WorldWideScience

Sample records for modeling rivers lakes

  1. Simulation models for water pollution in rivers and lakes; Suishitsu osen no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hosomi, M. [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1996-11-05

    Rivers, lakes, and dam lakes are taken up as fields related to urban environment, and simulation models for water pollution control is introduced which are considered to be important for controlling water quality. In connection with rivers, a model showing the relationship between organic contamination and DO (dissolved oxygen) as well as an analyzed example of the use of continuous data of easy-to-measure DO are introduced. DO and pH in urban rivers sometimes exceed the environmental standards in the dry season. The cause is greater effect of biofilm adhesion at the river bed due to elongated staying time, and the establishment of the maintained river flow rate must be reviewed. One of the problems of ecological models is the deficiency of the data for the verification of the ecological models, and arrangement to solve the problem is required. Although it is admitted that simulation of phytoplankton in which neural network is employed has just started, it is expected to become an effective means for the study of phenomena which can not be elucidated by the modeling using normal numeric models. 7 refs., 13 figs.

  2. Random forests as cumulative effects models: A case study of lakes and rivers in Muskoka, Canada.

    Science.gov (United States)

    Jones, F Chris; Plewes, Rachel; Murison, Lorna; MacDougall, Mark J; Sinclair, Sarah; Davies, Christie; Bailey, John L; Richardson, Murray; Gunn, John

    2017-10-01

    Cumulative effects assessment (CEA) - a type of environmental appraisal - lacks effective methods for modeling cumulative effects, evaluating indicators of ecosystem condition, and exploring the likely outcomes of development scenarios. Random forests are an extension of classification and regression trees, which model response variables by recursive partitioning. Random forests were used to model a series of candidate ecological indicators that described lakes and rivers from a case study watershed (The Muskoka River Watershed, Canada). Suitability of the candidate indicators for use in cumulative effects assessment and watershed monitoring was assessed according to how well they could be predicted from natural habitat features and how sensitive they were to human land-use. The best models explained 75% of the variation in a multivariate descriptor of lake benthic-macroinvertebrate community structure, and 76% of the variation in the conductivity of river water. Similar results were obtained by cross-validation. Several candidate indicators detected a simulated doubling of urban land-use in their catchments, and a few were able to detect a simulated doubling of agricultural land-use. The paper demonstrates that random forests can be used to describe the combined and singular effects of multiple stressors and natural environmental factors, and furthermore, that random forests can be used to evaluate the performance of monitoring indicators. The numerical methods presented are applicable to any ecosystem and indicator type, and therefore represent a step forward for CEA. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Forecasting Shaharchay River Flow in Lake Urmia Basin using Genetic Programming and M5 Model Tree

    Directory of Open Access Journals (Sweden)

    S. Samadianfard

    2017-01-01

    Full Text Available Introduction: Precise prediction of river flows is the key factor for proper planning and management of water resources. Thus, obtaining the reliable methods for predicting river flows has great importance in water resource engineering. In the recent years, applications of intelligent methods such as artificial neural networks, fuzzy systems and genetic programming in water science and engineering have been grown extensively. These mentioned methods are able to model nonlinear process of river flows without any need to geometric properties. A huge number of studies have been reported in the field of using intelligent methods in water resource engineering. For example, Noorani and Salehi (23 presented a model for predicting runoff in Lighvan basin using adaptive neuro-fuzzy network and compared the performance of it with neural network and fuzzy inference methods in east Azerbaijan, Iran. Nabizadeh et al. (21 used fuzzy inference system and adaptive neuro-fuzzy inference system in order to predict river flow in Lighvan river. Khalili et al. (13 proposed a BL-ARCH method for prediction of flows in Shaharchay River in Urmia. Khu et al. (16 used genetic programming for runoff prediction in Orgeval catchment in France. Firat and Gungor (11 evaluated the fuzzy-neural model for predicting Mendes river flow in Turkey. The goal of present study is comparing the performance of genetic programming and M5 model trees for prediction of Shaharchay river flow in the basin of Lake Urmia and obtaining a comprehensive insight of their abilities. Materials and Methods: Shaharchay river as a main source of providing drinking water of Urmia city and agricultural needs of surrounding lands and finally one of the main input sources of Lake Urmia is quite important in the region. For obtaining the predetermined goals of present study, average monthly flows of Shaharchay River in Band hydrometric station has been gathered from 1951 to 2011. Then, two third of mentioned

  4. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  5. Numerical models for calculating hydrologic processes in river and lake-river systems

    Science.gov (United States)

    Nikiforovskaya, V. S.; Voevodin, A. F.

    2017-10-01

    We use one-dimensional (1D) and two-dimensional (2D) longitudinal-vertical mathematical models and their 2D+1D combination as well as numerical methods to study unsteady processes in the complex open channel systems under the influence of water management measures. The analysis shows the economic feasibility and efficiency of using the developed mathematical models to study hydrological process in water bodies. The study of the physical processes in complex water body, consisting of significantly different components, based on the use of only one chosen mathematical model, is uneconomical and inefficient from the viewpoint of computational expense.

  6. Nutrient delivery to Lake Winnipeg from the Red-Assiniboine River Basin – A binational application of the SPARROW model

    Science.gov (United States)

    Benoy, Glenn A; Jenkinson, R. Wayne; Robertson, Dale M.; Saad, David A.

    2016-01-01

    Excessive phosphorus (TP) and nitrogen (TN) inputs from the Red–Assiniboine River Basin (RARB) have been linked to eutrophication of Lake Winnipeg; therefore, it is important for the management of water resources to understand where and from what sources these nutrients originate. The RARB straddles the Canada–United States border and includes portions of two provinces and three states. This study represents the first binationally focused application of SPAtially Referenced Regressions on Watershed attributes (SPARROW) models to estimate loads and sources of TP and TN by jurisdiction and basin at multiple spatial scales. Major hurdles overcome to develop these models included: (1) harmonization of geospatial data sets, particularly construction of a contiguous stream network; and (2) use of novel calibration steps to accommodate limitations in spatial variability across the model extent and in the number of calibration sites. Using nutrient inputs for a 2002 base year, a RARB TP SPARROW model was calibrated that included inputs from agriculture, forests and wetlands, wastewater treatment plants (WWTPs) and stream channels, and a TN model was calibrated that included inputs from agriculture, WWTPs and atmospheric deposition. At the RARB outlet, downstream from Winnipeg, Manitoba, the majority of the delivered TP and TN came from the Red River Basin (90%), followed by the Upper Assiniboine River and Souris River basins. Agriculture was the single most important TP and TN source for each major basin, province and state. In general, stream channels (historically deposited nutrients and from bank erosion) were the second most important source of TP. Performance metrics for the RARB SPARROW model are similarly robust compared to other, larger US SPARROW models making it a potentially useful tool to address questions of where nutrients originate and their relative contributions to loads delivered to Lake Winnipeg.

  7. DISSOLVED OXYGEN MODELLING USING ARTIFICIAL NEURAL NETWORK: A CASE OF RIVER NZOIA, LAKE VICTORIA BASIN, KENYA

    Directory of Open Access Journals (Sweden)

    Edwin Kimutai Kanda

    2016-11-01

    Full Text Available River Nzoia in Kenya, due to its role in transporting industrial and municipal wastes in addition to agricultural runoff to Lake Victoria, is vulnerable to pollution. Dissolved oxygen is one of the most important indicators of water pollution. Artificial neural network (ANN has gained popularity in water quality forecasting. This study aimed at assessing the ability of ANN to predict dissolved oxygen using four input variables of temperature, turbidity, pH and electrical conductivity. Multilayer perceptron network architecture was used in this study. The data consisted of 113 monthly values for the input variables and output variable from 2009–2013 which were split into training and testing datasets. The results obtained during training and testing were satisfactory with R2 varying from 0.79 to 0.94 and RMSE values ranging from 0.34 to 0.64 mg/l which imply that ANN can be used as a monitoring tool in the prediction of dissolved oxygen for River Nzoia considering the non-correlational relationship of the input and output variables. The dissolved oxygen values follow seasonal trend with low values during dry periods.

  8. DNR 100K Lakes and Rivers

    Data.gov (United States)

    Minnesota Department of Natural Resources — Polygons representing hydrographic features (lakes, ponds, some rivers, and open water areas) originating from the USGS 1:100,000 (100K)DLG (Digital Line Graph)...

  9. Modeling river discharge and sediment transport in the Wax Lake-Atchafalaya basin with remote sensing parametrization.

    Science.gov (United States)

    Simard, M.; Liu, K.; Denbina, M. W.; Jensen, D.; Rodriguez, E.; Liao, T. H.; Christensen, A.; Jones, C. E.; Twilley, R.; Lamb, M. P.; Thomas, N. A.

    2017-12-01

    Our goal is to estimate the fluxes of water and sediments throughout the Wax Lake-Atchafalaya basin. This was achieved by parametrization of a set of 1D (HEC-RAS) and 2D (DELFT3D) hydrology models with state of the art remote sensing measurements of water surface elevation, water surface slope and total suspended sediment (TSS) concentrations. The model implementations are spatially explicit, simulating river currents, lateral flows to distributaries and marshes, and spatial variations of sediment concentrations. Three remote sensing instruments were flown simultaneously to collect data over the Wax Lake-Atchafalaya basin, and along with in situ field data. A Riegl Lidar was used to measure water surface elevation and slope, while the UAVSAR L-band radar collected data in repeat-pass interferometric mode to measure water level change within adjacent marshes and islands. These data were collected several times as the tide rose and fell. AVRIS-NG instruments measured water surface reflectance spectra, used to estimate TSS. Bathymetry was obtained from sonar transects and water level changes were recorded by 19 water level pressure transducers. We used several Acoustic Doppler Current Profiler (ADCP) transects to estimate river discharge. The remotely sensed measurements of water surface slope were small ( 1cm/km) and varied slightly along the channel, especially at the confluence with bayous and the intra-coastal waterway. The slope also underwent significant changes during the tidal cycle. Lateral fluxes to island marshes were mainly observed by UAVSAR close to the distributaries. The extensive remote sensing measurements showed significant disparity with the hydrology model outputs. Observed variations in water surface slopes were unmatched by the model and tidal wave propagation was much faster than gauge measurements. The slope variations were compensated for in the models by tuning local lateral fluxes, bathymetry and riverbed friction. Overall, the simpler 1D

  10. Global Lake and River Ice Phenology Database, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  11. Effects of river-lake interactions in water and sediment on phosphorus in Dongting Lake, China.

    Science.gov (United States)

    Tian, Zebin; Zheng, Binghui; Wang, Lijing; Li, Hong; Wang, Xing

    2017-10-01

    As a large river connected lake, Dongting Lake is influenced by anthropogenic activities and the discharge from its upstream tributaries in the lake basin and by the water recharge via a connection to the Yangtze River (YR) outside the basin. This makes the lake phosphorous cycle more complex than that in other disconnected lakes. Here, we calculated section fluxes and ran a hydrodynamic model to investigate the phosphorus (P) variations in response to the changing interactions in the water and sediment between the YR, four tributaries, and the lake. Results show that particulate P was the dominant form with a significant linear relationship with suspended sediment (r 2  = 0.906). The sediment input reduction from the YR through three water inlets, which is closely related to the Three Gorges Reservoir operation since 2003, led to a decrease in the total P (TP) concentration in the western Dongting Lake. However, the impact and range of this decrease were fairly limited. Compared with the limited effect of the YR, the raised TP flux from the Yuanjiang tributary controlled the TP concentration at the outlet of the western Dongting Lake. Apart from the influence of the YR and the tributaries, anthropogenic activities (sand dredging) in the eastern Dongting Lake also contributed to a high TP concentration around the S10 area through sediment resuspension. We suggest that, compared with the reduction in TP flux and sediment load from the connected Yangtze River outside the basin, the elements within the basin (increased TP input from tributaries and sand dredging) have a greater effect on the variations of TP in Dongting Lake.

  12. Union Lake Bourbeuse River, Missouri.

    Science.gov (United States)

    1974-10-01

    Poeciliidae -Cambusia affinis Mosquitofish 8,10 Order Atueriniformes Centrarchidne - Suinfishes AalbloTpites rupestris Rock Bass 9,10,14 LLpomis cyanellus...4, I’he i.ss, ( muscle ) shoals of the Tennessee River revisted. Amercan a~ae1zia Union. Annual Report (19 4)~ pp 25-28. Stansberv, i). ff. 1970

  13. [Application of biotic ligand model for the acute toxicity of copper to Daphnia magna in water of Liaohe River and Taihu Lake].

    Science.gov (United States)

    Zhou, Teng-Yao; Cao, Ying; Qin, Lu-Mei; Zhang, Ya-Hui; Zeng, Hong-Hu; Yan, Zhen-Guang; Liu, Zheng-Tao

    2014-05-01

    The acute toxicity (48 h-LC50 ) of copper to Daphnia magna predicted by the biotic ligand model (BLM) was compared with the 48 h-LC50 measured in water samples from Liaohe River and Taihu Lake at four specific sites in wet and dry seasons. The results showed that 48 h-LC50 values predicted by BLM were 232.75-411.49 microgL-1 and 48 h-LC50 values measured in the water samples were 134. 55-350. 00 microg L-1 in three sites of Hongmiaozi of Liaohe River, Pingtaishan and Tuoshan of Taihu Lake, which had a better consistency. While for Tongjiangkou of Liaohe River, there was a difference between the BLM predictions and the measured values in wet and dry seasons. According to the predictions and the experimental results, water effect ratios (WERs) were in the range of 2. 18-5.79 and 1.88-11.15 which all were higher than 1. The acute toxicity of Cu of all sites in dry season was greater than those in wet season, which might be that Cu complexation with dissolved organic matter (DOC) reduced the toxicity of Cu.

  14. 33 CFR 162.220 - Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hoover Dam, Lake Mead, and Lake... REGULATIONS § 162.220 Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev. (a) Lake Mead and... the axis of Hoover Dam and that portion of Lake Mohave (Colorado River) extending 4,500 feet...

  15. Hydrology and model of North Fork Solomon River Valley, Kirwin Dam to Waconda Lake, north-central Kansas

    Science.gov (United States)

    Jorgensen, Donald G.; Stullken, Lloyd E.

    1981-01-01

    The alluvial valley of the North Fork Solomon River is an important agricultural area. Reservoir releases diverted below Kirwin Dam are the principal source of irrigation water. During the 1970'S, severe water shortages occurred in Kirwin Reservoir and other nearby reservoirs as a result of an extended drought. Some evidence indicates that surface-water shortages may have been the result of a change in the rainfall-runoff relationship. Examination of the rainfall-runoff relationship shows no apparent trend from 1951 to 1968, but annual records from 1969 to 1976 indicate that deficient rainfall occurred during 6 of the 8 years. Ground water from the alluvial aquifer underlying the river valley also is used extensively for irrigation. Utilization of ground water for irrigation greatly increased from about 200 acre-feet in 1955 to about 12,300 acre-feet in 1976. Part of the surface water diverted for irrigation has percolated downward into the aquifer raising the ground-water level. Ground-water storage in the aquifer increased from 230,000 acre-feet in 1946 to 275,000 acre-feet in 1976-77. A digital model was used to simulate the steady-state conditions in the aquifer prior to closure of Kirwin Dam. Model results indicated that precipitation was the major source of recharge to the aquifer. The effective recharge, or gain from precipitation minus evapotranspiration, was about 11,700 acre-feet per year. The major element of discharge from the aquifer was leakage to the river. The simulated net leakage (leakage to the river minus leakage from the river) was about 11,500 acre-feet per year. The simulated value is consistent with the estimated gain in base flow of the river within the area modeled. Measurements of seepage used to determine gain and loss to the stream were made twice during 1976. Based on these measurements and on base-flow periods identified from hydrographs, it was estimated that the ground-water discharge to the stream has increased about 4,000 acre

  16. Ultraviolet Radiation over Two Lakes in the Middle and Lower Reaches of the Yangtze River, China: An Innovative Model for UV Estimation

    Directory of Open Access Journals (Sweden)

    Meiling Huang

    2011-01-01

    Full Text Available This study aims to explore the characteristics of ultraviolet (UV radiation over Dong Lake (DL and Tai Lake (TL in the middle and lower reaches of the Yangtze River and to develop an innovative model for UV estimation under all weather conditions. The characteristic analysis of UV radiation shows distinctly hourly and monthly variations at two typical sites. The maximum values can represent the hourly UV feature, and the median and the arithmetic mean values are reasonably similar with little difference for both stations. The monthly means of hourly UV radiation range from 25.68 to 70.07 kJ m-2 for DL and between 36.00 and 92.62 kJ m-2 for TL. The monthly mean hourly UV fractions vary from 3.79% to 4.93% at DL and between 4.57% and 5.94% at TL. Comparisons on the monthly mean hourly values of UV radiation and UV fraction, the values at TL are always greater than those at DL. An innovative model is constructed based on two input parameters, namely the effect of the comprehensive attenuation factors for assumed cloud-free conditions (CAFUVclear and the effect of the clouds (Kg. CAFUVclear is derived from empirical models based on relative optical air mass and ozone. The effectiveness of the presented model is demonstrated by comparing with other two estimation models. This innovative model presents values of RMSE better than two reported models either at local place or a different locality. It indicates that this new model can provide satisfactory estimates of UV radiation at different localities other than the local place of origin where the relationships are developed.

  17. The ESA River & Lake System: Current Capabilities and Future Potential

    DEFF Research Database (Denmark)

    Smith, Richard G.; Salloway, Mark; Berry, Philippa A. M.

    Measuring the earth's river and lake resources using satellite radar altimetry offers a unique global monitoring capability, which complements the detailed measurements made by the steadily decreasing number of in-situ gauges. To exploit this unique remote monitoring capability, a global pilot...... scheme was implemented in 2005 to derive river and lake surface height measurements from multi-mission satellite radar altimetry. Near-Real-Time (NRT) products from the Jason-2 satellite altimeter are automatically generated based on data acquired daily from CNES; allowing for estimates of river and lake...

  18. Impact of climate change on the Hii River basin and salinity in Lake Shinji: a case study using the SWAT model and a regression curve

    Science.gov (United States)

    The impacts of climate change on water resources were analysed for the Hii River basin and downstream Lake Shinji. The variation between saline and fresh water within these systems means that they encompass diverse ecosystems. Changes in evapotranspiration (ET), snow water equivalent, discharge into...

  19. Where This Occurs: Lakes and Rivers

    Science.gov (United States)

    Nutrient pollution builds up in our nation's lakes, ponds, and streams. EPA's 2010 National Lakes Assessment found that almost 20 percent of the 50,000 lakes surveyed had been impacted by nitrogen and phosphorus pollution.

  20. Floodplain lakes and alluviation cycles of the lower Colorado River

    Science.gov (United States)

    Malmon, D.; Felger, T. J.; Howard, K. A.

    2007-05-01

    The broad valleys along the lower Colorado River contain numerous bodies of still water that provide critical habitat for bird, fish, and other species. This chain of floodplain lakes is an important part of the Pacific Flyway - the major north-south route of travel for migratory birds in the western Hemisphere - and is also used by many resident bird species. In addition, isolated floodplain lakes may provide the only viable habitat for endangered native fish such as the razorback sucker, vulnerable to predation by introduced species in the main stem of the Colorado River. Floodplain lakes typically occupy former channel courses of the river and formed as a result of river meandering or avulsion. Persistent fluvial sediment deposition (aggradation) creates conditions that favor rapid formation and destruction of floodplain lakes, while long term river downcutting (degradation) inhibits their formation and evolution. New radiocarbon dates from wood recovered from drill cores near Topock, AZ indicate that the river aggraded an average of 3 mm/yr in the middle and late Holocene. Aggradational conditions before Hoover Dam was built were associated with rapid channel shifting and frequent lake formation. Lakes had short life spans due to rapid infilling with fine-grained sediment during turbid floods on the unregulated Colorado River. The building of dams and of armored banks had a major impact on floodplain lakes, not only by drowning large portions of the valley beneath reservoirs, but by preventing new lake formation in some areas and accelerating it in others. GIS analyses of three sets of historical maps show that both the number and total area of isolated (i.e., not linked to the main channel by a surface water connection) lakes in the lower Colorado River valley increased between 1902 and the 1950s, and then decreased though the 1970s. River bed degradation below dams inhibits channel shifting and floodplain lake formation, and the capture of fines behind the

  1. Lakes and rivers as microcosms, version 2.0

    Directory of Open Access Journals (Sweden)

    David G. Jenkins

    2013-08-01

    Full Text Available Limnology has been greatly influenced by The Lake as a Microcosm (Forbes, 1887, which described a holistic focus on the internal machinations of singular, island-like aquatic ecosystems. I consider three persistent influences of The Lake as a Microcosm: as an organizing paradigm for the teaching of limnology relative to its practice; the idea that inland waters are like islands, and the replicability of types of inland waters. Based on inspection of recent peer-reviewed literature and 32 limnology texts, we teach limnology according to Forbes but do not practice it in that holistic context. Instead, we practice limnology as aquatic ecology. Based on novel analyses of species-area relationships for 275 inland waters and 392 islands, inland waters are more like continental habitat patches than islands; the island metaphor is poetic but not accurate. Based on a quantitative review of beta diversity (40 data sets representing 10,576 inland waters and 26 data sets representing 1529 terrestrial sites, aquatic systems are no more replicable than are terrestrial systems; a typological approach to limnology is no more justified than it is in terrestrial systems. I conclude that a former distinction between limnology and aquatic ecology no longer applies, and that we should define limnology as the ecology of inland waters. Also, we should not consider lakes and rivers as islands that represent other systems of the same type, but should consider them as open, interactive habitat patches that vary according to their geology and biogeography. I suggest modern limnology operates according to 3 paradigms, which combine to form 3 broad limnological disciplines and establish a basis for a plural, interactive view of lakes and rivers as microcosms. This model of modern limnology may help better connect it to ecology and biogeography and help limnology be even more relevant to science and society.

  2. CryoSat-2 Altimetry Applications over Rivers and Lakes

    DEFF Research Database (Denmark)

    Jiang, Liguang; Schneider, Raphael; Andersen, Ole Baltazar

    2017-01-01

    combined with hydrologic/hydrodynamic models. Except CryoSat-2, all radar altimetry missions have been operated in conventional low resolution mode with a short repeat orbit (35 days or less). CryoSat-2, carrying a Synthetic Aperture Radar (SAR) altimeter, has a 369-day repeat and a drifting ground track...... pattern and provides new opportunities for hydrologic research. The narrow inter-track distance (7.5 km at the equator) makes it possible to monitor many lakes and rivers and SAR mode provides a finer along-track resolution, higher return power and speckle reduction through multi-looks. However, CryoSat-2...... challenges conventional ways of dealing with satellite inland water altimetry data because virtual station time series cannot be directly derived for rivers. We review the CryoSat-2 mission characteristics, data products, and its use and perspectives for inland water applications. We discuss all...

  3. Modeling wetland plant community response to assess water-level regulation scenarios in the Lake Ontario-St. Lawrence River basin

    Science.gov (United States)

    Hudon, Christiane; Wilcox, Douglas; Ingram, Joel

    2006-01-01

    The International Joint Commission has recently completed a five-year study (2000-2005) to review the operation of structures controlling the flows and levels of the Lake Ontario - St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.

  4. Mercury in the Calcasieu River/lake Complex, Louisiana

    International Nuclear Information System (INIS)

    Mueller, C.S.; Ramelow, G.J.; Beck, J.N.

    1989-01-01

    The Calcasieu River/Lake Complex is of great economic importance to southwestern Louisiana. Calcasieu Lake is an important fishing ground for shrimp and oysters. The Calcasieu River/Lake Complex has been the focus of an interdisciplinary study to assess the types and areas of pollution along this important waterway. Particular attention has been given to Hg because of the toxicity of this metal, and the local importance of the chloralkali industry--an industry that is known to discharge Hg into the environment. Water, sediment and biota were collected at stations in Calcasieu Lake, Calcasieu River, and along three bayou tributaries that were studied intensively. Intensive sampling included all stations along the particular bayou studied that month

  5. The impact of nitrogen contamination and river modification on a Mississippi River floodplain lake

    Energy Technology Data Exchange (ETDEWEB)

    Karthic, Indu [Box 1099 Environmental Sciences Program, Southern Illinois University, Edwardsville, IL 62026 (United States); Brugam, Richard B., E-mail: rbrugam@siue.edu [Box 1651 Department of Biological Sciences, Southern Illinois University, Edwardsville, IL 62026 (United States); Retzlaff, William [Box 1099 Environmental Sciences Program, Southern Illinois University, Edwardsville, IL 62026 (United States); Johnson, Kevin

    2013-10-01

    Anthropogenic nitrogen contamination has increased in ecosystems around the world (frequently termed the “nitrogen cascade”). Coke production for steel manufacturing is often overlooked as a source of nitrogen to natural ecosystems. We examined sediment cores from a Horseshoe Lake, a floodplain lake located just East of St. Louis Missouri (USA) to test whether a coking plant effluent could be traced using stable isotopes of nitrogen and diatom microfossils. The distribution of δ{sup 15}N values in surface sediment samples from the lake shows the highest values near the coking plant effluent. Stable isotopes of nitrogen from 4 sediment cores using a mixing model showed three sources of nitrogen since 1688 CE. The first source (active between 1688 and 1920 CE) had a calculated δ{sup 15}N value ranging between − 0.4 and 1.1‰ depending on the core. After 1920 a second source with a δ{sup 15}N ranging between 10.6 and 15.4‰ became active. The change in these sources coincides with the construction of a coking plant on the lake shore. A third source with a value approximately 7.0‰ was present at all times and represents background. The diatom microfossil assemblages present from 1688 CE to the late 1800s are dominated by the planktonic species Aulacoseira granulata and periphytic and benthic genera Gomphonema, Cocconeis, and Lyrella. After the late 1800s the diatom assemblages are dominated by Staurosira species indicating a shift of species from high flow riverine environments to epipelic species from a lake environment. Diatom microfossils seem to track the reduction in flooding due to leveeing of the floodplain and the isolation of the lake from the river. Our results show how stable isotopes of nitrogen can be used to track nitrogen inputs from industrial sources. Diatom changes corresponded with changes in connectivity between the Mississippi River and its floodplain. - Highlights: • Effluent from a steel plant increases fixed nitrogen input to a

  6. The impact of nitrogen contamination and river modification on a Mississippi River floodplain lake

    International Nuclear Information System (INIS)

    Karthic, Indu; Brugam, Richard B.; Retzlaff, William; Johnson, Kevin

    2013-01-01

    Anthropogenic nitrogen contamination has increased in ecosystems around the world (frequently termed the “nitrogen cascade”). Coke production for steel manufacturing is often overlooked as a source of nitrogen to natural ecosystems. We examined sediment cores from a Horseshoe Lake, a floodplain lake located just East of St. Louis Missouri (USA) to test whether a coking plant effluent could be traced using stable isotopes of nitrogen and diatom microfossils. The distribution of δ 15 N values in surface sediment samples from the lake shows the highest values near the coking plant effluent. Stable isotopes of nitrogen from 4 sediment cores using a mixing model showed three sources of nitrogen since 1688 CE. The first source (active between 1688 and 1920 CE) had a calculated δ 15 N value ranging between − 0.4 and 1.1‰ depending on the core. After 1920 a second source with a δ 15 N ranging between 10.6 and 15.4‰ became active. The change in these sources coincides with the construction of a coking plant on the lake shore. A third source with a value approximately 7.0‰ was present at all times and represents background. The diatom microfossil assemblages present from 1688 CE to the late 1800s are dominated by the planktonic species Aulacoseira granulata and periphytic and benthic genera Gomphonema, Cocconeis, and Lyrella. After the late 1800s the diatom assemblages are dominated by Staurosira species indicating a shift of species from high flow riverine environments to epipelic species from a lake environment. Diatom microfossils seem to track the reduction in flooding due to leveeing of the floodplain and the isolation of the lake from the river. Our results show how stable isotopes of nitrogen can be used to track nitrogen inputs from industrial sources. Diatom changes corresponded with changes in connectivity between the Mississippi River and its floodplain. - Highlights: • Effluent from a steel plant increases fixed nitrogen input to a floodplain

  7. 3D simulation of the influence of internal mixing dynamics on the propagation of river plumes in Lake Constance

    Science.gov (United States)

    Pflugbeil, Thomas; Pöschke, Franziska; Noffke, Anna; Winde, Vera; Wolf, Thomas

    2017-04-01

    Lake Constance is one of most important drinking water resources in southern Germany. Furthermore, the lake and its catchment is a meaningful natural habitat as well as economical and cultural area. In this context, sustainable development and conservation of the lake ecosystem and drinking water quality is of high importance. However, anthropogenic pressures (e.g. waste water, land use, industry in catchment area) on the lake itself and its external inflows are high. The project "SeeZeichen" (ReWaM-project cluster by BMBF, funding number 02WRM1365) is investigating different immission pathways (groundwater, river, superficial inputs) and their impact on the water quality of Lake Constance. The investigation includes the direct inflow areas as well as the lake-wide context. The present simulation study investigates the mixing dynamics of Lake Constance and its impacts on river inflows and vice versa. It considers different seasonal (mixing and stratification periods), hydrological (flood events, average and low discharge) and transport conditions (sediment loads). The simulations are focused on two rivers: The River Alpenrhein delivers about 60 % of water and material input into Lake Constance. The River Schussen was chosen since it is highly anthropogenic influenced. For this purpose, a high-resolution three-dimensional hydrodynamic model of the Lake Constance is set up with Delft3D-Flow model system. The model is calibrated and validated with long term data sets of water levels, discharges and temperatures. The model results will be analysed for residence times of river water within the lake and particle distributions to evaluate potential impacts of river plume water constituents on the general water quality of the lake.

  8. 33 CFR 207.170c - Kissimmee River, navigation locks between Lake Tohopekaliga and Lake Okeechobee, Fla.; use...

    Science.gov (United States)

    2010-07-01

    ... DEFENSE NAVIGATION REGULATIONS § 207.170c Kissimmee River, navigation locks between Lake Tohopekaliga and... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Kissimmee River, navigation locks between Lake Tohopekaliga and Lake Okeechobee, Fla.; use, administration, and navigation. 207.170c Section...

  9. Annual cycle in lakes and rivers from CryoSat-2 altimetry — The Brahmaputra river

    DEFF Research Database (Denmark)

    Villadsen, Heidi; Andersen, Ole Baltazar; Stenseng, Lars

    2014-01-01

    A key concern of the CryoSat-2 orbit has been its long repeat period of 369 days, which is usually undesirable for river and lake monitoring. However, the results of this study show that CryoSat-2 data can indeed be used for such monitoring by utilizing the high spatial coverage and the sub-cycle...... in which the two missions overlapped (2010–2012). Time series constructed using simple linear interpolation are fitted with a model to compare the captured annual signals and amplitudes. The annual cycles seen in CryoSat-2 and Envisat altimetry data agree very well and provide confidence in using CryoSat-2...

  10. Lake Michigan lake trout PCB model forecast post audit

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  11. Limnological features and models of chlorophyll-a in 30 lakes located in the lower Mackenzie River basin, Northwest Territories (Canada

    Directory of Open Access Journals (Sweden)

    Jonathan J. KEATING

    2009-08-01

    Full Text Available Limnological variables from 30 lakes situated along the proposed Mackenzie Gas Project pipeline route in the Canadian Northwest Territories were examined. Sampled lakes were shallow (Zmax = 1.5-30 m; mean depth = 6.6 m, generally nutrient poor (TP often ≤10 μg L-1, and alkaline (mean pH = 8.2. Floodplain lakes located within Arctic-tundra watersheds tended to have higher conductivity and major ions (Na, Cl, Ca, SO4 concentrations relative to non-flooded Arctic-tundra or forest-tundra lakes, reflecting differences in vegetation, elevation and most importantly, proximity to the Mackenzie River. The first two axes of a principal component analysis explained 56.1% of the variance in the environmental data. Variables most strongly associated with the first principal component axis were latitude, elevation, dissolved oxygen, temperature, conductivity and turbidity while the second principal component axis represented gradients of nutrients and Chlorophyll-a (Chl-a. Factors affecting Chl-a varied among the different ecological zones. This study provides reference data for future monitoring of potential effects of development and warming in the Arctic.

  12. Modelling the impact of prescribed global warming on runoff from headwater catchments of the Irrawaddy River and their implications for the water level regime of Loktak Lake, northeast India

    Directory of Open Access Journals (Sweden)

    C. R. Singh

    2010-09-01

    Full Text Available Climate change is likely to have major implications for wetland ecosystems, which will include altered water level regimes due to modifications in local and catchment hydrology. However, substantial uncertainty exists in the precise impacts of climate change on wetlands due in part to uncertainty in GCM projections. This paper explores the impacts of climate change upon river discharge within three sub-catchments of Loktak Lake, an internationally important wetland in northeast India. This is achieved by running pattern-scaled GCM output through distributed hydrological models (developed using MIKE SHE of each sub-catchment. The impacts of climate change upon water levels within Loktak Lake are subsequently investigated using a water balance model. Two groups of climate change scenarios are investigated. Group 1 uses results from seven different GCMs for an increase in global mean temperature of 2 °C, the purported threshold of ''dangerous'' climate change, whilst Group 2 is based on results from the HadCM3 GCM for increases in global mean temperature between 1 °C and 6 °C. Results from the Group 1 scenarios show varying responses between the three sub-catchments. The majority of scenario-sub-catchment combinations (13 out of 21 indicate increases in discharge which vary from <1% to 42% although, in some cases, discharge decreases by as much as 20%. Six of the GCMs suggest overall increases in river flow to Loktak Lake (2–27% whilst the other results in a modest (6% decline. In contrast, the Group 2 scenarios lead to an almost linear increase in total river flow to Loktak Lake with increasing temperature (up to 27% for 6 °C, although two sub-catchments experience reductions in mean discharge for the smallest temperature increases. In all but one Group 1 scenario, and all the Group 2 scenarios, Loktak Lake water levels are higher, regularly reaching the top of a downstream hydropower barrage that impounds the lake and necessitating the

  13. Carbon Dioxide and Methane Evasion from Amazonian Rivers and Lakes

    Science.gov (United States)

    Melack, J. M.; Barbosa, P.; Schofield, V.; Amaral, J.; Forsberg, B.; Farjalla, V.

    2013-12-01

    Floodplains, with their mosaic of aquatic habitats, constitute the majority of the wetlands of South America. We report 1) estimates of CH4 and CO2 flux from Amazonian floodplain lakes and rivers during low, rising and high water periods, and 2) identify environmental factors regulating these fluxes. We sampled 10 floodplain lakes, 4 tributaries of Solimões River, 6 stations on the Solimões main stem and 1 station on the Madeira, Negro and Amazonas rivers. Diffusive fluxes were measured with static floating chambers. CH4 fluxes were highly variable, with the majority of the values lower than 5 mmol m-2 d-1. For the lakes, no significant differences among the periods were found. CH4 concentration in the water and water temperature were the two main environmental factors regulating the diffusive flux. Our results highlight the importance of considering both the spatial and temporal scales when estimating CH4 fluxes for a region. CO2 fluxes from water to atmosphere ranged between 327 and -21 mmol m-2 d-1, averaging 58 mmol m-2 d-1. We found higher evasion rates in lakes than in rivers. For both systems the lowest rates were found in low water. pH and dissolved oxygen, phosphorous and organic carbon were the main factors correlated to CO2 evasion from the water bodies.

  14. The ESA River & Lake System: Current Capabilities and Future Potential

    DEFF Research Database (Denmark)

    Smith, Richard G.; Salloway, Mark; Berry, Philippa A. M.

    Measuring the earth's river and lake resources using satellite radar altimetry offers a unique global monitoring capability, which complements the detailed measurements made by the steadily decreasing number of in-situ gauges. To exploit this unique remote monitoring capability, a global pilot...

  15. White River National Forest Hanging Lake transportation and operations study

    Science.gov (United States)

    2017-05-01

    Hanging Lake is a recreation site located on land managed by the U.S. Forest Service (USFS) under the jurisdiction of the White River National Forests Eagle-Holy Cross Ranger District. Due to its increasing popularity over the past few years, the ...

  16. A new world lakes database for global hydrological modelling

    Science.gov (United States)

    Pimentel, Rafael; Hasan, Abdulghani; Isberg, Kristina; Arheimer, Berit

    2017-04-01

    Lakes are crucial systems in global hydrology, they constitutes approximately a 65% of the total amount of surface water over the world. The recent advances in remote sensing technology have allowed getting new higher spatiotemporal resolution for global water bodies information. Within them, ESA global map of water bodies, stationary map at 150 m spatial resolution, (Lamarche et al., 2015) and the new high-resolution mapping of global surface water and its long-term changes, 32 years product with a 30 m spatial resolution (Pekel et al., 2016). Nevertheless, these databases identifies all the water bodies, they do not make differences between lakes, rivers, wetlands and seas. Some global databases with isolate lake information are available, i.e. GLWD (Global Lakes and Wetland Database) (Lernhard and Döll, 2004), however the location of some of the lakes is shifted in relation with topography and their extension have also experimented changes since the creation of the database. This work presents a new world lake database based on ESA global map water bodies and relied on the lakes in GLWD. Lakes from ESA global map of water bodies were identified using a flood fill algorithm, which is initialized using the centroid of the lakes defined in GLWD. Some manual checks were done to split lakes that are really connected but identified as different lakes in GLWD database. In this way the database associated information provided in GLDW is maintained. Moreover, the locations of the outlet of all them were included in the new database. The high resolution upstream area information provided by Global Width Database for Large Rivers (GWD-LR) was used for that. This additional points location constitutes very useful information for watershed delineation by global hydrological modelling.. The methodology was validated using in situ information from Sweden lakes and extended over the world. 13 500 lakes greater than 0.1 km2 were identified.

  17. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  18. Estimation of river and lake heights using cryosat-2 altimetry

    DEFF Research Database (Denmark)

    Villadsen, Heidi; Andersen, Ole Baltazar; Stenseng, Lars

    2013-01-01

    Using a simple threshold retracker on SAR and LRM data from CryoSat-2 it is seen that the SIRAL radar altimeter shows great potential for height estimation over land and inland waters. Differences between heights from the SRTM DEM and the retracked heights were less than 1m for Lake Vättern in Sw...... of waveforms over land and inland waters is challenging. Therefore, using a well resolved river and lake mask and focusing on small test regions is recommended until radar altimetry over land and inland waters is fully understood.......Using a simple threshold retracker on SAR and LRM data from CryoSat-2 it is seen that the SIRAL radar altimeter shows great potential for height estimation over land and inland waters. Differences between heights from the SRTM DEM and the retracked heights were less than 1m for Lake Vättern...

  19. Estimating the water quality condition of river and lake water in the Midwestern United States from its spectral characteristics

    OpenAIRE

    Tan, Jing

    2015-01-01

    This study focuses on developing/calibrating remote sensing algorithms for water quality retrieval in Midwestern rivers and lakes. In the first part of this study, the spectral measurements collected using a hand-held spectrometer as well as water quality observations for the Wabash River and its tributary the Tippecanoe River in Indiana were used to develop empirical models for the retrieval of chlorophyll (chl) and total suspended solids (TSS). A method for removing sky and sun glint from f...

  20. Erosion risk assessment along coastlines, rivers, and lakes

    Science.gov (United States)

    Eidsvig, Unni; Harbitz, Carl B.; Issler, Dieter; Forsberg, Carl Fredrik; Høydal, Øyvind A.; Glimsdal, Sylfest; Frauenfelder, Regula

    2017-04-01

    An effect of the expected climate changes is that densely populated areas will be more exposed to natural hazards. There is a rising concern about geotechnical challenges associated with the transition zone between water and land, in particular with regard to erosion. This needs to be considered as part of the climate adaptation strategies in the society and applies to both coastal settlements and to settlements along rivers. Climate change, as reported by the IPCC, includes global warming, sea level rise as well as more precipitation, both with respect to intensity and frequency. A larger number of cities are expected to be affected by floods and with higher frequency. With large floods, the current speed in rivers and hence their erosion potential increases, leading to scouring along riverbanks, where important transport routes and other infrastructure are often located. The frequency and intensity of storm surges are expected to increase, as well as the risk of coastal erosion. In steep terrain, the likelihood of debris flows increases. The project "Multi-scale Erosion Risk under Climate Change" was initiated to prepare for such challenges as well as local climate adaptation. The project is an internal NGI strategic project funded by the Research Council of Norway for the period 2017 - 2019. The project aims to investigate relevant erosive and mass-flow processes in the coastal zone, along rivers, and in lakes. Further, the knowledge and tools to be developed within the project aim to reduce the risk associated with these processes, through appropriate land-use planning and innovative mitigation measures. The project is thematically subdivided into the following five work packages: WP1: Modelling of erosion processes in rivers, at the coast and in mass movements WP2: Floods, debris flows and sediment mobility in complex topography WP3: Coastal hydrodynamic processes WP4: Monitoring, warning and non-physical mitigation measures WP5: Dissemination and knowledge

  1. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    Science.gov (United States)

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  2. 33 CFR 329.11 - Geographic and jurisdictional limits of rivers and lakes.

    Science.gov (United States)

    2010-07-01

    ... limits of rivers and lakes. 329.11 Section 329.11 Navigation and Navigable Waters CORPS OF ENGINEERS... Geographic and jurisdictional limits of rivers and lakes. (a) Jurisdiction over entire bed. Federal... subject to inundation by the ordinary high waters. (1) The “ordinary high water mark” on non-tidal rivers...

  3. Drying of Urmia Lake: modeling of level fluctuations

    Directory of Open Access Journals (Sweden)

    Javad Ahmadi

    2016-03-01

    Full Text Available Background: Urmia Lake, the second largest hyper-saline lake of the world, has experienced lack of water and other environmental issues in recent years. Now, there is a danger of the lake drying out, which will affect the region and its inhabitants. This study aimed to present a model which can relate the water level of the lake to effective factors. Methods: Parameters that influence water level, such as precipitation, evaporation, water behind dams, and the previous year’s water level, were considered in the modeling procedure. The proposed model, based on evolutionary polynomial regression, can be used to evaluate salt marshes produced in the region in recent years. Results: Results show that the high surface-area-to-depth ratio of Urmia Lake is most influential on its drying; however, omitting this characteristic as an inherent one, the main cause is the construction of dams on rivers in the Urmia Lake basin. Conclusion: The proposed model predicts that by 2015, the water level of Urmia Lake will fall below 1269 m, and by 2030, the lake will dry out completely.

  4. Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China

    Science.gov (United States)

    Lu, Cai; Jia, Yifei; Jing, Lei; Zeng, Qing; Lei, Jialin; Zhang, Shuanghu; Lei, Guangchun; Wen, Li

    2018-04-01

    Better understanding of the dynamics of hydrological connectivity between river and floodplain is essential for the ecological integrity of river systems. In this study, we proposed a regime-switch modelling (RSM) framework, which integrates change point analysis with dynamic linear regression, to detect and date change points in linear regression, and to quantify the relative importance of natural variations and anthropogenic disturbances. The approach was applied to the long-term hydrological time series to investigate the evolution of river-floodplain relation in Dongting Lake in the last five decades, during which the Yangtze River system experienced unprecedented anthropogenic manipulations. Our results suggested that 1) there were five distinct regimes during which the influence of inflows and local climate on lake water level changed significantly. The detected change points were well corresponding to the major events occurred upon the Yangtze; 2) although the importance of inflows from the Yangtze was greater than that of the tributaries flows over the five regimes, the relative contribution gradually decreased from regime 1 to regime 5. The weakening of hydrological forcing from the Yangtze was mainly attributed to the reduction in channel capacity resulting from sedimentation in the outfalls and water level dropping caused by river bed scour in the mainstream; 3) the effects of local climate was much smaller than these of inflows; and 4) since the operation of The Three Gorges Dam in 2006, the river-floodplain relationship entered a new equilibrium in that all investigated variables changed synchronously in terms of direction and magnitude. The results from this study reveal the mechanisms underlying the alternated inundation regime in Dongting Lake. The identified change points, some of which have not been previously reported, will allow a reappraisal of the current dam and reservoir operation strategies not only for flood/drought risk management but

  5. Mattagami River Lake sturgeon entrainment : Little Long generating station facilities

    International Nuclear Information System (INIS)

    Seyler, J.; Evers, J.; McKinley, S.; Evans, R.R.; Prevost, G.; Carson, R.; Phoenix, D.

    1996-01-01

    This project and publication is the result of a collaborative effort by other Large River Ecosystem Unit of Northeast Science (NEST), Ontario Hydro in Kapuskasing, and the New Post First Nation in Cochrane, Ontario, designed to investigate potential solutions to minimize or eliminate the problem of trapped lake sturgeon in the Adam Creek Diversion. The Adam Creek Dam is used to divert excess water from the Mattagami River hydroelectric complex which consists of the Little Long, Smoky Falls, Harmon and Kipling generating stations. The lake sturgeon entrainment problem in the area was discovered in 1990. Potential solutions to the problem include the redirection of flows to mainstream, the placement of a rope barrier, electrical deterrents, physical/electrical guidance systems, sound deterrents, gate modifications, and the continued relocation of fish. The advantages and disadvantages of each of these potential solutions are discussed. Results of the analysis indicated that perceptual and physical barriers have the greatest potential to minimize lake sturgeon entrainment in Adam Creek. 25 refs., 2 tabs., 3 figs., 6 appendices

  6. [Classification and pollution characteristic analysis for inflow rivers of Chaohu Lake].

    Science.gov (United States)

    Wang, Shu-Hang; Jiang, Xia; Jin, Xiang-Can

    2011-10-01

    Based on main pollution sources and characteristics of inflow rivers of Chaohu Lake, the inflow rivers are clustered and the pollution levels are classified by statistical methods. In addition, the correlation between algal biomass and the river nutrients input loads is derived according to the inflow river water quality monitoring parameters and the Chl-a concentrations in lake areas. Results show that the inflow rivers are classified into three groups. Urban pollution, soil and water conservation, and non-point source pollution are the major factors which influence water quality respectively. The input loads of permanganate index, NH4(+) -N, TN, TP from urban pollution rivers to the whole lake are 41.29%, 89.49%, 72.27% and 60.14% to all inflow rivers respectively. Organic pollution is the main pollution source of inflow rivers by factor analysis. The pollution rank of nine inflow rivers are as follows: Nanfei River > Shiwuli River > Paihe River > Shuangqiao River > Zhegao River> Yuxi River> Baishishan River > Zhaohe River> Hangbu River. The algal biomass and the NH4(+) -N, TN, TP inputs of inflow rivers are positively correlated.

  7. Bacterial and toxic pollutants in lakes of river Indus

    International Nuclear Information System (INIS)

    Shafiq, H.B.; Rasool, S.A.; Ajaz, M.

    2011-01-01

    Indus river water gets polluted through three sources viz., municipal wastewater, industrial wastewater and agricultural runoff through drainage structure. The lakes in Sindh (fed by the river Indus), constitute the important source of drinking water, recreation and fish, etc. and offer employment for many. A large number of chemicals that either exist naturally in the land dissolve in the water, or human excreta added due to human activity thereby, contaminating and leading to various diseases. In order to assess the microbial contamination, detection of pollutant indicator organisms (coliform group), using Coliform test was performed by Most Probable Number technique and total bacterial count by Pour Plate method. The level of various heavy metals (arsenic, calcium, cadmium, chromium, copper, iron, lead, mercury, potassium, magnesium, manganese, sodium, selenium and zinc) and electrolytes (Cl/sup -1/, HCO/sub 3/sup -1/) was monitored in water and fish meat samples collected from Haleji and Keenjhar lakes to assess the impact of toxic pollutants. Metal concentrations in water and fish samples were estimated by atomic absorption spectrophotometry. Total coliform organisms were found in both the lake water samples, exceeded in 38% samples than the acceptable limits, while total average aerobic bacterial count analyzed in both the lakes was 102 CFU/ml - 1010 CFU/ml. Toxic chemical contaminants were estimated below the detection limit, while other several (essential) metal ions were found within the range set by WHO, except arsenic, cadmium and iron that exceeded slightly in 12.5% water samples. This study was designed to ensure the access of safe and potable water to urban and rural areas of Sindh. Further, the findings will help public/private enterprises and public health institutions to work for the people health friendly policies. (author)

  8. Lake-river and lake-atmosphere interactions in a changing climate over Northeast Canada

    Science.gov (United States)

    Huziy, O.; Sushama, L.

    2017-05-01

    Lakes influence the regional climate and hydrology in a number of ways and therefore they should be represented in climate models in a realistic manner. Lack of representation of lakes in models can lead to errors in simulated energy and water fluxes, for lake-rich regions. This study focuses on the assessment of the impact of climate change on lakes and hydrology as well as on the influence of lakes on projected changes to regional climate and surface hydrology, particularly streamflows, for Northeast Canada. To this end, transient climate change simulations spanning the 1950-2100 period are performed, with and without lakes, with the fifth generation of the Canadian Regional Climate Model (CRCM5), driven by the Canadian Earth System Model (CanESM2) at the lateral boundaries for Representative Concentration Pathway 8.5. An additional CRCM5 simulation, driven by European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim) for the 1980-2010 period, is performed in order to assess performance and boundary forcing errors. Performance errors are assessed by comparing the ERA-Interim-driven simulation with available observation datasets, for the 1980-2010 period, for selected variables: 2-m air temperature, total precipitation, snow water equivalent and streamflow. The validation results indicate reasonable model performance over the study region. Boundary forcing errors are studied by comparing ERA-Interim-driven simulation with the one driven by CanESM2 for the current 1980-2010 period, to identify regions and seasons for which projected changes should be interpreted with extra caution. Comparison of projected changes from the CRCM5 simulations with and without lakes suggest that the presence of lakes results in a dampening of projected increases to 2-m air temperature for all seasons almost everywhere in the study domain, with maximum dampening of the order of 2 °C occurring during winter, mostly in the vicinity of the lakes. As for

  9. Flood Plain Lakes Along the Elbe River - a Forgotten Risk

    Science.gov (United States)

    Heise, Susanne

    2014-05-01

    Flood Plain Lakes Along the Elbe River - a Forgotten Risk Introduction: Along the German part of the Elbe River, more than 1000 "side structures" form potential sinks of contaminated sediment. They are mostly remains of previous river courses which have been cut off by natural causes or anthropogenic alterations of the river (oxbow lakes), or are floodplain lakes that were formed during high water conditions. These water bodies sometimes have a small opening towards the Elbe, or are hydrodynamically connected only in situations of high discharges. High discharges in the Elbe River, however, are mainly responsible for transporting historic contaminants along with suspended matter from former historic sources in the middle Elbe downstream. As these may settle when the current dies down at the end of a high discharge period, side structures have been under suspicion to have accumulated contaminated material over the last decades. Until this study was conducted, nothing was known about erodibility and contamination of sediment in these lakes even though they could have a large impact on the Elbe River itself: A preliminary investigation showed that the total surface of side structures in the Elbe floodplain adds up to about 50 km2. In case that deposited sediment is contaminated and only the upper 20 cm are prone to resuspension and transport during flooding, 10 Mio m3 of contaminated sediment could potentially be added to the contaminant load during a high water event. This study was carried out to evaluate the risk from these side structures for the environmental quality of the Elbe River. Methods: 15 side structures were investigated. Sediment cores were taken on 1 to 3 locations per water body in order to obtain the following information: • Depth of sediment layer • Erodibility of surface sediment, measured immediately after sampling - using the "Gust Microcosm", • Eroded mass at over-critical shear stress, measured in the lab by eroding a sediment core for

  10. Prehistory of the Little Blue River Valley, Western Missouri: Archaeological Investigations at Blue Springs Lake.

    Science.gov (United States)

    1989-01-01

    Lake project. The report discusses the geomorphology and vegetation of the Little Blue River valley, Late Quaternary bioclimatic change in Western...54 Aquatic Communities ............................... 58 IV. LATE QUATERNARY BIOCLIMATIC CHANGE IN WESTERN MISSOURI by Rolfe D...City District is presently constructing Blue Springs Lake on the East Fork of the Little Blue River in Jackson County, Missouri. The location of the

  11. 33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Norman Dam and Lake Thunderbird... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.34 Norman Dam and Lake Thunderbird, Little River, Okla. The Bureau of Reclamation, or its designated agent, shall operate Norman Dam and Lake...

  12. Tracing historical trends of Hg in the Mississippi River using Hg concentrations and Hg isotopic compositions in a lake sediment core, Lake Whittington, Mississippi, USA

    Science.gov (United States)

    Gray, John E.; Van Metre, Peter C.; Pribil, Michael J.; Horowitz, Arthur J.

    2015-01-01

    Concentrations and isotopic compositions of mercury (Hg) in a sediment core collected from Lake Whittington, an oxbow lake on the Lower Mississippi River, were used to evaluate historical sources of Hg in the Mississippi River basin. Sediment Hg concentrations in the Lake Whittington core have a large 10-15 y peak centered on the 1960s, with a maximum enrichment factor relative to Hg in the core of 4.8 in 1966. The Hg concentration profile indicates a different Hg source history than seen in most historical reconstructions of Hg loading. The timing of the peak is consistent with large releases of Hg from Oak Ridge National Laboratory (ORNL), primarily in the late 1950s and 1960s. Mercury was used in a lithiumisotope separation process by ORNL and an estimated 128Mg (megagrams) of Hgwas discharged to a local stream that flows into the Tennessee River and, eventually, the Mississippi River. Mass balance analyses of Hg concentrations and isotopic compositions in the Lake Whittington core fit a binary mixing model with a Hg-rich upstream source contributing about 70% of the Hg to Lake Whittington at the height of the Hg peak in 1966. This upstream Hg source is isotopically similar to Hg isotope compositions of stream sediment collected downstream near ORNL. It is estimated that about one-half of the Hg released from the ORNL potentially reached the LowerMississippi River basin in the 1960s, suggesting considerable downstream transport of Hg. It is also possible that upstream urban and industrial sources contributed some proportion of Hg to Lake Whittington in the 1960s and 1970s.

