WorldWideScience

Sample records for modeling radon entry

  1. Soil gas and radon entry into a simple test structure: Comparison of experimental and modelling results

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1994-01-01

    A radon test structure has been established at a field site at Riso National Laboratory. Measurements have been made of soil gas entry rates, pressure couplings and radon depletion. The experimental results have been compared with results obtained from measured soil parameters and a two......-dimensional steady-state numerical model of Darcy flow and combined diffusive and advective transport of radon. For most probe locations, the calculated values of the pressure couplings and the radon depletion agree well with the measured values, thus verifying important elements of the Darcy flow approximation......, and the ability of the model to treat combined diffusive and advective transport of radon. However, the model gives an underestimation of the soil gas entry rate. Even if it is assumed that the soil has a permeability equal to the highest of the measured values, the model underestimates the soil gas entry rate...

  2. Numerical modelling of radon-222 entry into houses: An outline of techniques and results

    DEFF Research Database (Denmark)

    Andersen, C.E.

    2001-01-01

    Numerical modelling is a powerful tool for studies of soil gas and radon-222 entry into houses. It is the purpose of this paper to review some main techniques and results. In the past, modelling has focused on Darcy flow of soil gas (driven by indoor–outdoor pressure differences) and combined...... diffusive and advective transport of radon. Models of different complexity have been used. The simpler ones are finite-difference models with one or two spatial dimensions. The more complex models allow for full three-dimensional and time dependency. Advanced features include: soil heterogeneity, anisotropy......, fractures, moisture, non-uniform soil temperature, non-Darcy flow of gas, and flow caused by changes in the atmospheric pressure. Numerical models can be used to estimate the importance of specific factors for radon entry. Models are also helpful when results obtained in special laboratory or test structure...

  3. MODELNG RADON ENTRY INTO FLORIDA HOUSES WITH CONCRETE SLABS AND CONCRETE-BLOCK STEM WALLS, FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report discusses results of modeling radon entry into a typical Florida house whose interior is slightly depressurized. he model predicts that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. ost of the factors c...

  4. Dependency of radon entry on pressure difference

    Science.gov (United States)

    Kokotti, H.; Kalliokoski, P.; Jantunen, M.

    Radon levels, ventilation rate and pressure differences were monitored continuously in four apartment houses with different ventilation systems. Two of them were ventilated by mechanical exhaust, one by mechanical supply and exhaust, and one by natural ventilation. The two-storey houses were constructed from concrete elements on a slab and located on a gravel esker. It was surprising to find that increasing the ventilation rate increased levels of radon in the apartments. Increased ventilation caused increased outdoor-indoor pressure difference, which in turn increased the entry rate of radon and counteracted the diluting effect of ventilation. The increase was significant when the outdoor-indoor pressure difference exceeded 5 Pa. Especially in the houses with mechanical exhaust ventilation the pressure difference was the most important factor of radon entry rate, and contributed up to several hundred Bq m -3 h -1.

  5. Radon entry into a simple test structure

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1992-01-01

    A simple test structure for studies of radon entry into houses has been constructed at a field site at Riso National Laboratory. It consists of a 40 1, stainless-steel cylinder placed in a 0.52 m deep quadratic excavation with a side length of 2.4 m. The excavation is lined with an airtight...

  6. Application of a radon model to explain indoor radon levels in a Swedish house

    CERN Document Server

    Font, L; Jönsson, G; Enge, W; Ghose, R

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75+-30 and 200+-80 Bq m sup - sup 3...

  7. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W J [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  8. ERRICCA radon model intercomparison exercise

    DEFF Research Database (Denmark)

    Andersen, C.E.; Albarracín, D.; Csige, I.

    1999-01-01

    Numerical models based on finite-difference or finite-element methods are used by various research groups in studies of radon-222 transport through soil and building materials. Applications range from design of radon remediation systems to morefundamental studies of radon transport. To ascertain ......, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommendedthat additional exercises are carried out....

  9. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  10. Radon as a tracer for soil-gas entry into a house located next to a contaminated dry-cleaning property; Radon som sporgas for jordluftindtraengning til hus ved forurenet renserigrund

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    2001-07-01

    This study applies the naturally occurring radioactive gas radon-222 as a tracer for soil-gas entry into a house located next to a dry-cleaners shop. This is possible because the concentration of radon in the soil below the house is about 1000 times higher than the concentration in outdoor air. The study is based on continuous indoor measurement of radon, differential pressures, barometric pressure and temperatures and grab samples of radon below the slab and in the soil in the vicinity of the house. During the investigation, vacuum extraction were used to remove chlorinated solvents (perchloroethylene, PCE) from the unsaturated zone. The study shows that the vacuum extraction influences the radon concentration in and below the house. When the vacuum pump is on, the indoor radon concentration is only 10 Bq/m{sup 3} corresponding to the contribution from radon in outdoor air and exhalation from building materials. When the vacuum pump is set off, the average indoor radon concentration increases to 30 Bq/m{sup 3}. It is believed that the increase is caused by radon entry from the soil. Regression analysis demonstrates that changes in the indoor radon concentration can be explained by changes in indoor-outdoor pressure differences and changes in the atmospheric pressure. This suggests that advection is the primary mode of entry. Under some highly simplifying assumptions the soil-gas entry is found to be around 1 m{sup 3}/h. This, however, is most likely an overestimate. Based on the measured radon concentration in the exhaust air from the vacuum system and a typical radon emanation rate for Danish soil, it is estimated that the soil vapor extraction system ventilates about 10000 m{sup 3} of soil. The investigation is supported by numerical model calculations with the finite-volume model Rnmod3d. (au)

  11. A Radon Progeny Deposition Model

    CERN Document Server

    Guiseppe, V E; Hime, A; Rielage, K; Westerdale, S

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly Rn-222) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of Pb-210 on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to depos...

  12. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil

  13. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil

  14. Radon transport modelling: User's guide to RnMod3d

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2000-01-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It canalso be used for flux calculations of radon...... decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning ofradon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may...... from the soil surface or to model radon exhalation from building materials such as concrete. The finite-volume model is a technical research tool, and it cannot be used meaningfully without good understandingof the involved physical equations. Some understanding of numerical mathematics...

  15. Radon

    Science.gov (United States)

    Exposure to radon is the second leading cause of lung cancer after smoking. Radon is a colorless, odorless, tasteless and invisible gas produced by the decay of naturally occurring uranium in soil and water.

  16. Radon

    Science.gov (United States)

    ... can move to air, groundwater, and surface water. Radon-222 has a radioactive half-life of about 4 ... concerns. The main isotope of health concern is radon-222 ( 222 Rn). Many scientists believe that the alpha ...

  17. A prediction model for assessing residential radon concentration in Switzerland

    NARCIS (Netherlands)

    Hauri, D.D.; Huss, A.; Zimmermann, F.; Kuehni, C.E.; Roosli, M.

    2012-01-01

    Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the

  18. Identification of advective entry of soil-gas radon into a crawl space covered with sheets of polyethylene foil

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C. [Risoe National Lab., Dept. of Nucl. Safety Res. and Nucl. Facilities, Roskilde (Denmark); Koopmanns, M.; Meijer, R.J. de [Kernfysische Versneller Inst., Environmental Radioactivity Res., Groningen (Netherlands)

    1996-04-01

    To assess the effectiveness of mitigative measures against radon ({sup 222}Rn) entry into houses, experiments were conducted in a crawl-space house where the dirt floor of the crawl space was covered with sheets of 0.23 mm polyethylene foil fixed to the walls. The radon concentration was measured below the foil and in the crawl space together with environmental variables such as indoor-outdoor pressure differences. The experimental data was analyzed using various types of models including a simplistic mass-balance model, a regression model, and a two-dimensional numerical model based on Darcy flow or soil gas and combined diffusive and advective transport of radon. The main outcome of the work was that: (i) The soil-gas entry rate per pascal depressurization was at the order of 1 m{sup 3} h{sup -1}, (ii) the stack-related part of the depressurization of the crawl space (approx. 0.1 Pa deg. C{sup -1}) was controlled by the temperature difference between the living room of the house and the outdoors (not by the difference between the crawl space and the outdoors), (iii) that part of the wind-related depressurization that was measured by the pressure transducers seemed to force radon into the crawl space in the same proportion as the stack-related part of the depressurization, (iv) the ratio of advective and diffusive entry was approx. 0.7, when the crawl space was depressurized 1.5 Pa, (v) the effective diffusivity of the foil was found to be three orders of magnitude larger than that measured in the laboratory (the enhanced diffusivity was most likely caused by leaks in the foil and by mixing fans located in the crawl space), and (vi) there was no measurable mitigative impact of having the sheets of foil on the crawl-space floor even if the crawl space was artificially pressurized or depressurized. (au) 28 tabs., 36 ills., 61 refs.

  19. A simple model for the assessment of indoor radionuclide Pb-210 surface contamination due to the presence of radon

    Directory of Open Access Journals (Sweden)

    Mrđa Dušan S.

    2013-01-01

    Full Text Available The presented, very simplified model provides a possibility for estimation of surface Pb-210 activity, depending on the changes of Rn-222 concentration during the long-term radon presence inside the closed room. This can be useful for retrospective assessment of the average indoor radon concentration for certain historical period, based on the surface contamination by the radionuclide Pb-210 in a closed or poorly ventilated room over a long period of time. However, the surface Pb-210 contamination depends on the pattern of radon concentration changes, and in this model is supposed that the change of indoor radon concentration, which periodically enters the room, is affected only by the radioactive decay and the inserted amount of radon in each entry. So, each radon entry can be comprehended as a “net amount” of radon, or excess which remains inside the room due to radon’s periodical in-out flow. It is shown, that under the conditions of the model, the achieved average value of radon concentration of 275 Bq/m3, implies that the saturated surface contamination by the Pb-210 of 160 Bq/m2 after approximately 150 years. [Projekat Ministarstva nauke Republike Srbije, br. 171002: Nuclear Methods Investigations of Rare Processes and Cosmic Rays i br. 43002: Biosensing Technologies and Global System for Continuous Research and Integrated Management of ecosystems

  20. Residential radon in Finland: sources, variation, modelling and dose comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Arvela, H.

    1995-09-01

    The study deals with sources of indoor radon in Finland, seasonal variations in radon concentration, the effect of house construction and ventilation and also with the radiation dose from indoor radon and terrestrial gamma radiation. The results are based on radon measurements in approximately 4000 dwellings and on air exchange measurements in 250 dwellings as well as on model calculations. The results confirm that convective soil air flow is by far the most important source of indoor radon in Finnish low-rise residential housing. (97 refs., 61 figs., 30 tabs.).

  1. Modelling and experimental study of the behavior of radon and radon decay products in an enclosure. Application to houses; Modelisation et etude experimentale du comportement du radon et de ses descendants dans une enceinte confinee. Application a une habitation

    Energy Technology Data Exchange (ETDEWEB)

    Gouronnec, A.M.

    1995-02-03

    Since the eighties, more and more studies were performed about radon and its decay products in houses with one of the aim being the estimation of the dose received by their inhabitants. Then, the principal objective of this work is to describe the behaviour of radon and its decay products within a dwelling. In the first part to the report, a few definitions are given and data from literature give an idea of indoor radon and radon decay products activities and/or size distribution. Aspects of dosimetry are presented too. In the second part of the work, a mathematical model, called `PRADDO` of Physic of Radon and radon Decay products in Domestic environment is developed on the basis of the classical model written by Jacobi in 1972. On the one hand, it has to predict radon decay products activities in systems consisting in one or more enclosure(s), from radon activity and from ambient aerosol concentration and size distribution. On the other hand, one part of the model is assigned to study the influence of the entry model parameters variation on the calculated quantities. Then, in the third part of the work, two experimental studies are realised in order to compare measurements to modelization. The first experimentation is a laboratory work, made on the test bench ICARE from IPSN, and the second one consists in describing the basement of an occupied house from Brittany. In the two cases, the comparison between experiments and modelling shows a good agreement if particles are present in the air, but any conclusion is made when is no aerosol in the enclosure. (author). 158 refs., 81 figs., 42 tabs.

  2. Mathematical model for radon diffusion in earthen materials

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, K.K.; Rogers, V.C.

    1982-10-01

    Radon migration in porous, earthen materials is characterized by diffusion in both the air and water components of the system as well as by the interaction of the radon between the air and water. The size distribution and configuration of the pore spaces and their moisture distributions are key parameters in determining the radon diffusion coefficient for the bulk material. A mathematical model is developed and presented for calculating radon diffusion coefficients solely from the moisture content and pore size distribution of a soil, reducing the need for resorting to radon diffusion measurements. The resulting diffusion coefficients increase with the median pore diameter of the soil and decrease with increasing widths of the pore size distribution. The calculated diffusion coefficients are suitable for use in simple homogeneous-medium diffusion expressions for predicting radon transport and compare well with measured diffusion coefficients and with empirical diffusion coefficient correlations.

  3. Radon diffusion through multilayer earthen covers: models and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, D.W.; Oster, C.A.; Nelson, R.W.; Gee, G.W.

    1981-09-01

    A capability to model and analyze the fundamental interactions that influence the diffusion of radon gas through uranium mill tailings and cover systems has been investigated. The purpose of this study is to develop the theoretical basis for modeling radon diffusion and to develop an understanding of the fundamental interactions that influence radon diffusion. This study develops the theoretical basis for modeling radon diffusion in one, two and three dimensions. The theory has been incorporated into three computer models that are used to analyze several tailings and cover configurations. This report contains a discussion of the theoretical basis for modeling radon diffusion, a discussion of the computer models used to analyze uranium mill tailings and multilayered cover systems, and presents the results that have been obtained.

  4. Study of indoor radon distribution using measurements and CFD modeling.

    Science.gov (United States)

    Chauhan, Neetika; Chauhan, R P; Joshi, M; Agarwal, T K; Aggarwal, Praveen; Sahoo, B K

    2014-10-01

    Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment.

  5. Sex and smoking sensitive model of radon induced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovsky, M.; Yarmoshenko, I. [Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences, Yekaterinburg (Russian Federation)

    2006-07-01

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  6. Experimental, statistical, and biological models of radon carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cross, F.T.

    1991-09-01

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig.

  7. Preliminary Study for 3D Radon Distribution Modelling in the Room

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ChoongWie; Kim, HeeReyoung [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Radon exists in the form of noble gas, which comes from decay of {sup 238}U, becoming stable {sup 206}Pb going through 4 alpha and 4 beta decays. If this process occurred in human body after inhalation, lung could be damaged by interaction with these radiations causing lung cancer. Most radon in indoor air comes from soil (85 - 97%) through crack of the wall but it also came from wall (2 - 5%) itself in home. Due to its hazardous and unpredictable characteristic, radon became one of the concerning nuclides in indoor air. Hence, the number of survey and research about radon has been increased. Although accurate radon measurement is important to evaluate health risk, it is hard to actually achieve because radon is affected by many conditions, where its concentration can vary easily. Moreover, radon concentration can vary according to the height because of density of radon in the spatial aspect. 3D distribution modelling in the room of radon with aerodynamic features and sources variations was carried out to find average and maximum radon concentration. 3D radon distribution in the room would be find through this computational analysis and it is thought to be possible to correct measured radon concentration with spatial variation to fit the height of nose where inhalation occur. The methodological concept for 3D modelling was set up to solve transport equation for radon behavior by using computational fluid dynamics (CFD) software such as FLUENT.

  8. Modeling and experimental examination of water level effects on radon exhalation from fragmented uranium ore.

    Science.gov (United States)

    Ye, Yong-Jun; Dai, Xin-Tao; Ding, De-Xin; Zhao, Ya-Li

    2016-12-01

    In this study, a one-dimensional steady-state mathematical model of radon transport in fragmented uranium ore was established according to Fick's law and radon transfer theory in an air-water interface. The model was utilized to obtain an analytical solution for radon concentration in the air-water, two-phase system under steady state conditions, as well as a corresponding radon exhalation rate calculation formula. We also designed a one-dimensional experimental apparatus for simulating radon diffusion migration in the uranium ore with various water levels to verify the mathematical model. The predicted results were in close agreement with the measured results, suggesting that the proposed model can be readily used to determine radon concentrations and exhalation rates in fragmented uranium ore with varying water levels. Copyright © 2016. Published by Elsevier Ltd.

  9. Indoor radon measurements and radon prognosis for the province of Kymi, southeastern Finland; Huoneilman radonmittaukset Kymen laeaenissae: Tilannekatsaus ja radonennuste

    Energy Technology Data Exchange (ETDEWEB)

    Pennanen, M.; Maekelaeinen, I.; Voutilainen, A.

    1996-12-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m{sup 3}. It is assumed that no protection against the entry of radon is used in construction. In this study about 5900 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined from maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurements and geological data were used to assess the radon risk from soil and bedrock in different areas. The building sites of the province of Kymi were divided into thirteen sub-areas. The radon prognosis are calculated for the most radon-prone foundation types including (1) houses with a slab-on-grade and (2) houses with a basement or hillside houses with open stairwells between basement and first floor. The radon levels are generally greater in the western part of the area. The radon risk is highest in gravel-dominated esker areas in southwestern, western (in Pyhtaa, Kotka, Anjalankoski, litti, Valkeala) and central (Taipalsaari) parts of the area. The radon risk is also high in some bedrock and till areas, also in southwestern and western parts of the area. In these areas the level of 200 Bq/m{sup 3} will be exceeded in 80 % of new houses. About half of the future houses in these areas will have indoor radon concentrations exceeding 400 Bq/m{sup 3}. The radon risk is lowest in the eastern part of the province of Kymi in every soil type. In this area the level of 200 Bq/m{sup 3} will be exceeded in 30 % of new houses. Below 10 % will exceed 400 Bq/m{sup 3}. (orig.) (14 refs.).

  10. Modeling Joint Exposures and Health Outcomes for Cumulative Risk Assessment: The Case of Radon and Smoking

    Directory of Open Access Journals (Sweden)

    Jonathan I. Levy

    2011-09-01

    Full Text Available Community-based cumulative risk assessment requires characterization of exposures to multiple chemical and non-chemical stressors, with consideration of how the non-chemical stressors may influence risks from chemical stressors. Residential radon provides an interesting case example, given its large attributable risk, effect modification due to smoking, and significant variability in radon concentrations and smoking patterns. In spite of this fact, no study to date has estimated geographic and sociodemographic patterns of both radon and smoking in a manner that would allow for inclusion of radon in community-based cumulative risk assessment. In this study, we apply multi-level regression models to explain variability in radon based on housing characteristics and geological variables, and construct a regression model predicting housing characteristics using U.S. Census data. Multi-level regression models of smoking based on predictors common to the housing model allow us to link the exposures. We estimate county-average lifetime lung cancer risks from radon ranging from 0.15 to 1.8 in 100, with high-risk clusters in areas and for subpopulations with high predicted radon and smoking rates. Our findings demonstrate the viability of screening-level assessment to characterize patterns of lung cancer risk from radon, with an approach that can be generalized to multiple chemical and non-chemical stressors.

  11. Mathematical model of radon activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Zambianchi, Pedro, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)

    2015-07-01

    Present work describes a mathematical model that quantifies the time dependent amount of {sup 222}Rn and {sup 220}Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of {sup 222}Rn and {sup 220}Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since {sup 220}Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to {sup 222}Rn, only. Furthermore, the model also addresses the activity of {sup 220}Rn and {sup 222}Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)

  12. MODEL FOR UNSTEADY OF DIFFUSION –ADVECTION OF RADON IN SOIL – ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Parovik R.I.

    2010-04-01

    Full Text Available We consider a mathematical model for unsteady transport of radon from the constant coefficients in the soil – atmosphere. An explicit analytical solution for this model and built at different times of his profiles.

  13. LARGE BUILDING RADON MANUAL

    Science.gov (United States)

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  14. LARGE BUILDING RADON MANUAL

    Science.gov (United States)

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  15. A generic biokinetic model for noble gases with application to radon

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Marsh, James [Health Protection Agency of Great Britain; Gregoratto, Demetrio [Health Protection Agency of Great Britain; Blanchardon, Eric [IRSN

    2013-01-01

    The International Commission for Radiological Protection (ICRP) currently uses a dose conversion coefficient to calculate effective dose per unit exposure to radon and its progeny. The coefficient is derived by dividing the detriment associated with unit exposure to radon, as estimated from epidemiological studies, by the detriment per unit effective dose, as estimated mainly from atomic bomb survivor data and animal studies. In a recent statement the ICRP indicated that future guidance on exposure to radon and its progeny will be developed in the same way as guidance for any other radionuclide. That is, intake of radon and progeny will be limited on the basis of effective dose coefficients derived from biokinetic and dosimetric models. This paper proposes a biokinetic model for systemic (absorbed) radon for use in the calculation of dose coefficients for inhaled or ingested radon. The model is based largely on physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions are shown to be consistent with results of controlled studies of the fate of internally deposited radon in human subjects.

  16. Continuous Aerodynamic Modelling of Entry Shapes

    NARCIS (Netherlands)

    Dirkx, D.; Mooij, E.

    2011-01-01

    During the conceptual design phase of a re-entry vehicle, the vehicle shape can be varied and its impact on performance evaluated. To this end, the continuous modeling of the aerodynamic characteristics as a function of the shape is useful in exploring the full design space. Local inclination method

  17. Investigation of radon entry and effectiveness of mitigation measures in seven houses in New Jersey: Midproject report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, T.G.; Dudney, C.S.; Monar, K.P.; Landguth, D.C.; Wilson, D.L.; Hawthorne, A.R.; Hubbard, L.M.; Gadsby, K.J.; Bohac, D.L.; Decker, C.A.

    1987-12-01

    A detailed radon mitigation study is in progress in 14 homes in the New Jersey Piedmont area. The principal goals are the refinement of diagnostic measurements for selection and implementation of mitigation systems, and the reduction of radon concentrations to acceptable levels inside the study houses. Monitoring stations were installed in each home in October, 1986. Instrumented measurements included: basement and upstairs radon; differential pressures across the basement/subslag, basement/upstairs and basement/outdoor interfaces; temperatures at basement, upstairs and outdoor locations; and central air handler usage. A weather station was located at one house, monitoring wind speed and direction; barometric pressure; precipitation; soil temperature; and outdoor temperature and relative humidity. A time-averaged value of all of the above parameters was recorded every 30 min. Several additional parameters were monitored on an intermittent basis in all or selected homes. These include multizone air infiltration rates which have been measured in all homes using passive perfluorocarbon tracers (PFT) and in two homes using a constant concentration tracer gas system (CCTG). Total radon progeny, soil gas radon concentration and permeability characteristics, and gamma radiation levels were also monitored periodically in all study homes. 10 refs., 53 figs.

  18. Radon exhalation from uranium mill tailings: experimental validation of a 1-D model.

    Science.gov (United States)

    Ferry, C; Richon, P; Beneito, A; Robé, M C

    2001-01-01

    TRACI, a model based on the physical mechanisms governing the migration of radon in unsaturated soils, has been developed to evaluate the radon flux density at the surface of uranium mill tailings. To check the validity of the TRACI model and the effectiveness of cover layers, an in situ study was launched in 1997 with the French uranium mining company, COGEMA. The study consisted of continuous measurements of moisture content, suction, radon concentration at various depths inside a UMT cover, and flux density at its surface. An initial analysis has shown that radon concentration and flux density, as calculated with a steady-state diffusion model using monthly averaged moisture contents, are in good agreement with measured monthly averaged concentrations and flux densities.

  19. Procedure for the characterization of radon potential in existing dwellings and to assess the annual average indoor radon concentration.

    Science.gov (United States)

    Collignan, Bernard; Powaga, Emilie

    2014-11-01

    Risk assessment due to radon exposure indoors is based on annual average indoor radon activity concentration. To assess the radon exposure in a building, measurement is generally performed during at least two months during heating period in order to be representative of the annual average value. This is because radon presence indoors could be very variable during time. This measurement protocol is fairly reliable but may be a limiting in the radon risk management, particularly during a real estate transaction due to the duration of the measurement and the limitation of the measurement period. A previous field study defined a rapid methodology to characterize radon entry in dwellings. The objective of this study was at first, to test this methodology in various dwellings to assess its relevance with a daily test. At second, a ventilation model was used to assess numerically the air renewal of a building, the indoor air quality all along the year and the annual average indoor radon activity concentration, based on local meteorological conditions, some building characteristics and in-situ characterization of indoor pollutant emission laws. Experimental results obtained on thirteen individual dwellings showed that it is generally possible to obtain a representative characterization of radon entry into homes. It was also possible to refine the methodology defined in the previous study. In addition, numerical assessments of annual average indoor radon activity concentration showed generally a good agreement with measured values. These results are encouraging to allow a procedure with a short measurement time to be used to characterize long-term radon potential in dwellings.

  20. Radon metrology

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S.; Howarth, C. [National Radiological Protection Board, Chilton (United Kingdom)

    1996-09-01

    NRPB carries out calibrations of various types of radon and radon decay product measurement systems for its own purposes and for laboratories throughout Europe. There are currently two radon calibration facilities at NRPB: a 43 m{sup 3} radon chamber and the Fast Radon Exposure Device (FRED), a sealed steel drum. The radon chamber is used for active radon detection systems and the calibration of large numbers of passive detectors. Fred has a high radon concentration and is used to calibrate small numbers of passive radon gas detectors in a short period. (Author).

  1. Modeling of geogenic radon in Switzerland based on ordered logistic regression.

    Science.gov (United States)

    Kropat, Georg; Bochud, François; Murith, Christophe; Palacios Gruson, Martha; Baechler, Sébastien

    2017-01-01

    The estimation of the radon hazard of a future construction site should ideally be based on the geogenic radon potential (GRP), since this estimate is free of anthropogenic influences and building characteristics. The goal of this study was to evaluate terrestrial gamma dose rate (TGD), geology, fault lines and topsoil permeability as predictors for the creation of a GRP map based on logistic regression. Soil gas radon measurements (SRC) are more suited for the estimation of GRP than indoor radon measurements (IRC) since the former do not depend on ventilation and heating habits or building characteristics. However, SRC have only been measured at a few locations in Switzerland. In former studies a good correlation between spatial aggregates of IRC and SRC has been observed. That's why we used IRC measurements aggregated on a 10 km × 10 km grid to calibrate an ordered logistic regression model for geogenic radon potential (GRP). As predictors we took into account terrestrial gamma doserate, regrouped geological units, fault line density and the permeability of the soil. The classification success rate of the model results to 56% in case of the inclusion of all 4 predictor variables. Our results suggest that terrestrial gamma doserate and regrouped geological units are more suited to model GRP than fault line density and soil permeability. Ordered logistic regression is a promising tool for the modeling of GRP maps due to its simplicity and fast computation time. Future studies should account for additional variables to improve the modeling of high radon hazard in the Jura Mountains of Switzerland. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. On the injectivity of the generalized Radon transform arising in a model of mathematical economics

    Science.gov (United States)

    Agaltsov, A. D.

    2016-11-01

    In the present article we consider the uniqueness problem for the generalized Radon transform arising in a mathematical model of production. We prove uniqueness theorems for this transform and for the profit function in the corresponding model of production. Our approach is based on the multidimensional Wiener’s approximation theorems.

  3. Coupling approaches used in atmospheric entry models

    Science.gov (United States)

    Gritsevich, M. I.

    2012-09-01

    While a planet orbits the Sun, it is subject to impact by smaller objects, ranging from tiny dust particles and space debris to much larger asteroids and comets. Such collisions have taken place frequently over geological time and played an important role in the evolution of planets and the development of life on the Earth. Though the search for near-Earth objects addresses one of the main points of the Asteroid and Comet Hazard, one should not underestimate the useful information to be gleaned from smaller atmospheric encounters, known as meteors or fireballs. Not only do these events help determine the linkages between meteorites and their parent bodies; due to their relative regularity they provide a good statistical basis for analysis. For successful cases with found meteorites, the detailed atmospheric path record is an excellent tool to test and improve existing entry models assuring the robustness of their implementation. There are many more important scientific questions meteoroids help us to answer, among them: Where do these objects come from, what are their origins, physical properties and chemical composition? What are the shapes and bulk densities of the space objects which fully ablate in an atmosphere and do not reach the planetary surface? Which values are directly measured and which are initially assumed as input to various models? How to couple both fragmentation and ablation effects in the model, taking real size distribution of fragments into account? How to specify and speed up the recovery of a recently fallen meteorites, not letting weathering to affect samples too much? How big is the pre-atmospheric projectile to terminal body ratio in terms of their mass/volume? Which exact parameters beside initial mass define this ratio? More generally, how entering object affects Earth's atmosphere and (if applicable) Earth's surface? How to predict these impact consequences based on atmospheric trajectory data? How to describe atmospheric entry

  4. Lattice Boltzmann modeling of water entry problems

    Science.gov (United States)

    Zarghami, A.; Falcucci, G.; Jannelli, E.; Succi, S.; Porfiri, M.; Ubertini, S.

    2014-12-01

    This paper deals with the simulation of water entry problems using the lattice Boltzmann method (LBM). The dynamics of the free surface is treated through the mass and momentum fluxes across the interface cells. A bounce-back boundary condition is utilized to model the contact between the fluid and the moving object. The method is implemented for the analysis of a two-dimensional flow physics produced by a symmetric wedge entering vertically a weakly-compressible fluid at a constant velocity. The method is used to predict the wetted length, the height of water pile-up, the pressure distribution and the overall force on the wedge. The accuracy of the numerical results is demonstrated through comparisons with data reported in the literature.

  5. RADON MITIGATION IN SCHOOLS: CASE STUDIES OF RADON MITIGATION SYSTEMS INSTALLED BY EPA IN FOUR MARYLAND SCHOOLS ARE PRESENTED

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air-conditioning -- HVAC-- system design and operation) that influence radon entry and mitigation system ...

  6. RADON MITIGATION IN SCHOOLS: CASE STUDIES OF RADON MITIGATION SYSTEMS INSTALLED BY EPA IN FOUR MARYLAND SCHOOLS ARE PRESENTED

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air-conditioning -- HVAC-- system design and operation) that influence radon entry and mitigation system ...

  7. Evaluation of the intake of radon through skin from thermal water.

    Science.gov (United States)

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-07-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model-the skin permeability coefficient K (m s(-1))-were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period).

  8. Evaluation of the intake of radon through skin from thermal water

    Science.gov (United States)

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-01-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model—the skin permeability coefficient K (m s−1)—were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). PMID:26983980

  9. Methodological aspects of journaling a dynamic adjusting entry model

    Directory of Open Access Journals (Sweden)

    Vlasta Kašparovská

    2011-01-01

    Full Text Available This paper expands the discussion of the importance and function of adjusting entries for loan receivables. Discussion of the cyclical development of adjusting entries, their negative impact on the business cycle and potential solutions has intensified during the financial crisis. These discussions are still ongoing and continue to be relevant to members of the professional public, banking regulators and representatives of international accounting institutions. The objective of this paper is to evaluate a method of journaling dynamic adjusting entries under current accounting law. It also expresses the authors’ opinions on the potential for consistently implementing basic accounting principles in journaling adjusting entries for loan receivables under a dynamic model.

  10. Entry Location and Entry Timing (ELET Decision Model for International Construction Firms

    Directory of Open Access Journals (Sweden)

    Che Maznah Mat Isa

    2014-09-01

    Full Text Available This paper proposes a model for entry location (EL and entry timing (ET decisions to guide construction firms in accessing targeted international markets.  Neglecting to properly choose the right combination of the entry location and entry timing (ELET decisions can lead to poor performance of the firms’ international ventures.  The sampling frame was from the Malaysian construction firms that have undertaken and completed projects abroad.  Survey questionnaires sent to 115 firms registered with Construction Industry Development Board (CIDB Malaysia, operating in more than 50 countries, achieved a 39.1 per cent response rate. Based on a comprehensive statistical analysis of survey data it was found that the mutually inclusive significant factors that influenced the firms’ ELET decisions were: the firm’s ability to assess market signals and opportunities, international experience, financial capacity, competencies and capabilities (project management, specialist expertise and technology, resources (level of knowledge based on research and development, experience in similar works, financial support from the home country banks, technical complexities of projects and availability of funds for projects.  Hence, the present research builds on and extends the literature on the ELET decisions in a more integrated way. Keywords: Entry location, entry timing, resource-based view, international markets, Malaysian construction firms.

  11. Entry ramps in the Nagel-Schreckenberg model

    DEFF Research Database (Denmark)

    Pedersen, Morten Monrad; Ruhoff, Peder Thusgaard

    2002-01-01

    This paper describes a way of including entry ramps in the Nagel-Schreckenberg traffic model. The idea is to place what are called shadow cars on a highway next to cars on entry ramps, which enables the drivers to take ramp cars into account. The model is shown to capture important real......-life traffic phenomena that have not been included in previous models. Furthermore, it is demonstrated that the desirable properties of the Nagel-Schreckenberg model are retained....

  12. Radon-Instrumentation; Radon-Instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, 4 Sur 104, Centro Historico 72000 Puebla (Mexico)

    2003-07-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  13. Atmospheric radionuclide transport model with radon postprocessor and SBG module. Model description version 2.8.0; ARTM. Atmosphaerisches Radionuklid-Transport-Modell mit Radon Postprozessor und SBG-Modul. Modellbeschreibung zu Version 2.8.0

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia; Sogalla, Martin; Thielen, Harald; Martens, Reinhard

    2015-04-20

    The study on the atmospheric radionuclide transport model with radon postprocessor and SBG module (model description version 2.8.0) covers the following issues: determination of emissions, radioactive decay, atmospheric dispersion calculation for radioactive gases, atmospheric dispersion calculation for radioactive dusts, determination of the gamma cloud radiation (gamma submersion), terrain roughness, effective source height, calculation area and model points, geographic reference systems and coordinate transformations, meteorological data, use of invalid meteorological data sets, consideration of statistical uncertainties, consideration of housings, consideration of bumpiness, consideration of terrain roughness, use of frequency distributions of the hourly dispersion situation, consideration of the vegetation period (summer), the radon post processor radon.exe, the SBG module, modeling of wind fields, shading settings.

  14. A dose rate model predicting radon-induced lung cancer risk in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, W.; Lettner, H. (Salzburg Univ. (Austria). Div. of Biophysics); Crawford-Brown, D.J. (North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering)

    1992-01-01

    The laboratory rat has been used in inhalation studies as a surrogate to estimate human lung cancer risk following exposure to ambient radon progeny. Deposition, mucociliary clearance and dosimetry for the inhalation of radon progeny in the rat lung have been simulated for a variety of inhalation conditions. A state-vector model for radiation carcinogenesis has then been applied to predict the carcinogenic risk in the rat lung for different doses and dose rates. The model is based on the concepts of initiation and promotion, with the irradiation acting both to damage intercellular structures and to change the state of cells surrounding an initiated cell. Predicted lung cancer incidences show fair agreement with the experimental data. Consistent with the experimental evidence is the inverse dose rate effect observed for intermediate cumulative exposures. (author).

  15. Use of linear regression models to determine influence factors on the concentration levels of radon in occupied houses

    Science.gov (United States)

    Buermeyer, Jonas; Gundlach, Matthias; Grund, Anna-Lisa; Grimm, Volker; Spizyn, Alexander; Breckow, Joachim

    2016-09-01

    This work is part of the analysis of the effects of constructional energy-saving measures to radon concentration levels in dwellings performed on behalf of the German Federal Office for Radiation Protection. In parallel to radon measurements for five buildings, both meteorological data outside the buildings and the indoor climate factors were recorded. In order to access effects of inhabited buildings, the amount of carbon dioxide (CO2) was measured. For a statistical linear regression model, the data of one object was chosen as an example. Three dummy variables were extracted from the process of the CO2 concentration to provide information on the usage and ventilation of the room. The analysis revealed a highly autoregressive model for the radon concentration with additional influence by the natural environmental factors. The autoregression implies a strong dependency on a radon source since it reflects a backward dependency in time. At this point of the investigation, it cannot be determined whether the influence by outside factors affects the source of radon or the habitant’s ventilation behavior resulting in variation of the occurring concentration levels. In any case, the regression analysis might provide further information that would help to distinguish these effects. In the next step, the influence factors will be weighted according to their impact on the concentration levels. This might lead to a model that enables the prediction of radon concentration levels based on the measurement of CO2 in combination with environmental parameters, as well as the development of advices for ventilation.

  16. Retrospective measurements of thoron and radon by CDs/DVDs: a model approach.

    Science.gov (United States)

    Pressyanov, Dobromir S

    2012-05-01

    An approach for retrospective measurements of thoron ((220)Rn) and radon ((222)Rn) by home-stored CDs/DVDs is proposed. It employs analysis of alpha tracks at two depths beneath the disk surface. The signal in the first one (69 µm) is due both to (220)Rn and (222)Rn, while the signal at the second (80 µm) is due only to (222)Rn. The second signal is used as to measure (222)Rn, as well as to determine and subtract 'the (222)Rn component' from the first signal. The remaining '(220)Rn component' is used to measure thoron. Numerical modelling is performed and the results show that simultaneous retrospective measurements of thoron and radon are possible over a wide range of environmental concentrations.

