHL and ISS attributable to differences among lakes (including lake and lake x year effects) were substantial (range: 18%-73%). Finally, among-lake variation in CHL and ISS was strongly associated with covariates and covariate effects that varied by lakes or lake-years (including with vegetation levels and, for CHL, log(ISS)). These findings demonstrate the utility of treating floodplain lakes as study units for the study of limnological variables and the importance of addressing hierarchy within study designs when making inferences from data collected within floodplain lakes.

  16. Hydrodynamic effects of reconnecting lake group with Yangtze River in China

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2011-12-01

    Full Text Available The hydrodynamic effects of reconnecting a lake group with the Yangtze River were simulated using a three-dimensional hydrodynamic model. The model was calibrated and validated using the measured water temperature and total phosphorous. The circulation patterns, water temperature, and water exchange conditions between sub-lakes were simulated under two conditions: (1 the present condition, in which the lake group is isolated from the Yangtze River; and (2 the future condition, with a proposed improvement in which connecting the lake group with the Yangtze River will allow river water to be diverted into the lake group. The simulation period selected was characterized by extremely high temperature and very little rain. The results show that the cold inflow from the river has a significant effect on the water temperature only near the inlets, and the effect is more obvious in the lower water layers than that in the upper ones. The circulation pattern changes significantly and small-scale vortices only exist in part of the lake regions. The water exchange between sub-lakes is greatly enhanced with the proposed improvement. The water replacement rate increases with water diversion but varies in different sub-lakes. Finally, a new water diversion scheme was proposed to avoid contamination of some lakes in the early stage.

  17. Application of the FluEgg model to predict transport of Asian carp eggs in the Saint Joseph River (Great Lakes tributary)

    Science.gov (United States)

    Garcia, Tatiana; Murphy, Elizabeth A.; Jackson, P. Ryan; Garcia, Marcelo H.

    2015-01-01

    The Fluvial Egg Drift Simulator (FluEgg) is a three-dimensional Lagrangian model that simulates the movement and development of Asian carp eggs until hatching based on the physical characteristics of the flow field and the physical and biological characteristics of the eggs. This tool provides information concerning egg development and spawning habitat suitability including: egg plume location, egg vertical and travel time distribution, and egg-hatching risk. A case study of the simulation of Asian carp eggs in the Lower Saint Joseph River, a tributary of Lake Michigan, is presented. The river hydrodynamic input for FluEgg was generated in two ways — using hydroacoustic data and using HEC-RAS model data. The HEC-RAS model hydrodynamic input data were used to simulate 52 scenarios covering a broad range of flows and water temperatures with the eggs at risk of hatching ranging from 0 to 93% depending on river conditions. FluEgg simulations depict the highest percentage of eggs at risk of hatching occurs at the lowest discharge and at peak water temperatures. Analysis of these scenarios illustrates how the interactive relation among river length, hydrodynamics, and water temperature influence egg transport and hatching risk. An improved version of FluEgg, which more realistically simulates dispersion and egg development, is presented. Also presented is a graphical user interface that facilitates the use of FluEgg and provides a set of post-processing analysis tools to support management decision-making regarding the prevention and control of Asian carp reproduction in rivers with or without Asian carp populations.

  18. Hydrology and model of North Fork Solomon River Valley, Kirwin Dam to Waconda Lake, north-central Kansas

    Science.gov (United States)

    Jorgensen, Donald G.; Stullken, Lloyd E.

    1981-01-01

    The alluvial valley of the North Fork Solomon River is an important agricultural area. Reservoir releases diverted below Kirwin Dam are the principal source of irrigation water. During the 1970'S, severe water shortages occurred in Kirwin Reservoir and other nearby reservoirs as a result of an extended drought. Some evidence indicates that surface-water shortages may have been the result of a change in the rainfall-runoff relationship. Examination of the rainfall-runoff relationship shows no apparent trend from 1951 to 1968, but annual records from 1969 to 1976 indicate that deficient rainfall occurred during 6 of the 8 years. Ground water from the alluvial aquifer underlying the river valley also is used extensively for irrigation. Utilization of ground water for irrigation greatly increased from about 200 acre-feet in 1955 to about 12,300 acre-feet in 1976. Part of the surface water diverted for irrigation has percolated downward into the aquifer raising the ground-water level. Ground-water storage in the aquifer increased from 230,000 acre-feet in 1946 to 275,000 acre-feet in 1976-77. A digital model was used to simulate the steady-state conditions in the aquifer prior to closure of Kirwin Dam. Model results indicated that precipitation was the major source of recharge to the aquifer. The effective recharge, or gain from precipitation minus evapotranspiration, was about 11,700 acre-feet per year. The major element of discharge from the aquifer was leakage to the river. The simulated net leakage (leakage to the river minus leakage from the river) was about 11,500 acre-feet per year. The simulated value is consistent with the estimated gain in base flow of the river within the area modeled. Measurements of seepage used to determine gain and loss to the stream were made twice during 1976. Based on these measurements and on base-flow periods identified from hydrographs, it was estimated that the ground-water discharge to the stream has increased about 4,000 acre

  19. Floodplain lakes and alluviation cycles of the lower Colorado River

    Science.gov (United States)

    Malmon, D.; Felger, T. J.; Howard, K. A.

    2007-05-01

    The broad valleys along the lower Colorado River contain numerous bodies of still water that provide critical habitat for bird, fish, and other species. This chain of floodplain lakes is an important part of the Pacific Flyway - the major north-south route of travel for migratory birds in the western Hemisphere - and is also used by many resident bird species. In addition, isolated floodplain lakes may provide the only viable habitat for endangered native fish such as the razorback sucker, vulnerable to predation by introduced species in the main stem of the Colorado River. Floodplain lakes typically occupy former channel courses of the river and formed as a result of river meandering or avulsion. Persistent fluvial sediment deposition (aggradation) creates conditions that favor rapid formation and destruction of floodplain lakes, while long term river downcutting (degradation) inhibits their formation and evolution. New radiocarbon dates from wood recovered from drill cores near Topock, AZ indicate that the river aggraded an average of 3 mm/yr in the middle and late Holocene. Aggradational conditions before Hoover Dam was built were associated with rapid channel shifting and frequent lake formation. Lakes had short life spans due to rapid infilling with fine-grained sediment during turbid floods on the unregulated Colorado River. The building of dams and of armored banks had a major impact on floodplain lakes, not only by drowning large portions of the valley beneath reservoirs, but by preventing new lake formation in some areas and accelerating it in others. GIS analyses of three sets of historical maps show that both the number and total area of isolated (i.e., not linked to the main channel by a surface water connection) lakes in the lower Colorado River valley increased between 1902 and the 1950s, and then decreased though the 1970s. River bed degradation below dams inhibits channel shifting and floodplain lake formation, and the capture of fines behind the

  20. Impact of climate change on the Hii River basin and salinity in Lake Shinji: a case study using the SWAT model and a regression curve

    Science.gov (United States)

    The impacts of climate change on water resources were analysed for the Hii River basin and downstream Lake Shinji. The variation between saline and fresh water within these systems means that they encompass diverse ecosystems. Changes in evapotranspiration (ET), snow water equivalent, discharge into...

  1. Lakes and rivers as microcosms, version 2.0

    Directory of Open Access Journals (Sweden)

    David G. Jenkins

    2013-08-01

    Full Text Available Limnology has been greatly influenced by The Lake as a Microcosm (Forbes, 1887, which described a holistic focus on the internal machinations of singular, island-like aquatic ecosystems. I consider three persistent influences of The Lake as a Microcosm: as an organizing paradigm for the teaching of limnology relative to its practice; the idea that inland waters are like islands, and the replicability of types of inland waters. Based on inspection of recent peer-reviewed literature and 32 limnology texts, we teach limnology according to Forbes but do not practice it in that holistic context. Instead, we practice limnology as aquatic ecology. Based on novel analyses of species-area relationships for 275 inland waters and 392 islands, inland waters are more like continental habitat patches than islands; the island metaphor is poetic but not accurate. Based on a quantitative review of beta diversity (40 data sets representing 10,576 inland waters and 26 data sets representing 1529 terrestrial sites, aquatic systems are no more replicable than are terrestrial systems; a typological approach to limnology is no more justified than it is in terrestrial systems. I conclude that a former distinction between limnology and aquatic ecology no longer applies, and that we should define limnology as the ecology of inland waters. Also, we should not consider lakes and rivers as islands that represent other systems of the same type, but should consider them as open, interactive habitat patches that vary according to their geology and biogeography. I suggest modern limnology operates according to 3 paradigms, which combine to form 3 broad limnological disciplines and establish a basis for a plural, interactive view of lakes and rivers as microcosms. This model of modern limnology may help better connect it to ecology and biogeography and help limnology be even more relevant to science and society.

  2. Forging the Link: Using a Conservative Mixing Framework to Characterize Connections between Rivers and Great Lakes in River-lake Transition Zones

    Science.gov (United States)

    River-to-Great Lake transition zones are hydrologically, biogeochemically and biologically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. Our goal is to characterize the biogeochemical properties of the river-lake transition zones and under...

  3. Numerical groundwater flow modeling of the northern river catchment of the Lake Tana, Upper Blue Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    Nigussie Ayehu Asrie

    2016-06-01

    Full Text Available The study area is found North Western plateau in the North Gondar zone, Amhara regional state, Ethiopia. Its total surface coverage is 1887km2.The study area boundary was delineated from 90m Shutter Radar Terrain Mapping (SRTM digital elevation model (DEM using Global Mapper 8 software. Based on geologic information of the study area, unconfined subsurface flow condition was considered and simulated using MODFLOW 2000. The model calibration accounts the matching of the 58 observation point with simulated head with a permissible residual head of ±10m. 75% of the difference the observed and measured water level head in the study area is 5m. . The model was calibrated with mean error 0.506, absolute mean error 4.431m and standard deviation 6.083m. Based on the calibration process, the model is very sensitive in decreasing order change in recharge, hydraulic conductivity, and stream bed conductance. The simulated out flow of the model is 205.7Mm3/year which is nearly equal to simulated inflow with difference 2,887.45m3/yr. The base flow simulated discharge Megech River holds 35.8% of the out flow. The river contributed as recharge in to the aquifer that accounts to 15.3% of the inflow. Steady state withdrawal rates were increased by 15%, 35%, 55%, 75% and 100% to study the response of the system in this scenario. From the simulation results, one can observe that the development of a new groundwater sources would not pose appreciable impact in case of 15% and 35% withdrawal the head declines in this case is insignificant relative to the steady state withdrawal rate and the natural discharges were not altered highly. The simulation result indicated that the stream leakage decreased by 7.9% relative to the whole steady state value, but showed 14.9% decrease for Angereb, Keha, and Shinta river segments near the well field area. The water tables decline by 3.6m to18.8m in head observation in the well field area. The steady state simulated recharge was

  4. Modeling wetland plant community response to assess water-level regulation scenarios in the Lake Ontario-St. Lawrence River basin

    Science.gov (United States)

    Hudon, Christiane; Wilcox, Douglas; Ingram, Joel

    2006-01-01

    The International Joint Commission has recently completed a five-year study (2000-2005) to review the operation of structures controlling the flows and levels of the Lake Ontario - St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.

  5. Mercury in the Calcasieu River/lake Complex, Louisiana

    International Nuclear Information System (INIS)

    Mueller, C.S.; Ramelow, G.J.; Beck, J.N.

    1989-01-01

    The Calcasieu River/Lake Complex is of great economic importance to southwestern Louisiana. Calcasieu Lake is an important fishing ground for shrimp and oysters. The Calcasieu River/Lake Complex has been the focus of an interdisciplinary study to assess the types and areas of pollution along this important waterway. Particular attention has been given to Hg because of the toxicity of this metal, and the local importance of the chloralkali industry--an industry that is known to discharge Hg into the environment. Water, sediment and biota were collected at stations in Calcasieu Lake, Calcasieu River, and along three bayou tributaries that were studied intensively. Intensive sampling included all stations along the particular bayou studied that month

  6. The impact of nitrogen contamination and river modification on a Mississippi River floodplain lake

    Energy Technology Data Exchange (ETDEWEB)

    Karthic, Indu [Box 1099 Environmental Sciences Program, Southern Illinois University, Edwardsville, IL 62026 (United States); Brugam, Richard B., E-mail: rbrugam@siue.edu [Box 1651 Department of Biological Sciences, Southern Illinois University, Edwardsville, IL 62026 (United States); Retzlaff, William [Box 1099 Environmental Sciences Program, Southern Illinois University, Edwardsville, IL 62026 (United States); Johnson, Kevin

    2013-10-01

    Anthropogenic nitrogen contamination has increased in ecosystems around the world (frequently termed the “nitrogen cascade”). Coke production for steel manufacturing is often overlooked as a source of nitrogen to natural ecosystems. We examined sediment cores from a Horseshoe Lake, a floodplain lake located just East of St. Louis Missouri (USA) to test whether a coking plant effluent could be traced using stable isotopes of nitrogen and diatom microfossils. The distribution of δ{sup 15}N values in surface sediment samples from the lake shows the highest values near the coking plant effluent. Stable isotopes of nitrogen from 4 sediment cores using a mixing model showed three sources of nitrogen since 1688 CE. The first source (active between 1688 and 1920 CE) had a calculated δ{sup 15}N value ranging between − 0.4 and 1.1‰ depending on the core. After 1920 a second source with a δ{sup 15}N ranging between 10.6 and 15.4‰ became active. The change in these sources coincides with the construction of a coking plant on the lake shore. A third source with a value approximately 7.0‰ was present at all times and represents background. The diatom microfossil assemblages present from 1688 CE to the late 1800s are dominated by the planktonic species Aulacoseira granulata and periphytic and benthic genera Gomphonema, Cocconeis, and Lyrella. After the late 1800s the diatom assemblages are dominated by Staurosira species indicating a shift of species from high flow riverine environments to epipelic species from a lake environment. Diatom microfossils seem to track the reduction in flooding due to leveeing of the floodplain and the isolation of the lake from the river. Our results show how stable isotopes of nitrogen can be used to track nitrogen inputs from industrial sources. Diatom changes corresponded with changes in connectivity between the Mississippi River and its floodplain. - Highlights: • Effluent from a steel plant increases fixed nitrogen input to a

  7. The impact of nitrogen contamination and river modification on a Mississippi River floodplain lake

    International Nuclear Information System (INIS)

    Karthic, Indu; Brugam, Richard B.; Retzlaff, William; Johnson, Kevin

    2013-01-01

    Anthropogenic nitrogen contamination has increased in ecosystems around the world (frequently termed the “nitrogen cascade”). Coke production for steel manufacturing is often overlooked as a source of nitrogen to natural ecosystems. We examined sediment cores from a Horseshoe Lake, a floodplain lake located just East of St. Louis Missouri (USA) to test whether a coking plant effluent could be traced using stable isotopes of nitrogen and diatom microfossils. The distribution of δ 15 N values in surface sediment samples from the lake shows the highest values near the coking plant effluent. Stable isotopes of nitrogen from 4 sediment cores using a mixing model showed three sources of nitrogen since 1688 CE. The first source (active between 1688 and 1920 CE) had a calculated δ 15 N value ranging between − 0.4 and 1.1‰ depending on the core. After 1920 a second source with a δ 15 N ranging between 10.6 and 15.4‰ became active. The change in these sources coincides with the construction of a coking plant on the lake shore. A third source with a value approximately 7.0‰ was present at all times and represents background. The diatom microfossil assemblages present from 1688 CE to the late 1800s are dominated by the planktonic species Aulacoseira granulata and periphytic and benthic genera Gomphonema, Cocconeis, and Lyrella. After the late 1800s the diatom assemblages are dominated by Staurosira species indicating a shift of species from high flow riverine environments to epipelic species from a lake environment. Diatom microfossils seem to track the reduction in flooding due to leveeing of the floodplain and the isolation of the lake from the river. Our results show how stable isotopes of nitrogen can be used to track nitrogen inputs from industrial sources. Diatom changes corresponded with changes in connectivity between the Mississippi River and its floodplain. - Highlights: • Effluent from a steel plant increases fixed nitrogen input to a floodplain

  8. CryoSat-2 Altimetry Applications over Rivers and Lakes

    DEFF Research Database (Denmark)

    Jiang, Liguang; Schneider, Raphael; Andersen, Ole Baltazar

    2017-01-01

    challenges conventional ways of dealing with satellite inland water altimetry data because virtual station time series cannot be directly derived for rivers. We review the CryoSat-2 mission characteristics, data products, and its use and perspectives for inland water applications. We discuss all......Monitoring the variation of rivers and lakes is of great importance. Satellite radar altimetry is a promising technology to do this on a regional to global scale. Satellite radar altimetry data has been used successfully to observe water levels in lakes and (large) rivers, and has also been...

  9. Dependence of Wetland Vegetation on Hydrological Regime in a Large Floodplain Lake (Poyang Lake) in the Middle Yangtze River

    Science.gov (United States)

    Zhang, Q.; Tan, Z.; Xu, X.

    2017-12-01

    Exemplified in the Yangtze River floodplain lake, Poyang Lake, investigations were carried out to examine the dependence of vegetation on hydrological variables. The Lake is one of the few lakes that remain naturally connected to the Yangtze River. The Lake surface expanses to 4000 km2 in wet seasons, and reduces to less than 1000 km2 in dry seasons, creating some 3000 km2 vital wetland habitats for many animals. Remote sensing was used to obtain the spatial distribution of wetland vegetations. A lake hydrodynamic model using MIKE 21 was employed to determine the variability of wetland inundation. In-situ high time frequency observations of climate, soil moisture, and groundwater depth were also conducted in a typical wetland transect of 1 km long. Vegetations were sampled periodically to obtain species composition, diversity and biomass. Results showed that the spatial distribution of vegetation highly depended on the inundation duration and depth. Optimal hydrological variables existed for the typical vegetations in Poyang Lake wetland. Numerical simulations using HYDRUS-1D further demonstrated that both groundwater depth and soil moisture had significant effects on the growth of vegetation and the water demand in terms of transpiration, even in a wet climate zone such as middle Yangtze River. It was found that the optimal groundwater depths existed for both above- and belowground biomass. Simulation scenarios indicated that climate changes and human modification of hydrology would affect the water usage of vegetation and may cause a strategic adaptation of the vegetation to the stressed hydrological conditions. The study revealed new knowledge on the high dependence of wetland vegetation on both surface water regime and groundwater depths, in wet climate zone. Outcomes of this study may provide support for an integrated management of balancing water resources development and wetland sustainability maintenance in Poyang Lake, and other floodplain wetlands, with

  10. 3D simulation of the influence of internal mixing dynamics on the propagation of river plumes in Lake Constance

    Science.gov (United States)

    Pflugbeil, Thomas; Pöschke, Franziska; Noffke, Anna; Winde, Vera; Wolf, Thomas

    2017-04-01

    Lake Constance is one of most important drinking water resources in southern Germany. Furthermore, the lake and its catchment is a meaningful natural habitat as well as economical and cultural area. In this context, sustainable development and conservation of the lake ecosystem and drinking water quality is of high importance. However, anthropogenic pressures (e.g. waste water, land use, industry in catchment area) on the lake itself and its external inflows are high. The project "SeeZeichen" (ReWaM-project cluster by BMBF, funding number 02WRM1365) is investigating different immission pathways (groundwater, river, superficial inputs) and their impact on the water quality of Lake Constance. The investigation includes the direct inflow areas as well as the lake-wide context. The present simulation study investigates the mixing dynamics of Lake Constance and its impacts on river inflows and vice versa. It considers different seasonal (mixing and stratification periods), hydrological (flood events, average and low discharge) and transport conditions (sediment loads). The simulations are focused on two rivers: The River Alpenrhein delivers about 60 % of water and material input into Lake Constance. The River Schussen was chosen since it is highly anthropogenic influenced. For this purpose, a high-resolution three-dimensional hydrodynamic model of the Lake Constance is set up with Delft3D-Flow model system. The model is calibrated and validated with long term data sets of water levels, discharges and temperatures. The model results will be analysed for residence times of river water within the lake and particle distributions to evaluate potential impacts of river plume water constituents on the general water quality of the lake.

  11. USGS Activities at Lake Roosevelt and the Upper Columbia River

    Science.gov (United States)

    Barton, Cynthia; Turney, Gary L.

    2010-01-01

    Lake Roosevelt (Franklin D. Roosevelt Lake) is the impoundment of the upper Columbia River behind Grand Coulee Dam, and is the largest reservoir within the Bureau of Reclamation's Columbia Basin Project (CBP). The reservoir is located in northeastern Washington, and stretches 151 miles from Grand Coulee Dam north to the Canadian border. The 15-20 miles of the Columbia River downstream of the border are riverine and are under small backwater effects from the dam. Grand Coulee Dam is located on the mainstem of the Columbia River about 90 miles northwest of Spokane. Since the late 1980s, trace-element contamination has been known to be widely present in Lake Roosevelt. Trace elements of concern include arsenic, cadmium, copper, lead, mercury, and zinc. Contaminated sediment carried by the Columbia River is the primary source of the widespread occurrence of trace-element enrichment present in Lake Roosevelt. In 2001, the U.S. Environmental Protection Agency (EPA) initiated a preliminary assessment of environmental contamination of the Lake Roosevelt area (also referred to as Upper Columbia River, UCR site, or UCR/LR site) and has subsequently begun remedial investigations of the UCR site.

  12. 78 FR 71493 - Special Local Regulation; Lake Havasu City Christmas Boat Parade of Lights; Colorado River; Lake...

    Science.gov (United States)

    2013-11-29

    ...-AA00 Special Local Regulation; Lake Havasu City Christmas Boat Parade of Lights; Colorado River; Lake... temporarily modifying the dates for the special local regulation in support of the Lake Havasu City Christmas Boat Parade of Lights on the Colorado River. This modification is necessary to reflect the actual dates...

  13. Numerical modeling of a nuclear production reactor cooling lake

    International Nuclear Information System (INIS)

    Hamm, L.L.; Pepper, D.W.

    1987-01-01

    A finite element model has been developed which predicts flow and temperature distributions within a nuclear reactor cooling lake at the Savannah River Plant near Aiken, South Carolina. Numerical results agree with values obtained from a 3-D EPA numerical lake model and actual measurements obtained from the lake. Because the effluent water from the reactor heat exchangers discharges directly into the lake, downstream temperatures at mid-lake could exceed the South Carolina DHEC guidelines for thermal exchanges during the summer months. Therefore, reactor power was reduced to maintain temperature compliance at mid-lake. Thermal mitigation measures were studied that included placing a 6.1 m deep fabric curtain across mid-lake and moving the reactor outfall upstream. These measurements were calculated to permit about an 8% improvement in reactor power during summer operation

  14. Artificial Post mining lakes - a challenge for the integration in natural hydrography and river basin management

    Science.gov (United States)

    Fleischhammel, Petra; Schoenheinz, Dagmar; Grünewald, Uwe

    2010-05-01

    mesotrophic conditions. The aquatic flora and fauna are limited to a few well adapted species. Therefore, the issue of hydrochemical constitution of the lakes' waters becomes more and more relevant. The prediction of water quality development in post mining lakes is a key requirement to regulate and manage the later hydrochemical conditions. Initially, this prediction was made by individual case studies for single lakes. By means of an iterative research process during the last years, hydrochemical lake models were developed as prediction tools, which allow a complex processing of interconnected post mining lakes and their integration in natural hydrography with respect to quantitative and qualitative evaluation. To counteract the poor water quality of mining lakes, flooding by surface water from neighbouring river basins, e.g. the river Neisse, shall support a quicker and thereby hydrochemically less damaging lake filling. However, this external flooding is only feasible under conditions of high runoff and therefore only as intermitted practice applicable. Additionally, technological measures of water treatment have to be applied to achieve the required effluent quality and to ensure the designated use. Regrettably, these technologies aren't commercially standard up to now and are not sustainable, while flooding or provides a huge amount itself of positive potential for hydrochemical stabilization. The river basin management of the rivers Spree and Schwarze Elster is attended by a common working group of the Federal States of Brandenburg and Berlin as well as the Free State of Saxony. The quantitative distribution of the regionally available water considers the potential use for drinking water supply, process water, …, and the flooding of open-pits. However, due to the formulated rank order, the flooding of the numerous mining open pits in Lusatia is on the last position. To guarantee a reliable flooding and a continuous water supply of the post mining lakes, additional

  15. Lake Michigan lake trout PCB model forecast post audit

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  16. Modelling the impact of prescribed global warming on runoff from headwater catchments of the Irrawaddy River and their implications for the water level regime of Loktak Lake, northeast India

    Directory of Open Access Journals (Sweden)

    C. R. Singh

    2010-09-01

    Full Text Available Climate change is likely to have major implications for wetland ecosystems, which will include altered water level regimes due to modifications in local and catchment hydrology. However, substantial uncertainty exists in the precise impacts of climate change on wetlands due in part to uncertainty in GCM projections. This paper explores the impacts of climate change upon river discharge within three sub-catchments of Loktak Lake, an internationally important wetland in northeast India. This is achieved by running pattern-scaled GCM output through distributed hydrological models (developed using MIKE SHE of each sub-catchment. The impacts of climate change upon water levels within Loktak Lake are subsequently investigated using a water balance model. Two groups of climate change scenarios are investigated. Group 1 uses results from seven different GCMs for an increase in global mean temperature of 2 °C, the purported threshold of ''dangerous'' climate change, whilst Group 2 is based on results from the HadCM3 GCM for increases in global mean temperature between 1 °C and 6 °C. Results from the Group 1 scenarios show varying responses between the three sub-catchments. The majority of scenario-sub-catchment combinations (13 out of 21 indicate increases in discharge which vary from <1% to 42% although, in some cases, discharge decreases by as much as 20%. Six of the GCMs suggest overall increases in river flow to Loktak Lake (2–27% whilst the other results in a modest (6% decline. In contrast, the Group 2 scenarios lead to an almost linear increase in total river flow to Loktak Lake with increasing temperature (up to 27% for 6 °C, although two sub-catchments experience reductions in mean discharge for the smallest temperature increases. In all but one Group 1 scenario, and all the Group 2 scenarios, Loktak Lake water levels are higher, regularly reaching the top of a downstream hydropower barrage that impounds the lake and necessitating the

  17. Research into the Eutrophication of an Artificial Playground Lake near the Yangtze River

    Directory of Open Access Journals (Sweden)

    Min Pang

    2018-03-01

    Full Text Available Water pollution in urban rivers is serious in China. Eutrophication and other issues are prominent. Taking the artificial Playground Lake in Zhenjiang as an example, a numerical model combining particle tracing, hydrodynamics, water quality and eutrophication was constructed to simulate the water quality improvement in Playground Lake with or without water diversion by pump and sluice. Simulation results using particle tracking showed that the water residence time depended on wind direction: east wind, 125 h; southeast wind, 115 h; south wind, 95 h. With no water diversion, the lower the flow velocity of Playground Lake under three wind fields, the more serious the eutrophication. Under pump diversion, the water body in Playground Lake can be entirely replaced by water diversion for 30 h. When the temperature is lower than 15 °C, from 15 °C to 25 °C and higher than 25 °C, the water quality can be maintained for 15 d, 10 d and 7 d, respectively. During high tide periods of spring tides in the Yangtze River from June to August, the water can be diverted into the lake through sluices. The greater the Δh (the water head between the Yangtze River and Playground Lake, the more the water quality will improve. Overall, the good-to-bad order of water quality improvements for Playground Lake is as follows: pumping 30 h > sluice diversion > no water diversion. This article is relevant for the environmental management of the artificial Playground Lake, and similar lakes elsewhere.

  18. The ESA River & Lake System: Current Capabilities and Future Potential

    DEFF Research Database (Denmark)

    Smith, Richard G.; Salloway, Mark; Berry, Philippa A. M.

    Measuring the earth's river and lake resources using satellite radar altimetry offers a unique global monitoring capability, which complements the detailed measurements made by the steadily decreasing number of in-situ gauges. To exploit this unique remote monitoring capability, a global pilot...

  19. Sediment deposition and sources into a Mississippi River floodplain lake; Catahoula Lake, Louisiana

    Science.gov (United States)

    Latuso, Karen D.; Keim, Richard F.; King, Sammy L.; Weindorf, David C.; DeLaune, Ronald D.

    2017-01-01

    Floodplain lakes are important wetlands on many lowland floodplains of the world but depressional floodplain lakes are rare in the Mississippi River Alluvial Valley. One of the largest is Catahoula Lake, which has existed with seasonally fluctuating water levels for several thousand years but is now in an increasingly hydrologically altered floodplain. Woody vegetation has been encroaching into the lake bed and the rate of this expansion has increased since major human hydrologic modifications, such as channelization, levee construction, and dredging for improvement of navigation, but it remains unknown what role those modifications may have played in altering lake sedimentation processes. Profiles of thirteen 137Cs sediment cores indicate sedimentation has been about 0.26 cm y− 1 over the past 60 years and has been near this rate since land use changes began about 200 years ago (210Pb, and 14C in Tedford, 2009). Carbon sequestration was low (10.4 g m− 2 y− 1), likely because annual drying promotes mineralization and export. Elemental composition (high Zr and Ti and low Ca and K) and low pH of recent (sediments suggest Gulf Coastal Plain origin, but below the recent sediment deposits, 51% of sediment profiles showed influence of Mississippi River alluvium, rich in base cations such as K+, Ca2 +, and Mg2 +. The recent shift to dominance of Coastal Plain sediments on the lake-bed surface suggests hydrologic modification has disconnected the lake from sediment-bearing flows from the Mississippi River. Compared to its condition prior to hydrologic alterations that intensified in the 1930s, Catahoula Lake is about 15 cm shallower and surficial sediments are more acidic. Although these results are not sufficient to attribute ecological changes directly to sedimentological changes, it is likely the altered sedimentary and hydrologic environment is contributing to the increased dominance of woody vegetation.

  20. Mississippi River Headwaters Lakes in Minnesota

    Science.gov (United States)

    1990-10-01

    2.368.00, well below the national poverty level. Unemployment, alcoholism , illiteracy and other social blights are pervasive problems among Indian...germination seeds and by the release of nutrients that accompanies the oxydation and drying of sediments. Effects of Low Lake Stage on Wild Rice 3.10 Wild

  1. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    Science.gov (United States)

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.

  2. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  3. Analysis of the Tonle Sap Flood Pulse Based on Remote Sensing: how much does Tonle Sap Lake Affect the Mekong River Flood?

    Science.gov (United States)

    Qu, W.; Hu, N.; Fu, J.; Lu, J.; Lu, H.; Lei, T.; Pang, Z.; Li, X.; Li, L.

    2018-04-01

    The economic value of the Tonle Sap Lake Floodplain to Cambodia is among the highest provided to a nation by a single ecosystem around the world. The flow of Mekong River is the primary factor affecting the Tonle Sap Lake Floodplain. The Tonle Sap Lake also plays a very important role in regulating the downstream flood of Mekong River. Hence, it is necessary to understand its temporal changes of lake surface and water storage and to analyse its relation with the flood processes of Mekong River. Monthly lake surface and water storage from July 2013 to May 2014 were first monitored based on remote sensing data. The relationship between water surface and accumulative water storage change was then established. In combination with hydrological modelling results of Mekong River Basin, the relation between the lake's water storage and the runoff of Mekong River was analysed. It is found that the water storage has a sharp increase from September to December and, after reaching its maximum in December, water storage quickly decreases with a 38.8 billion m3 of drop in only half month time from December to January, while it keeps rather stable at a lower level in other months. There is a two months' time lag between the maximum lake water storage and the Mekong River peak flood, which shows the lake's huge flood regulation role to downstream Mekong River. It shows that this remote sensing approach is feasible and reliable in quantitative monitoring of data scarce lakes.

  4. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    Science.gov (United States)

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  5. Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China

    Science.gov (United States)

    Lu, Cai; Jia, Yifei; Jing, Lei; Zeng, Qing; Lei, Jialin; Zhang, Shuanghu; Lei, Guangchun; Wen, Li

    2018-04-01

    Better understanding of the dynamics of hydrological connectivity between river and floodplain is essential for the ecological integrity of river systems. In this study, we proposed a regime-switch modelling (RSM) framework, which integrates change point analysis with dynamic linear regression, to detect and date change points in linear regression, and to quantify the relative importance of natural variations and anthropogenic disturbances. The approach was applied to the long-term hydrological time series to investigate the evolution of river-floodplain relation in Dongting Lake in the last five decades, during which the Yangtze River system experienced unprecedented anthropogenic manipulations. Our results suggested that 1) there were five distinct regimes during which the influence of inflows and local climate on lake water level changed significantly. The detected change points were well corresponding to the major events occurred upon the Yangtze; 2) although the importance of inflows from the Yangtze was greater than that of the tributaries flows over the five regimes, the relative contribution gradually decreased from regime 1 to regime 5. The weakening of hydrological forcing from the Yangtze was mainly attributed to the reduction in channel capacity resulting from sedimentation in the outfalls and water level dropping caused by river bed scour in the mainstream; 3) the effects of local climate was much smaller than these of inflows; and 4) since the operation of The Three Gorges Dam in 2006, the river-floodplain relationship entered a new equilibrium in that all investigated variables changed synchronously in terms of direction and magnitude. The results from this study reveal the mechanisms underlying the alternated inundation regime in Dongting Lake. The identified change points, some of which have not been previously reported, will allow a reappraisal of the current dam and reservoir operation strategies not only for flood/drought risk management but

  6. Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu Lake in Taihu Basin

    OpenAIRE

    Wu Haoyun; Hu Yan

    2008-01-01

    On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtze River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching decision-making support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispat...

  7. Evaluation of Environmental Flows in Rivers Using Hydrological Methods (Case study: The Barandozchi River- Urmia Lake Basin

    Directory of Open Access Journals (Sweden)

    S. Mostafavi

    2017-01-01

    study. Materials and Methods: With lack of ecological data, the environmental requirements of the Barandozchi River were investigated using five eco-hydrological methods (1- Tennant, 2- Tessman, 3- Flow Duration Indices, 4- FDC shifting, 5- DRM. Some of these methods are too simplistic and do not take into account the direct hydro-ecological interactions (e.g. Tennant method, and some have been developed for a specific country/region (e.g., DRM, and need to be adapted to a different physiographic environment before they can be reliably applied. Two ecological friendly models GEFC, and DRM were tested to estimate the environmental flow of this river. The results were compared with corresponding flows allocated for the release from the Barandoz Dam (currently under construction. Results and Discussion: The prediction of the mean annual environmental flows from five eco-hydrological methods are presented and compared with the corresponding value reported in the downstream dam’s documents. The ultimate decision making based on the potential flows in the river, the environmental class of the river management, and engineering judgment is also recommended for the flows in the river towards the Urmia Lake. The results indicated that the flow allocation for the river environment (4% of mean annual flows is not sufficient to meet the minimum flow requirements for any of the targeting species in the river ecosystem. In order to maintain the Barandozchi River at minimum acceptable environmental status (i.e. Class C of environmental management, an average annual flow of 1.9 m3/s (26% MAR are to be provided. The distribution of monthly flow rates in the river is also recommended for sustaining the Barandozchi River life. Conclusion: The provision for the minimum ecological flows was investigated in the Barandozchi River ecosystem. The results indicated that, in order to maintain the Barandozchi River at minimum acceptable environmental status (i.e. Class C, an average annual flow

  8. Mattagami River Lake sturgeon entrainment : Little Long generating station facilities

    International Nuclear Information System (INIS)

    Seyler, J.; Evers, J.; McKinley, S.; Evans, R.R.; Prevost, G.; Carson, R.; Phoenix, D.

    1996-01-01

    This project and publication is the result of a collaborative effort by other Large River Ecosystem Unit of Northeast Science (NEST), Ontario Hydro in Kapuskasing, and the New Post First Nation in Cochrane, Ontario, designed to investigate potential solutions to minimize or eliminate the problem of trapped lake sturgeon in the Adam Creek Diversion. The Adam Creek Dam is used to divert excess water from the Mattagami River hydroelectric complex which consists of the Little Long, Smoky Falls, Harmon and Kipling generating stations. The lake sturgeon entrainment problem in the area was discovered in 1990. Potential solutions to the problem include the redirection of flows to mainstream, the placement of a rope barrier, electrical deterrents, physical/electrical guidance systems, sound deterrents, gate modifications, and the continued relocation of fish. The advantages and disadvantages of each of these potential solutions are discussed. Results of the analysis indicated that perceptual and physical barriers have the greatest potential to minimize lake sturgeon entrainment in Adam Creek. 25 refs., 2 tabs., 3 figs., 6 appendices

  9. Glacial lakes in the Horgos river basin and their outbreak risk assessment

    Directory of Open Access Journals (Sweden)

    A. P. Medeu

    2013-01-01

    Full Text Available The river Khorgos (in Kazakhstan – Korgas is a boundary river between Kazakhstan and China. Its basin is located in the central part of southern slope of Dzhungarskiy (Zhetysu Alatau range. According to agreement between Kazakhstan and China at the boundary transition of Khorgos in the floodplain of the river Khorgos the large Center of Frontier Cooperation is erected. Estimation of safety of the mentioned object including connection with possible glacial lakes outbursts has the importance of political-economical value. Nowadays development of glacial lakes in the overhead part of Khorgos river basin has reached apogee. As a roof we can mention the maximum of total glacial lakes area (1,7 million m² in 41 lakes and emptied kettles of former glacial lakes. Six lakes reached highly dangerous outburst stage: the volume of lakes reached some million m³, maximum depth up to 30–40 m. Focal ground filtration of the water from lakes takes place. Development of glacial lakes in Khorgos river basin will continue, and these lakes give and will give real danger for the Center of Frontier Cooperation in case of outburst of naturally dammed lake Kazankol with the similar mechanism of Issyk lake outburst, occurred in 1963 in ZailijskiyAlatau (Ile Alatau.

  10. Long Valley Caldera Lake and reincision of Owens River Gorge

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-12-16

    Owens River Gorge, today rimmed exclusively in 767-ka Bishop Tuff, was first cut during the Neogene through a ridge of Triassic granodiorite to a depth as great as its present-day floor and was then filled to its rim by a small basaltic shield at 3.3 Ma. The gorge-filling basalt, 200 m thick, blocked a 5-km-long reach of the upper gorge, diverting the Owens River southward around the shield into Rock Creek where another 200-m-deep gorge was cut through the same basement ridge. Much later, during Marine Isotope Stage (MIS) 22 (~900–866 ka), a piedmont glacier buried the diversion and deposited a thick sheet of Sherwin Till atop the basalt on both sides of the original gorge, showing that the basalt-filled reach had not, by then, been reexcavated. At 767 ka, eruption of the Bishop Tuff blanketed the landscape with welded ignimbrite, deeply covering the till, basalt, and granodiorite and completely filling all additional reaches of both Rock Creek canyon and Owens River Gorge. The ignimbrite rests directly on the basalt and till along the walls of Owens Gorge, but nowhere was it inset against either, showing that the basalt-blocked reach had still not been reexcavated. Subsidence of Long Valley Caldera at 767 ka produced a steep-walled depression at least 700 m deeper than the precaldera floor of Owens Gorge, which was beheaded at the caldera’s southeast rim. Caldera collapse reoriented proximal drainages that had formerly joined east-flowing Owens River, abruptly reversing flow westward into the caldera. It took 600,000 years of sedimentation in the 26-km-long, usually shallow, caldera lake to fill the deep basin and raise lake level to its threshold for overflow. Not until then did reestablishment of Owens River Gorge begin, by incision of the gorge-filling ignimbrite.

  11. Bacterial and toxic pollutants in lakes of river Indus

    International Nuclear Information System (INIS)

    Shafiq, H.B.; Rasool, S.A.; Ajaz, M.

    2011-01-01

    Indus river water gets polluted through three sources viz., municipal wastewater, industrial wastewater and agricultural runoff through drainage structure. The lakes in Sindh (fed by the river Indus), constitute the important source of drinking water, recreation and fish, etc. and offer employment for many. A large number of chemicals that either exist naturally in the land dissolve in the water, or human excreta added due to human activity thereby, contaminating and leading to various diseases. In order to assess the microbial contamination, detection of pollutant indicator organisms (coliform group), using Coliform test was performed by Most Probable Number technique and total bacterial count by Pour Plate method. The level of various heavy metals (arsenic, calcium, cadmium, chromium, copper, iron, lead, mercury, potassium, magnesium, manganese, sodium, selenium and zinc) and electrolytes (Cl/sup -1/, HCO/sub 3/sup -1/) was monitored in water and fish meat samples collected from Haleji and Keenjhar lakes to assess the impact of toxic pollutants. Metal concentrations in water and fish samples were estimated by atomic absorption spectrophotometry. Total coliform organisms were found in both the lake water samples, exceeded in 38% samples than the acceptable limits, while total average aerobic bacterial count analyzed in both the lakes was 102 CFU/ml - 1010 CFU/ml. Toxic chemical contaminants were estimated below the detection limit, while other several (essential) metal ions were found within the range set by WHO, except arsenic, cadmium and iron that exceeded slightly in 12.5% water samples. This study was designed to ensure the access of safe and potable water to urban and rural areas of Sindh. Further, the findings will help public/private enterprises and public health institutions to work for the people health friendly policies. (author)

  12. 33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Norman Dam and Lake Thunderbird... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.34 Norman Dam and Lake Thunderbird, Little River, Okla. The Bureau of Reclamation, or its designated agent, shall operate Norman Dam and Lake...

  13. Tracing historical trends of Hg in the Mississippi River using Hg concentrations and Hg isotopic compositions in a lake sediment core, Lake Whittington, Mississippi, USA

    Science.gov (United States)

    Gray, John E.; Van Metre, Peter C.; Pribil, Michael J.; Horowitz, Arthur J.

    2015-01-01

    Concentrations and isotopic compositions of mercury (Hg) in a sediment core collected from Lake Whittington, an oxbow lake on the Lower Mississippi River, were used to evaluate historical sources of Hg in the Mississippi River basin. Sediment Hg concentrations in the Lake Whittington core have a large 10-15 y peak centered on the 1960s, with a maximum enrichment factor relative to Hg in the core of 4.8 in 1966. The Hg concentration profile indicates a different Hg source history than seen in most historical reconstructions of Hg loading. The timing of the peak is consistent with large releases of Hg from Oak Ridge National Laboratory (ORNL), primarily in the late 1950s and 1960s. Mercury was used in a lithiumisotope separation process by ORNL and an estimated 128Mg (megagrams) of Hgwas discharged to a local stream that flows into the Tennessee River and, eventually, the Mississippi River. Mass balance analyses of Hg concentrations and isotopic compositions in the Lake Whittington core fit a binary mixing model with a Hg-rich upstream source contributing about 70% of the Hg to Lake Whittington at the height of the Hg peak in 1966. This upstream Hg source is isotopically similar to Hg isotope compositions of stream sediment collected downstream near ORNL. It is estimated that about one-half of the Hg released from the ORNL potentially reached the LowerMississippi River basin in the 1960s, suggesting considerable downstream transport of Hg. It is also possible that upstream urban and industrial sources contributed some proportion of Hg to Lake Whittington in the 1960s and 1970s.

  14. Lake Sturgeon, Lake Whitefish, and Walleye egg deposition patterns with response to fish spawning substrate restoration in the St. Clair–Detroit River system

    Science.gov (United States)

    Fischer, Jason L.; Pritt, Jeremy J.; Roseman, Edward; Prichard, Carson G.; Craig, Jaquelyn M.; Kennedy, Gregory W.; Manny, Bruce A.

    2018-01-01

    Egg deposition and use of restored spawning substrates by lithophilic fishes (e.g., Lake Sturgeon Acipenser fulvescens, Lake Whitefish Coregonus clupeaformis, and Walleye Sander vitreus) were assessed throughout the St. Clair–Detroit River system from 2005 to 2016. Bayesian models were used to quantify egg abundance and presence/absence relative to site-specific variables (e.g., depth, velocity, and artificial spawning reef presence) and temperature to evaluate fish use of restored artificial spawning reefs and assess patterns in egg deposition. Lake Whitefish and Walleye egg abundance, probability of detection, and probability of occupancy were assessed with detection-adjusted methods; Lake Sturgeon egg abundance and probability of occurrence were assessed using delta-lognormal methods. The models indicated that the probability of Walleye eggs occupying a site increased with water velocity and that the rate of increase decreased with depth, whereas Lake Whitefish egg occupancy was not correlated with any of the attributes considered. Egg deposition by Lake Whitefish and Walleyes was greater at sites with high water velocities and was lower over artificial spawning reefs. Lake Sturgeon eggs were collected least frequently but were more likely to be collected over artificial spawning reefs and in greater abundances than elsewhere. Detection-adjusted egg abundances were not greater over artificial spawning reefs, indicating that these projects may not directly benefit spawning Walleyes and Lake Whitefish. However, 98% of the Lake Sturgeon eggs observed were collected over artificial spawning reefs, supporting the hypothesis that the reefs provided spawning sites for Lake Sturgeon and could mitigate historic losses of Lake Sturgeon spawning habitat.

  15. Cryosat-2 and Sentinel-3 tropospheric corrections: their evaluation over rivers and lakes

    Science.gov (United States)

    Fernandes, Joana; Lázaro, Clara; Vieira, Telmo; Restano, Marco; Ambrózio, Américo; Benveniste, Jérôme

    2017-04-01

    In the scope of the Sentinel-3 Hydrologic Altimetry PrototypE (SHAPE) project, errors that presently affect the tropospheric corrections i.e. dry and wet tropospheric corrections (DTC and WTC, respectively) given in satellite altimetry products are evaluated over inland water regions. These errors arise because both corrections, function of altitude, are usually computed with respect to an incorrect altitude reference. Several regions of interest (ROI) where CryoSat-2 (CS-2) is operating in SAR/SAR-In modes were selected for this evaluation. In this study, results for Danube River, Amazon Basin, Vanern and Titicaca lakes, and Caspian Sea, using Level 1B CS-2 data, are shown. DTC and WTC have been compared to those derived from ECMWF Operational model and computed at different altitude references: i) ECMWF orography; ii) ACE2 (Altimeter Corrected Elevations 2) and GWD-LR (Global Width Database for Large Rivers) global digital elevation models; iii) mean lake level, derived from Envisat mission data, or river profile derived in the scope of SHAPE project by AlongTrack (ATK) using Jason-2 data. Whenever GNSS data are available in the ROI, a GNSS-derived WTC was also generated and used for comparison. Overall, results show that the tropospheric corrections present in CS-2 L1B products are provided at the level of ECMWF orography, which can depart from the mean lake level or river profile by hundreds of metres. Therefore, the use of the model orography originates errors in the corrections. To mitigate these errors, both DTC and WTC should be provided at the mean river profile/lake level. For example, for the Caspian Sea with a mean level of -27 m, the tropospheric corrections provided in CS-2 products were computed at mean sea level (zero level), leading therefore to a systematic error in the corrections. In case a mean lake level is not available, it can be easily determined from satellite altimetry. In the absence of a mean river profile, both mentioned DEM

  16. How does the Taquari River influence in the cladoceran assemblages in three oxbow lakes?

    Directory of Open Access Journals (Sweden)

    EA. Panarelli

    Full Text Available This study examined the cladoceran assemblages in three oxbow lakes of the Taquari River floodplain, near the transition between the plateau and the plain. We sought to answer the following questions: does the Taquari River function as a geographical barrier or dispersal corridor for Cladocera? Can different degrees of connection induce different structures in the assemblages in each lake? Cladocerans and limnological variables were sampled every other month for one year. Forty-one species were recorded, four of which were common to all the lakes. Our results indicated that the different degrees of connection between the river and the oxbow lakes favoured environmental heterogeneity and diversification in the cladoceran assemblages. The greatest dissimilarity between the two lakes connected with the river indicates that in this case the river functions better as a barrier than a dispersal corridor.