  13. Lake Sturgeon, Lake Whitefish, and Walleye egg deposition patterns with response to fish spawning substrate restoration in the St. Clair–Detroit River system

    Science.gov (United States)

    Fischer, Jason L.; Pritt, Jeremy J.; Roseman, Edward; Prichard, Carson G.; Craig, Jaquelyn M.; Kennedy, Gregory W.; Manny, Bruce A.

    2018-01-01

    Egg deposition and use of restored spawning substrates by lithophilic fishes (e.g., Lake Sturgeon Acipenser fulvescens, Lake Whitefish Coregonus clupeaformis, and Walleye Sander vitreus) were assessed throughout the St. Clair–Detroit River system from 2005 to 2016. Bayesian models were used to quantify egg abundance and presence/absence relative to site-specific variables (e.g., depth, velocity, and artificial spawning reef presence) and temperature to evaluate fish use of restored artificial spawning reefs and assess patterns in egg deposition. Lake Whitefish and Walleye egg abundance, probability of detection, and probability of occupancy were assessed with detection-adjusted methods; Lake Sturgeon egg abundance and probability of occurrence were assessed using delta-lognormal methods. The models indicated that the probability of Walleye eggs occupying a site increased with water velocity and that the rate of increase decreased with depth, whereas Lake Whitefish egg occupancy was not correlated with any of the attributes considered. Egg deposition by Lake Whitefish and Walleyes was greater at sites with high water velocities and was lower over artificial spawning reefs. Lake Sturgeon eggs were collected least frequently but were more likely to be collected over artificial spawning reefs and in greater abundances than elsewhere. Detection-adjusted egg abundances were not greater over artificial spawning reefs, indicating that these projects may not directly benefit spawning Walleyes and Lake Whitefish. However, 98% of the Lake Sturgeon eggs observed were collected over artificial spawning reefs, supporting the hypothesis that the reefs provided spawning sites for Lake Sturgeon and could mitigate historic losses of Lake Sturgeon spawning habitat.

  14. Cryosat-2 and Sentinel-3 tropospheric corrections: their evaluation over rivers and lakes

    Science.gov (United States)

    Fernandes, Joana; Lázaro, Clara; Vieira, Telmo; Restano, Marco; Ambrózio, Américo; Benveniste, Jérôme

    2017-04-01

    In the scope of the Sentinel-3 Hydrologic Altimetry PrototypE (SHAPE) project, errors that presently affect the tropospheric corrections i.e. dry and wet tropospheric corrections (DTC and WTC, respectively) given in satellite altimetry products are evaluated over inland water regions. These errors arise because both corrections, function of altitude, are usually computed with respect to an incorrect altitude reference. Several regions of interest (ROI) where CryoSat-2 (CS-2) is operating in SAR/SAR-In modes were selected for this evaluation. In this study, results for Danube River, Amazon Basin, Vanern and Titicaca lakes, and Caspian Sea, using Level 1B CS-2 data, are shown. DTC and WTC have been compared to those derived from ECMWF Operational model and computed at different altitude references: i) ECMWF orography; ii) ACE2 (Altimeter Corrected Elevations 2) and GWD-LR (Global Width Database for Large Rivers) global digital elevation models; iii) mean lake level, derived from Envisat mission data, or river profile derived in the scope of SHAPE project by AlongTrack (ATK) using Jason-2 data. Whenever GNSS data are available in the ROI, a GNSS-derived WTC was also generated and used for comparison. Overall, results show that the tropospheric corrections present in CS-2 L1B products are provided at the level of ECMWF orography, which can depart from the mean lake level or river profile by hundreds of metres. Therefore, the use of the model orography originates errors in the corrections. To mitigate these errors, both DTC and WTC should be provided at the mean river profile/lake level. For example, for the Caspian Sea with a mean level of -27 m, the tropospheric corrections provided in CS-2 products were computed at mean sea level (zero level), leading therefore to a systematic error in the corrections. In case a mean lake level is not available, it can be easily determined from satellite altimetry. In the absence of a mean river profile, both mentioned DEM

  15. How does the Taquari River influence in the cladoceran assemblages in three oxbow lakes?

    Directory of Open Access Journals (Sweden)

    EA. Panarelli

    Full Text Available This study examined the cladoceran assemblages in three oxbow lakes of the Taquari River floodplain, near the transition between the plateau and the plain. We sought to answer the following questions: does the Taquari River function as a geographical barrier or dispersal corridor for Cladocera? Can different degrees of connection induce different structures in the assemblages in each lake? Cladocerans and limnological variables were sampled every other month for one year. Forty-one species were recorded, four of which were common to all the lakes. Our results indicated that the different degrees of connection between the river and the oxbow lakes favoured environmental heterogeneity and diversification in the cladoceran assemblages. The greatest dissimilarity between the two lakes connected with the river indicates that in this case the river functions better as a barrier than a dispersal corridor.

  16. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  17. 210Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil

    International Nuclear Information System (INIS)

    Bonotto, Daniel Marcos; Vergotti, Marcelo

    2015-01-01

    Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to Madeira River due to fact it is a major tributary of Amazon River and that since 1986, gold exploration has been officially permitted along a 350 km sector of the river. The 210 Pb method has been used to date sediments taken from nine lakes situated in Madeira River basin, Rondônia State, and to verify where anthropogenic Hg might exist due to gold exploitation in Madeira River. Activity profiles of excess 210 Pb determined in the sediment cores provided a means to evaluate the sedimentation rates using a Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess 210 Pb models. A significant relationship was found between the CF:CS sedimentation rates and the mean values of the CRS sedimentation rates (Pearson correlation coefficient r=0.59). Chemical data were also determined in the sediments for identifying possible relationships with Hg occurring in the area. Significant values were found in statistical correlation tests realized among the Hg, major oxides and Total Organic Carbon (TOC) content in the sediments. The TOC increased in the sediment cores accompanied by a loss on ignition (LOI) increment, whereas silica decreased following a specific surface area raising associated to the TOC increase. The CRS model always provided ages within the permitted range of the 210 Pb-method in the studied lakes, whereas the CF:CS model predicted two values above 140 years. - Highlights: • Gold mining activities. • Madeira River basin at Amazon area. • Pb-210 chronological method. • Models for evaluating sedimentation rates

  18. Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu Lake in Taihu Basin

    Directory of Open Access Journals (Sweden)

    Wu Haoyun

    2008-09-01

    Full Text Available On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtze River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching decision-making support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.

  19. Life history characteristics of a recovering lake whitefish Coregonus clupeaformis stock in the Detroit River, North America

    Science.gov (United States)

    Roseman, Edward F.; Kennedy, Gregory W.; Manny, Bruce A.; Boase, James; McFee, James; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth

    2012-01-01

    The Detroit River is part of a channel connecting Lakes Huron and Erie and was once a prolific spawning area for lake whitefish, Coregonus clupeaformis. Large numbers of lake whitefish migrated into the river to spawn where they were harvested by commercial fisheries and for fish culture operations. Prior to our study, the last lake whitefish was landed from the Detroit River in 1925. Loss of spawning habitat during shipping channel construction and over-fishing, likely reduced lake whitefish spawning runs. Because lake whitefish are recovering in Lake Erie, and spawning in the western basin, we suspected they may also be spawning in the Detroit River. We sampled in the Detroit River for lake whitefish adults and eggs in October–December 2005–07 and for larvae during March–May 2006–08. A total of 15 spawning-ready lake whitefish from 4 to 18 years old, were collected. Viable eggs were collected during mid-November 2006–07; highest egg densities were found mid-river. Sac-fry whitefish larvae were collected in the river and near the river mouth. No whitefish larvae were retained in the river. Because high numbers of larvae were collected from mid- and downstream river sites, reproduction of lake whitefish in the Detroit River could contribute substantially to the Lake Erie lake whitefish metapopulation.

  20. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  1. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  2. Estimation of Transport Trajectory and Residence Time in Large River–Lake Systems: Application to Poyang Lake (China Using a Combined Model Approach

    Directory of Open Access Journals (Sweden)

    Yunliang Li

    2015-09-01

    Full Text Available The biochemical processes and associated water quality in many lakes mainly depend on their transport behaviors. Most existing methodologies for investigating transport behaviors are based on physically based numerical models. The pollutant transport trajectory and residence time of Poyang Lake are thought to have important implications for the steadily deteriorating water quality and the associated rapid environmental changes during the flood period. This study used a hydrodynamic model (MIKE 21 in conjunction with transport and particle-tracking sub-models to provide comprehensive investigation of transport behaviors in Poyang Lake. Model simulations reveal that the lake’s prevailing water flow patterns cause a unique transport trajectory that primarily develops from the catchment river mouths to the downstream area along the lake’s main flow channels, similar to a river-transport behavior. Particle tracking results show that the mean residence time of the lake is 89 days during July–September. The effect of the Yangtze River (the effluent of the lake on the residence time is stronger than that of the catchment river inflows. The current study represents a first attempt to use a combined model approach to provide insights into the transport behaviors for a large river–lake system, given proposals to manage the pollutant inputs both directly to the lake and catchment rivers.

  3. Prevention of Polluting Rivers and Lakes from Ships

    Directory of Open Access Journals (Sweden)

    Natalija Jolić

    2005-09-01

    Full Text Available Traffic on rivers and lakes in Europe has been ve1y well developed.The reason for this is the transport cost, relative speedand good connectivity of major European cities by rivers andcanals. In Croatia, this transport mode is lagging behind therest of Europe. Croatia is located at an interesting section of theriver transversal, but due to several reasons, river navigation inCroatia has not been developed to any major extent. As operatingriver ships the most frequent types are: towboats, pushboatsand self-propelled ships. The installed diesel engines, propulsionand auxiliary engines run at high power. Proportional tothe increase in the power of installed engines is also the increasein the volume of waste produced by the engines. Also, the olderthe engine, the greater volume of waste it produces. Ships mayalso cause pollution by wastewaters and garbage. This pollutionthreat grows with the greater number of people on boardand the age of the ship. In order to minimize these possibilitiesof pollution, it is necesswy to control all the time the properfunctioning of the ships, train the staff and construct receptionfacilities on land.

  4. Monitoring and Modelling Lakes and Coastal Environments

    Science.gov (United States)

    Odada, Eric

    2009-01-01

    The monitoring and modeling of lakes and coastal environments is becoming ever more important, particularly because these environments bear heavy loads in terms of human population, and their resources are critical to the livelihoods and well-being of coastal inhabitants and ecosystems. Monitoring and Modelling Lakes and Coastal Environments is a collection of 18 papers arising from the Lake 2004 International Conference on Conservation, Restoration and Management of Lakes and Coastal Wetlands, held in Bhubaneswar, Orissa, India, 9-13 December 2004. Consequently, 15 of the papers are concerned with studies on the Indian subcontinent, and many of the papers focus on India's Lake Chilika, the site of a special session during the conference. Two papers concern Japan, and one focuses on North America's Great Lakes region. Although the book has a regional bias, the replication of best practices that can be drawn from these studies may be useful for an international audience.

  5. Assessing river water quality using water quality index in Lake Taihu Basin, China.

    Science.gov (United States)

    Wu, Zhaoshi; Wang, Xiaolong; Chen, Yuwei; Cai, Yongjiu; Deng, Jiancai

    2018-01-15

    Lake Taihu Basin, one of the most developed regions in China, has received considerable attention due to its severe pollution. Our study provides a clear understanding of the water quality in the rivers of Lake Taihu Basin based on basin-scale monitoring and a water quality index (WQI) method. From September 2014 to January 2016, four samplings across four seasons were conducted at 96 sites along main rivers. Fifteen parameters, including water temperature, pH, dissolved oxygen (DO), conductivity, turbidity (tur), permanganate index (COD Mn ), total nitrogen, total phosphorus, ammonium (NH 4 -N), nitrite, nitrate (NO 3 -N), calcium, magnesium, chloride, and sulfate, were measured to calculate the WQI. The average WQI value during our study period was 59.33; consequently, the water quality was considered as generally "moderate". Significant differences in WQI values were detected among the 6 river systems, with better water quality in the Tiaoxi and Nanhe systems. The water quality presented distinct seasonal variation, with the highest WQI values in autumn, followed by spring and summer, and the lowest values in winter. The minimum WQI (WQI min ), which was developed based on a stepwise linear regression analysis, consisted of five parameters: NH 4 -N, COD Mn , NO 3 -N, DO, and tur. The model exhibited excellent performance in representing the water quality in Lake Taihu Basin, especially when weights were fully considered. Our results are beneficial for water quality management and could be used for rapid and low-cost water quality evaluation in Lake Taihu Basin. Additionally, we suggest that weights of environmental parameters should be fully considered in water quality assessments when using the WQI min method. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biological and ecological science for Wisconsin—A Great Lakes and Rivers State

    Science.gov (United States)

    ,

    2018-03-06

    Wisconsin and natural resources go hand-in-hand. Tourism, which generates $19 billion annually and sustains about 200,000 jobs, depends on an abundance of lakes, rivers, shorelines, and woodlands for fishing, hunting, boating, and other outdoor recreation. Rivers and floodplains in the Upper Mississippi Basin, including the Mississippi River, are part of a five-State corridor that generates more than $300 billion annually and sustains millions of manufacturing, tourism, transportation, and agricultural jobs. Wisconsin also is a Great Lakes State with more than 800 miles of shoreline, and the fisheries of lakes Superior and Michigan deliver $185 million annually and provide thousands of jobs.

  7. Post Audit of Lake Michigan Lake Trout PCB Model Forecasts

    Science.gov (United States)

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  8. Changes in Glaciers and Glacial Lakes and the Identification of Dangerous Glacial Lakes in the Pumqu River Basin, Xizang (Tibet

    Directory of Open Access Journals (Sweden)

    Tao Che

    2014-01-01

    Full Text Available Latest satellite images have been utilized to update the inventories of glaciers and glacial lakes in the Pumqu river basin, Xizang (Tibet, in the study. Compared to the inventories in 1970s, the areas of glaciers are reduced by 19.05% while the areas of glacial lakes are increased by 26.76%. The magnitudes of glacier retreat rate and glacial lake increase rate during the period of 2001–2013 are more significant than those for the period of the 1970s–2001. The accelerated changes in areas of the glaciers and glacial lakes, as well as the increasing temperature and rising variability of precipitation, have resulted in an increased risk of glacial lake outburst floods (GLOFs in the Pumqu river basin. Integrated criteria were established to identify potentially dangerous glacial lakes based on a bibliometric analysis method. It is found, in total, 19 glacial lakes were identified as dangerous. Such finding suggests that there is an immediate need to conduct field surveys not only to validate the findings, but also to acquire information for further use in order to assure the welfare of the humans.

  9. DNR 100K Lakes and Rivers - Fisheries Experimental and Special Regulations

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer represents lakes and rivers having experimental or special regulations for fishing. The existing regulations for the current fishing season are shown....

  10. 77 FR 61631 - Final Environmental Impact Statement for Stehekin River Corridor Implementation Plan, Lake Chelan...

    Science.gov (United States)

    2012-10-10

    ... alternatives, new rock structures (barbs) could be placed along the river. Alternatives 2 and 3 would relocate... structures (barbs) compared to Alternatives 1 and 4. Alternatives 2-5 would revise the Lake Chelan NRA Land...

  11. High-Frequency Acoustic Imaging of L Lake, Savannah River Site, South Carolina

    National Research Council Canada - National Science Library

    Sjostrom, Keith

    1997-01-01

    The objective of the seismic reflection and side scan sonar survey is to determine the location, aerial extent, and depth of burial pits situated along the reservoir bottom of L lake, Savannah River Site, SC...

  12. Mapping Dynamics of Inundation Patterns of Two Largest River-Connected Lakes in China: A Comparative Study

    OpenAIRE

    Guiping Wu; Yuanbo Liu

    2016-01-01

    Poyang Lake and Dongting Lake are the two largest freshwater lakes in China. The lakes are located approximately 300 km apart on the middle reaches of the Yangtze River and are differently connected through their respective tributary systems, which will lead to different river–lake water exchanges and discharges. Thus, differences in their morphological and hydrological conditions should induce individual lake spatio-temporal inundation patterns. Quantitative comparative analyses of the dynam...

  13. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sanford Dam and Lake Meredith... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.32 Sanford Dam and Lake Meredith, Canadian River, Tex. The Bureau of Reclamation, or its designated agent, shall operate the Sanford Dam and...

  14. Effects of river otter activity on terrestrial plants in trophically altered Yellowstone Lake.

    Science.gov (United States)

    Crait, Jamie R; Ben-David, Merav

    2007-04-01

    Animals that deposit aquatically derived nutrients on terrestrial landscapes link food webs and affect a variety of in situ processes. This phenomenon, however, is poorly documented in freshwater habitats, especially where species introductions have drastically changed an ecosystem's trophic structure. In this study, we used stable isotopes to document water-to-land nutrient transport by river otters (Lontra canadensis) around Yellowstone Lake, an ecosystem recently altered by nonnative species invasions. We then investigated the effects of otter fertilization on plant growth and prevalence at latrine (scent-marking) sites and evaluated how the recent changes to the lake's food web could influence these plant responses. Values of delta15N were higher on latrines compared to non-latrine sites in five of seven sample plant taxa. Additionally, latrine grasses had higher percentage N than those from non-latrines. Foliar delta15N positively related to fecal deposition rate for some plants, indicating that increased otter scent-marking led to a rise in these N values. Logistic regression models indicated that otters selected for well-shaded latrines with access to foraging. Atypical latrines, misclassified as non-latrines by the regression models, had values of delta15N similar to correctly classified latrines, suggesting that site effects alone cannot explain elevated N values at otter latrine sites. No difference in plant diversity or percent cover of N-fixing taxa occurred between latrine and nonlatrine sites, though specific genera did differ between site types. Measurements of shoot lengths indicated increased growth of some latrine currants (Ribes sp.). In Yellowstone Lake, a twofold reduction in otter numbers could result in an even greater decline in nutrient deposition at latrines, as otters may become less social in a system with decreased prey availability. Our results highlight the role of animals in linking aquatic and terrestrial habitats in inland

  15. Relationships between water quality parameters in rivers and lakes: BOD5, COD, NBOPs, and TOC.

    Science.gov (United States)

    Lee, Jaewoong; Lee, Seunghyun; Yu, Soonju; Rhew, Doughee

    2016-04-01

    Biological oxygen demand (BOD5) or chemical oxygen demand (COD) analysis is widely used to evaluate organic pollutants in water systems as well as the efficiency of wastewater treatment plants. However, both analysis methods have restrictions such as being insensitive, imprecise, time-consuming, and the production of chemical waste. Therefore, total organic carbon (TOC) analysis for organic pollutants has been considered for an alternative analysis instead of BOD5 or COD. Several studies have investigated the replacement of BOD5 or COD with TOC in wastewater samples; however, few studies have investigated the relationships between water quality parameters in rivers and lakes. Therefore, this study evaluated the relationships between BOD5, COD, or NBOPs and TOC by the analysis of national water quality monitoring data of rivers and lakes for 5 years. High correlation coefficients (r) of 0.87 and 0.66 between BOD5 and TOC (p TOC (p TOC was 0.93 for rivers and 0.72 for lakes. The coefficients of determination (R 2) were 0.75 and 0.44 between BOD5 and TOC for rivers and lakes as well as were 0.87 and 0.57 between COD and TOC for rivers and lakes, respectively. The coefficient of determination (R 2) between NBOPs and TOC was 0.73 for rivers and 0.52 for lakes.

  16. Evidence of a 700-year Lake Agassiz megaflood in the slackwater deposits of Mississippi River tributaries

    Science.gov (United States)

    Wang, H.; Stumpf, A.; Berg, R. C.; McKay, E. D., III

    2010-12-01

    One prominent event associated with retreat of the Laurentide Ice Sheet was the release of an exceptionally large volume of meltwater from Lake Agassiz. This discharge led to a sea-level rise of 20 meters in about 500 years and caused disruption to the global thermohaline circulation that led to an overall cooling during the Younger Dryas stadial (YDS). Recent studies suggest that the eastern and northern outlets of glacial Lake Agassiz remained closed until the early YDS, but new findings by the authors indicate that catastrophic floods drained through a southern outlet along the Mississippi River at this time. Here we present a detailed description of a dune-paleosol/peat succession from the middle Illinois River valley containing a slackwater deposit (peat) associated with these floods that has been dated using 14C and OSL methods to the Bølling-Allerød interstadial. At this site, Heinrich stadial 1 (HS1) and YDS dunes are separated by a well-developed Bølling-equivalent paleosol overlain by an Allerød-equivalent slackwater peat unit. The paleosol developed under warm/humid conditions, fundamentally different from the cold and dry conditions that prevailed during dune formation. Our age model indicates that the Bølling-equivalent paleosol developed for 1200 years followed by the meltwater megaflood. Preliminary measurements indicate the flood raised the Mississippi River level at its juncture with the Illinois River 18 m higher than the 500-year flood recorded in 1993. The megaflood blocked the Illinois River forming a large slackwater swamp, which lasted for 700 years. The release of cold meltwater through the Mississippi River basin inevitably lowered the sea surface temperature (SST) in the Gulf of Mexico, shortening the northern overturning circulation and shifting the Intertropical Convergence Zone (ITCZ) southward. As a consequence, the southerlies became weakened and retreated southward allowing the dry westerlies and northwesterlies to carry Pacific

  17. [Heavy metals pollution and its stability assessment of sediments in flowing rivers around lake Taihu].

    Science.gov (United States)

    Lu, Shao-Yong; Jiao, Wei; Jin, Xiang-Can; Yuan, Ye; Zhang, Ye; Li, Guang-De

    2010-10-01

    16 main inflow and outflow rivers around Lake Taihu were chosen as the research object, and the concentrations and distribution of four heavy metals (Pb, Cd, Cu and Zn) in the surface sediments of these river estuaries were detected. The pollution extent and stability were analyzed by using three-step sequential extraction method (BCR method). Aim of this study is to control heavy metal pollution of Lake Taihu and provide the basic information. Based on the results, the monitored river estuaries all had been contaminated by different degrees, and four heavy metals' concentrations all exceeded the threshold effect level (TEL) at most sampling sites. A distinct spatial heterogeneity was found in extracted fractions of these heavy metals distribution: northern rivers > southern rivers, inflow rivers > outflow rivers. The Stability Assessment Code (SAC) for different metals varied in the descending order of Cd, Zn, Pb and Cu. Compared with Pb and Cu, Cd and Zn had a higher second release potential and ecological risk.

  18. On Some Oikonymic Models of the Eastern Lake Onega Region

    Directory of Open Access Journals (Sweden)

    Ekaterina V. Zakharova

    2014-06-01

    Full Text Available The paper analyzes several models of settlement naming present in Eastern Lake Onega region and reflecting different stages of its ethnolinguistic history. The author focuses on oikonyms suffixed with -itsy/-itchi and those containing Balto-Fennic words kontu, kondu, kond ‘peasant household’ and selgä, vuara ‘mountain’. The areal analysis shows that oikonyms in -itsy/-itchi resulted from adaptation of Vepsian and Karelian names and outline the ways of ancient migrations of the Russians from Lake Ladoga region to Svir River and Lake Onega regions (Prisvirye and Obonezhye, Eastern Lake Onega region being a peripheral zone of the area traced by the model in question. The author argues that the few settlement names with the stem Kond- have relatively late origins, most likely Vepsian, though for some toponyms the Karelian origin is not to be ruled out. The low productivity of the selgä oikonymic model and the absence of settlement names with the determinant -vara can be explained by the historical dominance of the naming patterns using the Russian term gora ‘mountain’ which brings this region closer to the territory of the Russian North. The areal, statistic and linguistic analysis of the settlement names of Eastern Lake Onega region testifies to its marginal position as related to the Vepsian territories on the South, as well as the Karelian territories on the West and the Northern Russian lands on the East. This peripheral, marginal position of the region is due to its geographic features, first and foremost, to its association with the transit waterway which was, in the past, the Vodla River.

  19. [The parasite fauna and structures of parasite communities of Oreoleuciscus humilis Warpachowski, 1889 from Ust-Nur Lake (Selenga River basin) and Tuin-Gol River (Goby Lakes Valley)].

    Science.gov (United States)

    Batueva, M D

    2011-01-01

    The parasite fauna of Oreoleuciscus humilis from the Ust-Nur Lake (Selenga River basin), Tuin-Gol River (Goby Lakes Valley) are given for the first time. We found 9 species of Oreoleuciscus humilis parasites, 5 species is revealed for the first time for this host. Infracommunities of parasites of Oreoleuciscus humilis in the Tuin-Gol River are balanced and mature, in the Ust-Nur Lake are not balaced and not mature.

  20. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    Science.gov (United States)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  1. Evaluation of triclosan in Minnesota lakes and rivers: Part I - ecological risk assessment.

    Science.gov (United States)

    Lyndall, Jennifer; Barber, Timothy; Mahaney, Wendy; Bock, Michael; Capdevielle, Marie

    2017-08-01

    Triclosan, an antimicrobial compound found in consumer products, may be introduced into the aquatic environment via residual concentrations in municipal wastewater treatment effluent. We conducted an aquatic risk assessment that incorporated the available measured triclosan data from Minnesota lakes and rivers. Although only data reported from Minnesota were considered in the risk assessment, the developed toxicity benchmarks can be applied to other environments. The data were evaluated using a series of environmental fate models to ensure the data were internally consistent and to fill any data gaps. Triclosan was not detected in over 75% of the 567 surface water and sediment samples. Measured environmental data were used to model the predicted environmental exposures to triclosan in surface water, surface sediment, and biota tissues. Toxicity benchmarks based on fatty acid synthesis inhibition and narcosis were determined for aquatic organisms based, in part, on a species sensitivity distribution of chronic toxicity thresholds from the available literature. Predicted and measured environmental concentrations for surface water, sediment, and tissue were below the effects benchmarks, indicating that exposure to triclosan in Minnesota lakes and rivers would not pose an unacceptable risk to aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Simulation of the effects of Devils Lake outlet alternatives on future lake levels and water quality in the Sheyenne River and Red River of the North

    Science.gov (United States)

    Vecchia, Aldo V.

    2011-01-01

    Since 1992, Devils Lake in northeastern North Dakota has risen nearly 30 feet, destroying hundreds of homes, inundating thousands of acres of productive farmland, and costing more than $1 billion for road raises, levee construction, and other flood mitigation measures. In 2011, the lake level is expected to rise at least another 2 feet above the historical record set in 2010 (1,452.0 feet above the National Geodetic Vertical Datum of 1929), cresting less than 4 feet from the lake's natural spill elevation to the Sheyenne River (1,458.0 feet). In an effort to slow the rising lake and reduce the chance of an uncontrolled spill, the State of North Dakota is considering options to expand a previously constructed outlet from the west end of Devils Lake or construct a second outlet from East Devils Lake. Future outlet discharges from Devils Lake, when combined with downstream receiving waters, need to be in compliance with applicable Clean Water Act requirements. This study was completed by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health Division of Water Quality, to evaluate the various outlet alternatives with respect to their effect on downstream water quality and their ability to control future lake levels.

  3. Quality of water in the White River and Lake Tapps, Pierce County, Washington, May-December 2010

    Science.gov (United States)

    Embrey, S.S.; Wagner, R.J.; Huffman, R.L.; Vanderpool-Kimura, A. M.; Foreman, J.R.

    2012-01-01

    The White River and Lake Tapps are part of a hydropower system completed in 1911–12. The system begins with a diversion dam on the White River that routes a portion of White River water into the southeastern end of Lake Tapps, which functioned as a storage reservoir for power generation. The stored water passed through the hydroelectric facilities at the northwestern end of the lake and returned to the White River through the powerhouse tailrace. Power generation ceased in January 2004, which altered the hydrology of the system by reducing volumes of water diverted out of the river, stored, and released through the powerhouse. This study conducted from May to December 2010 created a set of baseline data collected under a new flow regime for selected reaches of the White River, the White River Canal (Inflow), Lake Tapps Diversion (Tailrace) at the powerhouse, and Lake Tapps.

  4. External Nutrient Inputs into Lake Kivu: Rivers and Atmospheric ...

    African Journals Online (AJOL)

    Quantifying the external nutrients inputs is a key factor for understanding the formation of methane in Lake Kivu. This tectonic lake located between Rwanda and DRC contains a big quantity of dissolved gases predominated by carbon dioxide, methane and sulphide. The CH4 is most probably produced in the lake, mainly in ...

  5. Fluctuation of the Water Environmental Carrying Capacity in a Huge River-Connected Lake

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2015-03-01

    Full Text Available A new method, with the non-fully mixed coefficient (NFMC considered, was put forward to calculate the water environmental carrying capacity (WECC for huge river-connected lakes, of which the hydrological conditions always vary widely during a year. Poyang Lake, the most typical river-connected lake and the largest freshwater lake in China, was selected as the research area. Based on field investigations and numerical simulation, the monthly pollutant degradation coefficients and non-fully mixed coefficients of different lake regions were determined to explore the WECCs of COD, TN and TP of Poyang Lake in a common water year. It was found that under the hydrological conditions of a common water year the total WECCs of COD, TN and TP in the lake were respectively 181.9 × 104 t, 33.3 × 104 t and 1.86 × 104 t. Due to the varied lake water volume and self-purification ability, an evident temporal fluctuation of WECCs in Poyang Lake was observed. The dry seasons were characterized by a higher NFMCs but lower WECCs owing to the lower water level and degradation ability. Variation coefficients of COD and TN WECC were close to each other, of which the average level was about 58.5%, a little higher than that of TP.

  6. Fluctuation of the water environmental carrying capacity in a huge river-connected lake.

    Science.gov (United States)

    Wang, Hua; Zhou, Yiyi; Tang, Yang; Wu, Mengan; Deng, Yanqing

    2015-03-30

    A new method, with the non-fully mixed coefficient (NFMC) considered, was put forward to calculate the water environmental carrying capacity (WECC) for huge river-connected lakes, of which the hydrological conditions always vary widely during a year. Poyang Lake, the most typical river-connected lake and the largest freshwater lake in China, was selected as the research area. Based on field investigations and numerical simulation, the monthly pollutant degradation coefficients and non-fully mixed coefficients of different lake regions were determined to explore the WECCs of COD, TN and TP of Poyang Lake in a common water year. It was found that under the hydrological conditions of a common water year the total WECCs of COD, TN and TP in the lake were respectively 181.9 × 104 t, 33.3 × 104 t and 1.86 × 104 t. Due to the varied lake water volume and self-purification ability, an evident temporal fluctuation of WECCs in Poyang Lake was observed. The dry seasons were characterized by a higher NFMCs but lower WECCs owing to the lower water level and degradation ability. Variation coefficients of COD and TN WECC were close to each other, of which the average level was about 58.5%, a little higher than that of TP.

  7. Fluctuation of the Water Environmental Carrying Capacity in a Huge River-Connected Lake

    Science.gov (United States)

    Wang, Hua; Zhou, Yiyi; Tang, Yang; Wu, Mengan; Deng, Yanqing

    2015-01-01

    A new method, with the non-fully mixed coefficient (NFMC) considered, was put forward to calculate the water environmental carrying capacity (WECC) for huge river-connected lakes, of which the hydrological conditions always vary widely during a year. Poyang Lake, the most typical river-connected lake and the largest freshwater lake in China, was selected as the research area. Based on field investigations and numerical simulation, the monthly pollutant degradation coefficients and non-fully mixed coefficients of different lake regions were determined to explore the WECCs of COD, TN and TP of Poyang Lake in a common water year. It was found that under the hydrological conditions of a common water year the total WECCs of COD, TN and TP in the lake were respectively 181.9 × 104 t, 33.3 × 104 t and 1.86 × 104 t. Due to the varied lake water volume and self-purification ability, an evident temporal fluctuation of WECCs in Poyang Lake was observed. The dry seasons were characterized by a higher NFMCs but lower WECCs owing to the lower water level and degradation ability. Variation coefficients of COD and TN WECC were close to each other, of which the average level was about 58.5%, a little higher than that of TP. PMID:25830284

  8. Uranium isotopes in waters and bottom sediments of rivers and lakes in Poland

    International Nuclear Information System (INIS)

    Pietrzak-Flis, Z.; Kaminska, I.; Chrzanowski, E.

    2004-01-01

    Activity concentrations of 238 U, 234 U and 235 U were determined in waters and bottom sediments in two main rivers in Poland (the Vistula and Odra rivers) with their tributaries, in four coastal rivers and six lakes. Concentration of 238 U and 233 U were compared with the concentrations of 226 Ra determined in another study. As compared with concentrations in coastal rivers and in lakes, enhanced concentrations of the radionuclides were observed in water and bottom sediments in the upper and middle courses of Vistula river, whereas in the Odra river the enhanced concentrations were present only in the bottom sediments. The enhanced concentrations in the Vistula river result from the discharge of coal mine waters from the Upper Silesian Coal Basin, and they indicate that the discharge was continued. The enhanced concentration in Odra river observed only in bottom sediments indicate that the discharge occurred in the past. The 234 U/ 238 U ratio for the bottom sediments was close to unity, indicating that these isotopes were close to equilibrium, whereas for water the average ratio was form 1.2 for lakes to 1.5 for the Vistula river, demonstrating the lack of equilibrium. (author)

  9. Lessons Learned from Stakeholder-Driven Modeling in the Western Lake Erie Basin

    Science.gov (United States)

    Muenich, R. L.; Read, J.; Vaccaro, L.; Kalcic, M. M.; Scavia, D.

    2017-12-01

    Lake Erie's history includes a great environmental success story. Recognizing the impact of high phosphorus loads from point sources, the United States and Canada 1972 Great Lakes Water Quality Agreement set load reduction targets to reduce algae blooms and hypoxia. The Lake responded quickly to those reductions and it was declared a success. However, since the mid-1990s, Lake Erie's algal blooms and hypoxia have returned, and this time with a dominant algae species that produces toxins. Return of the algal blooms and hypoxia is again driven by phosphorus loads, but this time a major source is the agriculturally-dominated Maumee River watershed that covers NW Ohio, NE Indiana, and SE Michigan, and the hypoxic extent has been shown to be driven by Maumee River loads plus those from the bi-national and multiple land-use St. Clair - Detroit River system. Stakeholders in the Lake Erie watershed have a long history of engagement with environmental policy, including modeling and monitoring efforts. This talk will focus on the application of interdisciplinary, stakeholder-driven modeling efforts aimed at understanding the primary phosphorus sources and potential pathways to reduce these sources and the resulting algal blooms and hypoxia in Lake Erie. We will discuss the challenges, such as engaging users with different goals, benefits to modeling, such as improvements in modeling data, and new research questions emerging from these modeling efforts that are driven by end-user needs.

  10. Mo & Fe Influences on Nitrate Assimilation in Lake Ontario and the St Lawrence River

    Science.gov (United States)

    Twiss, M. R.; Salk, K.; Avolio, L. N.; Chappaz, A.; Ostrom, N. E.

    2013-12-01

    Lake Ontario has undergone a steady increase in nitrate since the early 1970s, a phenomenon also occurring in other large lakes. Possible causes of this increase include rising urban and agricultural runoff, atmospheric deposition, less demand for N due to effective point source P control, and trace metal-N co-limitation as observed in Lake Erie. Despite the abundance of nitrate in Lake Ontario, heterocystous cyanobacteria have been detected here setting up the paradoxical situation wherein some cyanobacteria are investing in the more costly diazotrophy whilst surrounded by a form of N that requires less energy and metal quota to assimilate. Mo and Fe are involved in reductive nitrate assimilation making it possible that reductive nitrate assimilation in Lake Ontario is limited in phytoplankton by low trace metal bioavailability. To test this hypothesis, 1-d enrcihment experiments were conducted using trace metal clean techniques in June 2013 at two coastal sites in Lake Ontario, and 4-d enrichment experiments were conducted in July 2013 on main channel waters of the St. Lawrence River, the outflow of Lake Ontario. Water was sampled from the metalimnion of Lake Ontario and from surface water of the main channel of the river. Water was enriched with the the following treatments in triplicate: control, 100 nM KH2PO4, 50 nM FeCl3, 50 nM Na2MoO4, and a mix of P, Fe & Mo. Experiments in the river showed significant effects due to P (increase in Chl-a, NO3 and SiO2 drawdown, changes in phytoplankton community, increase in photosynthetic efficiency [Fv/Fm]) but less impact of trace metals relative to control, presumably due to greater ambient trace metal bioavailability. As measured using FluoroProbe, the phytoplankton community changed very little (over 1 d) in lake waters; there was no significant change in total chl-a. However, as in the river, Fv/Fm revealed significant metal and P effects with the P, Fe & Mo mix being significantly greater than control (Fig. 1; we

  11. Advancement of Global-scale River Hydrodynamics Modelling and Its Potential Applications to Earth System Models

    Science.gov (United States)

    Yamazaki, D.

    2015-12-01

    Global river routine models have been developed for representing freshwater discharge from land to ocean in Earth System Models. At the beginning, global river models had simulated river discharge along a prescribed river network map by using a linear-reservoir assumption. Recently, in parallel with advancement of remote sensing and computational powers, many advanced global river models have started to represent floodplain inundation assuming sub-grid floodplain topography. Some of them further pursue physically-appropriate representation of river and floodplain dynamics, and succeeded to utilize "hydrodynamic flow equations" to realistically simulate channel/floodplain and upstream/downstream interactions. State-of-the-art global river hydrodynamic models can well reproduce flood stage (e.g. inundated areas and water levels) in addition to river discharge. Flood stage simulation by global river models can be potentially coupled with land surface processes in Earth System Models. For example, evaporation from inundated water area is not negligible for land-atmosphere interactions in arid areas (such as the Niger River). Surface water level and ground water level are correlated each other in flat topography, and this interaction could dominate wetting and drying of many small lakes in flatland and could also affect biogeochemical processes in these lakes. These land/surface water interactions had not been implemented in Earth System Models but they have potential impact on the global climate and carbon cycle. In the AGU presentation, recent advancements of global river hydrodynamic modelling, including super-high resolution river topography datasets, will be introduces. The potential applications of river and surface water modules within Earth System Models will be also discussed.

  12. Orthoptera assemblages associated with macrophytes of floodplain lakes of the Paraná River

    Directory of Open Access Journals (Sweden)

    Soledad Capello

    2013-03-01

    Full Text Available Orthoptera assemblages associated with macrophytes of floodplain lakes of the Paraná River. The Orthoptera assemblage composition varies considerably, depending on habitat type. This study examines the spatiotemporal relationship between plant diversity, hydrometric level, environmental variables and the Orthoptera richness and abundance in floodplain lakes connected permanently or temporarily with the main channel of the Paraná River. The grasshoppers were collected fortnightly (April 2006May 2007. A total of 17 species were recorded and classified according to their frequency of occurrence in constant (7, accessory (4, or accidental (6 species. In the two lakes, the greater species richness and abundance was recorded in summer, thereby coinciding with the highest water level of the Paraná River. The most significant correlation between the orthopteran richness and abundance was with the water level. The aquatic plant richness was significantly different between the lakes, but the vegetation was dominated by Eichhornia crassipes (Mart. Solms. (Liliales, Pontederiaceae. The lake, which was connected permanently, presented the highest values of diversity and abundance, proving to be a more diverse assemblage. The beta diversity was higher in the temporary connected lake than in the permanently connected one. The orthopterans assemblages were different between the lakes, Cornops aquaticum and Tucayaca gracilis were the species that contributed more to the level of dissimilarity. C. aquaticum was more representative in the lake temporarily connected, while T. gracilis in the permanent connected one. The water level of the Paraná River and the connectivity of the floodplain lakes play an important role to explain the abundance and richness of their orthopteran assemblages.

  13. River bank materials as a source and as carriers of phosphorus to lake pepin.

    Science.gov (United States)

    Grundtner, Ashley; Gupta, Satish; Bloom, Paul

    2014-11-01

    Lake Pepin, a natural impoundment on the Upper Mississippi River, has water quality problems of high sedimentation rates and elevated phosphorus (P) levels. The majority of sediments in Lake Pepin come from river banks consisting of fine tills in the Minnesota River Basin. Since 1850, inorganic P concentrations in lake sediments have continuously increased. This study explored whether the increase in inorganic P concentrations can be explained through selective transport of fine particles combined with in-stream P adsorption. The measurements included total P (TP) content, P adsorption/desorption isotherms, and the solution equilibrium P concentration at zero adsorption (EPC) for various bank materials. Results showed that till bank materials are inherently high in TP (>400 mg kg), have strong P binding ability, and have low EPC (bank materials explained the inorganic P concentrations of Lake Pepin sediments before 1850. After 1850, P adsorption from the water column simulating historic river pollution and additional selective transport of fine particles further explained the increasing inorganic P concentrations in lake sediments. We conclude that the increasing P concentrations in Lake Pepin sediments are largely the sewage and industrial waste P that was picked up by fine particles of bank materials from river waters. Because a substantial reduction in sediment load from bank materials may be difficult to achieve, we suggest directing efforts toward insuring that P additions to rivers upstream of Lake Pepin do not result in P concentration greater than the EPC value of bank materials. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California

    Science.gov (United States)

    Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.

    2009-12-01

    Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty

  15. Study of tributary inflows in Lake Iseo with a rotating physical model

    Directory of Open Access Journals (Sweden)

    Marco Pilotti

    2014-03-01

    Full Text Available The influence of Coriolis force on the currents of large lakes is well acknowledged; very few contributions, however, investigate this aspect in medium-size lakes where its relevance could be questionable. In order to study the area of influence of the two major tributary rivers in Lake Iseo, a rotating vertically distorted physical model of the northern part of this lake was prepared and used, respecting both Froude and Rossby similarity. The model has a horizontal length scale factor of 8000 and a vertical scale factor of 500 and was used both in homogeneous and in thermally stratified conditions. We explored the pattern of water circulation in front of the entrance mouth for different hydrologic scenarios at the beginning of spring and in summer. We neglected the influence of winds. The primary purposes of the model were twofold: i to increase our level of knowledge of the hydrodynamics of Lake Iseo by verifying the occurrence of dynamical effects related to the Earth’s rotation on the plume of the two tributaries that enter the northern part of the lake and ii to identify the areas of the lake that can be directly influenced by the tributaries’ waters, in order to provide guidance on water quality monitoring in zones of relevant environmental and touristic value. The results of the physical model confirm the relevant role played by the Coriolis force in the northern part of the lake. Under ordinary flow conditions, the model shows a systematic deflection of the inflowing waters towards the western shore of the lake. The inflow triggers a clockwise gyre within the Lovere bay, to the West of the inflow, and a slow counter-clockwise gyre, to the East of the inflow, that returns water towards the river mouth along the eastern shore. For discharges with higher return period, when only the contribution by Oglio River is relevant, the effect of the Earth’s rotation weakens in the entrance zone and the plume has a more rectilinear pattern

  16. Lake Michigan lake trout PCB model forecast post audit (oral presentation)

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents an...

  17. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    Science.gov (United States)

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  18. Analysis on the Water Exchange between the Main Stream of the Yangtze River and the Poyang Lake

    NARCIS (Netherlands)

    Zhao, J.; Li, J.; Yan, H.; Zheng, L.; Dai, Z.

    2011-01-01

    Analysis on the hydrologic characteristics of the main stream of the Yangtze River and Poyang Lake were studied to discuss the water exchange between the main stream of the Yangtze River and Poyang Lake before and after the operation of Three Gorges Reservoir, as well as in the typical dry year of

  19. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. 208.19 Section 208.19 Navigation and Navigable Waters... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the...

  20. Variability of the water availability in a river lake system – A case study of Lake Symsar

    Directory of Open Access Journals (Sweden)

    Kuriata-Potasznik Angela B.

    2016-12-01

    Full Text Available It is predicted that climate change will result in the diminution of water resources available both on global and regional scales. Local climate change is harder to observe and therefore, while counteracting its effects, it seems advisable to undertake studies on pertinent regional and local conditions. In this research, our aim was to assess the impact of a river and its catchment on fluctuations in the water availability in a natural lake which belongs to a post-glacial river and lake system. River and lake systems behave most often like a single interacting hydrological unit, and the intensity of water exchange in these systems is quite high, which may cause temporary water losses. This study showed that water in the analyzed river and lake system was exchanged approx. every 66 days, which resulted from the total (horizontal and vertical water exchange. Also, the management of a catchment area seems to play a crucial role in the local water availability, as demonstrated by this research, where water retention was favoured by wooded and marshy areas. More intensive water retention was observed in a catchment dominated by forests, pastures and wetlands. Wasteland and large differences in the land elevation in the tested catchment are unfavourable to water retention because they intensify soil evaporation and accelerate the water run-off outside of the catchment. Among the actions which should be undertaken in order to counteract water deficiencies in catchment areas, rational use and management of the land resources in the catchment are most often mentioned.

  1. A mineralogical and organic geochemical overview of the effects of Holocene changes in Amazon River flow on three floodplain lakes

    NARCIS (Netherlands)

    Moreira, I.S.; Moreira-Turcq, P.; Kim, J.H.; Turcq, B.; Cordeiro, R.C.; Caquineau, S.; Mandengo-Yogo, M.; Sinninghe Damsté, J.S.

    2014-01-01

    A synthesis of the impacts of the Amazon River hydrological changes on the sedimentation process of organic matter (OM) in three different floodplain lakes (Santa Ninha, Maracá, and Comprido lakes) is presented in this study. Today the Santa Ninha and Maracá lakes are directly and permanently

  2. Collaborative modelling and integrated decision support system analysis of a developed terminal lake basin

    Science.gov (United States)

    Niswonger, Richard G.; Allander, Kip K.; Jeton, Anne E.

    2014-01-01

    A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.

  3. Non-indigenous species in the North and Baltic Seas and the Great Lakes-St. Lawrence River region

    OpenAIRE

    Casties, Isabel; Seebens, Hanno; Briski, Elizabeta

    2016-01-01

    List of non-indigenous species (NIS) established in the Great Lakes-St. Lawrence River region and the North and Baltic Seas region, their geographic origin, and taxonomic assignment. Asterisks mark the NIS that occur in both the North and Baltic Seas and the Great Lakes-St. Lawrence River regions. GL, SL, NW, NE, SW and SE denote the Great Lakes, St. Lawrence River, north-west, north-east, south-west, and south-east, respectively. Eurasia represents inland freshwaters except Yangtze River, In...

  4. Modeling the carbon cycle in Lake Matano.

    Science.gov (United States)

    Kuntz, L B; Laakso, T A; Schrag, D P; Crowe, S A

    2015-09-01

    Lake Matano, Indonesia, is a stratified anoxic lake with iron-rich waters that has been used as an analogue for the Archean and early Proterozoic oceans. Past studies of Lake Matano report large amounts of methane production, with as much as 80% of primary production degraded via methanogenesis. Low δ(13)C values of DIC in the lake are difficult to reconcile with this notion, as fractionation during methanogenesis produces isotopically heavy CO2. To help reconcile these observations, we develop a box model of the carbon cycle in ferruginous Lake Matano, Indonesia, that satisfies the constraints of CH4 and DIC isotopic profiles, sediment composition, and alkalinity. We estimate methane fluxes smaller than originally proposed, with about 9% of organic carbon export to the deep waters degraded via methanogenesis. In addition, despite the abundance of Fe within the waters, anoxic ferric iron respiration of organic matter degrades carbon export, leaving methanogenesis as the largest contributor to anaerobic organic matter remineralization, while indicating a relatively minor role for iron as an electron acceptor. As the majority of carbon exported is buried in the sediments, we suggest that the role of methane in the Archean and early Proterozoic oceans is less significant than presumed in other studies. © 2015 John Wiley & Sons Ltd.

  5. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  6. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  7. Modeling the Hydrological Regime of Turkana Lake (Kenya, Ethiopia) by Combining Spatially Distributed Hydrological Modeling and Remote Sensing Datasets

    Science.gov (United States)

    Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.

    2017-12-01

    Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological

  8. Mirror Lake contaminanats - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  9. Computation of inflows and outflows of eight regulated lakes in the Oswego River Basin, New York, 1930-79

    Science.gov (United States)

    Lumia, Richard; Moore, R.B.

    1983-01-01

    Estimates of daily inflows and outflows of eight regulated lakes in the Oswego River basin and discharges of three rivers draining these lakes were computed and compiled for use in evaluated lake-regulation procedures in the basin 's stream and reservoir system and are stored on computer. This report includes a table of monthly flows at these sites from 1930-79. Computations were based on records from the 1930-79 water years. Daily net inflow estimates (lake inflow minus evaporation and possible groundwater seepage) were computed from the outflows and changes in lake storage. Lake storage was estimated from lake level data and elevation-capacity curves for each lake. A smoothing technique was applied to plots of daily lake levels before net inflows were computed. Where lake level or outflow data were missing, net flows were estimated from linear regression equations. Analysis of results indicates that: (1) smoothing the plots of daily lake levels significantly reduces random fluctuations resulting from seiche or wind action; (2) continuous lake storage recorders provide a more reliable record than staff gages (once-daily, lake level readings) for computing daily changes in lake storage; and (3) the effect of smoothing decreases as the computational period is increased. (USGS)

  10. Adult Chinook Salmon Abundance Monitoring in the Secesh River and Lake Creek, Idaho, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A.

    2001-05-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control population under the Idaho Salmon Supplementation study. This project has demonstrated the successful application of underwater video adult salmon abundance monitoring technology in Lake Creek in 1998 and 1999. Emphasis of the project in 2000 was to determine if the temporary fish counting station could be installed early enough to successfully estimate adult spring and summer chinook salmon abundance in the Secesh River (a larger stream). Snow pack in the drainage was 93% of the average during the winter of 1999/2000, providing an opportunity to test the temporary count station structure. The temporary fish counting station was not the appropriate technology to determine adult salmon spawner abundance in the Secesh River. Due to its temporary nature it could not be installed early enough, due to high stream discharge, to capture the first upstream migrating salmon. A more permanent structure used with underwater video, or other technology needs to be utilized for accurate salmon escapement monitoring in the Secesh River. A minimum of 813 adult chinook salmon spawners migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. Of these fish, more than 324 migrated upstream into Lake Creek. The first upstream migrating adult chinook salmon passed the Secesh River and Lake Creek sites prior to operation of the fish counting stations on June 22. This was 17 and 19 days earlier than the first fish arrival at Lake Creek in 1998 and 1999

  11. High-frequency acoustic imaging of L Lake Phase 4 [Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Dunn, D.L.; Sjostrom, Keith J.; Leist, Rodney L.; Harmon, Thomas S. Jr.

    1997-01-01

    The objective of the seismic reflection and side scan sonar survey is to determine the location, aerial extent, and depth of burial pits situated along the reservoir bottom of L Lake, Savannah River Site, SC. The results will be used in the overall characterization of L Lake by providing continuous profile line coverage of the bottom and subbottom sediment structure along the entire length of the project area. The results are also intended to supplement previous scientific information obtained from soil samples, aerial photography, and radiometric studies. Resultant information will be used as input for an Environmental Impact Statement of the site. Overall, the seismic reflection data will provide better descriptions of variations in the actual subbottom conditions and help identify the differing sediment layers. The side scan sonar will help identify the location of the burial pits and any other features on the bottom of the reservoir. A 3.5 kiloHertz (kHz), high resolution subbottom profiling system and an EG and G Model 260 side scan sonar system were used to meet the primary objectives of the investigation

  12. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  13. Simulated tritium concentrations in river waters of the western Lake Taupo catchment, New Zealand with MODPATH particle tracking

    Science.gov (United States)

    Gusyev, M. A.; Abrams, D.; Toews, M. W.; Morgenstern, U.; Stewart, M. K.

    2014-03-01

    We simulated in a previous study tritium concentrations in the river waters of the western Lake Taupo catchment (WLTC) using MODFLOW/MT3DMS model (Gusyev et al., 2013). The model was calibrated to match simulated tritium to measured tritium in river waters at baseflows of the Waihaha, Whanganui, Whareroa, Kuratau and Omori river catchments of the WLTC. Following from this work we now utilized the same MODFLOW model for the WLTC to calculate the pathways of groundwater particles (and their corresponding tritium concentrations) using steady-state particle tracking with MODPATH. In order to simulate baseflow tritium concentrations with MODPATH, transit time distributions (TTDs) such as cumulative frequency distribution (CFD) and probability density function (PDF) are generated with particle tracking for the river networks of the five WLTC catchment outflows. Then, PDFs are used in the convolution integral with tritium concentration time series obtained in the precipitation. The resulting MODPATH tritium concentrations yield a very good match to measured tritium concentrations and are similar to the MT3DMS simulated tritium concentrations, with the greatest variation occurring around the bomb peak. MODPATH and MT3DMS also yield similar Mean Transit Times (MTT) of groundwater contribution to river baseflows, but the actual shape of the TTDs is strikingly different. While both distributions provide valuable information, the methodologies used to derive the TTDs are fundamentally different and hence must be interpreted differently. With the current models setting, only the methodology used with MODPATH provides the true TTD for use with the convolution integral.

  14. Monitoring of Bashkara glacial lakes (the Central Caucasus) and modelling of their potential outburst.

    Science.gov (United States)

    Krylenko, I.; Norin, S.; Petrakov, D.; Tutubalina, O.; Chernomorets, S.