  17. Physics-Based Modeling of Meteor Entry and Breakup

    Science.gov (United States)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kang; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; Tauber, Michael E.; Venkatapathy, Ethiraj

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup.Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood.On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/sq cm. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  18. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?

    Science.gov (United States)

    Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos

    2014-12-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration.

  19. Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data.

    Science.gov (United States)

    Appleton, J D; Miles, J C H; Young, M

    2011-03-15

    Publicly available information about radon potential in Northern Ireland is currently based on indoor radon results averaged over 1-km grid squares, an approach that does not take into account the geological origin of the radon. This study describes a spatially more accurate estimate of the radon potential of Northern Ireland using an integrated radon potential mapping method based on indoor radon measurements and geology that was originally developed for mapping radon potential in England and Wales. A refinement of this method was also investigated using linear regression analysis of a selection of relevant airborne and soil geochemical parameters from the Tellus Project. The most significant independent variables were found to be eU, a parameter derived from airborne gamma spectrometry measurements of radon decay products in the top layer of soil and exposed bedrock, and the permeability of the ground. The radon potential map generated from the Tellus data agrees in many respects with the map based on indoor radon data and geology but there are several areas where radon potential predicted from the airborne radiometric and permeability data is substantially lower. This under-prediction could be caused by the radon concentration being lower in the top 30 cm of the soil than at greater depth, because of the loss of radon from the surface rocks and soils to air. Copyright © 2011. Published by Elsevier B.V.

  20. RADON MITIGATION IN SCHOOLS: HVAC SYTEMS IN SCHOOLS TEND TO HAVE A GREATER IMPACT ON RADON LEVELS THAN HVAC SYSTEMS IN HOMES

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...

  1. RADON MITIGATION IN SCHOOLS: HVAC SYTEMS IN SCHOOLS TEND TO HAVE A GREATER IMPACT ON RADON LEVELS THAN HVAC SYSTEMS IN HOMES

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...

  2. Application of an Aesthetic Evaluation Model to Data Entry Screens.

    Science.gov (United States)

    Ngo, D. C. L.; Byrne, J. G.

    2001-01-01

    Describes a new model for quantitatively assessing screen formats. Results of applying the model to data entry screens support the use of the model. Also described is a critiquing mechanism embedded in a user interface design environment as a demonstration of this approach. (Author/AEF)

  3. Modelling of radon concentration peaks in thermal spas: application to Polichnitos and Eftalou spas (Lesvos Island--Greece).

    Science.gov (United States)

    Vogiannis, Efstratios; Nikolopoulos, Dimitrios

    2008-11-01

    A mathematical model was developed for the description of radon concentration peaks observed in thermal spas. Modelling was based on a pragmatic mix of estimation and measurement of involved physical parameters. The model utilised non-linear first order derivative mass balance differential equations. The equations were described and solved numerically by the use of specially developed computer codes. To apply and check the model, measurements were performed in two thermal spas in Greece (Polichnitos and Eftalou-Lesvos Island). Forty different measurement sets were collected to estimate the concentration variations of indoor-outdoor radon, radon in the entering thermal water, the ventilation rate, the bathtub surface and the bath volume. Turbulence and diffusive phenomena involved in radon concentration variations were attributed to a time varying contact interfacial area (equivalent area). This area was approximated with the use of a mathematical function. Other model parameters were estimated from the literature. Through numerical solving and use of non-linear statistics, the time variations of the equivalent area were estimated for every measurement set. Computationally applied non-linear uncertainty analysis showed less sensitive variations of the coefficients of the equivalent area compared to parameters of the model. Modelled and measured radon concentration peaks were compared by the use of three statistical criteria for the goodness-of-fit. All the investigated peaks exhibited low error probability (***p<0.001) for all criteria. It was concluded that the present modelling achieved to predict the measured radon concentration peaks. Through adequate selection of model parameters the model may be applied to other thermal spas.

  4. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    Science.gov (United States)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  5. Radon as a tool for characterising atmospheric stability effects on air pollution concentrations in model evaluation studies

    Science.gov (United States)

    Chambers, Scott; Williams, Alastair; Crawford, Jagoda; Griffiths, Alan

    2015-04-01

    A clearer understanding of the variability in near-surface concentrations of pollutants in urban regions is essential for improving the predictive abilities of chemical transport models as well as identifying the need for (and assessing the efficacy of) emission mitigation strategies. Pollutant concentrations in the atmospheric boundary layer (ABL) are a complex function of many factors, including: source strengths and distribution, local meteorology and air chemistry. On short (sub-diurnal) timescales, the extent of the vertical column within which emissions mix usually has the largest influence on measured concentrations, and the depth of this mixing volume is in turn closely related to wind speed and the thermal stability of the ABL. Continuous hourly observations of the ubiquitous, surface-emitted, passive tracer radon-222 provide a powerful alternative to contemporary meteorological techniques for assessing stability effects on urban pollutants, because radon's concentration is closely matched with pollution transport processes at the surface. Here we outline a technique by which single-height, near-surface (pollution monitoring to provide benchmarking tools for local- to regional- chemical transport model evaluations. Efficacy of the radon-based classification scheme is compared to that based on conventional Pasquil-Gifford "turbulence" and "radiation" schemes. Lastly, we apply the radon-based classification scheme to nocturnal mixing height estimates calculated from the diurnal radon accumulation time series, and provide insight to the range of nocturnal mixing depths expected for each of the stability classes.

  6. Theoretical modeling of indoor radon concentration and its validation through measurements in South-East Haryana, India.

    Science.gov (United States)

    Singh, Prabhjot; Sahoo, B K; Bajwa, B S

    2016-04-15

    A three dimensional semi-empirical model deduced from the existing 1-D model has been used to predict indoor radon concentration with theoretical calculations. Since the major contributor of radon concentration in indoors originates from building materials used in construction of walls and floor which are mostly derived from soil. In this study different building materials have been analyzed for radon exhalation, diffusion length along with physical dimensions of observation area to calculate indoor radon concentration. Also calculated values have been validated by comparing with experimental measurements. The study has been carried out in the mud, brick and cement houses constructed from materials available locally in South-East region of Haryana. This region is also known for its protruding land structure consisting volcanic, felsite and granitic rocks in plane. Further, exhalation (Jw) ratio from wall and floor comparison has been plotted for each selected village dwelling to identify the high radon emanating source (building material) from the study region. All those measured factors might be useful in building construction code development and selection of material to be used in construction.

  7. Comparison of two numerical modelling approaches to a field experiment of unsaturated radon transport in a covered uranium mill tailings soil (Lavaugrasse, France).

    Science.gov (United States)

    Saâdi, Zakaria; Guillevic, Jérôme

    2016-01-01

    Uncertainties on the mathematical modelling of radon ((222)Rn) transport in an unsaturated covered uranium mill tailings (UMT) soil at field scale can have a great impact on the estimation of the average measured radon exhalation rate to the atmosphere at the landfill cover. These uncertainties are usually attributed to the numerical errors from numerical schemes dealing with soil layering, and to inadequate modelling of physical processes at the soil/plant/atmosphere interface and of the soil hydraulic and transport properties, as well as their parameterization. In this work, we demonstrate how to quantify these uncertainties by comparing simulation results from two different numerical models to experimental data of radon exhalation rate and activity concentration in the soil-gas measured in a covered UMT-soil near the landfill site Lavaugrasse (France). The first approach is based on the finite volume compositional (i.e., water, radon, air) transport model TOUGH2/EOS7Rn (Transport Of Unsaturated Groundwater and Heat version 2/Equation Of State 7 for Radon; Saâdi et al., 2014), while the second one is based on the finite difference one-component (i.e., radon) transport model TRACI (Transport de RAdon dans la Couche Insaturée; Ferry et al., 2001). Transient simulations during six months of variable rainfall and atmospheric air pressure showed that the model TRACI usually overestimates both measured radon exhalation rate and concentration. However, setting effective unsaturated pore diffusivities of water, radon and air components in soil-liquid and gas to their physical values in the model EOS7Rn, allowed us to enhance significantly the modelling of these experimental data. Since soil evaporation has been neglected, none of these two models was able to simulate the high radon peaks observed during the dry periods of summer. However, on average, the radon exhalation rate calculated by EOS7Rn was 34% less than that was calculated by TRACI, and much closer to the

  8. Modeling Lung Carcinogenesis in Radon-Exposed Miner Cohorts: Accounting for Missing Information on Smoking.

    Science.gov (United States)

    van Dillen, Teun; Dekkers, Fieke; Bijwaard, Harmen; Brüske, Irene; Wichmann, H-Erich; Kreuzer, Michaela; Grosche, Bernd

    2016-05-01

    Epidemiological miner cohort data used to estimate lung cancer risks related to occupational radon exposure often lack cohort-wide information on exposure to tobacco smoke, a potential confounder and important effect modifier. We have developed a method to project data on smoking habits from a case-control study onto an entire cohort by means of a Monte Carlo resampling technique. As a proof of principle, this method is tested on a subcohort of 35,084 former uranium miners employed at the WISMUT company (Germany), with 461 lung cancer deaths in the follow-up period 1955-1998. After applying the proposed imputation technique, a biologically-based carcinogenesis model is employed to analyze the cohort's lung cancer mortality data. A sensitivity analysis based on a set of 200 independent projections with subsequent model analyses yields narrow distributions of the free model parameters, indicating that parameter values are relatively stable and independent of individual projections. This technique thus offers a possibility to account for unknown smoking habits, enabling us to unravel risks related to radon, to smoking, and to the combination of both.

  9. Reduced Chemical Kinetic Model for Titan Entries

    Directory of Open Access Journals (Sweden)

    Romain Savajano

    2011-01-01

    Full Text Available A reduced chemical kinetic model for Titan's atmosphere has been developed. This new model with 18 species and 28 reactions includes the mainfeatures of a more complete scheme, respecting the radiative fluxes. It has been verified against three key elements: a sensitivity analysis, the equilibrium chemical composition using shock tube simulations in CHEMKIN, and the results of computational fluid dynamics (CFDs simulations.

  10. Mapping indoor radon-222 in Denmark: Design and test of the statistical model used in the second nationwide survey

    DEFF Research Database (Denmark)

    Andersen, C.E.; Ulbak, K.; Damkjær, A.

    2001-01-01

    In Denmark, a new survey of indoor radon-222 has been carried out. 1-year alpha track measurements (CR-39) have been made in 3019 single-family houses. There are from 3 to 23 house measurements in each of the 275 municipalities. Within each municipality, houses have been selected randomly. One...... important outcome of the survey is the prediction of the fraction of houses in each municipality with an annual average radon concentration above 200 Bq m(-3). To obtain the most accurate estimate and to assess the associated uncertainties, a statistical model has been developed. The purpose of this paper...

  11. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de inho

  12. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de inho

  13. Two-stage model of radon-induced malignant lung tumors in rats: effects of cell killing

    Science.gov (United States)

    Luebeck, E. G.; Curtis, S. B.; Cross, F. T.; Moolgavkar, S. H.

    1996-01-01

    A two-stage stochastic model of carcinogenesis is used to analyze lung tumor incidence in 3750 rats exposed to varying regimens of radon carried on a constant-concentration uranium ore dust aerosol. New to this analysis is the parameterization of the model such that cell killing by the alpha particles could be included. The model contains parameters characterizing the rate of the first mutation, the net proliferation rate of initiated cells, the ratio of the rates of cell loss (cell killing plus differentiation) and cell division, and the lag time between the appearance of the first malignant cell and the tumor. Data analysis was by standard maximum likelihood estimation techniques. Results indicate that the rate of the first mutation is dependent on radon and consistent with in vitro rates measured experimentally, and that the rate of the second mutation is not dependent on radon. An initial sharp rise in the net proliferation rate of initiated cell was found with increasing exposure rate (denoted model I), which leads to an unrealistically high cell-killing coefficient. A second model (model II) was studied, in which the initial rise was attributed to promotion via a step function, implying that it is due not to radon but to the uranium ore dust. This model resulted in values for the cell-killing coefficient consistent with those found for in vitro cells. An "inverse dose-rate" effect is seen, i.e. an increase in the lifetime probability of tumor with a decrease in exposure rate. This is attributed in large part to promotion of intermediate lesions. Since model II is preferable on biological grounds (it yields a plausible cell-killing coefficient), such as uranium ore dust. This analysis presents evidence that a two-stage model describes the data adequately and generates hypotheses regarding the mechanism of radon-induced carcinogenesis.

  14. Radon dispersion modeling and dose assessment for uranium mine ventilation shaft exhausts under neutral atmospheric stability.

    Science.gov (United States)

    Xie, Dong; Wang, Hanqing; Kearfott, Kimberlee J; Liu, Zehua; Mo, Shunquan

    2014-03-01

    In the present study, the roles of atmospheric wind profiles in the neutral atmosphere and surface roughness parameters in a complex terrain were examined to determine their impacts on radon ((222)Rn) dispersion from an actual uranium mine ventilation shaft. Simulations were completed on (222)Rn dispersion extending from the shaft to a vulnerable distance, near the location of an occupied farmhouse. The eight dispersion scenarios for the ventilation shaft source included four downwind velocities (0.5, 1.0, 2.0 and 4.0 m s(-1)) and two underlying surface roughness characteristics (0.1 m and 1.0 m). (222)Rn distributions and elevated pollution regions were identified. Effective dose estimation methods involving a historical weighting of wind speeds in the direction of interest coupled to the complex dispersion model were proposed. Using this approach, the radiation effects on the residents assumed to be outside at the location of the farm house 250 m downwind from the ventilation shaft outlet were computed. The maximum effective dose rate calculated for the residents at the outside of the farm house was 2.2 mSv y(-1), which is less than the low limit action level of 3-10 mSv y(-1) recommended by the International Commission on Radiological Protection (ICRP) occupational exposure action level for radon.

  15. Simulation of the steady-state transport of radon from soil into houses with basements under constant negative pressure

    Energy Technology Data Exchange (ETDEWEB)

    de Oliveira Loureiro, C.

    1987-05-01

    A theoretical model was developed to simulate this phenomenon, under some specific assumptions. The model simulates: the generation and decay of radon within the soil; its transport throughout the soil due to diffusion and convection induced by the pressure disturbance applied at a crack in the basement; its entrance into the house through the crack; and the resultant indoor radon concentration. The most important assumptions adopted in the model were: a steady-state condition; a house with a basement; a geometrically well-defined crack at the wall-floor joint in the basement; and a constant negative pressure applied at the crack in relation to the outside atmospheric pressure. Two three-dimensional finite-difference computer programs were written to solve the mathematical equations of the model. The first program, called PRESSU, was used to calculate: the pressure distribution within the soil as a result of the applied disturbance pressure at the crack; and the resultant velocity distribution of the soil gas throughout the soil matrix. The second program, called MASTRA, was used to: solve the radon mass-transport equation, and to calculate the concentration distribution of radon in the soil gas within the whole soil; and to calculate the entry rate of radon through the crack into the basement, and the final indoor radon concentration. A parametric sensitivity analysis performed on the model, revealed several features of the mechanisms involved in the transport of radon into the house. 84 refs., 66 figs., 16 tabs.

  16. Physics-based Entry, Descent and Landing Risk Model

    Science.gov (United States)

    Gee, Ken; Huynh, Loc C.; Manning, Ted

    2014-01-01

    A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.

  17. Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model

    Science.gov (United States)

    Wood, W.W.; Kraemer, T.F.; Shapiro, A.

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  18. A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France.

    Science.gov (United States)

    Demoury, C; Ielsch, G; Hemon, D; Laurent, O; Laurier, D; Clavel, J; Guillevic, J

    2013-12-01

    Radon-222 is a radioactive natural gas produced by the decay of radium-226, known to be the main contributor to natural background radiation exposure. Effective risk management needs to determine the areas in which the density of buildings with high radon levels is likely to be highest. Predicting radon exposure from the location and characteristics of a dwelling could also contribute to epidemiological studies. Beginning in the nineteen-eighties, a national radon survey consisting in more than 10,000 measurements of indoor radon concentrations was conducted in French dwellings by the Institute for Radiological Protection and Nuclear Safety (IRSN). Housing characteristics, which may influence radon accumulation in dwellings, were also collected. More recently, the IRSN generated a French geogenic radon potential map based on the interpretation of geological features. The present study analyzed the two datasets to investigate the factors influencing indoor radon concentrations using statistical modeling and to determine the optimum use of the information on geogenic radon potential that showed the best statistical association with indoor radon concentration. The results showed that the variables associated with indoor radon concentrations were geogenic radon potential, building material, year of construction, foundation type, building type and floor level. The model, which included the surrounding geogenic radon potential (i.e. the average geogenic radon potential within a disc of radius 20 km centered on the indoor radon measurement point) and variables describing house-specific factors and lifestyle explained about 20% of the overall variability of the logarithm of radon concentration. The surrounding geogenic radon potential was fairly closely associated with the local average indoor radon concentration. The prevalence of exposure to radon above specific thresholds and the average exposures to radon clearly increased with increasing classes of geogenic radon

  19. Study of radon dispersion in typical dwelling using CFD modeling combined with passive-active measurements

    Science.gov (United States)

    Rabi, R.; Oufni, L.

    2017-10-01

    Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Indoor air conditions and ventilation systems strongly influence the indoor radon concentration. This study focuses on investigating both numerically and experimentally the influence of environmental conditions on the indoor radon concentration and spatial distribution. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on both radon content and distribution. The variations of radon concentration with the ventilation, temperature and relative humidity are discussed. The measurement results show the diurnal variations of the indoor radon concentration are found to exhibit a positive correlation with relative humidity and negatively correlate with the air temperature. The analytic solution is used to validate the numeric results. The comparison amongst analytical, numerical and measurement results shows close agreement.

  20. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the cra

  1. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the cra

  2. Measurements on, and modelling of diffusive and advective radon transport in soil

    DEFF Research Database (Denmark)

    Graff, E.R. van der; Witteman, G.A.A.; Spoel, W.H. van der;

    1994-01-01

    Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted...... into the vessel to measure the radon concentration in the soil gas. To study advective radon transport a perforated circular box is placed in the sand close to the bottom of the vessel. By pressurising this box, an air flow through the sand column is induced. Radon concentration profiles were measured without...... an air flow as a function of time, and for several values of the air flow, equilibrium radon concentration profiles were measured....

  3. Huygens probe entry dynamic model and accelerometer data analysis

    Science.gov (United States)

    Colombatti, Giacomo; Aboudan, Alessio; Ferri, Francesca; Angrilli, Francesco

    2008-04-01

    During the first phase of Huygens arrival into Titan's atmosphere the probe is subjected to gravitational and aerodynamic forces in aerodynamic hypersonic regime. Atmospheric drag exerts a strong deceleration on the capsule measured by Huygens atmospheric structure instrument (HASI) servo accelerometer. A 6 DOF (Degree of Freedom) model of the Huygens probe entry dynamics has been developed and used for data analysis. The accelerometer data are analysed and the model allows the retrieval of dynamics information of Huygens probe from 1545 km altitude down to end of the entry phase. Probe's initial conditions (velocity and position) were refined to match the measured deceleration profile resulting in a different altitude at interface epoch with respect to those of the Cassini Navigation Team. Velocity and position of probe at interface epoch are compatible with those used by Descent Trajectory Working Group (DTWG). Measurements acquired before atmosphere detection are used to estimate probe's angular rate, bound attitude and characterise the angle of attack profile which results to be lower than 4∘ during the whole entry. Probe's spin calculated (6.98 RPM) is slightly different with respect to DTWG of 7.28 RPM but considering a 2% error in the Inertia matrix these results are inside the 1-σ error band.

  4. A European-wide 222Radon and 222Radon progeny comparison study

    OpenAIRE

    Schmithüsen, Dominik; Chambers, Scott; Fischer, Bernd; Gilge, Stefan; Hatakka, Juha; Kazan, Victor; Neubert, Rolf; Paatero, Jussi; Ramonet, Michel; Schlosser, Clemens; Schmid, Sabine; Vermeulen, Alex; Levin, Ingeborg

    2016-01-01

    A European-wide 222Radon/222Radon progeny comparison study has been conducted in order to determine correction factors that could be applied to existing atmospheric 222Radon data sets for quantitative use of this tracer in atmospheric transport model validation. Two compact and easy-to-transport Heidelberg Radon Monitors (HRM) were moved around to run for at least one month at each of the nine European measurement stations that were included in the comparison. Linear regressions between paral...

  5. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. Crusius

    2005-01-01

    Full Text Available Submarine groundwater discharge was quantified by a variety of methods for a 4-day period during the early summer of 2004, in Salt Pond, adjacent to Nauset Marsh, on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. The data suggest that less than one quarter of the discharge in the vicinity of Salt Pond happened within the pond itself, while three quarters or more of the discharge occurred immediately seaward of the pond, either in the channel or in adjacent regions of Nauset Marsh. Much of this discharge, which maintains high radon activities and low salinity, is carried into the pond during each incoming tide. A box model was used as an aid to understand both the rates and the locations of discharge in the vicinity of Salt Pond. The model achieves a reasonable fit to both the salinity and radon data assuming submarine groundwater discharge is fresh and that most of it occurs either in the channel or in adjacent regions of Nauset Marsh. Salinity and radon data, together with seepage meter results, do not rule out discharge of saline groundwater, but suggest either that the saline discharge is at most comparable in volume to the fresh discharge or that it is depleted in radon. The estimated rate of fresh groundwater discharge in the vicinity of Salt Pond is 3000-7000 m3 d-1. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004, although the model predicts this rate of discharge to the pond whereas our data suggest most of the groundwater bypasses the pond prior to discharge. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to

  6. The radon EDM apparatus

    Science.gov (United States)

    Tardiff, E. R.; Rand, E. T.; Ball, G. C.; Chupp, T. E.; Garnsworthy, A. B.; Garrett, P.; Hayden, M. E.; Kierans, C. A.; Lorenzon, W.; Pearson, M. R.; Schaub, C.; Svensson, C. E.

    2014-01-01

    The observation of a permanent electric dipole moment (EDM) at current experimentally accessible levels would provide clear evidence of physics beyond the Standard Model. EDMs violate CP symmetry, making them a possible route to explaining the size of the observed baryon asymmetry in the universe. The Radon EDM Experiment aims to search for an EDM in radon isotopes whose sensitivity to CP-odd interactions is enhanced by octupole-deformed nuclei. A prototype apparatus currently installed in the ISAC hall at TRIUMF includes a gas handling system to move radon from a collection foil to a measurement cell and auxiliary equipment for polarization diagnostics and validation. The features and capabilities of the apparatus are described and an overview of the experimental design for a gamma-ray-anisotropy based EDM measurement is provided.

  7. Modeling of lung cancer risk due to radon exhalation of granite stone in dwelling houses

    Directory of Open Access Journals (Sweden)

    Akbar Abbasi

    2017-01-01

    Conclusions: The estimated numbers of lung cancer deaths attributable to indoor radon due to granite stones in 2013 were 145 (3.33% and 103 (2.37% for poor and normal ventilation systems, respectively. According to our estimations, the values of 3.33% and 2.37% of lung cancer deaths in 2013 are attributed to radon exhalation of granite stones with poor and normal ventilation systems, respectively.

  8. Applying Foreign Entry Market Strategies to UK Higher Education Transnational Education Models

    Science.gov (United States)

    Lindsay, Victoria; Antoniou, Christos

    2016-01-01

    We take a multidisciplinary approach mapping the models used by UK higher education (HE) institutions against established international business foreign market entry strategies. We review the conditions in host markets that facilitate market entry and consider how these will determine foreign market entry strategy. We specifically consider four…

  9. Identifying missing dictionary entries with frequency-conserving context models

    Science.gov (United States)

    Williams, Jake Ryland; Clark, Eric M.; Bagrow, James P.; Danforth, Christopher M.; Dodds, Peter Sheridan

    2015-10-01

    In an effort to better understand meaning from natural language texts, we explore methods aimed at organizing lexical objects into contexts. A number of these methods for organization fall into a family defined by word ordering. Unlike demographic or spatial partitions of data, these collocation models are of special importance for their universal applicability. While we are interested here in text and have framed our treatment appropriately, our work is potentially applicable to other areas of research (e.g., speech, genomics, and mobility patterns) where one has ordered categorical data (e.g., sounds, genes, and locations). Our approach focuses on the phrase (whether word or larger) as the primary meaning-bearing lexical unit and object of study. To do so, we employ our previously developed framework for generating word-conserving phrase-frequency data. Upon training our model with the Wiktionary, an extensive, online, collaborative, and open-source dictionary that contains over 100 000 phrasal definitions, we develop highly effective filters for the identification of meaningful, missing phrase entries. With our predictions we then engage the editorial community of the Wiktionary and propose short lists of potential missing entries for definition, developing a breakthrough, lexical extraction technique and expanding our knowledge of the defined English lexicon of phrases.

  10. EFFECTIVENESS OF RADON CONTROL FEATURES IN NEW HOUSE CONSTRUCTION - SOUTH CENTRAL FLORIDA

    Science.gov (United States)

    The report gives results of a study to evaluate the effectiveness of two slab types (monolithic and slab-in-stem wall) in retarding radon entry in new homes built in accordance with the State of Florida's proposed radon standard for new construction over high radon potential soil...

  11. Radon monitoring and hazard prediction in Ireland

    Science.gov (United States)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie

    2016-04-01

    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given

  12. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 2. APPENDICES

    Science.gov (United States)

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  13. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 2. APPENDICES

    Science.gov (United States)

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  14. Managing Radon in Schools

    Science.gov (United States)

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  15. Measurement and apportionment of radon source terms for modeling indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Harley, N.H.

    1992-01-01

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor [sup 222]Rn and in [sup 222]Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house [sup 222]Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater [sup 222]Rn concentration than the measured outdoor [sup 222]Rn. Apartment dwellers generally represent a low risk group regarding [sup 222]Rn exposure. The following sections describe the main projects in some detail.

  16. Modelling radiation exposure in homes from siporex blocks by using exhalation rates of radon

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available Building materials are the second major source of indoor radon, after soil. The contribution of building materials to indoor radon amount depends upon the radium content and exhalation rates, which can be used as a primary index for radon levels in the dwellings. This paper presents the results of using the experimentally determined exhalation rates of siporex blocks and concrete plates, to assess the radiation exposure in dwellings built of siporex blocks. The annual doses in rooms have been estimated depending on the established modes of ventilation. Realistic scenario was created to predict an annual effective dose for an old person, a housewife, a student, and an employed tenant, who live in the same apartment, spending different periods of time in it. The results indicate the crucial importance of good ventilation of the living space.

  17. Geostatistical simulations for radon indoor with a nested model including the housing factor.

    Science.gov (United States)

    Cafaro, C; Giovani, C; Garavaglia, M

    2016-01-01

    The radon prone areas definition is matter of many researches in radioecology, since radon is considered a leading cause of lung tumours, therefore the authorities ask for support to develop an appropriate sanitary prevention strategy. In this paper, we use geostatistical tools to elaborate a definition accounting for some of the available information about the dwellings. Co-kriging is the proper interpolator used in geostatistics to refine the predictions by using external covariates. In advance, co-kriging is not guaranteed to improve significantly the results obtained by applying the common lognormal kriging. Here, instead, such multivariate approach leads to reduce the cross-validation residual variance to an extent which is deemed as satisfying. Furthermore, with the application of Monte Carlo simulations, the paradigm provides a more conservative radon prone areas definition than the one previously made by lognormal kriging.

  18. Lung cancer attributable to indoor radon exposure in France using different risk models

    Energy Technology Data Exchange (ETDEWEB)

    Catelinois, O.C.; Laurier, D.L.; Rogel, A.R.; Billon, S.B.; Tirmarche, M.T. [Institute for Radiological Protection and Nuclear Safety, 92 - Fontenay aux Roses (France); Hemon, Dh. [INSERM -U170-IFR69, 94 - Villejuif (France); Verger, P.V. [Regional Health Observatory Provence Alpes Cote d' Azur, 13 - Marseille (France)

    2006-07-01

    Full text of publication follows: Radon exposure is omnipresent for the general public, but at variable levels, because radon mainly comes from granitic and volcanic subs oils as well as from certain construction materials. Inhalation of radon is the main source of exposure to radioactivity in the general population of most countries. In 1988, the International Agency for Research on Cancer declared radon to be carcinogenic for humans (lung cancer): radon is classed in the group 1. The exposure of the overall general population to a carcinogenic component led scientists to assess the lung cancer risk associated to indoor radon. The aim of this work is to provide the first lung cancer risk assessment associated with indoor radon exposure in France, using all available epidemiological results and performing an uncertainty analysis. The number of lung cancer deaths potentially associated with radon in houses is estimated for the year 1999 according to several dose-response relationships which come from either cohorts of miners or joint analysis of residential case-controls studies. The variability of indoor radon exposure in France and uncertainties related to each of the dose-response relationships are considered. The assessment of lung cancer risk associated with domestic radon exposure considers 10 dose-response relationships resulting from miners cohorts and case-control studies in the general population. A critical review of available data on smoking habits has been performed and allowed to consider the interaction between radon and tobacco. The exposure data come from measurements campaigns carried out since the beginning of the 1980's by the Institute for Radiation protection and Nuclear Safety and the Health General Directory in France. The French lung cancer mortality data are provided by the INSERM. Estimates of the number of attributable cancers are carried out for the whole country, stratified by 8 large regions and b y 96 departments for the year

  19. Mutation induction by inhaled radon progeny modeled at the tissue level.

    Science.gov (United States)

    Madas, Balázs G; Balásházy, Imre

    2011-11-01

    The observable responses of living systems to ionizing radiation depend on the level of biological organization studied. Understanding the relationships between the responses characteristic of the different levels of organization is of crucial importance. The main objective of the present study is to investigate how some cellular effects of radiation manifest at the tissue level by modeling mutation induction due to chronic exposure to inhaled radon progeny. For this purpose, a mathematical model of the bronchial epithelium was elaborated to quantify cell nucleus hits and cell doses. Mutagenesis was modeled considering endogenous as well as radiation-induced DNA damages and cell cycle shortening due to cell inactivation. The model parameters describing the cellular effects of radiation are obtained from experimental data. Cell nucleus hits, cell doses, and mutation induction were computed for the activity hot spots of the large bronchi at different exposures. Results demonstrate that the mutagenic effect of densely ionizing radiation is dominated by cell cycle shortening due to cell inactivation and not by DNA damages. This suggests that radiation burdens of non-progenitor cells play a significant role in mutagenesis in case of protracted exposures to densely ionizing radiation. Mutation rate as a function of dose rate exhibits a convex shape below a threshold. This threshold indicates the exhaustion of the tissue regeneration capacity of local progenitor cells. It is suggested that progenitor cell hyperplasia occurs beyond the threshold dose rate, giving a possible explanation of the inverse dose-rate effect observed in the epidemiology of lung cancer among uranium miners.

  20. Comparison of two numerical modelling approaches to a field experiment of unsaturated radon transport in a covered uranium mill tailings soil (Lavaugrasse, France)

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Zakaria; Guillevic, Jerome [Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-DGE/SEDRAN/BRN, 31 avenue de la Division Leclerc, B.P. 17, 92262, Fontenay-aux-Roses, Cedex (France)

    2014-07-01

    Uncertainties on the mathematical modelling of radon transport in an unsaturated covered uranium mill tailings (UMT) soil at field scale can have a great impact on the estimation of the average measured radon flux to the atmosphere at the landfill cover, which must be less than the threshold value 0.74 Bq.m{sup -2}.s{sup -1}recommended by the federal standard (EPA 40 CFR 192). These uncertainties are usually attributed to the numerical errors from the numerical schemes dealing with soil layering and to inadequate representations of the modelling of physical processes at the soil/plant/atmosphere interface and of the soil hydraulic and transport properties, as well as their parameterization. In this work, we compare one-dimensional simulation results from two numerical models of two-phase (water-air) porous media flow and radon transport to the data of radon activity exhalation flux and depth-volumetric concentration measured during a field campaign from June to November of 1999 in a two-layered soil of 1.3 m thickness (i.e., cover material/UMT: 0.5/0.8 m) of an experimental pond located at the Lavaugrasse UMT-landfill site (France). The first numerical modelling approach is a coupled finite volume compositional (i.e., water, radon, air) transport model (TOUGH2/EOS7Rn code, Saadi et al., 2013), while the second one is a decoupled finite difference one-component (i.e., radon) transport model (TRACI code, Ferry et al., 2001). Transient simulations during six month of hourly rainfall and atmospheric pressure variations showed that calculations from the one-component transport model usually overestimate both measured radon exhalation flux and depth-concentration. However, considering the effective unsaturated pore air-component diffusivity to be different from that of the radon-component in the compositional transport model allowed to significantly enhancing the modelling of these radon experimental data. The time-averaged radon flux calculated by EOS7Rn (3.42 Bq

  1. Use of radon for evaluation of atmospheric transport models: sensitivity to emissions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Mohan L. [GEST/GSFC NASA, Greenbelt, MD (United States); Douglass, Anne R.; Kawa, S. Randolph [NASA GSFC, Greenbelt, MD (United States); Pawson, Steven [GEST/GSFC NASA, GMAO, Greenbelt, MD (United States)

    2004-11-01

    We present comparative analyses of atmospheric radon (Rn) distributions simulated using different emission scenarios and the observations. Results indicate that the model generally reproduces observed distributions of Rn but there are some biases in the model related to differences in large-scale and convective transport. Simulations presented here use an off-line three-dimensional chemical transport model driven by assimilated winds and two scenarios of Rn fluxes (atom/cm{sup 2}/s) from ice-free land surfaces: (A) globally uniform flux of 1.0 within {+-}60 deg and 0.5 within 60 deg N - 70 deg N and (B) uniform flux of 1.0 between 60 deg S and 30 deg N followed by a sharp linear decrease to 0.2 at 70 deg N. We considered an additional scenario (C) where Rn emissions for case A were uniformly reduced by 28%. Results show that case A overpredicts observed Rn distributions in both hemispheres. Simulated Northern Hemisphere Rn distributions from cases B and C compare better with the observations, but are not discernible from each other. In the Southern Hemisphere, surface Rn distributions from case C compare better with the observations. We performed a synoptic-scale source-receptor analysis for surface Rn to locate regions with ratios B/A and B/C less than 0.5. Considering the maximum uncertainty in regional Rn emissions of a factor of 2, our analysis indicates that additional measurements of surface Rn, particularly during April-October and north of 50 deg N over the Pacific as well as Atlantic regions, would make it possible to determine if the proposed latitude gradient in Rn emissions is superior to a uniform flux scenario.

  2. Use of Radon for Evaluation of Atmospheric Transport Models: Sensitivity to Emissions

    Science.gov (United States)

    Gupta, Mohan L.; Douglass, Anne R.; Kawa, S. Randolph; Pawson, Steven

    2004-01-01

    This paper presents comparative analyses of atmospheric radon (Rn) distributions simulated using different emission scenarios and the observations. Results indicate that the model generally reproduces observed distributions of Rn but there are some biases in the model related to differences in large-scale and convective transport. Simulations presented here use an off-line three-dimensional chemical transport model driven by assimilated winds and two scenarios of Rn fluxes (atom/cm s) from ice-free land surfaces: (A) globally uniform flux of 1.0, and (B) uniform flux of 1.0 between 60 deg. S and 30 deg. N followed by a sharp linear decrease to 0.2 at 70 deg. N. We considered an additional scenario (C) where Rn emissions for case A were uniformly reduced by 28%. Results show that case A overpredicts observed Rn distributions in both hemispheres. Simulated northern hemispheric (NH) Rn distributions from cases B and C compare better with the observations, but are not discernible from each other. In the southern hemisphere, surface Rn distributions from case C compare better with the observations. We performed a synoptic scale source-receptor analysis for surface Rn to locate regions with ratios B/A and B/C less than 0.5. Considering an uncertainty in regional Rn emissions of a factor of two, our analysis indicates that additional measurements of surface Rn particularly during April-October and north of 50 deg. N over the Pacific as well as Atlantic regions would make it possible to determine if the proposed latitude gradient in Rn emissions is superior to a uniform flux scenario.

  3. Ignition of pyrophoric powders: An entry-level model

    Science.gov (United States)

    Alymov, M. I.; Seplyarskii, B. S.; Gordopolova, I. S.

    2015-11-01

    Chemically prepared metal nanopowders are normally pyrophoric, i.e. are liable to ignite spontaneously on exposure to air because of high reactivity and developed specific surface. On the other side, reliable theoretical models for spontaneous self-ignition of fine dispersed powders at room temperature have not been suggested so far. A deeper insight into the mechanism of the phenomenon would shed new light on the critical conditions for self-inflammation and thus would provide some clues for optimization of the passivation of fine dispersed powders. In this work, we formulated and analyzed an entry-level model for ignition of pyrophoric powders. Analysis of such a model in terms of the ignition theory gave the following results. Depending on the width of the reaction zone, the ignition may get started in either one or two stages. The duration of each stage was evaluated by using the approximate methods of combustion theory. The parametric limits for the model applicability were derived and the influence of sample length on the ignition process was explored as well.