  17. Long-term ecosystem monitoring and assessment of the Detroit River and Western Lake Erie.

    Science.gov (United States)

    Hartig, J H; Zarull, M A; Ciborowski, J J H; Gannon, J E; Wilke, E; Norwood, G; Vincent, A N

    2009-11-01

    Over 35 years of US and Canadian pollution prevention and control efforts have led to substantial improvements in environmental quality of the Detroit River and western Lake Erie. However, the available information also shows that much remains to be done. Improvements in environmental quality have resulted in significant ecological recovery, including increasing populations of bald eagles (Haliaeetus leucocephalus), peregrine falcons (Falco columbarius), lake sturgeon (Acipenser fulvescens), lake whitefish (Coregonus clupeaformis), walleye (Sander vitreus), and burrowing mayflies (Hexagenia spp.). Although this recovery is remarkable, many challenges remain, including population growth, transportation expansion, and land use changes; nonpoint source pollution; toxic substances contamination; habitat loss and degradation; introduction of exotic species; and greenhouse gases and global warming. Research/monitoring must be sustained for effective management. Priority research and monitoring needs include: demonstrating and quantifying cause-effect relationships; establishing quantitative endpoints and desired future states; determining cumulative impacts and how indicators relate; improving modeling and prediction; prioritizing geographic areas for protection and restoration; and fostering long-term monitoring for adaptive management. Key management agencies, universities, and environmental and conservation organizations should pool resources and undertake comprehensive and integrative assessments of the health of the Detroit River and western Lake Erie at least every 5 years to practice adaptive management for long-term sustainability.

  18. 78 FR 49684 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2013-08-15

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

  19. 78 FR 36091 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2013-06-17

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

  20. 77 FR 65478 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Science.gov (United States)

    2012-10-29

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River...

  1. 76 FR 63199 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2011-10-12

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal...

  2. 77 FR 60044 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2012-10-02

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River...

  3. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  4. 210Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil

    International Nuclear Information System (INIS)

    Bonotto, Daniel Marcos; Vergotti, Marcelo

    2015-01-01

    Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to Madeira River due to fact it is a major tributary of Amazon River and that since 1986, gold exploration has been officially permitted along a 350 km sector of the river. The 210 Pb method has been used to date sediments taken from nine lakes situated in Madeira River basin, Rondônia State, and to verify where anthropogenic Hg might exist due to gold exploitation in Madeira River. Activity profiles of excess 210 Pb determined in the sediment cores provided a means to evaluate the sedimentation rates using a Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess 210 Pb models. A significant relationship was found between the CF:CS sedimentation rates and the mean values of the CRS sedimentation rates (Pearson correlation coefficient r=0.59). Chemical data were also determined in the sediments for identifying possible relationships with Hg occurring in the area. Significant values were found in statistical correlation tests realized among the Hg, major oxides and Total Organic Carbon (TOC) content in the sediments. The TOC increased in the sediment cores accompanied by a loss on ignition (LOI) increment, whereas silica decreased following a specific surface area raising associated to the TOC increase. The CRS model always provided ages within the permitted range of the 210 Pb-method in the studied lakes, whereas the CF:CS model predicted two values above 140 years. - Highlights: • Gold mining activities. • Madeira River basin at Amazon area. • Pb-210 chronological method. • Models for evaluating sedimentation rates

  5. Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu Lake in Taihu Basin

    Directory of Open Access Journals (Sweden)

    Wu Haoyun

    2008-09-01

    Full Text Available On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtze River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching decision-making support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.

  6. Life history characteristics of a recovering lake whitefish Coregonus clupeaformis stock in the Detroit River, North America

    Science.gov (United States)

    Roseman, Edward F.; Kennedy, Gregory W.; Manny, Bruce A.; Boase, James; McFee, James; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth

    2012-01-01

    The Detroit River is part of a channel connecting Lakes Huron and Erie and was once a prolific spawning area for lake whitefish, Coregonus clupeaformis. Large numbers of lake whitefish migrated into the river to spawn where they were harvested by commercial fisheries and for fish culture operations. Prior to our study, the last lake whitefish was landed from the Detroit River in 1925. Loss of spawning habitat during shipping channel construction and over-fishing, likely reduced lake whitefish spawning runs. Because lake whitefish are recovering in Lake Erie, and spawning in the western basin, we suspected they may also be spawning in the Detroit River. We sampled in the Detroit River for lake whitefish adults and eggs in October–December 2005–07 and for larvae during March–May 2006–08. A total of 15 spawning-ready lake whitefish from 4 to 18 years old, were collected. Viable eggs were collected during mid-November 2006–07; highest egg densities were found mid-river. Sac-fry whitefish larvae were collected in the river and near the river mouth. No whitefish larvae were retained in the river. Because high numbers of larvae were collected from mid- and downstream river sites, reproduction of lake whitefish in the Detroit River could contribute substantially to the Lake Erie lake whitefish metapopulation.

  7. Investigation of Residence and Travel Times in a Large Floodplain Lake with Complex Lake-River Interactions: Poyang Lake (China

    Directory of Open Access Journals (Sweden)

    Yunliang Li

    2015-04-01

    Full Text Available Most biochemical processes and associated water quality in lakes depends on their flushing abilities. The main objective of this study was to investigate the transport time scale in a large floodplain lake, Poyang Lake (China. A 2D hydrodynamic model (MIKE 21 was combined with dye tracer simulations to determine residence and travel times of the lake for various water level variation periods. The results indicate that Poyang Lake exhibits strong but spatially heterogeneous residence times that vary with its highly seasonal water level dynamics. Generally, the average residence times are less than 10 days along the lake’s main flow channels due to the prevailing northward flow pattern; whereas approximately 30 days were estimated during high water level conditions in the summer. The local topographically controlled flow patterns substantially increase the residence time in some bays with high spatial values of six months to one year during all water level variation periods. Depending on changes in the water level regime, the travel times from the pollution sources to the lake outlet during the high and falling water level periods (up to 32 days are four times greater than those under the rising and low water level periods (approximately seven days.

  8. Prevention of Polluting Rivers and Lakes from Ships

    Directory of Open Access Journals (Sweden)

    Natalija Jolić

    2005-09-01

    Full Text Available Traffic on rivers and lakes in Europe has been ve1y well developed.The reason for this is the transport cost, relative speedand good connectivity of major European cities by rivers andcanals. In Croatia, this transport mode is lagging behind therest of Europe. Croatia is located at an interesting section of theriver transversal, but due to several reasons, river navigation inCroatia has not been developed to any major extent. As operatingriver ships the most frequent types are: towboats, pushboatsand self-propelled ships. The installed diesel engines, propulsionand auxiliary engines run at high power. Proportional tothe increase in the power of installed engines is also the increasein the volume of waste produced by the engines. Also, the olderthe engine, the greater volume of waste it produces. Ships mayalso cause pollution by wastewaters and garbage. This pollutionthreat grows with the greater number of people on boardand the age of the ship. In order to minimize these possibilitiesof pollution, it is necesswy to control all the time the properfunctioning of the ships, train the staff and construct receptionfacilities on land.

  9. Estimation of Transport Trajectory and Residence Time in Large River–Lake Systems: Application to Poyang Lake (China Using a Combined Model Approach

    Directory of Open Access Journals (Sweden)

    Yunliang Li

    2015-09-01

    Full Text Available The biochemical processes and associated water quality in many lakes mainly depend on their transport behaviors. Most existing methodologies for investigating transport behaviors are based on physically based numerical models. The pollutant transport trajectory and residence time of Poyang Lake are thought to have important implications for the steadily deteriorating water quality and the associated rapid environmental changes during the flood period. This study used a hydrodynamic model (MIKE 21 in conjunction with transport and particle-tracking sub-models to provide comprehensive investigation of transport behaviors in Poyang Lake. Model simulations reveal that the lake’s prevailing water flow patterns cause a unique transport trajectory that primarily develops from the catchment river mouths to the downstream area along the lake’s main flow channels, similar to a river-transport behavior. Particle tracking results show that the mean residence time of the lake is 89 days during July–September. The effect of the Yangtze River (the effluent of the lake on the residence time is stronger than that of the catchment river inflows. The current study represents a first attempt to use a combined model approach to provide insights into the transport behaviors for a large river–lake system, given proposals to manage the pollutant inputs both directly to the lake and catchment rivers.

  10. Converting the Key Lake mill process for McArthur River ore

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C. [McArthur River Operation, Cameco Corporation, Saskatoon, Saskatchewan (Canada)

    2000-07-01

    The Key Lake mill was commissioned in 1983 to process the two Key Lake ore deposits. With the depletion of these ore bodies in 1999, the plant was converted to mill the exceptionally rich McArthur River deposit located seventy eight kilometers northeast of the Key Lake mine site. This paper describes in detail the Key Lake milling process. The mill consists of a grinding circuit, a leach/counter current decantation circuit, a solvent extraction circuit, a yellowcake precipitation/calciner circuit, an ammonium sulphate crystallization circuit, and a waste treatment circuit. The paper also describes process changes to handle McArthur River ore, including the ore receiving station. (author)

  11. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  12. (210)Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil.

    Science.gov (United States)

    Bonotto, Daniel Marcos; Vergotti, Marcelo

    2015-05-01

    Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to Madeira River due to fact it is a major tributary of Amazon River and that since 1986, gold exploration has been officially permitted along a 350km sector of the river. The (21)(0)Pb method has been used to date sediments taken from nine lakes situated in Madeira River basin, Rondônia State, and to verify where anthropogenic Hg might exist due to gold exploitation in Madeira River. Activity profiles of excess (21)(0)Pb determined in the sediment cores provided a means to evaluate the sedimentation rates using a Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess (21)(0)Pb models. A significant relationship was found between the CF:CS sedimentation rates and the mean values of the CRS sedimentation rates (Pearson correlation coefficient r=0.59). Chemical data were also determined in the sediments for identifying possible relationships with Hg occurring in the area. Significant values were found in statistical correlation tests realized among the Hg, major oxides and Total Organic Carbon (TOC) content in the sediments. The TOC increased in the sediment cores accompanied by a loss on ignition (LOI) increment, whereas silica decreased following a specific surface area raising associated to the TOC increase. The CRS model always provided ages within the permitted range of the (21)(0)Pb-method in the studied lakes, whereas the CF:CS model predicted two values above 140 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Biological and ecological science for Wisconsin—A Great Lakes and Rivers State

    Science.gov (United States)

    ,

    2018-03-06

    Wisconsin and natural resources go hand-in-hand. Tourism, which generates $19 billion annually and sustains about 200,000 jobs, depends on an abundance of lakes, rivers, shorelines, and woodlands for fishing, hunting, boating, and other outdoor recreation. Rivers and floodplains in the Upper Mississippi Basin, including the Mississippi River, are part of a five-State corridor that generates more than $300 billion annually and sustains millions of manufacturing, tourism, transportation, and agricultural jobs. Wisconsin also is a Great Lakes State with more than 800 miles of shoreline, and the fisheries of lakes Superior and Michigan deliver $185 million annually and provide thousands of jobs.

  14. McArthur River project - the future of Key Lake

    International Nuclear Information System (INIS)

    Spross, J.

    1994-01-01

    The Key Lake mill has operated since the fall of 1983. The ore from both Key Lake open pits will be depleted by 1997. It is planned to use this mill, located about 60 km southwest of McArthur, to process the McArthur River ore. While the geological data collected so far on the McArthur deposit are encouraging, more information of the deposit is needed before any detailed mine planning can begin. The surface drilling program identified the orebody and provided information on the geomechanical and hydrological properties of the overlying sandstone. It was proposed to conduct an underground exploration program to further delineate the orebody. This was approved following a public hearing and review process. This program involves the sinking of a 630 metre deep shaft and the driving of one or two drifts along a portion of the orebody. From these drifts, exploration drilling every 10 m to 15 m through the orebody will provide the information required for the preparation of a feasibility study and an Environmental Impact Statement (EIS). (author). 4 refs., 8 figs

  15. Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel

    Directory of Open Access Journals (Sweden)

    Jiangyu Dai

    2018-06-01

    Full Text Available To reveal the effects of water diversion from the Yangtze River to Lake Taihu on the phytoplankton habitat of the main water transfer channel of the Wangyu River, we investigated the water’s physicochemical parameters and phytoplankton communities during the water diversion and non-diversion periods over the winters between 2014–2016, respectively. During the water diversion periods in the winter of 2014 and 2015, the nutrients and organic pollutant contents of the Wangyu River channel were significantly lower than those during the non-diversion period in 2016. Moreover, the phytoplankton diversities and relative proportions of Bacillariophyta during the diversion periods evidently increased during the water diversion periods in winter. The increase in the water turbidity content, the decrease in the contents of the permanganate index, and the total phosphorus explained only 21.4% of the variations in the phytoplankton communities between the diversion and non-diversion periods in winter, which revealed significant contributions of the allochthonous species from the Yangtze River and tributaries of the Wangyu River to phytoplankton communities in the Wangyu River. The increasing gradient in the contents of nutrients and organic pollutants from the Yangtze River to Lake Taihu indicated the potential allochthonous pollutant inputs along with the Wangyu River. Further controlling the pollutants from the tributaries of the Wangyu River is critical in order to improve the phytoplankton habitats in river channels and Lake Taihu.

  16. Post Audit of Lake Michigan Lake Trout PCB Model Forecasts

    Science.gov (United States)

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  17. Fish assemblages in borrow-pit lakes of the Lower Mississippi River

    Science.gov (United States)

    Miranda, Leandro E.; Killgore, K. J.; Hoover, J.J.

    2013-01-01

    Borrow-pit lakes encompass about a third of the lentic water habitats (by area) in the active floodplain of the Lower Mississippi River, yet little is known about their fish assemblages. We investigated whether fish assemblages supported by borrow-pit lakes resembled those in oxbow lakes to help place the ecological relevance of borrow-pit lakes in context with that of natural floodplain lakes. In all, we collected 75 fish species, including 65 species in eight borrow-pit lakes, 52 species in four riverside oxbow lakes, and 44 species in eight landside oxbow lakes. Significant differences in several species richness metrics were evident between borrow-pit lakes and landside oxbow lakes but not between borrow-pit lakes and riverside oxbow lakes. All three lake types differed in fish assemblage composition. Borrow-pit lakes and riverside oxbow lakes tended to include a greater representation of fish species that require access to diverse environments, including lentic, lotic, and palustrine habitats; fish assemblages in landside oxbow lakes included a higher representation of lacustrine species. None of the fish species collected in borrow-pit lakes was federally listed as threatened or endangered, but several were listed as species of special concern by state governments in the region, suggesting that borrow-pit lakes provide habitat for sensitive riverine and wetland fish species. Differences in fish assemblages among borrow-pit lakes were linked to engineered morphologic features, suggesting that diversity in engineering can contribute to diversity in fish assemblages; however, more research is needed to match engineering designs with fish assemblage structures that best meet conservation needs.

  18. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran)

    OpenAIRE

    Melahat Hoghoghi; Soheil Eagderi; Bahmen Shams-Esfandabad

    2016-01-01

    A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river s...

  19. 78 FR 17099 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Science.gov (United States)

    2013-03-20

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including...

  20. 76 FR 78161 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2011-12-16

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... INFORMATION: The Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake...

  1. 77 FR 20295 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Science.gov (United States)

    2012-04-04

    ... Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  2. 78 FR 65874 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2013-11-04

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including...

  3. 75 FR 73966 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2010-11-30

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  4. 78 FR 4071 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2013-01-18

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  5. 77 FR 35854 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2012-06-15

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  6. 75 FR 64673 - Safety Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2010-10-20

    ... Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and... Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Ship and...: The Coast Guard will enforce Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des...

  7. 78 FR 40635 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2013-07-08

    ... Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  8. 78 FR 36092 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2013-06-17

    ... Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  9. 76 FR 2829 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2011-01-18

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  10. 75 FR 64147 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2010-10-19

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Ship and Sanitary Canal... . SUPPLEMENTARY INFORMATION: The Coast Guard will enforce Safety Zone, Brandon Road Lock and Dam to Lake Michigan...

  11. 75 FR 52462 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2010-08-26

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  12. 76 FR 65609 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2011-10-24

    ... Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship Canal... Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal, Chicago... INFORMATION: The Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake...

  13. Changes in Glaciers and Glacial Lakes and the Identification of Dangerous Glacial Lakes in the Pumqu River Basin, Xizang (Tibet

    Directory of Open Access Journals (Sweden)

    Tao Che

    2014-01-01

    Full Text Available Latest satellite images have been utilized to update the inventories of glaciers and glacial lakes in the Pumqu river basin, Xizang (Tibet, in the study. Compared to the inventories in 1970s, the areas of glaciers are reduced by 19.05% while the areas of glacial lakes are increased by 26.76%. The magnitudes of glacier retreat rate and glacial lake increase rate during the period of 2001–2013 are more significant than those for the period of the 1970s–2001. The accelerated changes in areas of the glaciers and glacial lakes, as well as the increasing temperature and rising variability of precipitation, have resulted in an increased risk of glacial lake outburst floods (GLOFs in the Pumqu river basin. Integrated criteria were established to identify potentially dangerous glacial lakes based on a bibliometric analysis method. It is found, in total, 19 glacial lakes were identified as dangerous. Such finding suggests that there is an immediate need to conduct field surveys not only to validate the findings, but also to acquire information for further use in order to assure the welfare of the humans.

  14. Mapping Dynamics of Inundation Patterns of Two Largest River-Connected Lakes in China: A Comparative Study

    OpenAIRE

    Guiping Wu; Yuanbo Liu

    2016-01-01

    Poyang Lake and Dongting Lake are the two largest freshwater lakes in China. The lakes are located approximately 300 km apart on the middle reaches of the Yangtze River and are differently connected through their respective tributary systems, which will lead to different river–lake water exchanges and discharges. Thus, differences in their morphological and hydrological conditions should induce individual lake spatio-temporal inundation patterns. Quantitative comparative analyses of the dynam...

  15. Risk analysis on heavy metal contamination in sediments of rivers flowing into Nansi Lake.

    Science.gov (United States)

    Cao, Qingqing; Song, Ying; Zhang, Yiran; Wang, Renqing; Liu, Jian

    2017-12-01

    In order to understand the risk of heavy metals in sediments of the rivers flowing into Nansi Lake, 36 surface sediments were sampled from six rivers and seven heavy metals (Cr, Cu, Ni, Zn, As, Pb, and Cd) were determined. Potential ecological risk index (RI) of the six rivers showed significant differences: Xinxue River, Jiehe River, and Guangfu River were at medium potential risk, whereas the risk of Chengguo River was the lowest. Jiehe River, Xuesha River, and Jiangji River were meeting the medium potential risk at river mouths. Geo-accumulation index (I geo ) of the seven heavy metals revealed that the contamination of Cu and Cd was more serious than most other metals in the studied areas, whereas Cr in most sites of our study was not polluted. Moreover, correlation cluster analysis demonstrated that the contamination of Cu, Ni, and Zn in six rivers was mainly caused by local emissions, whereas that of As, Pb, and Cd might come from the external inputs in different forms. Consequently, the contamination of Cu and Cd and the potential risk in Xinxue River, Jiehe River, and Guangfu River as well as the local emissions should be given more attention to safeguard the water quality of Nansi Lake and the East Route Project of South to North Water Transfer.

  16. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sanford Dam and Lake Meredith... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.32 Sanford Dam and Lake Meredith, Canadian River, Tex. The Bureau of Reclamation, or its designated agent, shall operate the Sanford Dam and...

  17. [Seasonal changes of optical absorption properties of river and lake in East Liaohe River basin, Northeast China].

    Science.gov (United States)

    Song, Yan Yan; Su, Dong Hui; Shao, Tian Tian

    2017-06-18

    The absorption characteristics of optically active constituents (OACs) in water column are important optical properties and basic parameters of establishing the inverse analysis model. Comparative analyses about seasonal variability of the optical absorption characteristics (phytoplankton, non-algal particles and chromophoric dissolved organic matter absorption characteristics) and water quality status of East Liaohe River basin were conducted based on the water samples in Erlong-hu Reservoir collected in June, September and October of 2011 and samples in East Liaohe River in October of 2012. The results demonstrated that the eutrophication status of Erlonghu Reservoir was lower in June, eutrophic in September and moderately eutrophic in October. Some of the sampling points of the East Liaohe River belonged to the middle trophic level and the other part belonged to the eutrophic level. The absorption coefficient of each component of water increased with increasing nutrient level. Besides, the absorption spectra of total suspended particulate of Erlonghu Reservoir in June and October were similar to that of non-algal particles, and chromophoric dissolved organic matter (CDOM) contributed most to the total absorption of water. The absorption spectra of total suspended particulate matter in September were similar to that of phytoplankton and phytoplankton was the dominant contributor to the total absorption. For samples of Erlonghu Reservoir in June and September, a ph (440) and total phosphorus (TP) were correlated closely with each other. Significant correlation between a ph (440) and dissolved organic carbon (DOC) of Erlonghu Reservoir in June was observed, while a d (440) was only correlated with Chla. There were positive correlations between a ph (675) and Chla, Carlson index (TLI) in Erlonghu Reservoir (September) and East Liaohe River. Obvious differences of water optical properties were found between river and lake located in the East Liaohe River basin as

  18. Rivers affect the biovolume and functional traits of phytoplankton in floodplain lakes

    Directory of Open Access Journals (Sweden)

    Alfonso Pineda

    2017-12-01

    Full Text Available Abstract Aim: We analyzed the temporal distribution (dry and rainy periods of phytoplankton functional groups (biovolume from lakes connected to dammed (S1 - Paraná River and non-dammed rivers (S2 - Baia River and S3 - Ivinhema River in the upper Paraná River floodplain, Brazil. We also determined the drivers of the phytoplankton community assemblage. Methods Phytoplankton and environmental variables samplings were performed quarterly in dry (2000 and 2001 and rainy (2010 and 2011 periods. We classified the phytoplankton species into seven morphological based functional groups (MBFG. We used analysis of variance to test differences in total phytoplankton biovolume and MBFGs biovolume between lakes and climatic periods. We also used redundancy analysis to determine the MBFGs-environment relation. Results The lake related to the dammed river (S1 presented the lowest species richness. The total phytoplankton biovolume presented differences among the lakes, but we did not register temporal differences associated with water level variation. The lake related to the non-dammed and semi-lentic river (S2 presented the highest biovolume, while S1 (related to the dammed river and S3 (related to the non-dammed river exhibited the lowest ones. Filamentous organisms (MBFG III were associated with poor nutrient conditions and diatoms (MBFG VI were favored in high water mixing sites. The flagellate groups MBFG II and MBFG V were related to deeper water and lower column mixing conditions, respectively. Conclusions Our results suggest that phytoplankton species with different functional traits drive the primary productivity in the dry and rainy periods. Hence, we highlight the importance of maintaining high functional diversity in lakes to ensure primary productivity. Therefore, we stress the importance of protecting the natural environment such as floodplain lakes because of its contribution to the regional biodiversity and the flow of energy.

  19. Relationships between water quality parameters in rivers and lakes: BOD5, COD, NBOPs, and TOC.

    Science.gov (United States)

    Lee, Jaewoong; Lee, Seunghyun; Yu, Soonju; Rhew, Doughee

    2016-04-01

    Biological oxygen demand (BOD5) or chemical oxygen demand (COD) analysis is widely used to evaluate organic pollutants in water systems as well as the efficiency of wastewater treatment plants. However, both analysis methods have restrictions such as being insensitive, imprecise, time-consuming, and the production of chemical waste. Therefore, total organic carbon (TOC) analysis for organic pollutants has been considered for an alternative analysis instead of BOD5 or COD. Several studies have investigated the replacement of BOD5 or COD with TOC in wastewater samples; however, few studies have investigated the relationships between water quality parameters in rivers and lakes. Therefore, this study evaluated the relationships between BOD5, COD, or NBOPs and TOC by the analysis of national water quality monitoring data of rivers and lakes for 5 years. High correlation coefficients (r) of 0.87 and 0.66 between BOD5 and TOC (p TOC (p TOC was 0.93 for rivers and 0.72 for lakes. The coefficients of determination (R 2) were 0.75 and 0.44 between BOD5 and TOC for rivers and lakes as well as were 0.87 and 0.57 between COD and TOC for rivers and lakes, respectively. The coefficient of determination (R 2) between NBOPs and TOC was 0.73 for rivers and 0.52 for lakes.

  20. 78 FR 77397 - Flood Control Regulations, Marshall Ford Dam (Mansfield Dam and Lake Travis), Colorado River, Texas

    Science.gov (United States)

    2013-12-23

    ... Regulations, Marshall Ford Dam (Mansfield Dam and Lake Travis), Colorado River, Texas AGENCY: U.S. Army Corps... Marshall Ford Dam (Mansfield Dam and Lake Travis), Colorado River, Texas. In 1997, the Lower Colorado River... regulations to reflect changes in ownership and responsibilities of flood control management of Marshall Ford...

  1. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  2. 75 FR 26094 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Science.gov (United States)

    2010-05-11

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... establishing a temporary safety zone from Brandon Road Lock and Dam to Lake Michigan. This temporary safety...

  3. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    Science.gov (United States)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  4. Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China.

    Science.gov (United States)

    Wu, Pan; Qin, Boqiang; Yu, Ge

    2016-03-01

    The shallow lakes in the eastern China developed on alluvial plains with high-nutrient sediments, and most overflow into the Yangtze River with short hydraulic residence times, whereas they become eutrophic over long time periods. Assuming strong responses to hydrogeological changes in the basin, we attempted to determine the dynamic eutrophication history of these lakes. Although evaluation models for internal total phosphorus (TP) loading are widely used for deep lakes in Europe and North America, the accuracy of these models for shallow lakes that have smaller water volumes controlled by the geometrical morphology and greater basin area of alluvial plains is unknown. To describe the magnitude of changes in velocity of trophic state for the studied shallow lakes, we first evaluated the P retention model in relation to the major forces driving lake morphology, basin climate, and external discharge and then used the model to estimate changes in TP in three large shallow lakes (Taihu, Chao, and Poyang) over 60 years (1950-2009 AD). The observed levels of TP were verified against the relative error of the three lakes (Yangtze River basin. This work will contribute to the development of an internal P loading model for further evaluating trophic states.

  5. Behavioural and morphological differences between lake and river populations of Salaria fluviatilis

    NARCIS (Netherlands)

    Neat, F.C.; Lengkeek, W.; Westerbeek, P.; Laarhoven, B.; Videler, J.J

    Three populations (one from a river and two from lakes) of Salaria fluviatilis, the only exclusively freshwater representative of the Blenniidae, showed significant differences in reproductive behaviour and morphology. Breeding males and females were significantly larger at maturity in the river

  6. Simulation of the effects of Devils Lake outlet alternatives on future lake levels and water quality in the Sheyenne River and Red River of the North

    Science.gov (United States)

    Vecchia, Aldo V.

    2011-01-01

    Since 1992, Devils Lake in northeastern North Dakota has risen nearly 30 feet, destroying hundreds of homes, inundating thousands of acres of productive farmland, and costing more than $1 billion for road raises, levee construction, and other flood mitigation measures. In 2011, the lake level is expected to rise at least another 2 feet above the historical record set in 2010 (1,452.0 feet above the National Geodetic Vertical Datum of 1929), cresting less than 4 feet from the lake's natural spill elevation to the Sheyenne River (1,458.0 feet). In an effort to slow the rising lake and reduce the chance of an uncontrolled spill, the State of North Dakota is considering options to expand a previously constructed outlet from the west end of Devils Lake or construct a second outlet from East Devils Lake. Future outlet discharges from Devils Lake, when combined with downstream receiving waters, need to be in compliance with applicable Clean Water Act requirements. This study was completed by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health Division of Water Quality, to evaluate the various outlet alternatives with respect to their effect on downstream water quality and their ability to control future lake levels.

  7. Radioactivity in the Calcasieu River/Lake Complex

    International Nuclear Information System (INIS)

    Broussard, M.; Beck, J.N.

    1987-01-01

    Concentrations of natural and manmade radionuclides including 40 K, 137 Cs, 226 Ra, 228 Ac, and their decay products were measured in sediment and water samples. Gross alpha and gross beta activities were also determined in water samples. The levels of radioactivity were found to be low in all water samples, with a general increase of activity toward the brackish waters of the southern portion of the study area. The concentrations of uranium and thorium daughters found in sediment samples were found to be relatively constant across the study area. The concentration of 40 K was found to vary in a regular manner, with the lowest values found in the northern portion of the river/lake complex and highest values found at the southern stations. This suggests transport and deposition of potassium into the organic-rich sediments. The only manmade radionuclide found was 137 Cs which was deposited only in the top 15 to 20 cm of sediment and was uniformly distributed across the sample area

  8. Quality of water in the White River and Lake Tapps, Pierce County, Washington, May-December 2010

    Science.gov (United States)

    Embrey, S.S.; Wagner, R.J.; Huffman, R.L.; Vanderpool-Kimura, A. M.; Foreman, J.R.

    2012-01-01

    The White River and Lake Tapps are part of a hydropower system completed in 1911–12. The system begins with a diversion dam on the White River that routes a portion of White River water into the southeastern end of Lake Tapps, which functioned as a storage reservoir for power generation. The stored water passed through the hydroelectric facilities at the northwestern end of the lake and returned to the White River through the powerhouse tailrace. Power generation ceased in January 2004, which altered the hydrology of the system by reducing volumes of water diverted out of the river, stored, and released through the powerhouse. This study conducted from May to December 2010 created a set of baseline data collected under a new flow regime for selected reaches of the White River, the White River Canal (Inflow), Lake Tapps Diversion (Tailrace) at the powerhouse, and Lake Tapps.

  9. External Nutrient Inputs into Lake Kivu: Rivers and Atmospheric ...

    African Journals Online (AJOL)

    Quantifying the external nutrients inputs is a key factor for understanding the formation of methane in Lake Kivu. This tectonic lake located between Rwanda and DRC contains a big quantity of dissolved gases predominated by carbon dioxide, methane and sulphide. The CH4 is most probably produced in the lake, mainly in ...

  10. Uranium isotopes in waters and bottom sediments of rivers and lakes in Poland

    International Nuclear Information System (INIS)

    Pietrzak-Flis, Z.; Kaminska, I.; Chrzanowski, E.

    2004-01-01

    Activity concentrations of 238 U, 234 U and 235 U were determined in waters and bottom sediments in two main rivers in Poland (the Vistula and Odra rivers) with their tributaries, in four coastal rivers and six lakes. Concentration of 238 U and 233 U were compared with the concentrations of 226 Ra determined in another study. As compared with concentrations in coastal rivers and in lakes, enhanced concentrations of the radionuclides were observed in water and bottom sediments in the upper and middle courses of Vistula river, whereas in the Odra river the enhanced concentrations were present only in the bottom sediments. The enhanced concentrations in the Vistula river result from the discharge of coal mine waters from the Upper Silesian Coal Basin, and they indicate that the discharge was continued. The enhanced concentration in Odra river observed only in bottom sediments indicate that the discharge occurred in the past. The 234 U/ 238 U ratio for the bottom sediments was close to unity, indicating that these isotopes were close to equilibrium, whereas for water the average ratio was form 1.2 for lakes to 1.5 for the Vistula river, demonstrating the lack of equilibrium. (author)

  11. Thermal and Hydraulic Conditions Supporting the Recruitment of Asian Carp in Seiche Affected Rivers of Lake Erie Basin - A Case Study of the Lower Sandusky River in Ohio

    Science.gov (United States)

    Soong, D. T.; Santacruz, S.; Jones, L.; Garcia, T.; Kočovský, P. M.; Embke, H.

    2017-12-01

    Grass Carp Ctenopharyngodon idella (Cyprinidae) is an invasive fish species that spawns in rivers during high-flow events. In their native range, it is believed eggs must hatch within the riverine environment in order to eventually result in production of adult fish. The lower Sandusky River is approximately 26 km long extending from its confluence with Sandusky Bay upstream to the Ballville Dam, which is impassible for Grass Carp. Grass Carp are known to have spawned in the Sandusky River, a tributary to Lake Erie, in 2011, 2013, 2015, and 2017. This study characterizes the thermal and hydraulic conditions under which these eggs could hatch in the lower Sandusky River, a relatively short river reach for egg hatching. Grass Carp eggs collected in 2015 were previously analyzed for hatching locations using a one-dimensional steady-state HEC-RAS hydraulic model. In this study we refine estimates of hatching locations by incorporating the influence of fluctuating water levels downstream due to seiches in Lake Erie and overland and tributary inflows using an unsteady 1D/2D HEC-RAS hydraulic model. Additionally, conditions conducive to successful hatching, which occurs when eggs reach the hatching stage within the river, were analyzed from nine high-flow events between 2011 and 2015. Simulated hydraulic and water temperature data were used as inputs to the Fluvial Egg Drift Simulator (FluEgg) model, which was used to analyze the transport and dispersal of Grass carp eggs until hatching. We will describe the differences in steady- and unsteady-state hydraulic modeling in predicting hatching locations of Grass Carp eggs for the 2015 spawning events. Results will also include hydraulic and temperature variables that contribute to the successful/unsuccessful in-river hatching for the nine flow events simulated.

  12. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes

    Science.gov (United States)

    Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.

    2014-01-01

    Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.

  13. Lessons Learned from Stakeholder-Driven Modeling in the Western Lake Erie Basin

    Science.gov (United States)

    Muenich, R. L.; Read, J.; Vaccaro, L.; Kalcic, M. M.; Scavia, D.

    2017-12-01

    Lake Erie's history includes a great environmental success story. Recognizing the impact of high phosphorus loads from point sources, the United States and Canada 1972 Great Lakes Water Quality Agreement set load reduction targets to reduce algae blooms and hypoxia. The Lake responded quickly to those reductions and it was declared a success. However, since the mid-1990s, Lake Erie's algal blooms and hypoxia have returned, and this time with a dominant algae species that produces toxins. Return of the algal blooms and hypoxia is again driven by phosphorus loads, but this time a major source is the agriculturally-dominated Maumee River watershed that covers NW Ohio, NE Indiana, and SE Michigan, and the hypoxic extent has been shown to be driven by Maumee River loads plus those from the bi-national and multiple land-use St. Clair - Detroit River system. Stakeholders in the Lake Erie watershed have a long history of engagement with environmental policy, including modeling and monitoring efforts. This talk will focus on the application of interdisciplinary, stakeholder-driven modeling efforts aimed at understanding the primary phosphorus sources and potential pathways to reduce these sources and the resulting algal blooms and hypoxia in Lake Erie. We will discuss the challenges, such as engaging users with different goals, benefits to modeling, such as improvements in modeling data, and new research questions emerging from these modeling efforts that are driven by end-user needs.

  14. Precision and relative effectiveness of a purse seine for sampling age-0 river herring in lakes

    Science.gov (United States)

    Devine, Matthew T.; Roy, Allison; Whiteley, Andrew R.; Gahagan, Benjamin I.; Armstrong, Michael P.; Jordaan, Adrian

    2018-01-01

    Stock assessments for anadromous river herring, collectively Alewife Alosa pseudoharengus and Blueback Herring A. aestivalis, lack adequate demographic information, particularly with respect to early life stages. Although sampling adult river herring is increasingly common throughout their range, currently no standardized, field‐based, analytical methods exist for estimating juvenile abundance in freshwater lakes. The objective of this research was to evaluate the relative effectiveness and sampling precision of a purse seine for estimating densities of age‐0 river herring in freshwater lakes. We used a purse seine to sample age‐0 river herring in June–September 2015 and June–July 2016 in 16 coastal freshwater lakes in the northeastern USA. Sampling effort varied from two seine hauls to more than 50 seine hauls per lake. Catch rates were highest in June and July, and sampling precision was maximized in July. Sampling at night (versus day) in open water (versus littoral areas) was most effective for capturing newly hatched larvae and juveniles up to ca. 100 mm TL. Bootstrap simulation results indicated that sampling precision of CPUE estimates increased with sampling effort, and there was a clear threshold beyond which increased effort resulted in negligible increases in precision. The effort required to produce precise CPUE estimates, as determined by the CV, was dependent on lake size; river herring densities could be estimated with up to 10 purse‐seine hauls (one‐two nights) in a small lake (50 ha). Fish collection techniques using a purse seine as described in this paper are likely to be effective for estimating recruit abundance of river herring in freshwater lakes across their range.

  15. Study of tributary inflows in Lake Iseo with a rotating physical model

    Directory of Open Access Journals (Sweden)

    Marco Pilotti

    2014-03-01

    Full Text Available The influence of Coriolis force on the currents of large lakes is well acknowledged; very few contributions, however, investigate this aspect in medium-size lakes where its relevance could be questionable. In order to study the area of influence of the two major tributary rivers in Lake Iseo, a rotating vertically distorted physical model of the northern part of this lake was prepared and used, respecting both Froude and Rossby similarity. The model has a horizontal length scale factor of 8000 and a vertical scale factor of 500 and was used both in homogeneous and in thermally stratified conditions. We explored the pattern of water circulation in front of the entrance mouth for different hydrologic scenarios at the beginning of spring and in summer. We neglected the influence of winds. The primary purposes of the model were twofold: i to increase our level of knowledge of the hydrodynamics of Lake Iseo by verifying the occurrence of dynamical effects related to the Earth’s rotation on the plume of the two tributaries that enter the northern part of the lake and ii to identify the areas of the lake that can be directly influenced by the tributaries’ waters, in order to provide guidance on water quality monitoring in zones of relevant environmental and touristic value. The results of the physical model confirm the relevant role played by the Coriolis force in the northern part of the lake. Under ordinary flow conditions, the model shows a systematic deflection of the inflowing waters towards the western shore of the lake. The inflow triggers a clockwise gyre within the Lovere bay, to the West of the inflow, and a slow counter-clockwise gyre, to the East of the inflow, that returns water towards the river mouth along the eastern shore. For discharges with higher return period, when only the contribution by Oglio River is relevant, the effect of the Earth’s rotation weakens in the entrance zone and the plume has a more rectilinear pattern

  16. Analysis on the Water Exchange between the Main Stream of the Yangtze River and the Poyang Lake

    NARCIS (Netherlands)

    Zhao, J.; Li, J.; Yan, H.; Zheng, L.; Dai, Z.

    2011-01-01

    Analysis on the hydrologic characteristics of the main stream of the Yangtze River and Poyang Lake were studied to discuss the water exchange between the main stream of the Yangtze River and Poyang Lake before and after the operation of Three Gorges Reservoir, as well as in the typical dry year of

  17. 76 FR 35106 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2011-06-16

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago..., DHS. ACTION: Final rule. SUMMARY: The Coast Guard is establishing a permanent safety zone from Brandon... Safety Zones; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary...

  18. 77 FR 25595 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2012-05-01

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Safety Zone; Brandon Road Lock and [[Page 25596

  19. Lake Michigan lake trout PCB model forecast post audit (oral presentation)

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents an...

  20. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    Science.gov (United States)

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  1. 76 FR 23524 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Science.gov (United States)

    2011-04-27

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... safety zone from Brandon Road Lock and Dam to Lake Michigan. This proposed safety zone will cover 77.... This TIR established a 77 mile long safety zone from Brandon Road Lock to Lake Michigan in Chicago, IL...

  2. Continuum Model for River Networks

    Science.gov (United States)

    Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.

    1995-07-01

    The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.

  3. Applicability of API ZYM to capture seasonal and spatial variabilities in lake and river sediments.

    Science.gov (United States)

    Patel, Drashti; Gismondi, Renee; Alsaffar, Ali; Tiquia-Arashiro, Sonia M

    2018-05-02

    Waters draining into a lake carry with them much of the suspended sediment that is transported by rivers and streams from the local drainage basin. The organic matter processing in the sediments is executed by heterotrophic microbial communities, whose activities may vary spatially and temporally. Thus, to capture and evaluate some of these variabilities in the sediments, we sampled six sites: three from the St. Clair River and three from Lake St. Clair in spring, summer, fall, and winter of 2016. At all sites and dates, we investigated the spatial and temporal variations in 19 extracellular enzyme activities using API ZYM. Our results indicated that a broad range of enzymes were found to be active in the sediments. Phosphatases, lipases, and esterases were synthesized most intensively by the sediment microbial communities. No consistent difference was found between the lake and sediment samples. Differences were more obvious between sites and seasons. Sites with the highest metabolic (enzyme) diversity reflected the capacity of the sediment microbial communities to breakdown a broader range of substrates and may be linked to differences in river and lake water quality. The seasonal variability of the enzymes activities was governed by the variations of environmental factors caused by anthropogenic and terrestrial inputs, and provides information for a better understanding of the dynamics of sediment organic matter of the river and lake ecosystems. The experimental results suggest that API ZYM is a simple and rapid enzyme assay procedure to evaluate natural processes in ecosystems and their changes.

  4. Sedimentation in Lake Onalaska, Navigation Pool 7, upper Mississippi River, since impoundment

    Science.gov (United States)

    Korschgen, C.E.; Jackson, G.A.; Muessig, L.F.; Southworth, D.C.

    1987-01-01

    Sediment accumulation was evaluated in Lake Onalaska, a 2800-ha backwater impoundment on the Upper Mississippi River. Computer programs were used to process fathometric charts and generate an extensive data set on water depth for the lake. Comparison of 1983 survey data with pre-impoundment (before 1937) data showed that Lake Onalaska had lost less than 10 percent of its original mean depth in the 46 years since impoundment. Previous estimates of sedimentation rates based on Cesium-137 sediment core analysis appear to have been too high. (DBO)

  5. [Nutrients Input Characteristics of the Yangtze River and Wangyu River During the "Water Transfers on Lake Taihu from the Yangtze River"].

    Science.gov (United States)

    Pan, Xiao-xue; Ma, Ying-qun; Qin, Yan-wen; Zou, Hua

    2015-08-01

    Overall 20 surface water samples were collected from the Yangtze River, the Wangyu River and the Gonghu Bay (Lake Taihu) to clarify the pollution characteristics of nitrogen and phosphorus during 2 sample stages of "Water Transfers on Lake Taihu from the Yangtze River" in August and December of 2013 respectively. The results showed that the mass concentrations of NO2- -N, NO3- -N, NH4+ -N and TN in the Gonghu Bay were lower than those of the Yangtze River and Wangyu River during the 2 water transfer processes. However, there was higher level of DON content in the Gonghu Bay than that of the Yangtze River and Wangyu River. The percentages of various N species showed that NO3- -N was the major N species in the Yangtze River and Wangyu River during the 2 water transfer processes. TP contents in samples collected from the Yangtze River displayed a constant trend compared with the Wangyu River. However, the percentages of various P species were different with each other during the 2 water transfer processes. Mass concentrations of DON and TP in surface water in August were higher than those in December and the contents of NO3- -N and TDP were lower in August than those in December. In general, NO3- -N and TPP were the main N and P species in Wangyu River from the Yangtze River. NO3- -N, PO4(3-) -P and TPP were the main N and P species in Gonghu Bay from Wangyu River during the 2 water transfer processes.

  6. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China.

    Science.gov (United States)

    Gao, Jian Hua; Jia, Jianjun; Kettner, Albert J; Xing, Fei; Wang, Ya Ping; Xu, Xia Nan; Yang, Yang; Zou, Xin Qing; Gao, Shu; Qi, Shuhua; Liao, Fuqiang

    2014-05-15

    To study the fluvial interaction between Changjiang River and Poyang Lake, we analyze the observed changes of riverine flux of the mid-upstream of Changjiang River catchment, the five river systems of Poyang Lake and Poyang Lake basin. Inter-annual and seasonal variations of the water discharge and sediment exchange processes between Changjiang River and Poyang Lake are systematically explored to determine the influence of climate change as well as human impact (especially the Three Gorges Dam (TGD)). Results indicate that climate variation for the Changjiang catchment and Poyang Lake watershed is the main factor determining the changes of water exchanges between Changjiang River and Poyang Lake. However, human activities (including the emplacement of the TGD) accelerated this rate of change. Relative to previous years (1956-1989), the water discharge outflow from Poyang Lake during the dry season towards the Changjiang catchment increased by 8.98 km(3)y(-1) during 2003-2010. Evidently, the water discharge flowing into Poyang Lake during late April-late May decreased. As a consequence, water storage of Poyang Lake significantly reduced during late April-late May, resulting in frequent spring droughts after 2003. The freshwater flux of Changjiang River towards Poyang Lake is less during the flood season as well, significantly lowering the magnitude and frequency of the backflow of the Changjiang River during 2003-2010. Human activities, especially the emplacement and operation of the TGD and sand mining at Poyang Lake impose a major impact on the variation of sediment exchange between Changjiang main river and Poyang Lake. On average, sediments from Changjiang River deposited in Poyang Lake before 2000. After 2000, Changjiang River no longer supplied sediment to Poyang Lake. As a consequence, the sediment load of Changjiang River entering the sea increasingly exists of sediments from Lake Poyang during 2003-2010. As a result, Poyang Lake converted from a

  7. Alpine hydropower schemes and their 'remote influence' on lakes and rivers downstream

    International Nuclear Information System (INIS)

    Wuest, A.

    2003-01-01

    This article discusses the effect that alpine dams and reservoirs have on lakes and rivers in the lowlands. Not only the contribution of Swiss alpine hydropower installations to Switzerland's electricity generation capacity is mentioned, but also the way they 'export' ecological deficits to lower-lying regions. Examples of this are quoted, including, for example, the filtering-out of around 50% of water-borne particles in the river Rhone by the dams in its catchment area. The consequences of such effects for the ecology of lakes and rivers are discussed. Further examples of how the alpine dams hold back nutrients and regulate the flow and temperature of rivers are given and the resulting ecological effects are commented on

  8. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  9. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  10. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Ruibin Zhang

    2014-09-01

    Full Text Available In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  11. Measurement of Hydrologic Streamflow Metrics and Estimation of Streamflow with Lumped Parameter Models in a Managed Lake System, Sebago Lake, Maine

    Science.gov (United States)

    Reeve, A. S.; Martin, D.; Smith, S. M.