    2009-04-01

    models, based on solving of two-dimensional Saint-Venant equations -"River" (the Russia, author V.Belikov) and "Flo-2D" (the USA, authors J.S.O'Brien, R.Garcia) were used. The "River" model is based on the irregular triangular grid, therefore it is possible to calculate flow in details. On the other hand there is no debris flow block in this model yet and "Flo-2D" was applied to calculate potential debris flow parameters, because transformation of flood into debris flow is likely here. Input data for simulation were following: digital terrain model of Adylsu valley, made on the on the basis of map with scale 1:25000, outburst hydrograph, calculated for case of englacial drainage channels formation (Vinogradov's model, Russia), some empirical relationships between volume of the glacial lake and maximum discharge of outburst (i.e. Clague and Mathews, Walder and Costa) were also applied. The mean value of the maximum discharge for potential outburst obtained by different methods was about 150 m3 /c. According to results of hydrodynamic modelling, movement of flood wave downstream the valley will be fast, peak of flood will cover distance from upper part of valley to lowest (8 km) for about half an hour. The depth of the flow on the floodplain is about 1-1.5 m and could reach 6 m in some sites. There are hotel, large camping site and several bridges in the hazardous zone. In 2008 early warning system was designed and installed at the Bashkara lake.

  15. Hydrodynamic Modeling of Nokoué Lake in Benin

    Directory of Open Access Journals (Sweden)

    Josué Zandagba

    2016-12-01

    Full Text Available Nokoué Lake is a complex ecosystem, the understanding of which requires control of physical processes that have occurred. For this, the Surface Water Modeling System (SMS hydrodynamic model was calibrated and validated on the water depth data. The results of these simulations show a good match between the simulated and observed data for bottom roughness and turbulent exchange coefficients, of 0.02 m−1/3·s and 20 m2/s respectively. Once the ability of the model to simulate the hydrodynamics of the lake is testified, the model is used to simulate water surface elevation, exchanged flows and velocities. The simulation shows that the tidal amplitude is maximum at the inlet of the channel and decreases gradually from the inlet towards the lagoon’s main body. The propagation of the tidal wave is characterized by the dephasing and the flattening of the amplitude tide, which increases as we move away from the channel. This dephasing is characterized by a high and low tides delay of about 1 or 4 h and also depends on the tide amplitude and location. The velocities inside the lake are very low and do not exceed 0.03 m/s. The highest are obtained at the entrance of the channel. In a flood period, in contrast with the low-water period, incoming flows are higher than outflows, reinforced by the amplitude of the tide. An average renewal time of the lake has been estimated and corresponds during a flood period to 30 days for an average amplitude tide and 26.3 days on a high amplitude tide. In a low water period it is 40.2 days for an average amplitude tide and 30 days for a high amplitude tide. From the results obtained, several measures must be taken into account for the rational management of the lake water resources. These include a dam construction at the lake upstream, to control the river flows, and the dredging of the channel to facilitate exchanges with the sea.

  16. Aquatic avifauna of the coastal lakes of the Mhlathuze River system ...

    African Journals Online (AJOL)

    This paper provides the first attempt to bring together all published and unpublished data on the aquatic avifauna of Lakes Mzingazi, Nsezi, Cubhu and Mangeza, situated near Richards Bay in the lower reaches of the Mhlathuze River system. Whilst the amount of data located was limited, it does show that the systems ...

  17. 76 FR 61261 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Science.gov (United States)

    2011-10-04

    ... navigable waters of Lake Havasu on the lower Colorado River in support of the International Jet Sports... The International Jet Sports Boating Association is sponsoring the IJSBA World Finals. The event will... National Technology Transfer and Advancement Act (NTTAA) (15 U.S.C. 272 note) directs agencies to use...

  18. Reconnaissance of mercury in lakes, wetlands, and rivers in the Red River of the North Basin, North Dakota, March through August 2001

    Science.gov (United States)

    Sando, Steven K.; Wiche, G.J.; Lundgren, R.F.; Sether, Bradley A.

    2003-01-01

    Devils Lake rose dramatically during the 1990's, causing extensive flood damages. Because of the potential for continued flooding, the U.S. Army Corps of Engineers has been conducting studies to evaluate the feasibility of constructing and operating an outlet from Devils Lake. The occurrence of mercury in lakes, wetlands, and rivers and the potential for increased loading of mercury into the Sheyenne River as a result of a Devils Lake outlet needed to be evaluated as part of the studies.Sixteen lake, wetland, and river sites in the Devils Lake, Sheyenne River, Red River of the North, and Red Lake River Basins were sampled and analyzed for mercury constituents and other selected properties and constituents relevant to mercury aquatic chemistry. For the lake and wetland sites, whole-water methylmercury concentrations ranged from less than 0.04 to 3.53 nanograms per liter and whole-water total mercury concentrations ranged from 0.38 to 7.02 nanograms per liter. Conditions favorable for methylation of mercury generally exist at the lake and wetland sites, as indicated by larger dissolved methylmercury concentrations in near-bottom samples than in near-surface samples and by relatively large ratios of methylmercury to total mercury (generally greater than 10 percent for the summer sampling period). Total mercury concentrations were larger for the summer sampling period than for the winter sampling period for all lake and wetland sites. A wetland site in the upper Devils Lake Basin had the largest mercury concentrations for the lake and wetland sites.For the river sites, whole-water methylmercury concentrations ranged from 0.15 to 1.13 nanograms per liter and whole-water total mercury concentrations ranged from 2.00 to 26.90 nanograms per liter. Most of the mercury for the river sites occurred in particulate inorganic phase. Summer ratios of whole-water methylmercury to whole-water total mercury were 35 percent for Starkweather Coulee (a wetland-dominated site), near or

  19. Ecosystem element transport model for Lake Eckarfjaerden

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)

    2014-07-01

    The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)

  20. Aeromonas infection from river and playa lake waters in West Texas and southeastern New Mexico

    Directory of Open Access Journals (Sweden)

    Robert C. Kimbrough

    2016-10-01

    Full Text Available Trauma occurring in direct contact with freshwater bodies may result in wounds contaminated with a variety of microorganisms. Bacteria belonging to the genus Aeromonas have been recovered from these types of infections. We report two cases of Aeromonas hydrophila infections occurring from freshwater-contaminated wounds. One of these infections was acquired from a river in southeastern New Mexico; the other was from an urban playa lake in West Texas. The latter case prompted an ecological study of the seasonal occurrence of Aeromonas spp. and the incidence of resistance to antimicrobial agents in two of these local lakes. Recent scientific and medical literature data show that Aeromonas should be considered as a possible agent of infection in immunocompetent hosts from water exposure, even if the water is a running river or a seemingly unpolluted (“clean” freshwater lake.

  1. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery.

    Science.gov (United States)

    Du, Chenggong; Li, Yunmei; Wang, Qiao; Liu, Ge; Zheng, Zhubin; Mu, Meng; Li, Yuan

    2017-12-01

    Knowledge of tempo-spatial dynamics of water quality and its response to river flow is important for the management of lake water quality because river discharge associated with rainstorms can be an important source of pollutants to the estuary. Total phosphorus (TP), chlorophyll a (Chl-a), and total suspended matter (TSM) are important indexes of water quality and important factors influencing eutrophication and algal blooms. In this study, remote sensing was used to monitor these indexes to investigate the effects of river discharge on the estuary of Taihu Lake by the largest inflow river which is Chendong River using a total of 136 Geostationary Ocean Color Images (GOCI). In situ datasets collected during the four cruise experiments on Taihu Lake between 2011 and 2015 were used to develop the TP, Chl-a, and TSM inversion models based on simple empirical algorithms: 154 points for TP (mg/L), 114 for Chl-a (μg/L), and 181 for TSM (mg/L). The spatial and temporal changes of the concentration of the three parameters in the Chendong River estuary were analyzed by combining the GOCI data, the flow of the Chendong River, and meteorological data throughout the year in 2014. The several key findings are as follows: (1) In summer and autumn, TP, Chl-a, and TSM contents were significantly higher than in winter and spring. TP and Chl-a have a few similar distribution characteristics. And organic suspended matter in summer was the main reason for the increase of the TSM concentration. (2) The severe surface erosion in the rivers cannot be ignored; the high erodibility is an important factor in the increase of TP and TSM concentrations in the estuary. The concentration of the water quality parameter showed exponential decay with distance from the shore. The concentration decreased slowly after 12 km and then remained essentially constant. (3) TP content in the Chendong River estuary decreased under steady flow inputs and dramatically increased when the flow became large

  2. Coliform bacterial pollution in Rawal lake, Islamabad and its feeding streams / river

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Chaudhary, M.Z.; Khan, M.S.; Javed, T.; Qureshi, R.M.

    2010-01-01

    Total coliform and fecal coliform are indicators of drinking water quality. The presence of fecal coliform in water indicates contamination with fecal materials of man and other animals. This paper documents the population of total coliform colonies as well as fecal coliform contamination in Rawal lake, which is one of major source of drinking water supply to inhabitants of Rawalpindi, and its feeding streams (mainly Kurang River and three perennial streams) flowing in the administrative jurisdiction of the capital city, Islamabad, Pakistan. Coliform bacteria in Rawal lake and feeding streams water was determined by membrane filtration technique. The results indicated that E. Coli population in four streams (input waters) feeding the Rawal Lake ranged from 25 - 57 (mean 36) fecal coliform per 100 mL. The Kurang River, one of the feeding streams, hosted the largest population of fecal coliform (57 fecal coliform per 100 mL). The highest population of fecal coliform (105 fecal coliform per 100 mL) in Rawal Lake surface water was observed at the confluence of Kurang River and the Lake in the vicinity of village 'New Ampler'. While in the Rawal Lake water columns, it ranged from 12 - 65 (mean 25) fecal coliform/ 100mL. The measured levels of fecal coliform bacteria are much higher than the maximum permissible levels for drinking water as recommended by WHO and US-EPA (No fecal coliform in drinking water). It is concluded that the indiscriminate amount of pollution from domestic sewage and poultry industry has seriously affected the biological quality of stream waters and the Rawal Lake waters. (author)

  3. Escapement monitoring of adult chinook salmon in the Secesh River and Lake Creek, Idaho, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Faurot, Dave; Kucera, Paul A.

    2001-01-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  4. Water pollution and cyanobacteria's variation of rivers surrounding southern Taihu Lake, China.

    Science.gov (United States)

    Sun, Mingyang; Huang, Linglin; Tan, Lisha; Yang, Zhe; Baig, Shams Ali; Sheng, Tiantian; Zhu, Hong; Xu, Xinhua

    2013-05-01

    The water quality and cyanobacterial variation of rivers surrounding southern Taihu Lake, China were purposively monitored from 2008 to 2010. Trophic level index (TLI) was used to evaluate the trophic levels of southern Taihu Lake. Results showed a considerable decline in the monitored data compared with 2007, and the data showed downward trends year after year. The TLI decreased from 55.6 to 51.3, which implied that southern Taihu Lake was mildly eutrophic. The water quality and cyanobacterial variation indicated a positive response to the adopted control measures in the southern Taihu Lake basin, but the intra- and inter-annual variability was still quite varied. High concentrations of nitrogen and phosphorus typically lead to algae outbreaks, however, the cyanobacteria growth may result in a decline of the concentration of nitrogen and phosphorus. Temperature and other weather conditions are also important factors for algae outbreaks; the risk of blue-green algal blooms still persists.

  5. Reconstructing Watershed History from Reservoir Stratigraphy: Englebright Lake, Yuba River, Northern California

    Science.gov (United States)

    Snyder, N. P.; Alpers, C. N.; Childs, J. R.; Curtis, J. A.; Flint, L. E.; Holmes, C. W.; Rubin, D. M.; Wright, S. A.

    2004-12-01

    Reservoirs provide the opportunity to study fluvial processes and rates in a controlled setting because they are effective traps of sediment and are often well monitored. An extensive sediment coring and sampling campaign was done in Englebright Lake on the Yuba River in northern California as part of a fish-habitat restoration study. The Yuba watershed (particularly the southern part) was the site of intensive hydraulic gold mining in the 19th and early 20th century, and Englebright Dam was built in 1940 to trap mining debris. Results of a bathymetric survey in 2001 indicate that the reservoir was 26% full (22x106 m3 of material). The physical properties of the entire deposit were extrapolated from ˜300 m of cores collected at 7 sites along the longitudinal axis of the reservoir in 2002. The mass of the deposit is 26x106 metric tons, of which 3.2% is organic. The sediment is ˜65% sand and gravel, and distinct layers of differing grain size (sand-gravel, silt-clay, organics) are well preserved in the cores. The depositional chronology of the reservoir was established using 137Cs analysis and the relations between the cored stratigraphy and the hydrologic and impoundment history of the watershed. Deposits from three major flood events (1955, 1964, 1997; each with discharge >3,400 m3/s) were identified in the stratigraphy of most of the coring sites. Observations of recent (post-1997) depositional patterns are guiding the development of a conceptual model of reservoir-sedimentation processes during floods, drawdowns, and intraflood periods. Enlargement of an upstream dam on the North Yuba River in 1970 caused a decrease in flood frequency in the Yuba River and changed management of Englebright Lake (ending annual drawdowns). A relict topset-foreset-bottomset sequence observed in the cored stratigraphy is interpreted to correlate with this change in watershed management; a second deltaic sequence was deposited on top of the first after 1970. Post-1970 average annual

  6. Mercury concentrations of fish in Southern Indian Lake and Issett Lake, Manitoba 1975-88: The effect of lake impoundment and Churchill River diversion

    International Nuclear Information System (INIS)

    Strange, N.E.; Bodaly, R.A.; Fudge, R.J.P.

    1991-01-01

    Southern Indian and Issett Lakes in northern Manitoba were flooded in 1976 as part of Manitoba Hydro's Churchill River diversion project. Fish were collected from 1975 to 1988 from five regional sites on the lakes to examine the effects of impoundment and river diversion on muscle mercury concentrations. Raw data for individual fish caught in 1987 and 1988 are presented, along with means and analyses calculated over the entire 1975-1988 study period. Mercury concentrations in whitefish, pike, and walleye increased significantly after impoundment. Whitefish mercury levels peaked in 1978 and have since declined to near pre-flooding levels. Northern pike and walleye mercury levels were much higher than for whitefish. Pike mercury concentrations showed no indication of declining after 12 years of impoundment, but walleye mercury levels at 2 of the 5 Southern Indian Lake sites declined from maximum recorded levels. Significant variability in fish mercury concentrations was noted both from year to year and among the sites. It is suggested that site-to-site variations are due to varying conditions in the reservoir which stimulate mercury methylation. Since there appears to be an ongoing long-term source of mercury and organic material from the eroding shorelines, pike and walleye mercury concentrations are expected to remain high for many years. 25 refs., 7 figs., 20 tabs

  7. Modeling the GLOF Hazard Process Chain at Imja Lake in the Nepal Himalaya

    Science.gov (United States)

    Lala, J.; McKinney, D. C.; Rounce, D.

    2017-12-01

    The Hindu Kush-Himalaya region contains more glacial ice than any other non-polar region on earth. Many glacial lakes in Nepal are held in place by natural moraine dams, which are inherently unstable. Avalanches or landslides entering glacial lakes can cause tsunami-like waves that can overtop the moraines and trigger glacial lake outburst floods (GLOF). Mass loss at the Imja glacier is the highest in the Mount Everest region, and contributes to the expansion of Imja Tsho, a lake with several villages downstream. A GLOF from the lake might destroy both property and human life, making an understanding of flood triggering processes beneficial for both the downstream villages and other GLOF-prone areas globally. The process chain for an avalanche-induced GLOF was modeled numerically. The volume and velocity of debris from avalanches entering various future lake extents were calculated using RAMMS. Resulting waves and downstream flooding were simulated using BASEMENT to evaluate erosion at the terminal moraine. Wave characteristics in BASEMENT were validated with empirical equations to ensure the proper transfer of momentum from the avalanche to the lake. Moraine erosion was determined for two geomorphologic scenarios: a site-specific scenario using field samples, and a worst-case scenario based on past literature. Both cases resulted in no flooding outside the river channel at downstream villages. Worst-case scenario geomorphology resulted in increased channelization of the lake outlet and some moraine erosion but no catastrophic collapse. Site-specific data yielded similar results but with even less erosion and downstream discharge. While the models confirmed that Imja Tsho is unlikely to produce a catastrophic GLOF in the near future, they also highlight the importance of continued monitoring of the lake. Furthermore, the ease and flexibility of these methods allows for their adoption by a wide range of stakeholders for modeling other high-risk lakes.

  8. Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes.

    Science.gov (United States)

    Giger, Walter; Schaffner, Christian; Kohler, Hans-Peter E

    2006-12-01

    The complexing agents benzotriazole (BT) and tolyltriazole (TT) are not only widely applied as anticorrosives, e.g., in aircraft deicer and anti-icer fluid (ADAF), but they are also used for so-called silver protection in dishwasher detergents. Due to their low biodegradability and limited sorption tendency, BT and TT are only partly removed in wastewater treatment. Residual concentrations of BT and TT were determined in ambient surface waters in Switzerland including 7 rivers which have distinct water flows and receive treated wastewater effluents at various dilution ratios. A maximum BT concentration of 6.3 microg/L was found in the Glatt River, and a maximum mass flow of 277 kg BT per week was observed in the Rhine River. In most cases, TT was about a factor 5-10 less abundant. During winter 2003/4, BT mass flows at 2 locations in the lower stretch of the Glatt River clearly indicated the input from nearby Zurich airport, where BT was applied as an anticorrosive ADAF component. BT concentrations measured in the three lakes Greifensee, Lake Zurich, and Lake Geneva were approximately 1.2, 0.1-0.4, and 0.2 microg/L, respectively. The observed environmental occurrences indicate that BT and TT are ubiquitous contaminants in the aquatic environment and that they belong to the most abundant individual water pollutants.

  9. Assessment of Heavy Metal Pollution in Sediments of Inflow Rivers to Lake Taihu, China.

    Science.gov (United States)

    Niu, Yong; Niu, Yuan; Pang, Yong; Yu, Hui

    2015-11-01

    Lake Taihu, the third-largest freshwater body in China, has many functions, including drinking water supply, flood control, cultivation, navigation, and tourism. In this study, sediment samples were collected at 31 sites from 11 inflow rivers in 2012, to investigate the distribution and concentration of heavy metals copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr), and to assess their potential ecological risk. The highest mean concentration was found for Zn, followed by Cu, Cr, Pb, and Ni. Generally, heavy metal pollution was more serious in Wu Jingang River and Caoqiao River, probably because they receive large amounts of wastewater from various local industrial enterprises. The potential ecological risk values of the heavy metals were larger than 120 in more than 25.8% of the sediment samples, indicating a very high risk. The largest ecological risk was due to copper. Furthermore, the results of a principal component analysis and subsequent analysis of variance showed that heavy metal concentrations in the sediment of inflow rivers were higher than those of the lake, which created a large hazard for the aquatic ecosystems of Lake Taihu.

  10. Sustainable fisheries in shallow lakes: an independent empirical test of the Chinese mitten crab yield model

    Science.gov (United States)

    Wang, Haijun; Liang, Xiaomin; Wang, Hongzhu

    2017-07-01

    Next to excessive nutrient loading, intensive aquaculture is one of the major anthropogenic impacts threatening lake ecosystems. In China, particularly in the shallow lakes of mid-lower Changjiang (Yangtze) River, continuous overstocking of the Chinese mitten crab ( Eriocheir sinensis) could deteriorate water quality and exhaust natural resources. A series of crab yield models and a general optimum-stocking rate model have been established, which seek to benefit both crab culture and the environment. In this research, independent investigations were carried out to evaluate the crab yield models and modify the optimum-stocking model. Low percentage errors (average 47%, median 36%) between observed and calculated crab yields were obtained. Specific values were defined for adult crab body mass (135 g/ind.) and recapture rate (18% and 30% in lakes with submerged macrophyte biomass above and below 1 000 g/m2) to modify the optimum-stocking model. Analysis based on the modified optimum-stocking model indicated that the actual stocking rates in most lakes were much higher than the calculated optimum-stocking rates. This implies that, for most lakes, the current stocking rates should be greatly reduced to maintain healthy lake ecosystems.

  11. Monitoring of organochlorine pesticides using PFU systems in Yunnan lakes and rivers, China.

    Science.gov (United States)

    Yang, Jun; Zhang, Wenjing; Shen, Yunfen; Feng, Weisong; Wang, Xinhua

    2007-01-01

    Polyurethane foam unit (PFU) systems were collected from 11 lakes and three rivers in the Yunnan Plateau, China and, the PFU extrusion liquids were analyzed for organochlorine pesticides (OCPs) by gas chromatography with electron capture detection (GC-ECD). The concentrations of pp'-DDE, HCB and HCHs were undetectable to 1.86 microgl-1 (mean 0.27 microgl-1), undetectable to 0.72 microgl-1 (mean 0.11 microgl-1), and 0.24-21.95 microgl-1 (mean 7.39 microgl-1) respectively in lakes; and those in rivers were undetectable to 0.23 microgl-1 (mean 0.08 microgl-1), 0.68-2.93 microgl-1 (mean 1.70 microgl-1), and 2.71-37.56 microgl-1 (mean 17.01 microgl-1) respectively. Notably, some residue levels of OCPs exceeded the US National Recommended Water Quality Criteria, implying Yunnan has levels of OCPs potentially harmful to human health. Further, the contamination by OCPs showed an obvious spatial distribution pattern. Amongst the lakes, Dianchi, Xingyun, Lugu and Yangzonghai had the highest OCP levels dominated by beta-HCH, whereas among rivers, Nujiang and Lancang Rivers had the highest contents of OCPs dominated by alpha-HCH. This demonstrates that HCHs are the predominant contaminants and some point sources of HCHs may still exist in Yunnan. The pollution levels in Yunnan were compared with other studies, suggesting the PFU method is suitable for long-term on-line monitoring of trace OCPs in aquatic ecosystems. Therefore, continuous studies monitoring OCPs in lakes and rivers are needed to further understand the future trend of contamination.

  12. Integrating three lake models into a Phytoplankton Prediction System for Lake Taihu (Taihu PPS) with Python

    NARCIS (Netherlands)

    Huang, J.; Gao, J.; Hörmann, G.; Mooij, W.M.

    2012-01-01

    In the past decade, much work has been done on integrating different lake models using general frameworks to overcome model incompatibilities. However, a framework may not be flexible enough to support applications in different fields. To overcome this problem, we used Python to integrate three lake

  13. Lake sturgeon response to a spawning reef constructed in the Detroit river

    Science.gov (United States)

    Roseman, Edward F.; Manny, B.; Boase, J.; Child, M.; Kennedy, G.; Craig, J.; Soper, K.; Drouin, R.

    2011-01-01

    Prior to the First World War, the bi-national Detroit River provided vast areas of functional fish spawning and nursery habitat. However, ongoing conflicting human uses of these waters for activities such as waste disposal, water withdrawals, shoreline development, shipping, recreation, and fishing have altered many of the chemical, physical, and biological processes of the Detroit River. Of particular interest and concern to resource managers and stakeholders is the significant loss and impairment of fish spawning and nursery habitat that led to the decline in abundance of most fish species using this ecosystem. Lake sturgeon (Acipenser fulvescens) populations for example, were nearly extirpated by the middle of the 20th century, leaving only a small fraction of their former population. Fisheries managers recognized that the loss of suitable fish spawning habitat is a limiting factor in lake sturgeon population rehabilitation in the Detroit River. In efforts to remediate this beneficial water use impairment, a reef consisting of a mixture of natural rock and limestone was constructed at the upstream end of Fighting Island in 2008. This paper focuses on the response by lake sturgeon to the different replicates of suitable natural materials used to construct the fish spawning habitat at Fighting Island in the Detroit River. Pre-construction fisheries assessment during 2006–2008 showed that along with the presence of adult lake sturgeon, spawning conditions were favorable. However, no eggs were found in assessments conducted prior to reef construction. The 3300 m2 Fighting Island reef was placed at the upstream end of the island in October of 2008. The construction design included 12 spawning beds of three replicates each consisting of either round rock, small or large (shot-rock) diameter limestone or a mixture thereof. An observed response by spawning lake sturgeon occurred the following year when spawning-ready adults (ripe), viable eggs, and larvae were

  14. Methane ebullition and fate in the Rhone River delta (Lake Geneva) and its subaquatic canyons

    Science.gov (United States)

    DelSontro, T.; Sollberger, S.; Corella, J. P.; Wehrli, B.; Girardclos, S.; Anselmetti, F. S.; Senn, D. B.

    2012-04-01

    There is increasing knowledge of the importance of inland waters as sources of atmospheric methane, but widespread variability of total and individual emission pathway estimates remain in the literature. Ebullition (bubbling) is potentially the most efficient transport mechanism from water bodies, particularly shallow water bodies or regions thereof where bubbles have the greatest chance of reaching the atmosphere. However, ebullition is one of the least monitored of the pathways, mostly due to its stochastic nature making it difficult to constrain spatially and temporally. Recent studies on a large tropical reservoir and a large European lake have shown that river deltas (i.e., localized regions of high allochthonous organic matter sedimentation) can be methane ebullition hot spots emitting disproportionate amounts of methane. Therefore, in this study the Rhone River delta (one Europe's most important rivers) of the Alp's largest lake, Lake Geneva, was surveyed for methane ebullition using a bubble size-calibrated 120 kHz split-beam echosounder (Simrad EK60, Kongsberg Maritime). Extensive ebullition was found in the current river delta complex in proximity to the river inflow, which is the major source of atmospheric methane emission in the entire 100 km2 deltaic region. As water depths approach 100 m, ebullition is constrained to only the top levees of the 10 - 40 m high walls of the subaquatic canyon formed by the plunging Rhone River. Ebullition occurs to depths over 200 m on the levee of the active canyon, where CTD profiles suggest that Rhone River water does extend that far along the canyon. As bubble dissolution depends on release depth and bubble size, which was estimated from the rise velocity of deep bubbles, it was discovered that bubbles emitted from 100 m or deeper would not reach the surface; thus the proximal delta remains the prominent methane source. Eight other canyons exist in the delta complex, of which two non-active canyons formed by previous

  15. Forming chemical composition of surface waters in the Arctic. Case study of Lake Inari and the River Paz

    Directory of Open Access Journals (Sweden)

    Mazukhina S. I.

    2017-03-01

    Full Text Available Questions of studying the formation of surface and ground waters, their interaction with rocks, development of the basics of their rational use and protection are of great fundamental and practical importance. The influence of the northern Fennoscandian (Baltic Shield rock composition on forming surface waters' chemical composition in the border area of Finland – Russia – Norway (Lake Inari, the River Paz using physical-chemical modeling (Selector software package has been evaluated. For the physical-chemical modeling there have been made two samples of chemical analyses of the most widespread rocks forming the catchment area, with their percentage ratio taken into consideration. Since the catchment area of the prevailing majority of streams feeding Lake Inari is composed of rocks of the Lapland granulite belt (LGB and its framing, it will be the main sample (conditional influence of their composition on the chemical composition of waters is about 80 %. The second sample includes gneisses, migmatites, granite-gneisses, granites and quartz diorites typical for Inari terrane (conventional influence of their composition on the chemical composition of waters is about 20 %. It has been found that the chemical composition of the surface waters is formed by interaction of precipitation with intrusive, metamorphic and sedimentary rocks of northern Fennoskandia containing Clarke concentrations of S, C, F, Zn, Ni, Pb, Cu. It has been shown that due to interactions in the water – rock system the chemical composition of Lake Inari waters as well as upper and middle flow of the River Paz is formed by weathering of granulites of the Lapland granulite belt and Inari terrane granitoids of the northern Fennoscandia. The chemical composition of waters in the River Paz downstream is formed by weathering of metamorphosed volcanic and sedimentary rocks of the Pechenga structure and the impact of industrial pollution

  16. The impact of river-lake flow and sediment exchange on sediment scouring and siltation in middle and lower Yangtze River

    Science.gov (United States)

    Liu, Y.; Wang, Z. L.; Zuo, L. Q.

    2017-12-01

    The operation of TGR (Three Gorges Reservoir) caused river erosion and water level decline at downstream, which affects the water and sediment exchange of river-lake (Yangtze River - Dongting lake & Poyang lake). However, the change of river-lake relationship plays a significant role in the flow and sediment process of Yangtze River. In this study, flow diversion ratios of the three outlets, Chenglingji station, Hukou station are used as indexes of river-lake exchange to study the response of river erosion to flow diversion ratios. The results show that:(1) the sediment erosion in each reach from Yichang to Datong has linear correlation with the flow diversion ratio of the three outlets; (2) the sediment erosion above Chenglingji has negative linear correlation with the flow diversion ratio of Chenglingji station. While the sediment erosion below Chenglingji station has non-linear correlation with the flow diversion ratio variation of Chenglingji station; (3) the reach above Hankou station will not be affected by the flow diversion ratio of Hukou station. On one hand, if the flow diversion ratio is less than 10%, the correlation between sediment erosion and flow diversion ratio of Hukou station will be positive in Hankou to Hukou reach, but will be negative in Hukou to Datong reach. On the other hand, if the flow diversion ratio is more than 10%, the correlation will reverse.

  17. An improved active contour model for glacial lake extraction

    Science.gov (United States)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  18. Modelling future improvements in the St. Louis River fishery ...

    Science.gov (United States)

    The presence of fish consumption advisories has a negative impact on fishing. In the St. Louis River, an important natural resource management goal is to reduce or eliminate fish consumption advisories by remediating contaminant sediments and improving aquatic habitat. However, we currently lack sufficient understanding to estimate the cumulative effects of these habitat improvements on fish contaminant burdens. To address this gap, our study had two main research objectives: first, to determine the relationship between game fish habitat use and polychlorinated biphenyls (PCBs) concentrations in the lower St. Louis River, and two, to calibrate and validate a habitat-based Biota-Sediment Accumulation Factor (BSAF) model that estimates fish PCBs concentration as a function of both sediment and habitat quality. We sampled two resident fishes, Yellow Perch (Perca flavescens) and Black Crappie (Pomoxis nigromaculatus), and two migratory fishes, Northern Pike (Esox lucius) and Walleye (Sander vitreus) of varying size and from locations spread across the St. Louis River estuary, the largest coastal wetland complex in Lake Superior. We found differences in contaminant concentration that were related to habitat usage, though results varied by species. For migratory fishes, increasing diet from Lake Superior was associated with decreasing PCBs concentration in tissue. For resident fishes, PCBs concentration was highest in the industrial portion of the river. Model calibra

  19. Predicted effects of future climate warming on thermal habitat suitability for Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) in rivers in Wisconsin, USA

    Science.gov (United States)

    Lyons, John D.; Stewart, Jana S.

    2015-01-01

    The Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) may be threatened by future climate warming. The purpose of this study was to identify river reaches in Wisconsin, USA, where they might be vulnerable to warming water temperatures. In Wisconsin, A. fulvescens is known from 2291 km of large-river habitat that has been fragmented into 48 discrete river-lake networks isolated by impassable dams. Although the exact temperature tolerances are uncertain, water temperatures above 28–30°C are potentially less suitable for this coolwater species. Predictions from 13 downscaled global climate models were input to a lotic water temperature model to estimate amounts of potential thermally less-suitable habitat at present and for 2046–2065. Currently, 341 km (14.9%) of the known habitat are estimated to regularly exceed 28°C for an entire day, but only 6 km (0.3%) to exceed 30°C. In 2046–2065, 685–2164 km (29.9–94.5%) are projected to exceed 28°C and 33–1056 km (1.4–46.1%) to exceed 30°C. Most river-lake networks have cooler segments, large tributaries, or lakes that might provide temporary escape from potentially less suitable temperatures, but 12 short networks in the Lower Fox and Middle Wisconsin rivers totaling 93.6 km are projected to have no potential thermal refugia. One possible adaptation to climate change could be to provide fish passage or translocation so that riverine Lake Sturgeon might have access to more thermally suitable habitats.

  20. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  1. Modeling and management of pit lake water chemistry 1: Theory

    International Nuclear Information System (INIS)

    Castendyk, D.N.; Eary, L.E.; Balistrieri, L.S.

    2015-01-01

    Highlights: • Review of pit lake literature in the context of pit lake predictions. • Review of approaches used to predict pit wall-rock runoff and leachate. • Review of approaches used to generate a pit lake water balance. • Review of approaches used to generate a hydrodynamic prediction. • Review of approaches used to generate a geochemical prediction of a future pit lake. - Abstract: Pit lakes are permanent hydrologic/landscape features that can result from open pit mining for metals, coal, uranium, diamonds, oil sands, and aggregates. Risks associated with pit lakes include local and regional impacts to water quality and related impacts to aquatic and terrestrial ecosystems. Stakeholders rely on predictive models of water chemistry to prepare for and manage these risks. This paper is the first of a two part series on the modeling and management of pit lakes. Herein, we review approaches that have been used to quantify wall-rock runoff geochemistry, wall-rock leachate geochemistry, pit lake water balance, pit lake limnology (i.e. extent of vertical mixing), and pit lake water quality, and conclude with guidance on the application of models within the mine life cycle. The purpose of this paper is to better prepare stakeholders, including future modelers, mine managers, consultants, permitting agencies, land management agencies, regulators, research scientists, academics, and other interested parties, for the challenges of predicting and managing future pit lakes in un-mined areas

  2. Hydraulic, geomorphic, and trout habitat conditions of the Lake Fork of the Gunnison River in Hinsdale County, Lake City, Colorado, Water Years 2010-2011

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Schaffrath, Keelin R.

    2015-01-01

    Channel rehabilitation, or reconfiguration, to mitigate a variety of riverine problems has become a common practice in the western United States. However, additional work to monitor and assess the channel response to, and the effectiveness of, these modifications over longer periods of time (decadal or longer) is still needed. The Lake Fork of the Gunnison River has been an area of active channel modification to accommodate the needs of the Lake City community since the 1950s. The Lake Fork Valley Conservancy District began a planning process to assess restoration options for a reach of the Lake Fork in Lake City to enhance hydraulic and ecologic characteristics of the reach. Geomorphic channel form is affected by land-use changes within the basin and geologic controls within the reach. The historic channel was defined as a dynamic, braided channel with an active flood plain. This can result in a natural tendency for the channel to braid. A braided channel can affect channel stability of reconfigured reaches when a single-thread meandering channel is imposed on the stream. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and Colorado River Water Conservation District, began a study in 2010 to quantify existing hydraulic and habitat conditions for a reach of the Lake Fork of the Gunnison River in Lake City, Colorado. The purpose of this report is to quantify existing Lake Fork hydraulic and habitat conditions and establish a baseline against which post-reconfiguration conditions can be compared. This report (1) quantifies the existing hydraulic and geomorphic conditions in a 1.1-kilometer section of the Lake Fork at Lake City that has been proposed as a location for future channel-rehabilitation efforts, (2) characterizes the habitat suitability of the reach for two trout species based on physical conditions within the stream, and (3) characterizes the current riparian canopy density.

  3. General Reevaluation Report, Upper Skunk River Basin, Iowa (Ames Lake).

    Science.gov (United States)

    1987-07-01

    February 1985, Corps representatives ’-nade presentations on the reevaluation study to the American Society of Civil Kog ineer , Water Resources Design...SCS near County Line Site S36, T8N, R25W Boone County A-17 SECTION 8 - LOCAL FLOOD PROTECCIoN - AMES, IOWA GENERAL The project area for this flood...CentraltDivision ATTN: NCDPO 1. We approve your recommendation to reclassify the Ames lake, Iowa, project from the "inactive" to "active" category of Civil

  4. Seasonal movement and mesohabitat usage of adult and juvenile lake sturgeon in the Grasse River, New York

    Science.gov (United States)

    Trested, D.G.; Chan, Matthew D.; Bridges, W.C.; Isely, J.J.

    2011-01-01

    Long-term restoration efforts for lake sturgeon Acipenser fulvescens populations will benefit from better understanding of this species' movements and habitat use in riverine systems. Radio transmitters were implanted in both juvenile and adult lake sturgeon in the Grasse River, New York, and individuals were relocated over a 2-year period. Adult lake sturgeon demonstrated greater minimum daily distance moved, absolute distance moved, and mean home range size than juvenile lake sturgeon during the spring. During the course of the study, both adult and juvenile lake sturgeon exhibited movements upstream and downstream through a breached low-head weir, and individuals did not necessarily remain resident on an annual basis in the Grasse River. Mesohabitat and substrate use patterns were determined based on comparisons of frequency distributions for relocated lake sturgeon and quantified mesohabitat and substrate over a 15-km river reach. Lake sturgeon used pool mesohabitat and limited their use of run mesohabitat under both low- and mid-flow conditions. During most of the year, adult and juvenile lake sturgeon were detected over silt substrate. This study illustrates behavioral differences and similarities between the movements and habitat use of adult and juvenile lake sturgeon in a riverine system.

  5. Site restoration: Restoring Lost Lake, a Carolina bay at the Savannah River Site

    International Nuclear Information System (INIS)

    Jackson, P.R.; Jackson, D.A.; Smith, T.O. III; Strawbridge, J.D.; Gladden, J.B.; Mackey, H.E. Jr.; Rogers, V.A.; Moorhead, K.K.

    1992-01-01

    The Savannah River Site (SRS) in Aiken, SC, is part of the U.S. Department of Energy complex for production of materials for U.S. Government defense activities. From 1958 to 1985 mixed wastes (wastes which are both hazardous and radioactive) generated by aluminum forming/metal finishing processes at SRS were discharged to a settling basin with overflow directed to an adjacent Carolina bay known as Lost Lake. Use of the basin system was discontinued in 1985, and physical closure in situ began in 1988. The project's Closure Plan required that Lost Lake be restored to a 'natural wetland system'. An on-site interdisciplinary team designed the restoration project to demonstrate the effectiveness of various levels of active remediation of Carolina bays as well as restoring Lost Lake. Closure was completed in August 1991, and the site will be maintained for at least 30 years. (author)

  6. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  7. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  8. Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2011-06-01

    Full Text Available

    In the past, variations in the chemical contents (SO42−, Cl−, cations of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes, taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area, lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf- kg/s –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.

  9. Aeromonas infection from river and playa lake waters in West Texas and southeastern New Mexico

    OpenAIRE

    Robert C. Kimbrough; Richard E. Winn; Randall M. Jeter; William J. Warren; Jennifer R. Huddleston; John C. Zak

    2016-01-01

    Trauma occurring in direct contact with freshwater bodies may result in wounds contaminated with a variety of microorganisms. Bacteria belonging to the genus Aeromonas have been recovered from these types of infections. We report two cases of Aeromonas hydrophila infections occurring from freshwater-contaminated wounds. One of these infections was acquired from a river in southeastern New Mexico; the other was from an urban playa lake in West Texas. The latter case prompted an ecological stud...

  10. Fish diversity of floodplain lakes on the lower stretch of the Solimões River

    Directory of Open Access Journals (Sweden)

    F. K. Siqueira-Souza

    Full Text Available The fish community of the Solimões floodplain lakes was studied by bimonthly samples taken from May 2001 to April 2002. These were carried out at lakes Maracá (03º51'33"S, 62º35'08,6"W, Samaúma (03º50'42,1"S, 61º39'49,3"W, and Sumaúma and Sacambú (03º17'11,6"S and 60º04'31,4"W, located between the town of Coari and the confluence of the Solimões and Negro rivers. Collections were done with 15 gillnets of standardized dimensions with several mesh sizes. We collected 1,313 animals distributed in 77 species, belonging to 55 genera of 20 families and 5 orders. Characiformes was the most abundant Order, with a larger number of representatives in the Serrasalmidae and Curimatidae. The most abundant species in the samplings were Psectrogaster rutiloides (132 individuals, Pigocentrus nattereri (115 individuals, and Serrasalmus elongatus (109 individuals. Lakes Samaúma, Sacambú, and Sumaúma were adjusted to logarithmic and lognormal series. The diversity exhibited an inverse gradient to the river flow, showing the highest diversity at Lake Sumaúma, followed by Samaúma, Sacambú, and Maracá. Species richness estimated through the jackknife technique ranged from 78 to 107 species.

  11. Assessment of lake sturgeon (Acipenser fulvescens) spawning efforts in the lower St. Clair River, Michigan

    Science.gov (United States)

    Nichols, S. Jerrine; Kennedy, Gregory; Crawford, Eric; Allen, Jeffrey; French, John; Black, Glen; Blouin, Marc; Hickey, James P.; Chernyak, Sergei; Haas, Robert; Thomas, Michael

    2003-01-01

    One of the most threatened remaining populations of lake sturgeon in the Great Lakes is found in the connecting channels between Lake Huron and Lake Erie. Only two spawning grounds are presently known to be active in this region, and both are in the St. Clair River. The spawning reef in the St. Clair River delta has been recently colonized by round gobies (Neogobius melanostomus) in densities up to 25/m2, raising concerns regarding predation on the benthic-oriented eggs and larvae of the sturgeon. Investigations in 1998–1999 showed that while round goby predation does occur, a number of other factors may be equally affecting sturgeon spawning success, including few spawning adults (noted in either year. There were factors other than predation affecting larval survival in 1999. There was a higher silt load on the reef than in 1998 and large numbers of dead larvae were found. Recruitment success from this site could be improved by utilizing techniques to increase the number of eggs on the reef, such as reducing the illegal take of adult fish and by placing eggs in predator-exclusion chambers to increase hatch rate.

  12. The Fox River PCB transport study: Stepping stone to a healthy Great Lakes ecosystem

    Science.gov (United States)

    Fitzgerald, Sharon A.; Steuer, Jeffrey J.

    1996-01-01

    Polychlorinated Biphenyls (PCBs) in the Great Lakes Despite being banned since the 1970's, polychlorinated biphenyls (PCBs) continue to pose a threat to the environment because of their persistence and toxicity to organisms ranging from minute algae to fish, waterfowl, and human beings. PCBs, a set of 209 related chlorinated organic compounds, had various industrial uses such as in hydraulic fluids, cutting oils, sealants, and pesticides. Despite the manufacturing ban in the mid-1970's, PCBs remain ubiquitous in the environment. In the Laurentian Great Lakes of the Midwest. PCBs and other toxic compounds contaminate bottom sediments at almost all designated "areas of concern" (AOC)(figure 1, upper left inset). The International Joint Commission, a binational group from Canada and the United States, has identified these AOCs in their efforts to restore and protect Great Lakes ecosystems. One such area, the Fox River which flows into Green Bay, has been the focus of much scientific study in an effort to improve not only that river but to apply lessons learned to other AOCs. The final goal is a healthy Great Lakes food chain with fish and waterfowl that are safe to consume.

  13. Geomorphology of the Chippewa River delta of Glacial Lake Saginaw, central Lower Michigan, USA

    Science.gov (United States)

    Connallon, Christopher B.; Schaetzl, Randall J.

    2017-08-01

    We introduce, characterize, and interpret the geomorphic history of a relict, Pleistocene-aged delta of the Chippewa River in central Lower Michigan. The broad, sandy Chippewa delta developed into various stages of Glacial Lake Saginaw, between ca. ≈ 17 and 15 ka·BP (calibrated ages). Although the delta was first identified in 1955 on a statewide glacial geology map, neither its extent nor its Pleistocene history had been previously determined. The delta is typically forested, owing to its wet, sandy soils, which stand out against the agricultural fields of the surrounding, loamy lake plain sediments. The delta heads near the city of Mt Pleasant and extends eastward onto the Saginaw Lowlands, i.e., the plain of Glacial Lake Saginaw. Data from 3285 water well logs, 180 hand augered sites, and 185 points randomly located in a GIS on two-storied (sand over loam) soils were used to determine the extent, textural properties, and thickness of the delta. The delta is ≈ 18 km wide and ≈ 38 km long and is sandy throughout. Deltaic sediments from neighboring rivers that also drained into Glacial Lake Saginaw merge with the lower Chippewa delta, obscuring its boundary there. The delta is thickest near the delta's head and in the center, but thins to 1-2 m or less on its eastern margins. Mean thicknesses are 2.3-2.9 m, suggestive of a thin sediment body, frequently impacted by the waves and fluctuating waters of the lakes. Although beach ridges are only weakly expressed across the delta because of the sandy sediment, the coarsest parts of the delta are generally coincident with some of these inferred former shorezones and have a broad, incised channel that formed while lake levels were low. The thick upper delta generally lies above the relict shorelines of Glacial Lakes Saginaw and Arkona (≈ 17.1 to ≈ 16 ka·BP), whereas most of the thin, distal delta is associated with Glacial Lake Warren (≈ 15 ka·BP). Together, these data suggest that the Chippewa delta formed

  14. Investigation of Water Quality and Fisheries of the Black River Lake-Cocodrie Lake Area, Louisiana.

    Science.gov (United States)

    1986-08-01

    each lake using electro- shocking. Fish were filleted and a 100 gram sample of muscle tissue from each ,. species was wrapped in aluminum foil and...Fish muscle tissue and sediment samples were processed following guidelines of APHA (1976). Trace metals/non metals included in the analysis were...killifishes Blackstripe topminnow (Fundu7las notatus) 5 Poeciliidae - livebearers Mosquitofish (Gambusia affinis) 5,6 Atherinidae - silversides

  15. Role of lake regulation on glacier fed rivers in enhancing salmon productivity: The Cook Inlet watershed south central Alaska, USA

    Science.gov (United States)

    Hupp, C.R.

    2000-01-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet

  16. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  17. [Lake eutrophication modeling in considering climatic factors change: a review].

    Science.gov (United States)

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  18. Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling

    Science.gov (United States)

    Liu, Xiaofeng; Parker, Gary; Czuba, Jonathan A.; Oberg, Kevin; Mier, Jose M.; Best, James L.; Parsons, Daniel R.; Ashmore, Peter; Krishnappan, Bommanna G.; Garcia, Marcelo H.

    2012-01-01

    The lake levels in Lake Michigan-Huron have recently fallen to near historical lows, as has the elevation difference between Lake Michigan-Huron compared to Lake Erie. This decline in lake levels has the potential to cause detrimental impacts on the lake ecosystems, together with social and economic impacts on communities in the entire Great Lakes region. Results from past work suggest that morphological changes in the St Clair River, which is the only natural outlet for Lake Michigan-Huron, could be an appreciable factor in the recent trends of lake level decline. A key research question is whether bed erosion within the river has caused an increase in water conveyance, therefore, contributed to the falling lake level. In this paper, a numerical modeling approach with field data is used to investigate the possibility of sediment movement in the St Clair River and assess the likelihood of morphological change under the current flow regime. A two-dimensional numerical model was used to study flow structure, bed shear stress, and sediment mobility/armoring over a range of flow discharges. Boundary conditions for the numerical model were provided by detailed field measurements that included high-resolution bathymetry and three-dimensional flow velocities. The results indicate that, without considering other effects, under the current range of flow conditions, the shear stresses produced by the river flow are too low to transport most of the coarse bed sediment within the reach and are too low to cause substantial bed erosion or bed scour. However, the detailed maps of the bed show mobile bedforms in the upper St Clair River that are indicative of sediment transport. Relatively high shear stresses near a constriction at the upstream end of the river and at channel bends could cause local scour and deposition. Ship-induced propeller wake erosion also is a likely cause of sediment movement in the entire reach. Other factors that may promote sediment movement, such as ice

  19. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-11-10

    In a study conducted by the U.S. Geological Survey (USGS) in cooperation with the New York State Department of Environmental Conservation, water samples were collected from 4 production wells and 4 domestic wells in the Chemung River Basin, 8 production wells and 7 domestic wells in the Eastern Lake Ontario Basin, and 12 production wells and 13 domestic wells in the Lower Hudson River Basin (south of the Federal Lock and Dam at Troy) in New York. All samples were collected in June, July, and August 2013 to characterize groundwater quality in these basins. The samples were collected and processed using standard USGS procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds, radionuclides, and indicator bacteria.

  20. Heavy metal monitoring, analysis and prediction in lakes and rivers: state of the art.

    Science.gov (United States)

    Elzwayie, Adnan; Afan, Haitham Abdulmohsin; Allawi, Mohammed Falah; El-Shafie, Ahmed

    2017-05-01

    Several research efforts have been conducted to monitor and analyze the impact of environmental factors on the heavy metal concentrations and physicochemical properties of water bodies (lakes and rivers) in different countries worldwide. This article provides a general overview of the previous works that have been completed in monitoring and analyzing heavy metals. The intention of this review is to introduce the historical studies to distinguish and understand the previous challenges faced by researchers in analyzing heavy metal accumulation. In addition, this review introduces a survey on the importance of time increment sampling (monthly and/or seasonally) to comprehend and determine the rate of change of different parameters on a monthly and seasonal basis. Furthermore, suggestions are made for future research to achieve more understandable figures on heavy metal accumulation by considering climate conditions. Thus, the intent of the current study is the provision of reliable models for predicting future heavy metal accumulation in water bodies in different climates and pollution conditions so that water management can be achieved using intelligent proactive strategies and artificial neural network (ANN) techniques.

  1. Modeling water quality, temperature, and flow in Link River, south-central Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.

    2016-09-09

    The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.

  2. Glacial lake outburst flood risk assessment using combined approaches of remote sensing, GIS and dam break modelling

    Directory of Open Access Journals (Sweden)

    Arpit Aggarwal

    2016-01-01

    Full Text Available A great number of glacial lakes have appeared in many mountain regions across the world during the last half-century due to receding of glaciers and global warming. In the present study, glacial lake outburst flood (GLOF risk assessment has been carried out in the Teesta river basin located in the Sikkim state of India. First, the study focuses on accurate mapping of the glaciers and glacial lakes using multispectral satellite images of Landsat and Indian Remote Sensing satellites. For glacier mapping, normalized difference snow index (NDSI image and slope map of the area have been utilized. NDSI approach can identify glaciers covered with clean snow but debris-covered glaciers cannot be mapped using NDSI method alone. For the present study, slope map has been utilized along with the NDSI approach to delineate glaciers manually. Glacial lakes have been mapped by supervised maximum likelihood classification and normalized difference water index followed by manual editing afterwards using Google Earth images. Second, the first proper inventory of glacial lakes for Teesta basin has been compiled containing information of 143 glacial lakes. Third, analysis of these lakes has been carried out for identification of potentially dangerous lakes. Vulnerable lakes have been identified on the basis of parameters like surface area, position with respect to parent glacier, growth since 2009, slope, distance from the outlet of the basin, presence of supraglacial lakes, presence of other lakes in downstream, condition of moraine, condition of the terrain around them, etc. From these criterions, in total, 18 lakes have been identified as potentially dangerous glacial lakes. Out of these 18 lakes, further analysis has been carried out for the identification of the most vulnerable lake. Lake 140 comes out to be the most vulnerable for a GLOF event. Lastly, for this potentially dangerous lake, different dam break parameters have been generated using satellite data

  3. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    Science.gov (United States)

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746

  4. Modeling of subglacial hydrological development following rapid supraglacial lake drainage.

    Science.gov (United States)

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-06-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Model for subglacial hydrological analysis of rapid lake drainage eventsLimited subglacial channel growth during and following rapid lake drainagePersistence of distributed drainage in inland areas where channel growth is limited.

  5. Cultural Resources Investigation of the Reservoir Shorelines: Gull Lake, Leech Lake, Pine River, and Lake Pokegama. Volume 1,

    Science.gov (United States)

    1979-06-01

    conoidal vessels, lithic projectile points that are long, side notched triangles, conical bone projectile points, wood working tools of beaver incisors...Private Cultural Affiliation: Middle Prehistoric Collections: U of MN 806-30 (1-4) -g Material List: 9 body sherds I bear tooth 1 bison bone Discussion and...with at least Sandy Lake represented. b I .1 .1** * 111 -~ U ’V.- ; ,~:i ~ w I 7 I U.. CM j.J I Figure 38. Bear Canine tooth from site CA 79. I I q a I

  6. Simulation of the Lower Walker River Basin hydrologic system, west-central Nevada, using PRMS and MODFLOW models

    Science.gov (United States)

    Allander, Kip K.; Niswonger, Richard G.; Jeton, Anne E.

    2014-01-01

    Walker Lake is a terminal lake in west-central Nevada with almost all outflow occurring through evaporation. Diversions from Walker River since the early 1900s have contributed to a substantial reduction in flow entering Walker Lake. As a result, the lake is receding, and salt concentrations have increased to a level in which Oncorhynchus clarkii henshawi (Lahontan Cutthroat trout) are no longer present, and the lake ecosystem is threatened. Consequently, there is a concerted effort to restore the Walker Lake ecosystem and fishery to a level that is more sustainable. However, Walker Lake is interlinked with the lower Walker River and adjacent groundwater system which makes it difficult to understand the full effect of upstream water-management actions on the overall hydrologic system including the lake level, volume, and dissolved-solids concentrations of Walker Lake. To understand the effects of water-management actions on the lower Walker River Basin hydrologic system, a watershed model and groundwater flow model have been developed by the U.S. Geological Survey in cooperation with the Bureau of Reclamation and the National Fish and Wildlife Foundation.

  7. Spatial distribution and abundance of small fishes in Xiaosihai Lake, a shallow lake along the Changjiang (Yangtze) River, China

    Science.gov (United States)

    Li, Wei; Zhang, Tanglin; Li, Zhongjie

    2010-05-01

    Spatial distribution and abundance of small fishes were studied in autumn 2007 in the Xiaosihai Lake, a shallow lake along the middle reach of the Changjiang (Yangtze) River. Based on the plant cover, the lake was divided into three major habitats: Myriophyllum spicatum habitat (MS habitat), Trapa bispinosa habitat (TB habitat), and non-vegetation habitat (NV habitat). A modified pop-net was used for quantitative sampling of small fishes in the three habitats, and the Zippin’s removal method was used for estimating densities of the small fishes. A total of 13 species belonging to 5 families were collected, with 11 species in MS habitat, 7 species in TB habitat, and 5 species in NV habitat. Habitat type had significant effect on the spatial distribution of small fishes. The Shannon-Wiener diversity index in the MS, TB and NV habitats were 1.28, 0.56 and 0.54, respectively. The total density and biomass of small fishes were significantly higher in the MS habitat (13.68 ind/m2 and 4.44 g/m2) than in the TB habitat (1.41 ind/m2 and 0.54 g/m2) and the NV habitat (1.08 ind/m2 and 0.40 g/m2), and were not significantly different between the TB habitat and the NV habitat. Water depth had no significant effect on spatial distribution of the small fishes. It was suggested that vegetation type played an important role in habitat selectivity of small fishes, and the presence of submersed vegetation should be of significance in the conservation of small fish diversity.