  4. Radon diffusion coefficients in soils of varying moisture content

    Science.gov (United States)

    Papachristodoulou, C.; Ioannides, K.; Pavlides, S.

    2009-04-01

    Radon is a naturally occurring radioactive gas that is generated in the Earth's crust and is free to migrate through soil and be released to the atmosphere. Due to its unique properties, soil gas radon has been established as a powerful tracer used for a variety of purposes, such as exploring uranium ores, locating geothermal resources and hydrocarbon deposits, mapping geological faults, predicting seismic activity or volcanic eruptions and testing atmospheric transport models. Much attention has also been given to the radiological health hazard posed by increased radon concentrations in the living and working environment. In order to exploit radon profiles for geophysical purposes and also to predict its entry indoors, it is necessary to study its transport through soils. Among other factors, the importance of soil moisture in such studies has been largely highlighted and it is widely accepted that any measurement of radon transport parameters should be accompanied by a measurement of the soil moisture content. In principle, validation of transport models in the field is encountered by a large number of uncontrollable and varying parameters; laboratory methods are therefore preferred, allowing for experiments to be conducted under well-specified and uniform conditions. In this work, a laboratory technique has been applied for studying the effect of soil moisture content on radon diffusion. A vertical diffusion chamber was employed, in which radon was produced from a 226Ra source, was allowed to diffuse through a soil column and was finally monitored using a silicon surface barrier detector. By solving the steady-state radon diffusion equation, diffusion coefficients (D) were determined for soil samples of varying moisture content (m), from null (m=0) to saturation (m=1). For dry soil, a D value of 4.1×10-7 m2s-1 was determined, which increased moderately by a factor of ~3 for soil with low moisture content, i.e. up to m ~0.2. At higher water fractions, a decrease

  5. Quantification of Submarine Groundwater Discharge Using a Radon (222-Rn) Mass Balance and Hydrogeological Modelling

    Science.gov (United States)

    Petermann, Eric; Stollberg, Reiner; Scholten, Jan; Knöller, Kay; Schubert, Michael

    2016-04-01

    Apart from river and surface water runoff subsurface discharge of groundwater plays a key role in coastal water and matter budgets. Two major forms of submarine groundwater discharge (SGD) can be distinguished: (i) pure freshwater discharge from continental aquifers that are connected to the coastal sea driven by a positive hydraulic gradient (fresh SGD) and (ii) re-circulation of seawater that has penetrated permeable coastal sediments (re-circulated SGD), e.g. driven by tidal pumping. The localization of SGD zones and the quantification of SGD fluxes is of high interest for coastal water management due to potential threats related to SGD, namely (i) the detrimental impact of discharging nutrient- or contaminant-laden groundwater on coastal seawater quality, an aspect that is of relevance along coastlines which are impacted by agriculture, industry or intense urbanization, and (ii) the loss of freshwater to the ocean, an issue that is of major relevance in all coastal areas with (seasonally) limited freshwater availability. In this work, we discuss estimates for the total (fresh + re-circulated) SGD fluxes derived from a mass balance of the radioactive noble gas radon (222-Rn) with estimates of fresh SGD fluxes derived by hydrogeological modelling. The precision of the mass balance results depends on the adequate determination of the mass balance source and sink terms. These terms are calculated based on field observations of environmental tracers (salinity, δ18O, 222-Rn, 223-Ra, 224-Ra, 226-Ra) in seawater and porewater, as well as on meteorological data. The numerical hydrogeological model estimates groundwater flow based on groundwater monitoring data, river flow data, groundwater recharge estimates, tidal dynamics, and density effects along the freshwater/seawater interface. We compare these two independent methodological approaches of SGD flux estimation, discuss results regarding their relevance for the regional water balance and reason the implications of

  6. Radon concentration measurements in bituminous coal mines.

    Science.gov (United States)

    Fisne, Abdullah; Okten, Gündüz; Celebi, Nilgün

    2005-01-01

    Radon measurements were carried out in Kozlu, Karadon and Uzülmez underground coal mines of Zonguldak bituminous coal basin in Turkey. Passive-time integrating method, which is the most widely used technique for the measurement of radon concentration in air, was applied by using nuclear etched track detectors (CR-39) in the study area. The radon concentration measurements were performed on a total of 42 points in those three mines. The annual exposure, the annual effective dose and lifetime fatality risk, which are the important parameters for the health of workers, were estimated based on chronic occupational exposure to the radon gas, which is calculated using UNCEAR-2000 and ICRP-65 models. The radon concentrations at several coal production faces are higher than the action level of 1000 Bq m(-3). It is suggested that the ventilation rates should be rearranged to reduce the radon concentration.

  7. AIR AND RADON PATHWAY MODELING FOR THE F AREA TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K.; Phifer, M.

    2010-07-30

    An air and radon pathways analysis was conducted for the F-Area Tank Farm (FTF) to estimate the flux of volatile radionuclides and radon at the ground surface due to residual waste remaining in the tanks following closure. This analysis was used as the basis to estimate the dose to the maximally exposed individual (MEI) for the air pathway per Curie (Ci) of each radionuclide remaining in the combined FTF waste tanks. For the air pathway analysis, several gaseous radionuclides were considered. These included carbon-14 (C-14), chlorine-36 (Cl-36), iodine-129 (I-129), selenium-79 (Se-79), antimony-125 (Sb-125), tin-126 (Sn-126), tritium (H-3), and technetium-99 (Tc-99). The dose to the MEI was estimated at the SRS Boundary during the 100 year institutional control period. For the 10,000 year post closure compliance period, the dose to the MEI was estimated at the 100 m compliance point. Additionally, the dose to the MEI was estimated at a seepage outcrop located 1600 m from the facility. For the radon pathway analysis, five parent radionuclides and their progeny were analyzed. These parent radionuclides included uranium-238 (U-238), plutonium-238 (Pu-238), uranium-234 (U-234), thorium-230 (Th-230), and radium-226 (Ra-226). The peak flux of radon-222 due to each parent radionuclide was estimated for the simulation period of 10,100 years.

  8. A geographic information systems (GIS) and spatial modeling approach to assessing indoor radon potential at local level

    Energy Technology Data Exchange (ETDEWEB)

    Lacan, Igor [California Department of Health Services, Environmental Health Laboratory Branch, 850 Marina Bay Pkwy, Mailstop G365/EHLB, Richmond, CA 94804 (United States)]. E-mail: ilacan@nature.Berkeley.edu; Zhou, Joey Y. [California Department of Health Services, Environmental Health Laboratory Branch, 850 Marina Bay Pkwy, Mailstop G365/EHLB, Richmond, CA 94804 (United States); Liu, Kai-Shen [California Department of Health Services, Environmental Health Laboratory Branch, 850 Marina Bay Pkwy, Mailstop G365/EHLB, Richmond, CA 94804 (United States); Waldman, Jed [California Department of Health Services, Environmental Health Laboratory Branch, 850 Marina Bay Pkwy, Mailstop G365/EHLB, Richmond, CA 94804 (United States)

    2006-04-15

    This study integrates residential radon data from previous studies in Southern California (USA), into a geographic information system (GIS) linked with statistical techniques. A difference (p<0.05) is found in the indoor radon in residences grouped by radon-potential zones. Using a novel Monte Carlo approach, we found that the mean distance from elevated-radon residences (concentration>74Bqm{sup -3}) to epicenters of large (> 4 Richter) earthquakes was smaller (p<0.0001) than the average residence-to-epicenter distance, suggesting an association between the elevated indoor-radon and seismic activities.

  9. Sensitivity of Global Modeling Initiative chemistry and transport model simulations of radon-222 and lead-210 to input meteorological data

    Directory of Open Access Journals (Sweden)

    D. B. Considine

    2005-01-01

    Full Text Available We have used the Global Modeling Initiative chemistry and transport model to simulate the radionuclides radon-222 and lead-210 using three different sets of input meteorological information: 1. Output from the Goddard Space Flight Center Global Modeling and Assimilation Office GEOS-STRAT assimilation; 2. Output from the Goddard Institute for Space Studies GISS II' general circulation model; and 3. Output from the National Center for Atmospheric Research MACCM3 general circulation model. We intercompare these simulations with observations to determine the variability resulting from the different meteorological data used to drive the model, and to assess the agreement of the simulations with observations at the surface and in the upper troposphere/lower stratosphere region. The observational datasets we use are primarily climatologies developed from multiple years of observations. In the upper troposphere/lower stratosphere region, climatological distributions of lead-210 were constructed from ~25 years of aircraft and balloon observations compiled into the US Environmental Measurements Laboratory RANDAB database. Taken as a whole, no simulation stands out as superior to the others. However, the simulation driven by the NCAR MACCM3 meteorological data compares better with lead-210 observations in the upper troposphere/lower stratosphere region. Comparisons of simulations made with and without convection show that the role played by convective transport and scavenging in the three simulations differs substantially. These differences may have implications for evaluation of the importance of very short-lived halogen-containing species on stratospheric halogen budgets.

  10. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, M.

    1992-01-01

    We report on a theory for describing the biological effects of ionizing radiation in particular radon [alpha] particles. Behind this approach is the recognition that biological effects such as chromosome aberrations, cellular transformation, cellular inactivation, etc, are the result of a hierarchic sequence of radiation effects. We indicate how to treat each of the individual processes in this sequence, and also how to relate one effect to the hierarchically superior one.

  11. The latest trend of the research on radon

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Hiroshi [Science Univ. of Tokyo, Noda, Chiba (Japan). Faculty of Science and Technology

    1996-12-01

    In June, 1995, the international conference of sixth Natural Radiation Environment was held in Montreal. More than 80% of more than 200 published researches were concerned with radon and thoron. The participants came from 32 countries. The classification of the research on radon and the number of the publication are shown. The contents of the researches in respective items of measuring method, concentration level and dose evaluation, indoor model and indoor and outdoor radon balance, the countermeasures for reducing indoor radon, radon potential, dose evaluation model, the particle size distribution of aerosol including the particle size distribution of free daughter nuclides and radon in the atmosphere are described. The research on the radon in water is excluded. The most remarkable trend is the theme of radon potential. The trend of connecting the research on radon in soil and the research on dissipation rate to radon potential and the forecast of indoor and outdoor radon concentration seems to become stronger. As to the research on concentration level, the detection of hot spots and the supplementary measurement for clarifying cause are carried out in the advanced countries concerning radon based on the results of survey in whole country. The researches in schools are conspicuous. (K.I.)

  12. Monitoring spatiotemporal variations of diel radon concentrations in peatland and forest ecosystems based on neural network and regression models.

    Science.gov (United States)

    Evrendilek, Fatih; Denizli, Haluk; Yetis, Hakan; Karakaya, Nusret

    2013-07-01

    Concentrations of outdoor radon-222 ((222)Rn) in temperate grazed peatland and deciduous forest in northwestern Turkey were measured, compared, and modeled using artificial neural networks (ANNs) and multiple nonlinear regression (MNLR) models. The best-performing multilayer perceptron model selected out of 28 ANNs considerably enhanced accuracy metrics in emulating (222)Rn concentrations relative to the MNLR model. The two ecosystems had similar diel patterns with the lowest (222)Rn concentrations in the afternoon and the highest ones near dawn. Mean level (5.1 + 2.5 Bq m(-3) h(-1)) of (222)Rn in the forest was three times smaller than that (15.8 + 9.7 Bq m(-3)) of (222)Rn in the peatland. Mean (222)Rn level had negative and positive relationships with air temperature and relative humidity, respectively.

  13. Use of an Existing Airborne Radon Data Base in the Verification of the NASA/AEAP Core Model

    Science.gov (United States)

    Kritz, Mark A.

    1998-01-01

    The primary objective of this project was to apply the tropospheric atmospheric radon (Rn222) measurements to the development and verification of the global 3-D atmospheric chemical transport model under development by NASA's Atmospheric Effects of Aviation Project (AEAP). The AEAP project had two principal components: (1) a modeling effort, whose goal was to create, test and apply an elaborate three-dimensional atmospheric chemical transport model (the NASA/AEAP Core model to an evaluation of the possible short and long-term effects of aircraft emissions on atmospheric chemistry and climate--and (2) a measurement effort, whose goal was to obtain a focused set of atmospheric measurements that would provide some of the observational data used in the modeling effort. My activity in this project was confined to the first of these components. Both atmospheric transport and atmospheric chemical reactions (as well the input and removal of chemical species) are accounted for in the NASA/AEAP Core model. Thus, for example, in assessing the effect of aircraft effluents on the chemistry of a given region of the upper troposphere, the model must keep track not only of the chemical reactions of the effluent species emitted by aircraft flying in this region, but also of the transport into the region of these (and other) species from other, remote sources--for example, via the vertical convection of boundary layer air to the upper troposphere. Radon, because of its known surface source and known radioactive half-life, and freedom from chemical production or loss, and from removal from the atmosphere by physical scavenging, is a recognized and valuable tool for testing the transport components of global transport and circulation models.

  14. MARKET ENTRY STRATEGIES TO EMERGING MARKETS: A CONCEPTUAL MODEL OF TURNKEY PROJECT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Bistra Vassileva

    2016-11-01

    Full Text Available The main purpose of the paper is to analyse the international market entry strategies in the light of globalisation processes and to propose a conceptual model of turnkey projects as market entry mode. The specific research objectives are as follows: 1. to develop an integrated framework of the turnkey marketing process as a conceptual model; 2. to analyse BRICS countries as potential host countries for turnkey projects implementation; 3. to assess potential implications of proposed conceptual model for global market entry decisions.

  15. Mapping indoor radon-222 in Denmark: design and test of the statistical model used in the second nationwide survey.

    Science.gov (United States)

    Andersen, C E; Ulbak, K; Damkjaer, A; Kirkegaard, P; Gravesen, P

    2001-05-14

    In Denmark, a new survey of indoor radon-222 has been carried out, 1-year alpha track measurements (CR-39) have been made in 3019 single-family houses. There are from 3 to 23 house measurements in each of the 275 municipalities. Within each municipality, houses have been selected randomly. One important outcome of the survey is the prediction of the fraction of houses in each municipality with an annual average radon concentration above 200 Bq m(-3). To obtain the most accurate estimate and to assess the associated uncertainties, a statistical model has been developed. The purpose of this paper is to describe the design of this model, and to report results of model tests. The model is based on a transformation of the data to normality and on analytical (conditionally) unbiased estimators of the quantities of interest. Bayesian statistics are used to minimize the effect of small sample size. In each municipality, the correction is dependent on the fraction of area where sand and gravel is a dominating surface geology. The uncertainty analysis is done with a Monte-Carlo technique. It is demonstrated that the weighted sum of all municipality model estimates of fractions above 200 Bq m(-3) (3.9% with 95%-confidence interval = [3.4,4.5]) is consistent with the weighted sum of the observations for Denmark taken as a whole (4.6% with 95%-confidence interval = [3.8,5.6]). The total number of single-family houses within each municipality is used as weight. Model estimates are also found to be consistent with observations at the level of individual counties. These typically include a few hundred house measurements. These tests indicate that the model is well suited for its purpose.

  16. Theoretical aspects of the Semkow fractal model in the radon emanation in solids; Aspectos teoricos del modelo fractal de Semkow en la emanacion de radon en solidos

    Energy Technology Data Exchange (ETDEWEB)

    Cruz G, H.S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The basic elements of the Fractals theory are developed. The physical basis of radon emission in solids are described briefly. It is obtained that the emanation power E{sub R} of mineral grains is scaled as r{sub 0} {sup D-3} (r{sub 0} : grain radius). From a logarithmic graph E{sub R} versus grain size is deduced the fractal dimension of the emanation surface. The experimental data of different materials give an interval in the fractal dimension D between 2.1 and 2.8 (Author)

  17. Radon exhalation rates from some soil samples of Kharar, Punjab

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Vimal [Deptt of Physics, M. M. University, Mullana (Ambala)-133 207 (India); Deptt of Physics, Punjabi University, Patiala- 147 001 (India); Singh, Tejinder Pal, E-mail: tejinders03@gmail.com [Deptt of Physics, S.A. Jain (P.G.) College, Ambala City- 134 003 (India); Chauhan, R. P. [Deptt of Physics, National Institute of Technology, Kurukshetra- 136 119 (India); Mudahar, G. S. [Deptt of Physics, Punjabi University, Patiala- 147 001 (India)

    2015-08-28

    Radon and its progeny are major contributors in the radiation dose received by general population of the world. Because radon is a noble gas, a large portion of it is free to migrate away from radium. The primary sources of radon in the houses are soils and rocks source emanations, emanation from building materials, and entry of radon into a structure from outdoor air. Keeping this in mind the study of radon exhalation rate from some soil samples of the Kharar, Punjab has been carried out using Can Technique. The equilibrium radon concentration in various soil samples of Kharar area of district Mohali varied from 12.7 Bqm{sup −3} to 82.9 Bqm{sup −3} with an average of 37.5 ± 27.0 Bqm{sup −3}. The radon mass exhalation rates from the soil samples varied from 0.45 to 2.9 mBq/kg/h with an average of 1.4 ± 0.9 mBq/kg/h and radon surface exhalation rates varied from 10.4 to 67.2 mBq/m{sup 2}/h with an average of 30.6 ± 21.8 mBq/m{sup 2}/h. The radon mass and surface exhalation rates of the soil samples of Kharar, Punjab were lower than that of the world wide average.

  18. Criteria of radon risk of territories and methods for their determination.

    Science.gov (United States)

    Ryzhakova, Nadezhda K

    2014-09-01

    The paper analyzes the values used in the assessment of radon potential of territories. It was shown that the most reliable criterion in the assessment of radon risk of territories can be the value of radon activity concentration fixed at large depths. The authors proposed a simple method to assess this value and radon flux density from the soil surface, based on the measurement of radon activity concentration in soil gas at two twice differing depths and the diffusion model of transport.

  19. Indoor radon risk potential of Hawaii

    Science.gov (United States)

    Reimer, G.M.; Szarzi, S.L.

    2005-01-01

    A comprehensive evaluation of radon risk potential in the State of Hawaii indicates that the potential for Hawaii is low. Using a combination of factors including geology, soils, source-rock type, soil-gas radon concentrations, and indoor measurements throughout the state, a general model was developed that permits prediction for various regions in Hawaii. For the nearly 3,100 counties in the coterminous U.S., National Uranium Resource Evaluation (NURE) aerorad data was the primary input factor. However, NURE aerorad data was not collected in Hawaii, therefore, this study used geology and soil type as the primary and secondary components of potential prediction. Although the radon potential of some Hawaiian soils suggests moderate risk, most houses are built above ground level and the radon soil potential is effectively decoupled from the house. Only underground facilities or those with closed or recirculating ventilation systems might have elevated radon potential. ?? 2005 Akade??miai Kiado??.

  20. A Review of Models and Procedures for Synthetic Validation for Entry-Level Army Jobs

    Science.gov (United States)

    1988-12-01

    ARI Research Note 88-107 A Review of Models and Procedures for Co Synthetic Validation for Entry-LevelM -£.2 Army Jobs C i Jennifer L. Crafts, Philip...of Models and Procecures for Synthetic Validation for Entry-Level Army Jobs 12. PERSONAL AUTHOR(S) Crafts, Jennifer L., Szenas, Fhilip L., Chia, Wel...well as ability. ProJect A Validity Results Campbell (1986) and McHerry, Houigh. Thquam, Hanson, and Ashworth (1987) have conducted extensive

  1. Performance analysis of a finite radon transform in OFDM system under different channel models

    Energy Technology Data Exchange (ETDEWEB)

    Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia); Malek, F.; Abdullah, Farrah Salwani [School of Electrical System Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia)

    2015-05-15

    In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.

  2. Radon Guide for Tenants

    Science.gov (United States)

    This guide is for people who rent their apartments or houses. The guide explains what radon is, and how to find out if there is a radon problem in your home. The guide also talks about what you can do if there are high radon levels in your home.

  3. Health Risk of Radon

    Science.gov (United States)

    ... Radon in Homes EPA 402-R-03-003. Summary Fact Sheet on the updated risk assessment . Top of Page Former U.S. Surgeon General ... WHO) launched an international radon project to help countries increase ... reduce radon-related risks. The U.S. EPA is one of several government ...

  4. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. A. Colman

    2005-01-01

    Full Text Available Submarine groundwater discharge was quantified by a variety of methods in Salt Pond, adjacent to Nauset Marsh on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. A box model was used to estimate discharge separately to Salt Pond and to the channel by simulating the timing and magnitude of variations in the radon and salinity data in the channel. Discharge to the pond is estimated to be 2200±1100 m3d-1, while discharge to the channel is estimated to be 300±150 m3d-1, for a total discharge of 2500±1250 m3d-1 to the Salt Pond system. This translates to an average groundwater flow velocity of 3±1.5 cm d-1 Seepage meter flow estimates are broadly consistent with this figure, provided discharge is confined to shallow sediments (water depth 3d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to determine the rate of groundwater discharge seaward of Salt Pond. Data also suggest a TDN flux from groundwater to Salt Pond of ~2.6 mmol m-2d-1, a figure comparable to fluxes observed in other eutrophic settings.

  5. Calibration system for measuring the radon flux density.

    Science.gov (United States)

    Onishchenko, A; Zhukovsky, M; Bastrikov, V

    2015-06-01

    The measurement of radon flux from soil surface is the useful tool for the assessment of radon-prone areas and monitoring of radon releases from uranium mining and milling residues. The accumulation chambers with hollow headspace and chambers with activated charcoal are the most used devices for these purposes. Systematic errors of the measurements strongly depend on the geometry of the chamber and diffusion coefficient of the radon in soil. The calibration system for the attestation of devices for radon flux measurements was constructed. The calibration measurements of accumulation chambers and chambers with activated charcoal were conducted. The good agreement between the results of 2D modelling of radon flux and measurements results was observed. It was demonstrated that reliable measurements of radon flux can be obtained by chambers with activated charcoal (equivalent volume ~75 l) or by accumulation chambers with hollow headspace of ~7-10 l and volume/surface ratio (height) of >15 cm.

  6. Theoretical aspects of the design of a passive radon dosemeter.

    Science.gov (United States)

    Wilkinson, P; Saunders, B J

    1985-10-01

    Some mathematical aspects of the development and design of a passive radon dosemeter are considered. In particular, a mathematical model is presented that is concerned with the gaseous diffusion of radon into a confined region bounded by a plastic material of known diffusion coefficient. The relationship between the time-integrated radon concentrations, inside and outside a sealed plastic container are derived. Estimates of the exposure of people to radon can be made using the time integrated radon concentration inside a calibrated container containing a CR-39 etched-track device. As a consequence of the analysis, it is possible to design a passive radon dosemeter that will be accurate, resistant to moisture and whose response will be independent of rapid variations in radon concentration. The possibility of using a container of this type for the measurement of diffusion coefficients is discussed.

  7. Radon release from granites in south-west England

    CERN Document Server

    Poole, J

    2001-01-01

    accessory minerals. The enhancement of surface area was attributed to the alteration of feldspar to sericite. This has implications for the release of radon. It is thought that the large surface area provides a sink for the adsorption of radon, retaining it in the rock structure. This radon retention explains the paradoxical decline in radon release at small particle size/large specific surface area. Various mechanisms for radon emanation are discussed with reference to the Cornubian granites. It is shown that, based on the measured specific surface areas, inter-crystalline diffusion is a slow process and not a significant contributor to overall radon release (0.01%). Approximately 1% of the total radon produced can be attributed to direct recoil processes, based on the calculated recoil ranges (36 nm). The remainder was attributed to diffusion processes through crystal imperfections and dislocations. The microscopic scale model developed here is extended to the macroscopic scale through examination of the la...

  8. Development and application of a complex numerical model and software for the computation of dose conversion factors for radon progenies.

    Science.gov (United States)

    Farkas, Árpád; Balásházy, Imre

    2015-04-01

    A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Influence of indoor air conditions on radon concentration in a detached house.

    Science.gov (United States)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%.

  10. The radon indicator

    Science.gov (United States)

    Samuelsson, L.

    2005-11-01

    The radon indicator is an efficient instrument for measuring the radon daughter concentrations in a house or dwelling. Physics or environmental science students could build a radon indicator as a student project. Another possibility would be to use a radon indicator in a student investigation of radon levels in different houses. Finally the radon indicator is an excellent device for producing a radioactive source, free of charge, for the study of α-, β- and γ-radiation. The half-life of the activity collected is approximately 40 min. The radon indicator makes use of an electrostatic method by which charged particles are drawn to a small aluminium plate with a high negative voltage (-5 kV), thus creating a strong electric field between the plate and a surrounding copper wire. The radioactivity on the plate is subsequently measured by a GM-counter and the result calculated in Bq m-3. The collecting time is just 5.5 min and therefore the instrument is only suitable for use in a short-time method for indicating the radon concentration. An improved diagram, ground-radon and/or wall-radon in houses, is presented on the basis of the author's measurements recorded with the radon indicator over many years. This diagram is very useful when discussing how to reduce radiation levels in homes.

  11. The radon, synthesis of knowledge and results of first investigations in mining environment; Le radon, synthese des connaissances et resultats des premieres investigations en environnement minier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-15

    After presenting the properties of radon and health effects it can induce, the document discusses the various techniques available for measuring radon. The dosimetry and regulatory aspects are then presented. The document then deals specifically radon in mining environment, especially with the various possible sources of exposure.The relevant section is illustrated by concrete cases from the literature and studies conducted by INERIS in some large French mines. The last section presents the mechanisms of radon entry in buildings and associated remediation techniques. (N.C.)

  12. Methods of radon remediation in Finnish dwellings; Asuntojen radonkorjauksen menetelmaet

    Energy Technology Data Exchange (ETDEWEB)

    Arvela, H.

    1995-12-01

    A study was made of remedial measures taken in dwellings with high indoor radon concentrations and the results obtained. The data regarding the remedial measures taken in 400 dwellings was obtained from a questionnaire study. The mean annual average indoor radon concentration before the remedies was 1.500 Bq/m{sup 3}, the concentration exceeding in nearly every house the action level of 400 Bq/m{sup 3}. After the measures were taken the mean indoor radon concentration was 500 Bq/m{sup 3}. The resulting indoor radon concentration was less than 400 Bq/m{sup 3} in 60 percent of the dwellings. The best results were achieved using sub-slab-suction and radon well. These methods effectively decrease both the flow of radon bearing air from soil into dwellings and the radon concentration of leakage air. Typical reduction rates in radon concentration were 70-95 percent. The action level was achieved in more than 70 percent of the houses. Sealing the entry routes and improvement of the ventilation resulted typically in reduction rates of 10-50 percent. The goal of the report is to give useful information for the house owners, the do-it-yourself-mitigators, the mitigation firms and the local authorities. The report includes practical guidance, price information and examples of remedial measures. (13 refs., 10 figs., 2 tabs.).

  13. Pilot study of the application of Tellus airborne radiometric and soil geochemical data for radon mapping.

    Science.gov (United States)

    Appleton, J D; Miles, J C H; Green, B M R; Larmour, R

    2008-10-01

    The scope for using Tellus Project airborne gamma-ray spectrometer and soil geochemical data to predict the probability of houses in Northern Ireland having high indoor radon concentrations is evaluated, in a pilot study in the southeast of the province, by comparing these data statistically with in-house radon measurements. There is generally good agreement between radon maps modelled from the airborne radiometric and soil geochemical data using multivariate linear regression analysis and conventional radon maps which depend solely on geological and indoor radon data. The radon maps based on the Tellus Project data identify some additional areas where the radon risk appears to be relatively high compared with the conventional radon maps. One of the ways of validating radon maps modelled on the Tellus Project data will be to carry out additional indoor measurements in these areas.

  14. Indoor radon concentration forecasting in South Tyrol.

    Science.gov (United States)

    Verdi, L; Weber, A; Stoppa, G

    2004-01-01

    In this paper a modern statistical technique of multivariate analysis is applied to an indoor radon concentration data base. Several parameters are more or less significant in determining the radon concentration inside a building. The elaboration of the information available on South Tyrol makes it possible both to identify the statistically significant variables and to build up a statistical model that allows us to forecast the radon concentration in dwellings, when the values of the same variables involved are given. The results confirm the complexity of the phenomenon.

  15. Indoor radon; Le radon dans les batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies.

  16. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  17. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  18. Practical guidelines for modelling post-entry spread in invasion ecology

    Directory of Open Access Journals (Sweden)

    Hazel Parry

    2013-09-01

    Full Text Available In this article we review a variety of methods to enable understanding and modelling the spread of a pest or pathogen post-entry. Building upon our experience of multidisciplinary research in this area, we propose practical guidelines and a framework for model development, to help with the application of mathematical modelling in the field of invasion ecology for post-entry spread. We evaluate the pros and cons of a range of methods, including references to examples of the methods in practice. We also show how issues of data deficiency and uncertainty can be addressed. The aim is to provide guidance to the reader on the most suitable elements to include in a model of post-entry dispersal in a risk assessment, under differing circumstances. We identify both the strengths and weaknesses of different methods and their application as part of a holistic, multidisciplinary approach to biosecurity research.

  19. Consumer's Guide to Radon Reduction

    Science.gov (United States)

    ... Radon Share Facebook Twitter Google+ Pinterest Contact Us Consumer's Guide to Radon Reduction: How to Fix Your ... See EPA’s About PDF page to learn more. Consumer's Guide to Radon Reduction: How to Fix Your ...

  20. Flow-radiation coupling for atmospheric entries using a Hybrid Statistical Narrow Band model

    Science.gov (United States)

    Soucasse, Laurent; Scoggins, James B.; Rivière, Philippe; Magin, Thierry E.; Soufiani, Anouar

    2016-09-01

    In this study, a Hybrid Statistical Narrow Band (HSNB) model is implemented to make fast and accurate predictions of radiative transfer effects on hypersonic entry flows. The HSNB model combines a Statistical Narrow Band (SNB) model for optically thick molecular systems, a box model for optically thin molecular systems and continua, and a Line-By-Line (LBL) description of atomic radiation. Radiative transfer calculations are coupled to a 1D stagnation-line flow model under thermal and chemical nonequilibrium. Earth entry conditions corresponding to the FIRE 2 experiment, as well as Titan entry conditions corresponding to the Huygens probe, are considered in this work. Thermal nonequilibrium is described by a two temperature model, although non-Boltzmann distributions of electronic levels provided by a Quasi-Steady State model are also considered for radiative transfer. For all the studied configurations, radiative transfer effects on the flow, the plasma chemistry and the total heat flux at the wall are analyzed in detail. The HSNB model is shown to reproduce LBL results with an accuracy better than 5% and a speed up of the computational time around two orders of magnitude. Concerning molecular radiation, the HSNB model provides a significant improvement in accuracy compared to the Smeared-Rotational-Band model, especially for Titan entries dominated by optically thick CN radiation.

  1. An Algebraic Model for the Pion's Valence-Quark GPD: A Probe for a Consistent Extension Beyond DGLAP Region Via Radon Transform Inversion

    Science.gov (United States)

    Chouika, Nabil; Mezrag, Cédric; Moutarde, Hervé; Rodríguez-Quintero, José

    2017-07-01

    We briefly report on a recent computation, with the help of a fruitful algebraic model, sketching the pion valence dressed-quark generalized parton distribution. Then, preliminary, we introduce on a sensible procedure to get reliable results in both Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and Efremov-Radyushkin-Brodsky-Lepage kinematical regions, grounded on the GPD overlap representation and its parametrization of a Radon transform of the so-called double distribution.

  2. Lung Cancer Attributable to Indoor Radon Exposure in France: Impact of the Risk Models and Uncertainty Analysis

    OpenAIRE

    Catelinois, Olivier; Rogel, Agnès; Laurier, Dominique; Billon, Solenne; Hemon, Denis; VERGER, Pierre; Tirmarche, Margot

    2006-01-01

    Objective The inhalation of radon, a well-established human carcinogen, is the principal—and omnipresent—source of radioactivity exposure for the general population of most countries. Scientists have thus sought to assess the lung cancer risk associated with indoor radon. Our aim here is to assess this risk in France, using all available epidemiologic results and performing an uncertainty analysis. Methods We examined the exposure–response relations derived from cohorts of miners and from joi...

  3. ANALYSIS OF RADON MITIGATION TECHNIQUES USED IN EXISTING U.S. HOUSES

    Science.gov (United States)

    This paper reviews the full range of techniques that have been installed in existing US houses for the purpose of reducing indoor radon concentrations resulting from soil gas entry. The review addresses the performance, installation and operating costs, applicability, mechanisms,...

  4. ANALYSIS OF RADON MITIGATION TECHNIQUES USED IN EXISTING U.S. HOUSES

    Science.gov (United States)

    This paper reviews the full range of techniques that have been installed in existing US houses for the purpose of reducing indoor radon concentrations resulting from soil gas entry. The review addresses the performance, installation and operating costs, applicability, mechanisms,...

  5. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    Science.gov (United States)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  6. Radon therapy; Radon in der Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-04-01

    Radon therapies are used since more than 100 years in human medicine. Today this method is controversially discussed due to the possible increase of ionizing radiation induced tumor risk. Although the exact mode of biological radiation effect on the cell level is still not known new studies show the efficiency of the radon therapy without side effect for instance for rheumatic/inflammatory or respiratory disorders.

  7. Systematic effects in radon mitigation by sump/pump remediation

    Energy Technology Data Exchange (ETDEWEB)

    Groves-Kirkby, C.J.; Denman, A.R. [Northampton General Hospital, Medical Physics Dept. (United Kingdom); Groves-Kirkby, C.J.; Woolridge, A.C. [Northampton Univ., School of Health (United Kingdom); Woolridge, A.C.; Phillips, P.S.; Crockett, R.G.M. [Northampton Univ., School of Applied Sciences (United Kingdom); Tornberg, R. [Radon Centres Ltd., Grove Farm, Moulton, Northampton (United Kingdom)

    2006-07-01

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump tology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  8. Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification.

    Science.gov (United States)

    Crowther, Michael J; Andersson, Therese M-L; Lambert, Paul C; Abrams, Keith R; Humphreys, Keith

    2016-03-30

    A now common goal in medical research is to investigate the inter-relationships between a repeatedly measured biomarker, measured with error, and the time to an event of interest. This form of question can be tackled with a joint longitudinal-survival model, with the most common approach combining a longitudinal mixed effects model with a proportional hazards survival model, where the models are linked through shared random effects. In this article, we look at incorporating delayed entry (left truncation), which has received relatively little attention. The extension to delayed entry requires a second set of numerical integration, beyond that required in a standard joint model. We therefore implement two sets of fully adaptive Gauss-Hermite quadrature with nested Gauss-Kronrod quadrature (to allow time-dependent association structures), conducted simultaneously, to evaluate the likelihood. We evaluate fully adaptive quadrature compared with previously proposed non-adaptive quadrature through a simulation study, showing substantial improvements, both in terms of minimising bias and reducing computation time. We further investigate, through simulation, the consequences of misspecifying the longitudinal trajectory and its impact on estimates of association. Our scenarios showed the current value association structure to be very robust, compared with the rate of change that we found to be highly sensitive showing that assuming a simpler trend when the truth is more complex can lead to substantial bias. With emphasis on flexible parametric approaches, we generalise previous models by proposing the use of polynomials or splines to capture the longitudinal trend and restricted cubic splines to model the baseline log hazard function. The methods are illustrated on a dataset of breast cancer patients, modelling mammographic density jointly with survival, where we show how to incorporate density measurements prior to the at-risk period, to make use of all the available

  9. Significance of radiation models in investigating the flow phenomena around a Jovian entry body

    Science.gov (United States)

    Tiwari, S. N.; Subramanian, S. V.

    1978-01-01

    Formulation is presented to demonstrate the significance of a simplified radiation model in investigating the flow-phenomena in the viscous radiating shock layer of a Jovian entry body. For this, a nongray absorption model for hydrogen-helium gas is developed which consists of 30 steps over the spectral range of 0-20 eV. By employing this model results were obtained for temperature, pressure, density, and radiative flux in the shock layer and along the body surface. These are compared with results of two sophisticated radiative transport models available in the literature. Use of the present radiation model results in significant reduction in computational time. Results of this model are found to be in general agreement with results of other models. It is concluded that use of the present model is justified in investigating the flow phenomena around a Jovian entry body because it is relatively simple, computationally fast, and yields fairly accurate results.