    2013-12-01

    Surface waters within the Sebago Lake watershed (southern Maine, USA) provide a variety of economically and intrinsically valuable recreational, commercial and environmental services. Different stakeholder groups for the 118 km2 Sebago Lake and surrounding watershed advocate for different lake and watershed management strategies, focusing on the operation of a dam at the outflow from Sebago Lake. While lake level in Sebago Lake has been monitored for over a century, limited data is available on the hydrologic processes that drive lake level and therefore impact how dam operation (and other changes to the region) will influence the hydroperiod of the lake. To fill this information gap several tasks were undertaken including: 1) deploying data logging pressure transducers to continuously monitor stream stage in nine tributaries, 2) measuring stream discharge at these sites to create rating curves for the nine tributaries, and using the resulting continuous discharge records to 3) calibrate lumped parameter computer models based on the GR4J model, modified to include a degree-day snowmelt routine. These lumped parameter models have been integrated with a simple lake water-balance model to estimate lake level and its response to different scenarios including dam management strategies. To date, about three years of stream stage data have been used to estimate stream discharge in all monitored tributaries (data collection is ongoing). Baseflow separation indices (BFI) for 2010 and 2011 using the USGS software PART and the Eckhart digital filter in WHAT range from 0.80-0.86 in the Crooked River and Richmill Outlet,followed by Northwest (0.75) and Muddy (0.53-0.56) Rivers, with the lowest BFI measured in Sticky River (0.41-0.56). The BFI values indicate most streams have significant groundwater (or other storage) inputs. The lumped parameter watershed model has been calibrated for four streams (Nash-Sutcliffe = 0.4 to 0.9), with the other major tributaries containing

  12. Mirror Lake contaminanats - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  13. High-frequency acoustic imaging of L Lake Phase 4 [Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Dunn, D.L.; Sjostrom, Keith J.; Leist, Rodney L.; Harmon, Thomas S. Jr.

    1997-01-01

    The objective of the seismic reflection and side scan sonar survey is to determine the location, aerial extent, and depth of burial pits situated along the reservoir bottom of L Lake, Savannah River Site, SC. The results will be used in the overall characterization of L Lake by providing continuous profile line coverage of the bottom and subbottom sediment structure along the entire length of the project area. The results are also intended to supplement previous scientific information obtained from soil samples, aerial photography, and radiometric studies. Resultant information will be used as input for an Environmental Impact Statement of the site. Overall, the seismic reflection data will provide better descriptions of variations in the actual subbottom conditions and help identify the differing sediment layers. The side scan sonar will help identify the location of the burial pits and any other features on the bottom of the reservoir. A 3.5 kiloHertz (kHz), high resolution subbottom profiling system and an EG and G Model 260 side scan sonar system were used to meet the primary objectives of the investigation

  14. Hydrological, morphometrical, and biological characteristics of the connecting rivers of the International Great Lakes: a review

    Science.gov (United States)

    Edwards, Clayton J.; Hudson, Patrick L.; Duffy, Walter G.; Nepszy, Stephen J.; McNabb, Clarence D.; Haas, Robert C.; Liston, Charles R.; Manny, Bruce; Busch, Wolf-Dieter N.; Dodge, D.P.

    1989-01-01

    The connecting channels of the Great Lakes are large rivers (1, 200-9, 900 m3 • s-1) with limited tributary drainage systems and relatively stable hydrology (about 2:1 ration of maximum to minimum flow). The rivers, from headwaters to outlet, are the St. Marys, St. Clair, Detroit, Niagara, and St. Lawrence. They share several characteristics with certain other large rivers: the fish stocks that historically congregated for spawning or feeding have been overfished, extensive channel modification have been made, and they have been used as a repository for domestic and industrial wastes and for hydroelectric energy generation. Levels of phosphorus, chlorophyll a, and particulate organic matter increase 3- to 5-fold from the St. Marys River to the St. Lawrence River. Biological communities dependent on nutrients in the water column, such as phytoplankton, periphyton, and zooplankton similarly increase progressively downstream through the system. The standing crop of emergent macrophytes is similar in all of the rivers, reflecting the relatively large nutrient pools in the sediments and atmosphere. Consequently, emergent macrophytes are an important source of organic matter (67% of total primary production) in the nutrient poor waters of the St. Marys River, whereas phytoplankton production dominates (76%) in the enriched St. Lawrence River. Submersed and emergent macrophytes and the associated periphyton are major producers of organic matter in the connecting channels. Another major source of organic matter (measured as ash free dry weight, AFDW) in the Detroit River is sewage, introduced at a rate of 26, 000 t per year. The production of benthos ranges from a low 5.4 g AFDW•m-2 in the Detroit River to a high of 15.5 g AFDW•m-2 in the St. Marys River. The rivers lack the organic transport from riparian sources upstream but receive large amounts of high quality phytoplankton and zooplankton from the Great Lakes.

  15. Dynamics of turbidity plumes in Lake Ontario. [Welland Canal and Niagara, Genesee, and Oswego Rivers

    Science.gov (United States)

    Pluhowski, E. J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Large turbidity features along the 275 km south shore of Lake Ontario were analyzed using LANDSAT-1 images. The Niagara River plume, ranging from 30 to 500 sq km in area is, by far, the largest turbidity feature in the lake. Based on image tonal comparisons, turbidity in the Welland Canal is usually higher than that in any other water course discharging into the lake during the shipping season. Less turbid water enters the lake from the Port Dalhousie diversion channel and the Genesee River. Relatively clear water resulting from the deposition of suspended matter in numerous upstream lakes is discharged by the Niagara and Oswego Rivers. Plume analysis corroborates the presence of a prevailing eastward flowing longshore current along the entire south shore. Plumes resulting from beach erosion were detected in the images. Extensive areas of the south shore are subject to erosion but the most severely affected beaches are situated between Fifty Mile Point, Ontario and Thirty Mile Point, New York along the Rochester embayment, and between Sodus Bay and Nine Mile Point.

  16. Modeling the Hydrological Regime of Turkana Lake (Kenya, Ethiopia) by Combining Spatially Distributed Hydrological Modeling and Remote Sensing Datasets

    Science.gov (United States)

    Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.

    2017-12-01

    Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological

  17. 76 FR 61261 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Science.gov (United States)

    2011-10-04

    ... navigable waters of Lake Havasu on the lower Colorado River in support of the International Jet Sports... The International Jet Sports Boating Association is sponsoring the IJSBA World Finals. The event will... National Technology Transfer and Advancement Act (NTTAA) (15 U.S.C. 272 note) directs agencies to use...

  18. The role of Lake Dongting in regulating the sediment budget of the Yangtze River

    Directory of Open Access Journals (Sweden)

    Shi-bao Dai

    2005-01-01

    Full Text Available Lake Dongting, the second largest freshwater lake in China and located in the middle reaches of the River Yangtze catchment, was formed at the beginning of the Holocene period by sea level rise and has varied in size with changes in local weather patterns. The sedimentation rate in Lake Dongting during the Holocene is about 50×106 m3 yr-1, or 80×106 t yr-1 (a sand bulk density of 1.6×103 kg m-3, given the sediment deposition rate as 10 mm yr-1 and the average lake size as 5000 km2. By comparing the sediment import and export, it is estimated that the sediment deposition rate of Lake Dongting was 110.6×106 t yr-1 from 1956 to 2003. Siltation and raised embankments reduced the size of the lake and its capacity to accommodate floods. The sediment delivery ratio (SDR of the middle and lower Yangtze is about 0.92 (total sediment output divided by total sediment input given that the total sediment supply into the middle and lower Yangtze is 455.1×106 t yr-1 and the total sediment discharge into the sea is 419×106 t yr-1. Therefore, if it were not for Lake Dongting, the sediment flux at Datong would be 73.6×106 t yr-1 (80×106 t yr-1×0.92 more, an increase of 27% during the Holocene and an increase of 26% to 101.75×106 t yr-1 from 1956 to 2003. Historically, Lake Dongting had a considerable influence in regulating the sediment budget of the Yangtze. However, afforestation and the construction of large dams, such as the Three Gorges Dam, reduced significantly the sediment deposition in Lake Dongting. In 2003, the completion of the Three Gorges Dam and the subsequent impoundment of water reduced the sediment input from the Yangtze and net deposition in Lake Dongting dropped to 25% and 18% of the mean values of the historic records (1956-2003. During the same period, the amount of sediment deposited in Lake Dongting was only 10% of the sediment discharge at Datong. The influence of the sediment deposited in Lake Dongting on the sediment flux to

  19. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  20. Monitoring of Bashkara glacial lakes (the Central Caucasus) and modelling of their potential outburst.

    Science.gov (United States)

    Krylenko, I.; Norin, S.; Petrakov, D.; Tutubalina, O.; Chernomorets, S.

    2009-04-01

    models, based on solving of two-dimensional Saint-Venant equations -"River" (the Russia, author V.Belikov) and "Flo-2D" (the USA, authors J.S.O'Brien, R.Garcia) were used. The "River" model is based on the irregular triangular grid, therefore it is possible to calculate flow in details. On the other hand there is no debris flow block in this model yet and "Flo-2D" was applied to calculate potential debris flow parameters, because transformation of flood into debris flow is likely here. Input data for simulation were following: digital terrain model of Adylsu valley, made on the on the basis of map with scale 1:25000, outburst hydrograph, calculated for case of englacial drainage channels formation (Vinogradov's model, Russia), some empirical relationships between volume of the glacial lake and maximum discharge of outburst (i.e. Clague and Mathews, Walder and Costa) were also applied. The mean value of the maximum discharge for potential outburst obtained by different methods was about 150 m3 /c. According to results of hydrodynamic modelling, movement of flood wave downstream the valley will be fast, peak of flood will cover distance from upper part of valley to lowest (8 km) for about half an hour. The depth of the flow on the floodplain is about 1-1.5 m and could reach 6 m in some sites. There are hotel, large camping site and several bridges in the hazardous zone. In 2008 early warning system was designed and installed at the Bashkara lake.

  1. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery.

    Science.gov (United States)

    Du, Chenggong; Li, Yunmei; Wang, Qiao; Liu, Ge; Zheng, Zhubin; Mu, Meng; Li, Yuan

    2017-12-01

    Knowledge of tempo-spatial dynamics of water quality and its response to river flow is important for the management of lake water quality because river discharge associated with rainstorms can be an important source of pollutants to the estuary. Total phosphorus (TP), chlorophyll a (Chl-a), and total suspended matter (TSM) are important indexes of water quality and important factors influencing eutrophication and algal blooms. In this study, remote sensing was used to monitor these indexes to investigate the effects of river discharge on the estuary of Taihu Lake by the largest inflow river which is Chendong River using a total of 136 Geostationary Ocean Color Images (GOCI). In situ datasets collected during the four cruise experiments on Taihu Lake between 2011 and 2015 were used to develop the TP, Chl-a, and TSM inversion models based on simple empirical algorithms: 154 points for TP (mg/L), 114 for Chl-a (μg/L), and 181 for TSM (mg/L). The spatial and temporal changes of the concentration of the three parameters in the Chendong River estuary were analyzed by combining the GOCI data, the flow of the Chendong River, and meteorological data throughout the year in 2014. The several key findings are as follows: (1) In summer and autumn, TP, Chl-a, and TSM contents were significantly higher than in winter and spring. TP and Chl-a have a few similar distribution characteristics. And organic suspended matter in summer was the main reason for the increase of the TSM concentration. (2) The severe surface erosion in the rivers cannot be ignored; the high erodibility is an important factor in the increase of TP and TSM concentrations in the estuary. The concentration of the water quality parameter showed exponential decay with distance from the shore. The concentration decreased slowly after 12 km and then remained essentially constant. (3) TP content in the Chendong River estuary decreased under steady flow inputs and dramatically increased when the flow became large

  2. Escapement monitoring of adult chinook salmon in the Secesh River and Lake Creek, Idaho, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Faurot, Dave; Kucera, Paul A.

    2001-01-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  3. Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945-2011

    Science.gov (United States)

    Czuba, Jonathan A.; Olsen, Theresa D.; Czuba, Christiana R.; Magirl, Christopher S.; Gish, Casey C.

    2012-01-01

    The Nisqually River drains the southwest slopes of Mount Rainier, a glaciated stratovolcano in the Cascade Range of western Washington. The Nisqually River was impounded behind Alder Dam when the dam was completed in 1945 and formed Alder Lake. This report quantifies the volume of sediment deposited by the Nisqually and Little Nisqually Rivers in their respective deltas in Alder Lake since 1945. Four digital elevation surfaces were generated from historical contour maps from 1945, 1956, and 1985, and a bathymetric survey from 2011. These surfaces were used to compute changes in sediment volume since 1945. Estimates of the volume of sediment deposited in Alder Lake between 1945 and 2011 were focused in three areas: (1) the Nisqually River delta, (2) the main body of Alder Lake, along a 40-meter wide corridor of the pre-dam Nisqually River, and (3) the Little Nisqually River delta. In each of these areas the net deposition over the 66-year period was 42,000,000 ± 4,000,000 cubic meters (m3), 2,000,000 ± 600,000 m3, and 310,000 ± 110,000 m3, respectively. These volumes correspond to annual rates of accumulation of 630,000 ± 60,000 m3/yr, 33,000 ± 9,000 m3/yr, and 4,700 ± 1,600 m3/yr, respectively. The annual sediment yield of the Nisqually (1,100 ± 100 cubic meters per year per square kilometer [(m3/yr)/km2]) and Little Nisqually River basins [70 ± 24 (m3/yr)/km2] provides insight into the yield of two basins with different land cover and geomorphic processes. These estimates suggest that a basin draining a glaciated stratovolcano yields approximately 15 times more sediment than a basin draining forested uplands in the Cascade Range. Given the cumulative net change in sediment volume in the Nisqually River delta in Alder Lake, the total capacity of Alder Lake since 1945 decreased about 3 percent by 1956, 8 percent by 1985, and 15 percent by 2011.

  4. Hydrodynamic Modeling of Nokoué Lake in Benin

    Directory of Open Access Journals (Sweden)

    Josué Zandagba

    2016-12-01

    Full Text Available Nokoué Lake is a complex ecosystem, the understanding of which requires control of physical processes that have occurred. For this, the Surface Water Modeling System (SMS hydrodynamic model was calibrated and validated on the water depth data. The results of these simulations show a good match between the simulated and observed data for bottom roughness and turbulent exchange coefficients, of 0.02 m−1/3·s and 20 m2/s respectively. Once the ability of the model to simulate the hydrodynamics of the lake is testified, the model is used to simulate water surface elevation, exchanged flows and velocities. The simulation shows that the tidal amplitude is maximum at the inlet of the channel and decreases gradually from the inlet towards the lagoon’s main body. The propagation of the tidal wave is characterized by the dephasing and the flattening of the amplitude tide, which increases as we move away from the channel. This dephasing is characterized by a high and low tides delay of about 1 or 4 h and also depends on the tide amplitude and location. The velocities inside the lake are very low and do not exceed 0.03 m/s. The highest are obtained at the entrance of the channel. In a flood period, in contrast with the low-water period, incoming flows are higher than outflows, reinforced by the amplitude of the tide. An average renewal time of the lake has been estimated and corresponds during a flood period to 30 days for an average amplitude tide and 26.3 days on a high amplitude tide. In a low water period it is 40.2 days for an average amplitude tide and 30 days for a high amplitude tide. From the results obtained, several measures must be taken into account for the rational management of the lake water resources. These include a dam construction at the lake upstream, to control the river flows, and the dredging of the channel to facilitate exchanges with the sea.

  5. Water pollution and cyanobacteria's variation of rivers surrounding southern Taihu Lake, China.

    Science.gov (United States)

    Sun, Mingyang; Huang, Linglin; Tan, Lisha; Yang, Zhe; Baig, Shams Ali; Sheng, Tiantian; Zhu, Hong; Xu, Xinhua

    2013-05-01

    The water quality and cyanobacterial variation of rivers surrounding southern Taihu Lake, China were purposively monitored from 2008 to 2010. Trophic level index (TLI) was used to evaluate the trophic levels of southern Taihu Lake. Results showed a considerable decline in the monitored data compared with 2007, and the data showed downward trends year after year. The TLI decreased from 55.6 to 51.3, which implied that southern Taihu Lake was mildly eutrophic. The water quality and cyanobacterial variation indicated a positive response to the adopted control measures in the southern Taihu Lake basin, but the intra- and inter-annual variability was still quite varied. High concentrations of nitrogen and phosphorus typically lead to algae outbreaks, however, the cyanobacteria growth may result in a decline of the concentration of nitrogen and phosphorus. Temperature and other weather conditions are also important factors for algae outbreaks; the risk of blue-green algal blooms still persists.

  6. Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems.

    Science.gov (United States)

    Teichert, Nils; Lepage, Mario; Sagouis, Alban; Borja, Angel; Chust, Guillem; Ferreira, Maria Teresa; Pasquaud, Stéphanie; Schinegger, Rafaela; Segurado, Pedro; Argillier, Christine

    2017-12-14

    The impact of species loss on ecosystems functioning depends on the amount of trait similarity between species, i.e. functional redundancy, but it is also influenced by the order in which species are lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, rivers and estuaries. Several scenarios of species extinction were simulated to determine whether the loss of vulnerable species (with high propensity of extinction when facing threats) causes a greater functional alteration than random extinction. Our results indicate that the functional redundancy tended to increase with species richness in lakes and rivers, but not in estuaries. We demonstrated that i) in the three systems, some combinations of functional traits are supported by non-redundant species, ii) rare species in rivers and estuaries support singular functions not shared by dominant species, iii) the loss of vulnerable species can induce greater functional alteration in rivers than in lakes and estuaries. Overall, the functional structure of fish assemblages in rivers is weakly buffered against species extinction because vulnerable species support singular functions. More specifically, a hotspot of functional sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative criteria to determine conservation priorities.

  7. Ecosystem element transport model for Lake Eckarfjaerden

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)

    2014-07-01

    The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)

  8. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  9. Mississippi River Headwaters Lakes in Minnesota. Feasibility Study. Appendices.

    Science.gov (United States)

    1982-09-01

    organisms by blanketing stream or lake bottoms, spawning beds, or other desirable bottom area. Suspended solids may kill fish and shellfish by causing...Tree S~rv Long-billed M~arsh Wren 0Ctlipping S;-arrcd Short-billed Marsh Wren N Clay-crod )rm: Mockingbird L. Field Sparrow Gray Catbird VH;;rris

  10. Examination of heavy and toxic metals in the Kozjak Lake and Treska River with protection measures

    International Nuclear Information System (INIS)

    Lepitkova, Sonja; Mirchovski, Vojo; Trpeski, Vlatko

    2013-01-01

    The aim of our study was to examine the situation with heavy metals in water and stream sediment of Kozjak lake and Treska river, and to recommend measures to prevent pollution. Water quality and sediment was examined of aspect of the content of six very important chemical elements known as heavy and toxic metals, including: lead (Pb), cadmium (Cd), chromium (Cr), iron (Fe), copper (Cu) and arsenic (As). Modern methods of laboratory testing of chemical elements were applied: Atomic absorption spectroscopy, atomic emission spectrometry method with double plasma (AES-ICP) method and the atomic absorption spectrometry electro thermal (ETAAS). Total of 120 samples were analyzed in water and 48 samples in stream sediments. The paper will also indicate measures to protect the Kozjak lake and Treska river from possible contamination. Especially significant role for Kozjak Lake was building the Dam for production of electricity HPP ''Kozjak'', which is the biggest artificial dam in the country. But despite this, the Kozjak lake already used as protection from floods Skopje, fishing, eco-lake tourism but need to think and plan about using for potable water for irrigation of crops, but also as an alternative water supply of the city of Skopje. (Author)

  11. Mercury concentrations of fish in Southern Indian Lake and Issett Lake, Manitoba 1975-88: The effect of lake impoundment and Churchill River diversion

    International Nuclear Information System (INIS)

    Strange, N.E.; Bodaly, R.A.; Fudge, R.J.P.

    1991-01-01

    Southern Indian and Issett Lakes in northern Manitoba were flooded in 1976 as part of Manitoba Hydro's Churchill River diversion project. Fish were collected from 1975 to 1988 from five regional sites on the lakes to examine the effects of impoundment and river diversion on muscle mercury concentrations. Raw data for individual fish caught in 1987 and 1988 are presented, along with means and analyses calculated over the entire 1975-1988 study period. Mercury concentrations in whitefish, pike, and walleye increased significantly after impoundment. Whitefish mercury levels peaked in 1978 and have since declined to near pre-flooding levels. Northern pike and walleye mercury levels were much higher than for whitefish. Pike mercury concentrations showed no indication of declining after 12 years of impoundment, but walleye mercury levels at 2 of the 5 Southern Indian Lake sites declined from maximum recorded levels. Significant variability in fish mercury concentrations was noted both from year to year and among the sites. It is suggested that site-to-site variations are due to varying conditions in the reservoir which stimulate mercury methylation. Since there appears to be an ongoing long-term source of mercury and organic material from the eroding shorelines, pike and walleye mercury concentrations are expected to remain high for many years. 25 refs., 7 figs., 20 tabs

  12. Measuring variability in trophic status in the Lake Waco/Bosque River Watershed

    Directory of Open Access Journals (Sweden)

    Rodriguez Angela D

    2008-01-01

    Full Text Available Abstract Background Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. Methods We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP in response to nutrient enrichment (nitrogen and phosphorus. We evaluated the lotic ecosystem trophic status index (LETSI using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. Results The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02 located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05 were the next most enriched sites. Trophic class varied for enriched sites over seasons. Conclusion Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show

  13. Monitoring of organochlorine pesticides using PFU systems in Yunnan lakes and rivers, China.

    Science.gov (United States)

    Yang, Jun; Zhang, Wenjing; Shen, Yunfen; Feng, Weisong; Wang, Xinhua

    2007-01-01

    Polyurethane foam unit (PFU) systems were collected from 11 lakes and three rivers in the Yunnan Plateau, China and, the PFU extrusion liquids were analyzed for organochlorine pesticides (OCPs) by gas chromatography with electron capture detection (GC-ECD). The concentrations of pp'-DDE, HCB and HCHs were undetectable to 1.86 microgl-1 (mean 0.27 microgl-1), undetectable to 0.72 microgl-1 (mean 0.11 microgl-1), and 0.24-21.95 microgl-1 (mean 7.39 microgl-1) respectively in lakes; and those in rivers were undetectable to 0.23 microgl-1 (mean 0.08 microgl-1), 0.68-2.93 microgl-1 (mean 1.70 microgl-1), and 2.71-37.56 microgl-1 (mean 17.01 microgl-1) respectively. Notably, some residue levels of OCPs exceeded the US National Recommended Water Quality Criteria, implying Yunnan has levels of OCPs potentially harmful to human health. Further, the contamination by OCPs showed an obvious spatial distribution pattern. Amongst the lakes, Dianchi, Xingyun, Lugu and Yangzonghai had the highest OCP levels dominated by beta-HCH, whereas among rivers, Nujiang and Lancang Rivers had the highest contents of OCPs dominated by alpha-HCH. This demonstrates that HCHs are the predominant contaminants and some point sources of HCHs may still exist in Yunnan. The pollution levels in Yunnan were compared with other studies, suggesting the PFU method is suitable for long-term on-line monitoring of trace OCPs in aquatic ecosystems. Therefore, continuous studies monitoring OCPs in lakes and rivers are needed to further understand the future trend of contamination.

  14. Geochemical Dataset of the Rhone River Delta (Lake Geneva) Sediments - Disentangling Human Impacts from Climate Change

    Science.gov (United States)

    Silva, T. A.; Girardclos, S.; Loizeau, J. L.

    2016-12-01

    Lake sediment records are often the most complete continental archives. In the last 200 years, in addition to climatic variability, humans have strongly impacted lake watersheds around the world. During the 20th century the Rhone River and its watershed upstream Lake Geneva (Switzerland/France) have been subject to river channelization, dam construction, water flow regulation, water and sediment abstraction as well as various land use changes. Under the scope of the SEDFATE project (Swiss National Science Foundation nº147689) we address human and climatic impact on the sediment transfer from the Rhone River watershed to Lake Geneva. Nineteen short sediment cores were collected in the Rhone River delta area in May 2014. Cores have been scanned with MSCL and XRF, sub-sampled every 1cm and 8 cores were dated by radiometric methods (137Cs and 210Pb). Photographs taken right after core opening were used for lithological description and in addition to MSCL data were used to correlate cores. Core dating shows that mass accumulation rates decreased in the 1964-1986 interval and then increased again in the interval between 1986-2014. XRF elements and ratios, known to indicate detrital sources (Al, Al/Si, Fe, K, Mn, Rb, Si, Ti, Ti/Ca), show that clastic input diminished from 1964 to 1986 and re-increased to the present. Other elemental (Zr/Rb, Zr/K, Si/Ti) and geophysical data (magnetic susceptibility) combined with lithology identify density flow deposits vs hemipelagic sedimentation. Changes in frequency of these event deposits indicate changes in the sedimentation patterns in the Rhone River sublacustrine delta during the last century. From these results we hypothesize that a significant sediment amount was abstracted from the system after the major dam constructions in the 1950's and that, since the 1990's, a contrary signal is due to increased sediment loads that follows glacial melting due to global warming.

  15. Lake sturgeon response to a spawning reef constructed in the Detroit river

    Science.gov (United States)

    Roseman, Edward F.; Manny, B.; Boase, J.; Child, M.; Kennedy, G.; Craig, J.; Soper, K.; Drouin, R.

    2011-01-01

    Prior to the First World War, the bi-national Detroit River provided vast areas of functional fish spawning and nursery habitat. However, ongoing conflicting human uses of these waters for activities such as waste disposal, water withdrawals, shoreline development, shipping, recreation, and fishing have altered many of the chemical, physical, and biological processes of the Detroit River. Of particular interest and concern to resource managers and stakeholders is the significant loss and impairment of fish spawning and nursery habitat that led to the decline in abundance of most fish species using this ecosystem. Lake sturgeon (Acipenser fulvescens) populations for example, were nearly extirpated by the middle of the 20th century, leaving only a small fraction of their former population. Fisheries managers recognized that the loss of suitable fish spawning habitat is a limiting factor in lake sturgeon population rehabilitation in the Detroit River. In efforts to remediate this beneficial water use impairment, a reef consisting of a mixture of natural rock and limestone was constructed at the upstream end of Fighting Island in 2008. This paper focuses on the response by lake sturgeon to the different replicates of suitable natural materials used to construct the fish spawning habitat at Fighting Island in the Detroit River. Pre-construction fisheries assessment during 2006–2008 showed that along with the presence of adult lake sturgeon, spawning conditions were favorable. However, no eggs were found in assessments conducted prior to reef construction. The 3300 m2 Fighting Island reef was placed at the upstream end of the island in October of 2008. The construction design included 12 spawning beds of three replicates each consisting of either round rock, small or large (shot-rock) diameter limestone or a mixture thereof. An observed response by spawning lake sturgeon occurred the following year when spawning-ready adults (ripe), viable eggs, and larvae were

  16. The impact of river-lake flow and sediment exchange on sediment scouring and siltation in middle and lower Yangtze River

    Science.gov (United States)

    Liu, Y.; Wang, Z. L.; Zuo, L. Q.

    2017-12-01

    The operation of TGR (Three Gorges Reservoir) caused river erosion and water level decline at downstream, which affects the water and sediment exchange of river-lake (Yangtze River - Dongting lake & Poyang lake). However, the change of river-lake relationship plays a significant role in the flow and sediment process of Yangtze River. In this study, flow diversion ratios of the three outlets, Chenglingji station, Hukou station are used as indexes of river-lake exchange to study the response of river erosion to flow diversion ratios. The results show that:(1) the sediment erosion in each reach from Yichang to Datong has linear correlation with the flow diversion ratio of the three outlets; (2) the sediment erosion above Chenglingji has negative linear correlation with the flow diversion ratio of Chenglingji station. While the sediment erosion below Chenglingji station has non-linear correlation with the flow diversion ratio variation of Chenglingji station; (3) the reach above Hankou station will not be affected by the flow diversion ratio of Hukou station. On one hand, if the flow diversion ratio is less than 10%, the correlation between sediment erosion and flow diversion ratio of Hukou station will be positive in Hankou to Hukou reach, but will be negative in Hukou to Datong reach. On the other hand, if the flow diversion ratio is more than 10%, the correlation will reverse.

  17. Modeling the GLOF Hazard Process Chain at Imja Lake in the Nepal Himalaya

    Science.gov (United States)

    Lala, J.; McKinney, D. C.; Rounce, D.

    2017-12-01

    The Hindu Kush-Himalaya region contains more glacial ice than any other non-polar region on earth. Many glacial lakes in Nepal are held in place by natural moraine dams, which are inherently unstable. Avalanches or landslides entering glacial lakes can cause tsunami-like waves that can overtop the moraines and trigger glacial lake outburst floods (GLOF). Mass loss at the Imja glacier is the highest in the Mount Everest region, and contributes to the expansion of Imja Tsho, a lake with several villages downstream. A GLOF from the lake might destroy both property and human life, making an understanding of flood triggering processes beneficial for both the downstream villages and other GLOF-prone areas globally. The process chain for an avalanche-induced GLOF was modeled numerically. The volume and velocity of debris from avalanches entering various future lake extents were calculated using RAMMS. Resulting waves and downstream flooding were simulated using BASEMENT to evaluate erosion at the terminal moraine. Wave characteristics in BASEMENT were validated with empirical equations to ensure the proper transfer of momentum from the avalanche to the lake. Moraine erosion was determined for two geomorphologic scenarios: a site-specific scenario using field samples, and a worst-case scenario based on past literature. Both cases resulted in no flooding outside the river channel at downstream villages. Worst-case scenario geomorphology resulted in increased channelization of the lake outlet and some moraine erosion but no catastrophic collapse. Site-specific data yielded similar results but with even less erosion and downstream discharge. While the models confirmed that Imja Tsho is unlikely to produce a catastrophic GLOF in the near future, they also highlight the importance of continued monitoring of the lake. Furthermore, the ease and flexibility of these methods allows for their adoption by a wide range of stakeholders for modeling other high-risk lakes.

  18. Impact assessment and mitigation in existing lake regulation projects in the Oulujoki river system

    International Nuclear Information System (INIS)

    Kaatra, K.; Marttunen, M.

    1993-01-01

    The objective of the project was to determine how regulation practices and shore zone maintenance and improvement should be developed in order to give more attention to recreational requirements and factors affecting the aquatic environment. The proposals must not, however, cause flooding damage or significant energy economy losses. The effects of four alternative regulation practices on hydrology flooding damage, recreational utilization, the aquatic, environment, fisheries and the hydropower production were compared in lakes Oulujaervi, Kiantajaervi, Vuokkijaervi, Ontojaervi and Sotkamonjaervi. An extensive sub-study was made on the maintenance and improvement of the shore zones of the regulated lakes. Ways of reducing excessive vegetation were studied in Lake Oulujaervi, and experiments testing the feasibility of various plants in protecting and landscaping the littoral zone were conducted in Lake Ontojaervi. Enquiries in to the perceptions of and the needs for mitigating harmful impacts, as experienced by the people living within the area affected by the river development projects, were also included in the analysis. The alternative regulation practices for Lake Oulujaervi were compared using the decision analysis interview method, in which the data acquired through the environmental impact analysis of effects were combined with the values of the local people and interest groups. The impact of alternative regulation practices was also weighed from the viewpoint of sustainability in various scales. Recommendations were made for regulation patterns and maintenance and improvement programmes for individual lakes

  19. Predicted effects of future climate warming on thermal habitat suitability for Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) in rivers in Wisconsin, USA

    Science.gov (United States)

    Lyons, John D.; Stewart, Jana S.

    2015-01-01

    The Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) may be threatened by future climate warming. The purpose of this study was to identify river reaches in Wisconsin, USA, where they might be vulnerable to warming water temperatures. In Wisconsin, A. fulvescens is known from 2291 km of large-river habitat that has been fragmented into 48 discrete river-lake networks isolated by impassable dams. Although the exact temperature tolerances are uncertain, water temperatures above 28–30°C are potentially less suitable for this coolwater species. Predictions from 13 downscaled global climate models were input to a lotic water temperature model to estimate amounts of potential thermally less-suitable habitat at present and for 2046–2065. Currently, 341 km (14.9%) of the known habitat are estimated to regularly exceed 28°C for an entire day, but only 6 km (0.3%) to exceed 30°C. In 2046–2065, 685–2164 km (29.9–94.5%) are projected to exceed 28°C and 33–1056 km (1.4–46.1%) to exceed 30°C. Most river-lake networks have cooler segments, large tributaries, or lakes that might provide temporary escape from potentially less suitable temperatures, but 12 short networks in the Lower Fox and Middle Wisconsin rivers totaling 93.6 km are projected to have no potential thermal refugia. One possible adaptation to climate change could be to provide fish passage or translocation so that riverine Lake Sturgeon might have access to more thermally suitable habitats.

  20. The radionuclide migration model in river system

    International Nuclear Information System (INIS)

    Zhukova, O.M.; Shiryaeva, N.M.; Myshkina, M.K.; Shagalova, Eh.D.; Denisova, V.V.; Skurat, V.V.

    2001-01-01

    It was propose the model of radionuclide migration in river system based on principle of the compartmental model at hydraulically stationary and chemically equilibrium conditions of interaction of radionuclides in system water-dredge, water-sediments. Different conditions of radioactive contamination entry in river system were considered. The model was verified on the data of radiation monitoring of Iput' river

  1. Sustainable fisheries in shallow lakes: an independent empirical test of the Chinese mitten crab yield model

    Science.gov (United States)

    Wang, Haijun; Liang, Xiaomin; Wang, Hongzhu

    2017-07-01

    Next to excessive nutrient loading, intensive aquaculture is one of the major anthropogenic impacts threatening lake ecosystems. In China, particularly in the shallow lakes of mid-lower Changjiang (Yangtze) River, continuous overstocking of the Chinese mitten crab ( Eriocheir sinensis) could deteriorate water quality and exhaust natural resources. A series of crab yield models and a general optimum-stocking rate model have been established, which seek to benefit both crab culture and the environment. In this research, independent investigations were carried out to evaluate the crab yield models and modify the optimum-stocking model. Low percentage errors (average 47%, median 36%) between observed and calculated crab yields were obtained. Specific values were defined for adult crab body mass (135 g/ind.) and recapture rate (18% and 30% in lakes with submerged macrophyte biomass above and below 1 000 g/m2) to modify the optimum-stocking model. Analysis based on the modified optimum-stocking model indicated that the actual stocking rates in most lakes were much higher than the calculated optimum-stocking rates. This implies that, for most lakes, the current stocking rates should be greatly reduced to maintain healthy lake ecosystems.

  2. Integrating three lake models into a Phytoplankton Prediction System for Lake Taihu (Taihu PPS) with Python

    NARCIS (Netherlands)

    Huang, J.; Gao, J.; Hörmann, G.; Mooij, W.M.

    2012-01-01

    In the past decade, much work has been done on integrating different lake models using general frameworks to overcome model incompatibilities. However, a framework may not be flexible enough to support applications in different fields. To overcome this problem, we used Python to integrate three lake

  3. Hydraulic, geomorphic, and trout habitat conditions of the Lake Fork of the Gunnison River in Hinsdale County, Lake City, Colorado, Water Years 2010-2011

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Schaffrath, Keelin R.

    2015-01-01

    Channel rehabilitation, or reconfiguration, to mitigate a variety of riverine problems has become a common practice in the western United States. However, additional work to monitor and assess the channel response to, and the effectiveness of, these modifications over longer periods of time (decadal or longer) is still needed. The Lake Fork of the Gunnison River has been an area of active channel modification to accommodate the needs of the Lake City community since the 1950s. The Lake Fork Valley Conservancy District began a planning process to assess restoration options for a reach of the Lake Fork in Lake City to enhance hydraulic and ecologic characteristics of the reach. Geomorphic channel form is affected by land-use changes within the basin and geologic controls within the reach. The historic channel was defined as a dynamic, braided channel with an active flood plain. This can result in a natural tendency for the channel to braid. A braided channel can affect channel stability of reconfigured reaches when a single-thread meandering channel is imposed on the stream. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and Colorado River Water Conservation District, began a study in 2010 to quantify existing hydraulic and habitat conditions for a reach of the Lake Fork of the Gunnison River in Lake City, Colorado. The purpose of this report is to quantify existing Lake Fork hydraulic and habitat conditions and establish a baseline against which post-reconfiguration conditions can be compared. This report (1) quantifies the existing hydraulic and geomorphic conditions in a 1.1-kilometer section of the Lake Fork at Lake City that has been proposed as a location for future channel-rehabilitation efforts, (2) characterizes the habitat suitability of the reach for two trout species based on physical conditions within the stream, and (3) characterizes the current riparian canopy density.

  4. EVALUATING REGIONAL PREDICTIVE CAPACITY OF A PROCESS-BASED MERCURY EXPOSURE MODEL, REGIONAL-MERCURY CYCLING MODEL (R-MCM), APPLIED TO 91 VERMONT AND NEW HAMPSHIRE LAKES AND PONDS, USA

    Science.gov (United States)

    Regulatory agencies must develop fish consumption advisories for many lakes and rivers with limited resources. Process-based mathematical models are potentially valuable tools for developing regional fish advisories. The Regional Mercury Cycling model (R-MCM) was specifically d...

  5. Predictive Modelling of Heavy Metals in Urban Lakes

    OpenAIRE

    Lindström, Martin

    2000-01-01

    Heavy metals are well-known environmental pollutants. In this thesis predictive models for heavy metals in urban lakes are discussed and new models presented. The base of predictive modelling is empirical data from field investigations of many ecosystems covering a wide range of ecosystem characteristics. Predictive models focus on the variabilities among lakes and processes controlling the major metal fluxes. Sediment and water data for this study were collected from ten small lakes in the ...

  6. An improved active contour model for glacial lake extraction

    Science.gov (United States)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  7. Natural and artificial radioactivity assessment of dam lakes sediments in Coruh River, Turkey

    International Nuclear Information System (INIS)

    Yasar Kobya; Sabit Korcak; Cafer Mert Yesilkanat

    2015-01-01

    In the sediment samples collected from 3 different dam reservoirs and 10 different stations on Coruh River, U-238, Th-232, K-40 and Cs-137 activity concentration levels were measured using high-resolution gamma-ray spectrometry. The mean concentrations of U-238, Th-232, K-40 and Cs-137 were found to be 15.8, 13.9, 551.5 and 18.1 Bq/kg in Deriner Dam Lake, 3.7, 12.5, 473.8 and 6.8 Bq/kg in Borcka Dam Lake, 14.4, 30.0, 491.7 and 18.2 Bq/kg in Muratli Dam Lake, respectively. Estimation calculations were made for the non-sampling zones by using Kriging method. Furthermore, results were compared with the similar studies done in different countries. (author)

  8. Response of the St. Joseph River to lake level changes during the last 12,000 years in the Lake Michigan basin

    Science.gov (United States)

    Kincare, K.A.

    2007-01-01

    The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography

  9. Modeling and management of pit lake water chemistry 1: Theory

    International Nuclear Information System (INIS)

    Castendyk, D.N.; Eary, L.E.; Balistrieri, L.S.

    2015-01-01

    Highlights: • Review of pit lake literature in the context of pit lake predictions. • Review of approaches used to predict pit wall-rock runoff and leachate. • Review of approaches used to generate a pit lake water balance. • Review of approaches used to generate a hydrodynamic prediction. • Review of approaches used to generate a geochemical prediction of a future pit lake. - Abstract: Pit lakes are permanent hydrologic/landscape features that can result from open pit mining for metals, coal, uranium, diamonds, oil sands, and aggregates. Risks associated with pit lakes include local and regional impacts to water quality and related impacts to aquatic and terrestrial ecosystems. Stakeholders rely on predictive models of water chemistry to prepare for and manage these risks. This paper is the first of a two part series on the modeling and management of pit lakes. Herein, we review approaches that have been used to quantify wall-rock runoff geochemistry, wall-rock leachate geochemistry, pit lake water balance, pit lake limnology (i.e. extent of vertical mixing), and pit lake water quality, and conclude with guidance on the application of models within the mine life cycle. The purpose of this paper is to better prepare stakeholders, including future modelers, mine managers, consultants, permitting agencies, land management agencies, regulators, research scientists, academics, and other interested parties, for the challenges of predicting and managing future pit lakes in un-mined areas

  10. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  11. Assessment of lake sturgeon (Acipenser fulvescens) spawning efforts in the lower St. Clair River, Michigan

    Science.gov (United States)

    Nichols, S. Jerrine; Kennedy, Gregory; Crawford, Eric; Allen, Jeffrey; French, John; Black, Glen; Blouin, Marc; Hickey, James P.; Chernyak, Sergei; Haas, Robert; Thomas, Michael

    2003-01-01

    One of the most threatened remaining populations of lake sturgeon in the Great Lakes is found in the connecting channels between Lake Huron and Lake Erie. Only two spawning grounds are presently known to be active in this region, and both are in the St. Clair River. The spawning reef in the St. Clair River delta has been recently colonized by round gobies (Neogobius melanostomus) in densities up to 25/m2, raising concerns regarding predation on the benthic-oriented eggs and larvae of the sturgeon. Investigations in 1998–1999 showed that while round goby predation does occur, a number of other factors may be equally affecting sturgeon spawning success, including few spawning adults (noted in either year. There were factors other than predation affecting larval survival in 1999. There was a higher silt load on the reef than in 1998 and large numbers of dead larvae were found. Recruitment success from this site could be improved by utilizing techniques to increase the number of eggs on the reef, such as reducing the illegal take of adult fish and by placing eggs in predator-exclusion chambers to increase hatch rate.

  12. Hydroclimate-driven changes in the landscape structure of the terminal lakes and wetlands of the China's Heihe River Basin.

    Science.gov (United States)

    Xiao, Shengchun; Xiao, Honglang; Peng, Xiaomei; Song, Xiang

    2015-01-01

    Changes in the landscape structure of terminal lakes and wetlands along inland rivers in arid areas are determined by the water balance in the river basins under the impacts of climate change and human activities. Studying the evolution of these landscapes and the mechanisms driving these changes is critical to the sustainable development of river basins. The terminal lakes and wetlands along the lower reaches of the Heihe River, an inland river in arid northwestern China, can be grouped into three types: runoff-recharged, groundwater-recharged, and precipitation-recharged. These water-recharge characteristics determine the degree to which the landscape structure of a terminal lake or wetland is impacted by climate change and human activities. An analysis of seven remote-sensing and hydroclimatic data sets for the Heihe River basin during the last 50 years indicates that hydrological changes in the basin caused by regional human activities were the primary drivers of the observed changes in the spatial and temporal landscape-structure patterns of the terminal lakes and wetlands of the Heihe River. In this warm, dry climatic context, the lakes and wetlands gradually evolved toward and maintained a landscape dominated by saline-alkaline lands and grasslands.

  13. Iodine 129 concentration in river and lake water in the Fukushima area

    International Nuclear Information System (INIS)

    Tokuyama, Hironori; Matsuzaki, Hiroyuki; Miyake, Yasuto; Honda, Maki; Yamagata, Takeyasu

    2012-01-01

    A large amount of radionuclides, including "1"2"9I, were released into the environment by Fukushima Daiichi nuclear power plant accident. In determination of "1"2"9I, accelerator mass spectrometry is extraordinarily sensitive. We found that river and lake water in Fukushima area contained significant amount of "1"2"9I from the accident, and provided fruitful information for us. The concentration of "1"2"9I in the river and lake water taken in June 2012 ranged from 3.88 x 10"7 atoms/L to 3.32 x 10"9 atoms/L. The concentration of "1"2"9I in samples taken in Kawauchi village and Tamura city located in the west of the nuclear power plant was low, while that in Namie town, Iitate village and Minamisouma city was relatively high. In addition, the concentration of "1"2"9I in samples taken at the same place in December 2011, March 2012 and June 2012 was increased except one sample. This is result from the outflow of "1"2"9I which was attached to the organic matter, and from seasonal changes. To investigate the state of dilution of "1"2"9I in river and lake, it is necessary to take long-term and fixed-point observation. (author)

  14. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  15. Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2011-06-01

    Full Text Available

    In the past, variations in the chemical contents (SO42−, Cl−, cations of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes, taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area, lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf- kg/s –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.

  16. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Marshall Ford Dam and Reservoir... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the Interior, through his agent, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford Dam...

  17. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  18. Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling

    Science.gov (United States)

    Liu, Xiaofeng; Parker, Gary; Czuba, Jonathan A.; Oberg, Kevin; Mier, Jose M.; Best, James L.; Parsons, Daniel R.; Ashmore, Peter; Krishnappan, Bommanna G.; Garcia, Marcelo H.

    2012-01-01

    The lake levels in Lake Michigan-Huron have recently fallen to near historical lows, as has the elevation difference between Lake Michigan-Huron compared to Lake Erie. This decline in lake levels has the potential to cause detrimental impacts on the lake ecosystems, together with social and economic impacts on communities in the entire Great Lakes region. Results from past work suggest that morphological changes in the St Clair River, which is the only natural outlet for Lake Michigan-Huron, could be an appreciable factor in the recent trends of lake level decline. A key research question is whether bed erosion within the river has caused an increase in water conveyance, therefore, contributed to the falling lake level. In this paper, a numerical modeling approach with field data is used to investigate the possibility of sediment movement in the St Clair River and assess the likelihood of morphological change under the current flow regime. A two-dimensional numerical model was used to study flow structure, bed shear stress, and sediment mobility/armoring over a range of flow discharges. Boundary conditions for the numerical model were provided by detailed field measurements that included high-resolution bathymetry and three-dimensional flow velocities. The results indicate that, without considering other effects, under the current range of flow conditions, the shear stresses produced by the river flow are too low to transport most of the coarse bed sediment within the reach and are too low to cause substantial bed erosion or bed scour. However, the detailed maps of the bed show mobile bedforms in the upper St Clair River that are indicative of sediment transport. Relatively high shear stresses near a constriction at the upstream end of the river and at channel bends could cause local scour and deposition. Ship-induced propeller wake erosion also is a likely cause of sediment movement in the entire reach. Other factors that may promote sediment movement, such as ice

  19. [Lake eutrophication modeling in considering climatic factors change: a review].

    Science.gov (United States)

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  20. Glacial lake outburst flood risk assessment using combined approaches of remote sensing, GIS and dam break modelling

    Directory of Open Access Journals (Sweden)

    Arpit Aggarwal

    2016-01-01

    Full Text Available A great number of glacial lakes have appeared in many mountain regions across the world during the last half-century due to receding of glaciers and global warming. In the present study, glacial lake outburst flood (GLOF risk assessment has been carried out in the Teesta river basin located in the Sikkim state of India. First, the study focuses on accurate mapping of the glaciers and glacial lakes using multispectral satellite images of Landsat and Indian Remote Sensing satellites. For glacier mapping, normalized difference snow index (NDSI image and slope map of the area have been utilized. NDSI approach can identify glaciers covered with clean snow but debris-covered glaciers cannot be mapped using NDSI method alone. For the present study, slope map has been utilized along with the NDSI approach to delineate glaciers manually. Glacial lakes have been mapped by supervised maximum likelihood classification and normalized difference water index followed by manual editing afterwards using Google Earth images. Second, the first proper inventory of glacial lakes for Teesta basin has been compiled containing information of 143 glacial lakes. Third, analysis of these lakes has been carried out for identification of potentially dangerous lakes. Vulnerable lakes have been identified on the basis of parameters like surface area, position with respect to parent glacier, growth since 2009, slope, distance from the outlet of the basin, presence of supraglacial lakes, presence of other lakes in downstream, condition of moraine, condition of the terrain around them, etc. From these criterions, in total, 18 lakes have been identified as potentially dangerous glacial lakes. Out of these 18 lakes, further analysis has been carried out for the identification of the most vulnerable lake. Lake 140 comes out to be the most vulnerable for a GLOF event. Lastly, for this potentially dangerous lake, different dam break parameters have been generated using satellite data

  1. Modeling Lake Turkana Hydrology: Evaluating the potential hydrological impact of Gibe III reservoir on the Lake Turkana water levels using multi-source satellite data

    Science.gov (United States)

    Velpuri, N.; Senay, G. B.