  8. Technical evaluation of a total maximum daily load model for Upper Klamath and Agency Lakes, Oregon

    Science.gov (United States)

    Wood, Tamara M.; Wherry, Susan A.; Carter, James L.; Kuwabara, James S.; Simon, Nancy S.; Rounds, Stewart A.

    2013-01-01

    TMDL model also contributed to this review. Cores were sequentially extracted to determine the distribution of phosphorus associated with several matrices in the sediment (freely exchangeable, metal-oxides, acid-soluble minerals, and residual). The concentrations of phosphorus in these fractions varied around the lake in patterns that reflect transport processes in the lake and the ultimate deposition of organic and inorganic forms of phosphorus from the water column. Both organic and inorganic phosphorus had higher concentrations in the northern part of the lake, in and just west of Goose Bay. At the time that these cores were collected, prior to restoration of the Williamson River Delta, this area was close to the shoreline of the lake and east of the Williamson River mouth. This contrasts with erosional inputs, which, in addition to being high to the east of the pre-restoration Williamson River mouth, were higher in the middle of the lake than at the northern end. Organic forms of phosphorus had particularly high concentrations in the northern bays. When these cores were used to calculate a new estimate of the whole-lake-averaged concentration of total phosphorus in the top 10 centimeters of the lake sediments, the estimate was about one-third of the best estimate available when the TMDL model was developed.

  9. Models for the Filling of Crater Lake, Oregon

    Science.gov (United States)

    Nathenson, M.; Bacon, C. R.; Gardner, J. V.

    2001-12-01

    Crater Lake partially fills, to a depth of 593 m, the 10-km-diameter, 1200-m-deep caldera formed by collapse of Mount Mazama volcano. The lake receives water from direct precipitation and inflow from the caldera walls and loses water by surface evaporation and leakage. No streams flow from Crater Lake. A high-resolution multibeam echo sounding survey of the lake floor conducted in 2000 (Gardner et al., 2001) revealed seven drowned beaches between 1849 and 1878 m elevation (reference lake elevation is 1883 m). The beaches are thought to reflect drier periods in the lake's history since the climactic, caldera-forming eruption of Mount Mazama, approximately 7,700 years ago. The shallowest drowned beach at 1878 m represents the deepest part of a wave-cut platform up to 100 m wide, substantially wider than any of the beaches, where erodible talus or intensely altered rocks are present. The great width of the platform compared to the width of the drowned beaches indicates that the lake has mostly been near its current level during the lake's history. Unambiguous evidence of former highstands above 1883 m has not been reported. In order to explain the occurrence of the drowned beaches and their relatively narrow depth range, leakage through the caldera walls must vary with depth and cannot occur just at the lake bottom or at the modern lake level. A reasonable model is that leakage is proportional to elevation above the bottom of the lake. Recognition that there is a thick layer of relatively permeable debris resting on glaciated lava in the northeast caldera wall above an elevation of 1845 m suggests a variant of this model where leakage is proportional to elevation above 1845 m. Climate studies indicate that Crater Lake began to fill during a dry period. Assuming that precipitation at that time was 70% of modern and that the beach at 1853 m (the deeper beach is somewhat suspect) corresponds to this amount of precipitation, a combination of the above leakage models is

  10. Modelling catchment hydrological responses in a Himalayan Lake ...

    Indian Academy of Sciences (India)

    cesses in Dal lake catchment of Kashmir Himalayas by integrating remote sensing, simulation modelling ... have significantly altered the land system, impairing, inter-alia, sustained biotic communities and water quality of the lake. The primary objective of this paper was ..... zone is modelled as linear ground water reservoir.

  11. Modeling lakes and reservoirs in the climate system

    NARCIS (Netherlands)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L.N.; Fang, X.; Gal, G.; Jöhnk, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere–land surface–lake climate models that could be used for both of these types of study

  12. Hydrodynamic modelling of small upland lakes under strong wind forcing

    Science.gov (United States)

    Morales, L.; French, J.; Burningham, H.

    2012-04-01

    Small lakes (Area important source of water supply. Lakes also provide an important sedimentary archive of environmental and climate changes and ecosystem function. Hydrodynamic controls on the transport and distribution of lake sediments, and also seasonal variations in thermal structure due to solar radiation, precipitation, evaporation and mixing and the complex vertical and horizontal circulation patterns induced by the action of wind are not very well understood. The work presented here analyses hydrodynamic motions present in small upland lakes due to circulation and internal scale waves, and their linkages with the distribution of bottom sediment accumulation in the lake. For purpose, a 3D hydrodynamic is calibrated and implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. The model, based around the FVCOM open source community model code, resolves the Navier-Stokes equations using a 3D unstructured mesh and a finite volume scheme. The model is forced by meteorological boundary conditions. Improvements made to the FVCOM code include a new graphical user interface to pre- and post process the model input and results respectively, and a JONSWAT wave model to include the effects of wind-wave induced bottom stresses on lake sediment dynamics. Modelled internal scale waves are validated against summer temperature measurements acquired from a thermistor chain deployed at the deepest part of the lake. Seiche motions were validated using data recorded by high-frequency level sensors around the lake margins, and the velocity field and the circulation patterns were validated using the data recorded by an ADCP and GPS drifters. The model is shown to reproduce the lake hydrodynamics and reveals well-developed seiches at different frequencies superimposed on wind-driven circulation patterns that appear to control the distribution of bottom sediments in this small upland lake.

  13. The use of invertebrates as indicators of environmental change in alpine rivers and lakes

    International Nuclear Information System (INIS)

    Khamis, K.; Hannah, D.M.; Brown, L.E.; Tiberti, R.; Milner, A.M.

    2014-01-01

    In alpine regions climatic change will alter the balance between water sources (rainfall, ice-melt, snowmelt, and groundwater) for aquatic systems, particularly modifying the relative contributions of meltwater, groundwater and rain to both rivers and lakes. While these changes are expected to have implications for alpine aquatic ecosystems, little is known about potential ecological tipping points and associated indicator taxa. We examined changes in biotic communities along a gradient of glacier influence for two study systems: (1) a stream network in the French Pyrénées; and (2) a network of lakes in the Italian Alps, with the aim of identifying potential indicator taxa (macroinvertebrates and zooplankton) of glacier retreat in these environments. To assess parallels in biotic responses across streams and lakes, both primary data and findings from other publications were synthesised. Using TITAN (Threshold Indicator Taxa ANalysis) changes in community composition of river taxa were identified at thresholds of < 5.1% glacier cover and < 66.6% meltwater contribution. Below these thresholds the loss of cold stenothermic benthic invertebrate taxa, Diamesa spp. and the Pyrenean endemic Rhyacophila angelieri was apparent. Some generalist taxa including Protonemura sp., Perla grandis, Baetis alpinus, Rhithrogena loyolaea and Microspectra sp. increased when glacier cover was < 2.7% and < 52% meltwater. Patterns were not as distinct for the alpine lakes, due to fewer sampling sites; however, Daphnia longispina grp. and the benthic invertebrate groups Plectopera and Planaria were identified as potential indicator taxa. While further work is required to assess potential indicator taxa for alpine lake systems, findings from alpine river systems were consistent between methods for assessing glacier influence (meltwater contribution/glacier cover). Hence, it is clear that TITAN could become a useful management tool, enabling: (i) the identification of taxa particularly

  14. The use of invertebrates as indicators of environmental change in alpine rivers and lakes

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, K.; Hannah, D.M. [School of Geography Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Brown, L.E. [School of Geography/water@leeds, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Tiberti, R. [DSTA, Dipartimento di Scienze della Terra e dell' Ambiente, University of Pavia, Via Ferrata 9, 27100 Pavia (Italy); Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz 11, I-1101 Valsavarenche, Aosta (Italy); Milner, A.M., E-mail: a.m.milner@bham.ac.uk [School of Geography Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 (United States)

    2014-09-15

    In alpine regions climatic change will alter the balance between water sources (rainfall, ice-melt, snowmelt, and groundwater) for aquatic systems, particularly modifying the relative contributions of meltwater, groundwater and rain to both rivers and lakes. While these changes are expected to have implications for alpine aquatic ecosystems, little is known about potential ecological tipping points and associated indicator taxa. We examined changes in biotic communities along a gradient of glacier influence for two study systems: (1) a stream network in the French Pyrénées; and (2) a network of lakes in the Italian Alps, with the aim of identifying potential indicator taxa (macroinvertebrates and zooplankton) of glacier retreat in these environments. To assess parallels in biotic responses across streams and lakes, both primary data and findings from other publications were synthesised. Using TITAN (Threshold Indicator Taxa ANalysis) changes in community composition of river taxa were identified at thresholds of < 5.1% glacier cover and < 66.6% meltwater contribution. Below these thresholds the loss of cold stenothermic benthic invertebrate taxa, Diamesa spp. and the Pyrenean endemic Rhyacophila angelieri was apparent. Some generalist taxa including Protonemura sp., Perla grandis, Baetis alpinus, Rhithrogena loyolaea and Microspectra sp. increased when glacier cover was < 2.7% and < 52% meltwater. Patterns were not as distinct for the alpine lakes, due to fewer sampling sites; however, Daphnia longispina grp. and the benthic invertebrate groups Plectopera and Planaria were identified as potential indicator taxa. While further work is required to assess potential indicator taxa for alpine lake systems, findings from alpine river systems were consistent between methods for assessing glacier influence (meltwater contribution/glacier cover). Hence, it is clear that TITAN could become a useful management tool, enabling: (i) the identification of taxa particularly

  15. Juvenile Lost River and shortnose sucker year class strength, survival, and growth in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California—2016 Monitoring Report

    Science.gov (United States)

    Burdick, Summer M.; Ostberg, Carl O.; Hoy, Marshal S.

    2018-04-20

    Executive SummaryThe largest populations of federally endangered Lost River (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) exist in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California. Upper Klamath Lake populations are decreasing because adult mortality, which is relatively low, is not being balanced by recruitment of young adult suckers into known spawning aggregations. Most Upper Klamath Lake juvenile sucker mortality appears to occur within the first year of life. Annual production of juvenile suckers in Clear Lake Reservoir appears to be highly variable and may not occur at all in very dry years. However, juvenile sucker survival is much higher in Clear Lake, with non-trivial numbers of suckers surviving to join spawning aggregations. Long-term monitoring of juvenile sucker populations is needed to (1) determine if there are annual and species-specific differences in production, survival, and growth, (2) to identify the season (summer or winter) in which most mortality occurs, and (3) to help identify potential causes of high juvenile sucker mortality, particularly in Upper Klamath Lake.We initiated an annual juvenile sucker monitoring program in 2015 to track cohorts in 3 months (June, August, and September) annually in Upper Klamath Lake and Clear Lake Reservoir. We tracked annual variability in age-0 sucker apparent production, juvenile sucker apparent survival, and apparent growth. Using genetic markers, we were able to classify suckers as one of three taxa: shortnose or Klamath largescale suckers, Lost River, or suckers with genetic markers of both species (Intermediate Prob[LRS]). Using catch data, we generated taxa-specific indices of year class strength, August–September apparent survival, and overwinter apparent survival. We also examined prevalence and severity of afflictions such as parasites, wounds, and deformities.Indices of year class strength in Upper Klamath Lake were similar for shortnose suckers in 2015

  16. Glacial Lake Outburst Flood Risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas

    Directory of Open Access Journals (Sweden)

    Narendra Raj Khanal

    2015-11-01

    Full Text Available The Himalayas have experienced several glacial lake outburst floods (GLOFs, and the risk of GLOFs is now increasing in the context of global warming. Poiqu watershed in the Tibet Autonomous Region, China, also known as the Bhote Koshi and Sun Koshi downstream in Nepal, has been identified as highly prone to GLOFs. This study explored the distribution of and changes in glacial lakes, past GLOFs and the resulting losses, risk from potential future GLOFs, and risk reduction initiatives within the watershed. A relationship was established between lake area and volume of lake water based on data from 33 lakes surveyed within the Hindu Kush Himalayan region, and the maximum possible discharge was estimated using this and other previously developed empirical equations. We recommend different strategies to reduce GLOF risk and highlight the need for a glacial lake monitoring and early-warning system. We also recommend strong regional cooperation, especially on issues related to transboundary rivers.

  17. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)

    Science.gov (United States)

    Layden, Aisling; MacCallum, Stuart N.; Merchant, Christopher J.

    2016-06-01

    A tuning method for FLake, a one-dimensional (1-D) freshwater lake model, is applied for the individual tuning of 244 globally distributed large lakes using observed lake surface water temperatures (LSWTs) derived from along-track scanning radiometers (ATSRs). The model, which was tuned using only three lake properties (lake depth, snow and ice albedo and light extinction coefficient), substantially improves the measured mean differences in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes, when compared to the observed LSWTs. Lakes whose lake-mean LSWT persists below 1 °C for part of the annual cycle are considered to be seasonally ice-covered. For trial seasonally ice-covered lakes (21 lakes), the daily mean and standard deviation (2σ) of absolute differences between the modelled and observed LSWTs are reduced from 3.07 °C ± 2.25 °C to 0.84 °C ± 0.51 °C by tuning the model. For all other trial lakes (14 non-ice-covered lakes), the improvement is from 3.55 °C ± 3.20 °C to 0.96 °C ± 0.63 °C. The post tuning results for the 35 trial lakes (21 seasonally ice-covered lakes and 14 non-ice-covered lakes) are highly representative of the post-tuning results of the 244 lakes. For the 21 seasonally ice-covered lakes, the modelled response of the summer LSWTs to changes in snow and ice albedo is found to be statistically related to lake depth and latitude, which together explain 0.50 (R2adj, p = 0.001) of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p = 0.003) of the variance. Lake characteristic information (snow and ice albedo and light extinction coefficient) is not available for many lakes. The approach taken to tune the model, bypasses the need to acquire detailed lake characteristic values. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction coefficient for the 244 lakes provide some guidance on improving FLake LSWT modelling.

  18. Sources of suspended-sediment loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, south Texas, 1958–2010

    Science.gov (United States)

    Ockerman, Darwin J.; Heitmuller, Franklin T.; Wehmeyer, Loren L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Fort Worth District; City of Corpus Christi; Guadalupe-Blanco River Authority; San Antonio River Authority; and San Antonio Water System, developed, calibrated, and tested a Hydrological Simulation Program-FORTRAN (HSPF) watershed model to simulate streamflow and suspended-sediment concentrations and loads during 1958-2010 in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary in south Texas. Data available to simulate suspended-sediment concentrations and loads consisted of historical sediment data collected during 1942-82 in the study area and suspended-sediment concentration data collected periodically by the USGS during 2006-7 and 2010 at three USGS streamflow-gaging stations (08211000 Nueces River near Mathis, Tex. [the Mathis gage], 08211200 Nueces River at Bluntzer, Tex. [the Bluntzer gage], and 08211500 Nueces River at Calallen, Tex. [the Calallen gage]), and at one ungaged location on a Nueces River tributary (USGS station 08211050 Bayou Creek at Farm Road 666 near Mathis, Tex.). The Mathis gage is downstream from Wesley E. Seale Dam, which was completed in 1958 to impound Lake Corpus Christi. Suspended-sediment data collected before and after completion of Wesley E. Seale Dam provide insights to the effects of the dam and reservoir on suspended-sediment loads transported by the lower Nueces River downstream from the dam to the Nueces Estuary. Annual suspended-sediment loads at the Nueces River near the Mathis, Tex., gage were considerably lower for a given annual mean discharge after the dam was completed than before the dam was completed.

  19. Coleoptera associated with macrophytes of the genus Salvinia in four oxbow lakes in two river basins in southeast Brazil

    Directory of Open Access Journals (Sweden)

    M. C. Paula-Bueno

    Full Text Available Abstract Macrophytes in oxbow lakes represent an important substrate for the Coleoptera. Two oxbow lakes the Rio Paranapanema were studied and the other two Rio Mogi-Guaçu, in the State de São Paulo, Brasil. In this study, there is greater similarity between the communities of Coleoptera of lakes greater connectivity with the main river channel or the difference in the species of Salvinia collected in the lakes studied interferes Coleoptera fauna that uses as substrate. A total of 9,222 specimens of Coleoptera were collected and identified in 10 families and 40 genera. The analysis MDS for abundance of Coleoptera showed the grouping of the oxbow lakes the Paranapanema River and a distancing the oxbow lakes the Mogi-Guaçu. The PERMANOVA test did not reveal any difference in the fauna between the wet and dry periods. It was concluded that the connectivity between river and lake is not decisive for the richness and abundance of aquatic fauna of Coleoptera. Therefore, the richness and abundance of aquatic Coleoptera associated vary with the species of Salvinia used as substrate.

  20. Coleoptera associated with macrophytes of the genus Salvinia in four oxbow lakes in two river basins in southeast Brazil.

    Science.gov (United States)

    Paula-Bueno, M C; Fonseca-Gessner, A A

    2015-11-01

    Macrophytes in oxbow lakes represent an important substrate for the Coleoptera. Two oxbow lakes the Rio Paranapanema were studied and the other two Rio Mogi-Guaçu, in the State de São Paulo, Brasil. In this study, there is greater similarity between the communities of Coleoptera of lakes greater connectivity with the main river channel or the difference in the species of Salvinia collected in the lakes studied interferes Coleoptera fauna that uses as substrate. A total of 9,222 specimens of Coleoptera were collected and identified in 10 families and 40 genera. The analysis MDS for abundance of Coleoptera showed the grouping of the oxbow lakes the Paranapanema River and a distancing the oxbow lakes the Mogi-Guaçu. The PERMANOVA test did not reveal any difference in the fauna between the wet and dry periods. It was concluded that the connectivity between river and lake is not decisive for the richness and abundance of aquatic fauna of Coleoptera. Therefore, the richness and abundance of aquatic Coleoptera associated vary with the species of Salvinia used as substrate.

  1. Impact of riverine suspended particulate matter on the branched glycerol dialkyl glycerol tetraether composition of lakes: The outflow of the Selenga River in Lake Baikal (Russia)

    NARCIS (Netherlands)

    De Jonge, C.; Stadnitskaia, A.; Fedotov, A.; Sinninghe Damsté, J.S.

    2015-01-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids found in several environments, including soils, rivers and lakes, whose distribution varies with temperature and pH, although this dependence is apparently not the same for the different environments. Mixing of

  2. Preliminary estimate of possible flood elevations in the Columbia River at Trojan Nuclear Power Plant due to failure of debris dam blocking Spirit Lake, Washington

    Science.gov (United States)

    Kresch, D.L.; Laenen, Antonius

    1984-01-01

    Failure of the debris dam, blocking the outflow of Spirit Lake near Mount St. Helens, could result in a mudflow down the Toutle and Cowlitz Rivers into the Columbia River. Flood elevations at the Trojan Nuclear Power Plant on the Columbia River, 5 mi upstream from the Cowlitz River, were simulated with a hydraulic routing model. The simulations are made for four Columbia River discharges in each of two scenarios, one in which Columbia River floods coincide with a mudflow and the other in which Columbia River floods follow a mudflow sediment deposit upstream from the Cowlitz River. In the first scenario, Manning 's roughness coefficients for clear water and for mudflow in the Columbia River are used; in the second scenario only clear water coefficients are used. The grade elevation at the power plant is 45 ft above sea level. The simulated elevations exceed 44 ft if the mudflow coincides with a Columbia River discharge that has a recurrence interval greater than 10 years (610,000 cu ft/sec); the mudflow is assumed to extend downstream from the Cowlitz River to the mouth of the Columbia River, and Manning 's roughness coefficients for a mudflow are used. The simulated elevation is 32 ft if the mudflow coincides with a 100-yr flood (820,000 cu ft/sec) and clear-water Manning 's coefficients are used throughout the entire reach of the Columbia River. The elevations exceed 45 ft if a flow exceeding the 2-yr peak discharge in the Columbia River (410,000 cu ft/sec) follows the deposit of 0.5 billion cu yd of mudflow sediment upstream of the Cowlitz River before there has been any appreciable scour or dredging of the deposit. In this simulation it is assumed that: (1) the top of the sediment deposited in the Columbia River is at an elevation of 30 ft at the mouth of the Cowlitz River, (2) the surface elevation of the sediment deposit decreases in an upstream direction at a rate of 2.5 ft/mi, and (3) clear water Manning 's coefficients apply to the entire modeled reach of

  3. Modeling past and future acidification of Swedish lakes.

    Science.gov (United States)

    Moldan, Filip; Cosby, Bernard J; Wright, Richard F

    2013-09-01

    Decades of acid deposition have caused acidification of lakes in Sweden. Here we use data for 3000 lakes to run the acidification model MAGIC and estimate historical and future acidification. The results indicate that beginning in about 1920 a progressively larger number of lakes in Sweden fell into the category of "not naturally acidified" (∆pH > 0.4). The peak in acidification was reached about 1985; since then many lakes have recovered in response to lower levels of acid deposition. Further recovery from acidification will occur by the year 2030 given implementation of agreed legislation for emissions of sulphur (S) and nitrogen (N) in Europe. But the number of catchments with soils being depleted in base cations will increase slightly. MAGIC-reconstructed history of acidification of lakes in Sweden agrees well with information on fish populations. Future acidification of Swedish lakes can be influenced by climate change as well as changes in forest harvest practices.

  4. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    Science.gov (United States)

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Evolution of Lake Chad Basin hydrology during the mid-Holocene: A preliminary approach from lake to climate modelling

    Science.gov (United States)

    Sepulchre, Pierre; Schuster, Mathieu; Ramstein, Gilles; Krinnezr, Gerhard; Girard, Jean-Francois; Vignaud, Patrick; Brunet, Michel

    2008-03-01

    simulated response of Lake Chad to the hydrologic changes caused by 6 kyr BP forcings (orbital variations, albedo, sea surface temperatures) as a test for a future use of the model for studies of the Miocene climate. We show that the induced northward shift of the simulated ITCZ, and the hydrological changes around the lake caused by this shift, are consistent with an increased water balance over the Lake Chad Basin 6000 yr ago. Water supply from the soil (runoff and river inputs) will have to be taken into account in further simulations in order to discuss the timing of the onset, expansion and decay of such a giant water surface in subtropical Africa.

  6. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai.

    Science.gov (United States)

    Liu, Yu; Li, Changyou; Anderson, Bruce; Zhang, Sheng; Shi, Xiaohong; Zhao, Shengnan

    2017-06-01

    Mercury contamination from industrial and agricultural drainage into lakes and rivers is a growing concern in Northern China. Lake Ulansuhai, located in Hetao irrigation district in Inner Mongolia, is the only sink for the all industrial and agricultural drainage and sole outlet for this district to the Yellow River, which is one of the main source of drinking water for the numerous cities and towns downstream. Because Ulansuahi is ice-covered during winter, the QWASI model was modified by adding an ice equation to get a more accurate understanding of the fate and transport of mercury within the lake. Both laboratory and field tests were carried out during the ice growth period. The aquivalence and mass balance approaches were used to develop the modified QWASI + ice model. The margins of error between the modelled and the measured average concentrations of Hg in ice, water, and sediment were 30%, 26.2%, and 19.8% respectively. These results suggest that the new QWASI + ice model could be used to more accurately represent the fate and transport of mercury in the seasonally ice-covered lakes, during the ice growth period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Relationships between land cover and dissolved organic matter change along the river to lake transition

    Science.gov (United States)

    Larson, James H.; Frost, Paul C.; Xenopoulos, Marguerite A.; Williams, Clayton J.; Morales-Williams, Ana M.; Vallazza, Jonathan M.; Nelson, J. C.; Richardson, William B.

    2014-01-01

    Dissolved organic matter (DOM) influences the physical, chemical, and biological properties of aquatic ecosystems. We hypothesized that controls over spatial variation in DOM quantity and composition (measured with DOM optical properties) differ based on the source of DOM to aquatic ecosystems. DOM quantity and composition should be better predicted by land cover in aquatic habitats with allochthonous DOM and related more strongly to nutrients in aquatic habitats with autochthonous DOM. Three habitat types [rivers (R), rivermouths (RM), and the nearshore zone (L)] associated with 23 tributaries of the Laurentian Great Lakes were sampled to test this prediction. Evidence from optical indices suggests that DOM in these habitats generally ranged from allochthonous (R sites) to a mix of allochthonous-like and autochthonous-like (L sites). Contrary to expectations, DOM properties such as the fluorescence index, humification index, and spectral slope ratio were only weakly related to land cover or nutrient data (Bayesian R 2 values were indistinguishable from zero). Strongly supported models in all habitat types linked DOM quantity (that is, dissolved organic carbon concentration [DOC]) to both land cover and nutrients (Bayesian R2 values ranging from 0.55 to 0.72). Strongly supported models predicting DOC changed with habitat type: The most important predictor in R sites was wetlands whereas the most important predictor at L sites was croplands. These results suggest that as the DOM pool becomes more autochthonous-like, croplands become a more important driver of spatial variation in DOC and wetlands become less important.

  8. SWAT Model Configuration, Calibration and Validation for Lake Champlain Basin

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model was used to develop phosphorus loading estimates for sources in the Lake Champlain Basin. This document describes the model setup and parameterization, and presents calibration results.

  9. Modelling catchment hydrological responses in a Himalayan Lake ...

    Indian Academy of Sciences (India)

    In this paper, we evaluate the impact of changing land use/land cover (LULC) on the hydrological pro- cesses in Dal lake catchment of Kashmir Himalayas by integrating remote sensing, simulation modelling and extensive field observations. Over the years, various anthropogenic pressures in the lake catchment.

  10. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  11. Predicting future glacial lakes in Austria using different modelling approaches

    Science.gov (United States)

    Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers

  12. LAKE-0: a model for the simulation of nuclides transfer in lake scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Olivares, A.; Aguero, A.; Pinedo, P.

    1994-07-01

    This report presents documentation and a user's manual for the program LAKE-0, a mathematical model of nuclides transfer in lake scenarios. Mathematical equations and physical principles used to develop the code are presented in section 2. The program use is presented in section 3 including input data sets and output data. Section 4 presents two example problems, and some results. The complete program listing including comments is presented in Appendix A. Nuclides are assumed to center the lake via atmospheric deposition and carried by the water runoff and the dragged sediments from the adjacent catchment. The dynamics of the nuclides inside the lake is based in the model proposed by Codell (11) as modified in (5). The removal of concentration from the lake water is due to out flow from the lake and to the transfer of activity to the button sediments. The model has been applied to the Esthwaite Water (54 degree celsius 2 l'N, 03 degree celsius 00'W at 65 m. asi.) in the frame of the VAMP Aquatic Working Group (8) and to Devoke Water (5 21.5'N, 03H8'W at 230 m. asi.). (Author). 13 refs.

  13. Lake-0: A model for the simulation of nuclides transfer in lake scenarios

    International Nuclear Information System (INIS)

    Garcia-Olivares, A.; Aguero, A.; Pinedo, P.

    1994-01-01

    This report presents documentation and a user's manual for the program LAKE-0, a mathematical model of nuclides transfer in lake scenarios. Mathematical equations and physical principles used to develop the code are presented in section 2. The program use is presented in section 3 including input data sets and output data. Section 4 presents two example problems, and some results. The complete program listing including comments is presented in Appendix A. Nuclides are assumed to enter the lake via atmospheric deposition and carried by the water runoff and the dragged sediments from the adjacent catchment. The dynamics of the nuclides inside the lake is based in the model proposed by Codell (11) as modified in (5). The removal of concentration from the lake water is due to outflow from the lake and to the transfer of activity to the bottom sediments. The model has been applied to the Esthwaite Water (54 degree 21 minute N, 03 degree 00 minute W at 65 m. asl.) in the frame of the VAMP Aquatic Working Group (8) and to Devoke Water (54 degree 21 minute 5'N, 03 degree, 18 minute W at 230 m. asl.)

  14. LAKE-0: a model for the simulation of nuclides transfer in lake scenarios

    International Nuclear Information System (INIS)

    Garcia-Olivares, A.; Aguero, A.; Pinedo, P.

    1994-01-01

    This report presents documentation and a user's manual for the program LAKE-0, a mathematical model of nuclides transfer in lake scenarios. Mathematical equations and physical principles used to develop the code are presented in section 2. The program use is presented in section 3 including input data sets and output data. Section 4 presents two example problems, and some results. The complete program listing including comments is presented in Appendix A. Nuclides are assumed to center the lake via atmospheric deposition and carried by the water runoff and the dragged sediments from the adjacent catchment. The dynamics of the nuclides inside the lake is based in the model proposed by Codell (11) as modified in (5). The removal of concentration from the lake water is due to out flow from the lake and to the transfer of activity to the button sediments. The model has been applied to the Esthwaite Water (54 degree celsius 2 l'N, 03 degree celsius 00'W at 65 m. asi.) in the frame of the VAMP Aquatic Working Group (8) and to Devoke Water (5 21.5'N, 03H8'W at 230 m. asi.). (Author). 13 refs

  15. Role of minerogenic particles in light scattering in lakes and a river in central New York.

    Science.gov (United States)

    Peng, Feng; Effler, Steven W; O'Donnell, David; Perkins, Mary Gail; Weidemann, Alan

    2007-09-10

    The role of minerogenic particles in light scattering in several lakes and a river (total of ten sites) in central New York, which represent a robust range of scattering conditions, was evaluated based on an individual particle analysis technique of scanning electron microscopy interfaced with automated x-ray microanalysis and image analysis (SAX), in situ bulk measurements of particle scattering and backscattering coefficients (bp and bbp), and laboratory analyses of common indicators of scattering. SAX provided characterizations of the elemental x-ray composition, number concentration, particle size distribution (PSD), shape, and projected area concentration of minerogenic particles (PAVm) of sizes>0.4 microm. Mie theory was applied to calculate the minerogenic components of bp (bm) and bbp (bb,m) with SAX data. Differences in PAVm, associated primarily with clay minerals and CaCO3, were responsible for most of the measured differences in both bp and bbp across the study sites. Contributions of the specified minerogenic particle classes to bm were found to correspond approximately to their contributions to PAVm. The estimates of bm represented substantial fractions of bp, whereas those of bb,m were the dominant component of bbp. The representativeness of the estimates of bm and bb,m was supported by their consistency with the bulk measurements. Greater uncertainty prevails for the bb,m estimates than those for bm, associated primarily with reported deviations in particle shapes from sphericity. The PSDs were well represented by the "B" component of the two-component model or a three parameter generalized gamma distribution [Deep-Sea Res. Part I 40, 1459 (1993)]. The widely applied Junge (hyperbolic) function performed poorly in representing the PSDs and the size dependency of light scattering in these systems, by overrepresenting the concentrations of submicrometer particles especially. Submicrometer particles were not important contributors to bm or bb,m.

  16. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series

    Directory of Open Access Journals (Sweden)

    Sofia Antonova

    2016-11-01

    Full Text Available Thermokarst lakes and ponds are major elements of permafrost landscapes, occupying up to 40% of the land area in some Arctic regions. Shallow lakes freeze to the bed, thus preventing permafrost thaw underneath them and limiting the length of the period with greenhouse gas production in the unfrozen lake sediments. Radar remote sensing permits to distinguish lakes with bedfast ice due to the difference in backscatter intensities from bedfast and floating ice. This study investigates the potential of a unique time series of three-year repeat-pass TerraSAR-X (TSX imagery with high temporal (11 days and spatial (10 m resolution for monitoring bedfast ice as well as ice phenology of lakes in the zone of continuous permafrost in the Lena River Delta, Siberia. TSX backscatter intensity is shown to be an excellent tool for monitoring floating versus bedfast lake ice as well as ice phenology. TSX-derived timing of ice grounding and the ice growth model CLIMo are used to retrieve the ice thicknesses of the bedfast ice at points where in situ ice thickness measurements were available. Comparison shows good agreement in the year of field measurements. Additionally, for the first time, an 11-day sequential interferometric coherence time series is analyzed as a supplementary approach for the bedfast ice monitoring. The coherence time series detects most of the ice grounding as well as spring snow/ice melt onset. Overall, the results show the great value of TSX time series for monitoring Arctic lake ice and provide a basis for various applications: for instance, derivation of shallow lakes bathymetry, evaluation of winter water resources and locating fish winter habitat as well as estimation of taliks extent in permafrost.

  17. Viruses and bacteria in floodplain lakes along a major Amazon tributary respond to distance to the Amazon River.

    Science.gov (United States)

    Almeida, Rafael M; Roland, Fábio; Cardoso, Simone J; Farjalla, Vinícius F; Bozelli, Reinaldo L; Barros, Nathan O

    2015-01-01

    In response to the massive volume of water along the Amazon River, the Amazon tributaries have their water backed up by 100s of kilometers upstream their mouth. This backwater effect is part of the complex hydrodynamics of Amazonian surface waters, which in turn drives the variation in concentrations of organic matter and nutrients, and also regulates planktonic communities such as viruses and bacteria. Viruses and bacteria are commonly tightly coupled to each other, and their ecological role in aquatic food webs has been increasingly recognized. Here, we surveyed viral and bacterial abundances (BAs) in 26 floodplain lakes along the Trombetas River, the largest clear-water tributary of the Amazon River's north margin. We correlated viral and BAs with temperature, pH, dissolved inorganic carbon, dissolved organic carbon (DOC), phosphorus, nitrogen, turbidity, water transparency, partial pressure of carbon dioxide (pCO2), phytoplankton abundance, and distance from the lake mouth until the confluence of the Trombetas with the Amazon River. We hypothesized that both bacterial and viral abundances (VAs) would change along a latitudinal gradient, as the backwater effect becomes more intense with increased proximity to the Amazon River; different flood duration and intensity among lakes and waters with contrasting sources would cause spatial variation. Our measurements were performed during the low water period, when floodplain lakes are in their most lake-like conditions. Viral and BAs, DOC, pCO2, and water transparency increased as distance to the Amazon River increased. Most viruses were bacteriophages, as viruses were strongly linked to bacteria, but not to phytoplankton. We suggest that BAs increase in response to DOC quantity and possibly quality, consequently leading to increased VAs. Our results highlight that hydrodynamics plays a key role in the regulation of planktonic viral and bacterial communities in Amazonian floodplain lakes.

  18. 137Cs distribution and geochemistry of Lena River (Siberia) drainage basin lake sediments

    International Nuclear Information System (INIS)

    Johnson-Pyrtle, A.; Scott, M.R.; Laing, T.E.; Smol, J.P.

    2000-01-01

    The Lena River is the second largest river that discharges into the Arctic Ocean. It is therefore important to determine not only the direct impact its discharge has on the 137Cs concentration of the Arctic, but also the potential its drainage basin has as a 137Cs source. 137Cs surface sediment concentrations and inventory values, which range from 4.97 to 338 Bq kg -1 and 357 to 1732 Bq m -2 , respectively, were determined for the Lena River drainage basin lake samples, via gamma analysis. The average geochemical and mineralogical composition of a subset of samples was also determined using neutron activation analysis, X-ray diffraction and X-ray fluorescence spectrometry techniques. Results of these geochemical analyses allowed for the identification of key geochemical factors that influence the distribution of 137Cs in the Lena River drainage basin. 137Cs profiles indicate that Lena River drainage basin lacustrine sediments serve as a record of 137Cs fallout. Based on the downcore 137Cs, %illite, %smectite, %Al and %Mn distribution patterns, it was concluded that a small fraction of non-selectively bound 137Cs was remobilized at depth in some cores. Inconsistencies between the actual 137Cs fallout record and the 137Cs profiles determined for the lake sediments were attributed to 137Cs remobilization in subsurface sediments. In addition to establishing the agreement between the global atmospheric fallout record and the downcore 137Cs distribution patterns determined for these sediments, results indicate that 137Cs deposited during periods of maximum atmospheric release was buried and is not susceptible to surface erosion processes. However, mean 137Cs concentrations of the lacustrine surface sediments (125 Bq kg -1 ) are still significantly higher than those of the nearby Lena River estuary (11.22 Bq kg -1 ) and Laptev Sea (6.00 Bq kg -1 ). Our study suggests that the Lena River drainage basin has the potential to serve as a source of 137Cs to the adjacent Arctic

  19. LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models

    Directory of Open Access Journals (Sweden)

    WIM Thiery

    2014-02-01

    Full Text Available The African great lakes are of utmost importance for the local economy (fishing, as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E, East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP. Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model's performance. Simulations are performed over the freshwater layer only (60 m and over the average lake depth (240 m, since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.

  20. Characterizing baseline concentrations, proportions, and processes controlling deposition of river-transported bitumen-associated polycyclic aromatic compounds at a floodplain lake (Slave River Delta, Northwest Territories, Canada).

    Science.gov (United States)

    Elmes, Matthew C; Wiklund, Johan A; Van Opstal, Stacey R; Wolfe, Brent B; Hall, Roland I

    2016-05-01

    Inadequate knowledge of baseline conditions challenges ability for monitoring programs to detect pollution in rivers, especially where there are natural sources of contaminants. Here, we use paleolimnological data from a flood-prone lake ("SD2", informal name) in the Slave River Delta (SRD, Canada), ∼ 500 km downstream of the Alberta oil sands development and the bitumen-rich McMurray Formation to identify baseline concentrations and proportions of "river-transported bitumen-associated indicator polycyclic aromatic compounds" (indicator PACs; Hall et al. 2012) and processes responsible for their deposition. Results show that indicator PACs are deposited in SD2 by Slave River floodwaters in concentrations that are 45 % lower than those in sediments of "PAD31compounds", a lake upstream in the Athabasca Delta that receives Athabasca River floodwaters. Lower concentrations at SD2 are likely a consequence of sediment retention upstream as well as dilution by sediment influx from the Peace River. In addition, relations with organic matter content reveal that flood events dilute concentrations of indicator PACs in SD2 because the lake receives high-energy floods and the lake sediments are predominantly inorganic. This contrasts with PAD31 where floodwaters increase indicator PAC concentrations in the lake sediments, and concentrations are diluted during low flood influence intervals due to increased deposition of lacustrine organic matter. Results also show no significant differences in concentrations and proportions of indicator PACs between pre- (1967) and post- (1980s and 1990 s) oil sands development high flood influence intervals (t = 1.188, P = 0.279, d.f. = 6.136), signifying that they are delivered to the SRD by natural processes. Although we cannot assess potential changes in indicator PACs during the past decade, baseline concentrations and proportions can be used to enhance ongoing monitoring efforts.

  1. Using a Population Model to Inform the Management of River Flows and Invasive Carp ( Cyprinus carpio)

    Science.gov (United States)

    Koehn, John D.; Todd, Charles R.; Zampatti, Brenton P.; Stuart, Ivor G.; Conallin, Anthony; Thwaites, Leigh; Ye, Qifeng

    2018-03-01

    Carp are a highly successful invasive fish species, now widespread, abundant and considered a pest in south-eastern Australia. To date, most management effort has been directed at reducing abundances of adult fish, with little consideration of population growth through reproduction. Environmental water allocations are now an important option for the rehabilitation of aquatic ecosystems, particularly in the Murray-Darling Basin. As carp respond to flows, there is concern that environmental watering may cause floodplain inundation and provide access to spawning habitats subsequently causing unwanted population increase. This is a management conundrum that needs to be carefully considered within the context of contemporary river flow management (natural, environmental, irrigation). This paper uses a population model to investigate flow-related carp population dynamics for three case studies in the Murray-Darling Basin: (1) river and terminal lakes; (2) wetlands and floodplain lakes; and (3) complex river channel and floodplain system. Results highlight distinctive outcomes depending on site characteristics. In particular, the terminal lakes maintain a significant source carp population regardless of river flow; hence any additional within-channel environmental flows are likely to have little impact on carp populations. In contrast, large-scale removal of carp from the lakes may be beneficial, especially in times of extended low river flows. Case studies 2 and 3 show how wetlands, floodplain lakes and the floodplain itself can now often be inundated for several months over the carp spawning season by high volume flows provided for irrigation or water transfers. Such inundations can be a major driver of carp populations, compared to within channel flows that have relatively little effecton recruitment. The use of a population model that incorporates river flows and different habitats for this flow-responsive species, allows for the comparison of likely population

  2. Assessment of whether upstream passage for Lake Sturgeon is needed at the Pointe du Bois Generating Station (Winnipeg River)

    International Nuclear Information System (INIS)

    Pratt, T.

    2010-01-01

    This document reviewed Manitoba Hydro's proposal to modernize the Pointe du Bois Generating Station (GS) on the Winnipeg River, with particular reference to the potential impacts on Lake Sturgeon in Management Unit 5 (MU5) where large numbers of the fish spawn at the base of the falls. The modernization will involve replacing the spillway, dam segments and replacing or repairing the powerhouse. The pros and cons of providing upstream fish passage for Lake Sturgeon and the generating station were outlined. The only spawning area in the MU5 area may be altered considerably due to changes in water flow, depending on the design chosen for modernization. A potential benefit of providing upstream fish passage for Lake Sturgeon would be to increase genetic diversity within the Winnipeg River. Another potential benefit would be to allow Lake Sturgeon, from the relatively dense population below the GS, to move upstream into MU4 where unfilled habitat may be available and Lake Sturgeon abundance is lower. A potential disadvantage of providing fish passage would be the loss of individual Lake Sturgeon from the healthy population in MU5 with no accompanying benefit to MU4. There would be no net gain to MU4 or MU5 if migrating Lake Sturgeon returned to MU5 rather than proceeding upstream. It was concluded that these current gaps in knowledge must be filled in order to fully assess the environmental impacts. 2 figs.

  3. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers.

    Science.gov (United States)

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-11-06

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake's only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr.

  4. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    Science.gov (United States)

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  5. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS.

    Directory of Open Access Journals (Sweden)

    Chrispine Nyamweya

    Full Text Available Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May and mixing (June-August. Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  6. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    Science.gov (United States)

    Dow, C. F.; Kulessa, B.; Rutt, I. C.; Tsai, V. C.; Pimentel, S.; Doyle, S. H.; van As, D.; Lindbäck, K.; Pettersson, R.; Jones, G. A.; Hubbard, A.

    2015-06-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections.

  7. Characteristics of Lake Chad Level Variability and Links to ENSO, Precipitation, and River Discharge

    Directory of Open Access Journals (Sweden)

    Churchill Okonkwo

    2014-01-01

    Full Text Available This study used trend, correlation, and wavelet analysis to characterize Lake Chad (LC level fluctuations, river discharge, El Niño Southern Oscillation (ENSO, and precipitation regimes and their interrelationships. Linear correlation results indicate a negative association between ENSO and LC level, river discharge and precipitation. Trend analysis shows increasing precipitation in the Lake Chad Basin (LCB but decreasing LC level. The mode of interannual variability in LC level, rainfall, and ENSO analyzed using wavelet analysis is dominated by 3-4-year periods. Results show that variability in ENSO could explain only 31% and 13% of variations in LC level at Kindjeria and precipitation in the northern LCB, respectively. The wavelet transform coherency (WTC between LC level of the southern pool at Kalom and ENSO is statistically significant at the 95% confidence level and phase-locked, implying a cause-and-effect association. These strong coherencies coincide with the La Niña years with the exception of 1997-1998 El Niño events. The WTC shows strong covariance between increasing precipitation and LC level in the northern pool at a 2- to 4-year band and 3- to 4-year band localized from 1996 to 2010. Implications for water resource planning and management are discussed.

  8. Dioxins, PCBs and heavy metals in Chinese mitten crabs from Dutch rivers and lakes.

    Science.gov (United States)

    Hoogenboom, Ron L A P; Kotterman, Michiel J J; Hoek-van Nieuwenhuizen, Marion; van der Lee, Martijn K; Mennes, Wim C; Jeurissen, Suzanne M F; van Leeuwen, Stefan P J

    2015-03-01

    Chinese mitten crab is an invasive species in many European rivers and lakes. Data from the UK indicated high levels of dioxins and PCBs, in particular in the brown meat in the body. This was confirmed by studies in the Netherlands, showing average levels of dioxins and PCBs in the meat in the body of 43 pg TEQ g(-1) ww in crabs caught in the large rivers. Levels in crab of lakes in the Northern part of the Netherlands were on average 3.7-fold lower. Consumption of crabs from polluted areas results in a relatively high dose of dioxins and dl-PCBs and could significantly increase the intake above the TWI. However, in general consumption of these crabs is low, even in the Asian sub-population in the Netherlands. Cadmium and lead levels were higher in crabs from contaminated areas, but for mercury and arsenic there was no clear difference. Consumption of crabs would not result in significant risks for cadmium and mercury. For lead the daily intake could be raised above the BMDL01 for neurodevelopmental toxicity, but this would only occur on a limited number of days. For arsenic the exposure would exceed the lower end of the BMDL01 values for certain cancers, but again, the infrequent consumption by most consumers reduces this risk. Furthermore, speciation showed that most arsenic in crabs was probably not a toxic inorganic form, but likely to be in an organic form. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Challenges and opportunities for integrating lake ecosystem modelling approaches

    Science.gov (United States)

    Mooij, Wolf M.; Trolle, Dennis; Jeppesen, Erik; Arhonditsis, George; Belolipetsky, Pavel V.; Chitamwebwa, Deonatus B.R.; Degermendzhy, Andrey G.; DeAngelis, Donald L.; Domis, Lisette N. De Senerpont; Downing, Andrea S.; Elliott, J. Alex; Ruberto, Carlos Ruberto; Gaedke, Ursula; Genova, Svetlana N.; Gulati, Ramesh D.; Hakanson, Lars; Hamilton, David P.; Hipsey, Matthew R.; Hoen, Jochem 't; Hulsmann, Stephan; Los, F. Hans; Makler-Pick, Vardit; Petzoldt, Thomas; Prokopkin, Igor G.; Rinke, Karsten; Schep, Sebastiaan A.; Tominaga, Koji; Van Dam, Anne A.; Van Nes, Egbert H.; Wells, Scott A.; Janse, Jan H.

    2010-01-01

    A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and trait-based models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative

  10. The formation and maintenance of single-thread tie channels entering floodplain lakes: observations from three diverse river systems

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Joel C [Los Alamos National Laboratory; Dietrich, William E [UC BERKELEY; Day, Geoff [NEWCREST MINING; Parker, Gary [UNIV OF ILLINOIS

    2009-01-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology, yet they are generally unrecognized and little studied. here we report the results of field studies focused on tie channel origin and morphodynamics in three contrasting systems: the Middle Fly River, Papua New Guinea, the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V shaped cross-section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bi-directional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  11. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    OpenAIRE

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindb?ck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and exa...

  12. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    Hydrological models are widely used by water managers as a decision support tool for both real-time and long-term applications. Some examples of real-time management issues are the optimal management of reservoir releases, flood forecasting or water allocation in drought conditions. Long term....... Many types of RS are now routinely used to set up and drive river basin models. One of the key hydrological state variables is river discharge. It is typically the output of interest for water allocation applications and is also widely used as a source of calibration data as it presents the integrated...... response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...

  13. Analysis of regional rainfall-runoff parameters for the Lake Michigan Diversion hydrological modeling

    Science.gov (United States)

    Soong, David T.; Over, Thomas M.

    2015-01-01

    The Lake Michigan Diversion Accounting (LMDA) system has been developed by the U.S. Army Corps of Engineers, Chicago District (USACE-Chicago) and the State of Illinois as a part of the interstate Great Lakes water regulatory program. The diverted Lake Michigan watershed is a 673-square-mile watershed that is comprised of the Chicago River and Calumet River watersheds. They originally drained into Lake Michigan, but now flow to the Mississippi River watershed via three canals constructed in the Chicago area in the early twentieth century. Approximately 393 square miles of the diverted watershed is ungaged, and the runoff from the ungaged portion of the diverted watershed has been estimated by the USACE-Chicago using the Hydrological Simulation Program-FORTRAN (HSPF) program. The accuracy of simulated runoff depends on the accuracy of the parameter set used in the HSPF program. Nine parameter sets comprised of the North Branch, Little Calumet, Des Plaines, Hickory Creek, CSSC, NIPC, 1999, CTE, and 2008 have been developed at different time periods and used by the USACE-Chicago. In this study, the U.S. Geological Survey and the USACE-Chicago collaboratively analyzed the parameter sets using nine gaged watersheds in or adjacent to the diverted watershed to assess the predictive accuracies of selected parameter sets. Six of the parameter sets, comprising North Branch, Hickory Creek, NIPC, 1999, CTE, and 2008, were applied to the nine gaged watersheds for evaluating their simulation accuracy from water years 1996 to 2011. The nine gaged watersheds were modeled by using the three LMDA land-cover types (grass, forest, and hydraulically connected imperviousness) based on the 2006 National Land Cover Database, and the latest meteorological and precipitation data consistent with the current (2014) LMDA modeling framework.

  14. Modeling of Potential Lahars Motivated by Landslides in Crater Lake of Baitoushan Volcano

    Science.gov (United States)

    Yu, Y.; Hong, H.; Wei, H.; Zheng, X.; Liu, P.; Tao, W.

    2004-12-01

    Collapse and landslides, occurred in many volcanic craters, could result in more dangerous disasters if they encounter with lake water. Baitoushan volcano, an intraplate stratovolcano in the Changbaishan volcanic field on the border between China and North Korea, contains a crater lake approximately 4.45km in length along its long axis, about 200m in average depth. The lake is surrounded by steep rock walls that rise up to 300 ˜400m above its surface. Several horseshoe-shaped scars in the walls indicate that some large-scale landslides had happened since the last enormous explosive eruption one thousand years ago. At present the walls still have the possibilities of rockfalls and landslides. If they entered the lake with high speed, could produce life-threatening waves. The waves would transmit through the lake surface and release flood instantly to the downstream from the outlet in the north of the crater, which transform into lahars mixing with the loose pyroclastic deposits along the hillslope, and destroy almost everything where they passed by. Our work aims to model the potential lahars motivated by the landslides of Baitoushan volcano and to predict inundation areas and travel time of flows. For this purpose the heights of waves triggered by those historic landslides have been estimated based on declivities¡_ volumes and landslide speeds. HEC-RAS, a program of surface water model developed by U.S. Army Corps of Engineers, is utilized to simulate the potential lahars using the range of wave height as the boundary condition. The research results indicate that the lahars, on the one hand, might spend about eighty minutes reaching the nearest town at the foot of the volcano along Erdaobaihe River valley, and on the other hand possibly flood into the nearby rivers if the flux is remarkably large.

  15. Role of lake regulation on glacier-fed rivers in enhancing salmon productivity: the Cook Inlet watershed, south-central Alaska, USA

    Science.gov (United States)

    Dorava, Joseph M.; Milner, Alexander M.

    2000-10-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.

  16. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    Science.gov (United States)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  17. Modeling Antarctic subglacial lake filling and drainage cycles

    Science.gov (United States)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-07-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  18. Survival and metamorphosis of larval sea lamprey (Petromyzon marinus) residing in Lakes Michigan and Huron near river mouths

    Science.gov (United States)

    Johnson, Nicholas S.; Brenden, Travis O.; Swink, William D.; Lipps, Mathew A.

    2016-01-01

    Although population demographics of larval lampreys in streams have been studied extensively, demographics in lake environments have not. Here, we estimated survival and rates of metamorphosis for larval sea lamprey (Petromyzon marinus) populations residing in the Great Lakes near river mouths (hereafter termed lentic areas). Tagged larvae were stocked and a Bayesian multi-state tag-recovery model was used to investigate population parameters associated with tag recovery, including survival and metamorphosis probabilities. Compared to previous studies of larvae in streams, larval growth in lentic areas was substantially slower (Brody growth coefficient = 0.00132; estimate based on the recovery of six tagged larvae), survival was slightly greater (annual survival = 63%), and the length at which 50% of the larvae would be expected to metamorphose was substantially shorter (126 mm). Stochastic simulations were used to estimate the production of parasitic stage (juvenile) sea lamprey from a hypothetical population of larvae in a lentic environment. Production of juvenile sea lamprey was substantial because, even though larval growth in these environments was slow relative to stream environments, survival was high and length at metamorphosis was less. However, estimated production of juvenile sea lamprey was less for the lentic environment than for similar simulations for river environments where larvae grew faster. In circumstances where the cost to kill a larva with lampricide was equal and control funds are limited, sea lamprey control effort may be best directed toward larvae in streams with fast-growing larvae, because stream-produced larvae will most likely contribute to juvenile sea lamprey populations.

  19. Microbial communities in the world's largest acid volcanic lake, Kawah Ijen in Indonesia, and inthe Banyupahit river originating from it.

    NARCIS (Netherlands)

    Lohr, A.J.; Laverman, A.M.; Braster, M.; van Straalen, N.M.; Roling, W.F.M.

    2006-01-01

    A first study was made on the microbial community composition of the Indonesian crater lake Kawah Ijen (pH < 0.3) and the Banyupahit-Banyuputih river (pH 0.4-3.5) originating from it. Culture-independent, rRNA gene-based denaturing gradient gel electrophoresis was used to profile microbial

  20. Seasonal baseline of nutrients and stable isotopes in a saline lake of Argentina: biogeochemical processes and river runoff effects.