  10. Radiological risk assessment of environmental radon

    Science.gov (United States)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2013-11-01

    Measurements of radon gas (222Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the 226Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m-3 to 571.1 ± 251.4 Bq m-3, 101.0 ± 41.0 Bq m-3 to 245.3 ± 100.2 Bq m-3, 53.1 ± 7.5 Bq m-3 to 181.8 ± 9.7 Bq m-3, 256.1 ± 59.3 Bq m-3 to 652.2 ± 222.2 Bq m-3 and 164.5 ± 75.9 Bq m-3 to 653.3 ± 240.0 Bq m-3, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m-3, 192.1 ± 75.4 Bq m-3, 176.1 ± 85.9 Bq m-3 and 28.4 ± 5.7 Bq m-3, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the action level for radon gas of 148 Bq m-3 proposed by EPA except monazite 0.15 kg, struverite 0.15 kg and 0.25 kg. Whereas

  11. Radon Concentration in the Drinking Water of Aliabad Katoul, Iran

    Science.gov (United States)

    Adinehvand, Karim; Sahebnasagh, Amin; Hashemi-Tilehnoee, Mehdi

    2016-01-01

    Background According to the world health organization, radon is a leading cause of cancer in various internal organs and should be regarded with concern. Objectives The aim of this study is to evaluate the concentration of soluble radon in the drinking water of the city of Aliabad Katoul, Iran. Materials and Methods The radon concentration was measured by using a radon meter, SARADTM model RTM 1688-2, according to accepted standards of evaluation. Results The mean radon concentration in the drinking water of Aliabad Katoul is 2.90 ± 0.57 Bq/L. Conclusions The radon concentration in Aliabad Katoul is below the limit for hazardous levels, but some precautions will make conditions even safer for the local populace. PMID:27651948

  12. Measurement and apportionment of radon source terms for modeling indoor environments. Final progress report, March 1990--August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Harley, N.H.

    1992-12-31

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor {sup 222}Rn and in {sup 222}Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house {sup 222}Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater {sup 222}Rn concentration than the measured outdoor {sup 222}Rn. Apartment dwellers generally represent a low risk group regarding {sup 222}Rn exposure. The following sections describe the main projects in some detail.

  13. Radon and Cancer

    Science.gov (United States)

    ... exposure and lung cancer: the Iowa Radon Lung Cancer Study. American Journal of Epidemiology 2000; 151(11):1091–1102. [PubMed Abstract] Frumkin H, Samet JM. Radon. CA: A Cancer Journal for Clinicians 2001; 51(6):337–344. [ ...

  14. A theoretical investigation of the distribution of indoor radon concentrations

    Science.gov (United States)

    Rabi, R.; Oufni, L.

    2017-05-01

    Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. In recent times, numerical modelling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement the Finite Volume Method (FVM) for studying the radon distribution indoor. The findings show that the radon concentration which is distributed in a non-homogeneous way in the room is due to the difference in the radon concentration of different sources (wall, floor and ceiling). Moreover, the radon concentration is much larger near walls, and decreases in the middle of the room because of the effect of air velocity. We notice that the simulation results of radon concentration are in agreement with the results of other experimental studies. The annual effective dose of radon in the model room has been also investigated.

  15. Integrated Thermal Response Modeling System For Hypersonic Entry Vehicles

    Science.gov (United States)

    Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2000-01-01

    We describe all extension of the Markov decision process model in which a continuous time dimension is included ill the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.

  16. Sensitivity analysis and probabilistic re-entry modeling for debris using high dimensional model representation based uncertainty treatment

    Science.gov (United States)

    Mehta, Piyush M.; Kubicek, Martin; Minisci, Edmondo; Vasile, Massimiliano

    2017-01-01

    Well-known tools developed for satellite and debris re-entry perform break-up and trajectory simulations in a deterministic sense and do not perform any uncertainty treatment. The treatment of uncertainties associated with the re-entry of a space object requires a probabilistic approach. A Monte Carlo campaign is the intuitive approach to performing a probabilistic analysis, however, it is computationally very expensive. In this work, we use a recently developed approach based on a new derivation of the high dimensional model representation method for implementing a computationally efficient probabilistic analysis approach for re-entry. Both aleatoric and epistemic uncertainties that affect aerodynamic trajectory and ground impact location are considered. The method is applicable to both controlled and un-controlled re-entry scenarios. The resulting ground impact distributions are far from the typically used Gaussian or ellipsoid distributions.

  17. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  18. Mutagenicity of radon and radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1991-01-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  19. Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models

    CERN Document Server

    Hutsalyuk, A; Pakuliak, S Z; Ragoucy, E; Slavnov, N A

    2016-01-01

    We study integrable models solvable by the nested algebraic Bethe ansatz and described by $\\mathfrak{gl}(2|1)$ or $\\mathfrak{gl}(1|2)$ superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of the Bethe parameters. Our results allow one to obtain determinant formulas for form factors of local operators in the supersymmetric t-J model.

  20. Form factors of the monodromy matrix entries in gl (2 | 1)-invariant integrable models

    Science.gov (United States)

    Hutsalyuk, A.; Liashyk, A.; Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A.

    2016-10-01

    We study integrable models solvable by the nested algebraic Bethe ansatz and described by gl (2 | 1) or gl (1 | 2) superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of the Bethe parameters. Our results allow one to obtain determinant formulas for form factors of local operators in the supersymmetric t- J model.

  1. Women's steps of change and entry into drug abuse treatment. A multidimensional stages of change model.

    Science.gov (United States)

    Brown, V B; Melchior, L A; Panter, A T; Slaughter, R; Huba, G J

    2000-04-01

    The Transtheoretical, or Stages of Change Model, has been applied to the investigation of help-seeking related to a number of addictive behaviors. Overall, the model has shown to be very important in understanding the process of help-seeking. However, substance abuse rarely exists in isolation from other health, mental health, and social problems. The present work extends the original Stages of Change Model by proposing "Steps of Change" as they relate to entry into substance abuse treatment programs for women. Readiness to make life changes in four domains-domestic violence, HIV sexual risk behavior, substance abuse, and mental health-is examined in relation to entry into four substance abuse treatment modalities (12-step, detoxification, outpatient, and residential). The Steps of Change Model hypothesizes that help-seeking behavior of substance-abusing women may reflect a hierarchy of readiness based on the immediacy, or time urgency, of their treatment issues. For example, women in battering relationships may be ready to make changes to reduce their exposure to violence before admitting readiness to seek substance abuse treatment. The Steps of Change Model was examined in a sample of 451 women contacted through a substance abuse treatment-readiness program in Los Angeles, California. A series of logistic regression analyses predict entry into four separate treatment modalities that vary. Results suggest a multidimensional Stages of Change Model that may extend to other populations and to other types of help-seeking behaviors.

  2. Indoor radon in Slovenia

    Directory of Open Access Journals (Sweden)

    Vaupotič Janja

    2003-01-01

    Full Text Available The Slovenian Radon Programme started in 1990. Since then, radon and radon short-lived decay products have been surveyed in 730 kindergartens, 890 schools, 1000 randomly selected homes, 5 major spas, 26 major hospitals, 10 major municipal water supply plants, and 8 major wineries. Alpha scintillation cells, etched track detectors, electret-based detectors and various continuously measuring devices have been used. On the basis of estimated effective doses, decisions were made on appropriate mitigation. In total, 35 buildings have been appropriately modified. The programme is displayed and results reviewed chronologically and discussed.

  3. Statistical uncertainty analysis of radon transport in nonisothermal, unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Holford, D.J.; Owczarski, P.C.; Gee, G.W.; Freeman, H.D.

    1990-10-01

    To accurately predict radon fluxes soils to the atmosphere, we must know more than the radium content of the soil. Radon flux from soil is affected not only by soil properties, but also by meteorological factors such as air pressure and temperature changes at the soil surface, as well as the infiltration of rainwater. Natural variations in meteorological factors and soil properties contribute to uncertainty in subsurface model predictions of radon flux, which, when coupled with a building transport model, will also add uncertainty to predictions of radon concentrations in homes. A statistical uncertainty analysis using our Rn3D finite-element numerical model was conducted to assess the relative importance of these meteorological factors and the soil properties affecting radon transport. 10 refs., 10 figs., 3 tabs.

  4. Radon Optical Processing in Radon Space.

    Science.gov (United States)

    1986-06-15

    yields one line through the three-dimensional Fourier transform 1. Radon, J., " Uber die Bestimmung von Funktiontn of the three-dimensional function (3...Alamos, New Mexico , April 11-15. 1983.a 6. W. G. Wee, "Application of projection techniques to image image. Figure 1(a) has approximately 8.0 bits/pixel

  5. Radon activity in the lower troposphere and its impact on ionization rate : a global estimate using different radon emissions

    NARCIS (Netherlands)

    Zhang, K. .; Feichter, J.; Kazil, J.; Wan, H.; Zhuo, W.; Griffiths, A. D.; Sartorius, H.; Zahorowski, W.; Ramonet, M.; Schmidt, Martina; Yver, C.; Neubert, R. E. M.; Brunke, E. -G.; Schulz, M.

    2011-01-01

    The radioactive decay of radon and its progeny can lead to ionization of air molecules and consequently influence aerosol size distribution. In order to provide a global estimate of the radon-related ionization rate, we use the global atmospheric model ECHAM5 to simulate transport and decay

  6. Comparison of transport properties models for numerical simulations of Mars entry vehicles

    Science.gov (United States)

    Hao, Jiaao; Wang, Jingying; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2017-01-01

    Effects of two different models for transport properties, including the approximate model and the collision integral model, on hypersonic flow simulations of Mars entry vehicles are numerically investigated. A least square fitting is firstly performed using the best-available data of collision integrals for Martian atmosphere species within the temperature range of 300-20,000 K. Then, the performance of these two transport properties models are compared for an equilibrium Martian atmosphere gas mixture at 10 kPa and temperatures ranging from 1000 to 10,000 K. Finally, four flight conditions chosen from the trajectory of the Mars Pathfinder entry vehicle are numerically simulated. It is indicated that the approximate model is capable of accurately providing the distributions of species mass fractions and temperatures in the flowfield. Both models give similar translational-rotational and vibrational heat fluxes. However, the chemical diffusion heat fluxes predicted by the approximate model are significantly larger than the results computed by the collision integral model, particularly in the vicinity of the forebody stagnation point, whose maximum relative error of 15% for the super-catalytic case. The diffusion model employed in the approximate model is responsible to the discrepancy. In addition, the wake structure is largely unaffected by the transport properties models.

  7. Radon measurements at IC-09 well of Chingshui geothermal field (Taiwan): A case study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Department of Mineral and Petroleum Engineering, National Cheng Kung University, 1, University Ave., Tainan 701, Taiwan (China); Kuo, T., E-mail: mctkuobe@mail.ncku.edu.t [Department of Mineral and Petroleum Engineering, National Cheng Kung University, 1, University Ave., Tainan 701, Taiwan (China); Fan, K. [Department of Mineral and Petroleum Engineering, National Cheng Kung University, 1, University Ave., Tainan 701, Taiwan (China); Liang, H. [Exploration and Development Research Institute, CPC Corporation, Taiwan (China); Tsai, C. [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Chiang, C. [Central Geological Survey, Ministry of Economic Affairs, Taipei, Taiwan (China); Su, C. [Department of Mineral and Petroleum Engineering, National Cheng Kung University, 1, University Ave., Tainan 701, Taiwan (China)

    2011-02-15

    Radon concentration was monitored during the flow tests of well IC-09 at the Chingshui geothermal field. The radon concentration was found to increase from 54 {+-} 29 to 983 {+-} 65 Bq/m{sup 3} as a step function of production time, or cumulative production. The observed radon behavior can be explained by a radial composite model with the carbonate scales deposited in the skin zone near the well. The radius of skin zone near well IC-09 can be estimated with radon data at about 20 m using a plug flow model. Monitoring natural radon during the well flow tests is a helpful tracer to diagnose the formation damage near the well.

  8. Indoor Radon Measurement in Van

    Science.gov (United States)

    Kam, E.; Osmanlioglu, A. E.; Dogan, I.; Celebi, N.

    2007-04-01

    In this study, indoor radon concentrations obtained from the radon surveys conducted in the Van. Radon monitoring was performed by applying a passive, time-integrating measuring technique. For this purpose, CR-39 nuclear track detectors were installed in dwellings for 2 months. After the monitoring period, detectors were collected. In order to make the alpha tracks visible, chemical etching was applied to the exposed detectors. Nuclear track numbers and the corresponding indoor radon concentrations were determined. Annual effective dose equivalents and the risk probabilities caused by indoor radon inhalation were calculated, and the found results compared with the indoor radon concentrations' data measured in different provinces of Turkey.

  9. ROE Radon Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The polygon dataset represents predicted indoor radon screening levels in counties across the United States. These data were provided by EPA’s Office of Radiation...

  10. Radon in Schools

    Science.gov (United States)

    ... strategy below. Top of Page Testing and Mitigation Standards for Schools Copies of the following Radon Standards ... control is a critical component of any comprehensive indoor air quality (IAQ) management program, l earn how to manage ...

  11. Radon i danske lejeboliger

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Skytte Clausen, Louise

    I denne undersøgelse kortlægges radonindholdet i indeluften og det undersøges, hvordan indholdet af radon i indeluften er fordelt og spredes i en ejendom, og om det er muligt at pege på en bygningsdel eller en bygningskomponent som en spredningsvej for radon i boliger. Boligerne er lejeboliger og...... ligger i etageejendomme, kæde- og rækkehuse tilhørende bygningstyper opført fra 1850 og frem. De udvalgte ejendomme ligger i områder af landet, hvor der ved tidligere undersøgelser har vist sig at være en stor andel af huse med et højt indhold af radon i indeluften. Koncentrationen af radon er målt over...

  12. A theoretical treatment of adsorption of radon gas on charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ding; Chiang, Hai-Pang; Shiau, Yuo-Hsien; Tse, Wan-Sun [Academia Sinica, Taipei, TW (China). Inst. of Physics; Skrable, K.; Li, Kuang-Pang

    1997-09-01

    The use of an activated charcoal sampler for radon monitoring has become popular in recent years because of its passiveness and low price. Dynamics of adsorption on a passive sampler have been described with theoretical models. However, extrapolation of the measured results of radon on charcoal to the diurnal fluctuations of the ambient radon concentration is often difficult and even misleading because of the oversimplification of these models. A more generalized approach is undertaken by treating the diurnal variations in radon concentrations as poly-exponential functions and by solving for explicit particular solutions of Fick`s equation. The application of these solutions to various practical situations is explored. This includes their use for charcoal sampler calibration. Estimated values of the adsorption coefficients, k, and diffusion constant, D, appear to be agreeable with corresponding reported values. A triple-sampler protocol is also proposed for radon survey in areas of high diurnal fluctuations. (author)

  13. Physical characterization of the short-lived radon 222 derivatives in a house: comparison between model and the experiment; Caracterisation physique des derives a vie courte du Radon-222 dans une habitation: comparaison modele-experience

    Energy Technology Data Exchange (ETDEWEB)

    Huet, C.; Tymen, G. [Universite de Bretagne Occidentale, Lab. de Recherches Appliquees Atmosphere, 29 - Brest (France); Michielsen, N.; Boulaud, D. [CEA/Saclay, Inst. de Protection et de Surete Nucleaire, IPSN/DPEA/SERAC, 91 - Gif-sur-Yvette (France)

    2000-07-01

    The radon 222 is a radioactive natural gas coming from the uranium 238 channel. It is present in soils and building materials. After exhalation it produces derivatives which may stick to the aerosols of the ambient air and be inhaled by the human. To understand this gas behavior in a house, two methods are possible: the in situ measurements and the physical phenomena simulation. The authors compare both possibilities. (A.L.B.)

  14. Radon og boligen

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    Radon er en radioaktiv og sundhedsskadelig luftart, som ved indånding øger risikoen for lungekræft. Der er ingen dokumenteret nedre grænse for, hvornår radon er ufarligt. Derfor anbefales det, at man tilstræber et så lavt radonindhold i indeluften som muligt. Man kan hverken lugte, se, høre eller...... smage radon, så vil du vide, om du har radon i din bolig, må du måle radonindholdet i indeluften. Radon forekommer naturligt i jorden og kan suges ind sammen med jordluft, hvis der inde er et undertryk, og hvis konstruktionerne mod jord er utætte. Jordluft trænger ind gennem revner og utætte samlinger......, fx omkring rør til kloak, vand og varmeforsyning. Koncentrationen af radon i jorden varierer meget fra sted til sted, også lokalt og gennem året. Tidligere undersøgelser har vist, at der kan forekomme høje koncentrationer i Sydgrønland, specielt i området syd for Narsalik ved Paamiut, 61°30’N....

  15. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  16. NEO fireball diversity: energetics-based entry modeling and analysis techniques

    Science.gov (United States)

    Revelle, Douglas O.

    2007-05-01

    Observations of fireballs reveal that a number of very different types of materials are routinely entering the atmosphere over a very large height and corresponding mass and energy range. There are five well-known fireball groups. The compositions of these groups can be reliably deduced on a statistical basis based entirely on their observed end-heights in the atmosphere (Ceplecha and McCrosky, 1970, Wetherill and ReVelle, 1981). ReVelle (1983, 2001, 2002, 2005) has also reinterpreted these observations in terms of the properties of porous meteoroids, using the degree to which the observational data can be reproduced using a modern hypersonic aerodynamic entry dynamics approach for porous as well as homogeneous bodies. These data and modeled parameters include the standard properties of drag, deceleration, ablation and fragmentation as well as most recently a model of the panchromatic luminous emission from the fireball during progressive atmospheric penetration. Using a recently developed bolide entry modeling code, ReVelle (2005) has systematically examined the behavior of meteoroids using their semi-well known physical properties. In order to illustrate this, we have investigated a sampling of four of the possible extremes within the NEO bolide population: 1) Type I: Antarctic bolide of 2003: A "small" Aten asteroid, 2) Type I: Park Forest meteorite fall: March 27, 2003, 3) Type I: Mediterranean bolide June 6, 2002, 4) Type II: Revelstoke meteorite fall: March 31, 1965 (with no luminosity data available), and 5) Type II/III: Tagish Lake meteorite fall: January 18, 2000 (with infrasonic data questionable?) In addition to the entry properties, each of these events (except possibly Tagish Lake) also had mechanical, acoustic-gravity waves generated that were subsequently detected following their entry into the atmosphere. Since these waves can also be used to identify key physical properties of these unusual objects, we will also report on our ability to model such

  17. Radon activity in the lower troposphere and its impact on ionization rate: a global estimate using different radon emissions

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2011-01-01

    Full Text Available The radioactive decay of radon and its progeny can lead to ionization of air molecules and consequently influence aerosol size distribution. In order to provide a global estimate of the radon-related ionization rate, we use the global atmospheric model ECHAM5 to simulate transport and decay processes of the radioactive tracers. A global radon emission map is put together using regional fluxes reported recently in the literature. The near-surface radon concentrations simulated with this new map compare well with measurements.

    Radon-related ionization rate is calculated and compared to that caused by cosmic rays. The contribution of radon and its progeny clearly exceeds that of the cosmic rays in the mid- and low-latitude land areas in the surface layer. In winter, strong radon-related ionization coincides with low temperature in China, USA, and Russia, providing favorable condition for the formation of aerosol particles. This suggests that it is probably useful to include the radon-induced ionization in global models when investigating the interaction between aerosol and climate.

  18. Thermophysical properties of Almahata Sitta meteorites (asteroid 2008 TC3) for high-fidelity entry modeling

    Science.gov (United States)

    Loehle, Stefan; Jenniskens, Peter; Böhrk, Hannah; Bauer, Thomas; Elsäßer, Henning; Sears, Derek W.; Zolensky, Michael E.; Shaddad, Muawia H.

    2017-02-01

    Asteroid 2008 TC3 was characterized in a unique manner prior to impacting Earth's atmosphere, making its October 7, 2008, impact a suitable field test for or validating the application of high-fidelity re-entry modeling to asteroid entry. The accurate modeling of the behavior of 2008 TC3 during its entry in Earth's atmosphere requires detailed information about the thermophysical properties of the asteroid's meteoritic materials at temperatures ranging from room temperature up to the point of ablation (T 1400 K). Here, we present measurements of the thermophysical properties up to these temperatures (in a 1 atm. pressure of argon) for two samples of the Almahata Sitta meteorites from asteroid 2008 TC3: a thick flat-faced ureilite suitably shaped for emissivity measurements and a thin flat-faced EL6 enstatite chondrite suitable for diffusivity measurements. Heat capacity was determined from the elemental composition and density from a 3-D laser scan of the sample. We find that the thermal conductivity of the enstatite chondrite material decreases more gradually as a function of temperature than expected, while the emissivity of the ureilitic material decreases at a rate of 9.5 × 10-5 K-1 above 770 K. The entry scenario is the result of the actual flight path being the boundary to the load the meteorite will be affected with when entering. An accurate heat load prediction depends on the thermophysical properties. Finally, based on these data, the breakup can be calculated accurately leading to a risk assessment for ground damage.

  19. Annual effective dose due to residential radon progeny in Sweden: Evaluations based on current risk projections models and on risk estimates from a nation-wide Swedish epidemiological study

    Energy Technology Data Exchange (ETDEWEB)

    Doi, M. [National Inst. of Radiological Sciences, Chiba (Japan); Lagarde, F. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine; Falk, R.; Swedjemark, G.A. [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1996-12-01

    Effective dose per unit radon progeny exposure to Swedish population in 1992 is estimated by the risk projection model based on the Swedish epidemiological study of radon and lung cancer. The resulting values range from 1.29 - 3.00 mSv/WLM and 2.58 - 5.99 mSv/WLM, respectively. Assuming a radon concentration of 100 Bq/m{sup 3}, an equilibrium factor of 0.4 and an occupancy factor of 0.6 in Swedish houses, the annual effective dose for the Swedish population is estimated to be 0.43 - 1.98 mSv/year, which should be compared to the value of 1.9 mSv/year, according to the UNSCEAR 1993 report. 27 refs, tabs, figs.

  20. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles. Progress report, July 1990--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, M.

    1992-12-31

    We report on a theory for describing the biological effects of ionizing radiation in particular radon {alpha} particles. Behind this approach is the recognition that biological effects such as chromosome aberrations, cellular transformation, cellular inactivation, etc, are the result of a hierarchic sequence of radiation effects. We indicate how to treat each of the individual processes in this sequence, and also how to relate one effect to the hierarchically superior one.

  1. Radon in land use planning; Radon i arealplanlegging

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Radon poses a health risk. Therefore, it is important that the municipality takes into account radon, in land use planning. This Radiation Info provides an overview of what makes an additional radon prone area and what tools are available to assess this. The background is the Planning and Building Act provisions on risk analysis (ROS) and zones. (eb)

  2. Measurements of radon activity concentration in mouse tissues and organs.

    Science.gov (United States)

    Ishimori, Yuu; Tanaka, Hiroshi; Sakoda, Akihiro; Kataoka, Takahiro; Yamaoka, Kiyonori; Mitsunobu, Fumihiro

    2017-05-01

    The purpose of this study is to investigate the biokinetics of inhaled radon, radon activity concentrations in mouse tissues and organs were determined after mice had been exposed to about 1 MBq/m(3) of radon in air. Radon activity concentrations in mouse blood and in other tissues and organs were measured with a liquid scintillation counter and with a well-type HP Ge detector, respectively. Radon activity concentration in mouse blood was 0.410 ± 0.016 Bq/g when saturated with 1 MBq/m(3) of radon activity concentration in air. In addition, average partition coefficients obtained were 0.74 ± 0.19 for liver, 0.46 ± 0.13 for muscle, 9.09 ± 0.49 for adipose tissue, and 0.22 ± 0.04 for other organs. With these results, a value of 0.414 for the blood-to-air partition coefficient was calculated by means of our physiologically based pharmacokinetic model. The time variation of radon activity concentration in mouse blood during exposure to radon was also calculated. All results are compared in detail with those found in the literature.

  3. Characteristics of soil radon transport in different geological formations

    Science.gov (United States)

    Ershaidat, N. M.; Al-Bataina, B. A.; Al-Shereideh, S. A.

    2008-07-01

    Soil radon concentration levels in Deir Abu-Said District, Irbid, Jordan were measured for several depths using CR-39 detectors, in the summer 2004 for six geological formations, namely, Wadi umm ghudran (WG), Wadi esSir “massive” limestone, Amman silicified limestone (ASL), Al-Hisa phosphatic limestone (AHP), Muwaqqar chalky-marl (MCM), and Basalt. Using a model (Yakovleva in Ann Geophys 48(1):195 198, 2005) based on the solution of the diffusion equation in the quasi-homogenous approximation, the characteristics of radon transport were calculated. Radon flux density from the Earth’s surface, the depth Z eq, at which the equilibrium value of soil radon concentration is reached and the convective radon flux velocity ( v) for the different soils are calculated and found to be consistent with similar values presented elsewhere. Calculations indicate that the soil covering WG has a low radon risk while, on the contrary, AHP has a higher radon risk as expected, since AHP has higher content of uranium. The other formations have intermediate values. The results of the present study confirm the statement by Yakovleva (Ann Geophys 48(1):195 198, 2005) that two measurements suffice in order to estimate the characteristics of soil radon transport.

  4. Radon migration in the soils of the Irno Valley (Southern Italy inferred from radioactive disequilibrium

    Directory of Open Access Journals (Sweden)

    P. Gasparini

    1995-06-01

    Full Text Available Radon migration along vertical profiles in the soils of Irno River alluvial Valley (Southern Italy was studied using radioactive disequilibrium between 226 Ra and 210 Pb. Fractional Radon loss, migration length, diffusion and emanation coefficient and Radon flux density were determined. Our results are in agreement with a migra- tion model by simple diffusion. The migration parameters are within typical values, except the Radon flux density, which is about one order of magnitude higher than the values reported in literature. The values of fractional Radon loss are sensitive to changes in the physical properties of the soil.

  5. Radon as a hydrological indicator

    Energy Technology Data Exchange (ETDEWEB)

    Komae, Takami [National Research Inst. of Agricultural Engineering, Tsukuba, Ibaraki (Japan)

    1997-02-01

    The radon concentration in water is measured by a liquid scintillation method. After the radioactive equilibrium between radon and the daughter nuclides was attained, the radon concentration was determined by the liquid scintillation analyzer. {alpha}-ray from radon, then two {beta}- and two {alpha}-ray from the daughter nuclei group were released, so that 500% of the apparent counting efficiency was obtained. The detector limit is about 0.03 Bq/l, the low value, which corresponds to about 5.4x10{sup -15} ppm. By determining the radon concentration in groundwater, behavior of radon in hydrological process, the groundwater exchange caused by pumping and exchange between river water and groundwater were investigated. The water circulation analysis by means of radon indicator in the environment was shown. By using the large difference of radon concentration between in river water and in groundwater, arrival of injected water to the sampling point of groundwater was detected. (S.Y.)

  6. Radon-222 as a test of convective transport in a general circulation model

    Science.gov (United States)

    Jacob, Daniel J.; Prather, Michael J.

    1990-01-01

    A three-dimensional tracer model based on the Goddard Institude of Space Studies GCM is used to simulate the distribution of Rn-222 over North America to test the ability of the model to describe the transport of pollutants in the boundary layer and the exchange of mass between the boundary layer and the free troposphere. The model results are compared with surface observations from five sites in the U.S., showing that Rn-222 concentrations are primarily regulated by dry convection. The simulations show satisfactory agreement with observations although the model underpredicts observations at night and the simulated Rn-222 concentrations over the northeastern U.S. are too high in the spring and too low in the fall.

  7. Reconstruction of national distribution of indoor radon concentration in Russia using results of regional indoor radon measurement programs.

    Science.gov (United States)

    Yarmoshenko, I; Malinovsky, G; Vasilyev, A; Zhukovsky, M

    2015-12-01

    The aim of the paper is a reconstruction of the national distribution and estimation of the arithmetic average indoor radon concentration in Russia using the data of official annual 4-DOZ reports. Annual 4-DOZ reports summarize results of radiation measurements in 83 regions of Russian Federation. Information on more than 400,000 indoor radon measurements includes the average indoor radon isotopes equilibrium equivalent concentration (EEC) and number of measurements by regions and by three main types of houses: wooden, one-storey non-wooden, and multi-storey non-wooden houses. To reconstruct the national distribution, all-Russian model sample was generated by integration of sub-samples created using the results of each annual regional program of indoor radon measurements in each type of buildings. According to indoor radon concentration distribution reconstruction, all-Russian average indoor radon concentration is 48 Bq/m(3). Average indoor radon concentration by region ranges from 12 to 207 Bq/m(3). The 95-th percentile of the distribution is reached at indoor radon concentration 160 Bq/m(3).

  8. Biological and therapeutical effects of Radon

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, P. [Institute of Physiologie and Balneologie, University of Innsbruck (Austria)

    1998-12-31

    In spas with a somewhat elevated Radon{sup 222} (Rn) activity (between 300 and 3000 Bq/l), the empirical medicine ended - in all parts of the world - with the same list of indications. It mainly includes the more painful rheumatic diseases such as deformation or degeneration of the joints and non bacterial inflammation of muscles, tendons or joints; Morbus Bechterew and other diseases of the vertebral column like spondylosis, spondylarthrosis or osteochondrosis. While informer times these effects were seldom documented in an objective manner, in recent years several prospective randomized double-blind studies proved the pain reducing efficacy of Radon therapy in patients with cervical pain syndromes, with chronic polyarthritis or with Morbus Bechterew. Studies in experimental animal models have accumulated remarkable data in organs, tissue and cultured cells that provide a rationale to explain the observed effects of Radon therapy in patients. (author)

  9. Modeling of electron emission processes accompanying Radon-$\\alpha$-decays within electrostatic spectrometers

    CERN Document Server

    Wandkowsky, N; Fränkle, F M; Glück, F; Groh, S; Mertens, S

    2013-01-01

    Electrostatic spectrometers utilized in high-resolution beta-spectroscopy studies such as in the Karlsruhe Tritium Neutrino (KATRIN) experiment have to operate with a background level of less than 10^(-2) counts per second. This limit can be exceeded by even a small number of Rn-219 or Rn-220 atoms being emanated into the volume and undergoing alpha-decay there. In this paper we present a detailed model of the underlying background-generating processes via electron emission by internal conversion, shake-off and relaxation processes in the atomic shells of the Po-215 and Po-216 daughters. The model yields electron energy spectra up to 400 keV and electron multiplicities of up to 20 which are compared to experimental data.

  10. Quantile regression and Bayesian cluster detection to identify radon prone areas.

    Science.gov (United States)

    Sarra, Annalina; Fontanella, Lara; Valentini, Pasquale; Palermi, Sergio

    2016-11-01

    Albeit the dominant source of radon in indoor environments is the geology of the territory, many studies have demonstrated that indoor radon concentrations also depend on dwelling-specific characteristics. Following a stepwise analysis, in this study we propose a combined approach to delineate radon prone areas. We first investigate the impact of various building covariates on indoor radon concentrations. To achieve a more complete picture of this association, we exploit the flexible formulation of a Bayesian spatial quantile regression, which is also equipped with parameters that controls the spatial dependence across data. The quantitative knowledge of the influence of each significant building-specific factor on the measured radon levels is employed to predict the radon concentrations that would have been found if the sampled buildings had possessed standard characteristics. Those normalised radon measures should reflect the geogenic radon potential of the underlying ground, which is a quantity directly related to the geological environment. The second stage of the analysis is aimed at identifying radon prone areas, and to this end, we adopt a Bayesian model for spatial cluster detection using as reference unit the building with standard characteristics. The case study is based on a data set of more than 2000 indoor radon measures, available for the Abruzzo region (Central Italy) and collected by the Agency of Environmental Protection of Abruzzo, during several indoor radon monitoring surveys. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Radon: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Lepman, S.R.; Boegel, M.L.; Hollowell, C.D.

    1981-01-01

    The Lawrence Berkeley Laboratory, with the support of the Department of Energy, has developed a computerized database to manage research information in the area of building ventilation and indoor air quality. This literature survey contains references pertaining to the physical properties of radon and its daughters, instrumentation for their measurement, health effects, surveys and measurements, and regulatory information. The references in the bibliography are sequenced in alphabetical order and abstracts are included when supplied by the author. The objective of this report is to disseminate the bibliographic references compiled at the laboratory relating to radon research portion of the program. Interested database users are encouraged to contact the laboratory to receive instructions for direct database acess. A flyer describing the database is supplied at the end of the bibliography and a brief overview of the Radon Research porgram is given.

  12. Map showing radon potential of rocks and soils in Montgomery County, Maryland

    Science.gov (United States)

    Gundersen, L.C.; Reimer, G.M.; Wiggs, C.R.; Rice, C.A.

    1988-01-01

    This report summarizes the radon potential of Montgomery County in the context of its geology. Radon is a naturally occurring gas produced by the radioactive decay of uranium. Radon produced by uraniferous rocks and soils may enter a house through porous building materials and through openings in walls and floors. Radon gases has a tendency to move from the higher pressure commonly existing in the soil to the lower pressure commonly existing in the house. The U.S. Environmental Protection Agency (U.S. EPA, 1986a) estimates that elevated levels of indoor radon may be associated with 5,000 to 20,000 of the 130,000 lung cancer deaths per year. They also estimate that 8 to 12 percent of the homes in the United States will have annual average indoor radon levels exceeding 4 picoCuries per liter of air (pCi/L). Above this level, the U.S. EPA recommends homeowners take remedial action. May factors control the amount of radon which may enter a home from the geologic environment. Soil drainage, permeability, and moisture content effect the amount of radon that can be released from rocks and soils (known as the emmanation) and may limit or increase how far it can migrate. Well drained, highly permeable soils facilitate the movement of radon. Soils with water content in the 8 to 15 percent range enhance the emmanation of radon (Lindmark, 1985). Daily and seasonal variations in soil and indoor radon can be caused by meteorologic factors such as barometric pressure, temperature, and wind (Clements and Wilkening, 1974; Schery and other, 1984). Construction practices also inhibit or promote entry of radon into the home (U.S. EPA, 1986b). In general, however, geology controls the source and distribution of radon (Akerblom and Wilson, 1982; Gundersen and others, 1987, 1988; Sextro and others, 1987; U.S. EPA, 1983; Peake, 1988; Peake and Hess, 1988). The following sections describe: 1) the methods used to measure radon and equivalent uranium (eU) in soil; 2) the radon potential

  13. Radon programmes and health marketing.

    Science.gov (United States)

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  14. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  15. An expanded model of HIV cell entry phenotype based on multi-parameter single-cell data

    Directory of Open Access Journals (Sweden)

    Bozek Katarzyna

    2012-07-01

    Full Text Available Abstract Background Entry of human immunodeficiency virus type 1 (HIV-1 into the host cell involves interactions between the viral envelope glycoproteins (Env and the cellular receptor CD4 as well as a coreceptor molecule (most importantly CCR5 or CXCR4. Viral preference for a specific coreceptor (tropism is in particular determined by the third variable loop (V3 of the Env glycoprotein gp120. The approval and use of a coreceptor antagonist for antiretroviral therapy make detailed understanding of tropism and its accurate prediction from patient derived virus isolates essential. The aim of the present study is the development of an extended description of the HIV entry phenotype reflecting its co-dependence on several key determinants as the basis for a more accurate prediction of HIV-1 entry phenotype from genotypic data. Results Here, we established a new protocol of quantitation and computational analysis of the dependence of HIV entry efficiency on receptor and coreceptor cell surface levels as well as viral V3 loop sequence and the presence of two prototypic coreceptor antagonists in varying concentrations. Based on data collected at the single-cell level, we constructed regression models of the HIV-1 entry phenotype integrating the measured determinants. We developed a multivariate phenotype descriptor, termed phenotype vector, which facilitates a more detailed characterization of HIV entry phenotypes than currently used binary tropism classifications. For some of the tested virus variants, the multivariant phenotype vector revealed substantial divergences from existing tropism predictions. We also developed methods for computational prediction of the entry phenotypes based on the V3 sequence and performed an extrapolating calculation of the effectiveness of this computational procedure. Conclusions Our study of the HIV cell entry phenotype and the novel multivariate representation developed here contributes to a more detailed

  16. Indoor radon measurements in Kosovo and Metohija over the period 1995-2007

    Energy Technology Data Exchange (ETDEWEB)

    Milic, Gordana [Faculty of Natural Sciences, University of Pristina, Lole Ribara 29, 28000 Kosovska Mitrovica (Serbia); Yarmoshenko, Ilia V., E-mail: ivy@ecko.uran.r [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation); Jakupi, Bajram [Faculty of Natural Sciences, University of Pristina, Lole Ribara 29, 28000 Kosovska Mitrovica (Serbia); Kovacevic, Milojko; Zunic, Zora S. [VINCA Institute of Nuclear Science, Mike Alasa St., 12-14, 11000 Belgrade (Serbia)

    2011-01-15

    The paper deals with the results of the investigations of indoor radon measurements in more than 300 rural and urban dwellings in Kosovo and Metohija. All measurements were carried out using CR-39 solid state nuclear track detectors by similar protocols and within two series in 1990-s and in 2000-s, in 34 settlements divided by 9 regions, thus covering significant part of Kosovo. For most of measured points the adjustment for seasonal variation was necessary and had been conducted. Highest average values of indoor radon concentrations were found in rural settlements of Lipljan and Vitina regions, 512 and 452 Bq/m{sup 3}, respectively. Combined analysis allows indoor radon concentration of 220 Bq/m{sup 3} to be suggested as representative estimate for Kosovo, while additional data appear. Observed pattern of indoor radon seasonal variation and difference of radon levels between ground and upper floors suggest soil radon as primary source of indoor radon and significance of convection type radon entry.