    2012-12-01

    Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies >80% of the inflows to Lake Turkana, Kenya. On completion, the Gibe III dam will be the tallest dam in Africa (height of 241 m) with a storage capacity of 14.5 billion m3. Arguably, this is one of the most controversial hydro-power projects in the region because the nature of interactions and potential impacts of the dam regulated flows on Lake Turkana are not well understood due to its remote location and unavailability of reliable in situ hydrological datasets. In this research, we used a calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account 12 years (1998-2009) of satellite rainfall, model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model was used to evaluate the impact of the Gibe III dam using three different simple but robust approaches - a historical approach; a rainfall based sampling approach; and a non-parametric bootstrap resampling approach to generate rainfall-runoff scenarios. Modelling results indicate that, on average, the reservoir would take up to 8-10 months to reach minimum operation level of 201 m (initial impoundment period). During this period, the dam would regulate the lake inflows up to 50% and as a result the lake level would drop up to 2 m. However, after the initial impoundment period, due to releases from the dam, the rate of lake inflows would be around 10 m3/s less when compared to the rate without Gibe III (650 m3/s). Due to this, the lake levels will decline on average 1.5 m (3 m). Over the entire modeling period including the initial period of impoundment, the average rate of lake inflows due to Gibe III dam was estimated to be 500 m3/s. Results indicated that dam would also moderate the seasonal fluctuations in the lake. Areas along the Lake Turkana shoreline that are vulnerable to

  2. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, QUAL2E and similar models do not address a number of practical problems such as stormwater-flow events, nonpoint source pollution, and transient streamflow. Limitations in model formulation affect the ability to close mass balances, to represent sessile bacteria and other benthic processes......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  3. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran

    Directory of Open Access Journals (Sweden)

    Melahat Hoghoghi

    2016-01-01

    Full Text Available A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river slope, velocity, substrate type, average diameter of bed stone, riparian vegetation type and total dissolved solid (TDS and the relative abundance of A. namaki were recorded at each site. The results showed that A. namaki mostly selects upper parts of the river with higher slope, higher depth, lower width, lower velocity, bed rock substrate i.e. bed with boulder cover, TDS of 100-150 ppm, and deciduous forest and residential area riparian type compared with the available ranges. This study provides the habitat use and environmental factors affecting on the distribution of A. namaki in the Jajroud River.

  4. The use of invertebrates as indicators of environmental change in alpine rivers and lakes

    International Nuclear Information System (INIS)

    Khamis, K.; Hannah, D.M.; Brown, L.E.; Tiberti, R.; Milner, A.M.

    2014-01-01

    In alpine regions climatic change will alter the balance between water sources (rainfall, ice-melt, snowmelt, and groundwater) for aquatic systems, particularly modifying the relative contributions of meltwater, groundwater and rain to both rivers and lakes. While these changes are expected to have implications for alpine aquatic ecosystems, little is known about potential ecological tipping points and associated indicator taxa. We examined changes in biotic communities along a gradient of glacier influence for two study systems: (1) a stream network in the French Pyrénées; and (2) a network of lakes in the Italian Alps, with the aim of identifying potential indicator taxa (macroinvertebrates and zooplankton) of glacier retreat in these environments. To assess parallels in biotic responses across streams and lakes, both primary data and findings from other publications were synthesised. Using TITAN (Threshold Indicator Taxa ANalysis) changes in community composition of river taxa were identified at thresholds of < 5.1% glacier cover and < 66.6% meltwater contribution. Below these thresholds the loss of cold stenothermic benthic invertebrate taxa, Diamesa spp. and the Pyrenean endemic Rhyacophila angelieri was apparent. Some generalist taxa including Protonemura sp., Perla grandis, Baetis alpinus, Rhithrogena loyolaea and Microspectra sp. increased when glacier cover was < 2.7% and < 52% meltwater. Patterns were not as distinct for the alpine lakes, due to fewer sampling sites; however, Daphnia longispina grp. and the benthic invertebrate groups Plectopera and Planaria were identified as potential indicator taxa. While further work is required to assess potential indicator taxa for alpine lake systems, findings from alpine river systems were consistent between methods for assessing glacier influence (meltwater contribution/glacier cover). Hence, it is clear that TITAN could become a useful management tool, enabling: (i) the identification of taxa particularly

  5. The use of invertebrates as indicators of environmental change in alpine rivers and lakes

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, K.; Hannah, D.M. [School of Geography Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Brown, L.E. [School of Geography/water@leeds, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Tiberti, R. [DSTA, Dipartimento di Scienze della Terra e dell' Ambiente, University of Pavia, Via Ferrata 9, 27100 Pavia (Italy); Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz 11, I-1101 Valsavarenche, Aosta (Italy); Milner, A.M., E-mail: a.m.milner@bham.ac.uk [School of Geography Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 (United States)

    2014-09-15

    In alpine regions climatic change will alter the balance between water sources (rainfall, ice-melt, snowmelt, and groundwater) for aquatic systems, particularly modifying the relative contributions of meltwater, groundwater and rain to both rivers and lakes. While these changes are expected to have implications for alpine aquatic ecosystems, little is known about potential ecological tipping points and associated indicator taxa. We examined changes in biotic communities along a gradient of glacier influence for two study systems: (1) a stream network in the French Pyrénées; and (2) a network of lakes in the Italian Alps, with the aim of identifying potential indicator taxa (macroinvertebrates and zooplankton) of glacier retreat in these environments. To assess parallels in biotic responses across streams and lakes, both primary data and findings from other publications were synthesised. Using TITAN (Threshold Indicator Taxa ANalysis) changes in community composition of river taxa were identified at thresholds of < 5.1% glacier cover and < 66.6% meltwater contribution. Below these thresholds the loss of cold stenothermic benthic invertebrate taxa, Diamesa spp. and the Pyrenean endemic Rhyacophila angelieri was apparent. Some generalist taxa including Protonemura sp., Perla grandis, Baetis alpinus, Rhithrogena loyolaea and Microspectra sp. increased when glacier cover was < 2.7% and < 52% meltwater. Patterns were not as distinct for the alpine lakes, due to fewer sampling sites; however, Daphnia longispina grp. and the benthic invertebrate groups Plectopera and Planaria were identified as potential indicator taxa. While further work is required to assess potential indicator taxa for alpine lake systems, findings from alpine river systems were consistent between methods for assessing glacier influence (meltwater contribution/glacier cover). Hence, it is clear that TITAN could become a useful management tool, enabling: (i) the identification of taxa particularly

  6. Juvenile Lost River and shortnose sucker year class strength, survival, and growth in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California—2016 Monitoring Report

    Science.gov (United States)

    Burdick, Summer M.; Ostberg, Carl O.; Hoy, Marshal S.

    2018-04-20

    Executive SummaryThe largest populations of federally endangered Lost River (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) exist in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California. Upper Klamath Lake populations are decreasing because adult mortality, which is relatively low, is not being balanced by recruitment of young adult suckers into known spawning aggregations. Most Upper Klamath Lake juvenile sucker mortality appears to occur within the first year of life. Annual production of juvenile suckers in Clear Lake Reservoir appears to be highly variable and may not occur at all in very dry years. However, juvenile sucker survival is much higher in Clear Lake, with non-trivial numbers of suckers surviving to join spawning aggregations. Long-term monitoring of juvenile sucker populations is needed to (1) determine if there are annual and species-specific differences in production, survival, and growth, (2) to identify the season (summer or winter) in which most mortality occurs, and (3) to help identify potential causes of high juvenile sucker mortality, particularly in Upper Klamath Lake.We initiated an annual juvenile sucker monitoring program in 2015 to track cohorts in 3 months (June, August, and September) annually in Upper Klamath Lake and Clear Lake Reservoir. We tracked annual variability in age-0 sucker apparent production, juvenile sucker apparent survival, and apparent growth. Using genetic markers, we were able to classify suckers as one of three taxa: shortnose or Klamath largescale suckers, Lost River, or suckers with genetic markers of both species (Intermediate Prob[LRS]). Using catch data, we generated taxa-specific indices of year class strength, August–September apparent survival, and overwinter apparent survival. We also examined prevalence and severity of afflictions such as parasites, wounds, and deformities.Indices of year class strength in Upper Klamath Lake were similar for shortnose suckers in 2015

  7. Simulation of the Lower Walker River Basin hydrologic system, west-central Nevada, using PRMS and MODFLOW models

    Science.gov (United States)

    Allander, Kip K.; Niswonger, Richard G.; Jeton, Anne E.

    2014-01-01

    Walker Lake is a terminal lake in west-central Nevada with almost all outflow occurring through evaporation. Diversions from Walker River since the early 1900s have contributed to a substantial reduction in flow entering Walker Lake. As a result, the lake is receding, and salt concentrations have increased to a level in which Oncorhynchus clarkii henshawi (Lahontan Cutthroat trout) are no longer present, and the lake ecosystem is threatened. Consequently, there is a concerted effort to restore the Walker Lake ecosystem and fishery to a level that is more sustainable. However, Walker Lake is interlinked with the lower Walker River and adjacent groundwater system which makes it difficult to understand the full effect of upstream water-management actions on the overall hydrologic system including the lake level, volume, and dissolved-solids concentrations of Walker Lake. To understand the effects of water-management actions on the lower Walker River Basin hydrologic system, a watershed model and groundwater flow model have been developed by the U.S. Geological Survey in cooperation with the Bureau of Reclamation and the National Fish and Wildlife Foundation.

  8. Glacial Lake Outburst Flood Risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas

    Directory of Open Access Journals (Sweden)

    Narendra Raj Khanal

    2015-11-01

    Full Text Available The Himalayas have experienced several glacial lake outburst floods (GLOFs, and the risk of GLOFs is now increasing in the context of global warming. Poiqu watershed in the Tibet Autonomous Region, China, also known as the Bhote Koshi and Sun Koshi downstream in Nepal, has been identified as highly prone to GLOFs. This study explored the distribution of and changes in glacial lakes, past GLOFs and the resulting losses, risk from potential future GLOFs, and risk reduction initiatives within the watershed. A relationship was established between lake area and volume of lake water based on data from 33 lakes surveyed within the Hindu Kush Himalayan region, and the maximum possible discharge was estimated using this and other previously developed empirical equations. We recommend different strategies to reduce GLOF risk and highlight the need for a glacial lake monitoring and early-warning system. We also recommend strong regional cooperation, especially on issues related to transboundary rivers.

  9. Sources of suspended-sediment loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, south Texas, 1958–2010

    Science.gov (United States)

    Ockerman, Darwin J.; Heitmuller, Franklin T.; Wehmeyer, Loren L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Fort Worth District; City of Corpus Christi; Guadalupe-Blanco River Authority; San Antonio River Authority; and San Antonio Water System, developed, calibrated, and tested a Hydrological Simulation Program-FORTRAN (HSPF) watershed model to simulate streamflow and suspended-sediment concentrations and loads during 1958-2010 in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary in south Texas. Data available to simulate suspended-sediment concentrations and loads consisted of historical sediment data collected during 1942-82 in the study area and suspended-sediment concentration data collected periodically by the USGS during 2006-7 and 2010 at three USGS streamflow-gaging stations (08211000 Nueces River near Mathis, Tex. [the Mathis gage], 08211200 Nueces River at Bluntzer, Tex. [the Bluntzer gage], and 08211500 Nueces River at Calallen, Tex. [the Calallen gage]), and at one ungaged location on a Nueces River tributary (USGS station 08211050 Bayou Creek at Farm Road 666 near Mathis, Tex.). The Mathis gage is downstream from Wesley E. Seale Dam, which was completed in 1958 to impound Lake Corpus Christi. Suspended-sediment data collected before and after completion of Wesley E. Seale Dam provide insights to the effects of the dam and reservoir on suspended-sediment loads transported by the lower Nueces River downstream from the dam to the Nueces Estuary. Annual suspended-sediment loads at the Nueces River near the Mathis, Tex., gage were considerably lower for a given annual mean discharge after the dam was completed than before the dam was completed.

  10. Coleoptera associated with macrophytes of the genus Salvinia in four oxbow lakes in two river basins in southeast Brazil

    Directory of Open Access Journals (Sweden)

    M. C. Paula-Bueno

    Full Text Available Abstract Macrophytes in oxbow lakes represent an important substrate for the Coleoptera. Two oxbow lakes the Rio Paranapanema were studied and the other two Rio Mogi-Guaçu, in the State de São Paulo, Brasil. In this study, there is greater similarity between the communities of Coleoptera of lakes greater connectivity with the main river channel or the difference in the species of Salvinia collected in the lakes studied interferes Coleoptera fauna that uses as substrate. A total of 9,222 specimens of Coleoptera were collected and identified in 10 families and 40 genera. The analysis MDS for abundance of Coleoptera showed the grouping of the oxbow lakes the Paranapanema River and a distancing the oxbow lakes the Mogi-Guaçu. The PERMANOVA test did not reveal any difference in the fauna between the wet and dry periods. It was concluded that the connectivity between river and lake is not decisive for the richness and abundance of aquatic fauna of Coleoptera. Therefore, the richness and abundance of aquatic Coleoptera associated vary with the species of Salvinia used as substrate.

  11. Coleoptera associated with macrophytes of the genus Salvinia in four oxbow lakes in two river basins in southeast Brazil.

    Science.gov (United States)

    Paula-Bueno, M C; Fonseca-Gessner, A A

    2015-11-01

    Macrophytes in oxbow lakes represent an important substrate for the Coleoptera. Two oxbow lakes the Rio Paranapanema were studied and the other two Rio Mogi-Guaçu, in the State de São Paulo, Brasil. In this study, there is greater similarity between the communities of Coleoptera of lakes greater connectivity with the main river channel or the difference in the species of Salvinia collected in the lakes studied interferes Coleoptera fauna that uses as substrate. A total of 9,222 specimens of Coleoptera were collected and identified in 10 families and 40 genera. The analysis MDS for abundance of Coleoptera showed the grouping of the oxbow lakes the Paranapanema River and a distancing the oxbow lakes the Mogi-Guaçu. The PERMANOVA test did not reveal any difference in the fauna between the wet and dry periods. It was concluded that the connectivity between river and lake is not decisive for the richness and abundance of aquatic fauna of Coleoptera. Therefore, the richness and abundance of aquatic Coleoptera associated vary with the species of Salvinia used as substrate.

  12. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    Science.gov (United States)

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)

    Science.gov (United States)

    Layden, Aisling; MacCallum, Stuart N.; Merchant, Christopher J.

    2016-06-01

    A tuning method for FLake, a one-dimensional (1-D) freshwater lake model, is applied for the individual tuning of 244 globally distributed large lakes using observed lake surface water temperatures (LSWTs) derived from along-track scanning radiometers (ATSRs). The model, which was tuned using only three lake properties (lake depth, snow and ice albedo and light extinction coefficient), substantially improves the measured mean differences in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes, when compared to the observed LSWTs. Lakes whose lake-mean LSWT persists below 1 °C for part of the annual cycle are considered to be seasonally ice-covered. For trial seasonally ice-covered lakes (21 lakes), the daily mean and standard deviation (2σ) of absolute differences between the modelled and observed LSWTs are reduced from 3.07 °C ± 2.25 °C to 0.84 °C ± 0.51 °C by tuning the model. For all other trial lakes (14 non-ice-covered lakes), the improvement is from 3.55 °C ± 3.20 °C to 0.96 °C ± 0.63 °C. The post tuning results for the 35 trial lakes (21 seasonally ice-covered lakes and 14 non-ice-covered lakes) are highly representative of the post-tuning results of the 244 lakes. For the 21 seasonally ice-covered lakes, the modelled response of the summer LSWTs to changes in snow and ice albedo is found to be statistically related to lake depth and latitude, which together explain 0.50 (R2adj, p = 0.001) of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p = 0.003) of the variance. Lake characteristic information (snow and ice albedo and light extinction coefficient) is not available for many lakes. The approach taken to tune the model, bypasses the need to acquire detailed lake characteristic values. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction coefficient for the 244 lakes provide some guidance on improving FLake LSWT modelling.

  14. Using radar altimetry to update a routing model of the Zambezi River Basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; Bauer-Gottwein, Peter

    2012-01-01

    Satellite radar altimetry allows for the global monitoring of lakes and river levels. However, the widespread use of altimetry for hydrological studies is limited by the coarse temporal and spatial resolution provided by current altimetric missions and the fact that discharge rather than level...... is needed for hydrological applications. To overcome these limitations, altimetry river levels can be combined with hydrological modeling in a dataassimilation framework. This study focuses on the updating of a river routing model of the Zambezi using river levels from radar altimetry. A hydrological model...... of the basin was built to simulate the land phase of the water cycle and produce inflows to a Muskingum routing model. River altimetry from the ENVISAT mission was then used to update the storages in the reaches of the Muskingum model using the Extended Kalman Filter. The method showed improvements in modeled...

  15. Relationships between land cover and dissolved organic matter change along the river to lake transition

    Science.gov (United States)

    Larson, James H.; Frost, Paul C.; Xenopoulos, Marguerite A.; Williams, Clayton J.; Morales-Williams, Ana M.; Vallazza, Jonathan M.; Nelson, J. C.; Richardson, William B.

    2014-01-01

    Dissolved organic matter (DOM) influences the physical, chemical, and biological properties of aquatic ecosystems. We hypothesized that controls over spatial variation in DOM quantity and composition (measured with DOM optical properties) differ based on the source of DOM to aquatic ecosystems. DOM quantity and composition should be better predicted by land cover in aquatic habitats with allochthonous DOM and related more strongly to nutrients in aquatic habitats with autochthonous DOM. Three habitat types [rivers (R), rivermouths (RM), and the nearshore zone (L)] associated with 23 tributaries of the Laurentian Great Lakes were sampled to test this prediction. Evidence from optical indices suggests that DOM in these habitats generally ranged from allochthonous (R sites) to a mix of allochthonous-like and autochthonous-like (L sites). Contrary to expectations, DOM properties such as the fluorescence index, humification index, and spectral slope ratio were only weakly related to land cover or nutrient data (Bayesian R 2 values were indistinguishable from zero). Strongly supported models in all habitat types linked DOM quantity (that is, dissolved organic carbon concentration [DOC]) to both land cover and nutrients (Bayesian R2 values ranging from 0.55 to 0.72). Strongly supported models predicting DOC changed with habitat type: The most important predictor in R sites was wetlands whereas the most important predictor at L sites was croplands. These results suggest that as the DOM pool becomes more autochthonous-like, croplands become a more important driver of spatial variation in DOC and wetlands become less important.

  16. Use of pre-industrial floodplain lake sediments to establish baseline river metal concentrations downstream of Alberta oil sands: a new approach for detecting pollution of rivers

    International Nuclear Information System (INIS)

    Wiklund, Johan A; Hall, Roland I; Farwell, Andrea J; George Dixon, D; Wolfe, Brent B; Edwards, Thomas WD

    2014-01-01

    In the Alberta oil sands region, insufficient knowledge of pre-disturbance reference conditions has undermined the ability of the Regional Aquatics Monitoring Program (RAMP) to detect pollution of the Athabasca River, because sampling began three decades after the industry started and the river naturally erodes oil-bearing strata. Here, we apply a novel approach to characterize pre-industrial reference metal concentrations in river sediment downstream of Alberta oil sands development by analyzing metal concentrations in sediments deposited in floodplain lakes of the Athabasca Delta during 1700–1916, when they were strongly influenced by Athabasca River floodwaters. We compared results to metal concentrations in surficial bottom sediments sampled by RAMP (2010–2013) at downstream sites of the Athabasca River and distributaries. When normalized to lithium content, concentrations of vanadium (a metal of concern in the oil sands region) and other priority pollutants (Be, Cd, Cr, Cu, Pb, Ni, Zn) in nearly all of the RAMP river sediment samples lie below the upper 95% prediction interval linearly extrapolated from the river-derived lake sediments. Assuming the RAMP protocols obtained recently deposited sediment, this indicates that the metal concentrations in downstream Athabasca River sediment have not increased above pre-disturbance levels. Reference conditions derived from the lake sediment data were used to develop profiles of metal residual concentrations versus time for the RAMP river sediment data, which provides an excellent tool for decision-makers to identify and quantify levels of metal pollution for any given sample, and to monitor for future trends. We recommend that the approach be applied to resurrect the utility of RAMP data at other river sampling locations closer to the development, and for ongoing risk assessment. The approach is also readily transferable to other rivers where insufficient pre-disturbance reference data impairs an ability to

  17. CDOM variations in Finnish lakes and rivers between 1913 and 2014.

    Science.gov (United States)

    Arvola, Lauri; Leppäranta, Matti; Äijälä, Cecilia

    2017-12-01

    In lakes and rivers, the concentrations of dissolved organic carbon (DOC) and coloured dissolved organic matter (CDOM) are closely related. We analysed three large spectrophotometer data sets of Finnish inland waters from the years 1913-1914, 1913-1931 and 2014 for long-term changes in optical properties. The first data set consists of absorption spectra in the band 467-709nm of 212 filtered water samples, the second one contains 11-19years of data for seven rivers, and the third one contains 153 sites with high resolution spectra over the band 200-750nm. These data sets were supplemented with more recent monitoring data of DOC. The sites represent typical optical inland water types of north-eastern Europe. The results did not show any consistent large-scale changes in CDOM concentrations over the 101-year time period. The statistics of the absorption coefficients in 1913 and 2014 were almost identical, at 467nm they were 1.9±1.0m -1 in 1913 and 1.7±1.2m -1 in 2014, and the shape of the CDOM absorption spectrum was unchanged, proportional to exp(-S·λ), S=0.011nm -1 and λ is wavelength. Catchment properties, primarily lake and peat-land percentages, explained 50% of the variation of CDOM concentration in the lakes, and hydrological conditions explained 50% of the variation of CDOM in the rivers. Both illustrate the importance of catchments and hydrology to CDOM concentrations of boreal inland waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  19. International Cooperative Programme for Assessment and Monitoring of Acidification of Rivers and Lakes. Programme Manual

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.; Forsius, M.; Jeffries, D. [and others

    1996-12-31

    The International Cooperative Programme for Assessment of Acidification of Rivers and lakes (ICP Waters) was established in 1985 by the UN/ECE Executive Body for the Convention of Long-Range Transboundary Air Pollution. Achieving the programme objectives requires that both the temporally intensive and regionally extensive data are collected on a continuing basis. To guide the development and harmonization of the various national contributions, a manual was worked out. The present report is an expanded and consolidated revision of that manual. 33 refs., 3 tabs.

  20. Horizontal distribution of Cladocera in a subtropical lake marginal to a river

    Directory of Open Access Journals (Sweden)

    Rafael Campanelli Mortari

    2015-09-01

    Full Text Available Various abiotic and biotic factors may determine the spatial distribution patterns of Cladocera in a lake. The aim of this study was to examine the horizontal distribution of Cladocera in a lake connected to a river during low and high water phases and the abiotic factors that determine variation in their populations. Microcrustaceans were collected in integrated samples at 40 sites distributed on a lake. The mean abundance of Cladocera was around five times higher in the low water phase than in the high water phase. Only populations of Bosmina hagmanni Stingelin, 1904 and Bosminopsis deitersi Richard, 1895 predominated in the low water phase, while in the high water phase, B. hagmanni, Ceriodaphnia cornuta f. rigaudi (Sars, 1896 Diaphanosoma spinulosum Herbst, 1975 and Moina micrura Kurz, 1875 predominated at some sampling stations. The majority of cladoceran species showed an aggregated distribution in the low water phase, except B. longirostris and D. fluviatile and, B. longirostris, the only ones which presented a uniform distribution pattern in the high water phase. Most of the aggregates of cladoceran species predominated in both the dry and rainy periods on the east side of the lake due to intense easterly wind. Some cladoceran populations formed isolate aggregates in other parts of the lake and near the lake-river connection site. Canonical Correspondence Analysis (CCA showed that the variables phosphorus, nitrogen and suspended matter (eutrophic conditions determined distinct patterns of horizontal distribution in some cladoceran populations at some stations in the low water phase, while in others, the patterns of horizontal distribution were determined by environmental conditions as alkalinity, pH, oxygen, depth and water transparency. In the high water phase, CCA revealed that phosphorus and water transparency were positive determining factors in the distribution of some cladoceran species, while alkalinity, depth and suspended matter

  1. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai.

    Science.gov (United States)

    Liu, Yu; Li, Changyou; Anderson, Bruce; Zhang, Sheng; Shi, Xiaohong; Zhao, Shengnan

    2017-06-01

    Mercury contamination from industrial and agricultural drainage into lakes and rivers is a growing concern in Northern China. Lake Ulansuhai, located in Hetao irrigation district in Inner Mongolia, is the only sink for the all industrial and agricultural drainage and sole outlet for this district to the Yellow River, which is one of the main source of drinking water for the numerous cities and towns downstream. Because Ulansuahi is ice-covered during winter, the QWASI model was modified by adding an ice equation to get a more accurate understanding of the fate and transport of mercury within the lake. Both laboratory and field tests were carried out during the ice growth period. The aquivalence and mass balance approaches were used to develop the modified QWASI + ice model. The margins of error between the modelled and the measured average concentrations of Hg in ice, water, and sediment were 30%, 26.2%, and 19.8% respectively. These results suggest that the new QWASI + ice model could be used to more accurately represent the fate and transport of mercury in the seasonally ice-covered lakes, during the ice growth period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of stream water quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake.

    Science.gov (United States)

    Ayana, Essayas K; Worqlul, Abeyou W; Steenhuis, Tammo S

    2015-08-01

    Modeling of suspended sediment emission into freshwater lakes is challenging due to data gaps in developing countries. Existing models simulate sediment concentration at a gauging station upstream and none of these studies had modeled total suspended solids (TSS) emissions by inflowing rivers to freshwater lakes as there are no TSS measurements at the river mouth in the upper Blue Nile basin. In this study a 10year TSS time series data generated from remotely sensed MODIS/Terra images using established empirical relationship is applied to calibrate and validate a hydrology model for Lake Tana in Upper Blue Nile Basin. The result showed that at a monthly time scale TSS at the river mouth can be replicated with Nash-Sutcliffe efficiency (NS) of 0.34 for calibration and 0.21 for validation periods. Percent bias (PBIAS) and ratio of the root-mean-square error to the standard deviation of measured data (RSR) are all within range. Given the inaccessibility and costliness to measure TSS at river mouths to a lake the results found here are considered useful for suspended sediment budget studies in water bodies of the basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Adaption of egg and larvae sampling techniques for lake sturgeon and broadcast spawning fishes in a deep river

    Science.gov (United States)

    Roseman, Edward F.; Kennedy, Gregory W.; Craig, Jaquelyn; Boase, James; Soper, Karen

    2011-01-01

    In this report we describe how we adapted two techniques for sampling lake sturgeon (Acipenser fulvescens) and other fish early life history stages to meet our research needs in the Detroit River, a deep, flowing Great Lakes connecting channel. First, we developed a buoy-less method for sampling fish eggs and spawning activity using egg mats deployed on the river bottom. The buoy-less method allowed us to fish gear in areas frequented by boaters and recreational anglers, thus eliminating surface obstructions that interfered with recreational and boating activities. The buoy-less method also reduced gear loss due to drift when masses of floating aquatic vegetation would accumulate on buoys and lines, increasing the drag on the gear and pulling it downstream. Second, we adapted a D-frame drift net system formerly employed in shallow streams to assess larval lake sturgeon dispersal for use in the deeper (>8 m) Detroit River using an anchor and buoy system.

  4. SWAT Model Configuration, Calibration and Validation for Lake Champlain Basin

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model was used to develop phosphorus loading estimates for sources in the Lake Champlain Basin. This document describes the model setup and parameterization, and presents calibration results.

  5. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series

    Directory of Open Access Journals (Sweden)

    Sofia Antonova

    2016-11-01

    Full Text Available Thermokarst lakes and ponds are major elements of permafrost landscapes, occupying up to 40% of the land area in some Arctic regions. Shallow lakes freeze to the bed, thus preventing permafrost thaw underneath them and limiting the length of the period with greenhouse gas production in the unfrozen lake sediments. Radar remote sensing permits to distinguish lakes with bedfast ice due to the difference in backscatter intensities from bedfast and floating ice. This study investigates the potential of a unique time series of three-year repeat-pass TerraSAR-X (TSX imagery with high temporal (11 days and spatial (10 m resolution for monitoring bedfast ice as well as ice phenology of lakes in the zone of continuous permafrost in the Lena River Delta, Siberia. TSX backscatter intensity is shown to be an excellent tool for monitoring floating versus bedfast lake ice as well as ice phenology. TSX-derived timing of ice grounding and the ice growth model CLIMo are used to retrieve the ice thicknesses of the bedfast ice at points where in situ ice thickness measurements were available. Comparison shows good agreement in the year of field measurements. Additionally, for the first time, an 11-day sequential interferometric coherence time series is analyzed as a supplementary approach for the bedfast ice monitoring. The coherence time series detects most of the ice grounding as well as spring snow/ice melt onset. Overall, the results show the great value of TSX time series for monitoring Arctic lake ice and provide a basis for various applications: for instance, derivation of shallow lakes bathymetry, evaluation of winter water resources and locating fish winter habitat as well as estimation of taliks extent in permafrost.

  6. 137Cs distribution and geochemistry of Lena River (Siberia) drainage basin lake sediments

    International Nuclear Information System (INIS)

    Johnson-Pyrtle, A.; Scott, M.R.; Laing, T.E.; Smol, J.P.

    2000-01-01

    The Lena River is the second largest river that discharges into the Arctic Ocean. It is therefore important to determine not only the direct impact its discharge has on the 137Cs concentration of the Arctic, but also the potential its drainage basin has as a 137Cs source. 137Cs surface sediment concentrations and inventory values, which range from 4.97 to 338 Bq kg -1 and 357 to 1732 Bq m -2 , respectively, were determined for the Lena River drainage basin lake samples, via gamma analysis. The average geochemical and mineralogical composition of a subset of samples was also determined using neutron activation analysis, X-ray diffraction and X-ray fluorescence spectrometry techniques. Results of these geochemical analyses allowed for the identification of key geochemical factors that influence the distribution of 137Cs in the Lena River drainage basin. 137Cs profiles indicate that Lena River drainage basin lacustrine sediments serve as a record of 137Cs fallout. Based on the downcore 137Cs, %illite, %smectite, %Al and %Mn distribution patterns, it was concluded that a small fraction of non-selectively bound 137Cs was remobilized at depth in some cores. Inconsistencies between the actual 137Cs fallout record and the 137Cs profiles determined for the lake sediments were attributed to 137Cs remobilization in subsurface sediments. In addition to establishing the agreement between the global atmospheric fallout record and the downcore 137Cs distribution patterns determined for these sediments, results indicate that 137Cs deposited during periods of maximum atmospheric release was buried and is not susceptible to surface erosion processes. However, mean 137Cs concentrations of the lacustrine surface sediments (125 Bq kg -1 ) are still significantly higher than those of the nearby Lena River estuary (11.22 Bq kg -1 ) and Laptev Sea (6.00 Bq kg -1 ). Our study suggests that the Lena River drainage basin has the potential to serve as a source of 137Cs to the adjacent Arctic

  7. Predicting future glacial lakes in Austria using different modelling approaches

    Science.gov (United States)

    Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers

  8. Lake-0: A model for the simulation of nuclides transfer in lake scenarios

    International Nuclear Information System (INIS)

    Garcia-Olivares, A.; Aguero, A.; Pinedo, P.

    1994-01-01

    This report presents documentation and a user's manual for the program LAKE-0, a mathematical model of nuclides transfer in lake scenarios. Mathematical equations and physical principles used to develop the code are presented in section 2. The program use is presented in section 3 including input data sets and output data. Section 4 presents two example problems, and some results. The complete program listing including comments is presented in Appendix A. Nuclides are assumed to enter the lake via atmospheric deposition and carried by the water runoff and the dragged sediments from the adjacent catchment. The dynamics of the nuclides inside the lake is based in the model proposed by Codell (11) as modified in (5). The removal of concentration from the lake water is due to outflow from the lake and to the transfer of activity to the bottom sediments. The model has been applied to the Esthwaite Water (54 degree 21 minute N, 03 degree 00 minute W at 65 m. asl.) in the frame of the VAMP Aquatic Working Group (8) and to Devoke Water (54 degree 21 minute 5'N, 03 degree, 18 minute W at 230 m. asl.)

  9. LAKE-0: a model for the simulation of nuclides transfer in lake scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Olivares, A.; Aguero, A.; Pinedo, P.

    1994-07-01

    This report presents documentation and a user's manual for the program LAKE-0, a mathematical model of nuclides transfer in lake scenarios. Mathematical equations and physical principles used to develop the code are presented in section 2. The program use is presented in section 3 including input data sets and output data. Section 4 presents two example problems, and some results. The complete program listing including comments is presented in Appendix A. Nuclides are assumed to center the lake via atmospheric deposition and carried by the water runoff and the dragged sediments from the adjacent catchment. The dynamics of the nuclides inside the lake is based in the model proposed by Codell (11) as modified in (5). The removal of concentration from the lake water is due to out flow from the lake and to the transfer of activity to the button sediments. The model has been applied to the Esthwaite Water (54 degree celsius 2 l'N, 03 degree celsius 00'W at 65 m. asi.) in the frame of the VAMP Aquatic Working Group (8) and to Devoke Water (5 21.5'N, 03H8'W at 230 m. asi.). (Author). 13 refs.

  10. LAKE-0: a model for the simulation of nuclides transfer in lake scenarios

    International Nuclear Information System (INIS)

    Garcia-Olivares, A.; Aguero, A.; Pinedo, P.

    1994-01-01

    This report presents documentation and a user's manual for the program LAKE-0, a mathematical model of nuclides transfer in lake scenarios. Mathematical equations and physical principles used to develop the code are presented in section 2. The program use is presented in section 3 including input data sets and output data. Section 4 presents two example problems, and some results. The complete program listing including comments is presented in Appendix A. Nuclides are assumed to center the lake via atmospheric deposition and carried by the water runoff and the dragged sediments from the adjacent catchment. The dynamics of the nuclides inside the lake is based in the model proposed by Codell (11) as modified in (5). The removal of concentration from the lake water is due to out flow from the lake and to the transfer of activity to the button sediments. The model has been applied to the Esthwaite Water (54 degree celsius 2 l'N, 03 degree celsius 00'W at 65 m. asi.) in the frame of the VAMP Aquatic Working Group (8) and to Devoke Water (5 21.5'N, 03H8'W at 230 m. asi.). (Author). 13 refs

  11. Assessment of whether upstream passage for Lake Sturgeon is needed at the Pointe du Bois Generating Station (Winnipeg River)

    International Nuclear Information System (INIS)

    Pratt, T.

    2010-01-01

    This document reviewed Manitoba Hydro's proposal to modernize the Pointe du Bois Generating Station (GS) on the Winnipeg River, with particular reference to the potential impacts on Lake Sturgeon in Management Unit 5 (MU5) where large numbers of the fish spawn at the base of the falls. The modernization will involve replacing the spillway, dam segments and replacing or repairing the powerhouse. The pros and cons of providing upstream fish passage for Lake Sturgeon and the generating station were outlined. The only spawning area in the MU5 area may be altered considerably due to changes in water flow, depending on the design chosen for modernization. A potential benefit of providing upstream fish passage for Lake Sturgeon would be to increase genetic diversity within the Winnipeg River. Another potential benefit would be to allow Lake Sturgeon, from the relatively dense population below the GS, to move upstream into MU4 where unfilled habitat may be available and Lake Sturgeon abundance is lower. A potential disadvantage of providing fish passage would be the loss of individual Lake Sturgeon from the healthy population in MU5 with no accompanying benefit to MU4. There would be no net gain to MU4 or MU5 if migrating Lake Sturgeon returned to MU5 rather than proceeding upstream. It was concluded that these current gaps in knowledge must be filled in order to fully assess the environmental impacts. 2 figs.

  12. Improving regional climate and hydrological forecasting following the record setting flooding across the Lake Ontario - St. Lawrence River system

    Science.gov (United States)

    Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.

    2017-12-01

    In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.

  13. Modeling Prairie Pothole Lakes: Linking Satellite Observation and Calibration (Invited)

    Science.gov (United States)

    Schwartz, F. W.; Liu, G.; Zhang, B.; Yu, Z.

    2009-12-01

    This paper examines the response of a complex lake wetland system to variations in climate. The focus is on the lakes and wetlands of the Missouri Coteau, which is part of the larger Prairie Pothole Region of the Central Plains of North America. Information on lake size was enumerated from satellite images, and yielded power law relationships for different hydrological conditions. More traditional lake-stage data were made available to us from the USGS Cottonwood Lake Study Site in North Dakota. A Probabilistic Hydrologic Model (PHM) was developed to simulate lake complexes comprised of tens-of-thousands or more individual closed-basin lakes and wetlands. What is new about this model is a calibration scheme that utilizes remotely-sensed data on lake area as well as stage data for individual lakes. Some ¼ million individual data points are used within a Genetic Algorithm to calibrate the model by comparing the simulated results with observed lake area-frequency power law relationships derived from Landsat images and water depths from seven individual lakes and wetlands. The simulated lake behaviors show good agreement with the observations under average, dry, and wet climatic conditions. The calibrated model is used to examine the impact of climate variability on a large lake complex in ND, in particular, the “Dust Bowl Drought” 1930s. This most famous drought of the 20th Century devastated the agricultural economy of the Great Plains with health and social impacts lingering for years afterwards. Interestingly, the drought of 1930s is unremarkable in relation to others of greater intensity and frequency before AD 1200 in the Great Plains. Major droughts and deluges have the ability to create marked variability of the power law function (e.g. up to one and a half orders of magnitude variability from the extreme Dust Bowl Drought to the extreme 1993-2001 deluge). This new probabilistic modeling approach provides a novel tool to examine the response of the

  14. LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models

    Directory of Open Access Journals (Sweden)

    WIM Thiery

    2014-02-01

    Full Text Available The African great lakes are of utmost importance for the local economy (fishing, as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E, East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP. Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model's performance. Simulations are performed over the freshwater layer only (60 m and over the average lake depth (240 m, since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.

  15. Multistate models of bigheaded carps in the Illinois River reveal spatial dynamics of invasive species

    Science.gov (United States)

    Coulter, Alison A.; Brey, Marybeth; Lubejko, Matthew; Kallis, Jahn L.; Coulter, David P.; Glover, David C.; Whitledge, Gregory W.; Garvey, James E.

    2018-01-01

    Knowledge of the spatial distributions and dispersal characteristics of invasive species is necessary for managing the spread of highly mobile species, such as invasive bigheaded carps (Bighead Carp [Hypophthalmichthys nobilis] and Silver Carp [H. molitrix]). Management of invasive bigheaded carps in the Illinois River has focused on using human-made barriers and harvest to limit dispersal towards the Laurentian Great Lakes. Acoustic telemetry data were used to parameterize multistate models to examine the spatial dynamics of bigheaded carps in the Illinois River to (1) evaluate the effects of existing dams on movement, (2) identify how individuals distribute among pools, and (3) gauge the effects of reductions in movement towards the invasion front. Multistate models estimated that movement was generally less likely among upper river pools (Starved Rock, Marseilles, and Dresden Island) than the lower river (La Grange and Peoria) which matched the pattern of gated versus wicket style dams. Simulations using estimated movement probabilities indicated that Bighead Carp accumulate in La Grange Pool while Silver Carp accumulate in Alton Pool. Fewer Bighead Carp reached the upper river compared to Silver Carp during simulations. Reducing upstream movement probabilities (e.g., reduced propagule pressure) by ≥ 75% into any of the upper river pools could reduce upper river abundance with similar results regardless of location. Given bigheaded carp reproduction in the upper Illinois River is presently limited, reduced movement towards the invasion front coupled with removal of individuals reaching these areas could limit potential future dispersal towards the Great Lakes.

  16. Development and application of an eco-hydrodynamic model for radionuclides in a brackish lake

    International Nuclear Information System (INIS)

    Ueda, Shinji; Kondo, Kunio; Inaba, Jiro; Hisamatsu, Shun'ichi

    2007-01-01

    This study was intended to develop a computer code of an eco-hydrodynamic model for radionuclides in Lake Obuchi, which is a brackish lake in Rokkasho, Aomori Prefecture and adjacent to nuclear fuel cycle facilities including the first commercial spent-nuclear-fuel reprocessing plant in Japan. Radionuclides introduced into the lake are transferred not only by physical advection an diffusion, but also by bio-chemical activities. The model was planned to include the effects of the low trophic level ecosystem on the transfer of radionuclides as well as the hydraulic movements in the lake. Various parameters necessary for the model description were collected from the lake during 2001 to 2005. Water flow in the lake, including input from the Futamata River and tidal flow from the Pacific Ocean, was simulated by a 3D-hydrodynamic model, and an ecosystem model including phytoplankton and zooplankton was incorporated into the water flow model. Calculations of water movement were carried out using climatic, physicochemical and ecological data collected during January 2001 to December 2002. The numerical simulation results of water current and salinity agreed well with field measurement data. The ecosystem model simulated well the mass fluxes of P, N and observed in the field. The estimated 3 He and 137 Cs concentrations in lake water were in good agreement with the measured data, because the concentrations of both radionuclides were controlled by the mixture of seawater as the higher side member and fresh water as the lower side member. Material balance calculations of both radionuclides in the lake ecosystem showed that they were mainly in the form of dissolved inorganic matter (DIM). However, the fallout 137 Cs deposition pattern in the lake sediment predicted by a long-term simulation did not agree with the measured one. Although input of 137 Cs from the watershed was included in the simulation, its residence time in the watershed was not considered. This meant that

  17. Using a Population Model to Inform the Management of River Flows and Invasive Carp ( Cyprinus carpio)

    Science.gov (United States)

    Koehn, John D.; Todd, Charles R.; Zampatti, Brenton P.; Stuart, Ivor G.; Conallin, Anthony; Thwaites, Leigh; Ye, Qifeng

    2018-03-01

    Carp are a highly successful invasive fish species, now widespread, abundant and considered a pest in south-eastern Australia. To date, most management effort has been directed at reducing abundances of adult fish, with little consideration of population growth through reproduction. Environmental water allocations are now an important option for the rehabilitation of aquatic ecosystems, particularly in the Murray-Darling Basin. As carp respond to flows, there is concern that environmental watering may cause floodplain inundation and provide access to spawning habitats subsequently causing unwanted population increase. This is a management conundrum that needs to be carefully considered within the context of contemporary river flow management (natural, environmental, irrigation). This paper uses a population model to investigate flow-related carp population dynamics for three case studies in the Murray-Darling Basin: (1) river and terminal lakes; (2) wetlands and floodplain lakes; and (3) complex river channel and floodplain system. Results highlight distinctive outcomes depending on site characteristics. In particular, the terminal lakes maintain a significant source carp population regardless of river flow; hence any additional within-channel environmental flows are likely to have little impact on carp populations. In contrast, large-scale removal of carp from the lakes may be beneficial, especially in times of extended low river flows. Case studies 2 and 3 show how wetlands, floodplain lakes and the floodplain itself can now often be inundated for several months over the carp spawning season by high volume flows provided for irrigation or water transfers. Such inundations can be a major driver of carp populations, compared to within channel flows that have relatively little effecton recruitment. The use of a population model that incorporates river flows and different habitats for this flow-responsive species, allows for the comparison of likely population

  18. Formation and maintenance of single-thread tie channels entering floodplain lakes: Observations from three diverse river systems

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.; Day, G.; Parker, G.

    2009-06-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology; yet they are generally unrecognized and little studied. Here we report the results of field studies focused on tie channel origin and morphodynamics in the following three contrasting systems: the Middle Fly River (Papua New Guinea), the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed, single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V-shaped cross section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bidirectional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  19. The formation and maintenance of single-thread tie channels entering floodplain lakes: observations from three diverse river systems

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Joel C [Los Alamos National Laboratory; Dietrich, William E [UC BERKELEY; Day, Geoff [NEWCREST MINING; Parker, Gary [UNIV OF ILLINOIS

    2009-01-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology, yet they are generally unrecognized and little studied. here we report the results of field studies focused on tie channel origin and morphodynamics in three contrasting systems: the Middle Fly River, Papua New Guinea, the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V shaped cross-section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bi-directional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  20. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS.

    Directory of Open Access Journals (Sweden)

    Chrispine Nyamweya

    Full Text Available Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May and mixing (June-August. Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  1. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    Science.gov (United States)

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  2. Fish larvae assemblages in two floodplain lakes with different degrees of connection to the Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    Vanessa Salete Daga

    Full Text Available The objective of this study was to assess the abundance, attributes of assemblages, and spatial and temporal distributions of fish larvae and their relationships with some abiotic variables in two floodplain lakes with different degrees of connection to the Paraná River in Ilha Grande National Park, PR, Brazil. Four sampling sites were chosen, two in each floodplain lake. Night samples were taken with plankton nets during three spawning seasons (monthly, from October to March from 2001 to 2005. The highest diversity and abundance were recorded at Saraiva Lake, with 25 taxa being identified. In Xambrê Lake, only sedentary species were captured, and the most abundant species were Plagioscion squamosissimus and Hypophthalmus edentatus. The greatest abundance of larvae was found in the second spawning season. In the Saraiva Lake, the most abundant species were Moenkhausia aff. intermedia, Hyphessobrycon sp., and Bryconamericus stramineus, but larvae of known migratory species were also documented. In this lake, the greatest abundance of larvae was found in the third spawning. Larvae abundance was influenced by water temperature and conductivity. The high diversity and abundance recorded in Saraiva Lake may be a result of its connectivity with the Paraná River, and the low diversity and abundance observed at Xambrê Lake are likely due to its isolation from the river. This work shows the importance of these lagoons for fish development, for both sedentary and migratory species. Both lagoons may be considered to have extreme ecological importance and they are also extremely susceptible to impacts, so any careless disturbance may cause irreversible damage.

  3. Modern (1992–2011) and projected (2012–99) peak snowpack and May–July runoff for the Fort Peck Lake and Lake Sakakawea watersheds in the Upper Missouri River Basin

    Science.gov (United States)

    Stamm, John F.; Todey, Dennis; Mayes Bousted, Barbara; Rossi, Shawn; Norton, Parker A.; Carter, Janet M.