    Science.gov (United States)

    Kopprio, Germán A; Kattner, Gerhard; Freije, R Hugo; de Paggi, Susana José; Lara, Rubén J

    2014-05-01

    The seasonal variability of inorganic and organic nutrients and stable isotopes and their relations with plankton and environmental conditions were monitored in Lake Chasicó. Principal component analysis evidenced the strong influence of the river runoff on several biogeochemical variables. Silicate concentrations were controlled by diatom biomass and river discharge. Higher values of nitrate and soluble reactive phosphorus (SRP) indicated agricultural uses in the river basin. Elevated pH values (∼ 9) inhibiting nitrification in the lake explained partially the dominance of ammonium: ∼ 83 % of dissolved inorganic nitrogen (DIN). The low DIN/SRP ratio inferred nitrogen limitation, although the hypotheses of iron and CO2 limitation are relevant in alkaline lakes. Particulate organic matter (POM) and dissolved organic matter (DOM) were mainly of autochthonous origin. The main allochthonous input was imported by the river as POM owning to the arid conditions. Dissolved organic carbon was likely top-down regulated by the bacterioplankton grazer Brachionus plicatilis. The δ(13)C signature was a good indicator of primary production and its values were influenced probably by CO2 limitation. The δ(15)N did not evidence nitrogen fixation and suggested the effects of anthropogenic activities. The preservation of a good water quality in the lake is crucial for resource management.

  1. Simulation of Tritium Transport and Groundwater Age in a Variably Saturated 3D Model, Lake Rotorua Catchment, New Zealand

    Science.gov (United States)

    Daughney, C.; Toews, M. W.; Morgenstern, U.; Cornaton, F. J.; Jackson, B. M.

    2013-12-01

    -squares-based PEST, and manual adjustment of Cauchy boundary conditions to better match observed stream and spring flows. The transport model parameters were calibrated using PEST. Direct age simulations were then performed using the calibrated transport model. This allowed determination of the distribution of water age and lifetime expectancy at each point in the model domain. Results showed that travel time from the land surface through the aquifer system and into Lake Rotorua varies from a few years to more than 200 years, depending on location. Notable from a management perspective is that rainfall recharge to the aquifer system far from the lake can still reach the lake quickly where groundwater emerges into a river that then flows rapidly to the lake.

  2. Himalayan Lake- and River-Impacting Landslides and Ice Avalanches: Some So Deadly, Some No Problem

    Science.gov (United States)

    Kargel, J. S.; Karki, A.; Haritashya, U. K.; Shugar, D. H.; Harrison, S.

    2017-12-01

    Scientific attention to landslides and ice avalanches in Nepal was heightened by the 2015 Gorkha earthquake. However, landslides and ice avalanches— some deadly— are frequent in this mountainous, glacierized country and across High Mountain Asia. River blocking landslides (RBLs) often create dangerous situations due to upstream impoundments and downstream landslide dammed outburst floods (LDOFs). Factors affecting RBL hazards include: Volumes and masses of ice, rock, and water; shape factors of the valley and landslide; grain size-frequency distribution; river hydrograph; and seasonal and weather factors. These factors affect processes such as slumping and erosion of the RBL by overflow or piping, buoyant lifting of dam material, melting of a landslide ice core, liquefaction, overfill overtopping or tsunami overtopping by subsequent landslides into the impoundment, and the volume and peak discharge of an LDOF. Not all processes aggravate hazards; a high ice:rock ratio, for example, can result in immediate tunneling by the river with no subsequent impoundment. A dam composed of mainly boulders with few fines likewise can prevent effective damming; however, a wide spectrum of the particle-size-distribution can make a long-lasting, benign dam. The most hazardous RBLs include those creating large dams and rapidly-filled impoundments, but which can rapidly and catastrophically break up, especially at sites of repeated terrain collapses. The particle size-frequency of a landslide dam depends substantially on bedrock lithology and structure. Vulnerabilities and warning times also affect whether an upstream impoundment flood or LDOF will exert a large toll. For landslide susceptibility assessments, usual treatments involving mountain slopes, valley shape, and seismic activity should be complemented by quantitative measures of bedrock lithology and weathering state, the potential energy and distribution of unstable masses, and recorded historic or prehistoric RBLs in

  3. Escapement Monitoring of Adult Chinook Salmon in the Secesh River and Lake Creek, Idaho, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    2001-04-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  4. Role of neutron activation analysis in the study of heavy metal pollution of a lake-river system

    International Nuclear Information System (INIS)

    Filby, R.H.; Shah, K.R.; Funk, W.H.

    1974-01-01

    Details of a study of combined organic and metallic pollution of the Coeur d'Alene Lake-River and Spokane River system and the role played by nuclear techniques in the investigation are presented. The Coeur d'Alene River drains through the N. Idaho Pb--Zn mining region of Kellogg and the mining industry is the major source of metallic pollution of the lake and river system. The first part of the study has involved the determination of Pb, Zn, Ag, Cd, As, Cu, Sb, Co, Cr, Cs, Rb, Sc, Ba, Eu, La, Tb, Y, Zr, Fe, Mn, Mo, by INAA in waters, sediments and organisms throughout the region. Extremely high values for Pb, Zn, Sb, Fe and other metals were found in the Coeur d'Alene River delta sediments and in the lake sediments. Results from the study of metals in an aquatic ecosystem show the value of combining nuclear techniques with other methods of trace analysis in practical pollution problems

  5. Modelling the growth of tambaqui, Colossoma macropomum (Cuvier, 1816) in floodplain lakes: model selection and multimodel inference.

    Science.gov (United States)

    Costa, L R F; Barthem, R B; Albernaz, A L; Bittencourt, M M; Villacorta-Corrêa, M A

    2013-05-01

    The tambaqui, Colossoma macropomum, is one of the most commercially valuable Amazonian fish species, and in the floodplains of the region, they are caught in both rivers and lakes. Most growth studies on this species to date have adjusted only one growth model, the von Bertalanffy, without considering its possible uncertainties. In this study, four different models (von Bertalanffy, Logistic, Gompertz and the general model of Schnüte-Richards) were adjusted to a data set of fish caught within lakes from the middle Solimões River. These models were adjusted by non-linear equations, using the sample size of each age class as its weight. The adjustment evaluation of each model was based on the Akaike Information Criterion (AIC), the variation of AIC between the models (Δi) and the evidence weights (wi). Both the Logistic (Δi = 0.0) and Gompertz (Δi = 1.12) models were supported by the data, but neither of them was clearly superior (wi, respectively 52.44 and 29.95%). Thus, we propose the use of an averaged-model to estimate the asymptotic length (L∞). The averaged-model, based on Logistic and Gompertz models, resulted in an estimate of L∞=90.36, indicating that the tambaqui would take approximately 25 years to reach average size.

  6. Lake on life support: Evaluating urban lake management measures by using a coupled 1D-modelling approach

    Science.gov (United States)

    Ladwig, Robert; Kirillin, Georgiy; Hinkelmann, Reinhard; Hupfer, Michael

    2017-04-01

    Urban surface water systems and especially lakes are heavily stressed and modified systems to comply with water management goals and expectations. In this study we focus on Lake Tegel in Berlin, Germany, as a representative of heavily modified urban lakes. In the 20th century, Lake Tegel received increased loadings of nutrients and leached heavy metals from an upstream sewage farm resulting in severe eutrophication problems. The construction of two upstream treatment plants caused a lowering of nutrient concentrations and a re-oligotrophication of the lake. Additionally, artificial aerators, to keep the hypolimnion oxic, and a lake pipeline, to bypass water for maintaining a minimum discharge, went into operation. Lake Tegel is still heavily used for drinking water extraction by bank filtration. These interacting management measures make the system vulnerable to changing climate conditions and pollutant loads. Past modelling studies have shown the complex hydrodynamics of the lake. Here, we are following a simplified approach by using a less computational time consuming vertical 1D-model to simulate the hydrodynamics and the ecological interactions of the system by coupling the General Lake Model to the Aquatic Ecodynamics Model Library 2. For calibration of the multidimensional parameter space we applied the Covariance Matrix Adaption-Evolution Strategy algorithm. The model is able to sufficiently replicate the vertical field temperature profiles of Lake Tegel as well as to simulate similar concentration ranges of phosphate, dissolved oxygen and nitrate. The calibrated model is used to run an uncertainty analysis by sampling the simulated data within the meaning of the Metropolis-Hastings algorithm. Finally, we are evaluating different scenarios: (1) changing air temperatures, precipitation and wind speed due to effects of climate change, (2) decreased discharges into the lake due to bypassing treated effluents into a near stream instead of Lake Tegel, and (3

  7. Panama Lakes Water Quality Modeling Study

    National Research Council Canada - National Science Library

    Bunch, Barry

    2003-01-01

    .... The canal has a length of 30 km and is capable of traversing vessels up to 294 m long with maximum drafts of 12 m Most portions of the canal are above sea level in a man-made reservoir, Gatun Lake...

  8. Changes to subaqueous delta bathymetry following a high river flow event, Wax Lake Delta, LA, USA

    Science.gov (United States)

    Whaling, A. R.; Shaw, J.

    2017-12-01

    Sediment transport capacity is increased during high river flow (flood) events which are characterized by discharges that exceed the 15 year median daily statistic. The Wax Lake Delta (WLD) in coastal Louisiana has experienced 19 of these high flow events in the past 20 years, yet the depositional patterns of single floods are rarely measured in a field-scale deltaic setting. We characterize flood deposition and erosion patterns on the subaqueous portion of the WLD by differencing two Digital Elevation Models (DEMs) constructed from bathymetric surveys before and after the third largest flood in the WLD's recorded history. The total suspended sediment discharge for the 496 day inter-survey period was 2.14x107 cubic meters measured 21 km upstream of the delta apex. The difference map showed 1.06x107 cubic meters of sediment was deposited and 8.2x106 cubic meters was eroded, yielding 2.40x106 cubic meters of net deposition in the survey area ( 79.7 km2 ). Therefore the average deposition rate was 0.061 mm/day. Channel planform remained relatively unchanged for five out of six distributary passes however Gadwall Pass experienced a maximum channel displacement of 166 m ( 1 channel width) measured from the thalweg centerline. Channel tip extension was negligible. In addition, channel displacement was not concentrated at any portion along the channel centerline. Maximum erosion occurred within channel margins and increased upstream whereas maximum deposition occurred immediately outside the channel margins. Sediment eroded from the survey area was either subsequently re-deposited or transported out of the system. Our results show that up to 77.4% of deposition in the survey area originated from sediment eroded during the flood. Surprisingly, only 11.2% of the total suspended sediment discharge was retained in the subaqueous portion of the delta after the flood. We conclude that a high flow event does not produce channel progradation. Rather, high flow causes delta

  9. Stochastic modelling of river morphodynamics

    NARCIS (Netherlands)

    Van Vuren, B.G.

    2005-01-01

    Modern river management has to reconcile a number of functions, such as protection against floods and provision of safe and efficient navigation, floodplain agriculture, ecology and recreation. Knowledge on uncertainty in fluvial processes is important to make this possible, to design effective

  10. Heavy metals pollution status in surface sediments (rivers and artifical lakes, Serbia)

    Science.gov (United States)

    Sakan, Sanja; Đorđević, Dragana

    2017-04-01

    Potentially hazardous trace elements, often in literature referred as "heavy metals", are deemed serious pollutants due to their toxicity, persistence and non-degradability in the environment. These elements play an important role in extent of water pollution and threaten the health of populations and ecosystems. As the sink of heavy metals, sediment beds adsorb metals in quantities that are many times higher than those found in the water column in the long-term polluted water environment. It is believed that most of the metal content, as much as 90% in aquatic sediments is bound to sediments. Metal contamination in these sediments could be directly affect the river water quality, resulting in potential consequences to the sensitive lowest levels of the food chain and ultimately to human health. The objective of this research was the evaluation of heavy metal contamination level in sediments of the most important rivers and artificial lakes in Serbia. The heavy metal enrichment in studied sediments was conducted by using: determination of total metal content, sequential extraction procedure for the fractionation of studied elements, quantification of the metal enrichment degree in the sediments by calculating geo-accumulation indices, determination of actual and potential element availability and application of BRAI index for the assessment of heavy metal bioavailability. The sediments were found to be contaminated by heavy metals to various extents, mostly with Cd, Cu, and Zn. The significant variation in heavy metal distribution among samples collected in this large region, encompassing all Serbian watersheds, suggests the selective contamination of sediments by heavy metals. Elevated concentrations of elements in most cases were detected in samples of river sediments, since artificial lake reservoirs are usually built in rural areas, where the less anthropogenic pollution. Rivers often flow through the towns and these water basins less or more loaded

  11. Concentrations of selected chlorinated pesticides in shrimp collected from the Calcasieu River/Lake Complex, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Murray, H.E.; Beck, J.N. (McNeese State Univ., Lake Charles, LA (USA))

    1990-05-01

    For several decades inland and coastal aquatic ecosystems have been affected by a multitude of synthetic chemical substances. This is a consequence of population growth and increased industrial and agricultural activity. Many of these chemicals, the by-products of their production, and degradation products ultimately find their way into the aquatic environment as pollutants. The extent to which these pollutants affect the environment and its inhabitants depends largely upon the quantity and nature of the particular compounds involved. Halogenated hydrocarbons, particularly polychlorinated biphenyls (PCBs), and the pesticide DDT and its degradation products have received much attention as environmental pollutants. Because of the economic importance of the shrimping industry to southwest Louisiana, the objective of this study was to analyze shrimp collected from the Calcasieu River/Lake Complex for the presence of selected chlorinated pesticides. The presence of these compounds within shrimp tissues would serve as an indicator for the extent of pollution throughout this important estuarine system.

  12. Seasonal feeding habits of fishes in the river Bolshaya Uya (bas. Onega Lake

    Directory of Open Access Journals (Sweden)

    Shustov Yury

    2013-12-01

    Full Text Available The article deals with the seasonal feeding habits of five fish species (young trout, mustached loach , bullhead - sculpin , stickleback and minnow in one of the numerous tributaries of the Onega lake, also inhabited by trout. The results of investigation showed that not all the environmental situation are favorable for fish feeding. During the summer droughty period mustached loach limps in search of food due to the low water level. As a result, the intensity of fish feeding is extremely low, and more than half of them (60% even have empty stomach. In summer feeding period the potential food competitors of juvenile trout may be virtually all river fishes: minnow - for " air " fraction, that is imaginal and subimaginal stages of amphibiotic, airial and terrestrial insects, and mustached loach, bullhead-sculpin, stickleback - for "water "fraction, that is larvae and nymphs of amphibiotic invertebrates.

  13. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    Science.gov (United States)

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  14. Preliminary juvenile Lost River and shortnose sucker investigations in Clear Lake, California--2011 pilot study summary

    Science.gov (United States)

    Burdick, Summer M.; Rasmussen, Josh

    2012-01-01

    Poor recruitment appears to limit the recovery of Lost River and shortnose sucker populations in Clear Lake Reservoir, California, but the cause is unknown. Adult suckers migrate up Willow Creek and its tributaries to spawn in some years, but low flow in Willow Creek may inhibit spawning migrations in other years. It is unclear whether spawning is successful, larvae survive, or juveniles persist to adulthood. Environmental variables associated with successful spawning or young-of-year survival have not been identified and early life history for these populations is poorly understood. The U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service and Ruby Pipeline L.L.C. Corporation (El Paso, Tex.) initiated a study in 2011 to better understand juvenile sucker life history in Clear Lake Reservoir, and to identify constraints in the early life history that may limit recruitment to the adult spawning populations. This is a report on the 2011 pilot study for this project.

  15. Tributaries affect the thermal response of lakes to climate change

    Science.gov (United States)

    Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien

    2018-01-01

    Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  16. Tributaries affect the thermal response of lakes to climate change

    Directory of Open Access Journals (Sweden)

    L. Råman Vinnå

    2018-01-01

    Full Text Available Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC, lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  17. Modeling CO 2 emissions from Arctic lakes: Model development and site-level study: MODELING CO 2 EMISSIONS FROM ARCTIC LAKES

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zeli [Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette Indiana USA; Now at Pacific Northwest National Laboratory, Richland Washington USA; Zhuang, Qianlai [Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette Indiana USA; Department of Agronomy, Purdue University, West Lafayette Indiana USA; Shurpali, Narasinha J. [Department of Environmental and Biological Science, University of Eastern Finland, Kuopio Finland; Marushchak, Maija E. [Department of Environmental and Biological Science, University of Eastern Finland, Kuopio Finland; Biasi, Christina [Department of Environmental and Biological Science, University of Eastern Finland, Kuopio Finland; Eugster, Werner [Department of Environmental Systems Science, ETH Zurich, Zurich Switzerland; Walter Anthony, Katey [Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks Alaska USA

    2017-09-01

    Recent studies indicated that Arctic lakes play an important role in receiving, processing, and storing organic carbon exported from terrestrial ecosystems. To quantify the contribution of Arctic lakes to the global carbon cycle, we developed a one-dimensional process-based Arctic Lake Biogeochemistry Model (ALBM) that explicitly simulates the dynamics of organic and inorganic carbon in Arctic lakes. By realistically modeling water mixing, carbon biogeochemistry, and permafrost carbon loading, the model can reproduce the seasonal variability of CO2 fluxes from the study Arctic lakes. The simulated area-weighted CO2 fluxes from yedoma thermokarst lakes, non-yedoma thermokarst lakes and glacial lakes are 29.5 g C m-2 yr-1, 13.0 g C m-2 yr-1 and 21.4 g C m-2 yr-1, respectively, close to the observed values (31.2 g C m-2 yr-1, 17.2 g C m-2 yr-1 and 16.5±7.7 g C m-2 yr-1, respectively). The simulations show that the high CO2 fluxes from yedoma thermokarst lakes are stimulated by the biomineralization of mobilized labile organic carbon from thawing yedoma permafrost. The simulations also imply that the relative contribution of glacial lakes to the global carbon cycle could be the largest because of their much larger surface area and high biomineralization and carbon loading. According to the model, sunlight-induced organic carbon degradation is more important for shallow non-yedoma thermokarst lakes but its overall contribution to the global carbon cycle could be limited. Overall, the ALBM model can simulate the whole-lake carbon balance of Arctic lakes, a difficult task for field and laboratory experiments and other biogeochemistry models.

  18. Heavy Metal Pollution of Lakes along the Mid-Lower Reaches of the Yangtze River in China: Intensity, Sources and Spatial Patterns

    Science.gov (United States)

    Zeng, Haiao; Wu, Jinglu

    2013-01-01

    Lakes in the middle and lower reaches of the Yangtze River form a shallow lake group unique in the World that is becoming increasingly polluted by heavy metals. Previous studies have largely focused on individual lakes, with limited exploration of the regional pattern of heavy metal pollution of the lake group in this area. This paper explores the sources, intensity and spatial patterns of heavy metal pollution of lake sediments. A total of 45 sample lakes were selected and the concentrations of key metal elements in the sediments of each lake were measured. The cluster analysis (CA), principal component analysis (PCA) and Geo-accumulation index (Ig) analysis permitted analysis of the source and pollution intensity of the target lakes. Results suggested a notable spatial variation amongst the sample lakes. Lakes in the upper part of the lower reach of the Yangtze River surrounded by typical urban landscapes were strongly or extremely polluted, with high concentrations of Pb, Zn, Cu and Cd in their sediments. This was attributed to large amount of untreated industrial discharges and municipal sewage produced within the lake catchments. In contrast, the heavy-metal pollution of lakes in the Taihu Delta area was notably lower due to industrial restructuring and implementation of effective environmental protection measures. Lakes along the middle reach of Yangtze River surrounded by agricultural areas were unpolluted to moderately polluted by heavy metals overall. Our results suggested that lakes in the central part of China require immediate attention and efforts should be made to implement management plans to prevent further degradation of water quality in these lakes. PMID:23442559

  19. Rotifer assemblages (Rotifera: Eurotatoria of the floodplain lakes of Majuli River Island, the Brahmaputra river basin, northeast India

    Directory of Open Access Journals (Sweden)

    Bhushan Kumar Sharma

    2014-12-01

    Full Text Available Our plankton and semi-plankton collections from twelve floodplain lakes (beels of Majuli River Island, Upper Assam reveal 124 rotifer species (32 genera and 17 families; these merit biodiversity value as ~52.0% and ~30.0% of species, ~68.0 and ~45.0% of  genera and ~74.0 and ~65.0% of the families of the Phylum known from northeast India (NEI and India, respectively. Two species are new to India with Trichocerca uncinata as new record to the Oriental region.  Eleven species are new to the study area and we provide an updated list (144 species for following meta-analyses of Majuli Rotifera. Biogeographically important elements include one Australasian, four Oriental, four Palaeotropical and one cosmo (sub tropical species while several species are of regional distribution interest. The rotifer fauna is predominantly tropical and Lecanidae > Lepadellidae collectively include ~53.0% species but it records paucity of Brachionus species. Individual beels record total richness of 60-100 (77 ± 12 species, monthly richness between 24 ± 7-34 ± 7 species and maximum up to 54 species/sample. The results are characterized by high community similarities (59.7-90.4% vide Sørensen’s index, more rotifer homogeneity amongst beels, lack of any pattern of temporal richness variations and much limited influence of abiotic parameters.

  20. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour

    International Nuclear Information System (INIS)

    Solla, Shane R. de; Fernie, Kimberly J.

    2004-01-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites

  1. Spatial and temporal variation of heavy metals in sediment cores from the Calcasieu River/Lake Complex

    International Nuclear Information System (INIS)

    Mueller, C.S.; Ramelow, G.J.; Beck, J.N.

    1987-01-01

    Sediment cores were obtained from several locations in the Calcasieu River/Lake Complex, including Calcasieu Lake, Calcasieu River, two bayou tributaries, and Lake Charles during the period from November 1983 to November 1985. The cores were analyzed for Cu, Zn, Cr, and Pb. The approximate sedimentation rate and a core chronology were determined by the use of 137 Cs and 210 Pb isotopes. The increase in metal concentrations after 1933, particularly along Bayou d'Inde where most industries are located, points to anthropogenic input if these metals to the system. The fact that metal concentrations tend to merge to a common value prior to 1940 throughout the system suggests that geological factors do not contribute to the observed variations in metal concentrations in this area. The background concentrations of heavy metals found in this study for the Calcasieu River/Lake Complex were: Cu (10 mg kg -1 ), Cr (25 mg kg -1 ), Pb (8 mg kg -1 ), and Zn (40 mg kg -1 ). The main emphasis of the study focused along Bayou d'Inde due to the enhanced levels of heavy metals found

  2. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  3. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    Science.gov (United States)

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  4. Modeling Present and Future River Runoff Using Global Atmospheric Models

    Science.gov (United States)

    1992-10-01

    AD-A265 274 October 1992 TBESIS Modeling Present and Future River Runoff Using Global Atmospheric Models Captain Scott C. Van Blarcum AFIT Student... ATMOSPHERIC MODELS BY SCOTT C. VAN BLARCUM A thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in...03 020 I1UIlU1ll ABSTRACT OF THE THESIS Modeling Present and Future River Runoff Using Global Atmospheric Models by SCOTT C. VAN BLARCUM Thesis

  5. Diet and habitat use by age-0 deepwater sculpins in northern Lake Huron, Michigan and the Detroit River

    Science.gov (United States)

    Roseman, Edward F.

    2014-01-01

    Deepwater sculpins (Myoxocephalus thompsonii) are an important link in deepwater benthic foodwebs of the Great Lakes. Little information exists about deepwater sculpin spawning habits and early life history ecology due to difficulty in sampling deep offshore habitats. Larval and age-0 deepwater sculpins collected in northern Lake Huron and the Detroit River during 2007 were used to improve our understanding of their habitat use, diet, age, and growth. Peak larval density reached 8.4/1000 m3 in the Detroit River during April and was higher than that in Lake Huron. Offshore bottom trawls at DeTour and Hammond Bay first collected benthic age-0 deepwater sculpins in early September when fish were ≥ 25 mm TL. Otolith analysis revealed that hatch dates for pelagic larvae occurred during late March and larvae remained pelagic for 40 to 60 days. Diet of pelagic larvae (10–21 mm TL) was dominated by calanoid copepods at all sample locations. Diets of benthic age-0 fish varied by location and depth: Mysis and chironomids were prevalent in fish from Hammond Bay and the 91 m site at DeTour, but only chironomids were found in fish from the 37 m DeTour site. This work showed that nearshore epilimnetic sites were important for pelagic larvae and an ontogenetic shift from pelagic planktivore to benthivore occurred at about 25 mm TL in late summer. Age analysis showed that larvae remained pelagic long enough to be transported through the St. Clair–Detroit River system, Lake Erie, and the Niagara River, potentially contributing to populations in Lake Ontario.

  6. Detection and characterization of local to regional groundwater inputs to rivers, lakes and oceans with electrical imaging (Invited)

    Science.gov (United States)

    Cardenas, M. B.; Befus, K. M.; Markowski, M.; Ong, J.; Zamora, P. B.; Siringan, F. P.; Zlotnik, V. A.

    2010-12-01

    Surface water (SW) and groundwater (GW) interact at multiple levels in myriad settings and their interaction is an important hydrogeologic process that impacts ecological and biogeochemical functions. GW discharge and associated mixing with SW in these settings have been challenging to map with sufficient detail and coverage. Three examples are presented on the application of electrical resistivity imaging (ERI) for mapping GW discharge and for understanding SW-GW interactions: (1) a large regulated river, (2) several neighboring lakes, and (3) a fringing coral reef. (1) Time-lapse ERI was conducted at the Colorado River, Texas where the river stage varied by 0.7 m due to dam operations. Submerged and towed electrode cables were used to capture the subsurface mixing dynamics of SW and GW. Using temporal variability in electrical resistivity (ER) signatures, we identified a shallow well-flushed hyporheic zone, a transition zone where SW and GW mix, and a stable deep zone hosting only GW. (2) Towed ER surveys in alkaline lakes in the Nebraska Sand Hills helped distinguishing flow-through lakes, which have decreasing subsurface ER from GW inflow to outflow area, from pure GW discharge lakes, which have uniformly stratified increasing-with-depth ER profiles. (3) More than 30 km of ER profiles collected via towed surveys over a fringing coral reef in the Philippines identified areas of high ER within the reef that coincide with resistive zones in the seawater. Analysis of 222Rn of bottom waters and vertical conductivity-temperature-depth measurements show the persistence of fresh GW input into the ocean where low salinity and high 222Rn areas coincided with high ER areas. A 3D map showing sources and pathways for GW across the reef is developed. ERI is a powerful and convenient tool for mapping GW discharge and SW-GW interactions in rivers, lakes, and oceans.

  7. Model simulations of potential contribution of the proposed Huangpu Gate to flood control in the Lake Taihu basin of China

    Science.gov (United States)

    Zhang, Hanghui; Liu, Shuguang; Ye, Jianchun; Yeh, Pat J.-F.

    2017-10-01

    The Lake Taihu basin (36 895 km2), one of the most developed regions in China located in the hinterland of the Yangtze River Delta, has experienced increasing flood risk. The largest flood in history occurred in 1999 with a return period estimate of 200 years, considerably larger than the current capacity of the flood defense with a design return period of 50 years. Due to its flat saucer-like terrain, the capacity of the flood control system in this basin depends on flood control infrastructures and peripheral tidal conditions. The Huangpu River, an important river of the basin connecting Lake Taihu upstream and Yangtze River estuaries downstream, drains two-fifths of the entire basin. Since the water level in the Huangpu River is significantly affected by the high tide conditions in estuaries, constructing an estuary gate is considered an effective solution for flood mitigation. The main objective of this paper is to assess the potential contributions of the proposed Huangpu Gate to the flood control capacity of the basin. To achieve this goal, five different scenarios of flooding conditions and the associated gate operations are considered by using numerical model simulations. Results of quantitative analyses show that the Huangpu Gate is effective for evacuating floodwaters. It can help to reduce both peak values and duration of high water levels in Lake Taihu to benefit surrounding areas along the Taipu Canal and the Huangpu River. The contribution of the gate to the flood control capacity is closely associated with its operation modes and duration. For the maximum potential contribution of the gate, the net outflow at the proposed site is increased by 52 %. The daily peak level is decreased by a maximum of 0.12 m in Lake Taihu, by maxima of 0.26-0.37 and 0.46-0.60 m in the Taipu Canal and the Huangpu River, respectively, and by 0.05-0.39 m in the surrounding areas depending on the local topography. It is concluded that the proposed Huangpu Gate can reduce

  8. A fugacity model for source determination of the Lake Baikal region pollution with polychlorinated Biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Sofiev, M. [Finnish Meteorological Inst., Helsinki (Finland); Galperin, M.; Maslyaev, A. [Inst. of Program Systems, Pereslavl-Zalesskiy (Russian Federation); McLachlan, M. [Stockholm Univ. (Sweden); Wania, F. [Toronto Univ. (Canada)

    2004-09-15

    PCBs were discovered in the Lake Baikal ecosystem by Malakhov et al. and Bobovnikova et al. A follow up to the initial study showed no decrease over 1981-1989 4, in contrast to what has been observed in other water bodies in the industrialised world. Further studies also showed the contamination in pinnipeds to be among the highest measured anywhere. Above studies and other data suggested a presence of a strong local PCB source (or several ones), which has had a widespread adverse effect for the whole region. To locate the source, Mamontov et al. collected samples from 34 sites over the region, the analysis of which showed a gradient of a factor of 1000, with the lowest concentrations at the north-east of Lake Baikal and the highest concentrations close to the city of Usolye Sibirskoye, a centre of the chemical industry in the Angara River valley. A continuous decrease in the soil contamination was observed along the path from Usolye Sibirskoye up the Angara River valley to Lake Baikal and from there north-eastward along the lake. These results indicate that there was (and perhaps still is) a major source of PCBs in the Usolye area, from where the PCBs are dispersed over the region. However, various obstacles prevent direct observations of potential sources. Therefore, a mathematical modelling approach was adopted in a currently ongoing INTAS project aiming to shed some more light on this problem. The model principles, setup and the results of the first experiments are presented in the current paper.

  9. Changes of glacier, glacier-fed rivers and lakes in Altai Tavan Bogd National Park, Western Mongolia, based on multispectral satellite data from 1990 to 2017

    Science.gov (United States)

    Batsaikhan, B.; Lkhamjav, O.; Batsaikhan, N.

    2017-12-01

    Impacts on glaciers and water resource management have been altering through climate changes in Mongolia territory characterized by dry and semi-arid climate with low precipitation. Melting glaciers are early indicators of climate change unlike the response of the forests which is slower and takes place over a long period of time. Mountain glaciers are important environmental components of local, regional, and global hydrological cycles. The study calculates an overview of changes for glacier, glacier-fed rivers and lakes in Altai Tavan Bogd mountain, the Western Mongolia, based on the indexes of multispectral data and the methods typically applied in glacier studies. Were utilized an integrated approach of Normalized Difference Snow Index (NDSI) and Normalized Difference Water Index (NDWI) to combine Landsat, MODIS imagery and digital elevation model, to identify glacier cover are and quantify water storage change in lakes, and compared that with and climate parameters including precipitation, land surface temperature, evaporation, moisture. Our results show that melts of glacier at the study area has contributed to significantly increase of water storage of lakes in valley of The Altai Tavan Bogd mountain. There is hydrologic connection that lake basin is directly fed by glacier meltwater.

  10. Bed morphology, flow structure, and sediment transport at the outlet of Lake Huron and in the upper St. Clair River

    Science.gov (United States)

    Czuba, J.A.; Best, J.L.; Oberg, K.A.; Parsons, D.R.; Jackson, P.R.; Garcia, M.H.; Ashmore, P.

    2011-01-01

    An integrated multibeam echo sounder and acoustic Doppler current profiler field survey was conducted in July 2008 to investigate the morphodynamics of the St. Clair River at the outlet of Lake Huron. The principal morphological features of the upper St. Clair River included flow-transverse bedforms that appear weakly mobile, erosive bedforms in cohesive muds, thin non-cohesive veneers of weakly mobile sediment that cover an underlying cohesive (till or glacio-lacustrine) surface, and vegetation that covers the bed. The flow was characterized by acceleration as the banks constrict from Lake Huron into the St. Clair River, an approximately 1500-m long region of flow separation downstream from the Blue Water Bridge, and secondary flow connected to: i) channel curvature; ii) forcing of the flow by local bed topography, and iii) flow wakes in the lee side of ship wrecks. Nearshore, sand-sized, sediment from Lake Huron was capable of being transported into, and principally along, the banks of the upper St. Clair River by the measured flow. A comparison of bathymetric surveys conducted in 2007 and 2008 identifies that the gravel bed does undergo slow downstream movement, but that this movement does not appear to be generated by the mean flow, and could possibly be caused by ship-propeller-induced turbulence. The study results suggest that the measured mean flow and dredging within the channel have not produced major scour of the upper St. Clair River and that the recent fall in the level of Lake Huron is unlikely to have been caused by these mechanisms. ?? 2011.

  11. Robustness of river basin water quality models

    NARCIS (Netherlands)

    de Blois, Chris; Wind, H.G.; de Kok, Jean-Luc; Koppeschaar, K.

    2003-01-01

    In this paper the concept of robustness is introduced and applied to a model for the analysis of the impacts of spatially distributed policy measures on the surface water quality on a river basin scale. In this model the influence of precipitation on emissions and resuspension of pollutants in the

  12. Modelling catchment hydrological responses in a Himalayan Lake ...

    Indian Academy of Sciences (India)

    Multi-sensor and multi-temporal satellite data for 1992 and 2005 was used for determining the spatio-temporal dynamics of the lake catchment. Geographic Information System (GIS) based simulation model namely Generalized Watershed Loading Function (GWLF) was used to model the hydrological processes under the ...

  13. Geochemical behaviour of plutonium isotopes in natural media (lakes, rivers, estuaries)

    International Nuclear Information System (INIS)

    Jeandel, C.P.

    1981-10-01

    Artificial radionuclide activities ( 238 Pu, 239+240 Pu) were measured in natural environments. Their distribution and geochemical behaviour are evaluated and compared them to these of the 137 Cs. In a volcanic crater lake, influenced only by atmospheric fallout (Lac Pavin, France), sediments are enriched in 239+240 Pu, whereas 137 Cs stays in the dissolved phase. Diffusion processes and migration of radionuclides is shown to occur in sediments. Remobilization of 239+240 Pu is probable at the sediment/water interface. In the Garonne-Dordogne, Seine and Loire rivers, the 239+240 Pu activity levels in suspended matter are little influenced by the waste discharges of nuclear power plants. The element is essentially transported in the particulate fraction, more than is 137 Cs. In all the esturies studied (Gironde, Seine, Loire) 239+240 Pu concentrations in suspended matter increase between the river and the estuary. Simultaneously a removal of plutonium from the dissolved phase is observed. High plutonium concentrations are measured in the Seine estuary; they are attributed to a ''marine'' contamination: the French nuclear reprocessing plant of La Hague discharges low level radioactive liquid wastes, a part may reach the Seine estuary. There are no decrease in particulate 137 Cs concentrations between the river and the estuary of the Gironde, such as it occurs in the Loire. In this last case, the phenomenon is explained by the presence of ''young caesium'' originating in the power plant effluents and which is more exchangeable than 137 Cs of atmospheric origin. In the Seine estuary, the influence of marine contamination causes an increase of particulate and dissolved 137 Cs concentrations [fr

  14. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    International Nuclear Information System (INIS)

    Jean-François, Crétaux; Adalbert, Arsen; Muriel, Bergé-Nguyen; Sylvain, Biancamaria; Mélanie, Becker

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km 3 using a combination of MODIS data and satellite altimetry, and only 0.2 km 3 with Landsat images representing 2–4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250  ×  250 m with 20 cm accuracy. (letter)

  15. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    Science.gov (United States)

    Jean-François, Crétaux; Sylvain, Biancamaria; Adalbert, Arsen; Muriel, Bergé-Nguyen; Mélanie, Becker

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2-4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250 × 250 m with 20 cm accuracy.

  16. Lake heat content and stability variation due to climate change: coupled regional climate model (REMO-lake model (DYRESM analysis

    Directory of Open Access Journals (Sweden)

    Stefan Weinberger

    2014-02-01

    Full Text Available Climate change-derived higher air temperatures and the resulting increase in lake surface temperatures are known to influence the physical, biological and chemical processes of water bodies. By using hydrodynamic lake models coupled with regional climate models the potential future impact of a changing climate can be investigated. The present study hence elucidates limno-physical changes at the peri-Alpine, 83-m deep, currently dimictic Ammersee in southeastern Germany, both to underline the role of lakes as sentinels of climate change and provide a sound basis for further limnological investigations. This was realised by using water temperatures simulated with the hydrodynamic model DYRESM for the period 2041-2050, based on the results of the regional climate model REMO (IPCC A1B emission scenario. Modelling of future heat content resulted in a projected increase in the upper 3 m of the epilimnion from end of March to mid-November, whereas a decrease in future total heat content (January-December of the entire water column was simulated compared to that observed in 1997-2007. Lake thermal stability is projected to be higher in the period 2041-2050 than in 1985-2007. Stratification is expected to occur earlier and to last longer in the future than the pattern observed in 1985-2007. The future mean May-June depth of the thermocline is simulated to be situated above its past average vertical position, whereas an increase of mean thermocline depth is projected for the beginning of August to October. Furthermore, the mean May-October thickness of the metalimnion is simulated to increase. Additionally, we investigated the sensitivity of these limno-physical results to changes in the model parameter light extinction coefficient which determines how the solar radiation is absorbed by the lake water. The elucidation of physical changes at Ammersee by means of a regional climate model provides a sound basis on which to face the new challenges of lake

  17. Distribution and condition of larval and juvenile Lost River and shortnose suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon

    Science.gov (United States)

    Burdick, Summer M.

    2012-01-01

    Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in other lakes. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high-quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, where they are assumed lost to Upper Klamath Lake populations. The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana) in October 2007, and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Farms) in October 2008, in order to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2010 by the U.S. Geological Survey as a part of this monitoring effort and follows two annual reports on data collected in 2008 and 2009. Restoration modifications made to the Williamson River Delta appeared to provide

  18. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1

    Directory of Open Access Journals (Sweden)

    Zachary Subin

    2012-02-01

    Full Text Available Lakes can influence regional climate, yet most general circulation models have, at best, simple and largely untested representations of lakes. We developed the Lake, Ice, Snow, and Sediment Simulator(LISSS for inclusion in the land-surface component (CLM4 of an earth system model (CESM1. The existing CLM4 lake modelperformed poorly at all sites tested; for temperate lakes, summer surface water temperature predictions were 10–25uC lower than observations. CLM4-LISSS modifies the existing model by including (1 a treatment of snow; (2 freezing, melting, and ice physics; (3 a sediment thermal submodel; (4 spatially variable prescribed lakedepth; (5 improved parameterizations of lake surface properties; (6 increased mixing under ice and in deep lakes; and (7 correction of previous errors. We evaluated the lake model predictions of water temperature and surface fluxes at three small temperate and boreal lakes where extensive observational data was available. We alsoevaluated the predicted water temperature and/or ice and snow thicknesses for ten other lakes where less comprehensive forcing observations were available. CLM4-LISSS performed very well compared to observations for shallow to medium-depth small lakes. For large, deep lakes, the under-prediction of mixing was improved by increasing the lake eddy diffusivity by a factor of 10, consistent with previouspublished analyses. Surface temperature and surface flux predictions were improved when the aerodynamic roughness lengths were calculated as a function of friction velocity, rather than using a constant value of 1 mm or greater. We evaluated the sensitivity of surface energy fluxes to modeled lake processes and parameters. Largechanges in monthly-averaged surface fluxes (up to 30 W m22 were found when excluding snow insulation or phase change physics and when varying the opacity, depth, albedo of melting lake ice, and mixing strength across ranges commonly found in real lakes. Typical

  19. Modeling CO2 emissions from Arctic lakes: Model development and site-level study

    Science.gov (United States)

    Tan, Zeli; Zhuang, Qianlai; Shurpali, Narasinha J.; Marushchak, Maija E.; Biasi, Christina; Eugster, Werner; Walter Anthony, Katey

    2017-09-01

    Recent studies indicated that Arctic lakes play an important role in receiving, processing, and storing organic carbon exported from terrestrial ecosystems. To quantify the contribution of Arctic lakes to the global carbon cycle, we developed a one-dimensional process-based Arctic Lake Biogeochemistry Model (ALBM) that explicitly simulates the dynamics of organic and inorganic carbon in Arctic lakes. By realistically modeling water mixing, carbon biogeochemistry, and permafrost carbon loading, the model can reproduce the seasonal variability of CO2 fluxes from the study Arctic lakes. The simulated area-weighted CO2 fluxes from yedoma thermokarst lakes, nonyedoma thermokarst lakes, and glacial lakes are 29.5, 13.0, and 21.4 g C m-2 yr-1, respectively, close to the observed values (31.2, 17.2, and 16.5 ± 7.7 g C m-2 yr-1, respectively). The simulations show that the high CO2 fluxes from yedoma thermokarst lakes are stimulated by the biomineralization of mobilized labile organic carbon from thawing yedoma permafrost. The simulations also imply that the relative contribution of glacial lakes to the global carbon cycle could be the largest because of their much larger surface area and high biomineralization and carbon loading. According to the model, sunlight-induced organic carbon degradation is more important for shallow nonyedoma thermokarst lakes but its overall contribution to the global carbon cycle could be limited. Overall, the ALBM can simulate the whole-lake carbon balance of Arctic lakes, a difficult task for field and laboratory experiments and other biogeochemistry models.

  20. Modeling of Water Quality 'Almendares River'

    International Nuclear Information System (INIS)

    Domínguez Catasús, Judith

    2005-01-01

    The river Almendares, one of the most important water bodies of the Havana City, is very polluted. The analysis of parameters as dissolved oxygen and biochemical oxygen demand is very helpful for the studies aimed to the recovery of the river. There is a growing recognition around the word that the water quality models are very useful tools to plan sanitary strategies for the handling of the contamination. In the present work, the advective, steady- state Streeter and Phelps model was validated to simulate the effect of the multiple-point and distributed sources on the carbonaceous oxygen demand, NH4 and dissolved oxygen. For modeling purposes the section of the river located between the point where the waste water treatment station Maria del Carmen discharges to the river and the Bridge El Bosque, was divided in 11 segments. The use of the 99mTc and the Rodamine WT as tracers allowed determining the hydrodynamic parameters necessary for modeling purposes. The validated model allows to predict the effect of the sanitary strategies on the water quality of the river. The main conclusions are: 1. The model Streeter and Phelps calibrated and validated in the Almendares between the confluence of the channel 'María del Carmen' and bridge the Forest of Havana, described in more than 90% The behavior of the dissolved oxygen and BODn (in terms of ammonia), and more than 85%, the carbonaceous demand oxygen, which characterizes the process of purification. 2. Model validation Streeter and Phelps, indicates that implicit conceptual model is appropriate. This refers primarily to the considerations relating to the calculation of the kinetic constants and the DOS, the segmentation used, to the location of the discharges and the Standing been about them, to the river morphology and hydrodynamic parameters . 3. The calibration procedure Streeter and Phelps model that determines the least-squares Kr-Kd pair that best fits the OD and uses this Kr to model BOD gets four% increase in

  1. Statistical validation of GCM-simulated climates for the U.S. Great Lakes and the C.I.S. Emba and Ural River basins

    Science.gov (United States)

    Privalsky, V.; Croley, T. E.

    1992-03-01

    Many researchers use outputs from large-scale global circulation models of the atmosphere to assess hydrological and other impacts associated with climate change. However, these models cannot capture all climate variations since the physical processes are imperfectly understood and are poorly represented at smaller regional scales. This paper statistically compares model outputs from the global circulation model of the Geophysical Fluid Dynamics Laboratory to historical data for the United States' Laurentian Great Lakes and for the Emba and Ural River basins in the Commonwealth of Independent States (C.I.S.). We use maximum entropy spectral analysis to compare model and data time series, allowing us to both assess statistical predictabilities and to describe the time series in both time and frequency domains. This comparison initiates assessments of the model's representation of the real world and suggests areas of model improvement.

  2. Copula-based probability of concurrent hydrological drought in the Poyang lake-catchment-river system (China) from 1960 to 2013

    Science.gov (United States)

    Zhang, Dan; Chen, Peng; Zhang, Qi; Li, Xianghu

    2017-10-01

    Investigation of concurrent hydrological drought events is helpful for understanding the inherent mechanism of hydrological extremes and designing corresponding adaptation strategy. This study investigates concurrent hydrological drought in the Poyang lake-catchment-river system from 1960 to 2013 based on copula functions. The standard water level index (SWI) and the standard runoff index (SRI) are employed to identify hydrological drought in the lake-catchment-river system. The appropriate marginal distributions and copulas are selected by the corrected Akaike Information Criterion and Bayesian copulas selection method. The probability of hydrological drought in Poyang Lake in any given year is 16.6% (return period of 6 years), and droughts occurred six times from 2003 to 2013. Additionally, the joint probability of concurrent drought events between the lake and catchment is 10.1% (return period of 9.9 years). Since 2003, concurrent drought has intensified in spring due to frequent hydrological drought in the catchment. The joint probability of concurrent drought between the lake and the Yangtze River is 11.5% (return period of 8.7 years). This simultaneous occurrence intensified in spring, summer and autumn from 2003 to 2013 due to the weakened blocking effect of the Yangtze River. Notably, although the lake drought intensified in winter during the past decade, hydrological drought in the catchment and the Yangtze River did not intensify simultaneously. Thus, this winter intensification might be caused by human activities in the lake region. The results of this study demonstrate that the Poyang lake-catchment-river system has been drying since 2003 based on a statistical approach. An adaptation strategy should be urgently established to mitigate the worsening situation in the Poyang lake-catchment-river system.

  3. Tracing the Nitrate Sources of the Yili River in the Taihu Lake Watershed: A Dual Isotope Approach

    Directory of Open Access Journals (Sweden)

    Haiao Zeng

    2014-12-01

    Full Text Available As the third largest freshwater lake in China, Taihu Lake has experienced severe cyanobacterial blooms and associated water quality degradation in recent decades, threatening the human health and sustainable development of cities in the watershed. The Yili River is a main river of Taihu Lake, contributing about 30% of the total nitrogen load entering the lake. Tracing the nitrate sources of Yili River can inform the origin of eutrophication in Taihu Lake and provide hints for effective control measures. This paper explored the nitrate sources and cycling of the Yili River based on dual nitrogen (δ15N and oxygen (δ18O isotopic compositions. Water samples collected during both the wet and dry seasons from different parts of the Yili River permitted the analysis of the seasonal and spatial variations of nitrate concentrations and sources. Results indicated that the wet season has higher nitrate concentrations than the dry season despite the stronger dilution effects, suggesting a greater potential of cyanobacterial blooms in summer. The δ15N-NO3− values were in the range of 4.0‰–14.0‰ in the wet season and 4.8‰–16.9‰ in dry, while the equivalent values of δ18O were 0.5‰–17.8‰ and 3.5‰–15.6‰, respectively. The distribution of δ15N-NO3− and δ18O-NO3− indicated that sewage and manure as well as fertilizer and soil organic matter were the major nitrate sources of the Yili River. Atmospheric deposition was an important nitrate source in the upper part of Yili River but less so in the middle and lower reaches due to increasing anthropogenic contamination. Moreover, there was a positive relationship between δ18O-NO3− and δ15N-NO3− in the wet season, indicating a certain extent of denitrification. In contrast, the δ18O-δ15N relationship in the dry season was significantly negative, suggesting that the δ15N and δ18O values were determined by a mixing of different nitrate sources.

  4. Limnology of Sawtooth Lakes - 1995: Effects of winter limnology and lake fertilization on potential production of Snake River sockeye salmon

    International Nuclear Information System (INIS)

    Luecke, C.; Wurtsbaugh, W.A.; Budy, P.; Steinhart, G.B.; Slater, M.

    1996-01-01

    This Section II of the entire report describes the results of the limnological sampling conducted on Redfish, Altras, Pettit and Stanley Lakes from October 1994 through October 1995. Included are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995, limnological conditions during the spring, summer and fall of 1995, comparison of characteristics among the four lakes; fertilization of Redfish Lake in 1995; effects of fertilization and effects of annual avriations in planktivorous fish abundance. Individual chapters and their subject areas are listed in following abstracts

  5. Limnology of Sawtooth Lakes - 1995: Effects of winter limnology and lake fertilization on potential production of Snake River sockeye salmon

    Energy Technology Data Exchange (ETDEWEB)

    Luecke, C.; Wurtsbaugh, W.A.; Budy, P.; Steinhart, G.B.; Slater, M.

    1996-05-01

    This Section II of the entire report describes the results of the limnological sampling conducted on Redfish, Altras, Pettit and Stanley Lakes from October 1994 through October 1995. Included are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995, limnological conditions during the spring, summer and fall of 1995, comparison of characteristics among the four lakes; fertilization of Redfish Lake in 1995; effects of fertilization and effects of annual avriations in planktivorous fish abundance. Individual chapters and their subject areas are listed in following abstracts.

  6. A sediment resuspension and water quality model of Lake Okeechobee

    Science.gov (United States)

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  7. Fingerprinting the sources of suspended sediment delivery to a large municipal drinking water reservoir: Falls Lake, Neuse River, North Carolina, USA

    Science.gov (United States)

    We employ a novel geochemical-fingerprinting approach to estimate the source of suspended sediments collected from tributaries entering Falls Lake, a 50 km2 drinking water reservoir on the Neuse River, North Carolina. Many of the major tributaries to the lake are on North Carolina’s 303(d) list for ...

  8. Communities of gastrointestinal helminths of fish in historically connected habitats: habitat fragmentation effect in a carnivorous catfish Pelteobagrus fulvidraco from seven lakes in flood plain of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Yao Wei J

    2009-04-01

    Full Text Available Abstract Background Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. Results A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48 and isolated lakes (0.50. The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708, and the lowest was between Tangxun and Dongting lakes (0.1807. The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. Conclusion The

  9. Communities of gastrointestinal helminths of fish in historically connected habitats: habitat fragmentation effect in a carnivorous catfish Pelteobagrus fulvidraco from seven lakes in flood plain of the Yangtze River, China.

    Science.gov (United States)

    Li, Wen X; Nie, Pin; Wang, Gui T; Yao, Wei J

    2009-04-27

    Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48) and isolated lakes (0.50). The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708), and the lowest was between Tangxun and Dongting lakes (0.1807). The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. The similarity in the helminth communities of this fish in the flood

  10. Key Lake, a model of Canadian development

    International Nuclear Information System (INIS)

    Runnalls, O.J.C.

    1987-01-01

    Canada ranks among the world's top four countries in terms of measured, indicated, and inferred uranium resources. Since 1984, Canada has been the world's largest uranium producer providing some 30% of the world's total. An important reason for this strong position is related to the discovery of high-grade near-surface uranium deposits in northern Saskatchewan in 1968 and subsequently. The history of the discovery of one such deposit near Key Lake made by the German-controlled Uranerz Exploration and Mining Limited is recounted briefly. The Key Lake mine became operational in 1983 and currently is the largest uranium-producing facility in the world. At present, less than 20% of the country's annual uranium output of approximately 11,000 tonnes U is required to provide fuel for the domestic nuclear power program. The excess, more than 9000 tonnes U annually, is planned to be exported abroad, primarily to customers in Western Europe, Eastern Asia and the United States. Given its strong resource base, large-scale exports from Canada should continue well into the next century. (orig.) [de

  11. The rise and fall of water hyacinth in Lake Victoria and the Kagera River basin, 1989-2001

    Science.gov (United States)

    Albright, Thomas P.; Moorhouse, T.G.; McNabb, T.J.

    2004-01-01

    Water hyacinth (Eichhornia crassipes (Mart.) Solms) is an invasive aquatic macrophyte associated with major negative economic and ecological impacts to the Lake Victoria region since the plant's establishment in Uganda in the 1980s. Reliable estimates of water hyacinth distribution and extent are required to gauge the severity of the problem through time, relate water hyacinth abundance to environmental factors, identify areas requiring management action, and assess the efficacy of management actions. To provide such estimates and demonstrate the utility of remote sensing for this application, we processed and analyzed remotely sensed imagery to determine the distribution and extent of water hyacinth. Maps were produced and coverage was quantified using a hybrid unsupervised image classification approach with manual editing for each of the riparian countries of Kenya, Tanzania, and Uganda, as well as for numerous gulfs and bays. A similar procedure was carried out for selected lakes in the Rwanda-Tanzania borderlands lakes region in the Kagera River basin. Results confirm the severity of the water hyacinth infestation, especially in the northern parts of the lake. A maximum lake-wide extent of at least 17,374 ha was attained in 1998. Following this, a combination of factors, including conditions associated with the 1997 to 1998 El Nin??o and biocontrol with water hyacinth weevils, appear to have contributed to a major decline in water hyacinth in the most affected parts of the lake. Some lakes in the Kagera basin, such as Lake Mihindi, Rwanda, were severely infested in the late 1990s, but the level of infestation in most of these decreased markedly by the early 2000s.

  12. PATTERNS AND TOURIST ACTIVITIES INDUCED BY THE UNDERGROUND RIVERS AND LAKES IN THE ARIEŞ BASIN UPSTREAM OF BURU

    Directory of Open Access Journals (Sweden)

    Marius CIGHER

    2011-11-01

    Full Text Available Patterns and tourist activities induced by the underground rivers and lakes in the Arieş basin upstream of Buru – The presence of carbonate deposits in the Arieş basin, upstream of Buru induced certain organization of groundwater resources. Depending on local genetic factors – geological, climatic, biotic, temporal, etc – the extension and characteristics of karst aquifers engenders exploitable hydro units in terms of tourism: underground rivers and lakes. Identification and analysis of morphometrical, morphological, quantitative, qualitative, dynamic and biotic characteristics have provided the approach to ranking the hydro entities. Forms and tourism activities are subsumed to the established typological categories: recreational and pleasure tourism and multipurpose tourism.