  17. Multibody Modeling and Simulation for the Mars Phoenix Lander Entry, Descent and Landing

    Science.gov (United States)

    Queen, Eric M.; Prince, Jill L.; Desai, Prasun N.

    2008-01-01

    A multi-body flight simulation for the Phoenix Mars Lander has been developed that includes high fidelity six degree-of-freedom rigid-body models for the parachute and lander system. The simulation provides attitude and rate history predictions of all bodies throughout the flight, as well as loads on each of the connecting lines. In so doing, a realistic behavior of the descending parachute/lander system dynamics can be simulated that allows assessment of the Phoenix descent performance and identification of potential sensitivities for landing. This simulation provides a complete end-to-end capability of modeling the entire entry, descent, and landing sequence for the mission. Time histories of the parachute and lander aerodynamic angles are presented. The response of the lander system to various wind models and wind shears is shown to be acceptable. Monte Carlo simulation results are also presented.

  18. Influence of Blasted Uranium Ore Heap on Radon Concentration in Confined Workspaces of Shrinkage Mining Stope

    Science.gov (United States)

    Ye, Y. J.; Liang, T.; Ding, D. X.; Lei, B.; Su, H.; Zhang, Y. F.

    2017-07-01

    A calculation model for radon concentration in shrinkage mining stopes under various ventilation conditions was established in this study. The model accounts for the influence of permeability and area of the blasted ore heap, ventilation air quantity, and airflow direction on radon concentration in a confined workspace; these factors work together to allow the engineer to optimize the ventilation design. The feasibility and effectiveness of the model was verified by applying it to mines with elevated radon radiation exposure. The model was found to accurately changes in radon concentration according to the array of influence factors in underground uranium mines.

  19. Radon Release and Its Simulated Effect on Radiation Doses.

    Science.gov (United States)

    Orabi, Momen

    2017-03-01

    One of the main factors that affect the uncertainty in calculating the gamma-radiation absorbed dose rate inside a room is the variation in the degree of secular equilibrium of the considered radioactive series. A component of this factor, considered in this paper, is the release of radon (Rn) from building materials to the living space of the room. This release takes place through different steps. These steps are represented and mathematically formulated. The diffusion of radon inside the material is described by Fick's second law. Some of the factors affecting the radon release rate (e.g. covering walls, moisture, structure of the building materials, etc.) are discussed. This scheme is used to study the impact of radon release on the gamma-radiation absorbed dose rate inside a room. The investigation is carried out by exploiting the MCNP simulation software. Different building materials are considered with different radon release rates. Special care is given to Rn due to its relatively higher half-life and higher indoor concentration than the other radon isotopes. The results of the presented model show that the radon release is of a significant impact in some building materials.

  20. Radon and COPD mortality in the American Cancer Society Cohort

    Science.gov (United States)

    Turner, Michelle C.; Krewski, Daniel; Chen, Yue; Pope, C. Arden; Gapstur, Susan M.; Thun, Michael J.

    2012-01-01

    Although radon gas is a known cause of lung cancer, the association between residential radon and mortality from non-malignant respiratory disease has not been well characterised. The Cancer Prevention Study-II is a large prospective cohort study of nearly 1.2 million Americans recruited in 1982. Mean county-level residential radon concentrations were linked to study participants' residential address based on their ZIP code at enrolment (mean±sd 53.5±38.0 Bq·m−3). Cox proportional hazards regression models were used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for non-malignant respiratory disease mortality associated with radon concentrations. After necessary exclusions, a total of 811,961 participants in 2,754 counties were included in the analysis. Throughout 2006, there were a total of 28,300 non-malignant respiratory disease deaths. Radon was significantly associated with chronic obstructive pulmonary disease (COPD) mortality (HR per 100 Bq·m−3 1.13, 95% CI 1.05–1.21). There was a significant positive linear trend in COPD mortality with increasing categories of radon concentrations (pradon may increase COPD mortality. Further research is needed to confirm this finding and to better understand possible complex inter-relationships between radon, COPD and lung cancer. PMID:22005921

  1. Publications about Radon

    Science.gov (United States)

    There is no known safe level of exposure to radon. EPA strongly recommends that you fix your home if your test shows 4 picocuries (pCi/L) or more. These publications and resources will provide you with the information you need to fix your home.

  2. What Is Radon?

    Science.gov (United States)

    ... in both cigarette smoke and radon. In some animals, the risk of certain other cancers was also increased. In lab studies using human ... cancer grow is called a carcinogen .) The American Cancer Society looks to these ... laboratory, animal, and human research studies. Based on animal and ...

  3. The Chemistry of Radon

    Science.gov (United States)

    Avrorin, V. V.; Krasikova, R. N.; Nefedov, V. D.; Toropova, M. A.

    1982-01-01

    We shall review the discovery of this element, studies of its chemical nature, and modern ideas on its chemical and physical properties. Possible chemical and nuclear-chemical methods of synthesising new radon compounds and of determining their properties and their identity will be discussed, using information published up to May 1980. 121 references.

  4. Environmental radon studies in Mexico.

    Science.gov (United States)

    Segovia, N; Gaso, M I; Armienta, M A

    2007-04-01

    Radon has been determined in soil, groundwater, and air in Mexico, both indoors and outdoors, as part of geophysical studies and to estimate effective doses as a result of radon exposure. Detection of radon has mainly been performed with solid-state nuclear track detectors (SSNTD) and, occasionally, with active detection devices based on silicon detectors or ionization chambers. The liquid scintillation technique, also, has been used for determination of radon in groundwater. The adjusted geometric mean indoor radon concentration (74 Bq m-3) in urban developments, for example Mexico City, is higher than the worldwide median concentration of radon in dwellings. In some regions, particularly hilly regions of Mexico where air pollution is high, radon concentrations are higher than action levels and the effective dose for the general population has increased. Higher soil radon levels have been found in the uranium mining areas in the northern part of the country. Groundwater radon levels are, in general, low. Soil-air radon contributing to indoor atmospheres and air pollution is the main source of increased exposure of the population.

  5. A map of radon flux at the Australian land surface

    Directory of Open Access Journals (Sweden)

    A. D. Griffiths

    2010-06-01

    Full Text Available A time-dependent map of radon-222 flux density at the Australian land surface has been constructed with a spatial resolution of 0.05° and temporal resolution of one month. Radon flux density was calculated from a simple model utilising data from national gamma-ray aerial surveys, modelled soil moisture, and maps of soil properties. The model was calibrated against a large data set of accumulation-chamber measurements, thereby constraining it with experimental data. A notable application of the map is in atmospheric mixing and transport studies which use radon as a tracer, where it is a clear improvement on the common assumption of uniform radon flux density.

  6. A map of radon flux at the Australian land surface

    Directory of Open Access Journals (Sweden)

    A. D. Griffiths

    2010-09-01

    Full Text Available A time-dependent map of radon-222 flux density at the Australian land surface has been constructed with a spatial resolution of 0.05° and temporal resolution of one month. Radon flux density was calculated from a simple model utilising data from national gamma-ray aerial surveys; modelled soil moisture, available from 1900 in near real-time; and maps of soil properties. The model was calibrated against a data set of accumulation chamber measurements, thereby constraining it with experimental data. A notable application of the map is in atmospheric mixing and transport studies which use radon as a tracer, where it is a clear improvement on the common assumption of uniform radon flux density.

  7. On the air-filled effective porosity parameter of Rogers and Nielson's (1991) bulk radon diffusion coefficient in unsaturated soils.

    Science.gov (United States)

    Saâdi, Zakaria

    2014-05-01

    The radon exhalation rate at the earth's surface from soil or rock with radium as its source is the main mechanism behind the radon activity concentrations observed in both indoor and outdoor environments. During the last two decades, many subsurface radon transport models have used Rogers and Nielson's formula for modeling the unsaturated soil bulk radon diffusion coefficient. This formula uses an "air-filled effective porosity" to account for radon adsorption and radon dissolution in the groundwater. This formula is reviewed here, and its hypotheses are examined for accuracy in dealing with subsurface radon transport problems. The author shows its limitations by comparing one dimensional steady-state analytical solutions of the two-phase (air/water) transport equation (Fick's law) with Rogers and Nielson's formula. For radon diffusion-dominated transport, the calculated Rogers and Nielson's radon exhalation rate is shown to be unrealistic as it is independent of the values of the radon adsorption and groundwater dissolution coefficients. For convective and diffusive transport, radon exhalation rates calculated using Fick's law and this formula agree only for high values of gas-phase velocity and groundwater saturation. However, these conditions are not usually met in most shallow subsurface environments where radon migration takes place under low gas phase velocities and low water saturation.

  8. Experimental and modeling investigation of CO2 dissociation in Mars entry condition

    Science.gov (United States)

    Lin, Xin; Chen, Lianzhong; Peng, Jinlong; Li, Jinping; Li, Fei; Yu, Xilong

    2016-10-01

    Shock tube experiments are carried out to study the physical and chemical processes during a vehicle entry into the Mars atmosphere. The facility to establish a strong shock wave is a shock tube which is driven by combustion of hydrogen and oxygen. Measurements of rotational and vibrational temperature behind the shock wave are realized thanks to optical emission spectroscopy (OES). In parallel, tunable diode laser absorption spectroscopy (TDLAS) is utilized to diagnose one absorption line of CO near 2.33 µm. Combined with these temperature results using OES, CO concentration in the thermal equilibrium region is derived, which is 2.91 × 1017 cm-3, corresponding to equilibrium temperature equals to 7000 ± 400 K. Moreover, a thermochemical code, based on Park's two-temperature theory, for studying chemical and physical processes is developed for Mars entry conditions. Some comparisons between experiments and calculations are presented. Such a two-temperature model fails to reproduce non-equilibrium temperatures and mole fractions but suitable for equilibrium temperature predictions.

  9. Geology and geochemistry of radon in shear zones: End of year progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gundersen, L.C.S.; Schultz, A.P.; Wanty, R.B.; Gates, A.E.; Crespi, J.M.

    1989-01-01

    The objective of this project is to understand the geology of radon gas behavior in areas where shared fault zones cause localized, anomalously high concentrations of radon. Sheared fault zones in bedrock have been identified as the cause of some of the highest indoor radon and water borne radon problems recorded in the United States. This study will provide detailed geological and geochemical models of the processes that create high concentration of radon in shear zones. The main research goals are to: (1) characterize and quantify uranium enrichment in shear zones by examining the chemical and deformational processes involved; (2) develop predictive models that will identify severe radon occurrences by rock type, amount of deformation (shear strain), deformational style, and amount of radionuclide enrichment; (3) characterize and quantify the effect of deformation on the development of soils, permeability, radon migration and emanation, alteration, and radium distribution; (4) characterize and quantify the rock-water equilibria within shear zones that produce the extreme concentrations of radon in water derived from sheared rock aquifers, and examine the contribution of radon in water to indoor radon concentrations. 4 refs.

  10. Standardised Radon Index (SRI: a normalisation of radon data-sets in terms of standard normal variables

    Directory of Open Access Journals (Sweden)

    R. G. M. Crockett

    2011-07-01

    Full Text Available During the second half of 2002, from late June to mid December, the University of Northampton Radon Research Group operated two continuous hourly-sampling radon detectors 2.25 km apart in the English East Midlands. This period included the Dudley earthquake (ML = 5, 22 September 2002 and also a smaller earthquake in the English Channel (ML = 3, 26 August 2002. Rolling/sliding windowed cross-correlation of the paired radon time-series revealed periods of simultaneous similar radon anomalies which occurred at the time of these earthquakes but at no other times during the overall radon monitoring period. Standardising the radon data in terms of probability of magnitude, analogous to the Standardised Precipitation Indices (SPIs used in drought modelling, which effectively equalises different non-linear responses, reveals that the dissimilar relative magnitudes of the anomalies are in fact closely equiprobabilistic. Such methods could help in identifying anomalous signals in radon – and other – time-series and in evaluating their statistical significance in terms of earthquake precursory behaviour.

  11. The NIST Primary Radon-222 Measurement System

    OpenAIRE

    Collé, R.; Hutchinson, J. M. R.; Unterweger, M. P.

    1990-01-01

    Within the United States, the national standard for radon measurements is embodied in a primary radon measurement system that has been maintained for over 50 years to accurately measure radon (222Rn) against international and national radium (226Ra) standards. In turn, all of the radon measurements made at the National Institute of Standards and Technology (NIST) and the radon transfer calibration standards and calibration services provided by NIST are directly related to this national radon ...

  12. Bayesian Prediction of Mean Indoor Radon Concentrations for Minnesota Counties

    Energy Technology Data Exchange (ETDEWEB)

    Price, P.N.; Nero, A.V.; Gelman, A.

    1995-08-01

    Past efforts to identify areas having higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the noise in local means caused by the small number of homes monitored in some or most areas, In the present paper, indoor radon data from a survey in Minnesota are analyzed in such a way as to minimize the effect of finite sample size within counties, in order to determine the true county-to-county variation of indoor radon concentrations in the state and the extent to which this variation is explained by the variation in surficial radium concentration among counties, The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean (GM) radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as a random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of GM radon levels is found to be substantially less than the county-to-county variation of the observed GMs, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of GM radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. This approach offers a self-consistent statistical method for predicting the mean values of indoor radon concentrations or other geographically

  13. Residential radon and brain tumour incidence in a Danish cohort.

    Directory of Open Access Journals (Sweden)

    Elvira V Bräuner

    Full Text Available BACKGROUND: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. OBJECTIVE: To investigate the long-term effect of exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. METHODS: During 1993-1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced residential addresses from 1 January 1971 until 31 December 2009 and calculated radon concentrations at each address using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR and 95% confidence intervals (CI for the risk of primary brain tumours associated with residential radon exposure with adjustment for age, sex, occupation, fruit and vegetable consumption and traffic-related air pollution. Effect modification by air pollution was assessed. RESULTS: Median estimated radon was 40.5 Bq/m(3. The adjusted IRR for primary brain tumour associated with each 100 Bq/m(3 increment in average residential radon levels was 1.96 (95% CI: 1.07; 3.58 and this was exposure-dependently higher over the four radon exposure quartiles. This association was not modified by air pollution. CONCLUSIONS: We found significant associations and exposure-response patterns between long-term residential radon exposure radon in a general population and risk of primary brain tumours, adding new knowledge to this field. This finding could be chance and needs to be challenged in future studies.

  14. Mapping geogenic radon potential by regression kriging.

    Science.gov (United States)

    Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos

    2016-02-15

    Radon ((222)Rn) gas is produced in the radioactive decay chain of uranium ((238)U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. Copyright © 2015 Elsevier B.V. All rights

  15. Radon and lung cancer; Radon et cancer du poumon

    Energy Technology Data Exchange (ETDEWEB)

    Baysson, H; Billon, S.; Catelinois, O.; Gambard, J.P.; Laurier, D.; Rogel, A.; Tirmarche, M

    2004-12-01

    Radon is a natural radioactive gas that tends to accumulate in indoor environments; its concentration is highest in areas with granite sub-soils. Epidemiologic studies of uranium miners and animal data demonstrate the radon inhalation increases the risk of lung cancer. The objective of this paper is to present the available data on the French population's exposure to radon and the current epidemiologic knowledge of its effects, from cohort studies of uranium miners and indoor radon case-control studies.

  16. Legal issues in radon affairs

    Energy Technology Data Exchange (ETDEWEB)

    Massuelle, M.H. [Inst. de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1999-12-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of expertsand the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise.

  17. Radon mapping strategies in Austria.

    Science.gov (United States)

    Gruber, V; Ringer, W; Wurm, G; Friedmann, H

    2015-11-01

    According to current European and international recommendations (e.g. by IAEA, WHO and European Union), countries shall identify high radon areas. In Austria, this task was initiated already in the early 1990s, which yielded the first Austrian Radon Potential Map. This map is still in use, updated with recent indoor radon data in 2012. The map is based on radon gas measurements in randomly selected dwellings, normalised to a standard situation. To meet the current (legal) requirements, uncertainties in the existing Austrian radon map should be reduced. A new indoor radon survey with a different sampling strategy was started, and possible mapping methods are studied and tested. In this paper, the methodology for the existing map as well as the planned strategies to improve this map is discussed.

  18. Legal issues in radon affairs

    Energy Technology Data Exchange (ETDEWEB)

    Massuelle, M.H. [Inst. de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1999-12-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of expertsand the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise.

  19. Simulated equilibrium factor studies in radon chamber

    Energy Technology Data Exchange (ETDEWEB)

    Tiehchi Chu; Holing Liu [National Tsing Hua Univ., Hsinchu, Taiwan (China). Dept. of Nuclear Science

    1996-05-01

    A series of experiments have been conducted to study the influences of environmental parameters on the equilibrium factor. Most of them were carried out in a walk-in type chamber. The deposition velocity was calculated using the Jacobi model. The ranges of the environmental parameters studied in the experiments are humidity 30-90% r.h. and radon concentration 2-40 kBqm{sup -3}. The aerosol sources included electric fumigator, mosquito coil, incense, a cigarette with the particle concentration 2000-6500 cm{sup -3} and the attachment rate 10-350 h{sup -1}. The results of the experiment show that the equilibrium factor tends to decrease as the radon concentration increases. On the other hand, the equilibrium factor tends to increase as the humidity increases, and so is the increasing attachment rate. Of all the parameters mentioned above, the influence that aerosols have on the equilibrium factor is the predominant factor. The calculated deposition velocity for the unattached fraction of radon daughters tends to increase as the radon concentration increases. However, it tends to decrease as the humidity increases. (Author).

  20. DLMS Voice Data Entry.

    Science.gov (United States)

    1980-06-01

    between operator and computer displayed on ADM-3A 20c A-I Possible Hardware Configuration for a Multistation Cartographic VDES ...this program a Voice Recognition System (VRS) which can be used to explore the use of voice data entry ( VDE ) in the DIMS or other cartographic data...Multi-Station Cartographic Voice Data Entry System An engineering development model voice data entry system ( VDES ) could be most efficiently

  1. Adolescent Decision-Making Processes regarding University Entry: A Model Incorporating Cultural Orientation, Motivation and Occupational Variables

    Science.gov (United States)

    Jung, Jae Yup

    2013-01-01

    This study tested a newly developed model of the cognitive decision-making processes of senior high school students related to university entry. The model incorporated variables derived from motivation theory (i.e. expectancy-value theory and the theory of reasoned action), literature on cultural orientation and occupational considerations. A…

  2. Adolescent Decision-Making Processes regarding University Entry: A Model Incorporating Cultural Orientation, Motivation and Occupational Variables

    Science.gov (United States)

    Jung, Jae Yup

    2013-01-01

    This study tested a newly developed model of the cognitive decision-making processes of senior high school students related to university entry. The model incorporated variables derived from motivation theory (i.e. expectancy-value theory and the theory of reasoned action), literature on cultural orientation and occupational considerations. A…

  3. Evaluation of the open vial method in the radon measurement; Evaluacion del metodo del vial abierto en la medicion de radon

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Rio, H.; Davila R, J. I.; Mireles G, F., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The open vial method is a simple technique, under-utilized but that take advantage of the great radon solubility in organic solvents, therefore applies in the measurement of the radon concentration exhaled in soil. The method consists on the exposition to the gas radon of an open vial with scintillating solution. An integral mathematical model for indoors that describes the emanation processes and gas radon exhalation was developed, as well as the radon dissolution in the scintillation liquid, besides obtaining the characteristic parameters of the experimental system proposed for the radon concentration calculation exhaled by soils. Two experimental arrangements were designed with exposition cameras of 12 and 6 L and quantity of different soil. The open vial was prepared with a mixture of 8 ml of deionized water and 12 ml of scintillation liquid OptiPhase Hi Safe 3 in polyethylene vials; the measurements of the dissolved radon were carried out in scintillation liquid equipment. As a result, on average 2.0% of the exhaled radon is dissolved in the open vial and the dissolved fraction is independent of the experimental arrangement. Also was observed that the exposition time does not affect the radon dissolution significantly, in correspondence with the reported in the literature. (Author)

  4. (Mutagenicity of radon and radon daughters)

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The current objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose-rate dependence will be studied, as well as the nature of the DNA lesions. The effect of DNA repair on the lethal and mutagenic effects of exposure and on the character of the DNA lesions will be investigated by comparing the response of L5178Y strains which differ in their ability to rejoin X radiation-induced DNA double-strand breaks. This report discusses progress incurred from 4/1/1988--10/1/1990. 5 refs., 9 figs., 6 tabs.

  5. Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill

    Science.gov (United States)

    Barrios, José Angel; Torres-Alvarado, Miguel; Cavazos, Alberto; Leduc, Luis

    2011-10-01

    In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill. Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in the incoming bar conditions, and final product changes. In order to overcome these problems, artificial intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article, neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale breaker entry temperature, given its importance, and their performance is compared to that of the physical model used in plant. Several neural systems and several neural-based Gray-Box models are designed and tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several factors which are believed to have influence on the process are also tested. The systems proposed in this study were proven to have better performance indexes and hence better prediction capabilities than the physical models currently used in plant.

  6. Uniform rovibrational collisional N2 bin model for DSMC, with application to atmospheric entry flows

    Science.gov (United States)

    Torres, E.; Bondar, Ye. A.; Magin, T. E.

    2016-11-01

    A state-to-state model for internal energy exchange and molecular dissociation allows for high-fidelity DSMC simulations. Elementary reaction cross sections for the N2 (v, J)+ N system were previously extracted from a quantum-chemical database, originally compiled at NASA Ames Research Center. Due to the high computational cost of simulating the full range of inelastic collision processes (approx. 23 million reactions), a coarse-grain model, called the Uniform RoVibrational Collisional (URVC) bin model can be used instead. This allows to reduce the original 9390 rovibrational levels of N2 to 10 energy bins. In the present work, this reduced model is used to simulate a 2D flow configuration, which more closely reproduces the conditions of high-speed entry into Earth's atmosphere. For this purpose, the URVC bin model had to be adapted for integration into the "Rarefied Gas Dynamics Analysis System" (RGDAS), a separate high-performance DSMC code capable of handling complex geometries and parallel computations. RGDAS was developed at the Institute of Theoretical and Applied Mechanics in Novosibirsk, Russia for use by the European Space Agency (ESA) and shares many features with the well-known SMILE code developed by the same group. We show that the reduced mechanism developed previously can be implemented in RGDAS, and the results exhibit nonequilibrium effects consistent with those observed in previous 1D-simulations.

  7. Seismic Shear Energy Reflection By Radon-Fourier Transform

    Directory of Open Access Journals (Sweden)

    Malik Umairia

    2016-01-01

    Full Text Available Seismic waves split in an anisotropic medium, instead of rotating horizontal component to principal direction, Radon-Fourier is derived to observe the signature of shear wave reflection. Synthetic model with fracture is built and discretized using finite difference scheme for spatial and time domain. Common depth point (CDP with single shot gives traces and automatic gain is preprocessed before Radon Transform (RT, a filtering technique gives radon domain. It makes easier to observe fractures at specific incidence and improves its quality in some way by removing the noise. A comparison of synthetic data and BF-data is performed on the basis of root means square error (RMS values. The RMS error is minimum at the 10th trace in radon domain.

  8. Residential radon and lung cancer incidence in a Danish cohort

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Andersen, Claus Erik; Sørensen, Mette

    2012-01-01

    non-smokers. We found no evidence of effect modification.We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information......High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993–1997. We followed each cohort member for cancer...... occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used...

  9. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-07-01

    Full Text Available The RNA polymerase II (Pol II is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the "secondary channel" is the only route for NTP to reach the active site of the enzyme or if the "main channel" could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.

  10. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.

    Science.gov (United States)

    Zhang, Lu; Silva, Daniel-Adriano; Pardo-Avila, Fátima; Wang, Dong; Huang, Xuhui

    2015-07-01

    The RNA polymerase II (Pol II) is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the "secondary channel" is the only route for NTP to reach the active site of the enzyme or if the "main channel" could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB) is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP) substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD) simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.

  11. An approach to creating a more realistic working model from a protein data bank entry

    Science.gov (United States)

    Brandon, Christopher J.; Martin, Benjamin P.; McGee, Kelly J.; Stewart, James J. P.; Braun-Sand, Sonja B.

    2015-01-01

    An accurate model of three-dimensional protein structure is important in a variety of fields such as structure-based drug design and mechanistic studies of enzymatic reactions. While the entries in the Protein Data Bank (http://www.pdb.org) provide valuable information about protein structures, a small fraction of the PDB structures were found to contain anomalies not reported in the PDB file. The semiempirical PM7 method in MOPAC2012 was used for identifying anomalously short hydrogen bonds, C–H···O/C–H···N interactions, non-bonding close contacts, and unrealistic covalent bond lengths in recently published Protein Data Bank files. It was also used to generate new structures with these faults removed. When the semiempirical models were compared to those of PDB_REDO (http://www.cmbi.ru.nl/pdb_redo/), the clashscores, as defined by MolProbity (http://molprobity.biochem.duke.edu/), were better in about 50 % of the structures. The semiempirical models also had a lower root-mean-square-deviation value in nearly all cases than those from PDB_REDO, indicative of a better conservation of the tertiary structure. Finally, the semiempirical models were found to have lower clashscores than the initial PDB file in all but one case. Because this approach maintains as much of the original tertiary structure as possible while improving anomalous interactions, it should be useful to theoreticians, experimentalists, and crystallographers investigating the structure and function of proteins. PMID:25605595

  12. Radon - environmental pollutant from underground. Radon - Umweltgift aus dem Erdreich

    Energy Technology Data Exchange (ETDEWEB)

    Obertreis, R.

    1988-01-01

    Radon is responsible for about 50% of the natural radiation load of 200 mrem/a in the Federal Republic of Germany. This implies that approximately 190.000 households with about 600.000 citizens of the Federal Republic face an increased risk of lung cancer. Hints are given as to the reduction of radon values in cellars and living rooms. (DG).

  13. Environmental effect of radon from waste rock piles at closed uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Sadaaki; Ito, Kimio; Ishimori, Yuu; Nakajima, Yuuji [Power Reactor and Nuclear Fuel Development Corp., Kamisaibara, Okayama (Japan). Ningyo Toge Works

    1997-04-01

    The radon concentrations at working area had been measured during uranium exploration by Power Reactor and Nuclear Fuel Development Corporation (PNC). Although the uranium exploration was closed by 1987, the measurements of environmental radon and the confirmation of public dose under 1 mSv/year out of supervising area has been necessary by the regulation since 1989, the year of the change of Japanese mine safety law. However radon exists in natural environment, it`s quite difficult to distinguish the radon from closed uranium mine from natural`s. Therefore the effective doses were estimated by the calculations using the atmospheric dispersion models, and by the measurements of radon emanation from the waste rock area of closed uranium mines. The radon influence from the waste rock was also investigated by the tracer gas dispersion experiments. Consequently the effective doses from the mining facilities were confirmed under the public limits 1 mSv/year of the regulations by this study. (author)

  14. Radon emissions from natural gas power plants at The Pennsylvania State University.

    Science.gov (United States)

    Stidworthy, Alison G; Davis, Kenneth J; Leavey, Jeff

    2016-11-01

    Burning natural gas in power plants may emit radon ((222)Rn) into the atmosphere. On the University Park campus of The Pennsylvania State University, atmospheric radon enhancements were measured and modeled in the vicinity of their two power plants. The three-part study first involved measuring ambient outdoor radon concentrations from August 2014 through January 2015 at four sites upwind and downwind of the power plants at distances ranging from 80 m to 310 m. For each plant, one site served as a background site, while three other sites measured radon concentration enhancements downwind. Second, the radon content of natural gas flowing into the power plant was measured, and third, a plume dispersion model was used to predict the radon concentrations downwind of the power plants. These predictions are compared to the measured downwind enhancements in radon to determine whether the observed radon concentration enhancements could be attributed to the power plants' emissions. Atmospheric radon concentrations were consistently low as compared to the EPA action level of 148 Bq m(-3), averaging 34.5 ± 2.7 Bq m(-3) around the East Campus Steam Plant (ECSP) and 31.6 ± 2.7 Bq m(-3) around the West Campus Steam Plant (WCSP). Significant concentrations of radon, ranging from 516 to 1,240 Bq m(-3), were detected in the natural gas. The measured enhancements downwind of the ECSP averaged 6.2 Bq m(-3) compared to modeled enhancements of 0.08 Bq m(-3). Measured enhancements around the WCSP averaged -0.2 Bq m(-3) compared to the modeled enhancements of 0.05 Bq m(-3), which were not significant compared to observational error. The comparison of the measured to modeled downwind radon enhancements shows no correlation over time. The measurements of radon levels in the vicinity of the power plants appear to be unaffected by the emissions from the power plants. Radon measurements at sites surrounding power plants that utilize natural gas did not indicate that the radon concentrations

  15. MEASUREMENT OF RADON, THORON AND THEIR PROGENY CONCENTRATIONS IN THE DWELLINGS OF PAURI GARHWAL, UTTARAKHAND, INDIA.

    Science.gov (United States)

    Joshi, Veena; Dutt, Sanjay; Yadav, Manjulata; Mishra, Rosaline; Ramola, R C

    2016-10-01

    It is well known that inhalation of radon, thoron and their progeny contributes more than 50 % of natural background radiation dose to human being. The time-integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector-based single-entry pin-hole dosemeter, while for the measurement of progeny concentrations, LR-115 deposition-based direct radon and thoron progeny sensors technique was used. The experimental techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings.

    Science.gov (United States)

    Vasilyev, A V; Yarmoshenko, I V; Zhukovsky, M V

    2015-06-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low.

  17. Climate Change Modeling Methodology Selected Entries from the Encyclopedia of Sustainability Science and Technology

    CERN Document Server

    2012-01-01

    The Earth's average temperature has risen by 1.4°F over the past century, and computer models project that it will rise much more over the next hundred years, with significant impacts on weather, climate, and human society. Many climate scientists attribute these increases to the buildup of greenhouse gases produced by the burning of fossil fuels and to the anthropogenic production of short-lived climate pollutants. Climate Change Modeling Methodologies: Selected Entries from the Encyclopedia of Sustainability Science and Technology provides readers with an introduction to the tools and analysis techniques used by climate change scientists to interpret the role of these forcing agents on climate.  Readers will also gain a deeper understanding of the strengths and weaknesses of these models and how to test and assess them.  The contributions include a glossary of key terms and a concise definition of the subject for each topic, as well as recommendations for sources of more detailed information. Features au...

  18. APPLICATION OF RADON REDUCTION METHODS

    Science.gov (United States)

    The document is intended to aid homeowners and contractors in diagnosing and solving indoor radon problems. It will also be useful to State and Federal regulatory officials and many other persons who provide advice on the selection, design and operation of radon reduction methods...

  19. Residential radon and lung cancer incidence in a Danish cohort

    Energy Technology Data Exchange (ETDEWEB)

    Braeuner, Elvira V., E-mail: ole@cancer.dk [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Danish Building Research Institute, Aalborg University (Denmark); Andersen, Claus E. [Center for Nuclear Technologies, Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde (Denmark); Sorensen, Mette [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Jovanovic Andersen, Zorana [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Center for Epidemiology Screening, Department of Public Health, University of Copenhagen (Denmark); Gravesen, Peter [Geological Survey of Denmark and Greenland, Copenhagen (Denmark); Ulbak, Kaare [National Institute of Radiation Protection, Herlev (Denmark); Hertel, Ole [Department of Environmental Science, Aarhus University, Aarhus (Denmark); Pedersen, Camilla [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark); Overvad, Kim [Department of Epidemiology, School of Public Health, Aarhus University, Aarhus (Denmark); Tjonneland, Anne; Raaschou-Nielsen, Ole [Diet, Genes and Environment, Danish Cancer Society Research Centre, Copenhagen (Denmark)

    2012-10-15

    High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993-1997. We followed each cohort member for cancer occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) for lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and alcohol. Potential effect modification by sex, traffic-related air pollution and environmental tobacco smoke was assessed. Median estimated radon was 35.8 Bq/m{sup 3}. The adjusted IRR for lung cancer was 1.04 (95% CI: 0.69-1.56) in association with a 100 Bq/m{sup 3} higher radon concentration and 1.67 (95% CI: 0.69-4.04) among non-smokers. We found no evidence of effect modification. We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information at the low-level radon dose range.

  20. Residential radon and lung cancer incidence in a Danish cohort.

    Science.gov (United States)

    Bräuner, Elvira V; Andersen, Claus E; Sørensen, Mette; Andersen, Zorana Jovanovic; Gravesen, Peter; Ulbak, Kaare; Hertel, Ole; Pedersen, Camilla; Overvad, Kim; Tjønneland, Anne; Raaschou-Nielsen, Ole

    2012-10-01

    High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993-1997. We followed each cohort member for cancer occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) for lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and alcohol. Potential effect modification by sex, traffic-related air pollution and environmental tobacco smoke was assessed. Median estimated radon was 35.8 Bq/m(3). The adjusted IRR for lung cancer was 1.04 (95% CI: 0.69-1.56) in association with a 100 Bq/m(3) higher radon concentration and 1.67 (95% CI: 0.69-4.04) among non-smokers. We found no evidence of effect modification. We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information at the low-level radon dose range.

  1. Mapping geogenic radon potential by regression kriging

    Energy Technology Data Exchange (ETDEWEB)

    Pásztor, László [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Szabó, Katalin Zsuzsanna, E-mail: sz_k_zs@yahoo.de [Department of Chemistry, Institute of Environmental Science, Szent István University, Páter Károly u. 1, Gödöllő 2100 (Hungary); Szatmári, Gábor; Laborczi, Annamária [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Horváth, Ákos [Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest (Hungary)

    2016-02-15

    Radon ({sup 222}Rn) gas is produced in the radioactive decay chain of uranium ({sup 238}U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method

  2. An experimental setup for measuring generation and transport of radon in building materials

    NARCIS (Netherlands)

    van der Pal, M.; Hendriks, N.A.; de Meijer, R.J.; van der Graaf, E.R.; de Wit, M.H.

    2001-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  3. Modern state of radon chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Avrorin, V.V.; Krasikova, R.N.; Nefedov, V.D.; Toropova, M.A. (Leningradskij Gosudarstvennyj Univ. (USSR))

    1982-01-01

    A review of works on radon chemistry published up to May, 1980, is presented. Physical properties of the element, are described as well as peculiarities in the field of its chemical investigations connected with unfavourable nuclear-physical characteristics of radon isotopes, with specificity of its electron structure. Characteristics of the known radon compounds, including impurity compounds, their stability, are given. Possible chemical and nuclear-chemical approaches to the solution of problems of synthesis, determination of properties, and identification of its new compounds are discussed. The advantage of using electron capture processes for radon compound synthesis, possibility to use nuclear reactions induced by accelerated elementary particles, are pointed out. Possible applications of radon compounds are considered.

  4. Mars Phoenix Entry, Descent, and Landing Simulation Design and Modelling Analysis

    Science.gov (United States)

    Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.

    2008-01-01

    The 2007 Mars Phoenix Lander was launched in August of 2007 on a ten month cruise to reach the northern plains of Mars in May 2008. Its mission continues NASA s pursuit to find evidence of water on Mars. Phoenix carries upon it a slew of science instruments to study soil and ice samples from the northern region of the planet, an area previously undiscovered by robotic landers. In order for these science instruments to be useful, it was necessary for Phoenix to perform a safe entry, descent, and landing (EDL) onto the surface of Mars. The EDL design was defined through simulation and analysis of the various phases of the descent. An overview of the simulation and various models developed to characterize the EDL performance is provided. Monte Carlo statistical analysis was performed to assess the performance and robustness of the Phoenix EDL system and are presented in this paper. Using these simulation and modelling tools throughout the design and into the operations phase, the Mars Phoenix EDL was a success on May 25, 2008.

  5. Citizen's Guide to Radon: The Guide to Protecting Yourself and Your Family from Radon

    Science.gov (United States)

    ... Agency Search Search Radon Contact Us Share A Citizen's Guide to Radon: The Guide to Protecting Yourself ... EPA’s About PDF page to learn more. A Citizen's Guide to Radon - Revised December 2016 (PDF) (16 ...

  6. Risk of lung cancer and residental radon in China: pooled results of two studies

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, J.H.; Kleinerman, R.A. [Div. of Cancer Epidemiology and Genetics, National Cancer Inst., Rockville, ML (United States); Wang, Z.Y. [Lab. of Industrial Hygiene, Ministry of Health, Beijing (China); Boice, J.D.; Blot, W.J. [International Epidemiology Inst. (United States); Xu, Z.Y. [Liaoning Center for Disease Control and Prevention, Shenyang (China); Wang, L.D. [Ministry of Health, Beijing (China)

    2005-07-01

    Studies of radon-exposed underground miners predict that residential radon is the second leading cause of lung cancer mortality; however, case-control studies of residential radon have not provided unambiguous evidence of an association. Owing to small expected risks from residential radon and uncertainties in dosimetry, large studies or pooling of multiple studies are needed to fully evaluate effects. We pooled data from 2 case-control studies of residential radon representing 2 large radon studies conducted in China. The studies included 1,050 lung cancer cases and 1,996 controls. In the pooled data, odds ratios (OR) increased significantly with greater radon concentration. Based on a linear model, the OR with 95% confidence intervals (CI) at 100 Becquerel/cubic-meter (Bq/m{sup 3}) was 1.13 (1.01, 1.36). For subjects resident in the current home for 30 years or more, the OR at 100 Bq/m{sup 3} was 1.32 (1.07, 1.91). Results across studies were consistent with homogeneity. Estimates of ORs were similar to extrapolations from miner data and consistent with published residential radon studies in North American and Europe, suggesting long-term radon exposure at concentrations found in many homes increases lung cancer risk. (orig.)