    2016-02-09

    Mountain snowpack is an important contributor to runoff in the Upper Missouri River Basin; for example, high amounts of winter and spring precipitation in the mountains and plains in 2010–11 were associated with the peak runoff of record in 2011 in the Upper Missouri River Basin. To project trends in peak mountain snowpack and runoff in the upcoming decades, multiple linear regression models of peak mountain snowpack and total May–July runoff were developed for the Fort Peck Lake (above Fort Peck Dam) and lower Lake Sakakawea watersheds (between Fort Peck and Garrison Dams) in the Upper Missouri River Basin. Input to regression models included seasonal estimates of precipitation, air temperature, and total reference evapotranspiration stratified by elevation. Calibration was based on records from 107 weather stations from 1991 to 2011. Regressed annual peak mountain snowpack was used as input to the transfer function of May–July runoff. Peak snowpack and May–July runoff were projected for 2012–99 on the basis of air temperature and precipitation from the Community Climate System Model (CCSM) output. Two estimates of projected peak snowpack and May–July runoff for 2012–99 were computed: one estimate was based on output from the CCSM, version 3.0 (CCSM3), and the second estimate was based on output from the CCSM, version 4.0 (CCSM4). The significance of projected trends was based on the Kendall’s tau nonparametric test.

  4. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian; Smith, R.

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches...... of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements...... improved model performance considerably. The Nash-Sutcliffe model efficiency increased from 0.77 to 0.83. Real-time river basin modelling using radar altimetry has the potential to improve the predictive capability of large-scale hydrological models elsewhere on the planet....

  5. The lake foodweb: modelling predation and abiotic/biotic interactions

    National Research Council Canada - National Science Library

    Hakanson, L; Boulion, V.V

    2002-01-01

    .... The model is based on many new approaches of structuring lake foodweb interactions. It uses ordinary differential equations and gives weekly variations in production and biomass for its nine groups of organisms...

  6. Challenges and opportunities for integrating lake ecosystem modelling approaches

    Science.gov (United States)

    Mooij, Wolf M.; Trolle, Dennis; Jeppesen, Erik; Arhonditsis, George; Belolipetsky, Pavel V.; Chitamwebwa, Deonatus B.R.; Degermendzhy, Andrey G.; DeAngelis, Donald L.; Domis, Lisette N. De Senerpont; Downing, Andrea S.; Elliott, J. Alex; Ruberto, Carlos Ruberto; Gaedke, Ursula; Genova, Svetlana N.; Gulati, Ramesh D.; Hakanson, Lars; Hamilton, David P.; Hipsey, Matthew R.; Hoen, Jochem 't; Hulsmann, Stephan; Los, F. Hans; Makler-Pick, Vardit; Petzoldt, Thomas; Prokopkin, Igor G.; Rinke, Karsten; Schep, Sebastiaan A.; Tominaga, Koji; Van Dam, Anne A.; Van Nes, Egbert H.; Wells, Scott A.; Janse, Jan H.

    2010-01-01

    A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and trait-based models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative

  7. Glacier Change, Supraglacial Debris Expansion and Glacial Lake Evolution in the Gyirong River Basin, Central Himalayas, between 1988 and 2015

    Directory of Open Access Journals (Sweden)

    Sheng Jiang

    2018-06-01

    Full Text Available Himalayan glacier changes in the context of global climate change have attracted worldwide attention due to their profound cryo-hydrological ramifications. However, an integrated understanding of the debris-free and debris-covered glacier evolution and its interaction with glacial lake is still lacking. Using one case study in the Gyirong River Basin located in the central Himalayas, this paper applied archival Landsat imagery and an automated mapping method to understand how glaciers and glacial lakes interactively evolved between 1988 and 2015. Our analyses identified 467 glaciers in 1988, containing 435 debris-free and 32 debris-covered glaciers, with a total area of 614.09 ± 36.69 km2. These glaciers decreased by 16.45% in area from 1988 to 2015, with an accelerated retreat rate after 1994. Debris-free glaciers retreated faster than debris-covered glaciers. As a result of glacial downwasting, supraglacial debris coverage expanded upward by 17.79 km2 (24.44%. Concurrent with glacial retreat, glacial lakes increased in both number (+41 and area (+54.11%. Glacier-connected lakes likely accelerated the glacial retreat via thermal energy transmission and contributed to over 15% of the area loss in their connected glaciers. On the other hand, significant glacial retreats led to disconnections from their proglacial lakes, which appeared to stabilize the lake areas. Continuous expansions in the lakes connected with debris-covered glaciers, therefore, need additional attention due to their potential outbursts. In comparison with precipitation variation, temperature increase was the primary driver of such glacier and glacial lake changes. In addition, debris coverage, size, altitude, and connectivity with glacial lakes also affected the degree of glacial changes and resulted in the spatial heterogeneity of glacial wastage across the Gyirong River Basin.

  8. Clinton River Sediment Transport Modeling Study

    Science.gov (United States)

    The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.

  9. Survival and metamorphosis of larval sea lamprey (Petromyzon marinus) residing in Lakes Michigan and Huron near river mouths

    Science.gov (United States)

    Johnson, Nicholas S.; Brenden, Travis O.; Swink, William D.; Lipps, Mathew A.

    2016-01-01

    Although population demographics of larval lampreys in streams have been studied extensively, demographics in lake environments have not. Here, we estimated survival and rates of metamorphosis for larval sea lamprey (Petromyzon marinus) populations residing in the Great Lakes near river mouths (hereafter termed lentic areas). Tagged larvae were stocked and a Bayesian multi-state tag-recovery model was used to investigate population parameters associated with tag recovery, including survival and metamorphosis probabilities. Compared to previous studies of larvae in streams, larval growth in lentic areas was substantially slower (Brody growth coefficient = 0.00132; estimate based on the recovery of six tagged larvae), survival was slightly greater (annual survival = 63%), and the length at which 50% of the larvae would be expected to metamorphose was substantially shorter (126 mm). Stochastic simulations were used to estimate the production of parasitic stage (juvenile) sea lamprey from a hypothetical population of larvae in a lentic environment. Production of juvenile sea lamprey was substantial because, even though larval growth in these environments was slow relative to stream environments, survival was high and length at metamorphosis was less. However, estimated production of juvenile sea lamprey was less for the lentic environment than for similar simulations for river environments where larvae grew faster. In circumstances where the cost to kill a larva with lampricide was equal and control funds are limited, sea lamprey control effort may be best directed toward larvae in streams with fast-growing larvae, because stream-produced larvae will most likely contribute to juvenile sea lamprey populations.

  10. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    OpenAIRE

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindb?ck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and exa...

  11. 77 FR 99 - Barren River Lake Hydro LLC; Notice of Application Tendered for Filing With the Commission...

    Science.gov (United States)

    2012-01-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13022-003] Barren River Lake Hydro LLC; Notice of Application Tendered for Filing With the Commission, Soliciting Additional Study Requests, and Establishing Procedural Schedule for Licensing and a Deadline for Submission of Final Amendments Take notice that the following...

  12. 75 FR 78928 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan, Delay of Effective...

    Science.gov (United States)

    2010-12-17

    ...-AA17 Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan, Delay of Effective Date AGENCY: Coast Guard, DHS. ACTION: Notice of delay of effective date and reopening of the comment... 46 CFR part 45 as amended by the final rule published in the November 18, 2010, Federal Register (75...

  13. Identification of the glaciers and mountain naturally dammed lakes in the Pskem, the Kashkadarya and the Surhandarya River basins, Uzbekistan, using ALOS satellite data

    Directory of Open Access Journals (Sweden)

    Eleonora Semakova

    2016-05-01

    Full Text Available The glacierized area of Uzbekistan is represented in three river basins – the Pskem, the Kashkadarya and the Surhandarya. This study considers the present state of the glaciers and high-mountain lakes distribution in this area based on the analysis and validation of advanced land observing satellite (ALOS/advanced visible and near infrared radiometer type 2 (AVNIR-2 satellite data. Between the 1960s and the 2010s, the glacierized area decreased by 23% in the Pskem River basin (including the Maydantal, by 49% in the Kashkadarya and by 40% in the Surhandarya (including the Sangardak and the Tupalang River basins. The retreat fairly slowed in the 1980s–2010s. There are 75 glacial lakes and 35 rock-dammed lakes (including landslide-dammed ones in the Pskem River basin, 45% of all the lakes covering the area less than 0.002 km2; 13 glacial lakes and 4 rock-dammed lakes in the Kashkadarya and 34 glacial lakes and 16 rock-dammed lakes in the Surhandarya River basins. The landslide rock-dammed Ikhnach Upper Lake lost 0.04 km2 in size from 1 August 2010 to 30 August 2010 because of the seepage through the rock dam and 0.10 km2 from 1 August to 18 October 2013.

  14. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    Science.gov (United States)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  15. Himalayan Lake- and River-Impacting Landslides and Ice Avalanches: Some So Deadly, Some No Problem

    Science.gov (United States)

    Kargel, J. S.; Karki, A.; Haritashya, U. K.; Shugar, D. H.; Harrison, S.

    2017-12-01

    Scientific attention to landslides and ice avalanches in Nepal was heightened by the 2015 Gorkha earthquake. However, landslides and ice avalanches— some deadly— are frequent in this mountainous, glacierized country and across High Mountain Asia. River blocking landslides (RBLs) often create dangerous situations due to upstream impoundments and downstream landslide dammed outburst floods (LDOFs). Factors affecting RBL hazards include: Volumes and masses of ice, rock, and water; shape factors of the valley and landslide; grain size-frequency distribution; river hydrograph; and seasonal and weather factors. These factors affect processes such as slumping and erosion of the RBL by overflow or piping, buoyant lifting of dam material, melting of a landslide ice core, liquefaction, overfill overtopping or tsunami overtopping by subsequent landslides into the impoundment, and the volume and peak discharge of an LDOF. Not all processes aggravate hazards; a high ice:rock ratio, for example, can result in immediate tunneling by the river with no subsequent impoundment. A dam composed of mainly boulders with few fines likewise can prevent effective damming; however, a wide spectrum of the particle-size-distribution can make a long-lasting, benign dam. The most hazardous RBLs include those creating large dams and rapidly-filled impoundments, but which can rapidly and catastrophically break up, especially at sites of repeated terrain collapses. The particle size-frequency of a landslide dam depends substantially on bedrock lithology and structure. Vulnerabilities and warning times also affect whether an upstream impoundment flood or LDOF will exert a large toll. For landslide susceptibility assessments, usual treatments involving mountain slopes, valley shape, and seismic activity should be complemented by quantitative measures of bedrock lithology and weathering state, the potential energy and distribution of unstable masses, and recorded historic or prehistoric RBLs in

  16. Escapement Monitoring of Adult Chinook Salmon in the Secesh River and Lake Creek, Idaho, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    2001-04-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  17. Cooper River Rediversion Project. Lake Moultrie and Santee River, South Carolina. Intake and Tailrace Canals.

    Science.gov (United States)

    1976-06-01

    0 COM’PLE’t 01 No N’-tcRO~TATIC. ŘLAD F.0Uv4DATlON4 PRevuRr- + L. *I. .;Appko/%C-NH 5. oo *PS f~ ;:.. .~0NlION -FULL 14’lC7, AULIC . WILAD . 7A IL W...Data 3 1 HYDROLOGY Basin Description 4 l Topography 6 2 Stream Characteristics 7 2 Climate 8 2 Precipitation 9 2 Storms of Record 10 3 Runoff and...swampy areas as they reach the Coastal Plain. Slopes of the rivers in the Coastal Plain Province average about 0.6 foot per mile. 6. Climate . The Santee

  18. Role of neutron activation analysis in the study of heavy metal pollution of a lake-river system

    International Nuclear Information System (INIS)

    Filby, R.H.; Shah, K.R.; Funk, W.H.

    1974-01-01

    Details of a study of combined organic and metallic pollution of the Coeur d'Alene Lake-River and Spokane River system and the role played by nuclear techniques in the investigation are presented. The Coeur d'Alene River drains through the N. Idaho Pb--Zn mining region of Kellogg and the mining industry is the major source of metallic pollution of the lake and river system. The first part of the study has involved the determination of Pb, Zn, Ag, Cd, As, Cu, Sb, Co, Cr, Cs, Rb, Sc, Ba, Eu, La, Tb, Y, Zr, Fe, Mn, Mo, by INAA in waters, sediments and organisms throughout the region. Extremely high values for Pb, Zn, Sb, Fe and other metals were found in the Coeur d'Alene River delta sediments and in the lake sediments. Results from the study of metals in an aquatic ecosystem show the value of combining nuclear techniques with other methods of trace analysis in practical pollution problems

  19. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    Science.gov (United States)

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-01-01

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr. PMID:26561822

  20. Temporal-Spatial Evolution Analysis of Lake Size-Distribution in the Middle and Lower Yangtze River Basin Using Landsat Imagery Data

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-08-01

    Full Text Available Four natural lakes in the middle and lower reaches of the Yangtze River—Dongting Lake, Poyang Lake, Chaohu Lake and Taihu Lake—play a key role in the climate, environment, and ecology of this area. Upstream of these lakes, the Three Gorges Dam Project has been storing water for 12 years. Future monitoring and management of rivers and lakes can certainly benefit from research on the patterns of variation of natural lakes downstream of the Three Gorges Project. This research applies Landsat TM/ETM data to evaluate water area changes in the four lakes from 2002 to 2013. The water area is estimated using AWEI (Automated Water Extraction Index from satellite images. The average areas decreased respectively 452, 11, and 5 km2 (29.6%, 1.4% and 0.2% from 2002 to 2013 for Dongting, Chaohu, and Taihu Lakes. Meanwhile, it increased 300 km2 (11.0% for Poyang Lake. Precipitation and changes in river inflow may account for the fluctuation in the surface area to a large degree, especially between 2009 and 2013. The present study was undertaken to characterize the evolution of lakes and to explore the potential driving force of variation in order to assist the management of dams upstream in the river basin.

  1. Modelling assessment of End Pit Lakes meromictic potential

    International Nuclear Information System (INIS)

    2006-11-01

    The use of End Pit Lakes have been proposed as a remediation solution for oil sands reclamation and operational waters. This report modelled the main factors controlling the occurrence of stratification in Pit Lakes in order to establish design and management guidelines for the Cumulative Environmental Management Association's End Pit Lake Sub-group. The study focused on End Pit Lake size, depth, starting lake salinity concentrations, inflow rates and inflow salinity flux, and investigated their influence on density gradients. One-dimensional modelling and limited 2-D modelling simulations were conducted to examine meromictic potential for a large range of End Pit Lake configurations and conditions. Modelling results showed that fall is the governing season for determining meromixis. The expelling of salt from saline water upon ice formation and its effect on stratification potential and the effect of fresh water loading on stratification potential during spring melt events were not observed to be dominant factors governing meromictic potential for the scenarios examined in the study. Results suggested that shallow End Pit Lakes showed a high turn-over rate with seasonal heating and cooling cycles. Moderately deep End Pit Lakes demonstrated a meromictic potential that was inversely proportional to lake size and require higher starting salinities. With a 2 or 10 million m 3 /yr inflow rate and a 5 parts per thousand starting salinity, a 50 m deep End Pit Lake achieved meromixis at all 3 size ranges considered in the study. Results also showed that the rate of influent salinity decrease was the least important of the parameters influencing meromixis. It was observed that meromixis was a temporary condition in all of the End Pit Lake scenarios envisioned due to the lack of a constant, positive salt replenishment over the long term. It was concluded that further 3-D modelling is required to represent littoral areas as well as to account for extreme winter conditions. A

  2. Nutrients and heavy metals loads at the mouth of the river Adda in the lake of Como

    International Nuclear Information System (INIS)

    Ruggeri, R.; Mocellin, L.

    1996-01-01

    Among the regional instructions about the improvement of the quality of the superficial waters, the nutrients and the heavy metals conveyed by the Adda river in the lake of Como has been determined. Total phosphorous, total nitrogen TKN, cadmium, chromium, nickel, lead, copper and zinc concentrations has been carried out in 1994 among a programme of weekly sampling. Total phosphorous and nitrogen concentrations has been related with the compatible loads determined for the river Adda by the plan of the Lombardy Region of waters restoration to health. Metals concentrations has been evaluated both in comparison with data obtained for others rivers flows and with the results of previous studies on the waters sediments in the lake of Como

  3. Subaqueous geology and a filling model for Crater Lake, Oregon

    Science.gov (United States)

    Nathenson, M.; Bacon, C.R.; Ramsey, D.W.

    2007-01-01

    Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time

  4. Changes to subaqueous delta bathymetry following a high river flow event, Wax Lake Delta, LA, USA

    Science.gov (United States)

    Whaling, A. R.; Shaw, J.

    2017-12-01

    Sediment transport capacity is increased during high river flow (flood) events which are characterized by discharges that exceed the 15 year median daily statistic. The Wax Lake Delta (WLD) in coastal Louisiana has experienced 19 of these high flow events in the past 20 years, yet the depositional patterns of single floods are rarely measured in a field-scale deltaic setting. We characterize flood deposition and erosion patterns on the subaqueous portion of the WLD by differencing two Digital Elevation Models (DEMs) constructed from bathymetric surveys before and after the third largest flood in the WLD's recorded history. The total suspended sediment discharge for the 496 day inter-survey period was 2.14x107 cubic meters measured 21 km upstream of the delta apex. The difference map showed 1.06x107 cubic meters of sediment was deposited and 8.2x106 cubic meters was eroded, yielding 2.40x106 cubic meters of net deposition in the survey area ( 79.7 km2 ). Therefore the average deposition rate was 0.061 mm/day. Channel planform remained relatively unchanged for five out of six distributary passes however Gadwall Pass experienced a maximum channel displacement of 166 m ( 1 channel width) measured from the thalweg centerline. Channel tip extension was negligible. In addition, channel displacement was not concentrated at any portion along the channel centerline. Maximum erosion occurred within channel margins and increased upstream whereas maximum deposition occurred immediately outside the channel margins. Sediment eroded from the survey area was either subsequently re-deposited or transported out of the system. Our results show that up to 77.4% of deposition in the survey area originated from sediment eroded during the flood. Surprisingly, only 11.2% of the total suspended sediment discharge was retained in the subaqueous portion of the delta after the flood. We conclude that a high flow event does not produce channel progradation. Rather, high flow causes delta

  5. Heavy metals pollution status in surface sediments (rivers and artifical lakes, Serbia)

    Science.gov (United States)

    Sakan, Sanja; Đorđević, Dragana

    2017-04-01

    Potentially hazardous trace elements, often in literature referred as "heavy metals", are deemed serious pollutants due to their toxicity, persistence and non-degradability in the environment. These elements play an important role in extent of water pollution and threaten the health of populations and ecosystems. As the sink of heavy metals, sediment beds adsorb metals in quantities that are many times higher than those found in the water column in the long-term polluted water environment. It is believed that most of the metal content, as much as 90% in aquatic sediments is bound to sediments. Metal contamination in these sediments could be directly affect the river water quality, resulting in potential consequences to the sensitive lowest levels of the food chain and ultimately to human health. The objective of this research was the evaluation of heavy metal contamination level in sediments of the most important rivers and artificial lakes in Serbia. The heavy metal enrichment in studied sediments was conducted by using: determination of total metal content, sequential extraction procedure for the fractionation of studied elements, quantification of the metal enrichment degree in the sediments by calculating geo-accumulation indices, determination of actual and potential element availability and application of BRAI index for the assessment of heavy metal bioavailability. The sediments were found to be contaminated by heavy metals to various extents, mostly with Cd, Cu, and Zn. The significant variation in heavy metal distribution among samples collected in this large region, encompassing all Serbian watersheds, suggests the selective contamination of sediments by heavy metals. Elevated concentrations of elements in most cases were detected in samples of river sediments, since artificial lake reservoirs are usually built in rural areas, where the less anthropogenic pollution. Rivers often flow through the towns and these water basins less or more loaded

  6. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel Haugård

    2017-01-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts...... complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors......, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric...

  7. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  8. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    Science.gov (United States)

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The

  9. Lake on life support: Evaluating urban lake management measures by using a coupled 1D-modelling approach

    Science.gov (United States)

    Ladwig, Robert; Kirillin, Georgiy; Hinkelmann, Reinhard; Hupfer, Michael

    2017-04-01

    Urban surface water systems and especially lakes are heavily stressed and modified systems to comply with water management goals and expectations. In this study we focus on Lake Tegel in Berlin, Germany, as a representative of heavily modified urban lakes. In the 20th century, Lake Tegel received increased loadings of nutrients and leached heavy metals from an upstream sewage farm resulting in severe eutrophication problems. The construction of two upstream treatment plants caused a lowering of nutrient concentrations and a re-oligotrophication of the lake. Additionally, artificial aerators, to keep the hypolimnion oxic, and a lake pipeline, to bypass water for maintaining a minimum discharge, went into operation. Lake Tegel is still heavily used for drinking water extraction by bank filtration. These interacting management measures make the system vulnerable to changing climate conditions and pollutant loads. Past modelling studies have shown the complex hydrodynamics of the lake. Here, we are following a simplified approach by using a less computational time consuming vertical 1D-model to simulate the hydrodynamics and the ecological interactions of the system by coupling the General Lake Model to the Aquatic Ecodynamics Model Library 2. For calibration of the multidimensional parameter space we applied the Covariance Matrix Adaption-Evolution Strategy algorithm. The model is able to sufficiently replicate the vertical field temperature profiles of Lake Tegel as well as to simulate similar concentration ranges of phosphate, dissolved oxygen and nitrate. The calibrated model is used to run an uncertainty analysis by sampling the simulated data within the meaning of the Metropolis-Hastings algorithm. Finally, we are evaluating different scenarios: (1) changing air temperatures, precipitation and wind speed due to effects of climate change, (2) decreased discharges into the lake due to bypassing treated effluents into a near stream instead of Lake Tegel, and (3

  10. Tributaries affect the thermal response of lakes to climate change

    Science.gov (United States)

    Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien

    2018-01-01

    Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  11. Tributaries affect the thermal response of lakes to climate change

    Directory of Open Access Journals (Sweden)

    L. Råman Vinnå

    2018-01-01

    Full Text Available Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC, lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  12. Modelling qualitative knowledge for strategic river management

    NARCIS (Netherlands)

    Janssen, Judith

    2009-01-01

    In decision making processes on strategic river management, use of models is not as great as the research efforts in the field of model application might suggest they could be. Both the fact that the development of many models remains restricted to readily available data and pre-existing models,

  13. Modeling lakes and reservoirs in the climate system

    Science.gov (United States)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  14. Heavy Metal Pollution of Lakes along the Mid-Lower Reaches of the Yangtze River in China: Intensity, Sources and Spatial Patterns

    Science.gov (United States)

    Zeng, Haiao; Wu, Jinglu

    2013-01-01

    Lakes in the middle and lower reaches of the Yangtze River form a shallow lake group unique in the World that is becoming increasingly polluted by heavy metals. Previous studies have largely focused on individual lakes, with limited exploration of the regional pattern of heavy metal pollution of the lake group in this area. This paper explores the sources, intensity and spatial patterns of heavy metal pollution of lake sediments. A total of 45 sample lakes were selected and the concentrations of key metal elements in the sediments of each lake were measured. The cluster analysis (CA), principal component analysis (PCA) and Geo-accumulation index (Ig) analysis permitted analysis of the source and pollution intensity of the target lakes. Results suggested a notable spatial variation amongst the sample lakes. Lakes in the upper part of the lower reach of the Yangtze River surrounded by typical urban landscapes were strongly or extremely polluted, with high concentrations of Pb, Zn, Cu and Cd in their sediments. This was attributed to large amount of untreated industrial discharges and municipal sewage produced within the lake catchments. In contrast, the heavy-metal pollution of lakes in the Taihu Delta area was notably lower due to industrial restructuring and implementation of effective environmental protection measures. Lakes along the middle reach of Yangtze River surrounded by agricultural areas were unpolluted to moderately polluted by heavy metals overall. Our results suggested that lakes in the central part of China require immediate attention and efforts should be made to implement management plans to prevent further degradation of water quality in these lakes. PMID:23442559

  15. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    Science.gov (United States)

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  16. Levels, fluxes and time trends of persistent organic pollutants in Lake Thun, Switzerland: Combining trace analysis and multimedia modeling

    International Nuclear Information System (INIS)

    Bogdal, Christian; Scheringer, Martin; Schmid, Peter; Blaeuenstein, Markus; Kohler, Martin; Hungerbuehler, Konrad

    2010-01-01

    Levels, mass fluxes, and time trends of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in Lake Thun, a peri-Alpine lake, are investigated. We present measurements of PBDEs and PCBs in air, lake water, lake sediment, and tributary water. These measurements are combined with a multimedia fate model, based on site-specific environmental parameters from the lake catchment. Measured loadings of PBDEs and PCBs in air and tributaries were used to drive the model. The model satisfactorily reproduces PBDE and PCB congener patterns in water and sediment, but it tends to yield concentrations in water below the measurements and concentrations in sediment exceeding the measurements. A sensitivity analysis reveals that partitioning of PBDEs and PCBs between the aqueous dissolved phase and suspended particulate matter in the water column strongly affects the model results, in particular the concentrations in water and sediment. For lower-brominated PBDEs, approximately 70% and 30% of input into the lake stems from atmospheric deposition and from tributaries, respectively. For heavier PBDEs and all PCBs, rivers appear to deliver the major load (64-92%). Waste water effluents are of minor importance. 50-90% of the total input is buried in the permanent sediment. Sediment burial makes PBDEs and PCBs less available for recycling in the environment, and reduces concentrations in the outflowing river. If use of deca-BDE increases in the future, levels in Lake Thun will follow the same trend. If the use and resulting environmental emissions decrease, concentrations in water will rapidly decline, according to our calculations, while sediment levels will decrease at a considerably slower rate.

  17. Empirical models of wind conditions on Upper Klamath Lake, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Wood, Tamara M.

    2010-01-01

    Upper Klamath Lake is a large (230 square kilometers), shallow (mean depth 2.8 meters at full pool) lake in southern Oregon. Lake circulation patterns are driven largely by wind, and the resulting currents affect the water quality and ecology of the lake. To support hydrodynamic modeling of the lake and statistical investigations of the relation between wind and lake water-quality measurements, the U.S. Geological Survey has monitored wind conditions along the lakeshore and at floating raft sites in the middle of the lake since 2005. In order to make the existing wind archive more useful, this report summarizes the development of empirical wind models that serve two purposes: (1) to fill short (on the order of hours or days) wind data gaps at raft sites in the middle of the lake, and (2) to reconstruct, on a daily basis, over periods of months to years, historical wind conditions at U.S. Geological Survey sites prior to 2005. Empirical wind models based on Artificial Neural Network (ANN) and Multivariate-Adaptive Regressive Splines (MARS) algorithms were compared. ANNs were better suited to simulating the 10-minute wind data that are the dependent variables of the gap-filling models, but the simpler MARS algorithm may be adequate to accurately simulate the daily wind data that are the dependent variables of the historical wind models. To further test the accuracy of the gap-filling models, the resulting simulated winds were used to force the hydrodynamic model of the lake, and the resulting simulated currents were compared to measurements from an acoustic Doppler current profiler. The error statistics indicated that the simulation of currents was degraded as compared to when the model was forced with observed winds, but probably is adequate for short gaps in the data of a few days or less. Transport seems to be less affected by the use of the simulated winds in place of observed winds. The simulated tracer concentration was similar between model results when

  18. Rotifer assemblages (Rotifera: Eurotatoria of the floodplain lakes of Majuli River Island, the Brahmaputra river basin, northeast India

    Directory of Open Access Journals (Sweden)

    Bhushan Kumar Sharma

    2014-12-01

    Full Text Available Our plankton and semi-plankton collections from twelve floodplain lakes (beels of Majuli River Island, Upper Assam reveal 124 rotifer species (32 genera and 17 families; these merit biodiversity value as ~52.0% and ~30.0% of species, ~68.0 and ~45.0% of  genera and ~74.0 and ~65.0% of the families of the Phylum known from northeast India (NEI and India, respectively. Two species are new to India with Trichocerca uncinata as new record to the Oriental region.  Eleven species are new to the study area and we provide an updated list (144 species for following meta-analyses of Majuli Rotifera. Biogeographically important elements include one Australasian, four Oriental, four Palaeotropical and one cosmo (sub tropical species while several species are of regional distribution interest. The rotifer fauna is predominantly tropical and Lecanidae > Lepadellidae collectively include ~53.0% species but it records paucity of Brachionus species. Individual beels record total richness of 60-100 (77 ± 12 species, monthly richness between 24 ± 7-34 ± 7 species and maximum up to 54 species/sample. The results are characterized by high community similarities (59.7-90.4% vide Sørensen’s index, more rotifer homogeneity amongst beels, lack of any pattern of temporal richness variations and much limited influence of abiotic parameters.

  19. Water-Energy-Food Nexus in a Transboundary River Basin: The Case of Tonle Sap Lake, Mekong River Basin

    Directory of Open Access Journals (Sweden)

    Marko Keskinen

    2015-10-01

    Full Text Available The water-energy-food nexus is promoted as a new approach for research and policy-making. But what does the nexus mean in practice and what kinds of benefits does it bring? In this article we share our experiences with using a nexus approach in Cambodia’s Tonle Sap Lake area. We conclude that water, energy and food security are very closely linked, both in the Tonle Sap and in the transboundary Mekong River Basin generally. The current drive for large-scale hydropower threatens water and food security at both local and national scales. Hence, the nexus provides a relevant starting point for promoting sustainable development in the Mekong. We also identify and discuss two parallel dimensions for the nexus, with one focusing on research and analysis and the other on integrated planning and cross-sectoral collaboration. In our study, the nexus approach was particularly useful in facilitating collaboration and stakeholder engagement. This was because the nexus approach clearly defines the main themes included in the process, and at the same time widens the discussion from mere water resource management into the broader aspects of water, energy and food security.

  20. Spatial and temporal variation of heavy metals in sediment cores from the Calcasieu River/Lake Complex

    International Nuclear Information System (INIS)

    Mueller, C.S.; Ramelow, G.J.; Beck, J.N.

    1987-01-01

    Sediment cores were obtained from several locations in the Calcasieu River/Lake Complex, including Calcasieu Lake, Calcasieu River, two bayou tributaries, and Lake Charles during the period from November 1983 to November 1985. The cores were analyzed for Cu, Zn, Cr, and Pb. The approximate sedimentation rate and a core chronology were determined by the use of 137 Cs and 210 Pb isotopes. The increase in metal concentrations after 1933, particularly along Bayou d'Inde where most industries are located, points to anthropogenic input if these metals to the system. The fact that metal concentrations tend to merge to a common value prior to 1940 throughout the system suggests that geological factors do not contribute to the observed variations in metal concentrations in this area. The background concentrations of heavy metals found in this study for the Calcasieu River/Lake Complex were: Cu (10 mg kg -1 ), Cr (25 mg kg -1 ), Pb (8 mg kg -1 ), and Zn (40 mg kg -1 ). The main emphasis of the study focused along Bayou d'Inde due to the enhanced levels of heavy metals found

  1. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour

    Energy Technology Data Exchange (ETDEWEB)

    Solla, Shane R. de; Fernie, Kimberly J

    2004-11-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites.

  2. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour.

    Science.gov (United States)

    de Solla, Shane R; Fernie, Kimberly J

    2004-11-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites.

  3. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour

    International Nuclear Information System (INIS)

    Solla, Shane R. de; Fernie, Kimberly J.

    2004-01-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites

  4. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour

    Energy Technology Data Exchange (ETDEWEB)

    Solla, Shane R. de; Fernie, Kimberly J

    2004-11-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites.

  5. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data

    Science.gov (United States)

    Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.

    2017-12-01

    Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.

  6. Stochastic modelling of river morphodynamics

    NARCIS (Netherlands)

    Van Vuren, B.G.

    2005-01-01

    Modern river management has to reconcile a number of functions, such as protection against floods and provision of safe and efficient navigation, floodplain agriculture, ecology and recreation. Knowledge on uncertainty in fluvial processes is important to make this possible, to design effective

  7. Diet and habitat use by age-0 deepwater sculpins in northern Lake Huron, Michigan and the Detroit River

    Science.gov (United States)

    Roseman, Edward F.

    2014-01-01

    Deepwater sculpins (Myoxocephalus thompsonii) are an important link in deepwater benthic foodwebs of the Great Lakes. Little information exists about deepwater sculpin spawning habits and early life history ecology due to difficulty in sampling deep offshore habitats. Larval and age-0 deepwater sculpins collected in northern Lake Huron and the Detroit River during 2007 were used to improve our understanding of their habitat use, diet, age, and growth. Peak larval density reached 8.4/1000 m3 in the Detroit River during April and was higher than that in Lake Huron. Offshore bottom trawls at DeTour and Hammond Bay first collected benthic age-0 deepwater sculpins in early September when fish were ≥ 25 mm TL. Otolith analysis revealed that hatch dates for pelagic larvae occurred during late March and larvae remained pelagic for 40 to 60 days. Diet of pelagic larvae (10–21 mm TL) was dominated by calanoid copepods at all sample locations. Diets of benthic age-0 fish varied by location and depth: Mysis and chironomids were prevalent in fish from Hammond Bay and the 91 m site at DeTour, but only chironomids were found in fish from the 37 m DeTour site. This work showed that nearshore epilimnetic sites were important for pelagic larvae and an ontogenetic shift from pelagic planktivore to benthivore occurred at about 25 mm TL in late summer. Age analysis showed that larvae remained pelagic long enough to be transported through the St. Clair–Detroit River system, Lake Erie, and the Niagara River, potentially contributing to populations in Lake Ontario.

  8. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    Science.gov (United States)

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  9. Assessment of chemical and biological significance of arsenical species in the Maurice River drainage basin (N. J. ). Part I. Distribution in water and river and lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Faust, S.D.; Winka, A.J.; Belton, T.

    1987-01-01

    Levels of arsenic were determined in the bottom sediments and waters of the Maurice River, Blackwater Branch, and Union Lake, (N.J.) that were contaminated by a local chemical industry. This was the only known source of the arsenic. Levels of total arsenic in the sediments and waters were determined quarterly over the course of one year. Sediments were extracted for water soluble and total extractable arsenic fractions and partitioned into four species: monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), arsenite (As(III)), and arsenate (As(V)). In Union Lake at a shallow sandy sediment site, As (V) predominates. In organic sediments, As (III) or (V) predominate depending upon the dissolved oxygen content of the overlying waters. The oxidations state of the arsenic was affected also by the seasonal lake cycles of stratifying or mixing.

  10. Changes of glacier, glacier-fed rivers and lakes in Altai Tavan Bogd National Park, Western Mongolia, based on multispectral satellite data from 1990 to 2017

    Science.gov (United States)

    Batsaikhan, B.; Lkhamjav, O.; Batsaikhan, N.

    2017-12-01

    Impacts on glaciers and water resource management have been altering through climate changes in Mongolia territory characterized by dry and semi-arid climate with low precipitation. Melting glaciers are early indicators of climate change unlike the response of the forests which is slower and takes place over a long period of time. Mountain glaciers are important environmental components of local, regional, and global hydrological cycles. The study calculates an overview of changes for glacier, glacier-fed rivers and lakes in Altai Tavan Bogd mountain, the Western Mongolia, based on the indexes of multispectral data and the methods typically applied in glacier studies. Were utilized an integrated approach of Normalized Difference Snow Index (NDSI) and Normalized Difference Water Index (NDWI) to combine Landsat, MODIS imagery and digital elevation model, to identify glacier cover are and quantify water storage change in lakes, and compared that with and climate parameters including precipitation, land surface temperature, evaporation, moisture. Our results show that melts of glacier at the study area has contributed to significantly increase of water storage of lakes in valley of The Altai Tavan Bogd mountain. There is hydrologic connection that lake basin is directly fed by glacier meltwater.

  11. Bed morphology, flow structure, and sediment transport at the outlet of Lake Huron and in the upper St. Clair River

    Science.gov (United States)

    Czuba, J.A.; Best, J.L.; Oberg, K.A.; Parsons, D.R.; Jackson, P.R.; Garcia, M.H.; Ashmore, P.

    2011-01-01

    An integrated multibeam echo sounder and acoustic Doppler current profiler field survey was conducted in July 2008 to investigate the morphodynamics of the St. Clair River at the outlet of Lake Huron. The principal morphological features of the upper St. Clair River included flow-transverse bedforms that appear weakly mobile, erosive bedforms in cohesive muds, thin non-cohesive veneers of weakly mobile sediment that cover an underlying cohesive (till or glacio-lacustrine) surface, and vegetation that covers the bed. The flow was characterized by acceleration as the banks constrict from Lake Huron into the St. Clair River, an approximately 1500-m long region of flow separation downstream from the Blue Water Bridge, and secondary flow connected to: i) channel curvature; ii) forcing of the flow by local bed topography, and iii) flow wakes in the lee side of ship wrecks. Nearshore, sand-sized, sediment from Lake Huron was capable of being transported into, and principally along, the banks of the upper St. Clair River by the measured flow. A comparison of bathymetric surveys conducted in 2007 and 2008 identifies that the gravel bed does undergo slow downstream movement, but that this movement does not appear to be generated by the mean flow, and could possibly be caused by ship-propeller-induced turbulence. The study results suggest that the measured mean flow and dredging within the channel have not produced major scour of the upper St. Clair River and that the recent fall in the level of Lake Huron is unlikely to have been caused by these mechanisms. ?? 2011.

  12. Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, Qc, Canada)

    International Nuclear Information System (INIS)

    Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc

    2015-01-01

    Within wetlands, epiphytes and macrophytes play an important role in storage and transfer of metals, through the food web. However, there is a lack of information about spatial and temporal changes in their metal levels, including those of mercury (Hg), a key priority contaminant of aquatic systems. We assessed total mercury (THg) and methylmercury (MeHg) concentrations of epiphyte/macrophyte complexes in Lake St. Pierre, a large fluvial lake of the St. Lawrence River (Québec, Canada). THg and MeHg concentrations were ten fold higher in epiphytes than in macrophytes. THg concentrations in epiphytes linearly decreased as a function of the autotrophic index, suggesting a role of algae in epiphyte Hg accumulation, and % of MeHg in epiphytes reached values as high as 74%. Spatio-temporal variability in THg and MeHg concentrations in epiphytes and macrophytes were influenced by water temperature, available light, host species, water level, dissolved organic carbon and dissolved oxygen. - Highlights: • Epiphytes and macrophytes are sites of Hg accumulation in a large temperate river. • Epiphytic biofilms are ten fold more contaminated than their macrophyte host. • Physico-chemical variables influences Hg levels in epiphytes and macrophytes. • Up to 74% of total Hg is in the methylated form in epiphytes. • Epiphytes, should be included in Hg foodweb modeling. - Epiphytic biofilms are key sites of methylmercury accumulation in large river wetlands

  13. Model simulations of potential contribution of the proposed Huangpu Gate to flood control in the Lake Taihu basin of China

    Science.gov (United States)

    Zhang, Hanghui; Liu, Shuguang; Ye, Jianchun; Yeh, Pat J.-F.

    2017-10-01

    The Lake Taihu basin (36 895 km2), one of the most developed regions in China located in the hinterland of the Yangtze River Delta, has experienced increasing flood risk. The largest flood in history occurred in 1999 with a return period estimate of 200 years, considerably larger than the current capacity of the flood defense with a design return period of 50 years. Due to its flat saucer-like terrain, the capacity of the flood control system in this basin depends on flood control infrastructures and peripheral tidal conditions. The Huangpu River, an important river of the basin connecting Lake Taihu upstream and Yangtze River estuaries downstream, drains two-fifths of the entire basin. Since the water level in the Huangpu River is significantly affected by the high tide conditions in estuaries, constructing an estuary gate is considered an effective solution for flood mitigation. The main objective of this paper is to assess the potential contributions of the proposed Huangpu Gate to the flood control capacity of the basin. To achieve this goal, five different scenarios of flooding conditions and the associated gate operations are considered by using numerical model simulations. Results of quantitative analyses show that the Huangpu Gate is effective for evacuating floodwaters. It can help to reduce both peak values and duration of high water levels in Lake Taihu to benefit surrounding areas along the Taipu Canal and the Huangpu River. The contribution of the gate to the flood control capacity is closely associated with its operation modes and duration. For the maximum potential contribution of the gate, the net outflow at the proposed site is increased by 52 %. The daily peak level is decreased by a maximum of 0.12 m in Lake Taihu, by maxima of 0.26-0.37 and 0.46-0.60 m in the Taipu Canal and the Huangpu River, respectively, and by 0.05-0.39 m in the surrounding areas depending on the local topography. It is concluded that the proposed Huangpu Gate can reduce

  14. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    International Nuclear Information System (INIS)

    Jean-François, Crétaux; Adalbert, Arsen; Muriel, Bergé-Nguyen; Sylvain, Biancamaria; Mélanie, Becker

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km 3 using a combination of MODIS data and satellite altimetry, and only 0.2 km 3 with Landsat images representing 2–4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250  ×  250 m with 20 cm accuracy. (letter)

  15. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    Science.gov (United States)

    Jean-François, Crétaux; Sylvain, Biancamaria; Adalbert, Arsen; Muriel, Bergé-Nguyen; Mélanie, Becker

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2-4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250 × 250 m with 20 cm accuracy.

  16. Geochemical behaviour of plutonium isotopes in natural media (lakes, rivers, estuaries)

    International Nuclear Information System (INIS)

    Jeandel, C.P.

    1981-10-01

    Artificial radionuclide activities ( 238 Pu, 239+240 Pu) were measured in natural environments. Their distribution and geochemical behaviour are evaluated and compared them to these of the 137 Cs. In a volcanic crater lake, influenced only by atmospheric fallout (Lac Pavin, France), sediments are enriched in 239+240 Pu, whereas 137 Cs stays in the dissolved phase. Diffusion processes and migration of radionuclides is shown to occur in sediments. Remobilization of 239+240 Pu is probable at the sediment/water interface. In the Garonne-Dordogne, Seine and Loire rivers, the 239+240 Pu activity levels in suspended matter are little influenced by the waste discharges of nuclear power plants. The element is essentially transported in the particulate fraction, more than is 137 Cs. In all the esturies studied (Gironde, Seine, Loire) 239+240 Pu concentrations in suspended matter increase between the river and the estuary. Simultaneously a removal of plutonium from the dissolved phase is observed. High plutonium concentrations are measured in the Seine estuary; they are attributed to a ''marine'' contamination: the French nuclear reprocessing plant of La Hague discharges low level radioactive liquid wastes, a part may reach the Seine estuary. There are no decrease in particulate 137 Cs concentrations between the river and the estuary of the Gironde, such as it occurs in the Loire. In this last case, the phenomenon is explained by the presence of ''young caesium'' originating in the power plant effluents and which is more exchangeable than 137 Cs of atmospheric origin. In the Seine estuary, the influence of marine contamination causes an increase of particulate and dissolved 137 Cs concentrations [fr

  17. A fugacity model for source determination of the Lake Baikal region pollution with polychlorinated Biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Sofiev, M. [Finnish Meteorological Inst., Helsinki (Finland); Galperin, M.; Maslyaev, A. [Inst. of Program Systems, Pereslavl-Zalesskiy (Russian Federation); McLachlan, M. [Stockholm Univ. (Sweden); Wania, F. [Toronto Univ. (Canada)

    2004-09-15

    PCBs were discovered in the Lake Baikal ecosystem by Malakhov et al. and Bobovnikova et al. A follow up to the initial study showed no decrease over 1981-1989 4, in contrast to what has been observed in other water bodies in the industrialised world. Further studies also showed the contamination in pinnipeds to be among the highest measured anywhere. Above studies and other data suggested a presence of a strong local PCB source (or several ones), which has had a widespread adverse effect for the whole region. To locate the source, Mamontov et al. collected samples from 34 sites over the region, the analysis of which showed a gradient of a factor of 1000, with the lowest concentrations at the north-east of Lake Baikal and the highest concentrations close to the city of Usolye Sibirskoye, a centre of the chemical industry in the Angara River valley. A continuous decrease in the soil contamination was observed along the path from Usolye Sibirskoye up the Angara River valley to Lake Baikal and from there north-eastward along the lake. These results indicate that there was (and perhaps still is) a major source of PCBs in the Usolye area, from where the PCBs are dispersed over the region. However, various obstacles prevent direct observations of potential sources. Therefore, a mathematical modelling approach was adopted in a currently ongoing INTAS project aiming to shed some more light on this problem. The model principles, setup and the results of the first experiments are presented in the current paper.

  18. Numerical modelling of river processes: flow and river bed deformation

    NARCIS (Netherlands)

    Tassi, P.A.

    2007-01-01

    The morphology of alluvial river channels is a consequence of complex interaction among a number of constituent physical processes, such as flow, sediment transport and river bed deformation. This is, an alluvial river channel is formed from its own sediment. From time to time, alluvial river

  19. Tracing the Nitrate Sources of the Yili River in the Taihu Lake Watershed: A Dual Isotope Approach

    Directory of Open Access Journals (Sweden)

    Haiao Zeng

    2014-12-01

    Full Text Available As the third largest freshwater lake in China, Taihu Lake has experienced severe cyanobacterial blooms and associated water quality degradation in recent decades, threatening the human health and sustainable development of cities in the watershed. The Yili River is a main river of Taihu Lake, contributing about 30% of the total nitrogen load entering the lake. Tracing the nitrate sources of Yili River can inform the origin of eutrophication in Taihu Lake and provide hints for effective control measures. This paper explored the nitrate sources and cycling of the Yili River based on dual nitrogen (δ15N and oxygen (δ18O isotopic compositions. Water samples collected during both the wet and dry seasons from different parts of the Yili River permitted the analysis of the seasonal and spatial variations of nitrate concentrations and sources. Results indicated that the wet season has higher nitrate concentrations than the dry season despite the stronger dilution effects, suggesting a greater potential of cyanobacterial blooms in summer. The δ15N-NO3− values were in the range of 4.0‰–14.0‰ in the wet season and 4.8‰–16.9‰ in dry, while the equivalent values of δ18O were 0.5‰–17.8‰ and 3.5‰–15.6‰, respectively. The distribution of δ15N-NO3− and δ18O-NO3− indicated that sewage and manure as well as fertilizer and soil organic matter were the major nitrate sources of the Yili River. Atmospheric deposition was an important nitrate source in the upper part of Yili River but less so in the middle and lower reaches due to increasing anthropogenic contamination. Moreover, there was a positive relationship between δ18O-NO3− and δ15N-NO3− in the wet season, indicating a certain extent of denitrification. In contrast, the δ18O-δ15N relationship in the dry season was significantly negative, suggesting that the δ15N and δ18O values were determined by a mixing of different nitrate sources.

  20. EVALUATING THE REGIONAL PREDICTIVE CAPACITY OF A PROCESS-BASED MERCURY EXPOSURE MODEL (R-MCM) FOR LAKES ACROSS VERMONT AND NEW HAMPSHIRE, USA

    Science.gov (United States)

    Regulatory agencies are confronted with a daunting task of developing fish consumption advisories for a large number of lakes and rivers with little resources. A feasible mechanism to develop region-wide fish advisories is by using a process-based mathematical model. One model of...

  1. Limnology of Sawtooth Lakes - 1995: Effects of winter limnology and lake fertilization on potential production of Snake River sockeye salmon

    International Nuclear Information System (INIS)

    Luecke, C.; Wurtsbaugh, W.A.; Budy, P.; Steinhart, G.B.; Slater, M.