  13. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    Science.gov (United States)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which

  14. Water quality of the St. Clair River, Lake St. Clair, and their U.S. tributaries, 1946-2005

    Science.gov (United States)

    Healy, Denis F.; Chambers, Douglas B.; Rachol, Cynthia M.; Jodoin, Richard S.

    2007-01-01

    The St. Clair River/Lake St. Clair waterway forms an international boundary between the United States and Canada. The waters of the area are an important part of the cultural heritage of the area and serves as an important water-supply and power-generating resource; the waterway also supports an economy based largely on recreation, agriculture, and manufacturing. This report was undertaken as part of the Lake St. Clair Regional Monitoring Project for the purpose of providing a comprehensive assessment of the hydrological, chemical, and physical state of the surface water of Lake St. Clair and its tributaries. The data varied in focus and density over the period of compilation which in many cases this variation prevented the completion of statistical analyses because data did not meet minimum comparability or quality requirements for those tests. Comparison of water quality of the Belle, Black, Clinton, and Pine River Basins, as well as basins of minor rivers in the study area, showed that water quality in many of the tributaries, particularly the Clinton River and some of the minor rivers, was degraded compared to the water quality of the St. Clair River/Lake St. Clair waterway. Data analyses included comparison of nutrients, chloride, specific conductance, turbidity, biochemical oxygen demand (BOD), and pesticides among the basins and the St. Clair River. Median concentrations of total nitrate were well below the recommended USEPA total nitrogen ambient water-quality criterion of 0.54 mg/L as N for nutrient ecoregion VII for all study-area streams except the Clinton River. More than 93 percent of the phosphorus concentrations for the Belle, Black, Pine and minor river basins and 84 percent of the phosphorus concentrations for the Clinton River Basin are greater than the USEPA recommended ambient total phosphorus criterion of 0.033 mg/L for rivers and streams. Nine chloride concentrations exceeded the USEPA criterion maximum concentration (CMC) for chloride set at

  15. Mining legacy across a wetland landscape: high mercury in Upper Peninsula (Michigan) rivers, lakes, and fish.

    Science.gov (United States)

    Kerfoot, W Charles; Urban, Noel R; McDonald, Cory P; Zhang, Huanxin; Rossmann, Ronald; Perlinger, Judith A; Khan, Tanvir; Hendricks, Ashley; Priyadarshini, Mugdha; Bolstad, Morgan

    2018-03-29

    A geographic enigma is that present-day atmospheric deposition of mercury in the Upper Peninsula of Michigan is low (48%) and that regional industrial emissions have declined substantially (ca. 81% reduction) relative to downstate. Mercury levels should be declining. However, state (MDEQ) surveys of rivers and lakes revealed elevated total mercury (THg) in Upper Peninsula waters and sediment relative to downstate. Moreover, Western Upper Peninsula (WUP) fish possess higher methyl mercury (MeHg) levels than Northern Lower Peninsula (NLP) fish. A contributing explanation for elevated THg loading is that a century ago the Upper Peninsula was a major industrial region, centered on mining. Many regional ores (silver, copper, zinc, massive sulfides) contain mercury in part per million concentrations. Copper smelters and iron furnace-taconite operations broadcast mercury almost continuously for 140 years, whereas mills discharged tailings and old mine shafts leaked contaminated water. We show that mercury emissions from copper and iron operations were substantial (60-650 kg per year) and dispersed over relatively large areas. Moreover, lake sediments in the vicinity of mining operations have higher THg concentrations. Sediment profiles from the Keweenaw Waterway show that THg accumulation increased 50- to 400-fold above modern-day atmospheric deposition levels during active mining and smelting operations, with lingering MeHg effects. High MeHg concentrations are geographically correlated with low pH and dissolved organic carbon (DOC), a consequence of biogeochemical cycling in wetlands, characteristic of the Upper Peninsula. DOC can mobilize metals and elevate MeHg concentrations. We argue that mercury loading from mining is historically superimposed upon strong regional wetland effects, producing a combined elevation of both THg and MeHg in the Western Upper Peninsula.

  16. Watershed modeling at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Vache, Kellie [Oregon State University

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  17. [Ecotourism exploitation model in Bita Lake Natural Reserve of Yunnan].

    Science.gov (United States)

    Yang, G; Wang, Y; Zhong, L

    2000-12-01

    Bita lake provincial natural reserve is located in Shangri-La region of North-western Yunnan, and was set as a demonstrating area for ecotourism exploitation in 1998. After a year's exploitation construction and half a year's operation as a branch of the 99' Kunming International Horticulture Exposition to accept tourists, it was proved that the ecotourism demonstrating area attained four integrated functions of ecotourism, i.e., tourism, protection, poverty clearing and environment education. Five exploitation and management models including function zoned exploitation model, featured tourism communication model signs system designing model, local Tibetan family reception model and environmental monitoring model, were also successful, which were demonstrated and spreaded to the whole province. Bita lake provincial natural reserve could be a good sample for the ecotourism exploitation natural reserves of the whole country.

  18. Coupling of HEC-HMS and HEC-ResSim in Modeling the Fluctuation of Water Level in Devils Lake Using Heterogeneous Data

    Science.gov (United States)

    Munna, H. S.; Lim, Y. H.

    2010-12-01

    Devils Lake, located in Ramsey and Benson County in North Dakota is a sub-basin of the Red River of the North. Although it lies entirely within the Red River Basin, it has no natural outlet at current water levels. Since its inception during the glacier period, Devils Lake has been either rising or falling over the last 10,000 years. Geologic evidence shows that the water level in Devils Lake has fluctuated widely from completely dry (about 1400 feet AMSL) to overflowing into the Sheyenne River (about 1459 feet AMSL). The uncontrolled growth of the lake has been an alarming issue for North Dakota for the past few years as it causes continuous flooding in the surrounding areas. A hydro-climatic model that can provide simulations of the water level of this lake for a 20 or 50 year time frame can be a useful decision making tool. In a mission to achieve that, heterogeneous data obtained from various sources were used to model the lake. Runoff from precipitation is one of the major inputs to the lake and to model that, eight major watersheds that feed directly to the lake were identified using Digital Elevation Models (DEMs) of thirty meter resolution in ArcGIS environment. Hydrology and Arc Hydro tools were used to delineate the watersheds and sub-basins to generate the runoff using the HEC HMS model. The precipitation time series data collected from both NASA and ground stations were used separately to calibrate the runoff model. The generation of time series runoff values for individual basins for four consecutive years (2001-2004) was applied into HEC-ResSim, a reservoir simulation model, to estimate the lake level series considering the elevation-area-storage relationship and evaporation series from previous USGS studies. It is eminent that seepage under the lake played a key role in calibrating the model with observed elevations. The value of seepage flow was varied over increasing elevations as it depends on the height of water column. The model showed an

  19. Seasonal dynamics of the fish assemblage in a floodplain lake at the confluence of the Negro and Amazon Rivers.

    Science.gov (United States)

    Röpke, C P; Amadio, S A; Winemiller, K O; Zuanon, J

    2016-07-01

    The temporal effect of discharge and limnology on fish composition and species diversity in a floodplain lake at the confluence of the Amazon and Negro Rivers was evaluated. Species richness, abundance and assemblage composition were strongly influenced by seasonal discharge of the Amazon and Negro Rivers, which affects lateral connectivity, water conductivity and temperature. As a consequence, temporal β-diversity was high in the lake and the assemblage was dominated by seasonally transient species. Relatively large species known to feed on resources within the floodplain were captured almost exclusively during the flood period. During the dry season, the assemblage was dominated by fishes adapted to harsh conditions of high temperature and low dissolved oxygen concentrations. An open system with high spatial and temporal heterogeneity created by the meeting of two large rivers with different water chemistry, Lago Catalão has a dynamic fish assemblage. Given its high temporal β-diversity and abundance of fishes, many of great importance in local fisheries, Lago Catalão and other floodplain lakes in this region merit special attention for conservation. © 2015 The Fisheries Society of the British Isles.

  20. Modelling the Loktak Lake Basin to Assess Human Impact on Water Resources

    Science.gov (United States)

    Eliza, K.

    2015-12-01

    Loktak Lake is an internationally important, Ramsar designated, fresh water wetland system in the state of Manipur, India. The lake was also listed under Montreux Record on account of the ecological modifications that the lake system has witnessed over time. A characteristic feature of this lake is the extensive occurrence of coalesced, naturally or otherwise, vegetative masses floating over it. A contiguous 40 km2 area of Phumdis, as these vegetative masses are locally referred to, also constitutes the only natural home of the endemic and endangered species of Manipur's brow-antlered deer popularly known as Sangai. Appropriately notified as Keibul Lamjao National Park by Government of India, this natural feature is known to be the world's largest floating park. Water quality and sediment deposition on account of soil erosion in its catchments are some of the emerging concerns along with a reported enhanced frequency and duration of flooding of the shore areas, reduced fish catch within a visibly deteriorated overall natural ecosystem. Disturbances of watershed processes, command area management practices, ineffective as indeed largely absent, waste management practices and management interventions linked to the Loktak Hydroelectric Project are often cited as the principal triggers that are seen to be responsible for the damage. An effective management protocol for the Lake requires a rigorous understanding of its hydrobiology and eco-hydrodynamics. The present study is carried out to establish such a characterization of the various rivers systems draining directly into the Lake using MIKE SHE, MIKE 11 HD and MIKE 11 ECO Lab modelling platforms. Water quality modelling was limited to dissolved oxygen (DO), biological oxygen demand (BOD) and water temperature. Model calibration was done using the available measured water quality data. The derived results were then investigated for causal correlation with anthropogenic influences to assess human impact on water

  1. Interactive lakes in the Canadian Regional Climate Model, version 5: the role of lakes in the regional climate of North America

    Directory of Open Access Journals (Sweden)

    Bernard Dugas

    2012-02-01

    Full Text Available Two one-dimensional (1-D column lake models have been coupled interactively with a developmental version of the Canadian Regional Climate Model. Multidecadal reanalyses-driven simulations with and without lakes revealed the systematic biases of the model and the impact of lakes on the simulated North American climate.The presence of lakes strongly influences the climate of the lake-rich region of the Canadian Shield. Due to their large thermal inertia, lakes act to dampen the diurnal and seasonal cycle of low-level air temperature. In late autumn and winter, ice-free lakes induce large sensible and latent heat fluxes, resulting in a strong enhancement of precipitation downstream of the Laurentian Great Lakes, which is referred to as the snow belt.The FLake (FL and Hostetler (HL lake models perform adequately for small subgrid-scale lakes and for large resolved lakes with shallow depth, located in temperate or warm climatic regions. Both lake models exhibit specific strengths and weaknesses. For example, HL simulates too rapid spring warming and too warm surface temperature, especially in large and deep lakes; FL tends to damp the diurnal cycle of surface temperature. An adaptation of 1-D lake models might be required for an adequate simulation of large and deep lakes.

  2. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral

  3. Snow and ice on Bear Lake (Alaska – sensitivity experiments with two lake ice models

    Directory of Open Access Journals (Sweden)

    Tido Semmler

    2012-03-01

    Full Text Available Snow and ice thermodynamics of Bear Lake (Alaska are investigated with a simple freshwater lake model (FLake and a more complex snow and ice thermodynamic model (HIGHTSI. A number of sensitivity experiments have been carried out to investigate the influence of snow and ice parameters and of different complexity on the results. Simulation results are compared with observations from the Alaska Lake Ice and Snow Observatory Network. Adaptations of snow thermal and optical properties in FLake can largely improve accuracy of the results. Snow-to-ice transformation is important for HIGHTSI to calculate the total ice mass balance. The seasonal maximum ice depth is simulated in FLake with a bias of −0.04 m and in HIGHTSI with no bias. Correlation coefficients between ice depth measurements and simulations are high (0.74 for FLake and 0.9 for HIGHTSI. The snow depth simulation can be improved by taking into account a variable snow density. Correlation coefficients for surface temperature are 0.72 for FLake and 0.81 for HIGHTSI. Overall, HIGHTSI gives slightly more accurate surface temperature than FLake probably due to the consideration of multiple snow and ice layers and the expensive iteration calculation procedure.

  4. Projecting the future levels of Lake Victoria

    Science.gov (United States)

    Vanderkelen, Inne; van Lipzig, Nicole; Thiery, Wim

    2017-04-01

    Lake Victoria directly sustains 30 million people living in its basin and 200 000 fishermen operating from its shores. As the one of the two sources of the Nile River, it also supports natural resources that impact the livelihood of over 300 million people living in the Nile basin. The outlet to the Nile is controlled by two hydropower dams. The water balance of Lake Victoria is controlled both by climatic conditions (precipitation and evaporation) and human management (dam outflow). Future climate simulations with a high resolution coupled lake-land-atmosphere model project decreasing mean precipitation and increasing evaporation over Lake Victoria. As these two are important factors in the water balance of Lake Victoria, these projected changes may induce a drop in future levels of Lake Victoria. Moreover, as Lake Victoria is also a relatively shallow lake, lake surface area may decrease as well. Here we present a water balance model for Lake Victoria that provides lake level and extent as output. We first force our model with observational input (new satellite products providing high quality precipitation and evaporation data) and evaluate it using measured lake levels. The skill of the model is subsequently assessed by forcing it with present-day regional climate simulations (CORDEX evaluation simulations). In a third step the future lake levels and surface area changes of Lake Victoria are simulated by forcing the model with CORDEX projections under RCP4.5 and 8.5. Finally, the role of human decisions regarding future dam outflow are investigated.

  5. Hydrologic Setting and Conceptual Hydrologic Model of the Walker River Basin, West-Central Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. Between 1882 and 2008, agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-ft. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes the hydrologic setting of the Walker River basin and a conceptual hydrologic model of the relations among streams, groundwater, and Walker Lake with emphasis on the lower Walker River basin from Wabuska to Hawthorne, Nevada. The Walker River basin is about 3,950 square miles and straddles the California-Nevada border. Most streamflow originates as snowmelt in the Sierra Nevada. Spring runoff from the Sierra Nevada typically reaches its peak during late May to early June with as much as 2,800 cubic feet per second in the Walker River near Wabuska. Typically, 3 to 4 consecutive years of below average streamflow are followed by 1 or 2 years of average or above average streamflow. Mountain ranges are comprised of consolidated rocks with low hydraulic conductivities, but consolidated rocks transmit water where fractured. Unconsolidated sediments include fluvial deposits along the active channel of the Walker River, valley floors, alluvial slopes, and a playa. Sand and gravel deposited by the Walker River likely are discontinuous strata throughout the valley floor. Thick clay strata likely were deposited in Pleistocene Lake Lahontan and are horizontally continuous, except where strata have been eroded by the Walker River. At Walker Lake, sediments mostly are clay interbedded with alluvial slope, fluvial, and deltaic deposits along the lake margins. Coarse sediments form a multilayered, confined-aquifer system that could extend several miles from the shoreline

  6. A study of the river basins and limnology of five humic lakes on Chiloé Island Estudio de la cuenca y limnología en cinco lagos húmicos de la Isla Chiloé

    OpenAIRE

    L. VILLALOBOS; O. PARRA

    2003-01-01

    From November 1996 to October 1997, the river basins of five humic lakes on Chiloé Island were studied monthly: Lakes Natri, Tepuhueico, Tarahuín, Huillinco and Cucao. The objective of this study was to know the catchment area, river basin and the main physical, chemical and biological characteristics of these humic lakes. The trophic status, the actual loading, and the mass balances of phosphorus and nitrogen were determined in relation to anthropogenic activities. Lakes Cucao and Huillinco ...

  7. Sediment Transport in the Bill Williams River and Turbidity in Lake Havasu During and Following Two High Releases from Alamo Dam, Arizona, in 2005 and 2006

    Science.gov (United States)

    Wiele, Stephen M.; Hart, Robert J.; Darling, Hugh L.; Hautzinger, Andrew B.

    2009-01-01

    Discharges higher than are typically released from Alamo Dam in west-central Arizona were planned and released in 2005, 2006, 2007, and 2008 to study the effects of these releases on the Bill Williams River and Lake Havasu, into which the river debouches. Sediment concentrations and water discharges were measured in the Bill Williams River, and turbidity, temperature, and dissolved oxygen were measured in Lake Havasu during and after experimental releases in 2005 and 2006 from Alamo Dam. Data from such releases will support ongoing ecological studies, improve environmentally sensitive management of the river corridor, and support the development of a predictive relationship between the operation of Alamo Dam and downstream flows and their impact on Lake Havasu and the Colorado River. Elevated discharges in the Bill Williams River mobilize more sediment than during more typical dam operation and can generate a turbidity plume in Lake Havasu. The intakes for the Central Arizona Project, which transfers Colorado River water to central and southern Arizona, are near the mouth of the Bill Williams River. Measurement of the turbidity and the development of the plume over time consequently were important components of the study. In this report, the measurements of suspended sediment concentration and discharges in the Bill Williams River and of turbidity in Lake Havasu are presented along with calculations of silt and sand loads in the Bill Williams River. Sediment concentrations were varied and likely dependent on a variable supply. Sediment loads were calculated at the mouth of the river and near Planet, about 10 km upstream from the mouth for the 2005 release, and they indicate that a net increase in transport of silt and a net decrease in the transport of sand occurred in the reach between the two sites.

  8. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden)

    2006-12-15

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial

  9. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-12-01

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial sediments and

  10. Habitat characteristic of macrozoobenthos in Naborsahan River of Toba Lake, North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Lubis, M. S.; Suryanti, A.

    2018-02-01

    This research described the relative abundance, dominance index, and index of macrozoobenthos equitability in Naborsahan River of Toba Lake, North Sumatra, Indonesia. The purposive random sampling at three stations was used to characterize the biological, chemical, and physical parameters of macrozoobenthos. The highest relative abundance of macrozoobenthos found at station 2 (99.96%). By contrast, the highest dominance index was at station 3 (0.31), and the maximum equitability index found at station 1 (0.94). The present results showed diversity parameters among the stations. A principal component analysis (PCA) was used to determine the habitat characteristics of macrozoobenthos. PCA analysis depicted that six parameters studied, brightness, turbidity, depth, temperature, dissolved oxygen (DO) and biochemical oxygen demand (BOD5) play a significant role on the relative abundance, dominance index, and equitability index. PCA analysis suggested that station 3 was suitable habitat characteristic for the life of macro-zoobenthos indicating of the negative axis. The present study demonstrated the six parameters should be conserved to support the survival of macrozoobenthos.

  11. Control Scheme of River-lake System from the View of Ecological Sponge Basin aiming at Sponge City Construction

    Science.gov (United States)

    Ding, X.; Liu, J.; Yang, Z.

    2017-12-01

    China is in the rapid advance of urbanization, and is promoting the Sponge City Construction (SCC) with the characteristics of natural accumulation, natural infiltration and natural purification. The Chinese government selected 16 and 14 cities as pilot cities in 2015 and 2016 respectively to carry out SCC taking Low Impact Development (LID) as the concept. However, in 2015 and 2016, water-logging occurred in 10 cities and 9 cities respectively during the pilot cities. Therefore, relying solely on LID can not solve the problem of urban flood and waterlogging. Except for a series of LID measures during the process of SCC, corresponding control scheme of river-lake system should be established to realize water-related targets. From the view of ecological sponge basin, this study presents the general idea of SCC both in and out of the unban built-up area and the corresponding control scheme of river-lake system: for the regions outside the built-up area, the main aim of SCC is to carry out the top-level design of urban flood control and waterlogging, establish the water security system outside the city for solving the problems including flood control, water resources, water environment and water ecology; for the built-up area, the main aim of SCC is to construct different kinds of urban sponge according to local conditions and develop multi-scale drainage system responding to different intensities of rainfall taking the river-lake system as the core. Taking Fenghuang County of Hunan Province as an example for the application research, the results indicate that, after the implementation of the control scheme of river-lake system: 1) together with other SCC measures including LID, the control rate of total annual runoff in Fenghuang County is expected to be 82.9% which meets the target requirement of 80%; 2) flood control and drainage standards in Fenghuang County can be increased from the current 10-year return to 20-year return; 3) urban and rural water supply

  12. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels

    International Nuclear Information System (INIS)

    Konstantinou, Ioannis K.; Hela, Dimitra G.; Albanis, Triantafyllos A.

    2006-01-01

    This review evaluates and summarizes the results of long-term research projects, monitoring programs and published papers concerning the pollution of surface waters (rivers and lakes) of Greece by pesticides. Pesticide classes mostly detected involve herbicides used extensively in corn, cotton and rice production, organophosphorus insecticides as well as the banned organochlorines insecticides due to their persistence in the aquatic environment. The compounds most frequently detected were atrazine, simazine, alachlor, metolachlor and trifluralin of the herbicides, diazinon, parathion methyl of the insecticides and lindane, endosulfan and aldrin of the organochlorine pesticides. Rivers were found to be more polluted than lakes. The detected concentrations of most pesticides follow a seasonal variation, with maximum values occurring during the late spring and summer period followed by a decrease during winter. Nationwide, in many cases the reported concentrations ranged in low ppb levels. However, elevated concentrations were recorded in areas of high pesticide use and intense agricultural practices. Generally, similar trends and levels of pesticides were found in Greek rivers compared to pesticide contamination in other European rivers. Monitoring of the Greek water resources for pesticide residues must continue, especially in agricultural regions, because the nationwide patterns of pesticide use are constantly changing. Moreover, emphasis should be placed on degradation products not sufficiently studied so far. - Information on pesticide pollution of surface waters in Greece is reviewed

  13. Assessing the toxicity to fish embryos of surface water from the Watts Bar Lake/Clinch River system

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, L.J.; Niemela, S.L.; McCracken, M.K.; Greeley, M.S. Jr. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    Successful reproduction of fish populations requires the successful development of offspring into new reproductive cohorts. In order to evaluate the ability of fish offspring to survive and develop properly in the Watts Bar Lake/Clinch River system downstream of the Department of Energy facilities in Oak Ridge, TN, a series of fish embryo-larval toxicity tests were conducted on surface water samples from Poplar Creek and the Clinch River adjacent to the Oak Ridge Reservation. Quarterly tests were conducted over an eighteen-month interval with embryos from laboratory stocks of the Japanese medaka (Oryzias latipes). Eggs obtained from largemouth bass (Micropterus salmoides) and redbreast sunfish (Lepomis auritus) collected from reference sites during their respective breeding seasons were fertilized in vitro for additional embryo-larval tests utilizing fish species indigenous to the Watts Bar/Clinch River system. Average survival of medaka embryos decreased significantly in water from Poplar Creek sites within the Oak Ridge Reservation, coincident with an increase in the prevalence of certain developmental abnormalities. Similar but less pronounced results were also obtained with redbreast sunfish embryos. Development of largemouth bass eggs was not adversely affected by any of the tested water samples. These findings suggest that the development of fish eggs and fry in certain reaches of the Watts Bar Lake/Clinch River system may be negatively impacted by activities on the Oak Ridge Reservation.

  14. Source and Ecological Risk Characteristics of PAHs in Sediments from Qinhuai River and Xuanwu Lake, Nanjing, China

    Directory of Open Access Journals (Sweden)

    Zhenhua Zhao

    2017-01-01

    Full Text Available In order to investigate the residual characteristics, sources, and ecological risk of PAHs in sediment from urban rivers, the sediments of 15 typical sites from Qinhuai River and Xuanwu Lake, which are typical urban rivers and lake, were collected from October 2015 to July 2016; the sources of PAHs in sediment were also identified by several methods. Results showed that ∑PAHs concentration in sediment ranged from 796.2 ng/g to 10,470 ng/g with an average of 2,713.8 ng/g. High molecular weight PAHs with 4-5 rings were most prominent in the sediment during all four seasons. Source characterization studies based on the analysis of diagnostic ratio (triangular plot method, cluster analysis, and positive factor matrix analysis suggested that the PAHs of Qinhuai River Basin were mainly from pyrogenic origin (biomass and coal combustion and vehicular emission, and the petroleum source also cannot be ignored (specially in summer. Most individual PAHs occasionally affect the aquatic organisms. The highest benzo[a]pyrene-equivalent doses (BaPeq dose appear at the sites of sewage discharge and heavy traffic. So, the PAHs pollution sources of urban water body have obvious seasonal-dependent and human activities-dependent characteristics.

  15. Ancient lakes, Pleistocene climates and river avulsions structure the phylogeography of a large but little-known rock scorpion from the Mojave and Sonoran deserts

    Science.gov (United States)

    Graham, Matthew R.; Wood, Dustin A.; Henault, Jonathan A.; Valois, Zachary J.; Cushing, Paula E.

    2017-01-01

    Recent syntheses of phylogeographical data from terrestrial animals in the Mojave and Sonoran deserts have revealed a complex history of geologic and climatic vicariance events. We studied the phylogeography of Smeringurus vachoni to see how vicariance events may have impacted a large, endemic rock scorpion. Additionally, we used the phylogeographical data to examine the validity of two subspecies of S. vachoni that were described using unconventional morphological characters. Phylogenetic, network and SAMOVA analyses indicate that S. vachoni consists of 11 clades mostly endemic to isolated desert mountain ranges. Molecular clock estimates suggest that clades diversified between the Miocene and early Pleistocene. Species distribution models predict a contraction of suitable habitat during the last glacial maximum. Landscape interpolations and Migrate-n analyses highlight areas of gene flow across the Colorado River. Smeringurus vachoni does not comprise two subspecies. Instead, the species represents at least 11 mitochondrial clades that probably diversified by vicariance associated with Pleistocene climate changes and formation of ancient lakes along the Colorado River corridor. Gene flow appears to have occurred from west to east across the Colorado River during periodic river avulsions.

  16. Modelling hourly rates of evaporation from small lakes

    Directory of Open Access Journals (Sweden)

    R. J. Granger

    2011-01-01

    Full Text Available The paper presents the results of a field study of open water evaporation carried out on three small lakes in Western and Northern Canada. In this case small lakes are defined as those for which the temperature above the water surface is governed by the upwind land surface conditions; that is, a continuous boundary layer exists over the lake, and large-scale atmospheric effects such as entrainment do not come into play. Lake evaporation was measured directly using eddy covariance equipment; profiles of wind speed, air temperature and humidity were also obtained over the water surfaces. Observations were made as well over the upwind land surface.

    The major factors controlling open water evaporation were examined. The study showed that for time periods shorter than daily, the open water evaporation bears no relationship to the net radiation; the wind speed is the most significant factor governing the evaporation rates, followed by the land-water temperature contrast and the land-water vapour pressure contrast. The effect of the stability on the wind field was demonstrated; relationships were developed relating the land-water wind speed contrast to the land-water temperature contrast. The open water period can be separated into two distinct evaporative regimes: the warming period in the Spring, when the land is warmer than the water, the turbulent fluxes over water are suppressed; and the cooling period, when the water is warmer than the land, the turbulent fluxes over water are enhanced.

    Relationships were developed between the hourly rates of lake evaporation and the following significant variables and parameters (wind speed, land-lake temperature and humidity contrasts, and the downwind distance from shore. The result is a relatively simple versatile model for estimating the hourly lake evaporation rates. The model was tested using two independent data sets. Results show that the modelled evaporation follows the observed values

  17. Phosphorus Export Model Development in a Terminal Lake Basin using Concentration-Streamflow Relationship

    Science.gov (United States)

    Jeannotte, T.; Mahmood, T. H.; Matheney, R.; Hou, X.

    2017-12-01

    Nutrient export to streams and lakes by anthropogenic activities can lead to eutrophication and degradation of surface water quality. In Devils Lake, ND, the only terminal lake in the Northern Great Plains, the algae boom is of great concern due to the recent increase in streamflow and consequent rise in phosphorus (P) export from prairie agricultural fields. However, to date, very few studies explored the concentration (c) -streamflow (q) relationship in the headwater catchments of the Devils Lake basin. A robust watershed-scale quantitative framework would aid understanding of the c-q relationship, simulating P concentration and load. In this study, we utilize c-q relationships to develop a simple model to estimate phosphorus concentration and export from two headwater catchments of different size (Mauvais Coulee: 1032 km2 and Trib 3: 160 km2) draining to Devils Lake. Our goal is to link the phosphorus export model with a physically based hydrologic model to identify major drivers of phosphorus export. USGS provided the streamflow measurements, and we collected water samples (filtered and unfiltered) three times daily during the spring snowmelt season (March 31, 2017- April 12, 2017) at the outlets of both headwater catchments. Our results indicate that most P is dissolved and very little is particulate, suggesting little export of fine-grained sediment from agricultural fields. Our preliminary analyses in the Mauvais Coulee catchment show a chemostatic c-q relationship in the rising limb of the hydrograph, while the recession limb shows a linear and positive c-q relationship. The poor correlation in the rising limb of the hydrograph suggests intense flushing of P by spring snowmelt runoff. Flushing then continues in the recession limb of the hydrograph, but at a more constant rate. The estimated total P load for the Mauvais Coulee basin is 193 kg/km2, consistent with other catchments of similar size across the Red River of the North basin to the east. We expect

  18. Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. Morava river (Danube catchment area), Czech Republic

    International Nuclear Information System (INIS)

    Babek, O.

    2008-01-01

    Background, aims, and scope Embankment of meandering river systems in many industrial areas results in the formation of artificial oxbow lakes that may act as perennial or intermittent traps for river sediments. Their deposits can be dated using a combination of historical and stratigraphic data, providing a good means to study historical records of contamination transported by rivers. Contamination history over the last few decades is of special significance for Central and Eastern Europe as it can reflect high pollutant levels in the second half of the twentieth century and the subsequent improvement after the fall of the Iron Curtain. The purpose of this study was to investigate recent sediments of an oxbow lake of the Morava River, Czech Republic, their stratigraphic records, sediment architecture, and history of contamination. Materials and methods Seven ground-penetrating radar (GPR) profiles and three sediment cores up to 4 m deep were studied. The stratigraphy of the cores was inferred from visible-light spectrophotometry, X-ray radiography, grain size analysis, and semiquantitative modal analysis of sandy fractions. The sediments were dated using the 137 Cs mass activity and combinations of stratigraphic and historical data. The cores were sampled for concentrations of heavy metals and persistent organic pollutants. Wet sampled, lyophilized, and sieved sediments were extracted and analyzed for heavy metals by inductively coupled plasma mass spectrometry (ICP-MS) of aqua regia leachate and for persistent organic pollutants by gas chromatography (GC-ECD and GC-MS). Results Three distinct sedimentary sequences (S1, S2, and S3) were identified. The basal sequence S1 represents river channel sediments deposited before the formation of the oxbow lake, most likely before the 1930s. The boundary between the S1 and S2 sequence correlates with the level of sediment dredging from 1981 evidenced from historical data. The overlying sequences S2 and S3 represent a

  19. Evaluation of nutrient load transferred from Sarca river into Garda lake; Stima del carico di nutrienti trasportato dal fiume Sarca nel Lago di Garda

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, F. [Istituto Agrario, S. Michele all' Adige, TN (Italy); Fravezzi, L. [Agenzia Provinciale Protezione Ambiente, Trient (Italy)

    2000-02-01

    River Sarca (catchment surface=1046 Km{sup 2} max altitude=3556 m, min altitude=70 m, mean annual discharge=30 m{sup 3}) is the main tributary of the Lake Garda, the largest subalpine lake in Northern Italy (area=370 Km{sup 2,} catchment surface (included lake surface)=2260 Km{sup 2}, volume=49 Km{sup 3}, max depth=346 m). During 1996-97 a large series of hourly samples has been taken at the estuary's mouth and used to estimate the nutrient loading. Analytical and probabilistic methods are used to relate the data series to the trophic state of the lake. The results are compared with previous theoretical models (L.E.M.- Loading Evaluation Model) and related to dangerous load levels established by OECD. [Italian] L'indagine ha interessato particolarmente le concentrazioni ed il carico organico ed inorganico di azoto e fosforo che affluisce dal bacino del Fiume Sarca (superficie del bacino=1046 km{sup 2,} quota massima=3556 m, quota minima=70 m, portata media annua=30 m{sup 3}) nel Lago di Garda (area=370 km{sup 2}, area del bacino (lago incluso)=2260 km{sup 2}, volume=49 km{sup 3}, profondita' massima=346 m); lo studio si e' svolto nel periodo 1996-1997, con campionamenti presso la foce utilizzando strumentazione per prelievi in continuo nell'arco di una giornata anche in occasione di fenomeni di piena. I risultati hanno permesso di stabilire delle relazioni tra carico e portata liquida e di stimare i quantitativi di nutrienti trasportati a lago e di confrontarli con i risultati di altre indagini (L.E.M. - Loading Evaluation Model) e di valutarne gli effetti attraverso modelli predittivi (OECD).

  20. Modeling thermal structure, ice cover regime and sensitivity to climate change of two regulated lakes - a Norwegian case study

    Science.gov (United States)

    Gebre, Solomon; Boissy, Thibault; Alfredsen, Knut

    2013-04-01

    A great number of river and lakes in Norway and the Nordic region at large are regulated for water management such as hydropower production. Such regulations have the potential to alter the thermal and hydrological regimes in the lakes and rivers downstream impacting on river environment and ecology. Anticipated changes as a result of climate change in meteorological forcing data such as air temperature and precipitation cause changes in the water balance, water temperature and ice cover duration in the reservoirs. This may necessitate changes in operational rules as part of an adaptation strategy for the future. In this study, a one dimensional (1D) lake thermodynamic and ice cover model (MyLake) has been modified to take into account the effect of dynamic outflows in reservoirs and applied to two small but relatively deep regulated lakes (reservoirs) in Norway (Follsjøen and Tesse). The objective was to assess climate change impacts on the seasonal thermal characteristics, the withdrawal temperatures, and the reservoir ice cover dynamics with current operational regimes. The model solves the vertical energy balance on a daily time-step driven by meteorological and hydrological forcings: 2m air temperature, precipitation, 2m relative humidity, 10m wind speed, cloud cover, air pressure, solar insolation, inflow volume, inflow temperature and reservoir outflows. Model calibration with multi-seasonal data of temperature profiles showed that the model performed well in simulating the vertical water temperature profiles for the two study reservoirs. The withdrawal temperatures were also simulated reasonably well. The comparison between observed and simulated lake ice phenology (which were available only for one of the reservoirs - Tesse) was also reasonable taking into account the uncertainty in the observational data. After model testing and calibration, the model was then used to simulate expected changes in the future (2080s) due to climate change by considering

  1. Quantifying the Variability of CH4 Emissions from Pan-Arctic Lakes with Lake Biogeochemical and Landscape Evolution Models

    Science.gov (United States)

    Tan, Z.; Zhuang, Q.

    2014-12-01

    Recent studies in the arctic and subarctic show that CH4 emissions from pan-arctic lakes are playing much more significant roles in the regional carbon cycling than previously estimated. Permafrost thawing due to pronounced warming at northern high latitudes affects lake morphology, changing its CH4 emissions. Thermokarst can enlarge the extent of artic lakes, exposing stable ancient carbon buried in the permafrost zone for degradation and changing a previously known carbon sink to a large carbon source. In some areas, the thawing of subarctic discontinuous and isolated permafrost can diminish thermokarst lakes. To date, few models have considered these important hydrological and biogeochemical processes to provide adequate estimation of CH4 emissions from these lakes. To fill this gap, we have developed a process-based climate-sensitive lake biogeochemical model and a landscape evolution model, which have been applied to quantify the state and variability of CH4 emissions from this freshwater system. Site-level experiments show the models are capable to capture the spatial and temporal variability of CH4 emissions from lakes across Siberia and Alaska. With the lake biogeochemical model solely, we estimate that the magnitude of CH4 emissions from lakes is 13.2 Tg yr-1 in the north of 60 ºN at present, which is on the same order of CH4 emissions from northern high-latitude wetlands. The maximum increment is 11.8 Tg CH4 yr-1 by the end of the 21st century when the worst warming scenario is assumed. We expect the landscape evolution model will improve the existing estimates.

  2. Estimating summer nutrient concentrations in Northeastern lakes from SPARROW load predictions and modeled lake depth and volume.

    Directory of Open Access Journals (Sweden)

    W Bryan Milstead

    Full Text Available Global nutrient cycles have been altered by the use of fossil fuels and fertilizers resulting in increases in nutrient loads to aquatic systems. In the United States, excess nutrients have been repeatedly reported as the primary cause of lake water quality impairments. Setting nutrient criteria that are protective of a lakes ecological condition is one common solution; however, the data required to do this are not always easily available. A useful solution for this is to combine available field data (i.e., The United States Environmental Protection Agency (USEPA National Lake Assessment (NLA with average annual nutrient load models (i.e., USGS SPARROW model to estimate summer concentrations across a large number of lakes. In this paper we use this combined approach and compare the observed total nitrogen (TN and total phosphorus (TN concentrations in Northeastern lakes from the 2007 National Lake Assessment to those predicted by the Northeast SPARROW model. We successfully adjusted the SPARROW predictions to the NLA observations with the use of Vollenweider equations, simple input-output models that predict nutrient concentrations in lakes based on nutrient loads and hydraulic residence time. This allows us to better predict summer concentrations of TN and TP in Northeastern lakes and ponds. On average we improved our predicted concentrations of TN and TP with Vollenweider models by 18.7% for nitrogen and 19.0% for phosphorus. These improved predictions are being used in other studies to model ecosystem services (e.g., aesthetics and dis-services (e.g. cyanobacterial blooms for ~18,000 lakes in the Northeastern United States.

  3. Comparative study of water quality of rivers used for raw water supply and ex-mining lakes in Perak, Malaysia

    International Nuclear Information System (INIS)

    Orji, K U; Sapari, N; Yusof, K W; Asadpour, R; Olisa, E

    2013-01-01

    Ex-mining lakes are seldom used as sources of raw water for the treatment of public water supply due to the general view that they are highly polluted. This study examined the water quality of these lakes, compared and contrasted them to the water quality of the rivers used for Perak drinking water supply. Ten water samples were analyzed from different ex-mining lakes. Two water samples were from Kinta and Perak rivers. They were analyzed for physico-chemical properties such as temperature, pH, EC, TDS, SO 4 2− COD, Cl − Na + Fe, As, and Pb. The results showed that temperature varied from 28.1°C to 34.1°C, pH 6.2 to 9.0, EC 55 to 400 μs/cm, turbidity 5.6 to 74.2 NTU, TDS 36.8 to 268mg/l, Cl − 0.483 to 3.339mg/l, SO 4 2− 0.051 to 15.307mg/l, Na 0.669 to 3.668mg/l, Fe 0 to 0.14mg/l, As 0 to 0.004mg/l, and Pb 0.019 to 0.075mg/l. All the samples were highly turbid, had slightly high concentration of Pb, and had common water quality problem. The ex-mining lakes can also be used to supply water after treatment since these rivers are already being used by the Metropolitan Utilities Corporation for water treatment. The ex-mining pools can be used as alternative sources of drinking water supply to the people of Perak.

  4. Digitized Onondaga Lake Dissolved Oxygen Concentrations and Model Simulated Values using Bayesian Monte Carlo Methods

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset is lake dissolved oxygen concentrations obtained form plots published by Gelda et al. (1996) and lake reaeration model simulated values using Bayesian...

  5. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    Science.gov (United States)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  6. Perfluorinated alkyl substances in water, sediment, plankton and fish from Korean rivers and lakes: a nationwide survey.

    Science.gov (United States)

    Lam, Nguyen-Hoang; Cho, Chon-Rae; Lee, Jung-Sick; Soh, Ho-Young; Lee, Byoung-Cheun; Lee, Jae-An; Tatarozako, Norihisa; Sasaki, Kazuaki; Saito, Norimitsu; Iwabuchi, Katsumi; Kannan, Kurunthachalam; Cho, Hyeon-Seo

    2014-09-01

    Water, sediment, plankton, and blood and liver tissues of crucian carp (Carassius auratus) and mandarin fish (Siniperca scherzeri) were collected from six major rivers and lakes in South Korea (including Namhan River, Bukhan River, Nakdong River, Nam River, Yeongsan River and Sangsa Lake) and analyzed for perfluorinated alkyl substances (PFASs). Perfluorooctane sulfonate (PFOS) was consistently detected at the greatest concentrations in all media surveyed with the maximum concentration in water of 15 ng L(-1) and in biota of 234 ng mL(-1) (fish blood). A general ascending order of PFAS concentration of waterPFAS concentrations in water samples were below 10 ng L(-1). The PFOS and perfluorooctanoic acid (PFOA) concentrations in water did not exceed levels for acute and/or chronic effects in aquatic organisms. High concentrations of long chain perfluorocarboxylates (LCPFCAs) were found in sediment samples. PFOS, perfluoroundecanoic acid (PFUnA), perfluorododecanoic acid (PFDoA) and perfluorodecanoic acid (PFDA) accounted for 94-99% of the total PFASs concentration in fish tissues. The mean ratios of PFAS concentration between fish blood and fish liver were above 2 suggesting higher levels in blood than in liver. Significant positive correlations (r>0.80, p<0.001) were observed between PFOS concentration in blood and liver tissues of both crucian carp and mandarin fish. This result suggests that blood can be used for nonlethal monitoring of PFOS in fish. Overall, the rank order of mean bioconcentration factors (BCFs) of PFOS in biota was; phytoplankton (196 L/kg)

  7. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  8. Sediment-quality assessment of Franklin D. Roosevelt Lake and the upstream reach of the Columbia River, Washington, 1992

    Science.gov (United States)

    Bortleson, Gilbert Carl; Cox, S.E.; Munn, M.D.; Schumaker, R.J.; Block, E.K.; Bucy, L.R.; Cornelius, R.J.

    1994-01-01

    The occurrence and distribution of trace elements and of wood-pulp-related compounds in the sediments of Lake Roosevelt and the upstream reache sampler of the Columbia River were studied in 1992. In addition, an analysis ofbenthic invertebrate community structure and tests of sediment toxicity were conducted. Concentrations of trace elements were elevated, relative to background reference sites, in samples of bed sediment. Copper, lead, and zinc most often exceeded the sediment-quality guidelines for benthic organisms. In whole-water samples, trace-element concentrations did not exceed criteria for freshwater organisms. These concen- trations were relatively small, reflecting the small suspended-sediment concentrations and the large water-diluting capacity of the Columbia River. Elevated concentrations of trace elements in sediments are attributable to the transport of metallurgical waste from a smelter discharging to the Columbia River in Canada. Dioxins and furans were found in Columbia River water, but only a few isomers were detected. A furan isomer common in effluent from pulp and paper mills was found in suspended sediment. Dioxins and furans in the water phase were isolated using solid-phase extraction to concentrate these compounds from large volumes of water. Few of the many other organic compounds associated with wood-pulp waste were detected in the bed sediments of Lake Roosevelt. Benthic invertebrate communities in the Columbia River showed effects from trace elements in bed sediments or from loss of physical habitat. Lethal and sublethal effects were observed in toxicity tests of selected aquatic organisms exposed to bed sediments from the Columbia River near the international boundary.

  9. Modelling circulation in an ice-covered lake

    Directory of Open Access Journals (Sweden)

    Boris Arkhipov

    2010-12-01

    Full Text Available In deep ice-covered lakes with temperatures below 4 °C the heat flux from the bottom sediment results in a horizontal density gradient and a consequent flow along the bottom slope. Measurements in Lake Pääjärvi, Finland, show a stable temperature field where a heat gain through the bottom and a heat loss through the ice nearly balance each other. The circulation is thermal with low velocities (less than 1.5 cm s–1. We used the 3D hydrodynamic Princeton Ocean Model as a tool to simulate the water circulation and the temperature distribution under the ice. The model forcing was based on field temperature measurements. The model simulations suggest that in midwinter the velocity field of the upper water layers is anticyclonic while that of deep layers is cyclonic. Comparison with current measurements at one site showed good agreement between the modelled and observed results. On the basis of the modelled results it is possible to better understand the distributions of some micro-organisms and the accumulation of oxygen depleted waters in the deepest part of the lake.

  10. Sorption Characteristics of Sediments in the Upper Mississippi River System Above Lake Pepin

    National Research Council Canada - National Science Library

    James, W

    1999-01-01

    This technical note examines equilibrium phosphorus processes and sorption characteristics for sediments collected from the Minnesota River, immediately upstream from its confluence with the Upper Mississippi River (UMR...

  11. Drivers of waterbird communities and their declines on Yangtze River floodplain lakes

    DEFF Research Database (Denmark)

    Jia, Qiang; Wang, Xin; Zhang, Yong

    2018-01-01

    The seasonally flooded Yangtze Valley Floodplain wetlands of China are globally important for wintering waterbirds in the East Asian-Australasian Flyway. These birds have declined in the last 60 years, so understanding factors shaping waterbird distribution and abundance patterns is critical...... for their conservation. We applied linear mixed models to investigate the effects of climate, winter water area and inundation area (the difference between maximum flooded and winter dry season water area) on waterbird abundance and diversity at 72 lakes in 2005 and 2016. Neither winter water area nor climate featured...... in the best models, rather inundation area was the key determinant of waterbird abundance and diversity. Future water abstraction and land claim will therefore have greater impacts on waterbird abundance and diversity than likely climate change effects. Significant declines in waterbird abundance...

  12. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    Science.gov (United States)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The

  13. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  14. Public lakes, private lakeshore: Modeling protection of native aquatic plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-01-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  15. Isotopic evidence for the spatial heterogeneity of the planktonic food webs in the transition zone between river and lake ecosystems

    Directory of Open Access Journals (Sweden)

    Hideyuki Doi

    2013-12-01

    Full Text Available Resources and organisms in food webs are distributed patchily. The spatial structure of food webs is important and critical to understanding their overall structure. However, there is little available information about the small-scale spatial structure of food webs. We investigated the spatial structure of food webs in a lake ecosystem at the littoral transition zone between an inflowing river and a lake. We measured the carbon isotope ratios of zooplankton and particulate organic matter (POM; predominantly phytoplankton in the littoral zone of a saline lake. Parallel changes in the δ 13C values of zooplankton and their respective POMs indicated that there is spatial heterogeneity of the food web in this study area. Lake ecosystems are usually classified at the landscape level as either pelagic or littoral habitats. However, we showed small-scale spatial heterogeneity among planktonic food webs along an environmental gradient. Stable isotope data is useful for detecting spatial heterogeneity of habitats, populations, communities, and ecosystems.

  16. Impacts of lake water environmental condition on bioavailable-phosphorus of surface sediments in Lixia River basin, China

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2015-05-01

    Full Text Available Bioavailable-phosphorus (BAP fractions of the lake surface sediments (the upper 0−5cm depth and environmental indicators of the related lake water column were investigated in five lakes in Lixia River basin during three seasons in order to evaluate the impacts of environmental indicators of the water column on the BAP fractions of surface sediments. The concentration of BAP varied significantly in different seasons. Factor analysis was used to identify the factors which influence sedimentary BAP significantly in the different seasons. The results showed that AAP and Olsen-P were significantly affected by the chemical oxygen demand through the bacterial activity in summer. The high intensity of bacterial activity and density of algae, and low concentrations of NO3-N and dissolved oxygen under high temperature enhanced the BAP released from anaerobic sediment and significantly contributed to the eutrophication of the lake, especially in summer. In addition, macrophyte roots were beneficial to absorption of AAP and Olsen-P.

  17. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  18. River meander modeling of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    Science.gov (United States)

    Lant, Jeremiah G.; Boldt, Justin A.

    2018-01-16

    Natural river channels continually evolve and change shape over time. As a result, channel evolution or migration can cause problems for bridge structures that are fixed in the flood plain. A once-stable bridge structure that was uninfluenced by a river’s shape could be encroached upon by a migrating river channel. The potential effect of the actively meandering Wabash River on the Interstate 64 Bridge at the border with Indiana near Grayville, Illinois, was studied using a river migration model called RVR Meander. RVR Meander is a toolbox that can be used to model river channel meander migration with physically based bank erosion methods. This study assesses the Wabash River meandering processes through predictive modeling of natural meandering over the next 100 years, climate change effects through increased river flows, and bank protection measures near the Interstate 64 Bridge.

  19. Modelling of the underwater disposal of uranium mine tailings in Elliot Lake

    International Nuclear Information System (INIS)

    Halbert, B.E.; Scharer, J.M.; Chakravatti, J.L.; Barnes, E.

    1982-01-01

    Underwater disposal of uranium mine tailings from the Elliot Lake area operations offers potential advantages in controlling radon gas release, emission of airborne particulate matter, and acid production from pyrites in the tailings. In addition, the proximity of the three active properties, one owned by Denison Mines Limited and two by Rio Algom Limited, to a large deep lake has spurred interest in the concept. It has been estimated that the placement of approximately 150 million tonnes of tailings from future planned production would occupy less than 20% of the lake volume. To assess the applicability of the underwater tailings disposal concept, a multi-stage study was developed in conjunction with the regulatory agencies. The most important facet identified for investigation during the first-stage investigations was an assessment of the effects of underwater disposal on water quality in the Serpent River Basin watershed. To simulate the effects of underwater disposal, a computer simulation routine was developed and integrated with a water quality model previously developed for the Basin which predicts levels of total dissolved solids, ammonia, dissolved radium-226 and pH. The underwater disposal model component reflects the effects of direct input of tailings into the hypolimnion, the chemical/biological transformation of dissolved constituents in the water column, the reactions of pyritic tailings deposited on the bottom, and the flux of dissolved constituents from the tailings into the water column. To establish site-specific values for the underwater disposal model, field and laboratory experiments were utilized to evaluate rates of pyrite and ammonia oxidation, and pH-alkalinity relationships. The results of these studies and their use in the water quality model are discussed. In addition, the results of two model run simulations are presented. (author)

  20. PAHs in sediment cores at main river estuaries of Chaohu Lake: implication for the change of local anthropogenic activities.

    Science.gov (United States)

    Ren, Chen; Wu, Yaketon; Zhang, Shuo; Wu, Liang-Liang; Liang, Xiao-Guo; Chen, Tian-Hu; Zhu, Cheng-Zhu; Sojinu, Samuel O; Wang, Ji-Zhong

    2015-02-01

    In the present study, 28 polycyclic aromatic hydrocarbons (PAHs) were investigated in four sediment cores collected from the main river estuaries of Chaohu Lake, one of the severely polluted lakes in China. The results indicate that elevated concentrations of total PAHs (Σ28PAH) were found in the samples from the estuary of Nanfei River (ENF), considering BaP-based total toxicity equivalent (TEQ-BaP) and toxic unit (TU) results; there are potential adverse environmental implications. The total organic carbon (TOC) played an important role on the accumulation of PAHs at ENF and the estuary of Tongyang River (ETY). The predominant PAHs are high molecular weight (HMW) homologous for all samples; as a result, industrial wastewater from a steel company is expectedly the key source of PAHs in ENF, while coke consumption would be the important source of PAHs at other three sampling sites. Vertical distribution of PAHs in the sediment cores could be explained by the local social and economic activities. Furthermore, a minor variation of PAH composition in the sediment core could be justified by the stable structure of energy consumption in the Anhui Province. These results justify the need for further enhancement of industrial wastewater treatment and development of renewable energies which are the key factors on the control of PAH pollution in China.

  1. Nutrient cycling, connectivity, and free-floating plant abundance in backwater lakes of the Upper Mississippi River

    Science.gov (United States)

    Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.

    2013-01-01

    River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.

  2. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    Science.gov (United States)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter

    2017-05-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts have been devoted to the retrieval of these hydraulic properties from spaceborne platforms in the past few decades. However, due to coarse spatial and temporal resolutions, spaceborne missions have several limitations when assessing the water level of terrestrial surface water bodies and determining complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric height). Three different ranging payloads, which consisted of a radar, a sonar and an in-house developed camera-based laser distance sensor (CLDS), have been evaluated in terms of accuracy, precision, maximum ranging distance and beam divergence. After numerous flights, the relative accuracy of the overall system was estimated. A ranging accuracy better than 0.5% of the range and a maximum ranging distance of 60 m were achieved with the radar. The CLDS showed the lowest beam divergence, which is required to avoid contamination of the signal from interfering surroundings for narrow fields of view. With the GNSS system delivering a relative vertical accuracy better than 3-5 cm, water level can be retrieved with an overall accuracy better than 5-7 cm.

  3. Osprey: worldwide sentinel species for assessing and monitoring environmental contamination in rivers, lakes, reservoirs, and estuaries.

    Science.gov (United States)

    Grove, Robert A; Henny, Charles J; Kaiser, James L

    2009-01-01

    In the United States, many fish and wildlife species have been used nationwide to monitor environmental contaminant exposure and effects, including carcasses of the bald eagle (Haliaeetus leucocephalus), the only top avian predator regularly used in the past. Unfortunately, bald eagles are sensitive to investigator intrusion at the nest. Thus, the osprey (Pandion haliaetus) is evaluated as a potential sentinel species for aquatic ecosystems. Several characteristics support the choice of the osprey as a sentinel species, including: (1) fish-eating diet atop the aquatic food web, (2) long-lived with strong nest fidelity, (3) adapts to human landscapes (potentially the most contaminated), (4) tolerates short-term nest disturbance, (5) nests spatially distributed at regular intervals, (6) highly visible nests easily located for study, (7) ability to accumulate most, if not all, lipophilic contaminants, (8) known sensitivity to many contaminants, and (9) nearly a worldwide distribution. These osprey traits have been instrumental in successfully using the species to understand population distribution, abundance, and changes over time; the effects of various contaminants on reproductive success; how contaminants in prey (fish on biomass basis) contribute to egg concentrations (i.e., biomagnification factors); and spatial residue patterns. Data summarized include nesting population surveys, detailed nesting studies, and chemical analyses of osprey egg, organ, blood, and feather samples for contaminants that bioaccumulate and/or biomagnify in aquatic food webs; and biochemical evaluations of blood and various organs. Studies in the United States, Canada, Mexico, Europe, and elsewhere have shown the osprey to be a useful sentinel species for monitoring selected environmental contaminants, including some emerging contaminants in lakes, reservoirs, rivers, and estuaries.