  7. Effects of vegetation of radon transport processes in soil: The origins and pathways of {sup 222}Rn entering into basement structures. Final report, March 15, 1987--May 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Borak, T.B.

    1992-08-01

    The entry rate of {sup 22}Rn into a basement structure was measured continuously. These measurements demonstrated that radon entry did not vanish even when the structure was slightly pressurized. This persistent entry has been determined to be dominated by diffusion through the floor and walls and a combination of diffusion and convection through the floor-wall joint. The highest indoor radon concentrations occurred during calm periods when the pressure differentials between the inside and outside of the structure were small. The objectives of this work were to identify the origins of the radon and investigate the entry pathways. The radon could originate either in the concrete or in the soil surrounding the structure. Entry pathways into the basement were through the concrete floor and walls as well as through the floor-wall joint. The contributions of the origins and entry pathways were determined by continuously measuring the radon entry rate into the basement, using a trace gas system, and the flux density through portions of the floor and walls. Radon entry through the floor-wall joint could be controlled using a baseboard barrier system. Results indicated that, during calm conditions with wind speeds less than 1 m s{sup {minus}1}, 25 % of the radon enters through the floor-wall joint and 75 % enters through the concrete. About 30 % of the radon originated in the concrete floor and walls. A method for in-situ determination of the diffusion length and emanation fraction of radon in concrete was developed. For the concrete used in the structure, the average diffusion length and emanation fraction were 27{plus_minus}4 cm and 0.19{plus_minus}0.02 respectively.

  8. Mitochondrial modulation of store-operated Ca(2+) entry in model cells of Alzheimer's disease.

    Science.gov (United States)

    Ma, Tuo; Gong, Kai; Yan, Yufang; Song, Bo; Zhang, Xiufang; Gong, Yandao

    2012-09-21

    Mitochondrial malfunction and calcium dyshomeostasis are early pathological events considered as important features of the Alzheimer's disease (AD) brain. Recent studies have suggested mitochondrion as an active regulator of Ca(2+) signaling based on its calcium buffering capacity. Herein, we investigated the mitochondrial involvement in the modulation of store-operated calcium entry (SOCE) in neural 2a (N2a) transgenic AD model cells. Results showed that SOCE was significantly depressed in N2a cells transfected with wild-type human APP695 (N2a APPwt) compared with empty vector control (N2a WT) cells. Pharmacological manipulation with mitochondrial function blockers, such as FCCP, RuR, or antimycin A/oligomycin, could inhibit mitochondrial calcium handling, and then impair SOCE pathway in N2a WT cells. Furthermore, mitochondria of N2a APPwt cells exhibited more severe swelling in response to Ca(2+), which is an indication of mitochondrial membrane permeability transition (MPT), than the wild-type controls. Additionally, treatment with cyclosporin A, a potent inhibitor of cyclophilin D, which can block MPT, could significantly restore the attenuated SOCE in N2a APPwt cells. Therefore, inhibition of cyclophilin D might be a therapeutic strategy for Alzheimer's disease.

  9. Modeling the disequilibrium species for Jupiter and Saturn: Implications for Juno and Saturn entry probe

    Science.gov (United States)

    Wang, D.; Lunine, J. I.; Mousis, O.

    2016-12-01

    Disequilibrium species have been used previously to probe the deep water abundances and the eddy diffusion coefficient for giant planets. In this abstract, we present a diffusion-kinetics code that predicts the abundances of disequilibrium species in the tropospheres of Jupiter and Saturn with updated thermodynamic and kinetic data. The dependence on the deep water abundance and the eddy diffusion coefficient is investigated. We quantified the disagreements in CO kinetics that comes from using different reaction networks and identified C2H6 as a useful tracer for the eddy diffusion coefficient. We first apply an H/P/O reaction network to Jupiter and Saturn's atmospheres and suggest a new PH3 destruction pathway. New chemical pathways for SiH4 and GeH4 destruction are also suggested, and another AsH3 destruction pathway is investigated thanks to new thermodynamic and kinetic data. These new models should enhance the interpretation of the measurement of disequilibrium species by JIRAM on board Juno and allow disentangling between methods for constraining the Saturn's deep water abundance with the Saturn entry probes envisaged by NASA or ESA.

  10. INDOOR RADON REDUCTION IN CRAWL-SPACE HOUSES: A REVIEW OF ALTERNATIVE APPROACHES

    Science.gov (United States)

    An analysis has been completed of the performance, mechanisms, and costs of alternative technologies for preventing radon entry into the living areas of houses having crawl-space foundations. Sub-membrane depressurization (SMD) is consistently the most effective technique, often ...

  11. INDOOR RADON REDUCTION IN CRAWL-SPACE HOUSES: A REVIEW OF ALTERNATIVE APPROACHES

    Science.gov (United States)

    An analysis has been completed of the performance, mechanisms, and costs of alternative technologies for preventing radon entry into the living areas of houses having crawl-space foundations. Sub-membrane depressurization (SMD) is consistently the most effective technique, often ...

  12. Determination of recharge fraction of injection water in combined abstraction-injection wells using continuous radon monitoring.

    Science.gov (United States)

    Lee, Kil Yong; Kim, Yong-Chul; Cho, Soo Young; Kim, Seong Yun; Yoon, Yoon Yeol; Koh, Dong Chan; Ha, Kyucheol; Ko, Kyung-Seok

    2016-12-01

    The recharge fractions of injection water in combined abstraction-injection wells (AIW) were determined using continuous radon monitoring and radon mass balance model. The recharge system consists of three combined abstraction-injection wells, an observation well, a collection tank, an injection tank, and tubing for heating and transferring used groundwater. Groundwater was abstracted from an AIW and sprayed on the water-curtain heating facility and then the used groundwater was injected into the same AIW well by the recharge system. Radon concentrations of fresh groundwater in the AIWs and of used groundwater in the injection tank were measured continuously using a continuous radon monitoring system. Radon concentrations of fresh groundwater in the AIWs and used groundwater in the injection tank were in the ranges of 10,830-13,530 Bq/m(3) and 1500-5600 Bq/m(3), respectively. A simple radon mass balance model was developed to estimate the recharge fraction of used groundwater in the AIWs. The recharge fraction in the 3 AIWs was in the range of 0.595-0.798. The time series recharge fraction could be obtained using the continuous radon monitoring system with a simple radon mass balance model. The results revealed that the radon mass balance model using continuous radon monitoring was effective for determining the time series recharge fractions in AIWs as well as for characterizing the recharge system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. New Data for Modeling Hypersonic Entry into Earth's Atmosphere: Electron-impact Ionization of Atomic Nitrogen

    Science.gov (United States)

    Savin, Daniel Wolf; Ciccarino, Christopher

    2017-06-01

    Meteors passing through Earth’s atmosphere and space vehicles returning to Earth from beyond orbit enter the atmosphere at hypersonic velocities (greater than Mach 5). The resulting shock front generates a high temperature reactive plasma around the meteor or vehicle (with temperatures greater than 10,000 K). This intense heat is transferred to the entering object by radiative and convective processes. Modeling the processes a meteor undergoes as it passes through the atmosphere and designing vehicles to withstand these conditions requires an accurate understanding of the underlying non-equilibrium high temperature chemistry. Nitrogen chemistry is particularly important given the abundance of nitrogen in Earth's atmosphere. Line emission by atomic nitrogen is a major source of radiative heating during atomspheric entry. Our ability to accurately calculate this heating is hindered by uncertainties in the electron-impact ionization (EII) rate coefficient for atomic nitrogen.Here we present new EII calculations for atomic nitrogen. The atom is treated as a 69 level system, incorporating Rydberg values up to n=20. Level-specific cross sections are from published B-Spline R-Matrix-with-Pseudostates results for the first three levels and binary-encounter Bethe (BEB) calculations that we have carried out for the remaining 59 levels. These cross section data have been convolved into level-specific rate coefficients and fit with the commonly-used Arrhenius-Kooij formula for ease of use in hypersonic chemical models. The rate coefficient data can be readily scaled by the relevant atomic nitrogen partition function which varies in time and space around the meteor or reentry vehicle. Providing data up to n=20 also enables modelers to account for the density-dependent lowering of the continuum.

  14. Spanish experience on the design of radon surveys based on the use of geogenic information.

    Science.gov (United States)

    Sainz Fernández, C; Quindós Poncela, L S; Fernández Villar, A; Fuente Merino, I; Gutierrez-Villanueva, J L; Celaya González, S; Quindós López, L; Quindós López, J; Fernández, E; Remondo Tejerina, J; Martín Matarranz, J L; García Talavera, M

    2017-01-01

    One of the requirements of the recently approved EU-BSS (European Basic Safety Standards Directive, EURATOM, 2013) is the design and implementation of national radon action plans in the member states (Annex XVIII). Such plans require radon surveys. The analysis of indoor radon data is supported by the existing knowledge about geogenic radiation. With this aim, we used the terrestrial gamma dose rate data from the MARNA project. In addition, we considered other criterion regarding the surface of Spain, population, permeability of rocks, uranium and radium contain in soils because currently no data are available related to soil radon gas concentration and permeability in Spain. Given that, a Spanish radon map was produced which will be part of the European Indoor Radon Map and a component of the European Atlas of Natural Radiation. The map indicates geographical areas with high probability of finding high indoor radon concentrations. This information will support legislation regarding prevention of radon entry both in dwellings and workplaces. In addition, the map will serve as a tool for the development of strategies at all levels: individual dwellings, local, regional and national administration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Radon risk management. Construction solutions

    Directory of Open Access Journals (Sweden)

    Borja Frutos Vázquez

    2011-12-01

    Full Text Available Radon gas is a radioactive element that appears in nature by the decay of radium found in terrestrial soils. This gas is able to travel between the pores of the ground and enter into the buildings where the concentration can increase and becoming a health risk to occupants from inhaling. The World Health Organization rate the radon gas as a level 1 carcinogen agent. According to this organization, radon is the second leading cause of lung cancer contraction after tobacco. Based on the perception of risk derived from epidemiological medical studies, some countries have established radon concentration values as safety limits, above which is recommended or required an architectural intervention to reduce levels. From an architectural perspective, there have been studies of several radon protection techniques to reduce radon immission in buildings or to evacuate it, in order to reduce the radon levels below the safety limits. This article develops some protection strategies that have been being used for these purposes, some of which have been tested in Spain thanks to a research project funded by the Nuclear Safety Council, and developed by the Eduardo Torroja Institute and the University of Cantabria.

  16. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    NARCIS (Netherlands)

    Manohar, S.N.; Meijer, H.A.J.; Herber, M.A.

    2013-01-01

    Naturally occurring radioactive noble gas, radon (Rn-222) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution o

  17. Estimating large-scale fractured rock properties from radon data collected in a ventilated tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Unger, Andre; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2003-05-12

    To address regulatory issues regarding worker safety, radon gas concentrations have been monitored as part of the operation of a deep tunnel excavated from a highly fractured tuff formation. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured rock. An iTOUGH2 model was developed to predict radon concentrations for prescribed ventilation rates. The numerical model was used (1) to estimate the permeability and porosity of the fractured formation at the length scale of the tunnel and extending tens of meters into the surrounding rock, and (2) to understand the mechanism leading to radon concentrations that potentially exceed the regulatory limit. The mechanism controlling radon concentrations in the tunnel is a function of atmospheric barometric fluctuations propagated down the tunnel. In addition, a slight suction is induced by the ventilation system. The pressure fluctuations are dampened in the fractured formation according to its permeability and porosity. Consequently, as the barometric pressure in the tunnel drops, formation gases from the rock are pulled into the opening, resulting in high radon concentrations. Model calibration to both radon concentration data measured in the tunnel and gas phase pressure fluctuations observed in the formation yielded independent estimates of effective, large-scale fracture permeability and porosity. The calibrated model was then used as a design tool to predict the effect of adjusting the ventilation-system operation strategy for reducing the probability that radon gas concentrations will exceed the regulatory limit.

  18. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    NARCIS (Netherlands)

    Manohar, S.N.; Meijer, H.A.J.; Herber, M.A.

    2013-01-01

    Naturally occurring radioactive noble gas, radon (Rn-222) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution o

  19. Uranium mill tailings and radon

    Energy Technology Data Exchange (ETDEWEB)

    Hanchey, L A

    1981-01-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  20. Guidance on Radon Resistant Construction and Radon Mitigation

    Science.gov (United States)

    This Unnumbered Letter regarding radon gas mitigation applies to all housing and community facilities, low-rise buildings and dwellings for the mentioned programs. Its intention is to guide staff to best serve our borrowers and protect their health.

  1. Geohydrological control on radon availability in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Yogesh; Prasad, Ganesh [Department of Physics, H. N. B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249 199 (India); Choubey, V.M. [Wadia Institute of Himalayan Geology, Dehradun 248001 (India); Ramola, R.C. [Department of Physics, H. N. B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249 199 (India)], E-mail: rcramola@gmail.com

    2009-01-15

    The radon content in groundwater sources depends on the radium concentration in the rock of the aquifer. Radon was measured in water in many parts of the world, mostly for the risk assessment due to consumption of drinking water. The exposure to radon through drinking water is largely by inhalation and ingestion. Airborne radon can be released during normal household activities and can pose a greater potential health risk than radon ingested with water. Transport of radon through soil and bedrock by water depends mainly on the percolation of water through the pores and along fractured planes of bedrock. In this study, radon concentration in springs and hand pumps of Kumaun and Garhwal Himalaya, India was measured using radon emanometry technique. The study shows that radon concentration in springs and hand pumps is controlled by geohydrological characteristics, which in turn is also governed by tectonic processes.

  2. Radon risk in the house; Il rischio radon nelle abitazioni

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G. [Padua Univ., Padua (Italy). Dipt. di Farmacologia e Anestesiologia, Lab. di Tossicologia

    2001-04-01

    Radon was discovered in 1900, but its potential dangerousness for man was fully understood only in 1950. Being a radioactive natural gas - and therefore particularly dangerous - radon results from the long decay chain of radionuclides, such as thorium and radium. Some igneous rocks (granite, tufa and lava) as well as coal are considered to be the main sources of this radionuclide. A number of epidemiologic studies have shown the carcinogenicity of this element, particularly among miners and workers subjected to high level exposure in confined spaces such as basements, garages, cellars, etc. There are, however, some techniques to remove radon in order to reduce exposure to minimum values. [Italian] Il radon fu scoperto nel 1900, ma solo nel 1950 si comprese la sua potenziale pericolosita' per l'uomo. Il radon e' particolarmente pericoloso essendo un gas naturale radioattivo. Esso proviene dalla lunga catena di decadimento di radionuclidi come il torio e di radio. Sorgenti di tale radionuclide sono da considerarsi principalmente alcune rocce ignee (graniti, tufi e lave) e il carbone. Diversi studi epidemiologici hanno evidenziato la cancerogenicita' di tale elemento, specie tra i minatori e soggetti esposti ad alti livelli in ambienti confinati quali scantinati, garage sotterranei, ecc.. Esistono comunque tecniche di intervento per la rimozione del gas radon in modo tale da ridurre l'esposizione a valori minimi.

  3. Radon Like atmospheric pollutant; El gas Radon como contaminante atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Quindos Poncela, L. S.; Sainz Fernandez, C.; Quindos Lopez, L.; Fuente Merino, I.; Arteche, J. L.

    2008-07-01

    In this work different aspects about the problem of the radon in dwellings are approached. This gas of natural origin is virtually present in all the soils in the earths crust due to the presence of uranium and radium in the composition of them. Depending on architectural factors and of occupancy habits of the house, high concentrations of this gas can be reached indoors. In these situations, there is a quantifiable increment of the risk of developing lung cancer in the inhabitants of the housing. In the last years the methodological improvements in the realization of epidemiologic studies have led to the obtaining of scientific evidence about the relationship between the presence of indoor radon and the risk of lung cancer. This relationship fund years ago in workers of uranium mines, has been corroborated in the case of the residential radon by the light of several recent meta-analysis performed on groups of epidemiologic studies. More than 4000 radon measurements have been carried out in spain during the las 25 years. A summary of the results obtained from the main national radon surveys are also presented, as well as the criteria recently established by the Spanish Nuclear Safety Council concerning radon action levels in dwellings and workplaces. (Author) 18 refs.

  4. VENTILATION INFLUENCE UPON INDOOR AIR RADON LEVEL

    Institute of Scientific and Technical Information of China (English)

    田德源

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level.Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition.although using household conditioner requires a sealed room which should lead to a higher radon level.Turning on air conditioner helps lower indoor radon level.Therefore.the total indoor air Rn levels are normal>ventilation>exhaust or indraft> exhaust plus indraft.

  5. Evolution of radon dose evaluation

    Directory of Open Access Journals (Sweden)

    Fujimoto Kenzo

    2004-01-01

    Full Text Available The historical change of radon dose evaluation is reviewed based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR reports. Since 1955, radon has been recognized as one of the important sources of exposure of the general public. However, it was not really understood that radon is the largest dose contributor until 1977 when a new concept of effective dose equivalent was introduced by International Commission on Radiological Protection. In 1982, the dose concept was also adapted by UNSCEAR and evaluated per caput dose from natural radiation. Many researches have been carried out since then. However, lots of questions have remained open in radon problems, such as the radiation weighting factor of 20 for alpha rays and the large discrepancy of risk estimation among dosimetric and epidemiological approaches.

  6. A Physician's Guide to Radon

    Science.gov (United States)

    This booklet has been developed for physicians by the U.S. Environmental Protection Agency in consultation with the American Medical Association (AMA). Its purpose is to enlist physicians in the national effort to inform the American public about radon.

  7. Radon emanation fractions from concretes containing fly ash and metakaolin

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Lange, Sarah C., E-mail: taylorlanges@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, 1 University Station C1748, The University of Texas at Austin, Austin, TX 78712 (United States); Juenger, Maria C.G. [Department of Civil, Architectural, and Environmental Engineering, 1 University Station C1748, The University of Texas at Austin, Austin, TX 78712 (United States); Siegel, Jeffrey A. [Department of Civil, Architectural, and Environmental Engineering, 1 University Station C1748, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Civil Engineering, 35 St. George Street, University of Toronto, Toronto, ON, M5S 1A4 (Canada)

    2014-01-01

    Radon ({sup 222}Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration.

  8. Advanced Bibliometric Methods To Model the Relationship between Entry Behavior and Networking in Emerging Technological Communities.

    Science.gov (United States)

    Debackere, Koenraad; Clarysse, Bart

    1998-01-01

    Technological communities used bibliometric data on 411 plant biotechnology organizations to study the effect of field density and structure of the research and development network. Findings indicate the usefulness of bibliometric data in mapping change in technological communities and in the effects of networking on entry behavior. (PEN)

  9. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones.

    Science.gov (United States)

    Foster, Stephanie; Everett Jones, Sherry

    2016-12-13

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff.

  10. Indoor radon and radon daughters survey at Campinas-Brazil using CR-39: First results

    CERN Document Server

    Guedes, S; Iunes, P J; Navia, L M S; Neman, R S; Paulo, S R; Rodrigues, V C; Souza, W F; Tello, C A S; Zúñiga, A G

    1999-01-01

    The first results of a radon and radon daughters (RD) survey performed at Campinas-SP, Brazil, are presented. We employed a technique that, potentially, makes possible to measure the radon and RD activity in the air and to separate from this result the activity of radon, alone. In this preliminary paper only the former activity is studied.

  11. Radon in Estonian dwellings - Results from a National Radon Survey

    Energy Technology Data Exchange (ETDEWEB)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo [Estonian Radiation Protection Centre (Kiirguskeskus), Tallinn (Spain); Aakerblom, Gustav [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2003-10-01

    A countrywide survey of radon concentrations in Estonian dwellings was carried out during the period 1998-2001. The survey formed a part of the cooperation program on radiation protection between the Estonian Radiation Protection (Kiirguskeskus) Centre and the Swedish Radiation Protection Authority (SSI). The survey included measurements in a number of dwellings representative for Estonia in detached houses and multifamily buildings (only dwellings on the bottom floor were included in the survey). Altogether, radon concentrations were measured in 515 dwellings, a number large enough to be statistically significant. All measurements were made with alphatrack film detectors of the same type that SSI uses in Sweden. The measurements were made during a 2-3 month period during the winter half-year. Two detectors were used in each dwelling. In Estonia there are 0.17 million dwellings in detached houses and 0.45 million in multi apartment buildings. Of the 1.26 million inhabitants in Estonia. 0.36 million live in detached houses and 0.90 million in multi apartment buildings. Most of the latter were built during the Soviet occupation. Of the dwellings in multifamily buildings 30 % are assumed to be situated on the first floor. The mean radon concentration in dwellings in detached hoses, according to the survey results, is 103 Bq/m{sup 3}, in dwellings on the bottom floor in multi apartment buildings it is 78 Bq/m{sup 3}. In 1% of the dwellings the radon concentration exceeded 400 Bq/m{sup 3}. The highest radon concentration found in the study was 1040 Bq/m{sup 3}. Based on the assumption that the average radon concentration in the dwellings in multi-apartment buildings that are not situated on the bottom floor is 30 Bq/m{sup 3}, and that these dwellings constitute 70% of all dwellings in multi apartment buildings, the mean radon concentration in dwellings in multi apartment buildings is calculated to be 44 Bq/m{sup 3}. The mean value for all Estonia dwellings is calculated

  12. Radon legislation and national guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Aakerblom, G

    1999-07-01

    The International Commission on Radiological Protection (ICRP) and The Council of the European Union have recommended the Member States to take action against radon in homes and at workplaces. Within the EU project European Research into Radon in Construction Concerted Action, ERRICCA, the Topic Group on Legal and Building Code Impact was designated to study the current radon legislation and give advice regarding future enactment of laws and recommendations. On behalf of the Group, a questionnaire on radon legislation was sent out to nearly all European states and a selection of non-European states. Questions were asked regarding reference levels for dwellings, workplaces and drinking water, and about regulations or recommendations for building materials and city planning. All 15 EU Member States, 17 non-EU European countries and 10 non-European countries responded to the questionnaire. Their answers are considered current as of the end of 1998. Most European States and many non-European countries have recommended reference levels for dwellings and workplaces, and some have guidelines for measures against radon incorporated in their building codes and guidelines for construction techniques. However, only a few countries have enforced reference levels or regulations for planning and construction. The reference levels for indoor radon concentration in existing and new dwellings or workplaces are within the range 150-1000 Bq/m{sup 3}. Sweden is the only country (Out of 15 EU member states) which has enforced limits for existing dwellings. Sweden and the UK have both enforced levels for new dwellings. 7 non-European countries (Out of 17 responding countries) have enforced levels for existing dwellings and 9 have them for new dwellings. At the end of 1998, only Finland, Sweden, the Czech Republic, Romania, Russia and the Slovak Republic had limits for radon in water, although 8 countries were planning to introduce such limits. The present limits are within the range for

  13. Thermally Induced Chemistry of Meteoritic Complex Organic Molecules: A New Heat-Diffusion Model for the Atmospheric Entry of Meteorites

    CERN Document Server

    Shingledecker, Christopher N

    2014-01-01

    Research over the past four decades has shown a rich variety of complex organic molecular content in some meteorites. This current study is an attempt to gain a better insight into the thermal conditions experienced by these molecules inside meteorites during atmospheric entry. In particular, we wish to understand possible chemical processes that can occur during entry and that might have had an effect on complex organic or prebiotic species that were delivered in this way to the early Earth. A simulation was written in Fortran to model heating by the shock generated during entry and the subsequent thermal diffusion inside the body of a meteorite. Experimental data was used for the thermal parameters of several types of meteorites, including iron-nickel and several classes of chondrites. A Sutton-Graves model of stagnation-point heating was used to calculate peak surface temperatures and an explicit difference formula was used to generate thermal diffusion profiles for both chondrites and iron-nickel type met...

  14. Sensitivity of a LR-115 based radon dosemeter

    CERN Document Server

    Bagnoli, F; Bucci, S

    1999-01-01

    The first results of a study on the sensitivity of a LR-115 based radon dosemeter as a function of the absorber thickness are presented. The theoretical sensitivity was analytically calculated considering a constant detector response to alpha particles within a given energy range and up to a critical angle of incidence. The results are presented in two extreme situations: i) both radon and its decay products uniformly distributed in the chamber volume; ii) radon decay products uniformly deposited on the chamber walls. The agreement with the experimental curve shape appears better in the former case, suggesting that either the parameter values of the model could be different from the chosen values, or the model was too simplified.

  15. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.

    Science.gov (United States)

    Friedmann, H; Baumgartner, A; Bernreiter, M; Gräser, J; Gruber, V; Kabrt, F; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C; Wurm, G

    2017-01-01

    The indoor radon concentration was measured in most houses in a couple of municipalities in Austria. At the same time the activity concentration of radium in soil, the soil gas radon concentration, the permeability of the ground and the ambient dose equivalent rate were also measured and the geological situations (geological units) were recorded too. From the indoor radon concentration and different house and living parameters a radon potential (Austrian radon potential) was derived which should represent the radon concentration in a standard room. Another radon potential (Neznal radon potential) was calculated from the soil gas radon concentration and the permeability. The aim of the investigation was to correlate all the different variables and to test if the use of surrogate data (e.g. geological information, ambient dose equivalent rate, etc.) can be used to judge the radon risk for an area without performing numerous indoor measurements.

  16. The Austrian radon activities on the way to the national radon action plan.

    Science.gov (United States)

    Gruber, V; Ringer, W; Wurm, G; Haider, W

    2014-07-01

    Based on the new Euratom Basic Safety Standards (BSS), all EU member states will be obliged to design a strategy to address long-term risks from radon exposure, which is laid down in the 'national radon action plan'. In Austria, the National Radon Centre is responsible for the development of the action plan. This paper presents the current and planned radon protection activities on the way to establish the radon action plan--like the national radon database, the definition of radon risk areas by improving the existing radon map, as well as strategies and activities to increase the radon awareness of the public and decision-makers and to involve the building sector. The impact of and the need for actions caused by the BSS requirements on the Austrian radon legislation, strategy and programme are discussed.

  17. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    Science.gov (United States)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of 50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  18. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    Science.gov (United States)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-15

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of 50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  19. Threshold for Radon-Induced Lung Cancer From Inhaled Plutonium Data.

    Science.gov (United States)

    Cuttler, Jerry M; Sanders, Charles L

    2015-01-01

    Cohen's lung cancer mortality data, from his test of the LNT theory, do not extend to the no observed adverse effects level (NOAEL) above which inhaled radon decay products begin to induce excess lung cancer mortality. Since there is concern about the level of radon in homes, it is important to set the radon limit near the NOAEL to avoid the risk of losing a health benefit. Assuming that dogs model humans, data from a study on inhaled plutonium dioxide particulates in dogs were assessed, and the NOAEL for radon-induced lung tumors was estimated to be about 2100 Bq/m(3). The US Environmental Protection Agency should consider raising its radon action level from 150 to at least 1000 Bq/m(3).

  20. Calibration of solid state nuclear track detector CR-39 for radon measurements

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Marcia Pires de; Martins, Elaine Wirney [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: mpcampos@ipen.br

    2007-07-01

    Solid state nuclear track detectors (SSNTD) are widely used for radon measurements and CR-39 is one of the most popular SSNTD. In this work it was determined the calibration factor for radon concentration measurements through the passive method with CR-39 detectors. The detectors were put in a proper device (an adapted Lucas cell) and exposed to the standard radon concentration through the Pylon Model RN-150 flow through radon gas source. After exposure, the detectors were etched for 5.5 hours in a KOH solution at 80 deg C in a bath at a constant temperature. The track density was read in an Axiolab-Zeiss optical microscope, with nominal magnification of X10 connected to a video camera and to a personal computer. The calibration factor was obtained through the relation between standard radon concentration, track density and exposure time. (author)

  1. Threshold for Radon-Induced Lung Cancer From Inhaled Plutonium Data

    Directory of Open Access Journals (Sweden)

    Jerry M. Cuttler

    2015-11-01

    Full Text Available Cohen’s lung cancer mortality data, from his test of the LNT theory, do not extend to the no observed adverse effects level (NOAEL above which inhaled radon decay products begin to induce excess lung cancer mortality. Since there is concern about the level of radon in homes, it is important to set the radon limit near the NOAEL to avoid the risk of losing a health benefit. Assuming that dogs model humans, data from a study on inhaled plutonium dioxide particulates in dogs were assessed, and the NOAEL for radon-induced lung tumors was estimated to be about 2100 Bq/m3. The US Environmental Protection Agency should consider raising its radon action level from 150 to at least 1000 Bq/m3.

  2. Thermo-diffusional radon waves in soils.

    Science.gov (United States)

    Minkin, Leonid; Shapovalov, Alexander S

    2016-09-15

    A new theoretical framework for diurnal and seasonal oscillations of the concentration of radon in soil and open air is proposed. The theory is based on the existing temperature waves in soils and thermo-diffusional gas flux in porous media. As soil is a non-isothermal porous medium, usually possessing a large fraction of microscopic pores belonging to Knudsen's free molecular field, a thermo-diffusional gas flow in soil has to arise. The radon mass transfer equation in soil for sinusoidal temperature oscillations at the soil-atmosphere boundary is solved, which reveals that radon concentration behaves as a damped harmonic wave. The amplitude of radon concentration oscillations and phase shift between radon concentration oscillations and soil temperature depend on the radon diffusion coefficient in soil, rate of radon production, soil thermal conductivity, average soil temperature, decay constant, and heat of radon transfer. Primarily numerical calculations are presented and comparisons with experimental data are shown.

  3. Relationships between indoor radon concentrations, thermal retrofit and dwelling characteristics.

    Science.gov (United States)

    Collignan, Bernard; Le Ponner, Eline; Mandin, Corinne

    2016-12-01

    A monitoring campaign was conducted on a sample of more than 3400 dwellings in Brittany, France from 2011 to 2014. The measurements were collected using one passive dosimeter per dwelling over two months during the heating season, according to the NF ISO 11665-8 (2013) standard. Moreover, building characteristics such as the period of construction, construction material, type of foundation, and thermal retrofit were determined using a questionnaire. The final data set consisted of 3233 houses with the measurement results and the questionnaire answers. Multivariate linear regression models were applied to explore the relationships between the indoor radon concentrations and building characteristics, particularly the thermal retrofit. The geometric mean of the indoor radon concentration was 155 Bq m(-3) (with a geometric standard deviation of 3). The houses that had undergone a thermal retrofit had a higher average radon concentration than those that had not, which may have been due to a decrease in air permeability of the building envelope following rehabilitation work that did not systematically include proper management of the ventilation. Other building characteristics, primarily the building material and the foundation type, were associated with the indoor radon concentration. The indoor radon concentrations were higher in older houses built with granite or other stone, with a slab-on-grade foundation and without any ventilation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The radon 222 transport in soils. The case of the storage of residues coming from uranium ores processing; La migration du radon 222 dans un sol. Application aux stockages de residus issus du traitement des minerais d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, C

    2000-07-01

    Uranium Mill Tailings (UMT) contain comparatively large quantities of radium-226. This radionuclide yields, by radioactive decay, the radioactive gas radon-222. Tailing piles are routinely covered to reduce the radon release-rate into the atmosphere. In order to assess the long term environmental impact of a UMT repository, mechanisms governing radon exhalation at the soil surface must be deciphered and understood. A model of radon transport in the unsaturated zone is developed for this purpose: water- and air-flow in the porous material are determined, as well as radon transport by diffusion in the pore space and advection by the gas phase. The radon transport model in the unsaturated zone - TRACI (which stands, in French, for Radon Transport within the Unsaturated Layer) - calculates moisture contents in the soil, Darcy's velocities of the liquid and gas phases, radon concentrations in the gas phase and radon flux at the soil surface. TRACI's results are compared with observations carried out on a UMT and a cover layer. Input parameters are derived from the textural analysis of the material under study, whereas upper boundary conditions are given by meteorological data. If we consider measurement errors and uncertainties on the porous medium characterisation, model's results are generally in good agreement with observations, at least on the long run. Moreover, data analysis shows hat transient phenomena are understood as well, in most situations. (author)

  5. Workshop on dosimetry for radon and radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.E.; Holoway, C.F.; Loebl, A.S. (eds.)

    1978-05-01

    Emphasis is placed on the dosimetry for radon and daughters, rather than on monitoring and instrumentation. The objectives of the meeting were to exchange scientific information, to identify problem areas in radon-daughter dosimetry, and to make any observations or recommendations by the participants through issuance of this report. The discussion topics included the history of dosimetry for radon and daughters, human data, aerosols, deposition and movement in the respiratory tract, dose calculations, dose-to-working-level-month (WLM) conversion factors, animal experiments, and the development of regulations and remedial criteria for reducing population exposures to radon daughters. This report contains a summary of Workshop discussions plus individual statements contributed by several of the participants. The outstanding problem areas from the standpoint of dosimetry appear to involve the appropriate lung organ mass to be used (average lung-tissue dose vs. high-level local dose); recognition of the discrete, rather than continuous, structure of the mucus; lack of knowledge about lung clearance; the variability of dose with the degree of disequilibrium and the unattached fraction of radon daughters for a given WLM; and questions about the character of uranium mine atmospheres actually breathed in the older mines from which much of the epidemiological information originates. The development of criteria for taking remedial action to reduce exposures involves additional concerns of basing long-term risk assessment on short-term sampling and applying WLM data for miners to general populations.

  6. Application of thoron interference as a tool for simultaneous measurement of radon and thoron with a pulse ionisation chamber.

    Science.gov (United States)

    Tripathi, R M; Sumesh, C G; Vinod Kumar, A; Puranik, V D

    2013-07-01

    Pulse ionisation chamber (PIC)-based monitors measuring radioactive gas radon ((222)Rn) without energy discrimination will have interference due to thoron ((220)Rn) present in the atmosphere. A technique has been developed to use this property of interference for simultaneous measurement of radon and thoron gas. These monitors work on the principle of counting of gross alphas emitted from radon and its progeny. A theoretical model has been developed for the variation of thoron sensitivity with respect to the flow rate of gas through the monitor. The thoron sensitivity of the monitor is found to vary with the flow rate of gas through the monitor. Using this sensitivity, the sampling procedure has been developed and verified for simultaneous measurement of radon and thoron. The PIC-measured radon and thoron concentration using this procedure agrees well with those measured by using standard radon and thoron discriminating monitor.

  7. Reducing Radon in Schools: A Team Approach.

    Science.gov (United States)

    Ligman, Bryan K.; Fisher, Eugene J.

    This document presents the process of radon diagnostics and mitigation in schools to help educators determine the best way to reduce elevated radon levels found in a school. The guidebook is designed to guide school leaders through the process of measuring radon levels, selecting the best mitigation strategy, and directing the efforts of a…

  8. A robust and quick method for the estimation of long-term average indoor radon concentrations (extended Blower-Door method); Ein robustes und schnelles Verfahren zur Abschaetzung der langzeitlich mittleren Radonkonzentration in einem Gebaeude (erweiterte Blower-Door-Methode)

    Energy Technology Data Exchange (ETDEWEB)

    Maringer, F.J. [Bundesversuchs- und Forschungsanstalt Arsenal, Vienna (Austria); Akis, M.C.; Stadtmann, H. [Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria); Kaineder, H. [Amt der Oberoesterreichischen Landesregierung, Linz (Austria); Kindl, P. [Technische Univ., Graz (Austria); Kralik, C. [Bundesanstalt fuer Lebensmitteluntersuchung und -forschung, Vienna (Austria); Lettner, H.; Winkler, R. [Salzburg Univ. (Austria); Ringer, W. [Salzburg Univ. (Austria)]|[Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1998-12-31

    Within the Austrian radon mitigation project `SARAH` different methods of radon diagnosis had been used. For these investigations a `Blower-Door` had been employed to apply a low pressure and to look for radon entry paths. On the occasion of the radon sniffing the team got the idea to measure the radon concentration in the Blower-Door exhaust air to get an estimate of the long-term average radon concentration in the building. In this paper the new method and their application possibilities are given. The estimation of the average radon entry rate, the average long-term radon concentration, and the evaluation of the mitigation success are described and discussed. The advantage of this procedure is to obtain a result for the annual mean indoor radon concentration after only about three hours. (orig.) [Deutsch] Im Rahmen des oesterreichischen Radonsanierungsprojekts `SARAH` wurden verschiedene Methoden zur Radondiagnose von Gebaeuden angewandt. Zum raschen Auffinden von Radoneintrittspfaden wurde auch ein `Blower-Door` zur Applikation eines Unterdrucks (-50 Pa) innerhalb der untersuchten Haeuser verwendet. Dabei entsprang die Idee, durch Messung der Radonkonzentration der Blower-Door-Abluft einen Hinweis auf die durchschnittliche Radonkonzentration im Gebaeude zu erhalten. In dieser Arbeit werden die neue Methode und deren Anwendungsmoeglichkeit zur Abschaetzung der mittleren Radoneintrittsrate und der langzeitlich mittleren Radonkonzentrationen (`Jahresmittelwert`) sowie des Sanierungserfolges (Ausmass der Radonreduktion) eines Gebaeudes beschrieben und diskutiert. Der Vorteil der Methode liegt darin, dass innerhalb von etwa drei Stunden Messzeit eine Abschaetzung fuer den Jahresmittelwert der Radonkonzentration eines Gebaeudes vorliegt. (orig.)