    1996-01-01

    This Section II of the entire report describes the results of the limnological sampling conducted on Redfish, Altras, Pettit and Stanley Lakes from October 1994 through October 1995. Included are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995, limnological conditions during the spring, summer and fall of 1995, comparison of characteristics among the four lakes; fertilization of Redfish Lake in 1995; effects of fertilization and effects of annual avriations in planktivorous fish abundance. Individual chapters and their subject areas are listed in following abstracts

  2. Limnology of Sawtooth Lakes - 1995: Effects of winter limnology and lake fertilization on potential production of Snake River sockeye salmon

    Energy Technology Data Exchange (ETDEWEB)

    Luecke, C.; Wurtsbaugh, W.A.; Budy, P.; Steinhart, G.B.; Slater, M.

    1996-05-01

    This Section II of the entire report describes the results of the limnological sampling conducted on Redfish, Altras, Pettit and Stanley Lakes from October 1994 through October 1995. Included are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995, limnological conditions during the spring, summer and fall of 1995, comparison of characteristics among the four lakes; fertilization of Redfish Lake in 1995; effects of fertilization and effects of annual avriations in planktivorous fish abundance. Individual chapters and their subject areas are listed in following abstracts.

  3. Trace metal distributions in the sediments from river-reservoir systems: case of the Congo River and Lake Ma Vallée, Kinshasa (Democratic Republic of Congo).

    Science.gov (United States)

    Mwanamoki, Paola M; Devarajan, Naresh; Niane, Birane; Ngelinkoto, Patience; Thevenon, Florian; Nlandu, José W; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2015-01-01

    The contamination of drinking water resources by toxic metals is a major problem in many parts of the world, particularly in dense populated areas of developing countries that lack wastewater treatment facilities. The present study characterizes the recent evolution with time of some contaminants deposited in the Congo River and Lake Ma Vallée, both located in the vicinity of the large city of Kinshasa, capital of Democratic Republic of Congo (DRC). Physicochemical parameters including grain size distribution, organic matter and trace element concentrations were measured in sediment cores sampled from Congo River (n = 3) and Lake Ma Vallée (n = 2). The maximum concentration of trace elements in sediment profiles was found in the samples from the sites of Pool Malebo, with the values of 107.2, 111.7, 88.6, 39.3, 15.4, 6.1 and 4.7 mg kg(-1) for Cr, Ni, Zn, Cu, Pb, As and Hg, respectively. This site, which is characterized by intense human activities, is especially well known for the construction of numerous boats that are used for regular navigation on Congo River. Concerning Lake Ma Vallée, the concentration of all metals are generally low, with maximum values of 26.3, 53.6, 16.1, 15.3, 6.5 and 1.8 mg kg(-1) for Cr, Ni, Zn, Cu, Pb and As, respectively. However, the comparison of the metal profiles retrieved from the different sampled cores also reveals specific variations. The results of this study point out the sediment pollution by toxic metals in the Congo River Basin. This research presents useful tools for the evaluation of sediment contamination of river-reservoir systems.

  4. Communities of gastrointestinal helminths of fish in historically connected habitats: habitat fragmentation effect in a carnivorous catfish Pelteobagrus fulvidraco from seven lakes in flood plain of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Yao Wei J

    2009-04-01

    Full Text Available Abstract Background Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. Results A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48 and isolated lakes (0.50. The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708, and the lowest was between Tangxun and Dongting lakes (0.1807. The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. Conclusion The

  5. Modelling catchment hydrological responses in a Himalayan Lake ...

    Indian Academy of Sciences (India)

    water extent of the lake barely covers 11.5 km2. (Badar and Romshoo ... Recent developments of decision support systems based on GIS and distributed hydrological models .... flow of the methodology is given in figure 2. 3.1.1 Model structure ...

  6. The rise and fall of water hyacinth in Lake Victoria and the Kagera River basin, 1989-2001

    Science.gov (United States)

    Albright, Thomas P.; Moorhouse, T.G.; McNabb, T.J.

    2004-01-01

    Water hyacinth (Eichhornia crassipes (Mart.) Solms) is an invasive aquatic macrophyte associated with major negative economic and ecological impacts to the Lake Victoria region since the plant's establishment in Uganda in the 1980s. Reliable estimates of water hyacinth distribution and extent are required to gauge the severity of the problem through time, relate water hyacinth abundance to environmental factors, identify areas requiring management action, and assess the efficacy of management actions. To provide such estimates and demonstrate the utility of remote sensing for this application, we processed and analyzed remotely sensed imagery to determine the distribution and extent of water hyacinth. Maps were produced and coverage was quantified using a hybrid unsupervised image classification approach with manual editing for each of the riparian countries of Kenya, Tanzania, and Uganda, as well as for numerous gulfs and bays. A similar procedure was carried out for selected lakes in the Rwanda-Tanzania borderlands lakes region in the Kagera River basin. Results confirm the severity of the water hyacinth infestation, especially in the northern parts of the lake. A maximum lake-wide extent of at least 17,374 ha was attained in 1998. Following this, a combination of factors, including conditions associated with the 1997 to 1998 El Nin??o and biocontrol with water hyacinth weevils, appear to have contributed to a major decline in water hyacinth in the most affected parts of the lake. Some lakes in the Kagera basin, such as Lake Mihindi, Rwanda, were severely infested in the late 1990s, but the level of infestation in most of these decreased markedly by the early 2000s.

  7. Monitoring of the water chemistry in Norwegian lakes and rivers 1996; Kjemisk overvaaking av norske vassdrag. Elveserien 1996

    Energy Technology Data Exchange (ETDEWEB)

    Noest, Terje; Daverdin, Rita H.; Schartau, Ann K.

    1997-07-01

    The report relates to the monitoring programme for the water quality of Norwegian rivers and lakes. This programme was started in 1965-66 with rivers located in the southernmost part of Norway. The number of locations have varied during time and includes now 19 locations distributed from Kvina in the southernmost Norway to Skallelva in Northern Norway. Chemical analyses have been made from these locations in 1996, and all samples were analysed on turbidity, colour, conductivity, pH, alkalinity, calcium, manganese, nitrate, sulphur, chlorine and silicon. Acid neutralizing capacity is calculated for all localities. Some samples were analyzed on aluminium concentrations. 12 refs., 17 figs., 1 tab.

  8. PATTERNS AND TOURIST ACTIVITIES INDUCED BY THE UNDERGROUND RIVERS AND LAKES IN THE ARIEŞ BASIN UPSTREAM OF BURU

    Directory of Open Access Journals (Sweden)

    Marius CIGHER

    2011-11-01

    Full Text Available Patterns and tourist activities induced by the underground rivers and lakes in the Arieş basin upstream of Buru – The presence of carbonate deposits in the Arieş basin, upstream of Buru induced certain organization of groundwater resources. Depending on local genetic factors – geological, climatic, biotic, temporal, etc – the extension and characteristics of karst aquifers engenders exploitable hydro units in terms of tourism: underground rivers and lakes. Identification and analysis of morphometrical, morphological, quantitative, qualitative, dynamic and biotic characteristics have provided the approach to ranking the hydro entities. Forms and tourism activities are subsumed to the established typological categories: recreational and pleasure tourism and multipurpose tourism.

  9. Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands

    Science.gov (United States)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Manasypov, R.; Lim, A.; Krickov, I.; Kolesnichenko, L. G.; Laudon, H.; Tetzlaff, D.

    2018-03-01

    The Western Siberian Lowlands (WSL) store large quantities of organic carbon that will be exposed and mobilized by the thawing of permafrost. The fate of mobilized carbon, however, is not well understood, partly because of inadequate knowledge of hydrological controls in the region which has a vast low-relief surface area, extensive lake and wetland coverage and gradually increasing permafrost influence. We used stable water isotopes to improve our understanding of dominant landscape controls on the hydrology of the WSL. We sampled rivers along a 1700 km South-North transect from permafrost-free to continuous permafrost repeatedly over three years, and derived isotope proxies for catchment hydrological responsiveness and connectivity. We found correlations between the isotope proxies and catchment characteristics, suggesting that lakes and wetlands are intimately connected to rivers, and that permafrost increases the responsiveness of the catchment to rainfall and snowmelt events, reducing catchment mean transit times. Our work provides rare isotope-based field evidence that permafrost and lakes/wetlands influence hydrological pathways across a wide range of spatial scales (10-105 km2) and permafrost coverage (0%-70%). This has important implications, because both permafrost extent and lake/wetland coverage are affected by permafrost thaw in the changing climate. Changes in these hydrological landscape controls are likely to alter carbon export and emission via inland waters, which may be of global significance.

  10. Modeling of Water Quality 'Almendares River'

    International Nuclear Information System (INIS)

    Domínguez Catasús, Judith

    2005-01-01

    The river Almendares, one of the most important water bodies of the Havana City, is very polluted. The analysis of parameters as dissolved oxygen and biochemical oxygen demand is very helpful for the studies aimed to the recovery of the river. There is a growing recognition around the word that the water quality models are very useful tools to plan sanitary strategies for the handling of the contamination. In the present work, the advective, steady- state Streeter and Phelps model was validated to simulate the effect of the multiple-point and distributed sources on the carbonaceous oxygen demand, NH4 and dissolved oxygen. For modeling purposes the section of the river located between the point where the waste water treatment station Maria del Carmen discharges to the river and the Bridge El Bosque, was divided in 11 segments. The use of the 99mTc and the Rodamine WT as tracers allowed determining the hydrodynamic parameters necessary for modeling purposes. The validated model allows to predict the effect of the sanitary strategies on the water quality of the river. The main conclusions are: 1. The model Streeter and Phelps calibrated and validated in the Almendares between the confluence of the channel 'María del Carmen' and bridge the Forest of Havana, described in more than 90% The behavior of the dissolved oxygen and BODn (in terms of ammonia), and more than 85%, the carbonaceous demand oxygen, which characterizes the process of purification. 2. Model validation Streeter and Phelps, indicates that implicit conceptual model is appropriate. This refers primarily to the considerations relating to the calculation of the kinetic constants and the DOS, the segmentation used, to the location of the discharges and the Standing been about them, to the river morphology and hydrodynamic parameters . 3. The calibration procedure Streeter and Phelps model that determines the least-squares Kr-Kd pair that best fits the OD and uses this Kr to model BOD gets four% increase in

  11. A sediment resuspension and water quality model of Lake Okeechobee

    Science.gov (United States)

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  12. Location and Roles of Deep Pools in Likangala River during 2012 Recession Period of Lake Chilwa Basin

    Directory of Open Access Journals (Sweden)

    Rodgers Makwinja

    2014-01-01

    Full Text Available The ecological study focusing on Likangala River was conducted during the recent (2012 Lake Chilwa recession and aimed at identifying the important pools and the impact of indigenous ecological knowledge on the use and management of the aquatic biodiversity in the pools. An extensive georeferencing of the pools, field observations, and measurement of the pool depths was conducted to locate and map the deep pools along the river. Garmin Etrex Venture HC, GPS, and georeferencing were used to obtain the points and locate the place. Oral interviews with local leaders were conducted to understand the use and management of the pools by communities. The study showed that Likangala River has 17 pools with depths ranging from 1.85 m to 3.6 m. The pools act as habitats and feeding and spawning ground for various aquatic biodiversity. The study further found that some important deep pools have apparently become shallower during the past few years due to increased silt deposition from the upper part of the catchment. The study shows that deep pools are very important during Lake Chilwa recession and recommends the participatory fisheries management as the best way of sustaining the aquatic biodiversity and endangered species in Lake Chilwa basin.

  13. Tonle Sap Lake Water Storage Change Over 24 Years From Satellite Observation and Its Link With Mekong River Discharge and Climate Events

    Science.gov (United States)

    Biancamaria, S.; Frappart, F.; Normandin, C.; Blarel, F.; Bourrel, L.; Aumont, M.; Azema, P.; Vu, P. L.; Lubac, B.; Darrozes, J.

    2017-12-01

    The Tonle Sap lake is the largest freshwater lake in Southeast Asia and is located within the Mekong basin (mainly in Cambodia). It is one of he most productive ecosystem of the world and provide two thirds of Cambodia fish catch. It also plays a unique role on the Mekong basin hydrological cycle: during the monsoon period, the Mekong river partially flows to the lake, whereas during the dry season, the lake flows to the Mekong delta. It is therefore crucial to monitor and take into account this lake to estimate Mekong discharge to the ocean. However, in situ measurements of lake level and river discharge are very sparse (especially during the last decades) and computing lake storage variation from in situ data only is difficult due to the huge annual variation of lake area. That's why, satellite data (nadir radar altimetry and visible imagery) have been used to study its volume variation and its relationship with climate events and Mekong river discharge. Multi-mission altimetry data have been extracted (Topex, ERS-2, ENVISAT, Jason-1, Jason-2, Saral and Jason-3, using CTOH data extraction tools) to derive a lake water level from1993 to 2016, which varies from 3 m to 12 m. Lake area have been computed from MODIS data from 2000 to 2016 and varies from 3,400 km2 to 11,800 km2. These dataset clearly shows a relationship between lake water level and area, which has been used to estimate lake water volume change from 1995 to 2016, with a minimum in 2015 and a maximum in 2011. Lake's droughts and floods can be observed during moderate and strong El Nino/La Nina events, enhanced by the Pacific Decadal Oscillation. Besides, comparison with in situ discharge at the outlet of the Mekong basin (over 1995/2000 time period) shows that lake water level is 20 days time lagged and increases/decreases after Mekong discharge at its outlet. This time lag results of Mekong river partially flowing to the lake. Finally, high correlation between lake level and outlet discharge allows to

  14. Population models of burrowing mayfly recolonization in Western Lake Erie

    Science.gov (United States)

    Madenjian, C.P.; Schloesser, D.W.; Krieger, K.A.

    1998-01-01

    Burrowing mayflies, Hexagenia spp. (H. limbata and H. rigida), began recolonizing western Lake Erie during the 1990s. Survey data for mayfly nymph densities indicated that the population experienced exponential growth between 1991 and 1997. To predict the time to full recovery of the mayfly population, we fitted logistic models, ranging in carrying capacity from 600 to 2000 nymphs/m2, to these survey data. Based on the fitted logistic curves, we forecast that the mayfly population in western Lake Erie would achieve full recovery between years 1998 and 2000, depending on the carrying capacity of the western basin. Additionally, we estimated the mortality rate of nymphs in western Lake Erie during 1994 and then applied an age-based matrix model to the mayfly population. The results of the matrix population modeling corroborated the exponential growth model application in that both methods yielded an estimate of the population growth rate, r, in excess of 0.8 yr-1. This was the first evidence that mayfly populations are capable of recolonizing large aquatic ecosystems at rates comparable with those observed in much smaller lentic ecosystems. Our model predictions should prove valuable to managers of power plant facilities along the western basin in planning for mayfly emergences and to managers of the yellow perch (Perca flavescens) fishery in western Lake Erie.

  15. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral

  16. Coupling of HEC-HMS and HEC-ResSim in Modeling the Fluctuation of Water Level in Devils Lake Using Heterogeneous Data

    Science.gov (United States)

    Munna, H. S.; Lim, Y. H.

    2010-12-01

    Devils Lake, located in Ramsey and Benson County in North Dakota is a sub-basin of the Red River of the North. Although it lies entirely within the Red River Basin, it has no natural outlet at current water levels. Since its inception during the glacier period, Devils Lake has been either rising or falling over the last 10,000 years. Geologic evidence shows that the water level in Devils Lake has fluctuated widely from completely dry (about 1400 feet AMSL) to overflowing into the Sheyenne River (about 1459 feet AMSL). The uncontrolled growth of the lake has been an alarming issue for North Dakota for the past few years as it causes continuous flooding in the surrounding areas. A hydro-climatic model that can provide simulations of the water level of this lake for a 20 or 50 year time frame can be a useful decision making tool. In a mission to achieve that, heterogeneous data obtained from various sources were used to model the lake. Runoff from precipitation is one of the major inputs to the lake and to model that, eight major watersheds that feed directly to the lake were identified using Digital Elevation Models (DEMs) of thirty meter resolution in ArcGIS environment. Hydrology and Arc Hydro tools were used to delineate the watersheds and sub-basins to generate the runoff using the HEC HMS model. The precipitation time series data collected from both NASA and ground stations were used separately to calibrate the runoff model. The generation of time series runoff values for individual basins for four consecutive years (2001-2004) was applied into HEC-ResSim, a reservoir simulation model, to estimate the lake level series considering the elevation-area-storage relationship and evaporation series from previous USGS studies. It is eminent that seepage under the lake played a key role in calibrating the model with observed elevations. The value of seepage flow was varied over increasing elevations as it depends on the height of water column. The model showed an

  17. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  18. Land cover changes in catchment areas of lakes situated in headwaters of the Tyśmienica River

    Directory of Open Access Journals (Sweden)

    Grzywna Antoni

    2017-06-01

    Full Text Available The paper presents the history of land cover changes in the catchment area of lakes situated in the headwaters of the Tyśmienica River. The basis of the study were topographic maps in scale 1:50 000, from 1936 and 2014. We analyzed the quantitative aspect of these changes. The study was conducted in three natural lakes (Rogóźno, Krasne, Łukcze, and in one lake transformed into a storage reservoir (Krzczeń. The technical issues of georeferencing maps in the Geographic Information System (GIS software are addressed first. In the landscape of Łęczna and Włodawa Lake District, to the end of the 19th century wetlands and bushes dominated. The first type of human pressure on this area was agriculture. Another type of pressure was recreation. In the catchment areas of studied lakes increased mainly the area of buildings and forests. Significantly increased also the length of roads and watercourses. Almost completely disappeared bushes and wastelands. In most of the analyzed basins, the area of wetlands and arable lands decreased. The probable cause of the changes in catchment use was decline in the water table, and thus overgrowing of meadows and wetlands.

  19. An agent-based model for water management and planning in the Lake Naivasha basin, Kenya

    Science.gov (United States)

    van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne

    2013-04-01

    A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes

  20. Remote Sensing of Hydrological Changes in Tian-e-Zhou Oxbow Lake, an Ungauged Area of the Yangtze River Basin

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-12-01

    Full Text Available The hydrological pattern changes have a great influence on the wetland environment. However, some important wetland areas often lack historical observations due to economic and physical conditions. The Tian-e-Zhou oxbow lake wetland is an important habitat for two endangered species and also has very little historical hydrological data. Remote sensing images can be used to explore the historical water area fluctuation of lakes. In addition, remote sensing can also be used to obtain historical water levels based on the water boundary elevation integrated with a topographic data (WBET method or the level-surface area relationship curve (LRC method. In order to minimize the uncertainty of the derived results, both methods were introduced in the extraction of the water level of Tian-e-Zhou during 1992–2015. The results reveal that the hydrological regime of the oxbow lake has experienced a significant change after the Shatanzi Levee construction in 1998. With the impact of the levee, the mean annual water surface area of the lake was reduced by 5.8 km2 during the flood season, but, during the non-flood season, it was increased by 1.35 km2. For the same period, the water level of the lake during the flood season also showed a 1.47 m (WBET method or 3.21 m (LRC method decrease. The mean annual water level increased by 1.12 m (WBET method or 0.75 m (LRC method. Both results had a good accuracy with RMSE (root-mean-square errors of less than 0.4 m. Furthermore, the water level differences between the Yangtze River channel and the oxbow lake increased by at least 0.5 m. It is found that the hydrological pattern of the oxbow lake changed significantly after the levee construction, which could bring some disadvantages to the habitats of the two endangered species.

  1. Astronomically-Forced Lake Expansion and Contraction Cycles: Sr Isotopic Evidence from the Eocene Green River Formation, Western USA

    Science.gov (United States)

    Baddouh, M.; Meyers, S. R.; Carroll, A.; Beard, B. L.; Johnson, C.

    2014-12-01

    87Sr/86Sr ratio from ancient lake deposits offer a unique insight into the astronomical forcing of lake expansion and contraction, by recording changes in runoff/groundwater provenance. We present new high-resolution 87Sr/86Sr data from the upper Wilkins Peak Member, to investigate linkages between astronomical forcing, water sources, and lake level in a classic rhythmic succession. Fifty-one 87Sr/86Sr ratios from White Mountain core #1 were acquired with a sampling interval of ~30 cm starting from the top of alluvial "I" bed to the lower Laney Member. The 87Sr/86Sr data show a strong and significant negative correlation with oil-yield, a traditional proxy for paleolake level and organic productivity. Application of a radioisotopic time scale, using previously dated ash beds, reveals that both 87Sr/86Sr and oil yield have a strong 20 kyr rhythm. The 87Sr/86Sr data more clearly express a longer period 100 kyr signal, similar to the Laskar 10D eccentricity solution. Using our nominal radioisotopic time scale, the Laskar 10D solution and 87Sr/86Sr data suggest that highest lake levels and greatest organic enrichment are attained during greatest precession and eccentricity. Regional geologic studies and modern river water analyses have shown that less radiogenic waters mostly originate west of the basin, where drainage is strongly influenced by thick Paleozoic and Mesozoic marine carbonate units. Decreased in 87Sr/86Sr therefore imply greater relative water contributions from the Sevier orogenic highlands, relative to lower relief, more radiogenic ranges lying to the east. We therefore propose that highstands of Lake Gosiute record increased penetration of Pacific moisture, related either to increased El Niño frequency or southward displacement of major storm tracks. We hypothesize that the occurrence of wetter winters caused expansion of Lake Gosiute, deposition of organic carbon rich facies, and decreased lake water 87Sr/86Sr.

  2. Modelling the Loktak Lake Basin to Assess Human Impact on Water Resources

    Science.gov (United States)

    Eliza, K.

    2015-12-01

    Loktak Lake is an internationally important, Ramsar designated, fresh water wetland system in the state of Manipur, India. The lake was also listed under Montreux Record on account of the ecological modifications that the lake system has witnessed over time. A characteristic feature of this lake is the extensive occurrence of coalesced, naturally or otherwise, vegetative masses floating over it. A contiguous 40 km2 area of Phumdis, as these vegetative masses are locally referred to, also constitutes the only natural home of the endemic and endangered species of Manipur's brow-antlered deer popularly known as Sangai. Appropriately notified as Keibul Lamjao National Park by Government of India, this natural feature is known to be the world's largest floating park. Water quality and sediment deposition on account of soil erosion in its catchments are some of the emerging concerns along with a reported enhanced frequency and duration of flooding of the shore areas, reduced fish catch within a visibly deteriorated overall natural ecosystem. Disturbances of watershed processes, command area management practices, ineffective as indeed largely absent, waste management practices and management interventions linked to the Loktak Hydroelectric Project are often cited as the principal triggers that are seen to be responsible for the damage. An effective management protocol for the Lake requires a rigorous understanding of its hydrobiology and eco-hydrodynamics. The present study is carried out to establish such a characterization of the various rivers systems draining directly into the Lake using MIKE SHE, MIKE 11 HD and MIKE 11 ECO Lab modelling platforms. Water quality modelling was limited to dissolved oxygen (DO), biological oxygen demand (BOD) and water temperature. Model calibration was done using the available measured water quality data. The derived results were then investigated for causal correlation with anthropogenic influences to assess human impact on water

  3. [Ecotourism exploitation model in Bita Lake Natural Reserve of Yunnan].

    Science.gov (United States)

    Yang, G; Wang, Y; Zhong, L

    2000-12-01

    Bita lake provincial natural reserve is located in Shangri-La region of North-western Yunnan, and was set as a demonstrating area for ecotourism exploitation in 1998. After a year's exploitation construction and half a year's operation as a branch of the 99' Kunming International Horticulture Exposition to accept tourists, it was proved that the ecotourism demonstrating area attained four integrated functions of ecotourism, i.e., tourism, protection, poverty clearing and environment education. Five exploitation and management models including function zoned exploitation model, featured tourism communication model signs system designing model, local Tibetan family reception model and environmental monitoring model, were also successful, which were demonstrated and spreaded to the whole province. Bita lake provincial natural reserve could be a good sample for the ecotourism exploitation natural reserves of the whole country.

  4. Watershed modeling at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Vache, Kellie [Oregon State University

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  5. Mitigation of eutrophication in river basins, lakes, and coastal waters requires and integrated and adaptive approach; experiences from The Netherlands.

    Science.gov (United States)

    Rozemeijer, J.; Jansen, S.; Villars, N.; Grift, B. V. D.

    2017-12-01

    We propose a guideline for mitigation of eutrophication in river basins, lakes, and coastal waters. The proposed strategy is based on our experiences with implementation of manure legislation and the Water Framework Directive (WFD) in Europe. These regulations led to reduced nutrient losses from highly productive agricultural areas. For example in The Netherlands, the worldwide second largest exporter of agricultural products, nutrient concentrations in agricultural headwaters reduced since the early 1990's. Our guideline builds on three basic principles: (1) a conceptual framework integrating water quality, water quantity, soil, groundwater, and surface water, (2) the `from catchment to coast' approach for up-scaling field-scale pilot results to downstream ecological effects, and (3) a mitigation order of preference from (a) optimizing nutrient uptake efficiency to (b) enhancing nutrient retention and recirculation to (c) nutrient discharge and applying effect oriented measures. The tools needed to mitigate eutrophication are system understanding, smart monitoring, smart modelling, smart measures, and smart governance. Following these principles and using these tools enables an integrated, adaptive approach for selecting, implementing, and evaluating the most cost-effective and sustainable set of mitigation actions.

  6. Control Scheme of River-lake System from the View of Ecological Sponge Basin aiming at Sponge City Construction

    Science.gov (United States)

    Ding, X.; Liu, J.; Yang, Z.

    2017-12-01

    China is in the rapid advance of urbanization, and is promoting the Sponge City Construction (SCC) with the characteristics of natural accumulation, natural infiltration and natural purification. The Chinese government selected 16 and 14 cities as pilot cities in 2015 and 2016 respectively to carry out SCC taking Low Impact Development (LID) as the concept. However, in 2015 and 2016, water-logging occurred in 10 cities and 9 cities respectively during the pilot cities. Therefore, relying solely on LID can not solve the problem of urban flood and waterlogging. Except for a series of LID measures during the process of SCC, corresponding control scheme of river-lake system should be established to realize water-related targets. From the view of ecological sponge basin, this study presents the general idea of SCC both in and out of the unban built-up area and the corresponding control scheme of river-lake system: for the regions outside the built-up area, the main aim of SCC is to carry out the top-level design of urban flood control and waterlogging, establish the water security system outside the city for solving the problems including flood control, water resources, water environment and water ecology; for the built-up area, the main aim of SCC is to construct different kinds of urban sponge according to local conditions and develop multi-scale drainage system responding to different intensities of rainfall taking the river-lake system as the core. Taking Fenghuang County of Hunan Province as an example for the application research, the results indicate that, after the implementation of the control scheme of river-lake system: 1) together with other SCC measures including LID, the control rate of total annual runoff in Fenghuang County is expected to be 82.9% which meets the target requirement of 80%; 2) flood control and drainage standards in Fenghuang County can be increased from the current 10-year return to 20-year return; 3) urban and rural water supply

  7. Habitat characteristic of macrozoobenthos in Naborsahan River of Toba Lake, North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Lubis, M. S.; Suryanti, A.

    2018-02-01

    This research described the relative abundance, dominance index, and index of macrozoobenthos equitability in Naborsahan River of Toba Lake, North Sumatra, Indonesia. The purposive random sampling at three stations was used to characterize the biological, chemical, and physical parameters of macrozoobenthos. The highest relative abundance of macrozoobenthos found at station 2 (99.96%). By contrast, the highest dominance index was at station 3 (0.31), and the maximum equitability index found at station 1 (0.94). The present results showed diversity parameters among the stations. A principal component analysis (PCA) was used to determine the habitat characteristics of macrozoobenthos. PCA analysis depicted that six parameters studied, brightness, turbidity, depth, temperature, dissolved oxygen (DO) and biochemical oxygen demand (BOD5) play a significant role on the relative abundance, dominance index, and equitability index. PCA analysis suggested that station 3 was suitable habitat characteristic for the life of macro-zoobenthos indicating of the negative axis. The present study demonstrated the six parameters should be conserved to support the survival of macrozoobenthos.

  8. Source and Ecological Risk Characteristics of PAHs in Sediments from Qinhuai River and Xuanwu Lake, Nanjing, China

    Directory of Open Access Journals (Sweden)

    Zhenhua Zhao

    2017-01-01

    Full Text Available In order to investigate the residual characteristics, sources, and ecological risk of PAHs in sediment from urban rivers, the sediments of 15 typical sites from Qinhuai River and Xuanwu Lake, which are typical urban rivers and lake, were collected from October 2015 to July 2016; the sources of PAHs in sediment were also identified by several methods. Results showed that ∑PAHs concentration in sediment ranged from 796.2 ng/g to 10,470 ng/g with an average of 2,713.8 ng/g. High molecular weight PAHs with 4-5 rings were most prominent in the sediment during all four seasons. Source characterization studies based on the analysis of diagnostic ratio (triangular plot method, cluster analysis, and positive factor matrix analysis suggested that the PAHs of Qinhuai River Basin were mainly from pyrogenic origin (biomass and coal combustion and vehicular emission, and the petroleum source also cannot be ignored (specially in summer. Most individual PAHs occasionally affect the aquatic organisms. The highest benzo[a]pyrene-equivalent doses (BaPeq dose appear at the sites of sewage discharge and heavy traffic. So, the PAHs pollution sources of urban water body have obvious seasonal-dependent and human activities-dependent characteristics.

  9. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels

    International Nuclear Information System (INIS)

    Konstantinou, Ioannis K.; Hela, Dimitra G.; Albanis, Triantafyllos A.

    2006-01-01

    This review evaluates and summarizes the results of long-term research projects, monitoring programs and published papers concerning the pollution of surface waters (rivers and lakes) of Greece by pesticides. Pesticide classes mostly detected involve herbicides used extensively in corn, cotton and rice production, organophosphorus insecticides as well as the banned organochlorines insecticides due to their persistence in the aquatic environment. The compounds most frequently detected were atrazine, simazine, alachlor, metolachlor and trifluralin of the herbicides, diazinon, parathion methyl of the insecticides and lindane, endosulfan and aldrin of the organochlorine pesticides. Rivers were found to be more polluted than lakes. The detected concentrations of most pesticides follow a seasonal variation, with maximum values occurring during the late spring and summer period followed by a decrease during winter. Nationwide, in many cases the reported concentrations ranged in low ppb levels. However, elevated concentrations were recorded in areas of high pesticide use and intense agricultural practices. Generally, similar trends and levels of pesticides were found in Greek rivers compared to pesticide contamination in other European rivers. Monitoring of the Greek water resources for pesticide residues must continue, especially in agricultural regions, because the nationwide patterns of pesticide use are constantly changing. Moreover, emphasis should be placed on degradation products not sufficiently studied so far. - Information on pesticide pollution of surface waters in Greece is reviewed

  10. Harmonious Development between Socio-Economy and River-Lake Water Systems in Xiangyang City, China

    Directory of Open Access Journals (Sweden)

    Qiting Zuo

    2016-11-01

    Full Text Available River-lake water systems (RLS are important carriers for matter transformation and energy transmission. Influenced by accelerated social and economic development, the structural, functional, and environmental states of RLS have been seriously damaged. It is an important problem for human beings to coordinate the contradiction between socio-economic development and the protection of RLS. In order to quantitatively study the harmonious relationship between socio-economic development and the state of RLS, the harmony theory method was used to analyze the degree of harmonious development between socio-economy and RLS in this study taking Xiangyang City as an example, and formulating corresponding harmonious optimization schemes. The results indicate that: (1 the state of RLS had a relatively small change during 2009–2014, and its spatial distribution shows a decreasing trend with the Han River as the central axis decreases on both of its sides; (2 before 2011, the driving force of socio-economic development in Xiang yang City mainly originated in the peripheral regions such as Laohekou City, Zaoyang City, and Gucheng County, but after 2011, it migrated rapidly towards Downtown, and reached the maximum in 2014; (3 when the influence of regional socio-economic development on RLS is small, socio-economic development is the main factor driving the change of the overall harmonious development degree of socio-economy and RLS. However when the influence is big, it is combined, driven by socio-economic development and the state of RLS; (4 the main factors affecting the overall harmonious degree of socio-economy and RLS in Xiangyang City include: river length, standard ratio of water quality, water consumption per capita, reservoir regulation capability, farmland irrigation water consumption per Mu (Mu is an area unit in China, 1 Mu approximately equals to 666.67 m2, and sewage treatment rate. This study can provide a reference for the future analysis of

  11. Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. Morava river (Danube catchment area), Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Babek, O. [Masaryk Univ., Brno (Czech Republic). Dept. of Geological Sciences; Palacky Univ., Olomouc (Czech Republic). Dept. of Geology; Hilscherova, K.; Holoubek, I.; Machat, J.; Klanova, J. [Masaryk Univ., Brno (Czech Republic). Research Centre for Environmental Chemistry and Ecotoxicology; Nehyba, S.; Zeman, J.; Famera, M. [Masaryk Univ., Brno (Czech Republic). Dept. of Geological Sciences; Francu, J. [Czech Geological Survey, Brno (Czech Republic)

    2008-06-15

    Background, aims, and scope Embankment of meandering river systems in many industrial areas results in the formation of artificial oxbow lakes that may act as perennial or intermittent traps for river sediments. Their deposits can be dated using a combination of historical and stratigraphic data, providing a good means to study historical records of contamination transported by rivers. Contamination history over the last few decades is of special significance for Central and Eastern Europe as it can reflect high pollutant levels in the second half of the twentieth century and the subsequent improvement after the fall of the Iron Curtain. The purpose of this study was to investigate recent sediments of an oxbow lake of the Morava River, Czech Republic, their stratigraphic records, sediment architecture, and history of contamination. Materials and methods Seven ground-penetrating radar (GPR) profiles and three sediment cores up to 4 m deep were studied. The stratigraphy of the cores was inferred from visible-light spectrophotometry, X-ray radiography, grain size analysis, and semiquantitative modal analysis of sandy fractions. The sediments were dated using the {sup 137}Cs mass activity and combinations of stratigraphic and historical data. The cores were sampled for concentrations of heavy metals and persistent organic pollutants. Wet sampled, lyophilized, and sieved sediments were extracted and analyzed for heavy metals by inductively coupled plasma mass spectrometry (ICP-MS) of aqua regia leachate and for persistent organic pollutants by gas chromatography (GC-ECD and GC-MS). Results Three distinct sedimentary sequences (S1, S2, and S3) were identified. The basal sequence S1 represents river channel sediments deposited before the formation of the oxbow lake, most likely before the 1930s. The boundary between the S1 and S2 sequence correlates with the level of sediment dredging from 1981 evidenced from historical data. The overlying sequences S2 and S3 represent a

  12. Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. Morava river (Danube catchment area), Czech Republic

    International Nuclear Information System (INIS)

    Babek, O.

    2008-01-01

    Background, aims, and scope Embankment of meandering river systems in many industrial areas results in the formation of artificial oxbow lakes that may act as perennial or intermittent traps for river sediments. Their deposits can be dated using a combination of historical and stratigraphic data, providing a good means to study historical records of contamination transported by rivers. Contamination history over the last few decades is of special significance for Central and Eastern Europe as it can reflect high pollutant levels in the second half of the twentieth century and the subsequent improvement after the fall of the Iron Curtain. The purpose of this study was to investigate recent sediments of an oxbow lake of the Morava River, Czech Republic, their stratigraphic records, sediment architecture, and history of contamination. Materials and methods Seven ground-penetrating radar (GPR) profiles and three sediment cores up to 4 m deep were studied. The stratigraphy of the cores was inferred from visible-light spectrophotometry, X-ray radiography, grain size analysis, and semiquantitative modal analysis of sandy fractions. The sediments were dated using the 137 Cs mass activity and combinations of stratigraphic and historical data. The cores were sampled for concentrations of heavy metals and persistent organic pollutants. Wet sampled, lyophilized, and sieved sediments were extracted and analyzed for heavy metals by inductively coupled plasma mass spectrometry (ICP-MS) of aqua regia leachate and for persistent organic pollutants by gas chromatography (GC-ECD and GC-MS). Results Three distinct sedimentary sequences (S1, S2, and S3) were identified. The basal sequence S1 represents river channel sediments deposited before the formation of the oxbow lake, most likely before the 1930s. The boundary between the S1 and S2 sequence correlates with the level of sediment dredging from 1981 evidenced from historical data. The overlying sequences S2 and S3 represent a

  13. Optimal control of suspended sediment distribution model of Talaga lake

    Science.gov (United States)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.

    2017-08-01

    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  14. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-12-01

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial sediments and

  15. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden)

    2006-12-15

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial

  16. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  17. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data...... of political unwillingness to share data which is a common problem in particular in transboundary settings. In this context, remote sensing (RS) datasets provide an appealing alternative to traditional in-situ data and much research effort has gone into the use of these datasets for hydrological applications...... response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...

  18. Comparative study of water quality of rivers used for raw water supply and ex-mining lakes in Perak, Malaysia

    International Nuclear Information System (INIS)

    Orji, K U; Sapari, N; Yusof, K W; Asadpour, R; Olisa, E

    2013-01-01

    Ex-mining lakes are seldom used as sources of raw water for the treatment of public water supply due to the general view that they are highly polluted. This study examined the water quality of these lakes, compared and contrasted them to the water quality of the rivers used for Perak drinking water supply. Ten water samples were analyzed from different ex-mining lakes. Two water samples were from Kinta and Perak rivers. They were analyzed for physico-chemical properties such as temperature, pH, EC, TDS, SO 4 2− COD, Cl − Na + Fe, As, and Pb. The results showed that temperature varied from 28.1°C to 34.1°C, pH 6.2 to 9.0, EC 55 to 400 μs/cm, turbidity 5.6 to 74.2 NTU, TDS 36.8 to 268mg/l, Cl − 0.483 to 3.339mg/l, SO 4 2− 0.051 to 15.307mg/l, Na 0.669 to 3.668mg/l, Fe 0 to 0.14mg/l, As 0 to 0.004mg/l, and Pb 0.019 to 0.075mg/l. All the samples were highly turbid, had slightly high concentration of Pb, and had common water quality problem. The ex-mining lakes can also be used to supply water after treatment since these rivers are already being used by the Metropolitan Utilities Corporation for water treatment. The ex-mining pools can be used as alternative sources of drinking water supply to the people of Perak.

  19. Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to Lake and Lake Catchment Properties

    Directory of Open Access Journals (Sweden)

    Yury Dvornikov

    2018-01-01

    Full Text Available In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM absorption at 440 nm (a(440CDOM and absorption slope (S300–500 in lakes using field sampling and optical remote sensing data for an area of 350 km2 in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a(λCDOM data from 18 lakes sampled in the field to 356 lakes in the study area (model R2 = 0.79. Values of a(440CDOM in 356 lakes varied from 0.48 to 8.35 m−1 with a median of 1.43 m−1. This a(λCDOM dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R2 = 0.61. Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440CDOM = 5.3 m−1. Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440CDOM = 3.8 m−1 compared to lakes located on higher terraces.

  20. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  1. Phosphorus Export Model Development in a Terminal Lake Basin using Concentration-Streamflow Relationship

    Science.gov (United States)

    Jeannotte, T.; Mahmood, T. H.; Matheney, R.; Hou, X.

    2017-12-01

    Nutrient export to streams and lakes by anthropogenic activities can lead to eutrophication and degradation of surface water quality. In Devils Lake, ND, the only terminal lake in the Northern Great Plains, the algae boom is of great concern due to the recent increase in streamflow and consequent rise in phosphorus (P) export from prairie agricultural fields. However, to date, very few studies explored the concentration (c) -streamflow (q) relationship in the headwater catchments of the Devils Lake basin. A robust watershed-scale quantitative framework would aid understanding of the c-q relationship, simulating P concentration and load. In this study, we utilize c-q relationships to develop a simple model to estimate phosphorus concentration and export from two headwater catchments of different size (Mauvais Coulee: 1032 km2 and Trib 3: 160 km2) draining to Devils Lake. Our goal is to link the phosphorus export model with a physically based hydrologic model to identify major drivers of phosphorus export. USGS provided the streamflow measurements, and we collected water samples (filtered and unfiltered) three times daily during the spring snowmelt season (March 31, 2017- April 12, 2017) at the outlets of both headwater catchments. Our results indicate that most P is dissolved and very little is particulate, suggesting little export of fine-grained sediment from agricultural fields. Our preliminary analyses in the Mauvais Coulee catchment show a chemostatic c-q relationship in the rising limb of the hydrograph, while the recession limb shows a linear and positive c-q relationship. The poor correlation in the rising limb of the hydrograph suggests intense flushing of P by spring snowmelt runoff. Flushing then continues in the recession limb of the hydrograph, but at a more constant rate. The estimated total P load for the Mauvais Coulee basin is 193 kg/km2, consistent with other catchments of similar size across the Red River of the North basin to the east. We expect

  2. Simulation of Lake Surface Heat Fluxes by the Canadian Small Lake Model: Offline Performance Assessment for Future Coupling with a Regional Climate Model

    Science.gov (United States)

    Pernica, P.; Guerrero, J. L.; MacKay, M.; Wheater, H. S.

    2014-12-01

    Lakes strongly influence local and regional climate especially in regions where they are abundant. Development of a lake model for the purpose of integration within a regional climate model is therefore a subject of scientific interest. Of particular importance are the heat flux predictions provided by the lake model since they function as key forcings in a fully coupled atmosphere-land-lake system. The first step towards a coupled model is to validate and characterize the accuracy of the lake model over a range of conditions and to identify limitations. In this work, validation results from offline tests of the Canadian Small Lake Model; a deterministic, computationally efficient, 1D integral model, are presented. Heat fluxes (sensible and latent) and surface water temperatures simulated by the model are compared with in situ observations from two lakes; Landing Lake (NWT, Canada) and L239 (ELA, Canada) for the 2007-2009 period. Sensitivity analysis is performed to identify key parameters important for heat flux predictions. The results demonstrate the ability of the 1-D lake model to reproduce both diurnal and seasonal variations in heat fluxes and surface temperatures for the open water period. These results, in context of regional climate modelling are also discussed.

  3. Modelling hourly rates of evaporation from small lakes

    Directory of Open Access Journals (Sweden)

    R. J. Granger

    2011-01-01

    Full Text Available The paper presents the results of a field study of open water evaporation carried out on three small lakes in Western and Northern Canada. In this case small lakes are defined as those for which the temperature above the water surface is governed by the upwind land surface conditions; that is, a continuous boundary layer exists over the lake, and large-scale atmospheric effects such as entrainment do not come into play. Lake evaporation was measured directly using eddy covariance equipment; profiles of wind speed, air temperature and humidity were also obtained over the water surfaces. Observations were made as well over the upwind land surface.

    The major factors controlling open water evaporation were examined. The study showed that for time periods shorter than daily, the open water evaporation bears no relationship to the net radiation; the wind speed is the most significant factor governing the evaporation rates, followed by the land-water temperature contrast and the land-water vapour pressure contrast. The effect of the stability on the wind field was demonstrated; relationships were developed relating the land-water wind speed contrast to the land-water temperature contrast. The open water period can be separated into two distinct evaporative regimes: the warming period in the Spring, when the land is warmer than the water, the turbulent fluxes over water are suppressed; and the cooling period, when the water is warmer than the land, the turbulent fluxes over water are enhanced.

    Relationships were developed between the hourly rates of lake evaporation and the following significant variables and parameters (wind speed, land-lake temperature and humidity contrasts, and the downwind distance from shore. The result is a relatively simple versatile model for estimating the hourly lake evaporation rates. The model was tested using two independent data sets. Results show that the modelled evaporation follows the observed values

  4. Quantifying the Variability of CH4 Emissions from Pan-Arctic Lakes with Lake Biogeochemical and Landscape Evolution Models

    Science.gov (United States)

    Tan, Z.; Zhuang, Q.

    2014-12-01

    Recent studies in the arctic and subarctic show that CH4 emissions from pan-arctic lakes are playing much more significant roles in the regional carbon cycling than previously estimated. Permafrost thawing due to pronounced warming at northern high latitudes affects lake morphology, changing its CH4 emissions. Thermokarst can enlarge the extent of artic lakes, exposing stable ancient carbon buried in the permafrost zone for degradation and changing a previously known carbon sink to a large carbon source. In some areas, the thawing of subarctic discontinuous and isolated permafrost can diminish thermokarst lakes. To date, few models have considered these important hydrological and biogeochemical processes to provide adequate estimation of CH4 emissions from these lakes. To fill this gap, we have developed a process-based climate-sensitive lake biogeochemical model and a landscape evolution model, which have been applied to quantify the state and variability of CH4 emissions from this freshwater system. Site-level experiments show the models are capable to capture the spatial and temporal variability of CH4 emissions from lakes across Siberia and Alaska. With the lake biogeochemical model solely, we estimate that the magnitude of CH4 emissions from lakes is 13.2 Tg yr-1 in the north of 60 ºN at present, which is on the same order of CH4 emissions from northern high-latitude wetlands. The maximum increment is 11.8 Tg CH4 yr-1 by the end of the 21st century when the worst warming scenario is assumed. We expect the landscape evolution model will improve the existing estimates.

  5. Modeling thermal structure, ice cover regime and sensitivity to climate change of two regulated lakes - a Norwegian case study

    Science.gov (United States)

    Gebre, Solomon; Boissy, Thibault; Alfredsen, Knut

    2013-04-01

    A great number of river and lakes in Norway and the Nordic region at large are regulated for water management such as hydropower production. Such regulations have the potential to alter the thermal and hydrological regimes in the lakes and rivers downstream impacting on river environment and ecology. Anticipated changes as a result of climate change in meteorological forcing data such as air temperature and precipitation cause changes in the water balance, water temperature and ice cover duration in the reservoirs. This may necessitate changes in operational rules as part of an adaptation strategy for the future. In this study, a one dimensional (1D) lake thermodynamic and ice cover model (MyLake) has been modified to take into account the effect of dynamic outflows in reservoirs and applied to two small but relatively deep regulated lakes (reservoirs) in Norway (Follsjøen and Tesse). The objective was to assess climate change impacts on the seasonal thermal characteristics, the withdrawal temperatures, and the reservoir ice cover dynamics with current operational regimes. The model solves the vertical energy balance on a daily time-step driven by meteorological and hydrological forcings: 2m air temperature, precipitation, 2m relative humidity, 10m wind speed, cloud cover, air pressure, solar insolation, inflow volume, inflow temperature and reservoir outflows. Model calibration with multi-seasonal data of temperature profiles showed that the model performed well in simulating the vertical water temperature profiles for the two study reservoirs. The withdrawal temperatures were also simulated reasonably well. The comparison between observed and simulated lake ice phenology (which were available only for one of the reservoirs - Tesse) was also reasonable taking into account the uncertainty in the observational data. After model testing and calibration, the model was then used to simulate expected changes in the future (2080s) due to climate change by considering

  6. Sorption Characteristics of Sediments in the Upper Mississippi River System Above Lake Pepin

    National Research Council Canada - National Science Library

    James, W

    1999-01-01

    This technical note examines equilibrium phosphorus processes and sorption characteristics for sediments collected from the Minnesota River, immediately upstream from its confluence with the Upper Mississippi River (UMR...