  4. An Integrated Hydrological and Water Management Study of the Entire Nile River System - Lake Victoria to Nile Delta

    Science.gov (United States)

    Habib, Shahid; Zaitchik, Benjamin; Alo, Clement; Ozdogan, Mutlu; Anderson, Martha; Policelli, Fritz

    2011-01-01

    The Nile basin River system spans 3 million km(exp 2) distributed over ten nations. The eight upstream riparian nations, Ethiopia, Eretria, Uganda, Rwanda, Burundi, Congo, Tanzania and Kenya are the source of approximately 86% of the water inputs to the Nile, while the two downstream riparian countries Sudan and Egypt, presently rely on the river's flow for most of the their needs. Both climate and agriculture contribute to the complicated nature of Nile River management: precipitation in the headwaters regions of Ethiopia and Lake Victoria is variable on a seasonal and inter-annual basis, while demand for irrigation water in the arid downstream region is consistently high. The Nile is, perhaps, one of the most difficult trans-boundary water issue in the world, and this study would be the first initiative to combine NASA satellite observations with the hydrologic models study the overall water balance in a to comprehensive manner. The cornerstone application of NASA's Earth Science Research Results under this project are the NASA Land Data Assimilation System (LDAS) and the USDA Atmosphere-land Exchange Inverse (ALEXI) model. These two complementary research results are methodologically independent methods for using NASA observations to support water resource analysis in data poor regions. Where an LDAS uses multiple sources of satellite data to inform prognostic simulations of hydrological process, ALEXI diagnoses evapotranspiration and water stress on the basis of thermal infrared satellite imagery. Specifically, this work integrates NASA Land Data Assimilation systems into the water management decision support systems that member countries of the Nile Basin Initiative (NBI) and Regional Center for Mapping of Resources for Development (RCMRD, located in Nairobi, Kenya) use in water resource analysis, agricultural planning, and acute drought response to support sustainable development of Nile Basin water resources. The project is motivated by the recognition that

  5. A post-Calumet shoreline along southern Lake Michigan

    Science.gov (United States)

    Capps, D.K.; Thompson, T.A.; Booth, R.K.

    2007-01-01

    The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.

  6. Assessment of the Effects of Temperature and Precipitation Variations on the Trend of River Flows in Urmia Lake Watershed

    Directory of Open Access Journals (Sweden)

    Ashkan Farokhnia

    2014-07-01

    Full Text Available Trend analysis is one of the appropriate methods to assess the hydro-climatic condition of watersheds, which is commonly used for analysis of change pattern in a single variable over time. However, in real cases, many hydrological variables such as river flow are directly affected by climate and environmental factors, which usually go unnoticed in routine analyzes. The aim of the present research is to investigate the trend of river discharge in 25 hydrometric stations in Lake Urmia river basin with and without consideration of temperature and rainfall variability. Briefly, the results showed that there is a decreasing trend in all stations, which is significant in 9 cases. Also, it has been shown that regarding to trends in precipitation and temperature, the number of stations with significant decreasing trend will reduce to 7, which shows low impact of climate factors on the reduction rate of discharge in these stations. Based on the results, it can be concluded that climate variations have direct effect in inferring significant trends in river flow, so that considering these variables in studying of river discharge can lead to different results in the detection of significant trends.

  7. Developing Flexible, Integrated Hydrologic Modeling Systems for Multiscale Analysis in the Midwest and Great Lakes Region

    Science.gov (United States)

    Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.

    2016-12-01

    Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future

  8. Simulation of the effects of different inflows on hydrologic conditions in Lake Houston with a three-dimensional hydrodynamic model, Houston, Texas, 2009–10

    Science.gov (United States)

    Rendon, Samuel H.; Lee, Michael T.

    2015-12-08

    Lake Houston, an important water resource for the Houston, Texas, area, receives inflows from seven major tributaries that compose the San Jacinto River Basin upstream from the reservoir. The effects of different inflows from the watersheds drained by these tributaries on the residence time of water in Lake Houston and closely associated physical and chemical properties including lake elevation, salinity, and water temperature are not well known. Accordingly, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, developed a three-dimensional hydrodynamic model of Lake Houston as a tool for evaluating the effects of different inflows on residence time of water in the lake and associated physical and chemical properties. The Environmental Fluid Dynamics Code (EFDC), a grid-based, surface-water modeling package for simulating three-dimensional circulation, mass transport, sediments, and biogeochemical processes, was used to develop the model of Lake Houston. The Lake Houston EFDC model was developed and calibrated by using 2009 data and verified by using 2010 data. Three statistics (mean error, root mean square error, and the Nash-Sutcliffe model efficiency coefficient) were used to evaluate how well the Lake Houston EFDC model simulated lake elevation, salinity, and water temperature. The residence time of water in reservoirs is associated with various physical and chemical properties (including lake elevation, salinity, and water temperature). Simulated and measured lake-elevation values were compared at USGS reservoir station 08072000 Lake Houston near Sheldon, Tex. The accuracy of simulated salinity and water temperature values was assessed by using the salinity (computed from measured specific conductance) and water temperature at two USGS monitoring stations: 295826095082200 Lake Houston south Union Pacific Railroad Bridge near Houston, Tex., and 295554095093401 Lake Houston at mouth of Jack’s Ditch near Houston, Tex. Specific conductance

  9. Water-quality assessment of White River between Lake Sequoyah and Beaver Reservoir, Washington County, Arkansas

    Science.gov (United States)

    Terry, J.E.; Morris, E.E.; Bryant, C.T.

    1982-01-01

    The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)

  10. Modeling the bathymetry of Catahoula Lake: Specialized technology for wetland management

    Science.gov (United States)

    Doyle, T.W.; Michot, T.C.; Wells, C.

    2002-01-01

    Catahoula Lake is the largest natural freshwater lake in Louisiana, covering more than 46 square miles (120 km2) (fig. 1). The lake is a principal stopover and wintering site for hundreds of thousands of migratory waterfowl and shorebirds. Scientists from the USGS National Wetlands Research Center are applying some of the research facility's specialties?wetland plant research, aerial and ground surveys, digital mapping, and computer modeling?to facilitate wetland management at Catahoula Lake.

  11. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, Patrick C.

    2001-10-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  12. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  13. Thermodynamic Modeling of Savannah River Evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-08-02

    A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.

  14. A late Miocene-early Pliocene chain of lakes fed by the Colorado River: Evidence from Sr, C, and O isotopes of the Bouse Formation and related units between Grand Canyon and the Gulf of California

    Science.gov (United States)

    Roskowski, J.A.; Patchett, P.J.; Spencer, J.E.; Pearthree, P.A.; Dettman, D.L.; Faulds, J.E.; Reynolds, A.C.

    2010-01-01

    We report strontium isotopic results for the late Miocene Hualapai Limestone of the Lake Mead area (Arizona-Nevada) and the latest Miocene to early Pliocene Bouse Formation and related units of the lower Colorado River trough (Arizona-California-Nevada), together with parallel oxygen and carbon isotopic analyses of Bouse samples, to constrain the lake-overflow model for integration of the Colorado River. Sr iso topic analyses on the basal 1-5 cm of marl, in particular along a transect over a range of altitude in the lowest-altitude basin that contains freshwater, brackish, and marine fossils, document the 87Sr/86Sr of first-arriving Bouse waters. Results reinforce the similarity between the 87Sr/86Sr of Bouse Formation carbonates and present-day Colorado River water, and the systematic distinction of these values from Neogene marine Sr. Basal Bouse samples show that 87Sr/86Sr decreased from 0.7111 to values in the range 0.7107-0.7109 during early basin filling. 87Sr/86Sr values from a recently identified marl in the Las Vegas area are within the range of Bouse Sr ratios. 87Sr/86Sr values from the Hualapai Limestone decrease upsection from 0.7195 to 0.7137, in the approach to a time soon after 6 Ma when Hualapai deposition ceased and the Colorado River became established through the Lake Mead area. Bouse Formation ??18O values range from -12.9??? to +1.0??? Vienna Pee Dee belemnite (VPDB), and ??13C between -6.5??? and +3.4??? VPDB. Negative ??18O values appear to require a continental origin for waters, and the trend to higher ??18O suggests evaporation in lake waters. Sr and stable isotopic results for sectioned barnacle shells and from bedding planes of the marine fish fossil Colpichthys regis demonstrate that these animals lived in saline freshwater, and that there is no evidence for incursions of marine water, either long-lived or brief in duration. Lack of correlation of Sr and O isotopic variations in the same samples also argue strongly against systematic

  15. Results from the Italian participation in the International Co-operative Programme on Assessment and Monitoring of Acidification of Rivers and Lakes (ICP Waters

    Directory of Open Access Journals (Sweden)

    Gabriele A. TARTARI

    2000-02-01

    Full Text Available This paper describes the research activity carried out by the Istituto Italiano di Idrobiologia of the CNR, on behalf of the Ministero dell'Ambiente, Servizio Inquinamento Atmosferico e Acustico, in the context of the Italian participation in the International Cooperative Programme on Assessment and Monitoring of Acidification of Rivers and Lakes (ICP Waters. Atmospheric deposition chemistry shows that nitrate increased and sulphate decreased in the 70's and 80's, while acidity started to decrease in the early 90's. The studied rivers and lakes show variations in sulphate and nitrate in agreement with those of atmospheric deposition. Alkalinity is mainly determined by watershed geo-lithology and is always present in the studied lakes and streams; the lowest values of 0-10 μeq l-1 are measured in the high altitude Lake Paione Superiore, which however shows an increasing trend of alkalinity and pH.

  16. Lateral and vertical channel movement and potential for bed-material movement on the Madison River downstream from Earthquake Lake, Montana

    Science.gov (United States)

    Chase, Katherine J.; McCarthy, Peter M.

    2012-01-01

    and to investigate the potential for bed material movement along the same reach. The purpose of this report is to present information about the lateral and vertical movement of the Madison River from 1970 to 2006 for a 1-mile reach downstream from Earthquake Lake and for Raynolds Pass Bridge, and to provide an analysis of the potential for bed-material movement so that MADTAC can evaluate the applicability of the previously determined threshold streamflow for initiation of damaging erosion. As part of this study channel cross sections originally surveyed by the USGS in 1971 were resurveyed in 2006. Incremental channel-movement distances were determined by comparing the stream centerlines from 14 aerial photographs taken between 1970 and 2006. Depths of channel incision and aggregation were determined by comparing the 2006 and 1971 cross-section and water-surface data. Particle sizes of bed and bank materials were measured in 2006 and 2008 using the pebble-count method and sieve analyses. A one-dimensional hydraulic-flow model (HEC-RAS) was used to calculate mean boundary-shear stresses for various streamflows; these calculated boundary-shear stresses were compared to calculated critical-shear stresses for the bed materials to determine the potential for bed-material movement. A comparison of lateral channel movement distances with annual peak streamflows shows that streamflows higher than the 3,500-ft3/s threshold were followed by lateral channel movement except from 1991 to 1992 and possibly from 1996 to 1997. However, it was not possible to discern whether the channel moved gradually or suddenly, or in response to one peak flow, to several peak flows, or to sustained flows. The channel moved between 2002 and 2005 even when streamflows were less than the threshold streamflow of 3,500 ft3/s. Comparisons of cross sections and aerial photographs show that the channel has moved laterally and incised and aggraded to varying degrees. The channel has developed meander bends

  17. [Genetic Differentiation of Sockeye Salmon Oncorhynchus nerka from Kamchatka River Basin and the Lake-River Systems of the West Coast of the Bering Sea as Inferred from Data on Single Nucleotide Polymorphism].

    Science.gov (United States)

    Khrustaleva, A M; Klovach, N V; Vedischeva, E V; Seeb, J E

    2015-10-01

    The variability of 45 single nucleotide polymorphism loci (SNP) was studied in sockeye salmon from the Kamchatka River basin and four lake-river systems of the west coast of the Bering Sea. Based on the genetic differentiation estimates for the largest sockeye salmon populations of Eastern Kamchatka and Chukotka, the examined samples were combined into two regional groups represented by the population of the Kamchatka River drainage, which included numerous local subpopulations and seasonal races, and the northern population grouping from the rivers of Olutorsko-Navarinsky raion, wherein the sockeye salmon from Maynypilginskaya Lake-River system was relatively isolated. Considerable divergence was observed between the island (Sarannoe Lake, Bering Island) and continental populations. Genetic heterogeneity was revealed and groups of early- and late-maturing individuals were isolated in the sample of late-run sockeye salmon from Kamchatka River. In Apuka River, subdivision of the spawning run into two genetically distinct spatial and temporal groupings was also observed. The results suggest that the differentiation of sockeye salmon samples by single nucleotide substitution frequencies was largely due to differences in the direction and strength of local selection at some loci in the population complexes and intrapopulation groupings from the examined river basins of Eastern Kamchatka, Chukotka, and Commander Islands.

  18. Simulation of surface temperature and ice cover of large northern lakes with 1-D models: a comparison with MODIS satellite data and in situ measurements

    Directory of Open Access Journals (Sweden)

    H. Kheyrollah Pour

    2012-03-01

    Full Text Available Lake surface temperature (LST and ice phenology were simulated for various points differing in depth on Great Slave Lake and Great Bear Lake, two large lakes located in the Mackenzie River Basin in Canada's Northwest Territories, using the 1-D Freshwater Lake model (FLake and the Canadian Lake Ice Model (CLIMo over the 2002–2010 period, forced with data from three weather stations (Yellowknife, Hay River and Deline. LST model results were compared to those derived from the Moderate Resolution Imaging Spectroradiometer (MODIS aboard the Earth Observing System Terra and Aqua satellite platforms. Simulated ice thickness and freeze-up/break-up dates were also compared to in situ observations. Both models showed a good agreement with daily average MODIS LSTs on an annual basis (0.935  ≤  relative index of agreement  ≤  0.984 and 0.94  ≤  mean bias error  ≤  4.83. The absence of consideration of snow on lake ice in FLake was found to have a large impact on estimated ice thicknesses (25 cm thicker on average by the end of winter compared to in situ measurements; 9 cm thicker for CLIMo and break-up dates (6 d earlier in comparison with in situ measurements; 3 d later for CLIMo. The overall agreement between the two models and MODIS LST products during both the open water and ice seasons was good. Remotely sensed data are a promising data source for assimilation into numerical weather prediction models, as they provide the spatial coverage that is not captured by in situ data.

  19. A fuzzy approach for modelling radionuclide in lake system

    International Nuclear Information System (INIS)

    Desai, H.K.; Christian, R.A.; Banerjee, J.; Patra, A.K.

    2013-01-01

    Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of 3 H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict 3 H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and 3 H concentration at discharge point. The Output was 3 H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. -- Highlights: • Uncommon approach (Fuzzy Rule Base) of modelling radionuclide dispersion in Lake. • Predicts 3 H released from Kakrapar Atomic Power Station at a point of human exposure. • RMSE of fuzzy model is 1.95, which means, it has well imitated natural ecosystem

  20. Evaluation of the Siltation of River Taquari, Pantanal, Brazil, through 210Pb Geochronology of Floodplain Lake Sediments

    Directory of Open Access Journals (Sweden)

    Godoy José M.

    2002-01-01

    Full Text Available This work presents the 210Pb geochronology of seven bottom sediment cores, collected in three floodplain lakes located in the area of the middle Taquari River, Pantanal, Brazil. In five of them, a significant increase in the sediment mass deposition rate was observed, reflecting an increase of the sediment input to the Pantanal. Additionally, in order to validate the 210Pb results, the mercury content was determined for two sediment cores, showing that despite a constant concentration, the flux of Hg has increased due to an increase in the mass sedimentation rate. This increase can be attributed to the expansion of agricultural activity in the upper Taquari River during the last 25 years.

  1. LEEM - a lake energy and evaporation model user's manual

    International Nuclear Information System (INIS)

    Barry, P.J.; Robertson, E.

    1983-11-01

    LEEM is a simplified one-dimensional computer model of the energy budgets of lakes. It is intended to be used operationally to estimate evaporation rates averaged over several days using synoptic meteorological data with only the initial water temperatures being specified. These may usually be taken to be 4 deg. C a few days after spring break-up. This report describes the theoretical basis of the model and the algorithms by which these are converted to computer code. The code itself is included together with an exemplary set of data cards and the corresponding output

  2. Changes in the Global Hydrological Cycle: Lessons from Modeling Lake Levels at the Last Glacial Maximum

    Science.gov (United States)

    Lowry, D. P.; Morrill, C.

    2011-12-01

    Geologic evidence shows that lake levels in currently arid regions were higher and lakes in currently wet regions were lower during the Last Glacial Maximum (LGM). Current hypotheses used to explain these lake level changes include the thermodynamic hypothesis, in which decreased tropospheric water vapor coupled with patterns of convergence and divergence caused dry areas to become more wet and vice versa, the dynamic hypothesis, in which shifts in the jet stream and Inter-Tropical Convergence Zone (ITCZ) altered precipitation patterns, and the evaporation hypothesis, in which lake expansions are attributed to reduced evaporation in a colder climate. This modeling study uses the output of four climate models participating in phase 2 of the Paleoclimate Modeling Intercomparison Project (PMIP2) as input into a lake energy-balance model, in order to test the accuracy of the models and understand the causes of lake level changes. We model five lakes which include the Great Basin lakes, USA; Lake Petén Itzá, Guatemala; Lake Caçó, northern Brazil; Lake Tauca (Titicaca), Bolivia and Peru; and Lake Cari-Laufquen, Argentina. These lakes create a transect through the drylands of North America through the tropics and to the drylands of South America. The models accurately recreate LGM conditions in 14 out of 20 simulations, with the Great Basin lakes being the most robust and Lake Caçó being the least robust, due to model biases in portraying the ITCZ over South America. An analysis of the atmospheric moisture budget from one of the climate models shows that thermodynamic processes contribute most significantly to precipitation changes over the Great Basin, while dynamic processes are most significant for the other lakes. Lake Cari-Laufquen shows a lake expansion that is most likely attributed to reduced evaporation rather than changes in regional precipitation, suggesting that lake levels alone may not be the best indicator of how much precipitation this region

  3. Modal analysis of annual runoff volume and sediment load in the Yangtze river-lake system for the period 1956-2013.

    Science.gov (United States)

    Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan

    2017-07-01

    This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.

  4. Large-scale modeled contemporary and future water temperature estimates for 10774 Midwestern U.S. Lakes

    OpenAIRE

    Winslow, Luke A.; Hansen, Gretchen J.A.; Read, Jordan S; Notaro, Michael

    2017-01-01

    Climate change has already influenced lake temperatures globally, but understanding future change is challenging. The response of lakes to changing climate drivers is complex due to the nature of lake-atmosphere coupling, ice cover, and stratification. To better understand the diversity of lake responses to climate change and give managers insight on individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota, and Wisconsin for contemporary (1979?201...

  5. Multiple climate regimes in an idealized lake-ice-atmosphere model

    Science.gov (United States)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  6. Modelling of hydrodynamics and mecury transport in lake Velenje. Part 2, Modelling and model verification

    OpenAIRE

    Kotnik, Jože; Žagar, Dušan; Rajar, Rudi; Horvat, Milena

    2004-01-01

    PCFLOW3D - a three-dimensional mathematical model that was developed at the Chair of Fluid Mechanics of the Faculty of Civil and Geodetic Engineering, University of Ljubljana, was used for hydrodynamic and Hg transport simulations in Lake Velenje. The model is fully non-linear and computes three velocity components, water elevation and pressure. Transport-dispersion equations for salinity and heat (and/or any pollutant) are further used to compute the distributions of these par...

  7. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake.

    Science.gov (United States)

    Kong, Xiangzhen; He, Qishuang; Yang, Bin; He, Wei; Xu, Fuliu; Janssen, Annette B G; Kuiper, Jan J; van Gerven, Luuk P A; Qin, Ning; Jiang, Yujiao; Liu, Wenxiu; Yang, Chen; Bai, Zelin; Zhang, Min; Kong, Fanxiang; Janse, Jan H; Mooij, Wolf M

    2017-02-01

    Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when

  8. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin

    Science.gov (United States)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.

    2017-12-01

    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  9. Mercury in bottom sediments of the Amur River, its flood-plain lakes and estuary, Eastern Siberia.

    Science.gov (United States)

    Kot, Fyodor S; Bakanov, Konstantin G; Goryachev, Nikolay A

    2010-09-01

    Mercury (Hg) is an element of a special concern in the Amur River basin, where numerous cinnabar deposits and manifestations have been prospected. Moreover, the territory is under heavy anthropogenic pressure due to intensive economic development that includes activities accompanied by noticeable emissions of Hg to the environment through poor waste management practices and accidental emergency discharges. Yet, information on Hg distribution and behavior in this region is scarce and inadequate. In order to evaluate Hg levels and fate in this vast territory, surveys of river, lake, and estuarine bottom sediments, as integral indicators of environmental status, were carried out in 1990, 1991, 1997, and 2004. The results showed the following: (1) stagnation of the Russian economy in the 1990s has resulted in a noticeable decrease of the Hg content in the Amur River sediments to the basin pristine level of about 0.05 mg kg(-1); (2) Hg distribution in the sediment depth proves the element redox-dependent behavior; (3) in some cases, Hg enrichment may be related to the long-term anthropogenic emission; (4) Hg concentration in bottom sediments was found to increase in the following order-the Amur River mouth, the estuary, and the Sea of Okhotsk, showing the weakly non-conservative Hg behavior during estuarine water mixing.

  10. Fluvial Systems Tied Together Through a Common Base Level: The Geomorphic Response of the Dirty Devil River, North Wash Creek, and the Colorado River to the Rapid Base Level Drop of Lake Powell

    OpenAIRE

    Majeski, Adam L.

    2009-01-01

    Fluvial adjustment to base level change has its roots in the fundamental concepts of geomorphology. This thesis explores the rate of erosion and sedimentation on the Colorado and Dirty Devil rivers and North Wash Creek under the current base level changes related to the drawdown conditions of Lake Powell. Through cross section and long profile resurveys, the current state of each system is captured and added to the historic record of sedimentation in Lake Powell. All three systems are gene...

  11. Numerical Modelling of River Captures Considering Hillslope Processes

    Science.gov (United States)

    Schroeder, S.; Gloaguen, R.

    2016-12-01

    River capturing events are assumed to occur in highly tectonically uplifted regions. Thus, a sedimentary terrace that is tilted against the current river flow direction could either be interpreted as tectonically uplifted or could be effected by a river capturing event . Many observations could be misinterpreted as signs for capturings. A better understanding of the reasons for river capturing may help to reject or validate particular river capturing hypotheses. In our numerical study, we investigate the impact of different parameters on the probability of river capturings. We model a developing river network along fault-bounded block rotations with different deflection angles and high erodibility zones. The models confirm the hypothesis that a sudden base level drop may lead to a chain reaction of river capturings. Extracted longitudinal stream profiles highlight the modelled knickpoint migration velocity after a capturing event: The next event follows within a short period of time. Our models suggest that the probability of a capturing event mainly depends on the uplift rate rather than on the fault erodibility. However, the fault erodibility controls the capturing velocity. Furthermore, we conclude that the angle between a fault and a crossing river determines the capturing probability. Presented models are computed with the supply-limited SEC DANSER. It models long range transport with the stream power law as well as short range transport with (non-)linear diffusion. Separating fluvial and hillslope processes (incision threshold) hinders river capturing in low resolution models. DANSER is able to solve this challenge with the lateral incision algorithm.

  12. Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment

    Science.gov (United States)

    Diallo, Ismaïla; Giorgi, Filippo; Stordal, Frode

    2017-07-01

    We evaluate the performance of the regional climate model (RCM) RegCM4 coupled to a one dimensional lake model for Lake Malawi (also known as Lake Nyasa in Tanzania and Lago Niassa in Mozambique) in simulating the main characteristics of rainfall and near surface air temperature patterns over the region. We further investigate the impact of the lake on the simulated regional climate. Two RCM simulations, one with and one without Lake Malawi, are performed for the period 1992-2008 at a grid spacing of 10 km by nesting the model within a corresponding 25 km resolution run ("mother domain") encompassing all Southern Africa. The performance of the model in simulating the mean seasonal patterns of near surface air temperature and precipitation is good compared with previous applications of this model. The temperature biases are generally less than 2.5 °C, while the seasonal cycle of precipitation over the region matches observations well. Moreover, the one-dimensional lake model reproduces fairly well the geographical pattern of observed (from satellite measurements) lake surface temperature as well as its mean month-to-month evolution. The Malawi Lake-effects on the moisture and atmospheric circulation of the surrounding region result in an increase of water vapor mixing ratio due to increased evaporation in the presence of the lake, which combines with enhanced rising motions and low-level moisture convergence to yield a significant precipitation increase over the lake and neighboring areas during the whole austral summer rainy season.

  13. Spawning site fidelity and apparent annual survival of walleye (Sander vitreus) differ between a Lake Huron and Lake Erie tributary

    Science.gov (United States)

    Hayden, Todd A.; Binder, Thomas; Holbrook, Christopher; Vandergoot, Christopher; Fielder, David G.; Cooke, Steven J.; Dettmers, John M.; Krueger, Charles C.

    2018-01-01

    Fidelity to spawning habitats can maximise reproductive success of fish by synchronising movements to sites of previous recruitment. To determine the role of reproductive fidelity in structuring walleye Sander vitreus populations in the Laurentian Great Lakes, we used acoustic telemetry combined with Cormack–Jolly–Seber capture–recapture models to estimate spawning site fidelity and apparent annual survival for the Tittabawassee River in Lake Huron and Maumee River in Lake Erie. Walleye in spawning condition were tagged from the Tittabawassee River in Lake Huron and Maumee River in Lake Erie in 2011–2012. Site fidelity and apparent annual survival were estimated from return of individuals to the stream where tagged. Site fidelity estimates were higher in the Tittabawassee River (95%) than the Maumee River (70%) and were not related to sex or fish length at tagging. Apparent annual survival of walleye tagged in the Tittabawassee did not differ among spawning seasons but was higher for female than male walleye and decreased linearly as fish length increased. Apparent annual survival of walleye tagged in the Maumee River did not differ among spawning seasons but was higher for female walleye than male walleye and increased linearly as fish length increased. Greater fidelity of walleye tagged in the Tittabawassee River than walleye tagged in the Maumee River may be related to the close proximity to the Maumee River of other spawning aggregations and multiple spawning sites in Lake Erie. As spawning site fidelity increases, management actions to conserve population structure require an increasing focus on individual stocks.

  14. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    International Nuclear Information System (INIS)

    Teuscher, D.

    1996-01-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout

  15. A Global eDNA Comparison of Freshwater Bacterioplankton Assemblages Focusing on Large-River Floodplain Lakes of Brazil.

    Science.gov (United States)

    Tessler, Michael; Brugler, Mercer R; DeSalle, Rob; Hersch, Rebecca; Velho, Luiz Felipe M; Segovia, Bianca T; Lansac-Toha, Fabio A; Lemke, Michael J

    2017-01-01

    With its network of lotic and lentic habitats that shift during changes in seasonal connection, the tropical and subtropical large-river systems represent possibly the most dynamic of all aquatic environments. Pelagic water samples were collected from Brazilian floodplain lakes (total n = 58) in four flood-pulsed systems (Amazon [n = 21], Araguaia [n = 14], Paraná [n = 15], and Pantanal [n = 8]) in 2011-2012 and sequenced via 454 for bacterial environmental DNA using 16S amplicons; additional abiotic field and laboratory measurements were collected for the assayed lakes. We report here a global comparison of the bacterioplankton makeup of freshwater systems, focusing on a comparison of Brazilian lakes with similar freshwater systems across the globe. The results indicate a surprising similarity at higher taxonomic levels of the bacterioplankton in Brazilian freshwater with global sites. However, substantial novel diversity at the family level was also observed for the Brazilian freshwater systems. Brazilian freshwater bacterioplankton richness was relatively average globally. Ordination results indicate that Brazilian bacterioplankton composition is unique from other areas of the globe. Using Brazil-only ordinations, floodplain system differentiation most strongly correlated with dissolved oxygen, pH, and phosphate. Our data on Brazilian freshwater systems in combination with analysis of a collection of freshwater environmental samples from across the globe offers the first regional picture of bacterioplankton diversity in these important freshwater systems.

  16. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, D.

    1996-05-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout.

  17. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  18. Demographics and run timing of adult Lost River (Deltistes luxatus) and short nose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, 2012

    Science.gov (United States)

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2014-01-01

    Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during spring 2012 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Model estimates of survival and recruitment were used to derive estimates of changes in population size over time and to determine the status of the populations in 2011. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). Shortnose suckers (SNS) and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. In 2012, we captured, tagged, and released 749 LRS at four lakeshore spawning areas and recaptured an additional 969 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,578 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Cinder Flats and

  19. A fuzzy approach for modelling radionuclide in lake system.

    Science.gov (United States)

    Desai, H K; Christian, R A; Banerjee, J; Patra, A K

    2013-10-01

    Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of (3)H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict (3)H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and (3)H concentration at discharge point. The Output was (3)H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A generic dynamic model of Cs-137 turnover in Nordic lakes

    International Nuclear Information System (INIS)

    Nordlinder, Sture; Bergstroem, Ulla; Brittain, J.E.

    1997-01-01

    The purpose of this study was to design a generic model for long-term predictions of the Cs-137 concentration in lakes, emphasizing the secondary load of radiocaesium to the waterbody from lake sediments and drainage area. If the concentration of Cs-137 in lake waters can be accurately predicted, estimates of concentration in fish will be more reliable. The inflow from the drainage area is estimated from the fraction of outflow areas, whereas resuspension from lake sediments is estimated from the maximum depth and surface area. The model is based on compartment theory. Modelling results for six lakes are presented. There was very good agreement between model results and observed values, for both water and lake sediments, although there were minor discrepancies for sediments in the deepest lakes. Analyses of the model results showed that, for deep lakes, the main contribution maintaining the concentration in lake waters is inflows from the drainage area, whereas for shallow lakes, the main factor is resuspension for caesium rich sediments. (Author)

  1. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    Science.gov (United States)

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  2. Modelling the effects of atmospheric sulphur and nitrogen deposition on selected lakes and streams of the Central Alps (Italy

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2003-01-01

    Full Text Available The dynamic model MAGIC was calibrated and applied to selected sites in north-western Italy (3 rivers, 10 alpine lakes to predict the future response of surface water to different scenarios of atmospheric deposition of S and N compounds. Results at the study sites suggest that several factors other than atmospheric deposition may influence the long-term changes in surface water chemistry. At present the lumped approach of dynamic models such as MAGIC cannot represent all the processes occurring at the catchment scale. Climate warming in particular and its effects on surface water chemistry proved to be important in the study area. Furthermore the river catchments considered here showed clear signs of N saturation. This condition and the increasing concentrations of NO3 in river water were simulated using N dynamics recently included in MAGIC. The modelling performed in this study represents the first application of MAGIC to Italian sites. The results show that inclusion of other factors specific to the Mediterranean area, such as dust deposition and climate change, may improve the fit to observed data and the reliability of the model forecast. Despite these limitations, the model captured well the main trends in chemical data in both rivers and lakes. The outputs clearly demonstrate the benefits of achieving the emission reductions in both S and N compounds as agreed under the Gothenburg Protocol rather than making no further emission reductions. It was also clear that, besides the substantial reduction of SO4 deposition from the peak levels of the 1980s, N deposition must also be reduced in the near future to protect freshwaters from further acidification. Keywords: MAGIC, northern Italy, acidification, recovery, nitrogen saturation

  3. Status and trends of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) sucker populations in Upper Klamath Lake, Oregon, 2015

    Science.gov (United States)

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2017-07-21

    Executive SummaryData from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (LRS; Deltistes luxatus) and shortnose suckers (SNS; Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during the spawning season in spring 2015 were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Separate analyses were done for each species and also for each subpopulation of LRS. Shortnose suckers and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. Characteristics of the spawning migrations in 2015, such as the effects of temperature on the timing of the migrations, were similar to past years.Capture-recapture analyses for the LRS subpopulation that spawns at the shoreline areas included encounter histories for 13,617 individuals, and analyses for the subpopulation that spawns in the rivers included 39,321 encounter histories. With a few exceptions, the survival of males and females in both subpopulations was high (greater than or equal to 0.86) between 1999 and 2013. Survival was notably lower for males from the rivers

  4. Mirror Lake genetic stock - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  5. Mirror Lake Fish catch composition - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  6. Mirror Lake salmon prey and diets - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  7. Mirror Lake salmon growth rate - Lower Columbia River Restoration Action Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to measure changes in juvenile salmon habitat occurrence and health following restoration activities at the Mirror Lake Complex and...

  8. 75 FR 70595 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan

    Science.gov (United States)

    2010-11-18

    ... Chicago, IL, and St. Joseph, MI. In the notice, we specified that the lead barge in the tow must have a... similar request for an eastern Lake Michigan route between Chicago, IL, and Muskegon, MI. The motivation...

  9. RiverML: Standardizing the Communication of River Model Data (Invited)

    Science.gov (United States)

    Jackson, S.; Maidment, D. R.; Arctur, D. K.

    2013-12-01

    RiverML is a proposed language for conveying a description of river channel and floodplain geometry and flow characteristics through the internet in a standardized way. A key goal of the RiverML project is to allow interoperability between all hydraulic and hydrologic models, whether they are industry standard software packages or custom-built research tools. By providing a common transfer format for common model inputs and outputs, RiverML can shorten the development time and enhance the immediate utility of innovative river modeling tools. RiverML will provide descriptions of cross sections and multiple flow lines, allowing the construction of wireframe representations. In addition, RiverML will support descriptions of network connectivity, properties such as roughness coefficients, and time series observations such as water surface elevation and flow rate. The language is constructed in a modular fashion such that the geometry information, network information, and time series observations can be communicated independently of each other, allowing an arbitrary suite of software packages to contribute to a coherently modeled scenario. Funding for the development of RiverML is provided through an NSF grant to CUAHSI HydroShare project, a web-based collaborative environment for sharing data & models. While RiverML is geared toward the transfer of data, HydroShare will serve as a repository for storing water-related data and models of any format, while providing enhanced functionality for standardized formats such as RiverML, WaterML, and shapefiles. RiverML is a joint effort between the CUAHSI HydroShare development team, the Open Geospatial Consortium (OGC) Hydrology Domain Working Group, and an international community of data providers, data users, and software developers.

  10. Prediction model of oil slick movement in the Nemunas river (Lithuania)

    International Nuclear Information System (INIS)

    Ignatavicius, G.; Sakalauskiene, G.

    2005-01-01

    Full text : Oil products (petroleum products) were used to fuel airplanes, cars and trucks, to heat the houses, and to make products like medicines and plastics. Even petroleum products make life easier, but extraction, production, movement, and use of them cause environment pollution in air, soil and water. There are several sources of water pollution, like ship traffic, oil refineries and other industry, which together deteriorate the river water quality and disturb the life within rivers and lakes. Rain as it falls through the air, or drains from urban areas and farmland, absorbs contaminants. The model has been developed based on the solution of the governing partial differential equations of flow and oil products for predicting the oil slick transformation in the rivers. In the present model, the processes included are advection, diffusion, evaporation and dissolution. The model can take into account all losses of oil products during the movement of oil slick. It can be used either as a real time basis to predict the movement of oil spill or as a scenario model to analyse to possible impact of accidental oil spill in to the rivers

  11. Integration of the MODFLOW Lake Package in the FREEWAT GIS hydrogeological modelling environment.

    Science.gov (United States)

    Neumann, Jakob; Cannata, Massimiliano; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo

    2017-04-01

    The FREEWAT GIS environment for hydrogeological modelling incorporates the MODFLOW Lake Package to simulate surface water- groundwater interaction using state of the art techniques. The Lake package allows for the simulation of hydraulic interaction between a lake and groundwater so that the effects of the changes in the water level of one of the two water bodies is calculated on the other. Through this addition, the QGIS plugin allows greater consideration of surface water bodies for water resources management. Groundwater resources can be strongly qualitatively and quantitatively affected by surface water bodies that they interact with. Existing QGIS tools and structures can be used with the lake package tools of FREEWAT to specify spatial and temporal, constant and variable lake properties within MODFLOW capabilities. FREEWAT supports steady state and transient simulations using the lake package, as well as specification of precipitation, evaporating, extraction and surface runoff to lakes.

  12. Quantification of the cumulative effects of river training works on the basin scale with 2D flood modelling

    Science.gov (United States)

    Zischg, Andreas Paul; Felder, Guido; WWeingartner, Rolf

    2015-04-01

    The catchment of the river Aare upstream of Bern, Switzerland, with an area of approx. 3000 km2 is a complex network of sub-catchments with different runoff characteristics; it also includes two larger lakes. Most of the rivers were regulated in the 18th century. An important regulation, however, was realised as early as in the 17th century. For this catchment, the worst case flood event was identified and its consequences were analysed. Beside the hydro-meteorological characteristics, an important basis to model the worst case flood is to understand the non-linear effects of flood retention in the valley bottom and in the lakes. The aim of this study was to compare these effects based on both the current river network and the historic one prior to the main river training works. This allows to quantify the human impacts. Methodologically, we set up a coupled 2D flood model representing the floodplains of the river Aare as well as of the tributaries Lombach, Lütschine, Zulg, Rotache, Chise and Guerbe. The flood simulation was made in 2D with the software BASEMENT-ETH (Vetsch et al. 2014). The model was calibrated by means of reproducing the large floods in August 2005 and the bankfull discharge for all river reaches. The model computes the discharge at the outlet of the Aare catchment at Bern by routing all discharges from the sub-catchments through the river reaches and their floodplains. With this, the modulation of the input hydrographs by widespread floodings in the floodplains can be quantified. The same configuration was applied on the basis of reconstructed digital terrain models representing the landscape and the river network before the first significant river training works had been realised. This terrain model was reconstructed by georeferencing and digitalizing historic maps and cross-sections combined with the mapping of the geomorphologic evidences of former river structures in non-modified areas. The latter mapping procedure was facilitated by the

  13. Review of revised Klamath River Total Maximum Daily Load models from Link River Dam to Keno Dam, Oregon

    Science.gov (United States)

    Rounds, Stewart A.; Sullivan, Annett B.

    2013-01-01

    Flow and water-quality models are being used to support the development of Total Maximum Daily Load (TMDL) plans for the Klamath River downstream of Upper Klamath Lake (UKL) in south-central Oregon. For riverine reaches, the RMA-2 and RMA-11 models were used, whereas the CE-QUAL-W2 model was used to simulate pooled reaches. The U.S. Geological Survey (USGS) was asked to review the most upstream of these models, from Link River Dam at the outlet of UKL downstream through the first pooled reach of the Klamath River from Lake Ewauna to Keno Dam. Previous versions of these models were reviewed in 2009 by USGS. Since that time, important revisions were made to correct several problems and address other issues. This review documents an assessment of the revised models, with emphasis on the model revisions and any remaining issues. The primary focus of this review is the 19.7-mile Lake Ewauna to Keno Dam reach of the Klamath River that was simulated with the CE-QUAL-W2 model. Water spends far more time in the Lake Ewauna to Keno Dam reach than in the 1-mile Link River reach that connects UKL to the Klamath River, and most of the critical reactions affecting water quality upstream of Keno Dam occur in that pooled reach. This model review includes assessments of years 2000 and 2002 current conditions scenarios, which were used to calibrate the model, as well as a natural conditions scenario that was used as the reference condition for the TMDL and was based on the 2000 flow conditions. The natural conditions scenario included the removal of Keno Dam, restoration of the Keno reef (a shallow spot that was removed when the dam was built), removal of all point-source inputs, and derivation of upstream boundary water-quality inputs from a previously developed UKL TMDL model. This review examined the details of the models, including model algorithms, parameter values, and boundary conditions; the review did not assess the draft Klamath River TMDL or the TMDL allocations

  14. Water quality of the Chokosna, Gilahina, Lakina Rivers, and Long Lake watershed along McCarthy Road, Wrangell-St. Elias National Park and Preserve, Alaska, 2007-08

    Science.gov (United States)

    Brabets, Timothy P.; Ourso, Robert T.; Miller, Matthew P.; Brasher, Anne M.

    2011-01-01

    The Chokosna, Gilahina, and Lakina River basins, and the Long Lake watershed are located along McCarthy Road in Wrangell–St. Elias National Park and Preserve. The rivers and lake support a large run of sockeye (red) salmon that is important to the commercial and recreational fisheries in the larger Copper River. To gain a better understanding of the water quality conditions of these watersheds, these basins were studied as part of a cooperative study with the National Park Service during the open water periods in 2007 and 2008. Water type of the rivers and Long Lake is calcium bicarbonate with the exception of that in the Chokosna River, which is calcium bicarbonate sulfate water. Alkalinity concentrations ranged from 63 to 222 milligrams per liter, indicating a high buffering capacity in these waters. Analyses of streambed sediments indicated that concentrations of the trace elements arsenic, chromium, and nickel exceed levels that might be toxic to fish and other aquatic organisms. However, these concentrations reflect local geology rather than anthropogenic sources in this nearly pristine area. Benthic macroinvertebrate qualitative multi-habitat and richest targeted habitat samples collected from six stream sites along McCarthy Road indicated a total of 125 taxa. Insects made up the largest percentage of macroinvertebrates, totaling 83 percent of the families found. Dipterans (flies and midges) accounted for 43 percent of all macroinvertebrates found. Analysis of the macroinvertebrate data by non-metric multidimensional scaling indicated differences between (1) sites at Long Lake and other stream sites along McCarthy Road, likely due to different basin characteristics, (2) the 2007 and 2008 data, probably from the higher rainfall in 2008, and (3) macroinvertebrate data collected in south-central Alaska, which represents a different climate zone. The richness, abundance, and community composition of periphytic algae taxa was variable between sampling sites

  15. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  16. Performance Evaluation of Linear (ARMA and Threshold Nonlinear (TAR Time Series Models in Daily River Flow Modeling (Case Study: Upstream Basin Rivers of Zarrineh Roud Dam

    Directory of Open Access Journals (Sweden)

    Farshad Fathian

    2017-01-01

    Full Text Available Introduction: Time series models are generally categorized as a data-driven method or mathematically-based method. These models are known as one of the most important tools in modeling and forecasting of hydrological processes, which are used to design and scientific management of water resources projects. On the other hand, a better understanding of the river flow process is vital for appropriate streamflow modeling and forecasting. One of the main concerns of hydrological time series modeling is whether the hydrologic variable is governed by the linear or nonlinear models through time. Although the linear time series models have been widely applied in hydrology research, there has been some recent increasing interest in the application of nonlinear time series approaches. The threshold autoregressive (TAR method is frequently applied in modeling the mean (first order moment of financial and economic time series. Thise type of the model has not received considerable attention yet from the hydrological community. The main purposes of this paper are to analyze and to discuss stochastic modeling of daily river flow time series of the study area using linear (such as ARMA: autoregressive integrated moving average and non-linear (such as two- and three- regime TAR models. Material and Methods: The study area has constituted itself of four sub-basins namely, Saghez Chai, Jighato Chai, Khorkhoreh Chai and Sarogh Chai from west to east, respectively, which discharge water into the Zarrineh Roud dam reservoir. River flow time series of 6 hydro-gauge stations located on upstream basin rivers of Zarrineh Roud dam (located in the southern part of Urmia Lake basin were considered to model purposes. All the data series used here to start from January 1, 1997, and ends until December 31, 2011. In this study, the daily river flow data from January 01 1997 to December 31 2009 (13 years were chosen for calibration and data for January 01 2010 to December 31 2011

  17. Thermal Pollution Mathematical Model. Volume 2; Verification of One-Dimensional Numerical Model at Lake Keowee

    Science.gov (United States)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1980-01-01

    A one dimensional model for studying the thermal dynamics of cooling lakes was developed and verified. The model is essentially a set of partial differential equations which are solved by finite difference methods. The model includes the effects of variation of area with depth, surface heating due to solar radiation absorbed at the upper layer, and internal heating due to the transmission of solar radiation to the sub-surface layers. The exchange of mechanical energy between the lake and the atmosphere is included through the coupling of thermal diffusivity and wind speed. The effects of discharge and intake by power plants are also included. The numerical model was calibrated by applying it to Cayuga Lake. The model was then verified through a long term simulation using Lake Keowee data base. The comparison between measured and predicted vertical temperature profiles for the nine years is good. The physical limnology of Lake Keowee is presented through a set of graphical representations of the measured data base.

  18. Detailed study of selenium in soil, water, bottom sediment, and biota in the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92

    Science.gov (United States)

    Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.

    1996-01-01

    Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.

  19. Predictive modelling of (palaeo-)subglacial lake locations and their meltwater drainage routeways

    Science.gov (United States)

    Livingstone, S. J.; Clark, C.; Tarasoff, L.; Woodward, J.

    2013-12-01

    There is increasing recognition that subglacial lakes act as key components within the ice sheet system, capable of influencing ice-sheet topography, ice volume and ice flow. At present, much glaciological research is concerned with the role of modern subglacial lake systems in Antarctica. Another approach to the exploration of subglacial lakes involves identification of the geological record of subglacial lakes that once existed beneath ice sheets of the last glaciation. Investigation of such palaeo-subglacial lakes offers significant advantages because we have comprehensive information about the bed properties, they are much more accessible and we can examine and sample the sediments with ease. However, their identification in the geological record remains controversial. We therefore present a simple diagnostic approach based on the Shreve equation, for predicting and investigating likely (palaeo-)subglacial lake locations. Data on the current topography and seafloor bathymetry, and elevation models of the ice and ground surface topography from data-calibrated glaciological modelling are used to calculate the hydraulic potential surface at the ice-sheet bed. Meltwater routing algorithms and the flooding of local hydraulic minima allow us to predict subglacial routeways and lakes respectively. Discovered subglacial lakes beneath the Antarctic Ice Sheet present an opportunity to verify the model using the BEDMAP2 dataset. Using a lake threshold of 5 km2 we identify 12,767 subglacial lakes occurring over 4% of the grounded bed and are able to recover >60% of the discovered subglacial lakes. Applying the same approach to the Greenland Ice Sheet produces 1,607 potential subglacial lakes, covering 1.3% of the bed. These lake localities will make suitable targets for radar surveys attempting to find subglacial lakes. Finally, we apply the Shreve equation to the North American Ice Sheet to try and predict likely palaeo-subglacial lake locations. Given that specific ice

  20. Modelling and water yield assessment of Lake Sibhayi | Smithers ...

    African Journals Online (AJOL)

    A yield analysis of simulated results with historical developments in the catchment for the 65-year period of observed climate record was undertaken using both a fixed minimum allowable lake level or a maximum drop from a reference lake level as criteria for system failure. Results from simulating lake levels using the ...

  1. Representation of the Great Lakes in the Coupled Model Intercomparison Project Version 5

    Science.gov (United States)

    Briley, L.; Rood, R. B.

    2017-12-01

    The U.S. Great Lakes play a significant role in modifying regional temperatures and precipitation, and as the lakes change in response to a warming climate (i.e., warmer surface water temperatures, decreased ice cover, etc) lake-land-atmosphere dynamics are affected. Because the lakes modify regional weather and are a driver of regional climate change, understanding how they are represented in climate models is important to the reliability of model based information for the region. As part of the Great Lakes Integrated Sciences + Assessments (GLISA) Ensemble project, a major effort is underway to evaluate the Coupled Model Intercomparison Project version (CMIP) 5 global climate models for how well they physically represent the Great Lakes and lake-effects. The CMIP models were chosen because they are a primary source of information in many products developed for decision making (i.e., National Climate Assessment, downscaled future climate projections, etc.), yet there is very little description of how well they represent the lakes. This presentation will describe the results of our investigation of if and how the Great Lakes are represented in the CMIP5 models.

  2. Application of a lake-watershed model for the determination of water balance

    Science.gov (United States)

    Crowe, Allan S.; Schwartz, Franklin W.

    1985-10-01

    A lumped-parameter, lake-watershed response model has been developed for the Wabamun Lake system and used to assess the role of groundwater in the water balance of the lake. Wabamun Lake, located in central Alberta, Canada, has a surface area of 78 km 2. The surrounding watershed has an area of 263 km 2 and is covered by a thin layer (0-15 m) of glacial sediments, which in turn overlie bedrock deposits of sandstone, siltstone, shale and coal. Good agreement has been achieved between the monthly observed and the monthly predicted lake stages for a 26 yr record, with a maximum difference of less than 0.25 m. In addition, the simulation of lake chemistry, including specific conductance, Cl - and K +, is in good agreement with the observed data. On the basis on the simulations, the main hydrologic components contributing water to Wabamun Lake are direct precipitation (43.1-59.8%) and surface-water inflow (36.8-48.3%). Outflow from the lake occurs primarily through evaporation (46.5-57.5%) and the groundwater system (35.0-43.5%). Groundwater discharging to Wabamun Lake (1.3-8.6%) and surface water draining from the lake (0.0-18.5%) are minor components in the water balance of Wabamun Lake.

  3. Eutrophication potential of Payette Lake, Idaho

    Science.gov (United States)

    Woods, Paul F.

    1997-01-01

    Payette Lake was studied during water years 1995-96 to determine the 20.5-square-kilometer lake's assimilative capacity for nutrients and, thus, its eutrophication potential. The study included quantification of hydrologic and nutrient budgets, characterization of water quality in the limnetic and littoral zones, development of an empirical nutrient load/lake response model, and estimation of the limnological effects of a large-scale forest fire in the lake's 373-square-kilometer watershed during the autumn of 1994. Streamflow from the North Fork Payette River, the lake's primary tributary, delivered about 73 percent of the lake's inflow over the 2 years. Outflow from the lake, measured since 1908, was 128 and 148 percent of the long-term average in 1995 and 1996, respectively. The larger volumes of outflow reduced the long-term average water-

  4. Allochthonous subsidies of organic matter across a lake-river-fjord landscape in the Chilean Patagonia: Implications for marine zooplankton in inner fjord areas

    Science.gov (United States)

    Vargas, Cristian A.; Martinez, Rodrigo A.; San Martin, Valeska; Aguayo, Mauricio; Silva, Nelson; Torres, Rodrigo

    2011-03-01

    Ecosystems can act as both sources and sinks of allochthonous nutrients and organic matter. In this sense, fjord ecosystems are a typical interface and buffer zone between freshwater systems, glaciated continents, and the coastal ocean. In order to evaluate the potential sources and composition of organic matter across fjord ecosystems, we characterized particulate organic matter along a lake-river-fjord corridor in the Chilean Patagonia using stable isotope (δ 13C) and lipid (fatty acid composition) biomarker analyses. Furthermore, estimates of zooplankton carbon ingestion rates and measurements of δ 13C and δ 15N in zooplankton (copepods) were used to evaluate the implications of allochthonous subsidies for copepods inhabiting inner fjord areas. Our results showed that riverine freshwater flows contributed an important amount of dissolved silicon but, scarce nitrate and phosphate to the brackish surface layer of the fjord ecosystem. Isotopic signatures of particulate organic matter from lakes and rivers were distinct from their counterparts in oceanic influenced stations. Terrestrial allochthonous sources could support around 68-86% of the particulate organic carbon in the river plume and glacier melting areas, whereas fatty acid concentrations were maximal in the surface waters of the Pascua and Baker river plumes. Estimates of carbon ingestion rates and δ 13C in copepods from the river plume areas indicated that terrestrial carbon could account for a significant percentage of the copepod body carbon (20-50%) during periods of food limitation. Particulate organic matter from the Pascua River showed a greater allochthonous contribution of terrigenous/vascular plant sources. Rivers may provide fjord ecosystems with allochthonous contributions from different sources because of the distinct vegetation coverage and land use along each river's watershed. These observations have significant implications for the management of local riverine areas in the context of

  5. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China.

    Science.gov (United States)

    Jin, Hangbiao; Zhu, Lingyan

    2016-10-15

    Bisphenol analogues are widely used in the manufacture of polycarbonate plastics and epoxy resins, and the demand and production capacity of these compounds are growing rapidly in China. The occurrence and distribution of bisphenol analogues other than bisphenol A (BPA) in the aquatic environment is still poorly understood. In this study, nine bisphenol analogues were measured in water and sediment samples from Taihu Lake (TL), Liaohe River basin, including Liaohe River (LR) and Hunhe River (HR), China. Water samples from LR and HR contained much higher total bisphenols (∑BPs) concentrations. BPA and bisphenol S (BPS) were predominant with a summed contribution of 55, 75, and 75% to the ∑BPs in TL, LR, and HR waters, respectively. This suggests that BPA and BPS were the most widely used and manufactured bisphenols in these regions. In sediment, BPA was always predominant, with the next abundant compound bisphenol F (BPF) in TL and HR sediment, but BPS in LR sediment. The average field sediment-water partitioning coefficients (log Koc) were calculated for the first time for certain bisphenols and were determined to be 4.7, 4.6, 3.8, 3.7, and 3.5 mL/g for BPF, BPAP, BPA, BPAF, and BPS, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Induced cytochrome P450 1A activity in cichlid fishes from Guandu River and Jacarepagua Lake, Rio de Janeiro, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Parente, Thiago E.M.; Oliveira, Ana C.A.X. de [Laboratorio de Toxicologia Ambiental, Escola Nacional de Saude Publica - FIOCRUZ, Av Brasil 4036, Predio de Expansao do Campus, Rio de Janeiro, RJ 21041-361 (Brazil); Paumgartten, Francisco J.R. [Laboratorio de Toxicologia Ambiental, Escola Nacional de Saude Publica - FIOCRUZ, Av Brasil 4036, Predio de Expansao do Campus, Rio de Janeiro, RJ 21041-361 (Brazil)], E-mail: paum@ensp.fiocruz.br

    2008-03-15

    The induction of cytochrome P4501A-mediated activity (e.g. ethoxyresorufin-O-deethylation, EROD) has been used as a biomarker for monitoring fish exposure to AhR-receptor ligands such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and polychlorinated dibenzo-dioxins/furans (PCDD/Fs). In this study we found that hepatic EROD is induced in fish ('Nile tilapia', Oreochromis niloticus and 'acara', Geophagus brasiliensis) from the Guandu River (7-17-fold) and Jacarepagua Lake (7-fold), Rio de Janeiro, Brazil. Since both cichlid fish are consumed by the local population and the Guandu River is the main source of the drinking water supply for the greater Rio de Janeiro metropolitan area, pollution by cytochrome P4501A-inducing chemicals is a cause for concern and should be further investigated in sediments, water and biota. We additionally showed that EROD activity in the fish liver post-mitochondrial supernatant-simpler, cheaper and less time consuming to prepare than the microsomal fraction-is sufficiently sensitive for monitoring purposes. - Increased EROD activity in the liver of cichlid fishes indicated that Guandu River, the source of drinking water supply for Rio de Janeiro is polluted by CYP1A-inducing chemicals.