  9. Risk assessment of exposure to radon decay products

    Energy Technology Data Exchange (ETDEWEB)

    Monchaux, G

    1999-07-01

    The aim of this project was to assess the risk due to inhalation of radon and its decay products using an horizontal approach across a large scale research programme. The central objective was the assessment of human risk which requires combination of several topics involving a multidisciplinary approach. In the Aerosol Studies Group, progress was achieved in improvement, calibration and automation of experimental techniques for continuous and integrated measurements of the unattached fraction f{sub p}- and equilibrium factor F- values. Measurements were performed to determine the variation of size distributions of unattached and aerosol-associated radon decay products under typical living conditions. All aerosol groups performed controlled chamber studies to understand the basic behaviour of airborne activity concentrations. Measurements were performed to determine neutralisation rates of {sup 218}Po, to understand the cluster growth with residence time and to understand the hygroscopic growth of aerosol particles. In the Modelling Group, the programme RADEP has been developed to calculate the weighted committed equivalent lung dose per unit exposure of radon progeny (H{sub w}/P{sub p}) which implements the ICRP Publication 66 Human Respiratory Tract Model (HRTM). The stochastic deposition model (IDEAL) has been compared with the deposition model used by the HRTM, and the agreement between the two deposition models was excellent. A deterministic radon progeny dosimetry model (RADOS) has been developed. This model includes all bronchial airway generations compared with the HRTM that groups the 16 airway generations into three regions. Initial calculations with RADOS show that the basal and secretory cell doses are slightly smaller compared with that of the HRTM. A sensitivity analysis has been performed that has identified those HRTM model parameters that most affect the Hw/Pp. A stochastic rat deposition model (RALMO) and a clearance model for the rat based on the

  10. A fast butterfly algorithm for generalized Radon transforms

    KAUST Repository

    Hu, Jingwei

    2013-06-21

    Generalized Radon transforms, such as the hyperbolic Radon transform, cannot be implemented as efficiently in the frequency domain as convolutions, thus limiting their use in seismic data processing. We have devised a fast butterfly algorithm for the hyperbolic Radon transform. The basic idea is to reformulate the transform as an oscillatory integral operator and to construct a blockwise lowrank approximation of the kernel function. The overall structure follows the Fourier integral operator butterfly algorithm. For 2D data, the algorithm runs in complexity O(N2 log N), where N depends on the maximum frequency and offset in the data set and the range of parameters (intercept time and slowness) in the model space. From a series of studies, we found that this algorithm can be significantly more efficient than the conventional time-domain integration. © 2013 Society of Exploration Geophysicists.

  11. Residential Radon and Brain Tumour Incidence in a Danish Cohort

    DEFF Research Database (Denmark)

    Bräuner, Elvira V.; Andersen, Zorana J.; Andersen, Claus Erik;

    2013-01-01

    Background: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. Objective: To investigate the long-term effect...... of exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. Methods: During 1993–1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced...... residential addresses from 1 January 1971 until 31 December 2009 and calculated radon concentrations at each address using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR) and 95% confidence intervals...

  12. Radon gas monitoring survey for the determination of Radon Prone Areas in Lombardia

    Energy Technology Data Exchange (ETDEWEB)

    Bartolo, D. de; Alberici, A.; Gallini, R.; Maggioni, T.; Mondini, A.; Zini, E. [A.R.P.A. della Lombardia, Milano (Italy); Arrigoni, S.; Cazzaniga, P.; Cugini, A.; Gallinari, G.; Olivieri, F.; Romanelli, M. [A.R.P.A. della Lombardia, Dipt. di Bergamo, Bergamo (Italy)

    2006-07-01

    , Lecco, Sondrio and Varese. For the 84.6 % of all the measurement points, the concentrations measured were lower then 200 Bq/m{sup 3}, and 4.3 % were higher then 400 Bq/m3, with 0.6 % higher than 800 Bq/m{sup 3}. Spatial variation of indoor Rn concentrations is modeled. Geostatistical analysis and G.I.S. techniques were used to localize radon prone areas. (authors)

  13. Comparison of radon doses based on different radon monitoring approaches.

    Science.gov (United States)

    Vaupotič, Janja; Smrekar, Nataša; Žunić, Zora S

    2017-04-01

    In 43 places (23 schools, 3 kindergartens, 16 offices and one dwelling), indoor radon has been monitored as an intercomparison experiment, using α-scintillation cells (SC - Jožef Stefan Institute, Slovenia), various kinds of solid state nuclear track detectors (KfK - Karlsruhe Institute of Technology, Germany; UFO - National Institute of Radiological Sciences, Chiba, Japan; RET - University College Dublin, Ireland) and active electronic devices (EQF, Sarad, Germany). At the same place, the radon levels and, consequently, the effective doses obtained with different radon devices differed substantially (by a factor of 2 or more), and no regularity was observed as regards which detector would show a higher or lower dose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mutagenicity of radon and radon daughters. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1991-12-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  15. Cigarette use and the estimation of lung cancer attributable to radon in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, J.H. [National Cancer Institute, Bethesda, MD (United States); Steindorf, K. [National Cancer Institute, Bethesda, MD (United States)]|[German Cancer Research Center, Heidelberg (Germany)

    1995-01-01

    Residential exposure to radioactive radon and its decay products has been estimated to account for 10-12% of all lung cancer deaths in the US. It has been difficult to evaluate fully the impact of cigarette smoking, the most important cause of lung cancer, on this estimate, because factors for patterns of tobacco use have not been included in the risk models, since risk models are derived from studies of underground miners exposed to radon and detailed data on smoking are limited. Lung cancer risk estimates for exposure to radon progeny in smoker and non-smoker populations are obtained by applying the same risk model to each population group, thereby assuming the joint effects of smoking and exposure to radon progeny are multiplicative. However, in miners, joint relative risks (RR) for the two exposures are most consistent with an intermediate relationship between multiplicative and additive, so that the present approach likely results in an overestimate of risk in smokers and an underestimate of risk in nonsmokers. One approach for adjusting risk models to incorporate smoking status is based on the relative magnitude of the effects of radon progeny in smokers and nonsmokers and therefore may not be applicable to non-miner populations if the proportion of smokers and the RR for smoking differ. We show that the modification can be derived explicitly by assuming an arithmetic mixture model for the joint RR for smoking and exposure to radon progeny. In this way, smoking parameters in the population of interest (the proportion of smokers and the RR of smoking) can be used directly to adjust radon progeny risk models and obtain risk estimates that are specific for smokers and nonsmokers. With an intermediate RR relationship for smoking and radon progeny, the attributable percentage of lung cancer deaths from residential radon may be twofold greater in nonsmokers than in smokers. 20 refs., 1 fig., 3 tabs.

  16. Study of different factors which can explain the radon exhalation potential of soils; Recherche de differents parametres caracterisant le potentiel d`exhalation en radon des sols

    Energy Technology Data Exchange (ETDEWEB)

    Demongeot, St

    1997-10-27

    Radon is a natural radioactive gas belonging to the Uranium-238 chain, which is present in the earth crust and produced by the disintegration of radium-226. It is considered as the major source of radiological exposure of man to natural radiation because it can accumulate in indoor atmosphere. So, this health risk must be take into account.The aim of this study is to find some tools in order to identify high radon level area. The first part of this study has consisted in measurement of radon emission from different not sufficient for the estimation of the radon exhalation potential in a given area. In the second part of this work, we have studied the variations of in situ radon concentration as a function of different geological and pedologic parameters of the site. With the results obtained, we have determined the data which have to be considered, and the methodology to be applied for the determination of the radon exhalation of a given area. Furthermore, by the mean of numerical simulations (TRACH Model), it was possible to know the scale of radon flux variation in a given point versus the hydric state of the ground and thus the permeability: these parameters are not easy to measure because of their variabilities with time. The methodology ESPERAS (EStimation du Potential d`Exhalation en Radon des Sols) developed during this work was applied first, at a local scale and then to greater area. The values estimated by this way are in a good agreement with the results of measurements. So, we can determine the areas which are affected by high radon levels. (author)

  17. Radon and radioactivity at a town overlying Uranium ores in northern Greece.

    Science.gov (United States)

    Kourtidis, K; Georgoulias, A K; Vlahopoulou, M; Tsirliganis, N; Kastelis, N; Ouzounis, K; Kazakis, N

    2015-12-01

    Extensive measurements of (222)Rn in the town of Xanthi in N Greece show that the part of the town overlying granite deposits and the outcrop of a uranium ore has exceptionally high indoor radon levels, with monthly means up to 1500 Bq m(-3). A large number of houses (40%) in this part of the town exhibit radon levels above 200 Bq m(-3) while 11% of the houses had radon levels above 400 Bq m(-3). Substantial interannual variability as well as the highest in Europe winter/summer ratios (up to 12) were observed in this part of the town, which consist of traditional stone masonry buildings of the late 19th-early 20th century. Measurements of (238)U and (232)Th content of building materials from these houses as well as radionuclide measurements in different floors show that the high levels of indoor radon measured in these buildings are not due to high radon emanation rates from the building materials themselves but rather due to high radon flux from the soil because of the underlying geology, high radon penetration rates into the buildings from underground due to the lack of solid concrete foundations in these buildings, or a combination thereof. From the meteorological variables studied, highest correlation with indoor (222)Rn was found with temperature (r(2) = 0.65). An indoor radon prognostic regression model using temperature, pressure and precipitation as input was developed, that reproduced indoor radon with r(2) = 0.69. Hence, meteorology is the main driving factor of indoor radon, with temperature being the most important determinant. Preliminary flux measurements indicate that the soil-atmosphere (222)Rn flux should be in the range 150-250 Bq m(-2) h(-1), which is in the upper 10% of flux values for Europe.

  18. Risk of lung cancer by radon, disagreement in international regulation; Riesgo de cancer pulmonar por radon, discordancia en reglamentacion internacional

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Pena, P.; Villamares, A.; Avelar, J. R., E-mail: miguel.balcazar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    Diverse international organizations have evaluated the risk of lung cancer starting from epidemic studies in miners of uranium mines, where the corresponding effective dose was determined relating with the dose received by the population during Hiroshima and Nagasaki events. Alternately, the equivalent dose has been calculated by means of based models on the energy deposited by the breathable radon fractions and its decay products in the breathing ducts. A unique factor agreed by the diverse organizations that allows converting radon concentration to effective dose does not exist. Neither an agreement exists among the different countries on which duty to be the value of the maximum concentration of radon, in interiors starting from which an intervention is required and if this intervention is standardized, recommended or nonexistent. In this work study cases in Mexico are presented and their interpretation alternative based on the international agreements absence. (Author)

  19. Instruments to measure radon-222 activity concentration or exposure to radon-222. Intercomparison 2014; Messgeraete zur Bestimmung der Radon-222-Aktivitaetskonzentration oder der Radon-222-Exposition. Vergleichspruefung 2014

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2014-10-15

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices{sup 1} using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by the Bundesamt fuer Strahlenschutz (BfS). A radon measuring service is recognized by the competent authority if it proves its organisational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the European Information System on Proficiency Testing Schemes (EPTIS) and from the BfS websites.

  20. Indoor radon measurements in Turkey dwellings.

    Science.gov (United States)

    Celebi, N; Ataksor, B; Taskın, H; Bingoldag, N Albayrak

    2015-12-01

    In this work, indoor radon radioactivity concentration levels have been measured in dwellings of Turkey within the frame of the National Radon Monitoring Programme. The (222)Rn concentrations were measured with time-integrating passive nuclear etched track detectors in 7293 dwellings in 153 residential units of 81 provinces, and the radon map of Turkey was prepared. Indoor radon concentrations were distributed in the range of 1-1400 Bq m(-3). The arithmetic mean of the radon gas concentration was found to be 81 Bq m(-3); the geometric mean was 57 Bq m(-3) with a geometric standard deviation of 2.3.

  1. Application of decision trees to the analysis of soil radon data for earthquake prediction.

    Science.gov (United States)

    Zmazek, B; Todorovski, L; Dzeroski, S; Vaupotic, J; Kobal, I

    2003-06-01

    Different regression methods have been used to predict radon concentration in soil gas on the basis of environmental data, i.e. barometric pressure, soil temperature, air temperature and rainfall. Analyses of the radon data from three stations in the Krsko basin, Slovenia, have shown that model trees outperform other regression methods. A model has been built which predicts radon concentration with a correlation of 0.8, provided it is influenced only by the environmental parameters. In periods with seismic activity this correlation is much lower. This decrease in predictive accuracy appears 1-7 days before earthquakes with local magnitude 0.8-3.3.

  2. Application of decision trees to the analysis of soil radon data for earthquake prediction

    Energy Technology Data Exchange (ETDEWEB)

    Zmazek, B. E-mail: boris.zmazek@ijs.si; Todorovski, L.; Dzeroski, S.; Vaupotic, J.; Kobal, I

    2003-06-01

    Different regression methods have been used to predict radon concentration in soil gas on the basis of environmental data, i.e. barometric pressure, soil temperature, air temperature and rainfall. Analyses of the radon data from three stations in the Krsko basin, Slovenia, have shown that model trees outperform other regression methods. A model has been built which predicts radon concentration with a correlation of 0.8, provided it is influenced only by the environmental parameters. In periods with seismic activity this correlation is much lower. This decrease in predictive accuracy appears 1-7 days before earthquakes with local magnitude 0.8-3.3.

  3. Durability of radon remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S. [National Radiological Protection Board, Chilton (United Kingdom)

    1997-10-01

    In the UK, approximately 3600 householders are believed to have taken action to reduce high radon concentrations in their homes. In 1993 a number of those householders who had taken successful remedial actions were invited to participate in a study of durability of radon remedial actions. This involved the radon concentration being remeasured annually. Results for 26 such homes where a complete set of data are available and a further 32 with incomplete data are discussed here. All remedial actions were shown to remain durable during a period of 5 years. The largest variation in effectiveness was found in houses with natural ventilation of the underfloor void. The failure rate for all remedial measures was found to be 4.0% per annum, but in most cases the problems were noticed by the householder and corrected. The frequency of failures which were not noticed until a remeasurement was carried out was 0.4% per annum. (Author).

  4. Radon emanation fractions from concretes containing fly ash and metakaolin.

    Science.gov (United States)

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling.

  5. Thermo-diffusional radon waves in soils

    Energy Technology Data Exchange (ETDEWEB)

    Minkin, Leonid, E-mail: lminkin@pcc.edu [Portland Community College, 12000 SW 49th Ave, Portland, OR 97219 (United States); Shapovalov, Alexander S. [Saratov State University, 83 Astrakhanskay Street, Saratov 410012 (Russian Federation)

    2016-09-15

    A new theoretical framework for diurnal and seasonal oscillations of the concentration of radon in soil and open air is proposed. The theory is based on the existing temperature waves in soils and thermo-diffusional gas flux in porous media. As soil is a non-isothermal porous medium, usually possessing a large fraction of microscopic pores belonging to Knudsen's free molecular field, a thermo-diffusional gas flow in soil has to arise. The radon mass transfer equation in soil for sinusoidal temperature oscillations at the soil–atmosphere boundary is solved, which reveals that radon concentration behaves as a damped harmonic wave. The amplitude of radon concentration oscillations and phase shift between radon concentration oscillations and soil temperature depend on the radon diffusion coefficient in soil, rate of radon production, soil thermal conductivity, average soil temperature, decay constant, and heat of radon transfer. Primarily numerical calculations are presented and comparisons with experimental data are shown. - Highlights: • Temperature oscillations in atmosphere generate radon waves in soil. • Radon flux in atmosphere is a harmonic function of time. • Radon concentration waves in soil have the same frequency as the temperature waves.

  6. Small area mapping of domestic radon, smoking prevalence and lung cancer incidence--A case study in Northamptonshire, UK.

    Science.gov (United States)

    Denman, Antony R; Rogers, Stephen; Ali, Akeem; Sinclair, John; Phillips, Paul S; Crockett, Robin G M; Groves-Kirkby, Christopher J

    2015-12-01

    Smoking and radon both cause lung cancer, and together the risk is significantly higher. UK public health campaigns continue to reduce smoking prevalence, and other initiatives identify houses with raised radon (radon-222) levels and encourage remedial action. Smoking prevalence and radon levels in the UK have been mapped at Primary Care Trust level. This paper extends that work, using a commercial socio-demographic database to estimate smoking prevalence at the postcode sector level, and to predict the population characteristics at postcode sector level for 87 postcode sectors in Northamptonshire. Likely smoking prevalence in each postcode sector is then modelled from estimates of the smoking prevalence in the different socio-economic groups used by the database. Mapping estimated smoking prevalence, radon potential and average lung cancer incidence for each postcode sector suggested that there was little correlation between smoking prevalence and radon levels, as radon potential was generally lower in urban areas in Northamptonshire, where the estimates of smoking prevalence were highest. However, the analysis demonstrated some sectors where both radon potential and smoking prevalence were moderately raised. This study showed the potential of this methodology to map estimated smoking prevalence and radon levels to inform locally targeted public health campaigns to reduce lung cancer incidence.

  7. 30 CFR 57.5046 - Protection against radon gas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against...

  8. XENON1T radon assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, Stefan [MPIK, Heidelberg (Germany); Collaboration: XENON-Collaboration

    2016-07-01

    The radioactive isotope {sup 222}Rn is one of the most dominant intrinsic background sources for experiments dealing with a low event rate like the XENON1T Dark Matter detector. Being part of the primordial decay chain of {sup 238}U the noble gas {sup 222}Rn permanently emanates from almost all materials. Therefore, it is crucial to determine the radon emanation rate of those detector components that will be in contact with the xenon target. The technique of the radon emanation measurements, making use of ultra low background proportional counters is presented as well as selected results for XENON1T.

  9. Development of an innovative validation strategy of gas-surface interaction modelling for re-entry applications

    Science.gov (United States)

    Joiner, N.; Esser, B.; Fertig, M.; Gülhan, A.; Herdrich, G.; Massuti-Ballester, B.

    2016-12-01

    This paper summarises the final synthesis of an ESA technology research programme entitled "Development of an Innovative Validation Strategy of Gas Surface Interaction Modelling for Re-entry Applications". The focus of the project was to demonstrate the correct pressure dependency of catalytic surface recombination, with an emphasis on Low Earth Orbit (LEO) re-entry conditions and thermal protection system materials. A physics-based model describing the prevalent recombination mechanisms was proposed for implementation into two CFD codes, TINA and TAU. A dedicated experimental campaign was performed to calibrate and validate the CFD model on TPS materials pertinent to the EXPERT space vehicle at a wide range of temperatures and pressures relevant to LEO. A new set of catalytic recombination data was produced that was able to improve the chosen model calibration for CVD-SiC and provide the first model calibration for the Nickel-Chromium super-alloy PM1000. The experimentally observed pressure dependency of catalytic recombination can only be reproduced by the Langmuir-Hinshelwood recombination mechanism. Due to decreasing degrees of (enthalpy and hence) dissociation with facility stagnation pressure, it was not possible to obtain catalytic recombination coefficients from the measurements at high experimental stagnation pressures. Therefore, the CFD model calibration has been improved by this activity based on the low pressure results. The results of the model calibration were applied to the existing EXPERT mission profile to examine the impact of the experimentally calibrated model at flight relevant conditions. The heat flux overshoot at the CVD-SiC/PM1000 junction on EXPERT is confirmed to produce radiative equilibrium temperatures in close proximity to the PM1000 melt temperature.This was anticipated within the margins of the vehicle design; however, due to the measurements made here for the first time at relevant temperatures for the junction, an increased

  10. Residential radon and COPD. An ecological study in Galicia, Spain.

    Science.gov (United States)

    Barbosa-Lorenzo, Raquel; Ruano-Ravina, Alberto; Ramis, Rebeca; Aragonés, Nuria; Kelsey, Karl T; Carballeira-Roca, Consuelo; Fernández-Villar, Alberto; López-Abente, Gonzalo; Barros-Dios, Juan M

    2017-02-01

    Radon is a human lung carcinogen but it might be linked with other respiratory diseases. We aimed to assess the relationship between residential radon exposure and COPD (chronic obstructive pulmonary disease) prevalence and hospital admissions at a municipal level. We designed an ecological study where we included those municipalities with at least three radon measurements. Using mixed Poisson regression models, we calculated the relative risk (RR) for COPD for each 100 Bq/m(3) of increase in radon concentration and also the relative risk for COPD using a cut-off point of 50 Bq/m(3). We did not have individual data on cigarette smoking and therefore we used a proxy (bladder cancer standardized mortality rate) that has proved to account for tobacco consumption. We performed separate analyses for sex and also sensitivity analysis considering age and rurality. A total of 3040 radon measurements and 49,393 COPD cases were included. The relative risk for COPD prevalence was 0.95 (95% CI: 0.92-0.97) while for hospital admissions the RR was 1.04 (95% CI: 1.00-1.10) for each 100 Bq/m(3). Relative risks were higher for women compared to men. Using a categorical analysis with a cut-off point of 50 Bq/m(3), the RR for COPD prevalence was 1.06 (95% CI: 1.02-1.10) and for hospital admissions it was 1.08 (95% CI: 1.00-1.17) for women living in municipalities with more than 50 Bq/m(3). All risks were also higher for women. No relevant differences were observed for age, rurality or other categories for radon exposure. While the influence of radon on COPD prevalence is unclear depending on the approach used, it seems that residential radon might increase the risk of hospital admissions in COPD patients. Women have a higher risk than men in all situations. Since this is an ecological study, results should be interpreted cautiously.

  11. Radiological risk of building materials using homemade airtight radon chamber

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan; Yasir, Muhammad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2014-02-12

    Soil based building materials known to contain various amounts of natural radionuclide mainly {sup 238}U and {sup 232}Th series and {sup 40}K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived {sup 222}Radon and its progenies which arise from the decay of {sup 226}Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m{sup −3}, 192 Bq m{sup −3}, 176 Bq m{sup −3} and 28 Bq m{sup −3}, respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m{sup −3} i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y{sup −1}, 4.85 mSv y{sup −1}, 4.44 mSv y{sup −1} and 0.72 mSv y{sup −1}, respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y{sup −1}. As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively.

  12. 76 FR 72006 - Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon...

    Science.gov (United States)

    2011-11-21

    ... COMMISSION Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon... Recovery Facility Surveys of Radon and Radon Progeny in Air and Demonstrations of Compliance with 10 CFR 20... that existing guidance does not sufficiently detail how the NRC staff reviews surveys of radon and...

  13. Origin of radon concentration of Csalóka Spring in the Sopron Mountains (West Hungary).

    Science.gov (United States)

    Freiler, Ágnes; Horváth, Ákos; Török, Kálmán; Földes, Tamás

    2016-01-01

    We examined the Csalóka Spring, which has the highest radon concentration in the Sopron Mountains (West Hungary) (, yearly average of 227 ± 10 Bq L(-1)). The main rock types here are gneiss and micaschist, formed from metamorphism of former granitic and clastic sedimentary rocks respectively. The aim of the study was to find a likely source of the high radon concentration in water. During two periods (2007-2008 and 2012-2013) water samples were taken from the Csalóka Spring to measure its radon concentration (from 153 ± 9 Bq L(-1) to 291 ± 15 Bq L(-1)). Soil and rock samples were taken within a 10-m radius of the spring from debrish and from a deformed gneiss outcrop 500 m away from the spring. The radium activity concentration of the samples (between 24.3 ± 2.9 Bq kg(-1) and 145 ± 6.0 Bq kg(-1)) was measured by gamma-spectroscopy, and the specific radon exhalation was determined using radon-chamber measurements (between 1.32 ± 0.5 Bq kg(-1) and 37.1 ± 2.2 Bq kg(-1)). Based on these results a model calculation was used to determine the maximum potential radon concentration, which the soil or the rock may provide into the water. We showed that the maximum potential radon concentration of these mylonitic gneissic rocks (cpot = 2020 Bq L(-1)) is about eight times higher than the measured radon concentration in the water. However the maximum potential radon concentration for soils are significantly lower (41.3 Bq L(-1)) Based on measurements of radon exhalation and porosity of rock and soil samples we concluded that the source material can be the gneiss rock around the spring rather than the soil there. We determined the average radon concentration and the time dependence of the radon concentration over these years in the spring water. We obtained a strong negative correlation (-0.94 in period of 2007-2008 and -0.91 in 2012-2013) between precipitation and radon concentration.

  14. Human exposure to indoor radon: a survey in the region of Guarda, Portugal.

    Science.gov (United States)

    Louro, Alina; Peralta, Luís; Soares, Sandra; Pereira, Alcides; Cunha, Gilda; Belchior, Ana; Ferreira, Luís; Monteiro Gil, Octávia; Louro, Henriqueta; Pinto, Paulo; Rodrigues, António Sebastião; Silva, Maria João; Teles, Pedro

    2013-04-01

    Radon ((222)Rn) is a radioactive gas, abundant in granitic areas, such as the city of Guarda at the northeast of Portugal. This gas is recognised as a carcinogenic agent, being appointed by the World Health Organization as the second leading cause of lung cancer after tobacco smoke. Therefore, the knowledge of radon concentrations inside the houses (where people stay longer) is important from the point of view of radiological protection. The main goal of this study was to assess the radon concentration in an area previously identified with a potentially high level of residential radon. The radon concentration was measured using CR-39 detectors, exposed for a period of 2 months in 185 dwellings in the Guarda region. The radon concentration in studied dwellings, ranged between 75 and 7640 Bq m(-3), with a geometric mean of 640 Bq m(-3) and an arithmetic mean of 1078 Bq m(-3). Based on a local winter-summer radon concentration variation model, these values would correspond to an annual average concentration of 860 Bq m(-3). Several factors contribute to this large dispersion, the main one being the exact location of housing construction in relation to the geochemical nature of the soil and others the predominant building material and ventilation. Based on the obtained results an average annual effective dose of 15 mSv y(-1) is estimated, well above the average previously estimated for Portugal.

  15. Efficacy of radon remedial measures

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S. (National Radiological Protection Board, Chilton (United Kingdom))

    1994-04-01

    About 2000 householders in the UK have taken remedial action to reduce high radon levels in their homes. Some 800 of these householders have sought measurements to confirm the effectiveness of the action. Results for 528 such homes are discussed. (author).

  16. Predictive analysis of shaft station radon concentrations in underground uranium mine: A case study.

    Science.gov (United States)

    Zhao, Guoyan; Hong, Changshou; Li, Xiangyang; Lin, Chunping; Hu, Penghua

    2016-07-01

    This paper presented a method for predicting shaft station radon concentrations in a uranium mine of China through theoretical analysis, mathematical derivation and Monte-Carlo simulation. Based upon the queuing model for tramcars, the average waiting time of tramcars and average number of waiting tramcars were determined, which were further used in developing the predictive model for calculating shaft station radon concentrations. The results exhibit that the extent of variation of shaft station radon concentration in the case study mine is not significantly affected by the queuing process of tramcars, and is always within the allowable limit of 200 Bq m(-3). Thus, the empirical limit of 100,000 T annual ore-hoisting yields has no value in ensuring radiation safety for this mine. Moreover, the developed model has been validated and proved useful in assessing shaft station radon levels for any uranium mine with similar situations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Low Radon Cleanroom at the University of Alberta

    Science.gov (United States)

    Grant, Darren; Hallin, Aksel; Hanchurak, Stephen; Krauss, Carsten; Liu, Shengli; Soluk, Richard

    2011-04-01

    A cleanroom laboratory designed to create and maintain a low concentration of radon in the air has been designed and is now under construction. We describe the clean room, the radon stripping system, and various radon monitoring tools.

  18. Uranium mining industry views on ICRP statement on radon.

    Science.gov (United States)

    Takala, J

    2012-01-01

    In 2009, the International Commission on Radiological Protection issued a statement on radon which stated that the dose conversion factor for radon progeny would likely double, and the calculation of risk from radon should move to a dosimetric approach, rather than the longstanding epidemiological approach. Through the World Nuclear Association, whose members represent over 90% of the world's uranium production, industry has been examining this issue with a goal of offering expertise and knowledge to assist with the practical implementation of these evolutionary changes to evaluating the risk from radon progeny. Industry supports the continuing use of the most current epidemiological data as a basis for risk calculation, but believes that further examination of these results is needed to better understand the level of conservatism in the potential epidemiological-based risk models. With regard to adoption of the dosimetric approach, industry believes that further work is needed before this is a practical option. In particular, this work should include a clear demonstration of the validation of the dosimetric model which includes how smoking is handled, the establishment of a practical measurement protocol, and the collection of relevant data for modern workplaces. Industry is actively working to address the latter two items.

  19. A semi-analytical model for computation of capillary entry pressures and fluid configurations in uniformly-wet pore spaces from 2D rock images

    Science.gov (United States)

    Frette, O. I.; Helland, J. O.

    2010-08-01

    A novel semi-analytical model for computation of capillary entry pressures and associated fluid configurations in arbitrary, potentially non-convex, 2D pore space geometries at uniform wettability is developed. The model computes all possible centre positions of circular arcs, and physically sound criteria are implemented to determine the set of these arcs that correspond to geometrically allowed interfaces. Interfaces and pore boundary segments are connected to form closed boundaries of identified geometrical regions. These regions are classified as either oil regions, located in the wider parts of the pore space, or as water regions located in pore space constrictions. All possible region combinations are identified and evaluated for each radius value in an iterative procedure to determine the favourable entry radius and corresponding configuration based on minimisation of free energy. The model has been validated by comparison with known analytical solutions in idealised pore geometries. In cases where different analytical solutions are geometrically possible, the model generates several oil and water regions, and the valid solution is determined by the region combination that corresponds to the most favourable entry pressure, consistent with the analytical solution. Entry pressure radii and configurations are computed in strongly non-convex pore spaces extracted from an image of Bentheimer sandstone, which demonstrates that the model captures successfully well-known characteristics of capillary behaviour at different wetting conditions. The computations also demonstrate the importance of selecting the fluid configuration of minimum change in free energy. In some cases, a merged region formed by a combination of oil and water regions corresponds to the favourable entry configuration of oil, whereas in other cases, an individual oil region may correspond to the favourable oil entry configuration. It is also demonstrated that oil entry configurations may

  20. A Flexible-Segment-Model-Based Dynamics Calculation Method for Free Hanging Marine Risers in Re-Entry

    Institute of Scientific and Technical Information of China (English)

    XU Xue-song; WANG Sheng-wei

    2012-01-01

    In re-entry,the drilling riser hanging to the holding vessel takes on a free hanging state,waiting to be moved from the initial random position to the wellhead.For the re-entry,dynamics calculation is often done to predict the riser motion or evaluate the structural safety.A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers.In FSM,a riser is discretized into a series of flexible segments.For each flexible segment,its deflection feature and external forces are analyzed independently.For the whole riser,the nonlinear governing equations are listed according to the moment equilibrium at nodes.For the solution of the nonlinear equations,a linearization iteration scheme is provided in the paper.Owing to its flexibility,each segment can match a long part of the riser body,which enables that good results can be obtained even with a small number of segments.Moreover,the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points.The FSM-based dynamics calculation is timesaving and stable,so suitable for the shape prediction or real-time control of free hanging marine risers.

  1. Development of a predictive methodology for identifying high radon exhalation potential areas; Mise au point d'une methodologie predictive des zones a fort potentiel d'exhalation du radon

    Energy Technology Data Exchange (ETDEWEB)

    Ielsch, G

    2001-07-01

    Radon 222 is a radioactive natural gas originating from the decay of radium 226 which itself originates from the decay of uranium 23 8 naturally present in rocks and soil. Inhalation of radon gas and its decay products is a potential health risk for man. Radon can accumulate in confined environments such as buildings, and is responsible for one third of the total radiological exposure of the general public to radiation. The problem of how to manage this risk then arises. The main difficulty encountered is due to the large variability of exposure to radon across the country. A prediction needs to be made of areas with the highest density of buildings with high radon levels. Exposure to radon varies depending on the degree of confinement of the habitat, the lifestyle of the occupants and particularly emission of radon from the surface of the soil on which the building is built. The purpose of this thesis is to elaborate a methodology for determining areas presenting a high potential for radon exhalation at the surface of the soil. The methodology adopted is based on quantification of radon exhalation at the surface, starting from a precise characterization of the main local geological and pedological parameters that control the radon source and its transport to the ground/atmosphere interface. The methodology proposed is innovative in that it combines a cartographic analysis, parameters integrated into a Geographic Information system, and a simplified model for vertical transport of radon by diffusion through pores in the soil. This methodology has been validated on two typical areas, in different geological contexts, and gives forecasts that generally agree with field observations. This makes it possible to identify areas with a high exhalation potential within a range of a few square kilometers. (author)

  2. 9th Saxonian radon day. 11th meeting on radon safe structural engineering; 9. Saechsischer Radontag. 11. Tagung radonsicheres Bauen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The proceedings of the meeting in radon-safe structural engineering covers contributions on the following issues: implementation of the EU standards, radon protection in underground cavities, radon protection at working places, reports on experiences.

  3. Study on the solubility of radon in tissues; Untersuchung der Loeslichkeit von Radon in Gewebe

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Claudia; Kraft, Gerhard; Maier, Andreas; Beek, Patrick van [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2016-08-01

    At the GSI Helmholtz Center in Darmstadt a radon chamber with conditions similar to the radon galleries was built for studies on the solubility of radon in tissues using cell cultures and animals. The samples are investigated using gamma spectroscopy following the radon exposure measuring Pb-214 and Bi-214. The original concentration of Rn-222 in the sample is determined by the time dependence of the decay rates of Rn-222. The experimental conditions and preliminary measurements are described.

  4. Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy.

    Science.gov (United States)

    Steinbeck, Julius A; Henke, Nadine; Opatz, Jessica; Gruszczynska-Biegala, Joanna; Schneider, Lars; Theiss, Stephan; Hamacher, Nadine; Steinfarz, Barbara; Golz, Stefan; Brüstle, Oliver; Kuznicki, Jacek; Methner, Axel

    2011-12-01

    Store-operated Ca(2+) entry (SOCE) over the plasma membrane is activated by depletion of intracellular Ca(2+) stores and has only recently been shown to play a role in CNS processes like synaptic plasticity. However, the direct effect of SOCE on the excitability of neuronal networks in vitro and in vivo has never been determined. We confirmed the presence of SOCE and the expression of the calcium sensors STIM1 and STIM2, which convey information about the calcium load of the stores to channel proteins at the plasma membrane, in neurons and astrocytes. Inhibition of SOCE by pharmacological agents 2-APB and ML-9 reduced the steady-state neuronal Ca(2+) concentration, reduced network activity, and increased synchrony of primary neuronal cultures grown on multi-electrode arrays, which prompted us to elucidate the relative expression of STIM proteins in conditions of pathologic excitability. Both proteins were increased in brains of chronic epileptic rodents and strongly expressed in hippocampal specimens from medial temporal lobe epilepsy patients. Pharmacologic inhibition of SOCE in chronic epileptic hippocampal slices suppressed interictal spikes and rhythmized epileptic burst activity. Our results indicate that SOCE modulates the activity of neuronal networks in vitro and in vivo and delineates SOCE as a potential drug target. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Modeling the Entry of Micrometeoroids into the Atmospheres of Earth-like Planets

    Science.gov (United States)

    Pevyhouse, A. R.; Kress, M. E.

    2011-01-01

    The temperature profiles of micrometeors entering the atmospheres of Earth-like planets are calculated to determine the altitude at which exogenous organic compounds may be released. Previous experiments have shown that flash-heated micrometeorite analogs release organic compounds at temperatures from roughly 500 to 1000 K [1]. The altitude of release is of great importance because it determines the fate of the compound. Organic compounds that are released deeper in the atmosphere are more likely to rapidly mix to lower altitudes where they can accumulate to higher abundances or form more complex molecules and/or aerosols. Variables that are explored here are particle size, entry angle, atmospheric density profiles, spectral type of the parent star, and planet mass. The problem reduces to these questions: (1) How much atmosphere does the particle pass through by the time it is heated to 500 K? (2) Is the atmosphere above sufficient to attenuate stellar UV such that the mixing timescale is shorter than the photochemical timescale for a particular compound? We present preliminary results that the effect of the planetary and particle parameters have on the altitude of organic release.