  7. Digitized Onondaga Lake Dissolved Oxygen Concentrations and Model Simulated Values using Bayesian Monte Carlo Methods

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset is lake dissolved oxygen concentrations obtained form plots published by Gelda et al. (1996) and lake reaeration model simulated values using Bayesian...

  8. Evaluating organochlorine pesticide residues in the aquatic environment of the Lake Naivasha River basin using passive sampling techniques.

    Science.gov (United States)

    Abbasi, Yasser; Mannaerts, Chris M

    2018-05-18

    Passive sampling techniques can improve the discovery of low concentrations by continuous collecting the contaminants, which usually go undetected with classic and once-off time-point grab sampling. The aim of this study was to evaluate organochlorine pesticide (OCP) residues in the aquatic environment of the Lake Naivasha river basin (Kenya) using passive sampling techniques. Silicone rubber sheet and Speedisk samplers were used to detect residues of α-HCH, β-HCH, γ-HCH, δ-HCH, heptachlor, aldrin, heptachlor epoxide, pp-DDE, endrin, dieldrin, α-endosulfan, β-endosulfan, pp-DDD, endrin aldehyde, pp-DDT, endosulfan sulfate, and methoxychlor in the Malewa River and Lake Naivasha. After solvent extraction from the sampling media, the residues were analyzed using gas chromatography electron capture detection (GC-ECD) for the OCPs and gas chromatography-mass spectrometry (GC-MS) for the PCB reference compounds. Measuring the OCP residues using the silicone rubber samplers revealed the highest concentration of residues (∑OCPs of 81 (± 18.9 SD) μg/L) to be at the Lake site, being the ultimate accumulation environment for surficial hydrological, chemical, and sediment transport through the river basin. The total OCP residue sums changed to 71.5 (± 11.3 SD) μg/L for the Middle Malewa and 59 (± 12.5 SD) μg/L for the Upper Malewa River sampling sites. The concentration sums of OCPs detected using the Speedisk samplers at the Upper Malewa, Middle Malewa, and the Lake Naivasha sites were 28.2 (± 4.2 SD), 31.3 (± 1.8 SD), and 34.2 (± 6.4 SD) μg/L, respectively. An evaluation of the different pesticide compound variations identified at the three sites revealed that endosulfan sulfate, α-HCH, methoxychlor, and endrin aldehyde residues were still found at all sampling sites. However, the statistical analysis of one-way ANOVA for testing the differences of ∑OCPs between the sampling sites for both the silicone rubber sheet and Speedisk samplers

  9. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China

    Science.gov (United States)

    Tan, Hongbing; Chen, Jun; Rao, Wenbo; Zhang, Wenjie; Zhou, Huifang

    2012-06-01

    Some rivers on the northern slope of the eastern Kunlun Mountains in the Qaidam Basin, China, show very high concentrations of boron and lithium. Correspondingly, the salt lakes fed by these rivers show an unusual enrichment of boron and lithium, and become an important economic resource. The origin of boron and lithium has long been debated. The aim of this study is to analyze the water chemistry and hydrogen and oxygen isotopic composition of river water to understand the unusual enrichment of boron and lithium in the salt lakes of the Qaidam Basin. Oxygen and hydrogen isotope data show that the source of river water in the winter and summer originates from the Kunlun Mountain ice and snow melt water, respectively. The water chemistry shows that boron and lithium contents are high but little variable with seasons in the Nalenggele River and Wutumeiren River waters. By contrast, other rivers have much lower lithium and boron contents. Moreover, the contents of B3+ and Li+ in the river loads or bed sands show little difference amongst the rivers. This indicates that removal by adsorption or input by surface rock weathering is not the main controlling factor of the B3+ and Li+ variation in the rivers. Rivers with high B3+ and Li+ content are chemically similar to geothermal waters in the Tibetan Plateau. In addition, the source area of the Nalenggele River is located in a collision zone of the Kunlun Mountains and Altun Mountains. Large and deep faults can serve as conduits for geothermal fluids. Thus, deep geothermal waters in the source area can easily migrate to the surface and discharge as springs feeding the rivers. They are an important source of B3+ and Li+ to the rivers. The abnormally high contents of B3+ and Li+ in the Nalenggele and Wutumeiren Rivers also suggest that the geothermal source area may be a future target for boron and lithium resources.

  10. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    Science.gov (United States)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  11. Isotopic evidence for the spatial heterogeneity of the planktonic food webs in the transition zone between river and lake ecosystems

    Directory of Open Access Journals (Sweden)

    Hideyuki Doi

    2013-12-01

    Full Text Available Resources and organisms in food webs are distributed patchily. The spatial structure of food webs is important and critical to understanding their overall structure. However, there is little available information about the small-scale spatial structure of food webs. We investigated the spatial structure of food webs in a lake ecosystem at the littoral transition zone between an inflowing river and a lake. We measured the carbon isotope ratios of zooplankton and particulate organic matter (POM; predominantly phytoplankton in the littoral zone of a saline lake. Parallel changes in the δ 13C values of zooplankton and their respective POMs indicated that there is spatial heterogeneity of the food web in this study area. Lake ecosystems are usually classified at the landscape level as either pelagic or littoral habitats. However, we showed small-scale spatial heterogeneity among planktonic food webs along an environmental gradient. Stable isotope data is useful for detecting spatial heterogeneity of habitats, populations, communities, and ecosystems.

  12. Impacts of lake water environmental condition on bioavailable-phosphorus of surface sediments in Lixia River basin, China

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2015-05-01

    Full Text Available Bioavailable-phosphorus (BAP fractions of the lake surface sediments (the upper 0−5cm depth and environmental indicators of the related lake water column were investigated in five lakes in Lixia River basin during three seasons in order to evaluate the impacts of environmental indicators of the water column on the BAP fractions of surface sediments. The concentration of BAP varied significantly in different seasons. Factor analysis was used to identify the factors which influence sedimentary BAP significantly in the different seasons. The results showed that AAP and Olsen-P were significantly affected by the chemical oxygen demand through the bacterial activity in summer. The high intensity of bacterial activity and density of algae, and low concentrations of NO3-N and dissolved oxygen under high temperature enhanced the BAP released from anaerobic sediment and significantly contributed to the eutrophication of the lake, especially in summer. In addition, macrophyte roots were beneficial to absorption of AAP and Olsen-P.

  13. Nutrient cycling, connectivity, and free-floating plant abundance in backwater lakes of the Upper Mississippi River

    Science.gov (United States)

    Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.

    2013-01-01

    River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.

  14. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    Science.gov (United States)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The

  15. Osprey: worldwide sentinel species for assessing and monitoring environmental contamination in rivers, lakes, reservoirs, and estuaries.

    Science.gov (United States)

    Grove, Robert A; Henny, Charles J; Kaiser, James L

    2009-01-01

    In the United States, many fish and wildlife species have been used nationwide to monitor environmental contaminant exposure and effects, including carcasses of the bald eagle (Haliaeetus leucocephalus), the only top avian predator regularly used in the past. Unfortunately, bald eagles are sensitive to investigator intrusion at the nest. Thus, the osprey (Pandion haliaetus) is evaluated as a potential sentinel species for aquatic ecosystems. Several characteristics support the choice of the osprey as a sentinel species, including: (1) fish-eating diet atop the aquatic food web, (2) long-lived with strong nest fidelity, (3) adapts to human landscapes (potentially the most contaminated), (4) tolerates short-term nest disturbance, (5) nests spatially distributed at regular intervals, (6) highly visible nests easily located for study, (7) ability to accumulate most, if not all, lipophilic contaminants, (8) known sensitivity to many contaminants, and (9) nearly a worldwide distribution. These osprey traits have been instrumental in successfully using the species to understand population distribution, abundance, and changes over time; the effects of various contaminants on reproductive success; how contaminants in prey (fish on biomass basis) contribute to egg concentrations (i.e., biomagnification factors); and spatial residue patterns. Data summarized include nesting population surveys, detailed nesting studies, and chemical analyses of osprey egg, organ, blood, and feather samples for contaminants that bioaccumulate and/or biomagnify in aquatic food webs; and biochemical evaluations of blood and various organs. Studies in the United States, Canada, Mexico, Europe, and elsewhere have shown the osprey to be a useful sentinel species for monitoring selected environmental contaminants, including some emerging contaminants in lakes, reservoirs, rivers, and estuaries.

  16. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans.

    Science.gov (United States)

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin; Markager, Stiig

    2017-12-31

    Based on an extensive literature survey containing more than 12,000 paired measurements of dissolved organic carbon (DOC) concentrations and absorption of chromophoric dissolved organic matter (CDOM) distributed over four continents and seven oceans, we described the global distribution and transformation of dissolved organic matter (DOM) along the aquatic continuum across rivers and lakes to oceans. A strong log-linear relationship (R 2 =0.92) between DOC concentration and CDOM absorption at 350nm was observed at a global scale, but was found to be ecosystem-dependent at local and regional scales. Our results reveal that as DOM is transported towards the oceans, the robustness of the observed relation decreases rapidly (R 2 from 0.94 to 0.44) indicating a gradual decoupling between DOC and CDOM. This likely reflects the decreased connectivity between the landscape and DOM along the aquatic continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7m 2 × gC -1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM pool is gradually becoming less reactive, which has profound consequences on cycling of organic carbon in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A post-Calumet shoreline along southern Lake Michigan

    Science.gov (United States)

    Capps, D.K.; Thompson, T.A.; Booth, R.K.

    2007-01-01

    The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.

  18. An Integrated Hydrological and Water Management Study of the Entire Nile River System - Lake Victoria to Nile Delta

    Science.gov (United States)

    Habib, Shahid; Zaitchik, Benjamin; Alo, Clement; Ozdogan, Mutlu; Anderson, Martha; Policelli, Fritz

    2011-01-01

    The Nile basin River system spans 3 million km(exp 2) distributed over ten nations. The eight upstream riparian nations, Ethiopia, Eretria, Uganda, Rwanda, Burundi, Congo, Tanzania and Kenya are the source of approximately 86% of the water inputs to the Nile, while the two downstream riparian countries Sudan and Egypt, presently rely on the river's flow for most of the their needs. Both climate and agriculture contribute to the complicated nature of Nile River management: precipitation in the headwaters regions of Ethiopia and Lake Victoria is variable on a seasonal and inter-annual basis, while demand for irrigation water in the arid downstream region is consistently high. The Nile is, perhaps, one of the most difficult trans-boundary water issue in the world, and this study would be the first initiative to combine NASA satellite observations with the hydrologic models study the overall water balance in a to comprehensive manner. The cornerstone application of NASA's Earth Science Research Results under this project are the NASA Land Data Assimilation System (LDAS) and the USDA Atmosphere-land Exchange Inverse (ALEXI) model. These two complementary research results are methodologically independent methods for using NASA observations to support water resource analysis in data poor regions. Where an LDAS uses multiple sources of satellite data to inform prognostic simulations of hydrological process, ALEXI diagnoses evapotranspiration and water stress on the basis of thermal infrared satellite imagery. Specifically, this work integrates NASA Land Data Assimilation systems into the water management decision support systems that member countries of the Nile Basin Initiative (NBI) and Regional Center for Mapping of Resources for Development (RCMRD, located in Nairobi, Kenya) use in water resource analysis, agricultural planning, and acute drought response to support sustainable development of Nile Basin water resources. The project is motivated by the recognition that

  19. Assessment of the Effects of Temperature and Precipitation Variations on the Trend of River Flows in Urmia Lake Watershed

    Directory of Open Access Journals (Sweden)

    Ashkan Farokhnia

    2014-07-01

    Full Text Available Trend analysis is one of the appropriate methods to assess the hydro-climatic condition of watersheds, which is commonly used for analysis of change pattern in a single variable over time. However, in real cases, many hydrological variables such as river flow are directly affected by climate and environmental factors, which usually go unnoticed in routine analyzes. The aim of the present research is to investigate the trend of river discharge in 25 hydrometric stations in Lake Urmia river basin with and without consideration of temperature and rainfall variability. Briefly, the results showed that there is a decreasing trend in all stations, which is significant in 9 cases. Also, it has been shown that regarding to trends in precipitation and temperature, the number of stations with significant decreasing trend will reduce to 7, which shows low impact of climate factors on the reduction rate of discharge in these stations. Based on the results, it can be concluded that climate variations have direct effect in inferring significant trends in river flow, so that considering these variables in studying of river discharge can lead to different results in the detection of significant trends.

  20. Expanding models of lake trophic state to predict cyanobacteria in lakes

    Science.gov (United States)

    Background/Question/Methods: Cyanobacteria are a primary taxonomic group associated with harmful algal blooms in lakes. Understanding the drivers of cyanobacteria presence has important implications for lake management and for the protection of human and ecosystem health. Chlor...

  1. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  2. Public lakes, private lakeshore: Modeling protection of native aquatic plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-01-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  3. Assessing the effectiveness of remediation of contaminated sediments in the Ottawa River Segment of the Maumee Great Lakes Area of Concern (AOC) using biological endpoints: toxicity, food web tissue contamination, biotic condition and DNA damage

    Science.gov (United States)

    The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the City of Toledo. The Ottawa River is a component of the Maumee River AOC as defined by the International Commission. The Ottawa River is approximately 45 miles long; however, the 2...

  4. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, Patrick C.

    2001-10-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  5. Water-quality assessment of White River between Lake Sequoyah and Beaver Reservoir, Washington County, Arkansas

    Science.gov (United States)

    Terry, J.E.; Morris, E.E.; Bryant, C.T.

    1982-01-01

    The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)

  6. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    Science.gov (United States)

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  7. Nonlinear Stochastic Models for Water Level Dynamics in Closed Lakes

    OpenAIRE

    Mishchenko, A.S.; Zelikin, M.I.; Zelikina, L.F.

    1995-01-01

    This paper presents the results of investigation of nonlinear mathematical models of the behavior of closed lakes using the example of the Caspian Sea. Forecasting the level of the Caspian Sea is crucial both for the economy of the region and for the region's environment. The Caspian Sea is a closed reservoir; it is well known that its level changes considerably due to a variety of factors including global climate change. A series of forecasts exists based on different methods and taking...

  8. Modelling of the underwater disposal of uranium mine tailings in Elliot Lake

    International Nuclear Information System (INIS)

    Halbert, B.E.; Scharer, J.M.; Chakravatti, J.L.; Barnes, E.

    1982-01-01

    Underwater disposal of uranium mine tailings from the Elliot Lake area operations offers potential advantages in controlling radon gas release, emission of airborne particulate matter, and acid production from pyrites in the tailings. In addition, the proximity of the three active properties, one owned by Denison Mines Limited and two by Rio Algom Limited, to a large deep lake has spurred interest in the concept. It has been estimated that the placement of approximately 150 million tonnes of tailings from future planned production would occupy less than 20% of the lake volume. To assess the applicability of the underwater tailings disposal concept, a multi-stage study was developed in conjunction with the regulatory agencies. The most important facet identified for investigation during the first-stage investigations was an assessment of the effects of underwater disposal on water quality in the Serpent River Basin watershed. To simulate the effects of underwater disposal, a computer simulation routine was developed and integrated with a water quality model previously developed for the Basin which predicts levels of total dissolved solids, ammonia, dissolved radium-226 and pH. The underwater disposal model component reflects the effects of direct input of tailings into the hypolimnion, the chemical/biological transformation of dissolved constituents in the water column, the reactions of pyritic tailings deposited on the bottom, and the flux of dissolved constituents from the tailings into the water column. To establish site-specific values for the underwater disposal model, field and laboratory experiments were utilized to evaluate rates of pyrite and ammonia oxidation, and pH-alkalinity relationships. The results of these studies and their use in the water quality model are discussed. In addition, the results of two model run simulations are presented. (author)

  9. River meander modeling of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    Science.gov (United States)

    Lant, Jeremiah G.; Boldt, Justin A.

    2018-01-16

    Natural river channels continually evolve and change shape over time. As a result, channel evolution or migration can cause problems for bridge structures that are fixed in the flood plain. A once-stable bridge structure that was uninfluenced by a river’s shape could be encroached upon by a migrating river channel. The potential effect of the actively meandering Wabash River on the Interstate 64 Bridge at the border with Indiana near Grayville, Illinois, was studied using a river migration model called RVR Meander. RVR Meander is a toolbox that can be used to model river channel meander migration with physically based bank erosion methods. This study assesses the Wabash River meandering processes through predictive modeling of natural meandering over the next 100 years, climate change effects through increased river flows, and bank protection measures near the Interstate 64 Bridge.

  10. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  11. Habitat quality and recruitment success of cui-ui in the Truckee River downstream of Marble Bluff Dam, Pyramid Lake, Nevada

    Science.gov (United States)

    Scoppettone, G. Gary; Rissler, Peter H.; Salgado, J. Antonio; Harry, Beverly

    2013-01-01

    We compared cui-ui (Chasmistes cujus) recruitment from two reaches of the Truckee River with histories of severe erosional downcutting caused by a decline in Pyramid Lake surface elevation. In 1975, Marble Bluff Dam (MBD) was constructed 5 kilometers upstream of the extant mouth of the Truckee River to stabilize the upstream reach of the river; the downstream reach of the river remained unstable and consequently unsuitable for cui-ui recruitment. By the early 2000s, there was a decrease in the Truckee River’s slope from MBD to Pyramid Lake after a series of wet years in the 1990s. This was followed by changes in river morphology and erosion abatement. These changes led to the question as to cui-ui recruitment potential in the Truckee River downstream of MBD. In 2012, more than 7,000 cui-ui spawners were passed upstream of MBD, although an indeterminate number of cui-ui spawned downstream of MBD. In this study, we compared cui-ui recruitment upstream and downstream of MBD during a Truckee River low-flow year (2012). Cui-ui larvae emigration to Pyramid Lake began earlier and ended later downstream of MBD. A greater number of cui-ui larvae was produced downstream of MBD than upstream. This also was true for native Tahoe sucker (Catostomus tahoensis) and Lahontan redside (Richardsonius egregius). The improved Truckee River stability downstream of MBD and concomitant cui-ui recruitment success is attributed to a rise in Pyramid Lake's surface elevation. A decline in lake elevation may lead to a shift in stream morphology and substrate composition to the detriment of cui-ui reproductive success as well as the reproductive success of other native fishes.

  12. Simulation of the effects of different inflows on hydrologic conditions in Lake Houston with a three-dimensional hydrodynamic model, Houston, Texas, 2009–10

    Science.gov (United States)

    Rendon, Samuel H.; Lee, Michael T.

    2015-12-08

    Lake Houston, an important water resource for the Houston, Texas, area, receives inflows from seven major tributaries that compose the San Jacinto River Basin upstream from the reservoir. The effects of different inflows from the watersheds drained by these tributaries on the residence time of water in Lake Houston and closely associated physical and chemical properties including lake elevation, salinity, and water temperature are not well known. Accordingly, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, developed a three-dimensional hydrodynamic model of Lake Houston as a tool for evaluating the effects of different inflows on residence time of water in the lake and associated physical and chemical properties. The Environmental Fluid Dynamics Code (EFDC), a grid-based, surface-water modeling package for simulating three-dimensional circulation, mass transport, sediments, and biogeochemical processes, was used to develop the model of Lake Houston. The Lake Houston EFDC model was developed and calibrated by using 2009 data and verified by using 2010 data. Three statistics (mean error, root mean square error, and the Nash-Sutcliffe model efficiency coefficient) were used to evaluate how well the Lake Houston EFDC model simulated lake elevation, salinity, and water temperature. The residence time of water in reservoirs is associated with various physical and chemical properties (including lake elevation, salinity, and water temperature). Simulated and measured lake-elevation values were compared at USGS reservoir station 08072000 Lake Houston near Sheldon, Tex. The accuracy of simulated salinity and water temperature values was assessed by using the salinity (computed from measured specific conductance) and water temperature at two USGS monitoring stations: 295826095082200 Lake Houston south Union Pacific Railroad Bridge near Houston, Tex., and 295554095093401 Lake Houston at mouth of Jack’s Ditch near Houston, Tex. Specific conductance

  13. Anthropogenic factor and water quality in the rivers of Prespa Lake catchment; Antropogeniot faktor i kvalitetot na vodata vo rekite na prespanskoto slivno podrachje

    Energy Technology Data Exchange (ETDEWEB)

    Jordanoski, Momchulo; Veljanoska-Serafiloska, Elizabeta [Hydrobiological Institute, Ohrid (Macedonia, The Former Yugoslav Republic of)

    2001-07-01

    From the Rivers, which are subject of our investigation, only River Brajcinska and River Kranska are mountain rivers, while River Golema is lowland river. This has influence on water quality, which is evidently from the dates we found for the investigated parameters. Water quality moves from distinctly clear oligo trophic water (winter period), to strongly eytrophic polluted water (summer, autumn,). Great organic loading of River Golema in the summer period is evidential. Although, there are small possibilities of many investigations on this part, our obligation is to find possibilities, even to reduce some of sampling points of this project, to define the real state in long time period, so we could find appropriate conclusions and suggestions to eliminate that situation. Fields watching of the river beds and results from the laboratory investigations, shows how big is mans negligence for this natural resources. Practically, this rivers are recipients of all wastes that man made, like solid waste, communal waste water, waste water from pig farms, etc. International character of Lake Prespa enforces need of much completely and sensible engagement for reclaiming the state of the rivers inflow, in aim to protect the Lake. (Original)

  14. Response to heavy, non-floating oil spilled in a Great Lakes river environment: a multiple-lines-of-evidence approach for submerged oil assessment and recovery

    Science.gov (United States)

    Dollhopf, Ralph H.; Fitzpatrick, Faith A.; Kimble, Jeffrey W.; Capone, Daniel M.; Graan, Thomas P.; Zelt, Ronald B.; Johnson, Rex

    2014-01-01

    The Enbridge Line 6B pipeline release of diluted bitumen into the Kalamazoo River downstream of Marshall, MI in July 2010 is one of the largest freshwater oil spills in North American history. The unprecedented scale of impact and massive quantity of oil released required the development and implementation of new approaches for detection and recovery. At the onset of cleanup, conventional recovery techniques were employed for the initially floating oil and were successful. However, volatilization of the lighter diluent, along with mixing of the oil with sediment during flooded, turbulent river conditions caused the oil to sink and collect in natural deposition areas in the river. For more than three years after the spill, recovery of submerged oil has remained the predominant operational focus of the response. The recovery complexities for submerged oil mixed with sediment in depositional areas and long-term oil sheening along approximately 38 miles of the Kalamazoo River led to the development of a multiple-lines-of-evidence approach comprising six major components: geomorphic mapping, field assessments of submerged oil (poling), systematic tracking and mapping of oil sheen, hydrodynamic and sediment transport modeling, forensic oil chemistry, and net environmental benefit analysis. The Federal On-Scene Coordinator (FOSC) considered this information in determining the appropriate course of action for each impacted segment of the river. New sources of heavy crude oils like diluted bitumen and increasing transportation of those oils require changes in the way emergency personnel respond to oil spills in the Great Lakes and other freshwater ecosystems. Strategies to recover heavy oils must consider that the oils may suspend or sink in the water column, mix with fine-grained sediment, and accumulate in depositional areas. Early understanding of the potential fate and behavior of diluted bitumen spills when combined with timely, strong conventional recovery methods can

  15. Developing Flexible, Integrated Hydrologic Modeling Systems for Multiscale Analysis in the Midwest and Great Lakes Region

    Science.gov (United States)

    Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.

    2016-12-01

    Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future

  16. Lateral and vertical channel movement and potential for bed-material movement on the Madison River downstream from Earthquake Lake, Montana

    Science.gov (United States)

    Chase, Katherine J.; McCarthy, Peter M.

    2012-01-01

    and to investigate the potential for bed material movement along the same reach. The purpose of this report is to present information about the lateral and vertical movement of the Madison River from 1970 to 2006 for a 1-mile reach downstream from Earthquake Lake and for Raynolds Pass Bridge, and to provide an analysis of the potential for bed-material movement so that MADTAC can evaluate the applicability of the previously determined threshold streamflow for initiation of damaging erosion. As part of this study channel cross sections originally surveyed by the USGS in 1971 were resurveyed in 2006. Incremental channel-movement distances were determined by comparing the stream centerlines from 14 aerial photographs taken between 1970 and 2006. Depths of channel incision and aggregation were determined by comparing the 2006 and 1971 cross-section and water-surface data. Particle sizes of bed and bank materials were measured in 2006 and 2008 using the pebble-count method and sieve analyses. A one-dimensional hydraulic-flow model (HEC-RAS) was used to calculate mean boundary-shear stresses for various streamflows; these calculated boundary-shear stresses were compared to calculated critical-shear stresses for the bed materials to determine the potential for bed-material movement. A comparison of lateral channel movement distances with annual peak streamflows shows that streamflows higher than the 3,500-ft3/s threshold were followed by lateral channel movement except from 1991 to 1992 and possibly from 1996 to 1997. However, it was not possible to discern whether the channel moved gradually or suddenly, or in response to one peak flow, to several peak flows, or to sustained flows. The channel moved between 2002 and 2005 even when streamflows were less than the threshold streamflow of 3,500 ft3/s. Comparisons of cross sections and aerial photographs show that the channel has moved laterally and incised and aggraded to varying degrees. The channel has developed meander bends

  17. Evaporation estimation of rift valley lakes: comparison of models.

    Science.gov (United States)

    Melesse, Assefa M; Abtew, Wossenu; Dessalegne, Tibebe

    2009-01-01

    Evapotranspiration (ET) accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method) of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE) methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  18. Evaporation Estimation of Rift Valley Lakes: Comparison of Models

    Directory of Open Access Journals (Sweden)

    Tibebe Dessalegne

    2009-12-01

    Full Text Available Evapotranspiration (ET accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  19. Hydrological storage variations in a lake water balance, observed from multi-sensor satellite data and hydrological models.

    Science.gov (United States)

    Singh, Alka; Seitz, Florian; Schwatke, Christian; Guentner, Andreas

    2013-04-01

    Freshwater lakes and reservoirs account for 74.5% of continental water storage in surface water bodies and only 1.8% resides in rivers. Lakes and reservoirs are a key component of the continental hydrological cycle but in-situ monitoring networks are very limited either because of sparse spatial distribution of gauges or national data policy. Monitoring and predicting extreme events is very challenging in that case. In this study we demonstrate the use of optical remote sensing, satellite altimetry and the GRACE gravity field mission to monitor the lake water storage variations in the Aral Sea. Aral Sea is one of the most unfortunate examples of a large anthropogenic catastrophe. The 4th largest lake of 1960s has been decertified for more than 75% of its area due to the diversion of its primary rivers for irrigation purposes. Our study is focused on the time frame of the GRACE mission; therefore we consider changes from 2002 onwards. Continuous monthly time series of water masks from Landsat satellite data and water level from altimetry missions were derived. Monthly volumetric variations of the lake water storage were computed by intersecting a digital elevation model of the lake with respective water mask and altimetry water level. With this approach we obtained volume from two independent remote sensing methods to reduce the error in the estimated volume through least square adjustment. The resultant variations were then compared with mass variability observed by GRACE. In addition, GARCE estimates of water storage variations were compared with simulation results of the Water Gap Hydrology Model (WGHM). The different observations from all missions agree that the lake reached an absolute minimum in autumn 2009. A marked reversal of the negative trend occured in 2010 but water storage in the lake decreased again afterwards. The results reveal that water storage variations in the Aral Sea are indeed the principal, but not the only contributor to the GRACE signal of

  20. Evaluation of the Siltation of River Taquari, Pantanal, Brazil, through 210Pb Geochronology of Floodplain Lake Sediments

    Directory of Open Access Journals (Sweden)

    Godoy José M.

    2002-01-01

    Full Text Available This work presents the 210Pb geochronology of seven bottom sediment cores, collected in three floodplain lakes located in the area of the middle Taquari River, Pantanal, Brazil. In five of them, a significant increase in the sediment mass deposition rate was observed, reflecting an increase of the sediment input to the Pantanal. Additionally, in order to validate the 210Pb results, the mercury content was determined for two sediment cores, showing that despite a constant concentration, the flux of Hg has increased due to an increase in the mass sedimentation rate. This increase can be attributed to the expansion of agricultural activity in the upper Taquari River during the last 25 years.

  1. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  2. Combining integrated river modelling and agent based social simulation for river management; The case study of the Grensmaas project

    NARCIS (Netherlands)

    Valkering, P.; Krywkow, Jorg; Rotmans, J.; van der Veen, A.; Douben, N.; van Os, A.G.

    2003-01-01

    In this paper we present a coupled Integrated River Model – Agent Based Social Simulation model (IRM-ABSS) for river management. The models represent the case of the ongoing river engineering project “Grensmaas”. In the ABSS model stakeholders are represented as computer agents negotiating a river

  3. Modal analysis of annual runoff volume and sediment load in the Yangtze river-lake system for the period 1956-2013.

    Science.gov (United States)

    Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan

    2017-07-01

    This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.

  4. Simulation of surface temperature and ice cover of large northern lakes with 1-D models: a comparison with MODIS satellite data and in situ measurements

    Directory of Open Access Journals (Sweden)

    H. Kheyrollah Pour

    2012-03-01

    Full Text Available Lake surface temperature (LST and ice phenology were simulated for various points differing in depth on Great Slave Lake and Great Bear Lake, two large lakes located in the Mackenzie River Basin in Canada's Northwest Territories, using the 1-D Freshwater Lake model (FLake and the Canadian Lake Ice Model (CLIMo over the 2002–2010 period, forced with data from three weather stations (Yellowknife, Hay River and Deline. LST model results were compared to those derived from the Moderate Resolution Imaging Spectroradiometer (MODIS aboard the Earth Observing System Terra and Aqua satellite platforms. Simulated ice thickness and freeze-up/break-up dates were also compared to in situ observations. Both models showed a good agreement with daily average MODIS LSTs on an annual basis (0.935  ≤  relative index of agreement  ≤  0.984 and 0.94  ≤  mean bias error  ≤  4.83. The absence of consideration of snow on lake ice in FLake was found to have a large impact on estimated ice thicknesses (25 cm thicker on average by the end of winter compared to in situ measurements; 9 cm thicker for CLIMo and break-up dates (6 d earlier in comparison with in situ measurements; 3 d later for CLIMo. The overall agreement between the two models and MODIS LST products during both the open water and ice seasons was good. Remotely sensed data are a promising data source for assimilation into numerical weather prediction models, as they provide the spatial coverage that is not captured by in situ data.

  5. Thermodynamic Modeling of Savannah River Evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-08-02

    A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.

  6. Lake-level frequency analysis for Devils Lake, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    for generating precipitation, evaporation, and inflow indicates that the upper lake-level exceedance levels from the water mass-balance model are particularly sensitive to parameter uncertainty. The sensitivity in the upper exceedance levels was caused almost entirely by uncertainty in the fitted probability distributions of the quarterly inflows. A method was developed for using long-term streamflow data for the Red River of the North at Grand Forks to reduce the variance in the estimated mean.Comparison of the annual lake-volume model and the water mass-balance model indicates the upper exceedance levels of the water mass-balance model increase much more rapidly than those of the annual lake-volume model. As an example, for simulation year 5, the 99-percent exceedance for the lake level is 1,417.6 feet above sea level for the annual lake-volume model and 1,423.2 feet above sea level for the water mass-balance model. The rapid increase is caused largely by the record precipitation and inflow in the summer and fall of 1993. Because the water mass-balance model produces lake-level traces that closely match the hydrology of Devils Lake, the water mass-balance model is superior to the annual lake-volume model for computing exceedance levels for the 50-year planning horizon.

  7. A fuzzy approach for modelling radionuclide in lake system

    International Nuclear Information System (INIS)

    Desai, H.K.; Christian, R.A.; Banerjee, J.; Patra, A.K.

    2013-01-01

    Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of 3 H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict 3 H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and 3 H concentration at discharge point. The Output was 3 H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. -- Highlights: • Uncommon approach (Fuzzy Rule Base) of modelling radionuclide dispersion in Lake. • Predicts 3 H released from Kakrapar Atomic Power Station at a point of human exposure. • RMSE of fuzzy model is 1.95, which means, it has well imitated natural ecosystem

  8. Spawning site fidelity and apparent annual survival of walleye (Sander vitreus) differ between a Lake Huron and Lake Erie tributary

    Science.gov (United States)

    Hayden, Todd A.; Binder, Thomas; Holbrook, Christopher; Vandergoot, Christopher; Fielder, David G.; Cooke, Steven J.; Dettmers, John M.; Krueger, Charles C.

    2018-01-01

    Fidelity to spawning habitats can maximise reproductive success of fish by synchronising movements to sites of previous recruitment. To determine the role of reproductive fidelity in structuring walleye Sander vitreus populations in the Laurentian Great Lakes, we used acoustic telemetry combined with Cormack–Jolly–Seber capture–recapture models to estimate spawning site fidelity and apparent annual survival for the Tittabawassee River in Lake Huron and Maumee River in Lake Erie. Walleye in spawning condition were tagged from the Tittabawassee River in Lake Huron and Maumee River in Lake Erie in 2011–2012. Site fidelity and apparent annual survival were estimated from return of individuals to the stream where tagged. Site fidelity estimates were higher in the Tittabawassee River (95%) than the Maumee River (70%) and were not related to sex or fish length at tagging. Apparent annual survival of walleye tagged in the Tittabawassee did not differ among spawning seasons but was higher for female than male walleye and decreased linearly as fish length increased. Apparent annual survival of walleye tagged in the Maumee River did not differ among spawning seasons but was higher for female walleye than male walleye and increased linearly as fish length increased. Greater fidelity of walleye tagged in the Tittabawassee River than walleye tagged in the Maumee River may be related to the close proximity to the Maumee River of other spawning aggregations and multiple spawning sites in Lake Erie. As spawning site fidelity increases, management actions to conserve population structure require an increasing focus on individual stocks.

  9. Progress towards Continental River Dynamics modeling

    Science.gov (United States)

    Yu, Cheng-Wei; Zheng, Xing; Liu, Frank; Maidment, Daivd; Hodges, Ben

    2017-04-01

    The high-resolution National Water Model (NWM), launched by U.S. National Oceanic and Atmospheric Administration (NOAA) in August 2016, has shown it is possible to provide real-time flow prediction in rivers and streams across the entire continental United States. The next step for continental-scale modeling is moving from reduced physics (e.g. Muskingum-Cunge) to full dynamic modeling with the Saint-Venant equations. The Simulation Program for River Networks (SPRNT) provides a computational approach for the Saint-Venant equations, but obtaining sufficient channel bathymetric data and hydraulic roughness is seen as a critical challenge. However, recent work has shown the Height Above Nearest Drainage (HAND) method can be applied with the National Elevation Dataset (NED) to provide automated estimation of effective channel bathymetry suitable for large-scale hydraulic simulations. The present work examines the use of SPRNT with the National Hydrography Dataset (NHD) and HAND-derived bathymetry for automated generation of rating curves that can be compared to existing data. The approach can, in theory, be applied to every stream reach in the NHD and thus provide flood guidance where none is available. To test this idea we generated 2000+ rating curves in two catchments in Texas and Alabama (USA). Field data from the USGS and flood records from an Austin, Texas flood in May 2015 were used as validation. Large-scale implementation of this idea requires addressing several critical difficulties associated with numerical instabilities, including ill-posed boundary conditions generated in automated model linkages and inconsistencies in the river geometry. A key to future progress is identifying efficient approaches to isolate numerical instability contributors in a large time-space varying solution. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  10. Changes in the Global Hydrological Cycle: Lessons from Modeling Lake Levels at the Last Glacial Maximum

    Science.gov (United States)

    Lowry, D. P.; Morrill, C.

    2011-12-01

    Geologic evidence shows that lake levels in currently arid regions were higher and lakes in currently wet regions were lower during the Last Glacial Maximum (LGM). Current hypotheses used to explain these lake level changes include the thermodynamic hypothesis, in which decreased tropospheric water vapor coupled with patterns of convergence and divergence caused dry areas to become more wet and vice versa, the dynamic hypothesis, in which shifts in the jet stream and Inter-Tropical Convergence Zone (ITCZ) altered precipitation patterns, and the evaporation hypothesis, in which lake expansions are attributed to reduced evaporation in a colder climate. This modeling study uses the output of four climate models participating in phase 2 of the Paleoclimate Modeling Intercomparison Project (PMIP2) as input into a lake energy-balance model, in order to test the accuracy of the models and understand the causes of lake level changes. We model five lakes which include the Great Basin lakes, USA; Lake Petén Itzá, Guatemala; Lake Caçó, northern Brazil; Lake Tauca (Titicaca), Bolivia and Peru; and Lake Cari-Laufquen, Argentina. These lakes create a transect through the drylands of North America through the tropics and to the drylands of South America. The models accurately recreate LGM conditions in 14 out of 20 simulations, with the Great Basin lakes being the most robust and Lake Caçó being the least robust, due to model biases in portraying the ITCZ over South America. An analysis of the atmospheric moisture budget from one of the climate models shows that thermodynamic processes contribute most significantly to precipitation changes over the Great Basin, while dynamic processes are most significant for the other lakes. Lake Cari-Laufquen shows a lake expansion that is most likely attributed to reduced evaporation rather than changes in regional precipitation, suggesting that lake levels alone may not be the best indicator of how much precipitation this region

  11. LEEM - a lake energy and evaporation model user's manual

    International Nuclear Information System (INIS)

    Barry, P.J.; Robertson, E.

    1983-11-01

    LEEM is a simplified one-dimensional computer model of the energy budgets of lakes. It is intended to be used operationally to estimate evaporation rates averaged over several days using synoptic meteorological data with only the initial water temperatures being specified. These may usually be taken to be 4 deg. C a few days after spring break-up. This report describes the theoretical basis of the model and the algorithms by which these are converted to computer code. The code itself is included together with an exemplary set of data cards and the corresponding output

  12. Multiple climate regimes in an idealized lake-ice-atmosphere model

    Science.gov (United States)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  13. Time-series measurements of methane (CH4) distribution during open water and ice-cover in lakes throughout the Mackenzie River Delta (Canada)

    Science.gov (United States)

    McIntosh, H.; Lapham, L.; Orcutt, B.; Wheat, C. G.; Lesack, L.; Bergstresser, M.; Dallimore, S. R.; MacLeod, R.; Cote, M.

    2016-12-01

    Arctic lakes are known to emit large amounts of methane to the atmosphere and their importance to the global methane (CH4) cycle has been recognized. It is well known CH4 builds up in Arctic lakes during ice-cover, but the amount of and when the CH4 is released to the atmosphere is not well known. Our preliminary results suggest the largest flux of CH4 from lakes to the atmosphere occurs slightly before complete ice-out; while others have shown the largest flux occurs when lakes overturn in the spring. During ice-out, CH4 can also be oxidized by methane oxidizing bacteria before it can efflux to the atmosphere from the surface water. In order to elucidate the processes contributing to Arctic lake CH4 emissions, continuous, long-term and large scale spatial sampling is required; however it is difficult to achieve in these remote locations. We address this problem using two sampling techniques. 1) We deployed osmotically powered pumps (OsmoSamplers), which were able to autonomously and continuously collect lake bottom water over the course of a year from multiple lakes in the Mackenzie River Delta. OsmoSamplers were placed in four lakes in the mid Delta near Inuvik, Northwest Territories, Canada, two lakes in the outer Delta, and two coastal lakes on Richard's Island in 2015. The dissolved CH4 concentration, stable isotope content of CH4 (δ13C-CH4), and dissolved sulfate concentrations in bottom water from these lakes will be presented to better understand methane dynamics under the ice and over time. 2) Along with the time-series data, we will also present data from discrete samples collected from 40 lakes in the mid Delta during key time periods, before and immediately after the spring ice-out. By determining the CH4 dynamics throughout the year we hope to improve predictions of how CH4 emissions may change in a warming Arctic environment.

  14. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake.

    Science.gov (United States)

    Kong, Xiangzhen; He, Qishuang; Yang, Bin; He, Wei; Xu, Fuliu; Janssen, Annette B G; Kuiper, Jan J; van Gerven, Luuk P A; Qin, Ning; Jiang, Yujiao; Liu, Wenxiu; Yang, Chen; Bai, Zelin; Zhang, Min; Kong, Fanxiang; Janse, Jan H; Mooij, Wolf M

    2017-02-01

    Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when

  15. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, D.

    1996-05-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout.

  16. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    International Nuclear Information System (INIS)

    Teuscher, D.

    1996-01-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout

  17. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  18. Demographics and run timing of adult Lost River (Deltistes luxatus) and short nose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, 2012

    Science.gov (United States)

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2014-01-01

    Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during spring 2012 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Model estimates of survival and recruitment were used to derive estimates of changes in population size over time and to determine the status of the populations in 2011. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). Shortnose suckers (SNS) and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. In 2012, we captured, tagged, and released 749 LRS at four lakeshore spawning areas and recaptured an additional 969 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,578 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Cinder Flats and

  19. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin

    Science.gov (United States)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.

    2017-12-01

    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  20. Mirror Lake genetic stock - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  1. Mirror Lake salmon prey and diets - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  2. Mirror Lake Fish catch composition - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  3. Mirror Lake salmon growth rate - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  4. 75 FR 70595 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan

    Science.gov (United States)

    2010-11-18

    ... similar request for an eastern Lake Michigan route between Chicago, IL, and Muskegon, MI. The motivation... tow loaded with wheat departed from Milwaukee and traveled southbound for Chicago. Although the 48...

  5. Status and trends of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) sucker populations in Upper Klamath Lake, Oregon, 2015

    Science.gov (United States)

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2017-07-21

    Executive SummaryData from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (LRS; Deltistes luxatus) and shortnose suckers (SNS; Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during the spawning season in spring 2015 were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Separate analyses were done for each species and also for each subpopulation of LRS. Shortnose suckers and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. Characteristics of the spawning migrations in 2015, such as the effects of temperature on the timing of the migrations, were similar to past years.Capture-recapture analyses for the LRS subpopulation that spawns at the shoreline areas included encounter histories for 13,617 individuals, and analyses for the subpopulation that spawns in the rivers included 39,321 encounter histories. With a few exceptions, the survival of males and females in both subpopulations was high (greater than or equal to 0.86) between 1999 and 2013. Survival was notably lower for males from the rivers

  6. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    Science.gov (United States)

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  7. A fuzzy approach for modelling radionuclide in lake system.

    Science.gov (United States)

    Desai, H K; Christian, R A; Banerjee, J; Patra, A K

    2013-10-01

    Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of (3)H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict (3)H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and (3)H concentration at discharge point. The Output was (3)H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Water quality of the Chokosna, Gilahina, Lakina Rivers, and Long Lake watershed along McCarthy Road, Wrangell-St. Elias National Park and Preserve, Alaska, 2007-08

    Science.gov (United States)

    Brabets, Timothy P.; Ourso, Robert T.; Miller, Matthew P.; Brasher, Anne M. D.

    2011-01-01

    The Chokosna, Gilahina, and Lakina River basins, and the Long Lake watershed are located along McCarthy Road in Wrangell–St. Elias National Park and Preserve. The rivers and lake support a large run of sockeye (red) salmon that is important to the commercial and recreational fisheries in the larger Copper River. To gain a better understanding of the water quality conditions of these watersheds, these basins were studied as part of a cooperative study with the National Park Service during the open water periods in 2007 and 2008. Water type of the rivers and Long Lake is calcium bicarbonate with the exception of that in the Chokosna River, which is calcium bicarbonate sulfate water. Alkalinity concentrations ranged from 63 to 222 milligrams per liter, indicating a high buffering capacity in these waters. Analyses of streambed sediments indicated that concentrations of the trace elements arsenic, chromium, and nickel exceed levels that might be toxic to fish and other aquatic organisms. However, these concentrations reflect local geology rather than anthropogenic sources in this nearly pristine area. Benthic macroinvertebrate qualitative multi-habitat and richest targeted habitat samples collected from six stream sites along McCarthy Road indicated a total of 125 taxa. Insects made up the largest percentage of macroinvertebrates, totaling 83 percent of the families found. Dipterans (flies and midges) accounted for 43 percent of all macroinvertebrates found. Analysis of the macroinvertebrate data by non-metric multidimensional scaling indicated differences between (1) sites at Long Lake and other stream sites along McCarthy Road, likely due to different basin characteristics, (2) the 2007 and 2008 data, probably from the higher rainfall in 2008, and (3) macroinvertebrate data collected in south-central Alaska, which represents a different climate zone. The richness, abundance, and community composition of periphytic algae taxa was variable between sampling sites

  9. Hydrodynamic Modeling on Suciu River (Maramures County

    Directory of Open Access Journals (Sweden)

    Năsui Daniel

    2016-06-01

    Full Text Available The GIS database containing the topographic and land use information was made in 2012, followed by field measurements surveys in 2013 and 2014. A number of 11 cross-sections were topographically apprised in the valley along the 11 km river reach. The geometric data requirements for the modeling software were prepared in ESRI’s ArcGIS™ 9.2 software using the HEC-GeoRAS extension. The steady flow data was edited in the HEC-RAS one-dimensional flow modeling software. Four scenarios were used for the river discharge, from normal to overflow. The results come in different forms, from tabular output, to stage hydrograph, to velocity distribution or 3D diagrams, all of which give a clear vision on the overflow high risk areas. The results were exported back to the GIS extension for additional spatial operations. Flow velocity maps were generated for each discharge scenario. Although the scenarios included very high discharge values, the flood impact on people assets is minimal. The reasons for this are the high slope of the riverbed and the proper placement in the floodplain, due mainly to the flood management works that took place after the 1970 flood.

  10. Eutrophication potential of Payette Lake, Idaho

    Science.gov (United States)

    Woods, Paul F.

    1997-01-01

    Payette Lake was studied during water years 1995-96 to determine the 20.5-square-kilometer lake's assimilative capacity for nutrients and, thus, its eutrophication potential. The study included quantification of hydrologic and nutrient budgets, characterization of water quality in the limnetic and littoral zones, development of an empirical nutrient load/lake response model, and estimation of the limnological effects of a large-scale forest fire in the lake's 373-square-kilometer watershed during the autumn of 1994. Streamflow from the North Fork Payette River, the lake's primary tributary, delivered about 73 percent of the lake's inflow over the 2 years. Outflow from the lake, measured since 1908, was 128 and 148 percent of the long-term average in 1995 and 1996, respectively. The larger volumes of outflow reduced the long-term average water-

  11. Allochthonous subsidies of organic matter across a lake-river-fjord landscape in the Chilean Patagonia: Implications for marine zooplankton in inner fjord areas

    Science.gov (United States)

    Vargas, Cristian A.; Martinez, Rodrigo A.; San Martin, Valeska; Aguayo, Mauricio; Silva, Nelson; Torres, Rodrigo

    2011-03-01

    Ecosystems can act as both sources and sinks of allochthonous nutrients and organic matter. In this sense, fjord ecosystems are a typical interface and buffer zone between freshwater systems, glaciated continents, and the coastal ocean. In order to evaluate the potential sources and composition of organic matter across fjord ecosystems, we characterized particulate organic matter along a lake-river-fjord corridor in the Chilean Patagonia using stable isotope (δ 13C) and lipid (fatty acid composition) biomarker analyses. Furthermore, estimates of zooplankton carbon ingestion rates and measurements of δ 13C and δ 15N in zooplankton (copepods) were used to evaluate the implications of allochthonous subsidies for copepods inhabiting inner fjord areas. Our results showed that riverine freshwater flows contributed an important amount of dissolved silicon but, scarce nitrate and phosphate to the brackish surface layer of the fjord ecosystem. Isotopic signatures of particulate organic matter from lakes and rivers were distinct from their counterparts in oceanic influenced stations. Terrestrial allochthonous sources could support around 68-86% of the particulate organic carbon in the river plume and glacier melting areas, whereas fatty acid concentrations were maximal in the surface waters of the Pascua and Baker river plumes. Estimates of carbon ingestion rates and δ 13C in copepods from the river plume areas indicated that terrestrial carbon could account for a significant percentage of the copepod body carbon (20-50%) during periods of food limitation. Particulate organic matter from the Pascua River showed a greater allochthonous contribution of terrigenous/vascular plant sources. Rivers may provide fjord ecosystems with allochthonous contributions from different sources because of the distinct vegetation coverage and land use along each river's watershed. These observations have significant implications for the management of local riverine areas in the context of

  12. USING delta15N OF CHIRONOMIDAE TO HELP ASSESS CONDITION AND STRESSORS IN LAKES, RIVERS AND STREAMS OF THE UNITED STATES.