  7. Induced cytochrome P450 1A activity in cichlid fishes from Guandu River and Jacarepagua Lake, Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Parente, Thiago E.M.; Oliveira, Ana C.A.X. de; Paumgartten, Francisco J.R.

    2008-01-01

    The induction of cytochrome P4501A-mediated activity (e.g. ethoxyresorufin-O-deethylation, EROD) has been used as a biomarker for monitoring fish exposure to AhR-receptor ligands such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and polychlorinated dibenzo-dioxins/furans (PCDD/Fs). In this study we found that hepatic EROD is induced in fish ('Nile tilapia', Oreochromis niloticus and 'acara', Geophagus brasiliensis) from the Guandu River (7-17-fold) and Jacarepagua Lake (7-fold), Rio de Janeiro, Brazil. Since both cichlid fish are consumed by the local population and the Guandu River is the main source of the drinking water supply for the greater Rio de Janeiro metropolitan area, pollution by cytochrome P4501A-inducing chemicals is a cause for concern and should be further investigated in sediments, water and biota. We additionally showed that EROD activity in the fish liver post-mitochondrial supernatant-simpler, cheaper and less time consuming to prepare than the microsomal fraction-is sufficiently sensitive for monitoring purposes. - Increased EROD activity in the liver of cichlid fishes indicated that Guandu River, the source of drinking water supply for Rio de Janeiro is polluted by CYP1A-inducing chemicals

  8. Lake Representations in Global Climate Models: An End-User Perspective

    Science.gov (United States)

    Rood, R. B.; Briley, L.; Steiner, A.; Wells, K.

    2017-12-01

    The weather and climate in the Great Lakes region of the United States and Canada are strongly influenced by the lakes. Within global climate models, lakes are incorporated in many ways. If one is interested in quantitative climate information for the Great Lakes, then it is a first principle requirement that end-users of climate model simulation data, whether scientists or practitioners, need to know if and how lakes are incorporated into models. We pose the basic question, how are lakes represented in CMIP models? Despite significant efforts by the climate community to document and publish basic information about climate models, it is unclear how to answer the question about lake representations? With significant knowledge of the practice of the field, then a reasonable starting point is to use the ES-DOC Comparator (https://compare.es-doc.org/ ). Once at this interface to model information, the end-user is faced with the need for more knowledge about the practice and culture of the discipline. For example, lakes are often categorized as a type of land, a counterintuitive concept. In some models, though, lakes are specified in ocean models. There is little evidence and little confidence that the information obtained through this process is complete or accurate. In fact, it is verifiably not accurate. This experience, then, motivates identifying and finding either human experts or technical documentation for each model. The conclusion from this exercise is that it can take months or longer to provide a defensible answer to if and how lakes are represented in climate models. Our experience with lake finding is that this is not a unique experience. This talk documents our experience and explores barriers we have identified and strategies for reducing those barriers.

  9. Near-shore and off-shore habitat use by endangered juvenile Lost River and Shortnose Suckers in Upper Klamath Lake, Oregon: 2006 data summary

    Science.gov (United States)

    Burdick, Summer M.; Wilkens, Alexander X.; VanderKooi, Scott P.

    2008-01-01

    Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris , listed as endangered in 1988 under the Endangered Species Act, have shown infrequent recruitment into adult populations in Upper Klamath Lake (NRC 2004). In an effort to understand the causes behind and provide management solutions to apparent recruitment failure, a number of studies have been conducted including several on larval and juvenile sucker habitat use. Near-shore areas in Upper Klamath Lake with emergent vegetation, especially those near the mouth of the Williamson River, were identified as important habitat for larval suckers (Cooperman and Markle 2000; Reiser et al. 2001). Terwilliger et al. (2004) characterized primary age-0 sucker habitat as near-shore areas in the southern portion of Upper Klamath Lake with gravel and cobble substrates. Reiser et al. (2001) provided some evidence that juvenile suckers use habitats with emergent vegetation, but nothing concerning the extent or timing of use.

  10. Floodplain hydrodynamic modelling of the Lower Volta River in Ghana

    Directory of Open Access Journals (Sweden)

    Frederick Yaw Logah

    2017-12-01

    Full Text Available The impacts of dam releases from re-operation scenarios of the Akosombo and Kpong hydropower facilities on downstream communities along the Lower Volta River were examined through hydrodynamic modelling using the HEC-RAS hydraulic model. The model was used to simulate surface water elevation along the river reach for specified discharge hydrographs from proposed re-operation dam release scenarios. The morphology of the river and its flood plains together with cross-sectional profiles at selected river sections were mapped and used in the hydrodynamic modelling. In addition, both suspended and bed-load sediment were sampled and analysed to determine the current sediment load of the river and its potential to carry more sediment. The modelling results indicate that large areas downstream of the dam including its flood plains would be inundated if dam releases came close to or exceeded 2300 m3/s. It is therefore recommended to relocate communities along the banks and in the flood plains of the Lower Volta River when dam releases are to exceed 2300 m3/s. Suspended sediment transport was found to be very low in the Lower Volta River and the predominant soil type in the river banks and bed is sandy soil. Thus, the geomorphology of the river can be expected to change considerably with time, particularly for sustained high releases from the Akosombo and Kpong dams. The results obtained from this study form a basis for assessing future sedimentation problems in the Lower Volta River and for underpinning the development of sediment control and management strategies for river basins in Ghana. Keywords: Geomorphology, HEC-RAS model, Dam release, Floodplain, Lower Volta River, Ghana

  11. Application of water quality models to rivers in Johor

    Science.gov (United States)

    Chii, Puah Lih; Rahman, Haliza Abd.

    2017-08-01

    River pollution is one the most common hazard in many countries in the world, which includes Malaysia. Many rivers have been polluted because of the rapid growth in industrialization to support the country's growing population and economy. Domestic and industrial sewage, agricultural wastes have polluted the rivers and will affect the water quality. Based on the Malaysia Environment Quality Report 2007, the Department of Environment (DOE) has described that one of the major pollutants is Biochemical Oxygen Demand (BOD). Data from DOE in 2004, based on BOD, 18 river basins were classified polluted, 37 river basins were slightly polluted and 65 river basins were in clean condition. In this paper, two models are fitted the data of rivers in Johor state namely Streeter-Phelps model and nonlinear regression (NLR) model. The BOD concentration data for the two rivers in Johor state from year 1981 to year 1990 is analyzed. To estimate the parameters for the Streeter-Phelps model and NLR model, this study focuses on the weighted least squares and Gauss-Newton method respectively. Based on the value of Mean Square Error, NLR model is a better model compared to Streeter-Phelps model.

  12. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    Science.gov (United States)

    Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.

    2016-01-01

    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.

  13. Modelling of seasonal and long-term trends in lake salinity in southwestern Victoria, Australia.

    Science.gov (United States)

    Yihdego, Yohannes; Webb, John

    2012-12-15

    In southwestern Victoria a large number of lakes are scattered across the volcanic plains; many have problems with increasing salinity. To identify the hydrologic components behind this problem, three lakes, Burrumbeet, Linlithgow and Buninjon, were selected for detailed water and salt budget modelling using monthly values of rainfall, evaporation, surface inflow and outflow, and groundwater inflow and outflow (using the new modified difference method developed in this study). On average, rainfall begins to exceed evaporation with the onset of winter rainfall in May, so lake levels rise and lake salinities decline. The modelled lakes have become more saline over the last decade, a time of drought with below average rainfall, and all eventually dried out, their salinities rising to very high levels as they shallowed. Lake Burrumbeet is generally much less saline than Lakes Linlithgow and Buninjon, because it has substantial groundwater outflow, probably due to leakage through one or more volcanic necks. This limits the amount of time the lake water is subject to evaporation, and also allows significant salt export. The other lakes do not leak. The modelling indicates that when the lakes dry out, salt is lost from the lake-beds, probably due to wind deflation of salt crusts and leakage into the underlying groundwater. The removal of salt during drying-out phases resets the salinity of the lakes, limiting their ability to become more saline with time. Drying-out phases may therefore be essential in preventing the increased salinisation of lakes and wetland environments across the volcanic plains. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. [Pollution characteristics and health risk assessment of organochlorine pesticides (OCPs) in the water of Lake Qiandao and its major input rivers].

    Science.gov (United States)

    Tang, Fang-Liang; Zhang, Ming; Xu, Jian-Fen; Ruan, Dong-De; Chen, Feng; Wu, Zhi-Xu; Cheng, Xin-Liang

    2014-05-01

    Organochlorine pesticides (OCPs) were quantitatively determined by GC in several surface water samples collected in July 2011 and November 2011 from Lake Qiandao (Xin'an River Reservoir) and its major input rivers. Then the component characteristics and source apportionment of HCHs and DDTs were confirmed, and the health risk assessment was evaluated. The results showed that 8 OCPs were found to be in trace amount, and p,p'-DDT, a-HCH and p,p'-DDE were the highest frequently detected OCPs. The concentrations of total OCPs in surface water of the studied Lake ranged from 1.9 to 7.6 ng-L-1 , which were at lower pollution level, and 1.2-212 ng.L-1 in the samples from its three major input rivers. The spatial distribution of OCPs in the water of lake was varying, and Xin'an River, the mainstream of the lake, was the main input source of OCPs. Also, different contamination patterns among sampling seasons were found, the concentrations of OCPs in surface water collected in wet period were higher than those in dry season, which display the characteristics of nonpoint source pollution. According to the ratio of feature components, the OCPs in surface water from the Lake Qiandao originated largely from long distance transmission or degradation of technical HCHs, while additional sources of DDTs existed in the region. In addition, human health risk assessment of ingestion through the drinking water and skin contact absorption was performed using EPA recommends methods, the carcinogenic and non-carcinogenic risks caused by OCPs were 0. 06 x 10(-7)-23. 2 x 10(-7) and 3.43 x 10(-5) -6.01 x 10(-3), respectively. According to the acceptable risk level, the carcinogenic and non-carcinogenic risks of the chemicals investigated can be considered negligible in water body of Lake Qiandao.

  15. Optimal management of ecosystem services with pollution traps : The lake model revisited

    NARCIS (Netherlands)

    de Zeeuw, Aart; Grass, Dieter; Xepapadeas, Anastasios

    2017-01-01

    In this paper, optimal management of the lake model and common-property outcomes are reconsidered when the lake model is extended with the slowly changing variable. New optimal trajectories are found that were hidden in the simplified analysis. Furthermore, it is shown that two Nash equilibria may

  16. ANALYSIS OF MERCURY IN VERMONT AND NEW HAMPSHIRE LAKES: EVALUATION OF THE REGIONAL MERCURY CYCLING MODEL

    Science.gov (United States)

    An evaluation of the Regional Mercury Cycling Model (R-MCM, a steady-state fate and transport model used to simulate mercury concentrations in lakes) is presented based on its application to a series of 91 lakes in Vermont and New Hampshire. Visual and statistical analyses are pr...

  17. Making eco logic and models work : An integrative approach to lake ecosystem modelling

    NARCIS (Netherlands)

    Kuiper, Jan Jurjen

    2016-01-01

    Dynamical ecosystem models are important tools that can help ecologists understand complex systems, and turn understanding into predictions of how these systems respond to external changes. This thesis revolves around PCLake, an integrated ecosystem model of shallow lakes that is used by both

  18. Modelling the long term impact of climate change on the carbon budget of Lake Simcoe, Ontario using INCA-C.

    Science.gov (United States)

    Oni, S K; Futter, M N; Molot, L A; Dillon, P J

    2012-01-01

    This study presents a process-based model of dissolved organic carbon concentration ([DOC]) in catchments draining into Lake Simcoe, Ontario. INCA-C, the Integrated Catchment model for Carbon, incorporates carbon biogeochemical processes in a terrestrial system with hydrologic flow paths to simulate watershed wide [DOC]. The model successfully simulates present-day inter-annual and seasonal [DOC] dynamics in tributaries draining catchments with mixed or contrasting land cover in the Lake Simcoe watershed (LSW). The sensitivity of INCA-C to soil moisture, hydrologic controls and land uses within a watershed demonstrates its significance as a tool to explore pertinent environmental issues specific to the LSW. Projections of climate change under A1B and A2 SRES scenarios suggest a continuous monotonic increase in [DOC] in surface waters draining into Lake Simcoe. Large variations in seasonal DOC dynamics are predicted to occur during summer with a possibility of displacement of summer [DOC] maxima towards winter and a prolongation of summer [DOC] levels into the autumn. INCA-C also predicts possible increases in dissolved inorganic carbon in some tributaries with rising temperature suggesting increased CO(2) emissions from rivers as climate changes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Effects of Accelerated Deglaciation on Chemical Characteristics of Sub-arctic Lakes and Rivers in South and West Iceland

    Science.gov (United States)

    Ritter, M.; Strock, K.; Edwards, B. R.

    2017-12-01

    Glaciers and their associated paraglacial landscapes have changed rapidly over the past century, and may see increased rates of melt as temperatures increase in high latitude environments. As glaciers recede, glacial meltwater subsidies increase to inland freshwater systems, influencing their structure and function. Evidence suggests melting ice influences the chemical characteristics of systems by providing nutrient subsidies, while inputs of glacial flour influence their physical structure by affecting temperature, reducing water clarity and increasing turbidity. Together, changes in physical and chemical structure of these systems have subsequent effects on biota, with the potential to lower taxonomic richness. This study characterized the chemistry of rivers and lakes fed by glacial meltwater in sub-arctic environments of Iceland, where there is limited limnological data. The survey characterized nutrient chemistry, dissolved organic carbon, and ion chemistry. We surveyed glacial meltwater from six glaciers in south and west Iceland, using the drainage basin of Gigjökull glacier along the southern coast as a detailed study area to examine the interactions between groundwater and surface runoff. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse, located in older bedrock with more extensively weathered soil. Key differences were observed between aquatic environments subsidized with glacial meltwater and those without. This included physical effects, such as lower temperatures and chemical effects such as lower conductivity and higher pH in glacially fed systems. In the drainage basin of Gigjökull glacier, lakes formed after the former lagoon was emptied and then partly refilled with debris from jokulhlaups during the 2010 Eyjafjallajökull eruption. These newly formed lakes resembled non-glacial melt systems despite receiving

  20. A Model Study on the Role of Wetland Zones in Lake Eutrophication and Restoration

    Directory of Open Access Journals (Sweden)

    J.H. Janse

    2001-01-01

    Full Text Available Shallow lakes respond in different ways to changes in nutrient loading (nitrogen, phosphorus. These lakes may be in two different states: turbid, dominated by phytoplankton, and clear, dominated by submerged macrophytes. Both states are self-stabilizing; a shift from turbid to clear occurs at much lower nutrient loading than a shift in the opposite direction. These critical loading levels vary among lakes and are dependent on morphological, biological, and lake management factors. This paper focuses on the role of wetland zones. Several processes are important: transport and settling of suspended solids, denitrification, nutrient uptake by marsh vegetation (increasing nutrient retention, and improvement of habitat conditions for predatory fish. A conceptual model of a lake with surrounding reed marsh was made, including these relations. The lake-part of this model consists of an existing lake model named PCLake[1]. The relative area of lake and marsh can be varied. Model calculations revealed that nutrient concentrations are lowered by the presence of a marsh area, and that the critical loading level for a shift to clear water is increased. This happens only if the mixing rate of the lake and marsh water is adequate. In general, the relative marsh area should be quite large in order to have a substantial effect. Export of nutrients can be enhanced by harvesting of reed vegetation. Optimal predatory fish stock contributes to water quality improvement, but only if combined with favourable loading and physical conditions. Within limits, the presence of a wetland zone around lakes may thus increase the ability of lakes to cope with nutrients and enhance restoration. Validation of the conclusions in real lakes is recommended, a task hampered by the fact that, in the Netherlands, many wetland zones have disappeared in the past.

  1. {sup 210}Pb geochronology and chemical characterization of sediment cores from lakes of the Parana river alluvial plain

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, L.F.L.; Damatto, S.R.; Scapin, M.A. [IPEN - Instituto de Pesquisas Energeticas e Nucleares (Brazil); Remor, M.B.; Sampaio, S.C. [UNIOESTE - Universidade Estadual do Oeste do Parana (Brazil)

    2014-07-01

    The flood plain of the upper Parana River is located among the lakes formed by the Brazilian hydroelectric plants being the last part of the Parana river, in Brazil, where there is an ecosystem with interaction river-flood plain. This flood plain has considerable habitat variability, with great diversity of terrestrial and aquatic species, and the floods are the main factor that regulates the operation of this ecosystem. The seasonality of the flood pulses is mainly influenced by the El Nino phenomenon, which increases precipitation in the drainage basin of the flood plain of the upper Parana River. Because of its unique characteristics this ecosystem is the subject of intense study since 1980, mainly from the ecological point of view. Therefore, two sediment cores were collected in the ponds formed by the floods, Patos pond and Garcas pond, in order to characterize the sediment chemically and evaluate a possible historic contamination. The trace element concentrations As, Ba, Br, Ce, Co, Cr, Cs, Eu, Hf, La, Lu, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn (mg.kg{sup -1}) and the major elements Si, Al, Fe, Ti, K, Ca, Mg, P, V, Mn, and Na (%) were determined in the sediment cores dated by {sup 210}Pb method, using instrumental neutron activation analysis, X-ray fluorescence and gross beta counting, respectively. The results obtained for the elements Ce, Cr, Cs, La, Nd, Sc, Sm and Th are higher than the values of Upper Continental Crust for both ponds. The sedimentation rates obtained for Garca pond, 0.77 cm.y{sup -1}, and Patos pond, 0.62 cm.y{sup -1} are in agreement with studies performed in sedimentary environments similar to the present work, such as Brazilian wetland Pantanal. The enrichment factor and the geo-accumulation index were used to assess the presence of anthropogenic sources of pollution. Document available in abstract form only. (authors)

  2. Distribution of C, N, P in aquatic plants of some lakes in the middle of Yangtze river

    International Nuclear Information System (INIS)

    Huang Liang; Wu Ying; Zhou Juzhen; Zhang Jing; Li Wei

    2003-01-01

    By analyzing three elements (C, N, P, 13 C) in the ten aquatic plants of nine lakes in the middle of Yangtze River, the concentrations of C, N and δ 13 C in leaves of aquatic macrophytes depend on the environment where they live in. The concentration of C and N in leaves of submerged macrophytes is significantly lower than that of leaves of floating and emergent macrophytes because of limitation of inorganic carbon; And at the same time, because δ 13 C of inorganic carbon in water is higher than that of CO 2 in air, δ 13 C of leaves of submerged macrophytes is higher than that of leaves of floating and emergent macrophytes. (authors)

  3. Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models

    Science.gov (United States)

    Langseth, Brian J.; Rogers, Mark; Zhang, Hongyan

    2012-01-01

    Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species

  4. The potential impact of aquatic nuisance species on recreational fishing in the Great Lakes and Upper Mississippi and Ohio River Basins.

    Science.gov (United States)

    Ready, Richard C; Poe, Gregory L; Lauber, T Bruce; Connelly, Nancy A; Stedman, Richard C; Rudstam, Lars G

    2018-01-15

    Concern over the potential transfer of aquatic nuisance species (ANS) between the Great Lakes basin and the Upper Mississippi River basin has motivated calls to re-establish hydrologic separation between the two basins. Accomplishing that goal would require significant expenditures to re-engineer waterways in the Chicago, IL area. These costs should be compared to the potential costs resulting from ANS transfer between the basin, a significant portion of which would be costs to recreational fisheries. In this study, a recreational behavior model is developed for sport anglers in an eight-state region. It models how angler behavior would change in response to potential changes in fishing quality resulting from ANS transfer. The model also calculates the potential loss in net economic value that anglers enjoy from the fishery. The model is estimated based on data on trips taken by anglers (travel cost data) and on angler statements about how they would respond to changes in fishing quality (contingent behavior data). The model shows that the benefit to recreational anglers from re-establishing hydrologic separation exceeds the costs only if the anticipated impacts of ANS transfer on sport fish catch rates are large and widespread. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Water quality parameters in the major rivers of Kainji Lake National ...

    African Journals Online (AJOL)

    USER

    statistical analysis. RESULTS. Tables 1 - 4 show the physicochemical characterization of aquatic media of Kainji Lake National Park for two years 2005 and 2006. ...... Appendix IV. NAFDAC packaged water quality standard physiochemical examination. S/N. Parameter/Unit. WHO Standard. 1. Colour Hazen Units. 15. 2.

  6. Final Oahe Dam/Lake Oahe Master Plan Missouri River, South Dakota and North Dakota

    Science.gov (United States)

    2010-09-01

    warblers (Dendroica and Geothlypis spp.), indigo buntings (Passerina cyanea), and meadowlarks (Sturnella spp.). Native prairies along Lake Oahe are home...as a dye and fiber plant, and in sewage treatment cells. Flowering rush (Butomus umbellatus) Class 4 Flowering rush was introduced through the...elderberry, and false indigo , and anchoring logs and snags. Other Actions . Several other actions are proposed, including improvement of

  7. Perry Lake, Delaware River, Kansas, Cultural Resources Sample Survey of Shoreline Areas.

    Science.gov (United States)

    1982-09-01

    sized examples possibly represented. The orifice would be slightly constricted giving a steeply sloping shoulder and the base would be conoidal . The...artifacts, chert chips and one animal tooth found in an area 28 m long. No burned limestone or sandstone was observed other than that of the modern lake

  8. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, Yutaka, E-mail: kameda.yutaka@pref.saitama.lg.jp [Center for Environmental Science in Saitama, Kamitanadare 914, Kazo 347-0115 (Japan); Kimura, Kumiko; Miyazaki, Motonobu [Saitama City Institute of Health Science and Research, Suzuya 7-5-12, Chuo-ku, Saitama 338-0013 (Japan)

    2011-06-15

    Sun-blocking agents including eight UV filters (UVF) and 10 UV light stabilizers (UVLS) were measured in water and sediment collected from 22 rivers, four sewage treatment plant effluents (STPE) and three lakes in Japan. Total sun blocking agents levels ranged from N.D. to 4928 ng/L and from 2.0 to 3422 {mu}g/kg dry wt in surface water and in sediment, respectively. Benzyl salicylate, benzophenone-3, 2-ethyl hexyl-4-methoxycinnamte (EHMC) and octyl salicylate were dominant in surface water receiving wastewater effluents and STPE, although UV-328, benzophenone and EHMC were dominant in other surface water except background sites. Three UVF and nine UVLS were observed from all sediment and their compositions showed similar patterns with UV-328 and UV-234 as the most prevalent compounds. Homosalate, octocrylene, UV-326, UV-327, UV-328 and UV-234 were significantly correlated with Galaxolide in sediments. Concentrations of UV-327 and UV-328 also had strong correlation between those of UV-326 in sediment. - Highlights: > Total sun-blocking agents levels ranged from N.D. to 4928 ng/L in surface water from 29 sampling sites. > The maximum concentration of total sun-blocking agents was 3422 {mu}g/kg dry wt. in sediment. > Residential wastewaters and STPE were considered to be potential sources of UVLS in river and lakes. > Most of sun-blocking agents in sediment were significantly correlated with HHCB. > UV-326 had a strong linear correlation between UV-327 as well as UV-328 in all sediment. - Occurrence of eight UV filters and 10 UV light stabilizers in surface water and sediment were investigated and characterized their compositions in water and sediment.

  9. Status and trends of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) sucker populations in Upper Klamath Lake, Oregon, 2017

    Science.gov (United States)

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2018-04-24

    Executive SummaryData from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (LRS; Deltistes luxatus) and shortnose suckers (SNS; Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during the spawning season in spring 2016 were incorporated into capture-recapture analyses of population dynamics.Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Model estimates of survival and recruitment were used to derive estimates of changes in population size over time and to determine the status of the populations through 2015. Separate analyses were done for each species and also for each subpopulation of LRS. Shortnose suckers and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake.Capture-recapture analyses indicated that with a few exceptions, the survival of males and females in both Lost River sucker subpopulations was high (greater than 0.88) from 1999 to 2015. Survival was notably lower for males from the river in 2000, 2006, and 2012, and for the shoreline areas in 2002. From 2001 to 2015, the abundance of males in the lakeshore spawning subpopulation decreased by at least 64

  10. Sterling C. Robertson Dam and Limestone Lake on the Navasota River, Texas.

    Science.gov (United States)

    1976-10-01

    March 24, 1977 Col. John F. Wall, District Engineer U.S. Arny Engineer District, Fort Worth Post Office Box 17300 Fort Worth, Texas 76102 Dear Colonel...resources and neither your attempt nor Brazos River Authority’s . to mitigate the loss. 4 Si er on e cc: Brazos River Authority Ms. Imagene White . 5L...7 IMAGENE WHITE 309 W. Trinity Groesbeck, Texas. 78042 March 25, 1977 Department of the Army Fort Worth District, Corps of Engineers P. 0. Box 17300

  11. Lake St. Clair: Storm Wave and Water Level Modeling

    Science.gov (United States)

    2013-06-01

    moving synoptic , and meso-scale meteorological events as they crossed Lake Michigan. It was observed at the onset of this study that Lake St...significant wave height, and a negative bias in the wave period estimates. All of these results present a different picture than the previous tests. As in...simulation forcing parameters:  Input the ADCIRC mesh (fort.14) and the water level adjustment to the synoptic lake level (fort.13) for a specific storm

  12. Optical model for the water characterization of the highly turbid water of the Winam Gulf (Victoria Lake)

    Science.gov (United States)

    Santini, F.; Cavalli, R. M.; Palombo, A.; Pignatti, S.

    2007-10-01

    The study, proposed within the framework of the cooperation with Kenyan Authorities, has been carried out on the Kenyan part of the Lake Victoria. This lake is one of the largest freshwater bodies of the world where, over the last few years, environmental challenges and human impact have perturbed the ecological balance. Pollution and sediments loads from the tributaries rivers and antrophic sources caused a worrying increase of the turbidity level of the lake water. Secchi transparency index has declined from 5 meters in the 1930s to less than one meter in the 1990s. With the aim of providing an inexpensive way to gather information linked to the water clarity and quality, a method for remotely sensed data interpretation, devoted to produce chl (chlorophyll), CDOM (coloured dissolved organic matter) and TSS (total suspended solids) maps, has been assessed. At this purpose a bio-optical model, based on radiative transfer theory in water bodies, has been refined. The method has been applied on an image acquired on January 2004 by ENVISAT/MERIS sensor just a week after an in situ campaign took place. During the in situ campaign a data set for model refinement and products validation has been collected. This data comprise surface radiometric quantity and samples for laboratory analyses. The comparison between the obtained maps and the data provided by the laboratory analysis showed a good correspondence, demonstrating the potentiality of remote observation in supporting the management of the water resources.

  13. A study of the river basins and limnology of five humic lakes on Chiloé Island Estudio de la cuenca y limnología en cinco lagos húmicos de la Isla Chiloé

    Directory of Open Access Journals (Sweden)

    L. VILLALOBOS

    2003-12-01

    Full Text Available From November 1996 to October 1997, the river basins of five humic lakes on Chiloé Island were studied monthly: Lakes Natri, Tepuhueico, Tarahuín, Huillinco and Cucao. The objective of this study was to know the catchment area, river basin and the main physical, chemical and biological characteristics of these humic lakes. The trophic status, the actual loading, and the mass balances of phosphorus and nitrogen were determined in relation to anthropogenic activities. Lakes Cucao and Huillinco were characterized by a marine influence. All the lakes had brown coloured waters, caused by humic substances, which limit their transparency. Lake Natri was the deepest (58 m, whereas Lake Tepuhueico had the shallowest depth (25 m. Total phosphorus and nitrogen fluctuated between 23.5 and 35 µg L-1 and 197 and 380 mug L-1 (annual average in lakes Natri, Tepuhueico and Tarahuín, respectively. Lakes Cucao and Huillinco showed extremely high concentrations of total nitrogen (annual average or = 3,000 mug L-1 and total phosphorus (= 223 and 497 mug L-1, and were classified as hyper-eutrophic. Lake Tarahuín registered the greatest diversity of phytoplankton, with 55 species, including Ceratium hirundinella which also occurred in lakes Cucao and Tarahuín. The diversity of the zooplankton community varied across these lakes. The presence of Diaptomus diabolicus (Tumeodiaptomus d. Dussart 1979 (Cucao, Huillinco and Tepuhueico is noteworthy since this extends its geographical distribution to the south

  14. Acidification and recovery at mountain lakes in Central Alps assessed by the MAGIC model

    Directory of Open Access Journals (Sweden)

    Michela ROGORA

    2004-02-01

    Full Text Available The dynamic model MAGIC was calibrated and applied to 84 lakes in Central Alps to predict the response of water chemistry to different scenarios of atmospheric deposition of S and N compounds. Selected lakes were representative of a wide range of chemical characteristics and of sensitivity to acidification. The most sensitive lakes have already shown in the latest years signs of recovery in terms of pH and ANC. The model well captured the main trends in lake chemical data. According to the model forecast, recovery at sensitive lakes will continue in the next decades under the hypothesis of a further decrease of acidic input from the atmosphere. Results clearly demonstrated the benefits of achieving the emission reductions in both S and N compounds agreed under the Gothenburg Protocol. Nevertheless, besides the achieved reduction of SO4 2- deposition from the peak levels of the 80s, also N deposition should be reduced in the near future to protect alpine lakes from further acidification. The condition of lake catchments with regard to N saturation will probably be the dominant factor driving recovery extent. Beside atmospheric deposition, other factors proved to be important in determining long-term changes in surface water chemistry. Climate warming in particular affects weathering processes in lake catchments and dynamics of the N cycle. Including other factors specific to the alpine area, such as dust deposition and climate change, may improve the fit of experimental data by the model and the reliability of model forecast.

  15. Groundwater flow modeling of Kwa Ibo river watershed ...

    African Journals Online (AJOL)

    Groundwater flow modeling of Kwa Ibo River Watershed in Abia State of Nigeria is presented in this paper with the aim of assessing the degree of interaction between the Kwa Ibo River and the groundwater regime of the thick sandy aquifer. The local geology of the area, called Benin Formation, is of Quaternary to Recent ...

  16. Technical note: River modelling to infer flood management framework

    African Journals Online (AJOL)

    River hydraulic models have successfully identified the weaknesses and areas for improvement with respect to flooding in the Sarawak River system, and can also be used to support decisions on flood management measures. Often, the big question is 'how'. This paper demonstrates a theoretical flood management ...

  17. Observation and modelling of fog at Cold Lake, Alberta, Canada

    Science.gov (United States)

    Wu, Di; Boudala, Faisal; Weng, Wensong; Taylor, Peter A.; Gultepe, Ismail; Isaac, George A.

    2017-04-01

    Climatological data indicate that the Cold Lake, Alberta airport location (CYOD, 54.4°N, 110.3°W) is often affected by various low cloud and fog conditions. In order to better understand these conditions, Environment and Climate Change Canada (ECCC), in cooperation with the Canadian Department of National Defense (DND), installed a number of specialized instruments. The ground based instruments include a Vaisala PWD22 present weather sensor, a multi-channel microwave profiling radiometer (MWR) and a Jenoptik CHM15k ceilometer. The focus here will be on understanding the micro-physical and dynamical conditions within the boundary layer, on the surface and aloft that lead to the occurrence of fog using a high resolution 1-D boundary-layer model, ground based measurements, Geostationary Operational Environmental Satellite (GOES) data and predictions from the Canadian 2.5 km resolution NWP model (HRDPS - High Resolution Deterministic Prediction System ). Details of the 1-D model will be presented. The condensation of water vapour into droplets and the formation of fog in the Earth's atmospheric boundary layer can involve a complex balance between vertical turbulent mixing of heat and water vapour, cloud micro-physical processes and radiative transfers of heat. It is a phenomenon which has been studied for many years in a variety of contexts. On land, surface cooling via long wave radiation at night is often the trigger and a number of 1-D (one dimensional, height and time dependent) radiative fog models have been developed. Our turbulence closure includes the turbulent kinetic energy equation but we prefer to specify a height, roughness Rossby number and local stability dependent, "master" length scale instead of somewhat empirical dissipation or similar equations. Results show that low cloud and fog can develop, depending on initial profiles of wind, temperature and mixing ratio, land surface interactions and solar radiation. Preliminary analysis of Cold Lake

  18. Modeling Lake Storage Dynamics to support Arctic Boreal Vulnerability Experiment (ABoVE)

    Science.gov (United States)

    Vimal, S.; Lettenmaier, D. P.; Smith, L. C.; Smith, S.; Bowling, L. C.; Pavelsky, T.

    2017-12-01

    The Arctic and Boreal Zone (ABZ) of Canada and Alaska includes vast areas of permafrost, lakes, and wetlands. Permafrost thawing in this area is expected to increase due to the projected rise of temperature caused by climate change. Over the long term, this may reduce overall surface water area, but in the near-term, the opposite is being observed, with rising paludification (lake/wetland expansion). One element of NASA's ABoVE field experiment is observations of lake and wetland extent and surface elevations using NASA's AirSWOT airborne interferometric radar, accompanied by a high-resolution camera. One use of the WSE retrievals will be to constrain model estimates of lake storage dynamics. Here, we compare predictions using the lake dynamics algorithm within the Variable Infiltration Capacity (VIC) land surface scheme. The VIC lake algorithm includes representation of sub-grid topography, where the depth and area of seasonally-flooded areas are modeled as a function of topographic wetness index, basin area, and slope. The topography data used is from a new global digital elevation model, MERIT-DEM. We initially set up VIC at sites with varying permafrost conditions (i.e., no permafrost, discontinuous, continuous) in Saskatoon and Yellowknife, Canada, and Toolik Lake, Alaska. We constrained the uncalibrated model with the WSE at the time of the first ABoVE flight, and quantified the model's ability to predict WSE and ΔWSE during the time of the second flight. Finally, we evaluated the sensitivity of the VIC-lakes model and compared the three permafrost conditions. Our results quantify the sensitivity of surface water to permafrost state across the target sites. Furthermore, our evaluation of the lake modeling framework contributes to the modeling and mapping framework for lake and reservoir storage change evaluation globally as part of the SWOT mission, planned for launch in 2021.

  19. Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes

    Science.gov (United States)

    Dugan, Hilary; Woolway, R. Iestyn; Santoso, Arianto; Corman, Jessica; Jaimes, Aline; Nodine, Emily; Patil, Vijay; Zwart, Jacob A.; Brentrup, Jennifer A.; Hetherington, Amy; Oliver, Samantha K.; Read, Jordan S.; Winters, Kirsten; Hanson, Paul; Read, Emily; Winslow, Luke; Weathers, Kathleen

    2016-01-01

    Ecosystem metabolism and the contribution of carbon dioxide from lakes to the atmosphere can be estimated from free-water gas measurements through the use of mass balance models, which rely on a gas transfer coefficient (k) to model gas exchange with the atmosphere. Theoretical and empirically based models of krange in complexity from wind-driven power functions to complex surface renewal models; however, model choice is rarely considered in most studies of lake metabolism. This study used high-frequency data from 15 lakes provided by the Global Lake Ecological Observatory Network (GLEON) to study how model choice of kinfluenced estimates of lake metabolism and gas exchange with the atmosphere. We tested 6 models of k on lakes chosen to span broad gradients in surface area and trophic states; a metabolism model was then fit to all 6 outputs of k data. We found that hourly values for k were substantially different between models and, at an annual scale, resulted in significantly different estimates of lake metabolism and gas exchange with the atmosphere.

  20. Possibilities to restore natural water regime in the Žuvintas Lake and surrounding wetlands – modelling analysis approach

    NARCIS (Netherlands)

    Povilaitis, A.; Querner, E.P.

    2008-01-01

    The Zuvintas Lake. located in southern Lithuania in the basin of the Dovine River is one of the biggest takes and the oldest natural reserves of the country. However, the changes in the hydrology or the Dovine River basin, caused by large-scale melioration and water management works carried out in

  1. Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate.

    Science.gov (United States)

    Couture, Raoul-Marie; Tominaga, Koji; Starrfelt, Jostein; Moe, S Jannicke; Kaste, Øyvind; Wright, Richard F

    2014-07-01

    A model network comprising climate models, a hydrological model, a catchment-scale model for phosphorus biogeochemistry, and a lake thermodynamics and plankton dynamics model was used to simulate phosphorus loadings, total phosphorus and chlorophyll concentrations in Lake Vansjø, Southern Norway. The model network was automatically calibrated against time series of hydrological, chemical and biological observations in the inflowing river and in the lake itself using a Markov Chain Monte-Carlo (MCMC) algorithm. Climate projections from three global climate models (GCM: HadRM3, ECHAM5r3 and BCM) were used. The GCM model HadRM3 predicted the highest increase in temperature and precipitation and yielded the highest increase in total phosphorus and chlorophyll concentrations in the lake basin over the scenario period of 2031-2060. Despite the significant impact of climate change on these aspects of water quality, it is minimal when compared to the much larger effect of changes in land-use. The results suggest that implementing realistic abatement measures will remain a viable approach to improving water quality in the context of climate change.

  2. Health and condition of endangered young-of-the-year Lost River and Shortnose suckers relative to water quality in Upper Klamath Lake, Oregon, 2014–2015

    Science.gov (United States)

    Burdick, Summer M.; Conway, Carla M.; Elliott, Diane G.; Hoy, Marshal S.; Dolan-Caret, Amari; Ostberg, Carl O.

    2017-10-19

    Most mortality of endangered Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, occurs within the first year of life. Juvenile suckers in Clear Lake Reservoir, California, survive longer and may even recruit to the spawning populations. In a previous (2013–2014) study, the health and condition of juvenile suckers and the dynamics of water quality between Upper Klamath Lake and Clear Lake Reservoir were compared. That study found that apparent signs of stress or exposure to irritants, such as peribiliary cuffing in liver tissue and mild inflammation and necrosis in gill tissues, were present in suckers from both lakes and were unlikely to be clues to the cause of differential mortality between lakes. Seasonal trends in energy storage as glycogen and triglycerides were also similar between lakes, indicating prey limitation was not a likely factor in differential mortality. To better understand the relationship between juvenile sucker health and water quality, we examined suckers collected in 2014–2015 from Upper Klamath Lake, where water quality can be dynamic and, at times, extreme.While there were notable differences in water quality and fish health between years, we were not able to identify any specific water-quality-related causes for differential fish condition. Water quality was generally better in 2014 than in 2015. When considered together afflictions and abnormalities generally indicated healthier suckers in 2014 than 2015. Low dissolved-oxygen events (example, in spring or over winter), or was caused by a factor that could not be detected with our methods (for example, predation). Alternatively, abnormalities in a small percentage of passively captured suckers in Upper Klamath Lake may indicate health-related issues that were more prevalent in populations than in our samples. Temporary decreases in liver glycogen stores may also indicate periods of stress, which may eventually lead to mortality

  3. ALBEDO MODELS FOR SNOW AND ICE ON A FRESHWATER LAKE. (R824801)

    Science.gov (United States)

    AbstractSnow and ice albedo measurements were taken over a freshwater lake in Minnesota for three months during the winter of 1996¯1997 for use in a winter lake water quality model. The mean albedo of new snow was measured as 0.83±0.028, while the...

  4. Lehigh River Basin, Trexler Lake, Jordan Creek, Pennsylvania. Final Environmental Impact Statement.

    Science.gov (United States)

    1973-01-01

    changes and associated effects occasioned by the project which have significant impact upon the environment. As these impacts can best he analyzed in...should effectively control rough fish populations, which would otherwise overpopulate the lake. Considerati on 1 .711 b given to the introduction of... impacts discussed in Section 3, only the following involvei adverse effects which cannot be mitigated or avoided with the project as now formulated. (1

  5. A baseline report of water quality and invertebrate assessment in River Hohwa, Lake Albert: final report

    OpenAIRE

    2007-01-01

    Tullow Oil plc is to launch an onshore Early Production System (EPS) of oil drilling rated at 4,000 barrels of oil per day by 2009. The location of the EPS is in the Kaiso-Tonya area of Block 2 Oil Exploration Zone along Lake Albert within the Albertine graben. Tullow Oil plc contracted Environmental Resources Management (ERM) Southern Africa (Pty) Ltd in conjunction with Environmental Assessment Consult Limited (EACL) to undertake an Environmental Impact Assessment (EIA) for pre-construction...

  6. Linkage of the Soil and Water Assessment Tool and the Texas Water Availability Model to simulate the effects of brush management on monthly storage of Canyon Lake, south-central Texas, 1995-2010

    Science.gov (United States)

    Asquith, William H.; Bumgarner, Johnathan R.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Texas State Soil and Water Conservation Board, developed and applied an approach to create a linkage between the published upper Guadalupe River Soil Water Assessment Tool (SWAT) brush-management (ashe juniper [Juniperus ashei]) model and the full authorization version Guadalupe River Water Availability Model (WAM). The SWAT model was published by the USGS, and the Guadalupe River WAM is available from the Texas Commission on Environmental Quality. The upper Guadalupe River watershed is a substantial component of the Guadalupe River WAM. This report serves in part as documentation of a proof of concept on the feasibility of linking these two water-resources planning models for the purpose of simulating possible increases in water storage in Canyon Lake as a result of different brush-management scenarios.

  7. Aquatic dispersion modelling of a tritium plume in Lake Ontario

    International Nuclear Information System (INIS)

    Klukas, M.H.; Moltyaner, G.L.

    1996-05-01

    Approximately 2900 kg of tritiated water, containing 2.3E+15 Bq of tritium, were released to Lake Ontario via the cooling water discharge when a leak developed in a moderator heat exchanger in Unit 1 at the Pickering Nuclear Generating Station (PNGS) on 1992 August 2. The release provided the opportunity to study the dispersion of a tritium plume in the coastal zone of Lake Ontario. Current direction over the two-week period following the release was predominantly parallel to the shore, and elevated tritium concentrations were observed up to 20 km east and 85 km west of the PNGS. Predictions of the tritium plume movement were made using current velocity measurements taken at 8-m depth, 2.5 km offshore from Darlington and using a empirical relationship where alongshore current speed is assumed to be proportional to the alongshore component of the wind speed. The tritium migration was best described using current velocity measurements. The tritium plume dispersion is modelled using the one-dimensional advection-dispersion equation. Transport parameters are the alongshore current speed and longitudinal dispersion coefficient. Longitudinal dispersion coefficients, estimated by fitting the solution of the advection-dispersion equation to measured concentration distance profiles ranged from 3.75 to 10.57 m 2 s -1 . Simulations using the fitted values of the dispersion coefficient were able to describe maximum tritium concentrations measured at water supply plants located within 25 km of Pickering to within a factor of 3. The dispersion coefficient is a function of spatial and temporal variability in current velocity and the fitted dispersion coefficients estimated here may not be suitable for predicting tritium plume dispersion under different current conditions. The sensitivity of the dispersion coefficient to variability in current conditions should be evaluated in further field experiments. (author). 13 refs., 7 tabs., 12 figs

  8. Efficacy of iodine for disinfection of Lake Sturgeon eggs from the St. Lawrence River, New York

    Science.gov (United States)

    Chalupnicki, Marc A.; Dittman, Dawn E.; Starliper, Clifford E.; Iwanowicz, Deborah

    2014-01-01

    Optimal fish husbandry to reduce the risk of disease is particularly important when using wild fish as the source for gametes. The propagation and reestablishment of Lake Sturgeon Acipenser fulvescens in New York waters to become a viable self-sustaining population is considered a high priority by managers. While standard hatchery egg disinfection practices have been used to prevent the transmission of diseases, data on the bacterial loads present on egg surfaces following iodine disinfection is lacking. Our study investigated the bacteria present on the outer surface of Lake Sturgeon eggs and the effectiveness of an iodine disinfection treatment in eliminating bacteria that could pose a threat to egg survival and cause hatchery disease outbreaks. During the springs of 2011–2013, 12 to 41 different species of bacteria were recovered from the outer egg surfaces prior to an iodine treatment; Aeromonas, Pseudomonas, Shewanella, and Chryseobacterium were the most common genera identified. Cohort eggs treated using the standard protocol of a single treatment of 50 mg/L iodine for 30 min resulted in an average of 57.8% reduction in bacterial CFU/g. While this is a significant reduction, bacteria were not completely eliminated and hatchery managers should be aware that pathogens could remain on Lake Sturgeon eggs following the standard iodine disinfection treatment.

  9. First identification of a possible nursery area for diadromous Coilia nasus in the Poyang Lake nearly 1000 km away from the Yangtze River Estuary

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2015-11-01

    Full Text Available Estuarine tapertail anchovy Coilia nasus is a small-sized anadromous species in the Yangtze River, China. It is probably the most expensive fish in the world with price as high as $1000/kg and even $9600 for a single extremely large individual with a total length of 45.3 cm and body weight of 0.325 kg in the Jiangsu section of the river in 2012. However, when and where C. nasus spawn along the Yangtze River has still remained a mystery so far. In our field surveys of 2014 and 2015, some highly mature female and male C. nasus with stage V or VI gonads were firstly collected in the water region around Xingzi County in the Poyang Lake, which is nearly 1000 km away from the mouth of the Yangtze River. Although previous studies believed that all C. nasus in the Poyang Lake were freshwater residents, the otolith microchemistry signatures of the present study determined with EPMA and LA-ICPMS further clearly demonstrated that these fish were anadromous individuals. The findings indicated that the C. nasus migrated over nearly 1000 km upstream, with an extremely strong migration ability, passing through the lower reaches of the Yangtze River from the adjacent Yellow sea (even from the areas nearly straight line for as far as ca. 300 km off the Chinese coast line or East China Sea (Figure 1. The aforementioned evidence strongly suggests that the water region around Xingzi County in the Poyang Lake is a possible spawning/nursery area for anadromous C. nasus. It will be critical to ensure the protection of this region of the Poyang Lake being free from the environmental destruction of anthropogenic activities, especially hydraulic structure (especially dam construction and sand mining.

  10. Monitoring and modeling water temperature and trophic status of a shallow Mediterranean lake

    Science.gov (United States)

    Giadrossich, Filippo; Bueche, Thomas; Pulina, Silvia; Marrosu, Roberto; Padedda, Bachisio Mario; Mariani, Maria Antonietta; Vetter, Mark; Cohen, Denis; Pirastru, Mario; Niedda, Marcello; Lugliè, Antonella

    2017-04-01

    Lakes are sensitive to changes in climate and human activities. Over the last few decades, Mediterranean lakes have experienced various problems due to the current climate change (drought, flood, warming, salt accumulation, water quality changes, etc.), often amplified by water use, intensification of land use activities, and pollution. The overall impact of these changes on water resources is still an open question. In this study we monitor the trophic status and the dynamics of water temperature of Lake Baratz, the only natural lake in Sardinia, Italy, characterized by high salinity and shallow depth. We extend the research carried out in the past 8 years by integrating new physical, chemical and biological data using a multidisciplinary approach that combines hydrological and biological dynamics. In particular, the lake water balance and the thermal and hydrochemical regime are studied with a lake dynamic model (the General Lake Model or GLM) which combine the energy budget method for estimating lake evaporation, and a physically-based rainfall-runoff simulator for estimating lake inflow, calibrated with measurements at the cross section of the main inlet stream. The trophic state of the lake was evaluated applying the OCDE Probability Distribution Diagrams method, which requires nutrient concentrations in the lake (total phosphorus), phytoplankton chlorophyll a and Secchi disk transparency data. We collected field data from a raft station and a land station, measuring net solar radiation, air temperature and relative humidity, precipitation, wind velocity, atmospheric pressure, and temperature from thermistors submerged in the uppermost three centimeters of water and beneath the lake surface at depths of 1, 2, 3, 4, 5, 6, and 8 m. Samples for nutrients and chlorophyll a analyses were collected at the same above mentioned depths close to the raft station using a Niskin bottle. Temperature, salinity, pH, and dissolved oxygen were measured using a multi

  11. Morphometric analysis of Russian Plain's small lakes on the base of accurate digital bathymetric models

    Science.gov (United States)

    Naumenko, Mikhail; Guzivaty, Vadim; Sapelko, Tatiana

    2016-04-01

    Lake morphometry refers to physical factors (shape, size, structure, etc) that determine the lake depression. Morphology has a great influence on lake ecological characteristics especially on water thermal conditions and mixing depth. Depth analyses, including sediment measurement at various depths, volumes of strata and shoreline characteristics are often critical to the investigation of biological, chemical and physical properties of fresh waters as well as theoretical retention time. Management techniques such as loading capacity for effluents and selective removal of undesirable components of the biota are also dependent on detailed knowledge of the morphometry and flow characteristics. During the recent years a lake bathymetric surveys were carried out by using echo sounder with a high bottom depth resolution and GPS coordinate determination. Few digital bathymetric models have been created with 10*10 m spatial grid for some small lakes of Russian Plain which the areas not exceed 1-2 sq. km. The statistical characteristics of the depth and slopes distribution of these lakes calculated on an equidistant grid. It will provide the level-surface-volume variations of small lakes and reservoirs, calculated through combination of various satellite images. We discuss the methodological aspects of creating of morphometric models of depths and slopes of small lakes as well as the advantages of digital models over traditional methods.

  12. Regional model simulation of the hydrometeorological effects of the Fucino Lake on the surrounding region

    Directory of Open Access Journals (Sweden)

    B. Tomassetti

    Full Text Available The drainage of the Fucino Lake of central Italy was completed in 1873, and this possibly caused significant climatic changes over the Fucino basin. In this paper we discuss a set of short-term triple-nested regional model simulations of the meteorological effects of the Fucino Lake on the surrounding region. We find that the model simulates realistic lake-breeze circulations and their response to background winds. The simulations indicate that the lake affects the temperature of the surrounding basin in all seasons and precipitation in the cold season, when cyclonic perturbations move across the region. Some effects of the lake also extend over areas quite far from the Fucino basin. Our results support the hypothesis that the drainage of the lake might have significantly affected the climate of the lake basin. However, longer simulations and further development in some aspects of the model are needed, in order to provide a more statistically robust evaluation of the simulated lake-effects.

    Key words. Hydrology (anthropogenic effects – Meteorology and atmospheric dynamics (climatology; mesoscale meteorology

  13. MERGANSER: an empirical model to predict fish and loon mercury in New England lakes

    Science.gov (United States)

    Shanley, James B.; Moore, Richard; Smith, Richard A.; Miller, Eric K.; Simcox, Alison; Kamman, Neil; Nacci, Diane; Robinson, Keith; Johnston, John M.; Hughes, Melissa M.; Johnston, Craig; Evers, David; Williams, Kate; Graham, John; King, Susannah

    2012-01-01

    MERGANSER (MERcury Geo-spatial AssessmeNtS for the New England Region) is an empirical least-squares multiple regression model using mercury (Hg) deposition and readily obtainable lake and watershed features to predict fish (fillet) and common loon (blood) Hg in New England lakes. We modeled lakes larger than 8 ha (4404 lakes), using 3470 fish (12 species) and 253 loon Hg concentrations from 420 lakes. MERGANSER predictor variables included Hg deposition, watershed alkalinity, percent wetlands, percent forest canopy, percent agriculture, drainage area, population density, mean annual air temperature, and watershed slope. The model returns fish or loon Hg for user-entered species and fish length. MERGANSER explained 63% of the variance in fish and loon Hg concentrations. MERGANSER predicted that 32-cm smallmouth bass had a median Hg concentration of 0.53 μg g-1 (root-mean-square error 0.27 μg g-1) and exceeded EPA's recommended fish Hg criterion of 0.3 μg g-1 in 90% of New England lakes. Common loon had a median Hg concentration of 1.07 μg g-1 and was in the moderate or higher risk category of >1 μg g-1 Hg in 58% of New England lakes. MERGANSER can be applied to target fish advisories to specific unmonitored lakes, and for scenario evaluation, such as the effect of changes in Hg deposition, land use, or warmer climate on fish and loon mercury.

  14. Hydrography, Washburn Countys Hydro Layer was developed in 1997 utilizing 1996 Orthophotos. This layer includes Lake, Rivers, Streams and Ponds within Washburn County., Published in 1997, 1:4800 (1in=400ft) scale, Washburn County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Hydrography dataset current as of 1997. Washburn Countys Hydro Layer was developed in 1997 utilizing 1996 Orthophotos. This layer includes Lake, Rivers, Streams and...

  15. River predisposition to ice jams: a simplified geospatial model

    Directory of Open Access Journals (Sweden)

    S. De Munck

    2017-07-01

    Full Text Available Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial mo