    Science.gov (United States)

    To assess large-scale ecological conditions efficiently, indicators that can be collected quickly at many sites need to be developed. We explore the utility of delta 15N from basal food chain organisms to provide information on N loading and processing in lakes, rivers and stream...

  13. 33 CFR 165.T09-0166 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone, Brandon Road Lock... Areas Ninth Coast Guard District § 165.T09-0166 Safety Zone, Brandon Road Lock and Dam to Lake Michigan.... waters of the Des Plaines River located between mile marker 286.0 (Brandon Road Lock and Dam) and mile...

  14. River flooding and landscape changes impact ecological conditions of a scour hole lake in the Rhine-Meuse delta, The Netherlands

    NARCIS (Netherlands)

    Cremer, H.; Bunnik, F.P.M.; Donders, T.H.; Hoek, W.Z.; Koolen-Eekhout, M.; Koolmees, H.H.; Lavooi, E.

    2010-01-01

    A 400-year sediment record from an 18 m deep scour hole lake (Haarsteegse Wiel) near the Meuse River in the Netherlands was investigated for past changes in water quality, flooding frequency and landscape change using geophysical, geochemical and micropaleontological information. The results are

  15. Induced cytochrome P450 1A activity in cichlid fishes from Guandu River and Jacarepagua Lake, Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Parente, Thiago E.M.; Oliveira, Ana C.A.X. de; Paumgartten, Francisco J.R.

    2008-01-01

    The induction of cytochrome P4501A-mediated activity (e.g. ethoxyresorufin-O-deethylation, EROD) has been used as a biomarker for monitoring fish exposure to AhR-receptor ligands such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and polychlorinated dibenzo-dioxins/furans (PCDD/Fs). In this study we found that hepatic EROD is induced in fish ('Nile tilapia', Oreochromis niloticus and 'acara', Geophagus brasiliensis) from the Guandu River (7-17-fold) and Jacarepagua Lake (7-fold), Rio de Janeiro, Brazil. Since both cichlid fish are consumed by the local population and the Guandu River is the main source of the drinking water supply for the greater Rio de Janeiro metropolitan area, pollution by cytochrome P4501A-inducing chemicals is a cause for concern and should be further investigated in sediments, water and biota. We additionally showed that EROD activity in the fish liver post-mitochondrial supernatant-simpler, cheaper and less time consuming to prepare than the microsomal fraction-is sufficiently sensitive for monitoring purposes. - Increased EROD activity in the liver of cichlid fishes indicated that Guandu River, the source of drinking water supply for Rio de Janeiro is polluted by CYP1A-inducing chemicals

  16. Induced cytochrome P450 1A activity in cichlid fishes from Guandu River and Jacarepagua Lake, Rio de Janeiro, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Parente, Thiago E.M.; Oliveira, Ana C.A.X. de [Laboratorio de Toxicologia Ambiental, Escola Nacional de Saude Publica - FIOCRUZ, Av Brasil 4036, Predio de Expansao do Campus, Rio de Janeiro, RJ 21041-361 (Brazil); Paumgartten, Francisco J.R. [Laboratorio de Toxicologia Ambiental, Escola Nacional de Saude Publica - FIOCRUZ, Av Brasil 4036, Predio de Expansao do Campus, Rio de Janeiro, RJ 21041-361 (Brazil)], E-mail: paum@ensp.fiocruz.br

    2008-03-15

    The induction of cytochrome P4501A-mediated activity (e.g. ethoxyresorufin-O-deethylation, EROD) has been used as a biomarker for monitoring fish exposure to AhR-receptor ligands such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and polychlorinated dibenzo-dioxins/furans (PCDD/Fs). In this study we found that hepatic EROD is induced in fish ('Nile tilapia', Oreochromis niloticus and 'acara', Geophagus brasiliensis) from the Guandu River (7-17-fold) and Jacarepagua Lake (7-fold), Rio de Janeiro, Brazil. Since both cichlid fish are consumed by the local population and the Guandu River is the main source of the drinking water supply for the greater Rio de Janeiro metropolitan area, pollution by cytochrome P4501A-inducing chemicals is a cause for concern and should be further investigated in sediments, water and biota. We additionally showed that EROD activity in the fish liver post-mitochondrial supernatant-simpler, cheaper and less time consuming to prepare than the microsomal fraction-is sufficiently sensitive for monitoring purposes. - Increased EROD activity in the liver of cichlid fishes indicated that Guandu River, the source of drinking water supply for Rio de Janeiro is polluted by CYP1A-inducing chemicals.

  17. Imaging beneath the skin of large tropical rivers: System morphodynamics of the Fly and Beni Rivers revealed by novel sub-surface sonar, deep coring, and modelling

    Science.gov (United States)

    Aalto, R. E.; Grenfell, M.; Lauer, J. W.

    2011-12-01

    Tropical rivers dominate Earth's fluvial fluxes for water, carbon, and mineral sediment. They are characterized by large channels and floodplains, old system histories, prolonged periods of flooding, and a clay-dominated sediment flux. However, the underlying bed & floodplain strata are poorly understood. Available data commonly stem from skin-deep approaches such as GIS analysis of imagery, shallow sampling & topographic profiling during lower river stages. Given the large temporal & spatial scales, new approaches are needed to see below lag deposits on mobile sandy beds & deep into expansive floodbasins. Furthermore, such data are needed to test whether we can interpret large tropical river morphology using analogies to small temperate systems. Systems in a dynamic state of response to sea level rise or an increase/contrast in sediment load would provide especially valuable insight. Last August we conducted a field campaign along the Fly and Strickland Rivers in Papua New Guinea (discharge ~5,350 CMS) and this September we investigated the Beni River in Northern Bolivia (discharge ~3,500 CMS). Results were obtained using a novel measurement method: a high-power (>4kW) dual-frequency SyQwest sub-bottom profiler customized to best image 10-20m below the river/lake bed in shallow water. We were able to distinguish sandy deposits from harder clay and silt lenses and also collected bed grab samples to verify our sonar results. Deep borehole samples (5-15m), bank samples, and push cores confirmed observations from the sonar profiling. We simultaneously collected side-scan sonar imagery plus DGPS records of water/bed elevations that could be used to parameterize numerical models. We have now analyzed these results in some detail. Findings for the Fly River include: 1) The prevalence of hard clay beneath the bed of the Lower Fly River and many locations along the Strickland River, retarding migration; 2) Unusual bed morphology along the lower Middle Fly River, where the

  18. Quantification of the cumulative effects of river training works on the basin scale with 2D flood modelling

    Science.gov (United States)

    Zischg, Andreas Paul; Felder, Guido; WWeingartner, Rolf

    2015-04-01

    The catchment of the river Aare upstream of Bern, Switzerland, with an area of approx. 3000 km2 is a complex network of sub-catchments with different runoff characteristics; it also includes two larger lakes. Most of the rivers were regulated in the 18th century. An important regulation, however, was realised as early as in the 17th century. For this catchment, the worst case flood event was identified and its consequences were analysed. Beside the hydro-meteorological characteristics, an important basis to model the worst case flood is to understand the non-linear effects of flood retention in the valley bottom and in the lakes. The aim of this study was to compare these effects based on both the current river network and the historic one prior to the main river training works. This allows to quantify the human impacts. Methodologically, we set up a coupled 2D flood model representing the floodplains of the river Aare as well as of the tributaries Lombach, Lütschine, Zulg, Rotache, Chise and Guerbe. The flood simulation was made in 2D with the software BASEMENT-ETH (Vetsch et al. 2014). The model was calibrated by means of reproducing the large floods in August 2005 and the bankfull discharge for all river reaches. The model computes the discharge at the outlet of the Aare catchment at Bern by routing all discharges from the sub-catchments through the river reaches and their floodplains. With this, the modulation of the input hydrographs by widespread floodings in the floodplains can be quantified. The same configuration was applied on the basis of reconstructed digital terrain models representing the landscape and the river network before the first significant river training works had been realised. This terrain model was reconstructed by georeferencing and digitalizing historic maps and cross-sections combined with the mapping of the geomorphologic evidences of former river structures in non-modified areas. The latter mapping procedure was facilitated by the

  19. Modelling and water yield assessment of Lake Sibhayi | Smithers ...

    African Journals Online (AJOL)

    A yield analysis of simulated results with historical developments in the catchment for the 65-year period of observed climate record was undertaken using both a fixed minimum allowable lake level or a maximum drop from a reference lake level as criteria for system failure. Results from simulating lake levels using the ...

  20. Aquatic emergency response model at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1987-01-01

    The Savannah River Plant emergency response plans include a stream/river emergency response model to predict travel times, maximum concentrations, and concentration distributions as a function of time at selected downstream/river locations from each of the major SRP installations. The menu driven model can be operated from any of the terminals that are linked to the real-time computer monitoring system for emergency response

  1. Review of revised Klamath River Total Maximum Daily Load models from Link River Dam to Keno Dam, Oregon

    Science.gov (United States)

    Rounds, Stewart A.; Sullivan, Annett B.

    2013-01-01

    Flow and water-quality models are being used to support the development of Total Maximum Daily Load (TMDL) plans for the Klamath River downstream of Upper Klamath Lake (UKL) in south-central Oregon. For riverine reaches, the RMA-2 and RMA-11 models were used, whereas the CE-QUAL-W2 model was used to simulate pooled reaches. The U.S. Geological Survey (USGS) was asked to review the most upstream of these models, from Link River Dam at the outlet of UKL downstream through the first pooled reach of the Klamath River from Lake Ewauna to Keno Dam. Previous versions of these models were reviewed in 2009 by USGS. Since that time, important revisions were made to correct several problems and address other issues. This review documents an assessment of the revised models, with emphasis on the model revisions and any remaining issues. The primary focus of this review is the 19.7-mile Lake Ewauna to Keno Dam reach of the Klamath River that was simulated with the CE-QUAL-W2 model. Water spends far more time in the Lake Ewauna to Keno Dam reach than in the 1-mile Link River reach that connects UKL to the Klamath River, and most of the critical reactions affecting water quality upstream of Keno Dam occur in that pooled reach. This model review includes assessments of years 2000 and 2002 current conditions scenarios, which were used to calibrate the model, as well as a natural conditions scenario that was used as the reference condition for the TMDL and was based on the 2000 flow conditions. The natural conditions scenario included the removal of Keno Dam, restoration of the Keno reef (a shallow spot that was removed when the dam was built), removal of all point-source inputs, and derivation of upstream boundary water-quality inputs from a previously developed UKL TMDL model. This review examined the details of the models, including model algorithms, parameter values, and boundary conditions; the review did not assess the draft Klamath River TMDL or the TMDL allocations

  2. Hydrological modelling of fine sediments in the Odzi River, Zimbabwe

    African Journals Online (AJOL)

    Hydrological modelling of fine sediments in the Odzi River, Zimbabwe. ... An analysis of the model structure and a comparison with the rating curve function ... model validation through split sample and proxy basin comparison was performed.

  3. Performance Evaluation of Linear (ARMA and Threshold Nonlinear (TAR Time Series Models in Daily River Flow Modeling (Case Study: Upstream Basin Rivers of Zarrineh Roud Dam

    Directory of Open Access Journals (Sweden)

    Farshad Fathian

    2017-01-01

    Full Text Available Introduction: Time series models are generally categorized as a data-driven method or mathematically-based method. These models are known as one of the most important tools in modeling and forecasting of hydrological processes, which are used to design and scientific management of water resources projects. On the other hand, a better understanding of the river flow process is vital for appropriate streamflow modeling and forecasting. One of the main concerns of hydrological time series modeling is whether the hydrologic variable is governed by the linear or nonlinear models through time. Although the linear time series models have been widely applied in hydrology research, there has been some recent increasing interest in the application of nonlinear time series approaches. The threshold autoregressive (TAR method is frequently applied in modeling the mean (first order moment of financial and economic time series. Thise type of the model has not received considerable attention yet from the hydrological community. The main purposes of this paper are to analyze and to discuss stochastic modeling of daily river flow time series of the study area using linear (such as ARMA: autoregressive integrated moving average and non-linear (such as two- and three- regime TAR models. Material and Methods: The study area has constituted itself of four sub-basins namely, Saghez Chai, Jighato Chai, Khorkhoreh Chai and Sarogh Chai from west to east, respectively, which discharge water into the Zarrineh Roud dam reservoir. River flow time series of 6 hydro-gauge stations located on upstream basin rivers of Zarrineh Roud dam (located in the southern part of Urmia Lake basin were considered to model purposes. All the data series used here to start from January 1, 1997, and ends until December 31, 2011. In this study, the daily river flow data from January 01 1997 to December 31 2009 (13 years were chosen for calibration and data for January 01 2010 to December 31 2011

  4. Lake Representations in Global Climate Models: An End-User Perspective

    Science.gov (United States)

    Rood, R. B.; Briley, L.; Steiner, A.; Wells, K.

    2017-12-01

    The weather and climate in the Great Lakes region of the United States and Canada are strongly influenced by the lakes. Within global climate models, lakes are incorporated in many ways. If one is interested in quantitative climate information for the Great Lakes, then it is a first principle requirement that end-users of climate model simulation data, whether scientists or practitioners, need to know if and how lakes are incorporated into models. We pose the basic question, how are lakes represented in CMIP models? Despite significant efforts by the climate community to document and publish basic information about climate models, it is unclear how to answer the question about lake representations? With significant knowledge of the practice of the field, then a reasonable starting point is to use the ES-DOC Comparator (https://compare.es-doc.org/ ). Once at this interface to model information, the end-user is faced with the need for more knowledge about the practice and culture of the discipline. For example, lakes are often categorized as a type of land, a counterintuitive concept. In some models, though, lakes are specified in ocean models. There is little evidence and little confidence that the information obtained through this process is complete or accurate. In fact, it is verifiably not accurate. This experience, then, motivates identifying and finding either human experts or technical documentation for each model. The conclusion from this exercise is that it can take months or longer to provide a defensible answer to if and how lakes are represented in climate models. Our experience with lake finding is that this is not a unique experience. This talk documents our experience and explores barriers we have identified and strategies for reducing those barriers.

  5. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  6. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    Science.gov (United States)

    Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.

    2016-01-01

    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.

  7. Effects of Accelerated Deglaciation on Chemical Characteristics of Sub-arctic Lakes and Rivers in South and West Iceland

    Science.gov (United States)

    Ritter, M.; Strock, K.; Edwards, B. R.

    2017-12-01

    Glaciers and their associated paraglacial landscapes have changed rapidly over the past century, and may see increased rates of melt as temperatures increase in high latitude environments. As glaciers recede, glacial meltwater subsidies increase to inland freshwater systems, influencing their structure and function. Evidence suggests melting ice influences the chemical characteristics of systems by providing nutrient subsidies, while inputs of glacial flour influence their physical structure by affecting temperature, reducing water clarity and increasing turbidity. Together, changes in physical and chemical structure of these systems have subsequent effects on biota, with the potential to lower taxonomic richness. This study characterized the chemistry of rivers and lakes fed by glacial meltwater in sub-arctic environments of Iceland, where there is limited limnological data. The survey characterized nutrient chemistry, dissolved organic carbon, and ion chemistry. We surveyed glacial meltwater from six glaciers in south and west Iceland, using the drainage basin of Gigjökull glacier along the southern coast as a detailed study area to examine the interactions between groundwater and surface runoff. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse, located in older bedrock with more extensively weathered soil. Key differences were observed between aquatic environments subsidized with glacial meltwater and those without. This included physical effects, such as lower temperatures and chemical effects such as lower conductivity and higher pH in glacially fed systems. In the drainage basin of Gigjökull glacier, lakes formed after the former lagoon was emptied and then partly refilled with debris from jokulhlaups during the 2010 Eyjafjallajökull eruption. These newly formed lakes resembled non-glacial melt systems despite receiving

  8. An Optimization Waste Load Allocation Model in River Systems

    Science.gov (United States)

    Amirpoor Daylami, A.; jarihani, A. A.; Aminisola, K.

    2012-04-01

    In many river systems, increasing of the waste discharge leads to increasing pollution of these water bodies. While the capacity of the river flow for pollution acceptance is limited and the ability of river to clean itself is restricted, the dischargers have to release their waste into the river after a primary pollution treatment process. Waste Load Allocation as a well-known water quality control strategy is used to determine the optimal pollutant removal at a number of point sources along the river. This paper aim at developing a new approach for treatment and management of wastewater inputs into the river systems, such that water quality standards in these receiving waters are met. In this study, inspired by the fact that cooperation among some single point source waste dischargers can lead to a more waste acceptance capacity and/or more optimum quality control in a river, an efficient approach was implemented to determine both primary waste water treatment levels and/or the best releasing points of the waste into the river. In this methodology, a genetic algorithm is used as an optimization tool to calculate optimal fraction removal levels of each one of single or shared discharger. Besides, a sub-model embedded to optimization model was used to simulate water quality of the river in each one of discharging scenarios based on the modified Streeter and Phelps quality equations. The practical application of the model is illustrated with a case study of the Gharesoo river system in west of Iran.

  9. {sup 210}Pb geochronology and chemical characterization of sediment cores from lakes of the Parana river alluvial plain

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, L.F.L.; Damatto, S.R.; Scapin, M.A. [IPEN - Instituto de Pesquisas Energeticas e Nucleares (Brazil); Remor, M.B.; Sampaio, S.C. [UNIOESTE - Universidade Estadual do Oeste do Parana (Brazil)

    2014-07-01

    The flood plain of the upper Parana River is located among the lakes formed by the Brazilian hydroelectric plants being the last part of the Parana river, in Brazil, where there is an ecosystem with interaction river-flood plain. This flood plain has considerable habitat variability, with great diversity of terrestrial and aquatic species, and the floods are the main factor that regulates the operation of this ecosystem. The seasonality of the flood pulses is mainly influenced by the El Nino phenomenon, which increases precipitation in the drainage basin of the flood plain of the upper Parana River. Because of its unique characteristics this ecosystem is the subject of intense study since 1980, mainly from the ecological point of view. Therefore, two sediment cores were collected in the ponds formed by the floods, Patos pond and Garcas pond, in order to characterize the sediment chemically and evaluate a possible historic contamination. The trace element concentrations As, Ba, Br, Ce, Co, Cr, Cs, Eu, Hf, La, Lu, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn (mg.kg{sup -1}) and the major elements Si, Al, Fe, Ti, K, Ca, Mg, P, V, Mn, and Na (%) were determined in the sediment cores dated by {sup 210}Pb method, using instrumental neutron activation analysis, X-ray fluorescence and gross beta counting, respectively. The results obtained for the elements Ce, Cr, Cs, La, Nd, Sc, Sm and Th are higher than the values of Upper Continental Crust for both ponds. The sedimentation rates obtained for Garca pond, 0.77 cm.y{sup -1}, and Patos pond, 0.62 cm.y{sup -1} are in agreement with studies performed in sedimentary environments similar to the present work, such as Brazilian wetland Pantanal. The enrichment factor and the geo-accumulation index were used to assess the presence of anthropogenic sources of pollution. Document available in abstract form only. (authors)

  10. Floodplain hydrodynamic modelling of the Lower Volta River in Ghana

    Directory of Open Access Journals (Sweden)

    Frederick Yaw Logah

    2017-12-01

    Full Text Available The impacts of dam releases from re-operation scenarios of the Akosombo and Kpong hydropower facilities on downstream communities along the Lower Volta River were examined through hydrodynamic modelling using the HEC-RAS hydraulic model. The model was used to simulate surface water elevation along the river reach for specified discharge hydrographs from proposed re-operation dam release scenarios. The morphology of the river and its flood plains together with cross-sectional profiles at selected river sections were mapped and used in the hydrodynamic modelling. In addition, both suspended and bed-load sediment were sampled and analysed to determine the current sediment load of the river and its potential to carry more sediment. The modelling results indicate that large areas downstream of the dam including its flood plains would be inundated if dam releases came close to or exceeded 2300 m3/s. It is therefore recommended to relocate communities along the banks and in the flood plains of the Lower Volta River when dam releases are to exceed 2300 m3/s. Suspended sediment transport was found to be very low in the Lower Volta River and the predominant soil type in the river banks and bed is sandy soil. Thus, the geomorphology of the river can be expected to change considerably with time, particularly for sustained high releases from the Akosombo and Kpong dams. The results obtained from this study form a basis for assessing future sedimentation problems in the Lower Volta River and for underpinning the development of sediment control and management strategies for river basins in Ghana. Keywords: Geomorphology, HEC-RAS model, Dam release, Floodplain, Lower Volta River, Ghana

  11. A 150-year record of recent changes in human activity and eutrophication of Lake Wushan from the middle reach of the Yangze River, China

    Directory of Open Access Journals (Sweden)

    Xiangdong YANG

    2010-08-01

    Full Text Available In order to determine baseline conditions (pre-impact and recent changes to lakes on the middle reach of the Yangtze River, China, a lake sediment core was extracted from Lake Wushan covering the last ca 150 years. Detailed chemical, biological (subfossil chironomids, and physical analyses of the lake sediments were undertaken. The data showed consistent trends of increased productivity since the early 1920s, notably significant changes in the chironomid fauna which were associated with changes in the sedimentological and stable isotope proxies. More typically eutrophic chironomid taxa first appeared around this time that had not been present in the lake since at least the 1860s. Further increases in productivity occurred around the 1950s which coincided with the local decline and extirpation of some chironomid taxa, particularly macrophyte associated taxa, which had been present in the lake since at least the late 19th Century. A chironomid-inferred water total phosphorus (CI-TP reconstruction produced accurate levels of water TP compared with contemporary measurements (207.4 μg L-1 TP, and suggested that levels for the late 19th Century were relatively low (50-60 μg L-1 TP. These reconstructions illustrate the baseline levels that existed pre-impact and provide potential targets for restoration, but they also show the magnitude of human impact in this region, which has increased the nutrient content of Lake Wushan fourfold within the last ca 100 years.

  12. Distribution of C, N, P in aquatic plants of some lakes in the middle of Yangtze river

    International Nuclear Information System (INIS)

    Huang Liang; Wu Ying; Zhou Juzhen; Zhang Jing; Li Wei

    2003-01-01

    By analyzing three elements (C, N, P, 13 C) in the ten aquatic plants of nine lakes in the middle of Yangtze River, the concentrations of C, N and δ 13 C in leaves of aquatic macrophytes depend on the environment where they live in. The concentration of C and N in leaves of submerged macrophytes is significantly lower than that of leaves of floating and emergent macrophytes because of limitation of inorganic carbon; And at the same time, because δ 13 C of inorganic carbon in water is higher than that of CO 2 in air, δ 13 C of leaves of submerged macrophytes is higher than that of leaves of floating and emergent macrophytes. (authors)

  13. Two new species of nematodes (Nematoda) from highly mineralized rivers of Lake El'ton basin, Russia.

    Science.gov (United States)

    Gusakov, Vladimir A; Gagarin, Vladimir G

    2016-09-05

    Two new nematode species, Mesodorylaimus rivalis sp. n. and Allodiplogaster media sp. n., from the highly mineralized rivers of the El'ton Lake basin (Russia) are described and illustrated from numerous mature females and males. Mesodorylaimus rivalis sp. n. is similar to M. vulvapapillatus Bagaturia & Eliava, 1966, but differs from it in the longer body, shorter spicules and longer female prerectum. Allodiplogaster media sp. n. resembles A. lupata (Shoshin, 1989) Kanzaki, Ragsdale & Giblin-Davis, 2014 and A. mordax (Shoshin, 1989) Kanzaki, Ragsdale & Giblin-Davis, 2014, but differs from the first species in having a shorter pharynx, shorter outer labial setae, longer spicules and different ratio between anterior and posterior pharynx sections, and from A. mordax in the thinner body, shorter pharynx and longer spicules.

  14. Application of water quality models to rivers in Johor

    Science.gov (United States)

    Chii, Puah Lih; Rahman, Haliza Abd.

    2017-08-01

    River pollution is one the most common hazard in many countries in the world, which includes Malaysia. Many rivers have been polluted because of the rapid growth in industrialization to support the country's growing population and economy. Domestic and industrial sewage, agricultural wastes have polluted the rivers and will affect the water quality. Based on the Malaysia Environment Quality Report 2007, the Department of Environment (DOE) has described that one of the major pollutants is Biochemical Oxygen Demand (BOD). Data from DOE in 2004, based on BOD, 18 river basins were classified polluted, 37 river basins were slightly polluted and 65 river basins were in clean condition. In this paper, two models are fitted the data of rivers in Johor state namely Streeter-Phelps model and nonlinear regression (NLR) model. The BOD concentration data for the two rivers in Johor state from year 1981 to year 1990 is analyzed. To estimate the parameters for the Streeter-Phelps model and NLR model, this study focuses on the weighted least squares and Gauss-Newton method respectively. Based on the value of Mean Square Error, NLR model is a better model compared to Streeter-Phelps model.

  15. Appropriate hydrological modelling of climate change on river flooding

    NARCIS (Netherlands)

    Booij, Martijn J.; Rizzoli, A.E.; Jakeman, A.J.

    2002-01-01

    How good should a river basin model be to assess the impact of climate change on river flooding for a specific geographical area? The determination of such an appropriate model should reveal which physical processes should be incorporated and which data and mathematical process descriptions should

  16. Development of a HEC-RAS temperature model for the North Santiam River, northwestern Oregon

    Science.gov (United States)

    Stonewall, Adam J.; Buccola, Norman L.

    2015-01-01

    A one-dimensional, unsteady streamflow and temperature model (HEC-RAS) of the North Santiam and Santiam Rivers was developed by the U.S. Geological Survey to be used in conjunction with previously developed two-dimensional hydrodynamic water-quality models (CE-QUAL-W2) of Detroit and Big Cliff Lakes upstream of the study area. In conjunction with the output from the previously developed models, the HEC-RAS model can simulate streamflows and temperatures within acceptable limits (mean error [bias] near zero; typical streamflow errors less than 5 percent; typical water temperature errors less than 1.0 °C) for the length of the North Santiam River downstream of Big Cliff Dam under a series of potential future conditions in which dam structures and/or dam operations are modified to improve temperature conditions for threatened and endangered fish. Although a two-dimensional (longitudinal, vertical) CE-QUAL-W2 model for the North Santiam and Santiam Rivers downstream of Big Cliff Dam exists, that model proved unstable under highly variable flow conditions. The one-dimensional HEC-RAS model documented in this report can better simulate cross-sectional-averaged stream temperatures under a wide range of flow conditions.

  17. Lake Michigan Mass Balance Study Post Audit: Integrated, Multi-media PCB Modeling and Forecasting for Lake Trout

    Science.gov (United States)

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  18. Optimal management of ecosystem services with pollution traps : The lake model revisited

    NARCIS (Netherlands)

    de Zeeuw, Aart; Grass, Dieter; Xepapadeas, Anastasios

    2017-01-01

    In this paper, optimal management of the lake model and common-property outcomes are reconsidered when the lake model is extended with the slowly changing variable. New optimal trajectories are found that were hidden in the simplified analysis. Furthermore, it is shown that two Nash equilibria may

  19. Great Lakes modeling: Are the mathematics outpacing the data and our understanding of the system?

    Science.gov (United States)

    Mathematical modeling in the Great Lakes has come a long way from the pioneering work done by Manhattan College in the 1970s, when the models operated on coarse computational grids (often lake-wide) and used simple eutrophication formulations. Moving forward 40 years, we are now...

  20. ANALYSIS OF MERCURY IN VERMONT AND NEW HAMPSHIRE LAKES: EVALUATION OF THE REGIONAL MERCURY CYCLING MODEL

    Science.gov (United States)

    An evaluation of the Regional Mercury Cycling Model (R-MCM, a steady-state fate and transport model used to simulate mercury concentrations in lakes) is presented based on its application to a series of 91 lakes in Vermont and New Hampshire. Visual and statistical analyses are pr...

  1. The limnology of a Mississippi River alluvial plain oxbow lake following the application of conservation practices

    Science.gov (United States)

    From 1995 and 2011 Beasley Lake watershed near Indianola, MS, was subjected to a variety of conservation measures designed to reduce water velocity, erosion and discharge of sediment laden water. Water quality monitoring during the period indicated a number of long term trends and relationships bet...

  2. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes

    International Nuclear Information System (INIS)

    Kameda, Yutaka; Kimura, Kumiko; Miyazaki, Motonobu

    2011-01-01

    Sun-blocking agents including eight UV filters (UVF) and 10 UV light stabilizers (UVLS) were measured in water and sediment collected from 22 rivers, four sewage treatment plant effluents (STPE) and three lakes in Japan. Total sun blocking agents levels ranged from N.D. to 4928 ng/L and from 2.0 to 3422 μg/kg dry wt in surface water and in sediment, respectively. Benzyl salicylate, benzophenone-3, 2-ethyl hexyl-4-methoxycinnamte (EHMC) and octyl salicylate were dominant in surface water receiving wastewater effluents and STPE, although UV-328, benzophenone and EHMC were dominant in other surface water except background sites. Three UVF and nine UVLS were observed from all sediment and their compositions showed similar patterns with UV-328 and UV-234 as the most prevalent compounds. Homosalate, octocrylene, UV-326, UV-327, UV-328 and UV-234 were significantly correlated with Galaxolide in sediments. Concentrations of UV-327 and UV-328 also had strong correlation between those of UV-326 in sediment. - Highlights: → Total sun-blocking agents levels ranged from N.D. to 4928 ng/L in surface water from 29 sampling sites. → The maximum concentration of total sun-blocking agents was 3422 μg/kg dry wt. in sediment. → Residential wastewaters and STPE were considered to be potential sources of UVLS in river and lakes. → Most of sun-blocking agents in sediment were significantly correlated with HHCB. → UV-326 had a strong linear correlation between UV-327 as well as UV-328 in all sediment. - Occurrence of eight UV filters and 10 UV light stabilizers in surface water and sediment were investigated and characterized their compositions in water and sediment.

  3. Modelling the long term impact of climate change on the carbon budget of Lake Simcoe, Ontario using INCA-C.

    Science.gov (United States)

    Oni, S K; Futter, M N; Molot, L A; Dillon, P J

    2012-01-01

    This study presents a process-based model of dissolved organic carbon concentration ([DOC]) in catchments draining into Lake Simcoe, Ontario. INCA-C, the Integrated Catchment model for Carbon, incorporates carbon biogeochemical processes in a terrestrial system with hydrologic flow paths to simulate watershed wide [DOC]. The model successfully simulates present-day inter-annual and seasonal [DOC] dynamics in tributaries draining catchments with mixed or contrasting land cover in the Lake Simcoe watershed (LSW). The sensitivity of INCA-C to soil moisture, hydrologic controls and land uses within a watershed demonstrates its significance as a tool to explore pertinent environmental issues specific to the LSW. Projections of climate change under A1B and A2 SRES scenarios suggest a continuous monotonic increase in [DOC] in surface waters draining into Lake Simcoe. Large variations in seasonal DOC dynamics are predicted to occur during summer with a possibility of displacement of summer [DOC] maxima towards winter and a prolongation of summer [DOC] levels into the autumn. INCA-C also predicts possible increases in dissolved inorganic carbon in some tributaries with rising temperature suggesting increased CO(2) emissions from rivers as climate changes. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Making eco logic and models work : An integrative approach to lake ecosystem modelling

    NARCIS (Netherlands)

    Kuiper, Jan Jurjen

    2016-01-01

    Dynamical ecosystem models are important tools that can help ecologists understand complex systems, and turn understanding into predictions of how these systems respond to external changes. This thesis revolves around PCLake, an integrated ecosystem model of shallow lakes that is used by both

  5. A parsimonious dynamic model for river water quality assessment.

    Science.gov (United States)

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.

  6. Status and trends of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) sucker populations in Upper Klamath Lake, Oregon, 2017

    Science.gov (United States)

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2018-04-24

    Executive SummaryData from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (LRS; Deltistes luxatus) and shortnose suckers (SNS; Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during the spawning season in spring 2016 were incorporated into capture-recapture analyses of population dynamics.Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Model estimates of survival and recruitment were used to derive estimates of changes in population size over time and to determine the status of the populations through 2015. Separate analyses were done for each species and also for each subpopulation of LRS. Shortnose suckers and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake.Capture-recapture analyses indicated that with a few exceptions, the survival of males and females in both Lost River sucker subpopulations was high (greater than 0.88) from 1999 to 2015. Survival was notably lower for males from the river in 2000, 2006, and 2012, and for the shoreline areas in 2002. From 2001 to 2015, the abundance of males in the lakeshore spawning subpopulation decreased by at least 64

  7. Multiscale Modeling of Radioisotope Transfers in Watersheds, Rivers, Reservoirs and Ponds of Fukushima Prefecture

    Science.gov (United States)

    Zheleznyak, M.; Kivva, S.; Nanba, K.; Wakiyama, Y.; Konoplev, A.; Onda, Y.; Gallego, E.; Papush, L.; Maderych, V.

    2015-12-01

    The highest densities of the radioisotopes in fallout from the Fukushima Daiichi NPP in March 2011 were measured at the north eastern part of Fukushima Prefecture. The post-accidental aquatic transfer of cesium -134/137 includes multiscale processes: wash-off from the watersheds in solute and with the eroded soil, long-range transport in the rivers, deposition and resuspension of contaminated sediments in reservoirs and floodplains. The models of EU decision support system RODOS are used for predicting dynamics of 137Cs in the Fukushima surface waters and for assessing efficiency of the remediation measures. The transfer of 137Cs through the watershed of Niida River was simulated by DHSVM -R model that includes the modified code of the distributed hydrological and sediment transport model DHSVM (Lettenmayer, Wigmosta et al.) and new module of radionuclide transport. DHSMV-R was tested by modelling the wash-off from the USLE experimental plots in Fukushima prefecture. The model helps to quantify the influence of the differentiators of Fukushima and Chernobyl watersheds, - intensity of extreme precipitation and steepness of watershed, on the much higher values of the ratio "particulated cesium /soluted cesium" in Fukushima rivers than in Chernobyl rivers. Two dimensional model COASTOX and three dimensional model THREETOX are used to simulate the fate of 137Cs in water and sediments of reservoirs in the Manogawa River, Otagawa River, Mizunashigawa River, which transport 137Cs from the heavy contaminated watersheds to the populated areas at the Pacific coast. The modeling of the extreme floods generated by typhoons shows the resuspension of the bottom sediments from the heavy contaminated areas in reservoirs at the mouths of inflowing rivers at the peaks of floods and then re-deposition of 137Cs downstream in the deeper areas. The forecasts of 137Cs dynamics in bottom sediments of the reservoirs were calculated for the set of the scenarios of the sequences of the high

  8. A study of the river basins and limnology of five humic lakes on Chiloé Island Estudio de la cuenca y limnología en cinco lagos húmicos de la Isla Chiloé

    Directory of Open Access Journals (Sweden)

    L. VILLALOBOS

    2003-12-01

    Full Text Available From November 1996 to October 1997, the river basins of five humic lakes on Chiloé Island were studied monthly: Lakes Natri, Tepuhueico, Tarahuín, Huillinco and Cucao. The objective of this study was to know the catchment area, river basin and the main physical, chemical and biological characteristics of these humic lakes. The trophic status, the actual loading, and the mass balances of phosphorus and nitrogen were determined in relation to anthropogenic activities. Lakes Cucao and Huillinco were characterized by a marine influence. All the lakes had brown coloured waters, caused by humic substances, which limit their transparency. Lake Natri was the deepest (58 m, whereas Lake Tepuhueico had the shallowest depth (25 m. Total phosphorus and nitrogen fluctuated between 23.5 and 35 µg L-1 and 197 and 380 mug L-1 (annual average in lakes Natri, Tepuhueico and Tarahuín, respectively. Lakes Cucao and Huillinco showed extremely high concentrations of total nitrogen (annual average or = 3,000 mug L-1 and total phosphorus (= 223 and 497 mug L-1, and were classified as hyper-eutrophic. Lake Tarahuín registered the greatest diversity of phytoplankton, with 55 species, including Ceratium hirundinella which also occurred in lakes Cucao and Tarahuín. The diversity of the zooplankton community varied across these lakes. The presence of Diaptomus diabolicus (Tumeodiaptomus d. Dussart 1979 (Cucao, Huillinco and Tepuhueico is noteworthy since this extends its geographical distribution to the south

  9. Optimization Model for cooperative water allocation and valuation in large river basins regarding environmental constraints

    Science.gov (United States)

    Pournazeri, S.

    2011-12-01

    A comprehensive optimization model named Cooperative Water Allocation Model (CWAM) is developed for equitable and efficient water allocation and valuation of Zab river basin in order to solve the draught problems of Orumieh Lake in North West of Iran. The model's methodology consists of three phases. The first represents an initial water rights allocation among competing users. The second comprises the water reallocation process for complete usage by consumers. The third phase performs an allocation of the net benefit of the stakeholders participating in a coalition by applying cooperative game theory. The environmental constraints are accounted for in the water allocation model by entering probable environmental damage in a target function, and inputting the minimum water requirement of users. The potential of underground water usage is evaluated in order to compensate for the variation in the amount of surface water. This is conducted by applying an integrated economic- hydrologic river basin model. A node-link river basin network is utilized in CWAM which consists of two major blocks. The first indicates the internal water rights allocation and the second is associated to water and net benefit reallocation. System control, loss in links by evaporation or seepage, modification of inflow into the node, loss in nodes and loss in outflow are considered in this model. Water valuation is calculated for environmental, industrial, municipal and agricultural usage by net benefit function. It can be seen that the water rights are allocated efficiently and incomes are distributed appropriately based on quality and quantity limitations.

  10. Seasonal variations in water quality of an oxbow lake in response to multiple short-time pulses of flooding (Jataí Ecological Station--Mogi-Guaçu River, Luiz Antonio, SP-Brazil).

    Science.gov (United States)

    Krusche, A V; Mozeto, A A

    1999-01-01

    Mogi-Guaçu River is a six-order floodplain river in the upper Paraná River Basin, Southern Brazil. Its yearly discharge varies from a minimum of 100 m3.s-1 to a maximum of 600 m3.s-1. Diogo Lake is a shallow lake located at its floodplain within the Jataí Ecological Station (Luiz Antonio, São Paulo State) and is connected throughout the year to the river through a narrow and shallow channel. The main finding of this study is that the river hidrology controls the annual variations in lake hydrochemistry through a series of hydraulic effects related to oscillations in river discharge. Lake water quality is a resultant of differential contribution from local and regional watersheds. During the low water period, lake water quality is determined by inputs from Cafundó Creek, which drains the local watershed into the lake. Raising the river level during the rain season results in the damming of lake and culminates with the entrance of river waters into the plain. The geochemistry of waters in this system is determined by weathering of sandstones with basalt intrusions. Waters are acidic (river pH = 6.00 to 7.02 and stream-lake pH = 5.15 to 6.7) and dominant cations are Na+ and K+. Major anions are almost exclusively represented by bicarbonate and an unknown concentration of organic acid anions. The overall ionic load of these soft waters in the system is therefore very low.

  11. Distinguishing between anthropogenic and climatic impacts on lake size: a modeling approach using data from Ebinur Lake in arid northwest China

    Directory of Open Access Journals (Sweden)

    Long Ma

    2014-03-01

    Full Text Available Evaluation of anthropogenic and climatic impacts on lake size variation is important for maintaining ecosystem integrity and sustaining societal development. We assumed that climate and human activity are the only drivers of lake-size variation and are independent of each other. We then evaluated anthropogenic and climatic effects on hydrological processes, using a multivariate linear model. Macro-economic data were used to describe the anthropogenic impact on lake surface area in our approach. Ebinur Lake is a shallow, closed, saline lake in arid northwest China; it has shrunk at a rapid rate over the past half century. Using our new method, we explored temporal trends of anthropogenic and climatic impacts on the lake over the past 50 years. Assessment indices indicate that the model represents observed data quite well. Compared with the reference period of 1955-1960, impacts of climate change across the catchment were generally positive with respect to lake area, except for the period from 1961 to 1970. Human activity was responsible for a reduction in lake surface area of 286.8 km2 over the last 50 years. Our approach, which uses economic variables to describe the anthropogenic impact on lake surface area, enables us to explain the lake responses to climate change and human activities quantitatively.

  12. The lake foodweb: modelling predation and abiotic/biotic interactions

    National Research Council Canada - National Science Library

    Hakanson, L; Boulion, V.V

    2002-01-01

    .... LakeWeb includes the following key functional groups of organisms: phytoplankton, bacterioplankton, benthic algae, macrophytes, zoobenthos, herbivorous and predatory zooplankton, prey fish and predatory fish...

  13. Modeling Lake Storage Dynamics to support Arctic Boreal Vulnerability Experiment (ABoVE)

    Science.gov (United States)

    Vimal, S.; Lettenmaier, D. P.; Smith, L. C.; Smith, S.; Bowling, L. C.; Pavelsky, T.

    2017-12-01

    The Arctic and Boreal Zone (ABZ) of Canada and Alaska includes vast areas of permafrost, lakes, and wetlands. Permafrost thawing in this area is expected to increase due to the projected rise of temperature caused by climate change. Over the long term, this may reduce overall surface water area, but in the near-term, the opposite is being observed, with rising paludification (lake/wetland expansion). One element of NASA's ABoVE field experiment is observations of lake and wetland extent and surface elevations using NASA's AirSWOT airborne interferometric radar, accompanied by a high-resolution camera. One use of the WSE retrievals will be to constrain model estimates of lake storage dynamics. Here, we compare predictions using the lake dynamics algorithm within the Variable Infiltration Capacity (VIC) land surface scheme. The VIC lake algorithm includes representation of sub-grid topography, where the depth and area of seasonally-flooded areas are modeled as a function of topographic wetness index, basin area, and slope. The topography data used is from a new global digital elevation model, MERIT-DEM. We initially set up VIC at sites with varying permafrost conditions (i.e., no permafrost, discontinuous, continuous) in Saskatoon and Yellowknife, Canada, and Toolik Lake, Alaska. We constrained the uncalibrated model with the WSE at the time of the first ABoVE flight, and quantified the model's ability to predict WSE and ΔWSE during the time of the second flight. Finally, we evaluated the sensitivity of the VIC-lakes model and compared the three permafrost conditions. Our results quantify the sensitivity of surface water to permafrost state across the target sites. Furthermore, our evaluation of the lake modeling framework contributes to the modeling and mapping framework for lake and reservoir storage change evaluation globally as part of the SWOT mission, planned for launch in 2021.

  14. First identification of a possible nursery area for diadromous Coilia nasus in the Poyang Lake nearly 1000 km away from the Yangtze River Estuary

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2015-11-01

    Full Text Available Estuarine tapertail anchovy Coilia nasus is a small-sized anadromous species in the Yangtze River, China. It is probably the most expensive fish in the world with price as high as $1000/kg and even $9600 for a single extremely large individual with a total length of 45.3 cm and body weight of 0.325 kg in the Jiangsu section of the river in 2012. However, when and where C. nasus spawn along the Yangtze River has still remained a mystery so far. In our field surveys of 2014 and 2015, some highly mature female and male C. nasus with stage V or VI gonads were firstly collected in the water region around Xingzi County in the Poyang Lake, which is nearly 1000 km away from the mouth of the Yangtze River. Although previous studies believed that all C. nasus in the Poyang Lake were freshwater residents, the otolith microchemistry signatures of the present study determined with EPMA and LA-ICPMS further clearly demonstrated that these fish were anadromous individuals. The findings indicated that the C. nasus migrated over nearly 1000 km upstream, with an extremely strong migration ability, passing through the lower reaches of the Yangtze River from the adjacent Yellow sea (even from the areas nearly straight line for as far as ca. 300 km off the Chinese coast line or East China Sea (Figure 1. The aforementioned evidence strongly suggests that the water region around Xingzi County in the Poyang Lake is a possible spawning/nursery area for anadromous C. nasus. It will be critical to ensure the protection of this region of the Poyang Lake being free from the environmental destruction of anthropogenic activities, especially hydraulic structure (especially dam construction and sand mining.

  15. Efficacy of iodine for disinfection of Lake Sturgeon eggs from the St. Lawrence River, New York

    Science.gov (United States)

    Chalupnicki, Marc A.; Dittman, Dawn E.; Starliper, Clifford E.; Iwanowicz, Deborah

    2014-01-01

    Optimal fish husbandry to reduce the risk of disease is particularly important when using wild fish as the source for gametes. The propagation and reestablishment of Lake Sturgeon Acipenser fulvescens in New York waters to become a viable self-sustaining population is considered a high priority by managers. While standard hatchery egg disinfection practices have been used to prevent the transmission of diseases, data on the bacterial loads present on egg surfaces following iodine disinfection is lacking. Our study investigated the bacteria present on the outer surface of Lake Sturgeon eggs and the effectiveness of an iodine disinfection treatment in eliminating bacteria that could pose a threat to egg survival and cause hatchery disease outbreaks. During the springs of 2011–2013, 12 to 41 different species of bacteria were recovered from the outer egg surfaces prior to an iodine treatment; Aeromonas, Pseudomonas, Shewanella, and Chryseobacterium were the most common genera identified. Cohort eggs treated using the standard protocol of a single treatment of 50 mg/L iodine for 30 min resulted in an average of 57.8% reduction in bacterial CFU/g. While this is a significant reduction, bacteria were not completely eliminated and hatchery managers should be aware that pathogens could remain on Lake Sturgeon eggs following the standard iodine disinfection treatment.

  16. Sound velocity profiles in the St. Clair and St. Mary's Rivers in the Great Lakes area by the National Ocean Service's Navigation Response Team 4, May 2006 (NODC Accession 0006777)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sound velocity profile data were collected using sound velocimeter in the St. Clair and St. Mary rivers in the Great Lakes area by the NAVIGATION RESPONSE TEAM 4...

  17. Hydrography, Our hydrography consist of river