  6. The radon: evaluation and risk management; Le radon: evaluation et gestion du risque

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, A.C. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France); Masse, R. [Academie des Technologies, 75 - Paris (France); Aurengo, A. [Hopital Pitie-Salpetriere, Service de Medecine Nucleaire, 75 - Paris (France); Erich Wichmann, H. [Neuberberg Munich Univ. (Germany); Timarche, M.; Laurier, D.; Robe, M.Ch. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Baubron, J.C.; Bonijoly, D. [BRGM, 75 - Paris (France); Collignan, B. [Centre Scientifique et Technique du Batiment, (CSTB), 75 - Paris (France); Berrier, H. [Direction Gle de l' Urbanisme de l' Habitat et de la Construction, 75 - Paris (France); Jaouen, J. [Direction Departementale des Affaires Sanitaires et Sociales de la Haute-Vienne (France); Caamano, D. [Direction Departementale des Affaires Sanitaires et Sociales de l' Essonne, 91 (France); Guiot, F. [Direction Departementale des Affaires Sanitaires et Sociales de la Haute-Marne (France); Grall, B. [Direction Departementale des Affaires Sanitaires et Sociales de Bretagne (France); Frutos Vasquez, B.; Olaya Adan, M. [Istituto de Ciencias de la Construction (Italy); Garcia Cadierno, J.P.; Martin Matarranz, J.L.; Serrano Renedo, J.; Suarez Mahou, E. [Consejo de Seguridad Nuclear, Madrid (Spain); Fernandez, J.A. [ENUSA Industrias Avanzadas (Spain); Mjones, L.; Pirard, P. [Institut de veille sanitaire, 94415 - Saint-Maurice (France); Godet, J.L.; Rougy, Ch. [Direction Gle de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France)

    2003-06-15

    The radon exposure constitutes for the French population the first cause of natural irradiation among the different natural sources of irradiation. It is possible to have a significant action on it, either by making draught proof in order to avoid to radon to get inside houses, either by ventilating in order to dispel the radon and improve air quality. (N.C.)

  7. POLYNOMIAL RADON TRANSFORM%多项式Radon变换

    Institute of Scientific and Technical Information of China (English)

    牛滨华; 孙春岩; 张中杰; 沈操; 李英才; 吕景贵; 王宏语

    2001-01-01

    Radon变换是数据处理中广泛应用的一种方法技术. 本文介绍了次数为“2”的多项式Radon变换. 讨论了多项式正反Radon变换的公式、实现方法和有关计算参数的选择. 通过理论模型试算,对多项式、线性、抛物线三种Radon变换进行了比较. 对实际资料进行了多项式Radon变换处理,给出了消除地震反射记录中线性干扰的算例.%The Radon transform is a mathematical technique widely used in seismic data processing and analysis. This paper presents a method of general Radon transform with2-order polynomial. We present the forward and inverse transform formulas and discuss how to choose the best parameters to avoid aliasing. Using some model data,we compare polynomial Radon with linear Radon and parabolic can be built up to process data having a uniform geometry. Examples on field data demonstrate clearly the robustness of the method.

  8. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    Science.gov (United States)

    Girault, Frédéric; Schubnel, Alexandre; Pili, Éric

    2017-09-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture

  9. A perspective on risks from radon

    Energy Technology Data Exchange (ETDEWEB)

    Higson, D. J., E-mail: higsond@bigpond.net.a [Australasian Radiation Protection Society, PO Box 7108, Upper Ferntree Gully, Victoria 3156 (Australia)

    2010-10-15

    In its Statement on Radon (November 2009), the International Commission on Radiological Protection (ICRP) has reduced the upper reference level for radon gas in dwellings to 300 Bq m{sup -3}. The recommended level for workplaces is 1000 Bq m{sup -3}. A risk coefficient of 8 x 10{sup -10} per Bq h m{sup -3} is recommended without reference to smoking habits. On the basis of these figures: 1) The estimated risk of fatal cancer from exposure to radon at home and at work could be greater than the observed risk of accidental death from travelling by car, which would be surprising if true. 2) The estimated risk of lung cancer from radon could be greater than the observed risk of lung cancer from all causes, which is actually known to be dominated by smoking. The author is not aware of any direct evidence of risks from inhaling radon in Australian dwellings, 99% of which have radon levels below 50 Bq m{sup -3}. Evidence available from other countries shows that: 1) The effects of radon in the incidences of lung cancer are uncertain at levels less then about 50-100 Bq m{sup -3}. 2) The estimation of risks at levels below 200 Bq m{sup -3} depends on extrapolation from risks observed at higher levels. 3) Risks to non-smokers from radon are 25 times less than risks to smokers. Its concluded that the ICRP Statement on Radon and radon policies in the US and UK have the potential to cause unwarranted concern. Some people may be made to feel they need to spend money modifying their homes and workplaces to protect occupants from exposure to radon when there is no compelling reason to show that this is necessary. The vast majority of non-smokers do not need to be protected from radon. (Author)

  10. The radon influence of SAGE results

    CERN Document Server

    Gavrin, V N; Mirmov, I N

    2002-01-01

    The method for evaluating systematic errors, connected with radon, is described in the experiment on determining the SAGE solar neutrino flux. The systematic error by the measured neutrino capture rate in the gallium 75 SNU target does not exceed 0.3 SNU. The obtained value (0.3 SNU) is the upper limit of the radon systematic error. Its low value means, that radon does not contribute significantly to the SAGE result

  11. A Fuzzy Radon Transform for Track Recognition

    CERN Document Server

    De Laat, C T A M; CERN. Geneva; Lourens, W; Kamermans, R

    1993-01-01

    In this contribution a fuzzy Radon transform is shown for application in ALICE and ATLAS (typical track density of 8000 in one unit of rapidity). Resolution is introduced by the "broadening" of the matching tracks in the Radon transform, which is obtained by making a convolution of the matching tracks with Gaussian kernel. In a good approximation, an analytical expression for the fuzzy Radon transform is given. An example of two track separation with noisy input is added.

  12. A cost-effect analysis of an intervention against radon in homes

    Directory of Open Access Journals (Sweden)

    Hein Stigum

    2009-10-01

    Full Text Available Background  Key words  : Radon exposure, lung cancer, cost-effect analysis, attributable risk, models-mathematical: Radon is a radioactive gas that may leak into buildings from the ground. Radon exposure is a risk factor for lung cancer. An intervention against radon exposure in homes may consist of locating homes with high radon exposure (above 200 Bq m-3 and improving these, and of protecting future houses. The purpose of this paper is to calculate the costs and the effects of this intervention. Methods: We performed a cost-effect analysis from the perspective of the society, followed by an uncertainty and sensitivity analysis. The distribution of radon levels in Norwegian homes is lognormal with mean=74.5 Bq/m3, and 7.6% above 200 Bq/m3. Results: The preventable attributable fraction of radon on lung cancer was 3.8% (95% uncertainty interval: 0.6%, 8.3%. In cumulative present values the intervention would cost $238 (145, 310 million and save 892 (133, 1981 lives, each life saved costs $0.27 (0.09, 0.9 million. The cost-effect ratio was sensitive to the radon risk, the radon exposure distribution, and the latency period of lung cancer. Together these three parameters explained 90% of the variation in the cost-effect ratio. Conclusions: Reducing the radon concentration in present and future homes to below 200 Bq/m3 will cost $0.27 (0.09, 0.9 million per life saved. The uncertainty in the estimated cost per life is large, mainly due to uncertainty in the risk of lung cancer from radon. Based on estimates from road construction, the Norwegian society has been willing to pay $1 million to save a life. We therefore conclude that the intervention against radon in homes is justifiable. The willingness to pay is also larger that the upper uncertainty limit of the cost per life. Our conclusion is therefore robust against the uncertainties in the parameters.

  13. Use of simulink to address key factors for radon mitigation in a Fairbanks home.

    Science.gov (United States)

    Marsik, Tom; Johnson, Ron

    2008-05-01

    Hilly areas around Fairbanks, Alaska, are known to have elevated soil radon concentrations. Due to geological conditions, cold winters, and the resulting stack effect, houses in these areas are prone to higher indoor radon concentrations. Key variables with respect to radon mitigation were addressed in this paper by using a dynamic model implemented in MATLAB Simulink. These variables included the ventilation rate; the foundation flow resistance, which can be affected by sealing the foundation during the construction of a house; and the differential pressure between the subslab and the house interior, which can be affected by using a subslab depressurization system. The model was used for the scenario of a varying differential pressure and then for the scenario of a varying ventilation rate at a Fairbanks home where real-time radon concentrations were measured. The correlation coefficients between the model-predicted and measured radon concentrations were 0.96 and 0.94, for both scenarios respectively, which verified the feasibility of the model for predicting indoor radon concentrations.

  14. 活断层上均匀盖层中氡浓度分布的数值模拟及反演拟合%The numerical simulation and inversion fitting of radon concentration distribution in homogeneous overburden above active fault zones

    Institute of Scientific and Technical Information of China (English)

    刘菁华; 王祝文; 王晓丽

    2008-01-01

    Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.

  15. Vibration characteristics of Z-ring-stiffened 60 deg conical shell models of a planetary entry spacecraft

    Science.gov (United States)

    Naumann, E. C.; Mixon, J. S.

    1971-01-01

    An experimental investigation of the vibration characteristics of a 60 deg conical shell model of a planetary entry vehicle is described and the results presented. Model configurations include the shell with or without one or two Z-ring stiffeners and with or without a simulated payload. Tests were conducted with the model clamped at the small diameter and with the model suspended at the simulated payload. Additionally, calculated results obtained from application of several analytical procedures reported in the literature are presented together with comparisons between experimental and calculated frequencies and meridional mode shapes. Generally, very good frequency agreement between experimental and calculated results was obtained for all model configurations. For small values of circumferential mode number, however, the frequency agreement decreased as the number of ring stiffeners increased. Overall agreement between experimental and calculated mode shapes was generally good. The calculated modes usually showed much larger curvatures in the vicinity of the rings than were observed in the experimentally measured mode shapes. Dual resonances associated with modal preference were noted for the shell without Z-ring stiffeners, whereas the addition of stiffeners produced resonances for which the model responded in two or more modes over different sections of the shell length.

  16. Radon atlas of Finland; Suomen radonkartasto

    Energy Technology Data Exchange (ETDEWEB)

    Voutilainen, A.; Maekelaeinen, I.; Pennanen, M.; Reisbacka, H.; Castren, O.

    1997-11-01

    The most efficient means of reducing indoor radon exposure is to locate and mitigate dwellings with radon concentration exceeding the action level of 400 Bq/m{sup 3} and to build new houses so that radon concentrations do not exceed 200 Bq/m{sup 3}. The maps and tables in this report are useful tools for those who plan and decide what kind of radon mitigation measures are needed in municipalities. STUK (The Radiation and Nuclear Safety Authority) has an indoor radon database of 52 000 dwellings, for which the indoor radon concentration and construction details are known. The building site soil type of about 38 000 dwellings is known. This atlas is a summary of all indoor radon measurements made by STUK in lowrise dwellings and in first-floor flats. The results are shown as arithmetic means of 5- or 10-km squares on maps of the provinces. Three radon maps have been made for each province. On one map the data consist of all measurements the position coordinates of which are known. On the two other maps the building sites of houses are classified into permeable and low-permeable soil types. The tables show statistics for all indoor radon measurements by municipality and building site soil type. (orig.). 11 refs. The publication contains all texts both in Finnish and in English.

  17. Radon in Himalayan springs: a geohydrological control

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, V.M.; Bartarya, S.K. [Wadia Inst. of Himalayan Geology, Dehra Dun (India); Ramola, R.C. [Garhwal Univ., Srinagar, Uttar Pradesh (India). Dept. of Physics

    2000-04-01

    This paper presents the results of radon measurements in springs of the Himalayan region by using radon emanometry technique. The radon was measured in different springs, draining from different geohydrological setups, and from stream water in order to find the geohydrological control over radon concentration in groundwater emanating in the form of spring. The radon values were found to vary from 0.4 Bq/l to 887 Bq/l, being observed lowest for a turbulent stream and highest for the spring. The radon values were recorded highest in the springs draining through gneiss, granite, mylonite, etc. Radon concentrations have been related with four spring types viz. fracture-joint related spring, fault-lineament related spring, fluvial related spring and colluvial related spring, showing geohydrological characteristics of the rocks through which they are emanating. The high radon concentration in fracture-joint and fault-lineament springs is related to increased ratio of rock surface area to water volume and uranium mineralisation in the shear zones present in the close vicinity of fault and thrust. The low concentration of radon in fluvial and colluvial springs is possibly because of high transmissivity and turbulent flow within such deposits leading to natural de-emanation of gases. (orig.)

  18. Radon transfer and intracorporal deposition of radon decay products under balneotherapeutic conditions; Radon-Transfer und intrakorporale Deposition von Radon-Folgeprodukten unter balneotherapeutischen Bedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, Wolfgang A. [Kurmittelhaus Sibyllenbad, Neualbenreuth (Germany); Just, Guenther [Forschungsbuero Radon, Grosspoesna (Germany); Petzold, Juergen [Klinik und Poliklinik fuer Nuklearmedizin, Universitaetsklinikum, Leipzig (Germany); Philipsborn, Henning von [Radiometrisches Seminar, Univ. Regensburg (Germany)

    2009-07-01

    The intracorporal deposition of radon decay products was determined on four persons after 40 and 30 min respectively in radon water with about 1500 Bq/L by whole-body gamma spectrometry. The measurements started about 2 1/2h after exposure. In addition, the radon activity concentration of inspiratory and expiratory air was measured on one person during and after exposure and the deposition of radon decay products on the skin was measured on another person. The radon activity leaving the body with the expiratory air during exposure in the water (called ''radon transfer'') amounts to about 800 Bq. An intracorporal radon activity immediately after therapeutic exposure of about 3000 Bq was obtained as a result of first measurements by extrapolation from measurements starting about 2 1/2 hours later. Additional studies are necessary. There are indications that both the radon transfer and the intracorporal deposition can be increased by exposure in mixed radon-CO{sub 2} water. (orig.)

  19. Low-Cost Radon Reduction Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rose, William B. [Partnership for Advanced Residential Retrofit, Champaign, IL (United States); Francisco, Paul W. [Partnership for Advanced Residential Retrofit, Champaign, IL (United States); Merrin, Zachary [Partnership for Advanced Residential Retrofit, Champaign, IL (United States)

    2015-09-01

    The aim of the research was to conduct a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation-living space floor assembly. Fifteen homes in the Champaign, Illinois area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity the foundation was improved. However, this improved isolation did not lead to significant reductions in radon concentration in the living space. Other factors such as outdoor temperature were shown to have an impact on radon concentration.

  20. Risk assessment of exposure to radon decay products

    Energy Technology Data Exchange (ETDEWEB)

    Monchaux, G

    1999-07-01

    The aim of this project was to assess the risk due to inhalation of radon and its decay products using an horizontal approach across a large scale research programme. The central objective was the assessment of human risk which requires combination of several topics involving a multidisciplinary approach. In the Aerosol Studies Group, progress was achieved in improvement, calibration and automation of experimental techniques for continuous and integrated measurements of the unattached fraction f{sub p}- and equilibrium factor F- values. Measurements were performed to determine the variation of size distributions of unattached and aerosol-associated radon decay products under typical living conditions. All aerosol groups performed controlled chamber studies to understand the basic behaviour of airborne activity concentrations. Measurements were performed to determine neutralisation rates of {sup 218}Po, to understand the cluster growth with residence time and to understand the hygroscopic growth of aerosol particles. In the Modelling Group, the programme RADEP has been developed to calculate the weighted committed equivalent lung dose per unit exposure of radon progeny (H{sub w}/P{sub p}) which implements the ICRP Publication 66 Human Respiratory Tract Model (HRTM). The stochastic deposition model (IDEAL) has been compared with the deposition model used by the HRTM, and the agreement between the two deposition models was excellent. A deterministic radon progeny dosimetry model (RADOS) has been developed. This model includes all bronchial airway generations compared with the HRTM that groups the 16 airway generations into three regions. Initial calculations with RADOS show that the basal and secretory cell doses are slightly smaller compared with that of the HRTM. A sensitivity analysis has been performed that has identified those HRTM model parameters that most affect the Hw/Pp. A stochastic rat deposition model (RALMO) and a clearance model for the rat based on the

  1. The 2008 intercomparison exercise for radon gas measurement instruments at PSI; Die Vergleichsmessung 2008 fuer Radongasmessgeraete am PSI

    Energy Technology Data Exchange (ETDEWEB)

    Butterweck, G.; Schuler, Ch.; Mayer, S.

    2010-09-15

    Sixteen radon measurement services participated in the 2008 Radon Intercomparison Exercise performed at the Reference Laboratory for Radon Gas Activity Concentration Measurements at the Paul Scherrer Institute (PSI) during August 28{sup th} to September 7{sup th}, 2008 on behalf of the Swiss Federal Office of Public Health (FOPH). Twelve of these laboratories were approved by the FOPH and their participation in the intercomparison exercise was a requirement to warrant quality of measurement. Radon gas dosemeters (etched-track, electronic and electret ionisation chambers) and instruments (ionization chambers) were exposed in the PSI Radon Chamber in a reference atmosphere with an average radon gas concentration of 627 Bq m{sup -3} leading to a radon gas exposure of 155 kBq h m{sup -3}. One measuring instrument participating for testing purposes stored values for part of the exposure interval (30.8. - 7.9.2008). The exposure during this partial interval was 117 kBq h m{sup -3} at an average radon gas concentration of 624 Bq m{sup -3}. The exposure of 155 kBq h m{sup -3} was the lowest used at the PSI intercomparisons down to the present day. Especially the LLT electret ionisation chambers used by some of the laboratories reached the lower end of their measurement range with this exposure. Unexpected deviations of instruments of the same model seem to show a dependence on the serial number and thus production date. (authors)

  2. Assessment of the effectiveness of radon screening programs in reducing lung cancer mortality.

    Science.gov (United States)

    Gagnon, Fabien; Courchesne, Mathieu; Lévesque, Benoît; Ayotte, Pierre; Leclerc, Jean-Marc; Belles-Isles, Jean-Claude; Prévost, Claude; Dessau, Jean-Claude

    2008-10-01

    The present study was aimed at assessing the health consequences of the presence of radon in Quebec homes and the possible impact of various screening programs on lung cancer mortality. Lung cancer risk due to this radioactive gas was estimated according to the cancer risk model developed by the Sixth Committee on Biological Effects of Ionizing Radiations. Objective data on residential radon exposure, population mobility, and tobacco use in the study population were integrated into a Monte-Carlo-type model. Participation rates to radon screening programs were estimated from published data. According to the model used, approximately 10% of deaths due to lung cancer are attributable to residential radon exposure on a yearly basis in Quebec. In the long term, the promotion of a universal screening program would prevent less than one death/year on a province-wide scale (0.8 case; IC 99%: -3.6 to 5.2 cases/year), for an overall reduction of 0.19% in radon-related mortality. Reductions in mortality due to radon by (1) the implementation of a targeted screening program in the region with the highest concentrations, (2) the promotion of screening on a local basis with financial support, or (3) the realization of systematic investigations in primary and secondary schools would increase to 1%, 14%, and 16.4%, respectively, in the each of the populations targeted by these scenarios. Other than the battle against tobacco use, radon screening in public buildings thus currently appears as the most promising screening policy for reducing radon-related lung cancer.

  3. Preliminary indoor radon risk assessment at the Pocos de Caldas Plateau, MG - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, L.H.S. E-mail: Iene@ird.gov.br; Koifman, S.; Melo, V.P.; Sachet, I.; Amaral, E.C.S

    2003-07-01

    This paper aims to present an assessment of the environmental radiological exposure at a Brazilian area of high natural radiation and discusses the indoor radon exposure risk. A survey of inhabitant exposures arising from the inhalation of radon progeny and external gamma exposure was conducted in urban and rural areas of the Pocos de Caldas Plateau, which is recognized worldwide as a high natural radiation region. The results of this survey indicated that highest radiation exposure was restricted to the rural area of Pocos de Caldas. The radiation exposure in urban locations was quite similar to the values observed in normal background areas in some Brazilian counties. By the application of a constant relative risk model, an additional 20% in the lifetime risk of lung cancer mortality due to the exposure to radon progeny was estimated at Pocos de Caldas. It was also estimated that 16% of all lung cancer deaths at Pocos de Caldas county could be attributable to radon exposure.

  4. Durability of radon remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S. [National Radiological Protection Board, Chilton (United Kingdom)

    1997-07-01

    It is estimated that at least 3600 householders in the UK have taken remedial action to reduce radon concentrations found to be above the government Action Level. A study has been carried out on the durability of these remedial actions. It involved annual reassessment of the radon levels in a number of homes. The results for 26 of these homes where data over five years are available show that in general the remedial actions remained effective. The remedy with the largest variation in efficacy was natural ventilation of the underfloor void. The failure rate was found to be 4.0% per annum for all measures, but in the majority of cases the failure was discovered by the householder and rectified. The rate of failures not noticed by the householders was 0.4% per annum. (UK).

  5. Radon as an Anthropogenic Indoor Air Pollutant

    Science.gov (United States)

    Gillmore, Gavin; Crockett, Robin

    2016-04-01

    Radon is generally regarded as a naturally occurring radiological hazard but we report here measurements of significant, hazardous radon concentrations that arise from man-made sources, including granite ornaments/artefacts, uranium glass and glazed objects as well radium dial watches. This presentation concerns an examination and assessment of health risks from radium and uranium found in historical artefacts, many of which were once viewed as everyday items, and the radon that emanates from them. Such objects were very popular in industrialised countries such as the USA, UK and European countries) particularly between and including the two World Wars but are still readily available. A watch collection examined gave rise to a hazardous radon concentration of 13.24 kBq•m-3 approximately 67 times the Domestic Action Level of 200 Bq•m-3.The results for an aircraft altimeter are comparable to those of the watches, indicating radon activity equivalent to several watches, and also indicate an equilibrium concentration in the 16.3 m3 room ca. 33 times the UK domestic Action Level. Results from a granite block indicate a radon emanation of 19.7 Bq•kg-1, but the indicated equilibrium concentration in the 16.3 m3 room is only ca. 1.7% of the UK domestic Action Level. Uranium-glazed crockery and green uranium glass were scoped for radon activity. The former yielded a radon concentration of ca. 44 Bq•m-3 in a small (7 L) sealed container. The latter yielded a lower radon concentration in a larger (125 L) sealed container of ca. 6 Bq•m-3. This is barely above the background radon concentration in the laboratory, which was typically ca. 1-2 Bq•m-3. Individual items then are capable of giving rise to radon concentrations in excess of the UK Domestic Action Level in rooms in houses, particularly if poorly ventilated. We highlight the gap in the remediation protocols, which are focused on preventing radon entering buildings from outside, with regard to internally

  6. Current state of radon chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Avrorin, V.V.; Krasikova, R.N.; Nefedov, V.D.; Toropova, M.A.

    1982-01-01

    This article summarizes the data available prior to May 1980 on the physical, chemical and radioactive properties of radon. Tables include a list of the known isotopes together with the half-lives, types of emitted radiation and daughter products and a list of the inert gases Rn, Xe, Kr, Ar and Ne together with the hydrate stability, ionization potential, ionic character of bonding, dissociation energy, electronegativity and others. Experimental difficulties of working with radon, such as its short half-life and its fugitive nature, are mentioned. The compound RNF/sub 2/ can be prepared from several different fluorinating reagents such as ClF/sub 3/, KrF/sub 3/, BrF/sub 3/, K/sub 2/NiF/sub 6/ in HF and others. Until now it has not been possible to prepare organic compounds of inert gases using classical techniques. Noble gas compounds may also be prepared via radiochemical techniques. Some applications of radon compounds, such as in decontamination of reactor and mine effluents, are discussed.

  7. Radon in homes of the Portland, Oregon Area: Radon data from local radon testing companies collected by CRM (Continuous Radon Measurement) machines

    Science.gov (United States)

    Whitney, H.; Lindsey, K.; Linde, T.; Burns, S. F.

    2013-12-01

    Students from the Department of Geology at Portland State University paired up with the Oregon Health Authority to better understand radon gas values in homes of the Portland metropolitan area. This study focuses on radon values collected by continuous radon measurement (CRM) machines, taken by local radon testing companies. The local companies participating in this study include Alpha Environmental Services, Inc., Cascade Radon, Environmental Works, The House Detectives, LLC, and Soil Solutions Environmental Services, Inc. In total, 2491 radon readings spanning across 77 zip codes were collected from local companies in the Portland metropolitan area. The maximum value, average value, percentage of homes greater than 4 pCi/L and total rank sum was calculated and used to determine the overall radon potential for each zip code (Burns et al., 1998). A list and four maps were produced showing the results from each category. Out of the total records, 24 zip codes resulted in high radon potential and the average reading for the entire Portland Metropolitan area was 3.7 pCi/L. High potential zip codes are thought to be a result of sand and gravel (Missoula Flood deposits) and faults present in the subsurface. The CRM data was compared with both long-term and short-term data provided by the Oregon Health Authority to validate radon potentials in each zip code. If a home is located in a zip code with high or moderate radon potential across two types of data sets, it is recommended that those homes be tested for radon gas.

  8. A method for determining an indicator of effective dose calculation due to inhalation of Radon and its progeny from in vivo measurements

    CERN Document Server

    Estrada, J

    1994-01-01

    Direct measurement of the absolved dose to lung tissue from inhalation of radon and its progeny is not possible and must be calculated using dosimetric models, taking into consideration the several parameters upon which the dose calculation depends. To asses the dose due to inhalation of radon and its progeny, it is necessary to estimate the cumulative exposure. Historically, this has been done using WLM values estimated with measurements of radon concentration in air. The radon concentration in air varies significantly, however, in space with time, and the exposed individual is also constantly moving around. This makes it almost impossible to obtain a precise estimate of an individual's inhalation exposure. This work describes a pilot study to calculate lung dose from the deposition of radon progeny, via estimates of cumulative exposure derived from in vivo measurements of sup 2 sup 1 sup 0 Pb, in subjects exposed to above-average radon and its progeny concentrations in their home environments. The measureme...

  9. A model of peptide triazole entry inhibitor binding to HIV-1 gp120 and the mechanism of bridging sheet disruption.

    Science.gov (United States)

    Emileh, Ali; Tuzer, Ferit; Yeh, Herman; Umashankara, Muddegowda; Moreira, Diogo R M; Lalonde, Judith M; Bewley, Carole A; Abrams, Cameron F; Chaiken, Irwin M

    2013-04-02

    Peptide triazole (PT) entry inhibitors prevent HIV-1 infection by blocking the binding of viral gp120 to both the HIV-1 receptor and the coreceptor on target cells. Here, we used all-atom explicit solvent molecular dynamics (MD) to propose a model for the encounter complex of the peptide triazoles with gp120. Saturation transfer difference nuclear magnetic resonance (STD NMR) and single-site mutagenesis experiments were performed to test the simulation results. We found that docking of the peptide to a conserved patch of residues lining the "F43 pocket" of gp120 in a bridging sheet naïve gp120 conformation of the glycoprotein led to a stable complex. This pose prevents formation of the bridging sheet minidomain, which is required for receptor-coreceptor binding, providing a mechanistic basis for dual-site antagonism of this class of inhibitors. Burial of the peptide triazole at the gp120 inner domain-outer domain interface significantly contributed to complex stability and rationalizes the significant contribution of hydrophobic triazole groups to peptide potency. Both the simulation model and STD NMR experiments suggest that the I-X-W [where X is (2S,4S)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidine] tripartite hydrophobic motif in the peptide is the major contributor of contacts at the gp120-PT interface. Because the model predicts that the peptide Trp side chain hydrogen bonding with gp120 S375 contributes to the stability of the PT-gp120 complex, we tested this prediction through analysis of peptide binding to gp120 mutant S375A. The results showed that a peptide triazole KR21 inhibits S375A with 20-fold less potency than WT, consistent with predictions of the model. Overall, the PT-gp120 model provides a starting point for both the rational design of higher-affinity peptide triazoles and the development of structure-minimized entry inhibitors that can trap gp120 into an inactive conformation and prevent infection.

  10. Residential Radon Exposure and Skin Cancer Incidence in a Prospective Danish Cohort

    Science.gov (United States)

    Bräuner, Elvira Vaclavik; Loft, Steffen; Sørensen, Mette; Jensen, Allan; Andersen, Claus Erik; Ulbak, Kaare; Hertel, Ole; Pedersen, Camilla; Tjønneland, Anne; Krüger Kjær, Susanne; Raaschou-Nielsen, Ole

    2015-01-01

    Background Although exposure to UV radiation is the major risk factor for skin cancer, theoretical models suggest that radon exposure can contribute to risk, and this is supported by ecological studies. We sought to confirm or refute an association between long-term exposure to residential radon and the risk for malignant melanoma (MM) and non-melanoma skin cancer (NMSC) using a prospective cohort design and long-term residential radon exposure. Methods During 1993–1997, we recruited 57,053 Danish persons and collected baseline information. We traced and geocoded all residential addresses of the cohort members and calculated radon concentrations at each address lived in from 1 January 1971 until censor date. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR) and confidence intervals (CI) for the risk associated with radon exposure for NMSC and MM, and effect modification was assessed. Results Over a mean follow-up of 13.6 years of 51,445 subjects, there were 3,243 cases of basal cell carcinoma (BCC), 317 cases of squamous cell carcinoma (SCC) and 329 cases of MM. The adjusted IRRs per 100 Bq/m3 increase in residential radon levels for BCC, SCC and MM were 1.14 (95% CI: 1.03, 1.27), 0.90 (95% CI: 0.70, 1.37) and 1.08 (95% CI: 0.77, 1.50), respectively. The association between radon exposure and BCC was stronger among those with higher socio-economic status and those living in apartments at enrollment. Conclusion and Impact Long-term residential radon exposure may contribute to development of basal cell carcinoma of the skin. We cannot exclude confounding from sunlight and cannot conclude on causality, as the relationship was stronger amongst persons living in apartments and non-existent amongst those living in single detached homes. PMID:26274607

  11. Radon adsorption on activated charcoal in the presence of indoor pollutants

    Science.gov (United States)

    Quirino Torres, Leopoldo Leonardo

    1998-12-01

    A number of recent studies have reported that activated charcoals can adsorb significant amounts of volatile organic compounds at concentration levels generally encountered indoors. In this study, a fundamental understanding of radon adsorption on activated charcoal in the presence of water vapor and various indoor volatile organic compounds has been presented. A dynamic adsorption system was designed and constructed to study adsorption of radon both as a pure component (when present alone in a gas mixture with nitrogen) and in the presence of water vapor and some selected indoor air pollutants. The air pollutants investigated in this study include carbon dioxide, formaldehyde, toluene and 1,1,1-trichloroethane. The experimental data were obtained in the form of breakthrough curves. The data were used to verify several existing models for both pure component radon adsorption and its adsorption from binary mixtures. As expected, radon adsorption capacity by charcoal decreased in the presence of water vapor. However, a decrease of about 9% was observed when the relative humidity of the nitrogen stream was below 40%. A sharp decrease in the adsorption capacity, about 40%, was noted if the relative humidity was above 50%. The adsorption capacity for radon decreased by 10% to 20% in the presence of toluene and 1,1,1-trichloroethane. The decrease was about 2% to 6% when carbon dioxide or formaldehyde was present in the gas mixture. The capacity for radon also decreased by about 40% during adsorption from the multicomponent mixtures. However, this reduction in the capacity was due mainly to the water vapor. Therefore it may be concluded that radon measurements would be affected significantly in the presence of various indoor pollutants. The models used in this study provided excellent agreement with the experimental data for both pure radon (when present alone in the nitrogen stream) and when present in binary mixtures with water vapor and other indoor pollutants.

  12. Domestic Radon Exposure and Risk of Childhood Cancer: A Prospective Census-Based Cohort Study

    Science.gov (United States)

    Hauri, Dimitri; Spycher, Ben; Huss, Anke; Zimmermann, Frank; Grotzer, Michael; von der Weid, Nicolas; Weber, Damien; Spoerri, Adrian; Kuehni, Claudia E.

    2013-01-01

    Background: In contrast with established evidence linking high doses of ionizing radiation with childhood cancer, research on low-dose ionizing radiation and childhood cancer has produced inconsistent results. Objective: We investigated the association between domestic radon exposure and childhood cancers, particularly leukemia and central nervous system (CNS) tumors. Methods: We conducted a nationwide census-based cohort study including all children radon levels were estimated for each individual home address using a model developed and validated based on approximately 45,000 measurements taken throughout Switzerland. Data were analyzed with Cox proportional hazard models adjusted for child age, child sex, birth order, parents’ socioeconomic status, environmental gamma radiation, and period effects. Results: In total, 997 childhood cancer cases were included in the study. Compared with children exposed to a radon concentration below the median (radon exposure is associated with childhood cancer, despite relatively high radon levels in Switzerland. Citation: Hauri D, Spycher B, Huss A, Zimmermann F, Grotzer M, von der Weid N, Weber D, Spoerri A, Kuehni C, Röösli M, for the Swiss National Cohort and the Swiss Paediatric Oncology Group (SPOG). 2013. Domestic radon exposure and risk of childhood cancer: a prospective census-based cohort study. Environ Health Perspect 121:1239–1244; http://dx.doi.org/10.1289/ehp.1306500 PMID:23942326

  13. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    Science.gov (United States)

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m(-3) with an overall average of 89 Bq m(-3) The average thoron concentration varies from 29 to 55 Bq m(-3) with an overall average of 38 Bq m(-3) The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y(-1) with an average of 2.9 mSv y(-1) While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. US Ports of Entry

    Data.gov (United States)

    Department of Homeland Security — HSIP Non-Crossing Ports-of-Entry A Port of Entry is any designated place at which a CBP officer is authorized to accept entries of merchandise to collect duties, and...

  15. Find a Radon Test Kit or Measurement and Mitigation Professional

    Science.gov (United States)

    Find a qualified radon service professional to fix or mitigate your home. If you have questions about a radon, you should contact your state radon contact and/or contact one or both of the two privately-run National Radon Proficiency Programs

  16. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  17. Radon Measurements in Schools: An Interim Report.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Radiation Programs.

    Radon-222 is a colorless, odorless, tasteless, radioactive gas that occurs naturally in soil, rocks, underground water, and air. The United States Environmental Protection Agency (EPA) and other scientific organizations have identified an increased risk of lung cancer associated with exposure to elevated levels of radon in homes. Schools in many…

  18. Domestic Radon and Childhood Cancer in Denmark

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, Ole; Andersen, Claus Erik; Andersen, Helle P.

    2008-01-01

    Background: Higher incidence rates of childhood cancer and particularly leukemia have been observed in regions with higher radon levels, but case-control studies have given inconsistent results. We tested the hypothesis that domestic radon exposure increases the risk for childhood cancer. Methods...

  19. Removal of Radon from Household Water.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Research and Development.

    By far, the greatest risk to health from radon occurs when the gas enters the house from underlying soil and is inhaled. The U.S. Environmental Protection Agency (EPA) is studying ways to reduce radon in houses, including methods to remove the gas from water to prevent its release in houses when the water is used. While this research has not…

  20. Radon Risk Communication Strategies: A Regional Story.

    Science.gov (United States)

    Cheng, Winnie

    2016-01-01

    Risk communication on the health effects of radon encounters many challenges and requires a variety of risk communication strategies and approaches. The concern over radon exposure and its health effects may vary according to people's level of knowledge and receptivity. Homeowners in radon-prone areas are usually more informed and have greater concern over those not living in radon-prone areas. The latter group is often found to be resistant to testing. In British Columbia as well as many other parts of the country, some homes have been lying outside of the radon-prone areas have radon levels above the Canadian guideline, which is the reason Health Canada recommends that all homes should be tested. Over the last five years, the Environment Health Program (EHP) of Health Canada in the British Columbia region has been using a variety of different approaches in their radon risk communications through social media, workshops, webinars, public forums, poster contests, radon distribution maps, public inquiries, tradeshows and conference events, and partnership with different jurisdictions and nongovernmental organizations. The valuable lessons learned from these approaches are discussed in this special report.

  1. Radon Measurement in Schools. Revised Edition.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    The Environmental Protection Agency (EPA) and other major national and international scientific organizations have concluded that radon is a human carcinogen and a serious environmental health problem. The EPA has conducted extensive research on the presence and measurement of radon in schools. This report provides school administrators and…

  2. Radon Reduction Methods: A Homeowner's Guide.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) is studying the effectiveness of various ways to reduce high concentrations of radon in houses. This booklet was produced to share what has been learned with those whose radon problems demand immediate action. The booklet describes nine methods that have been tested successfully--by EPA and/or other…

  3. Indoor Radon in Micro-geological Setting of an Indigenous Community in Canada: A Pilot Study for Hazard Identification.

    Science.gov (United States)

    Sarkar, Atanu; Wilton, Derek Hc; Fitzgerald, Erica

    2017-04-01

    Radon is the second leading cause of lung cancer after smoking. In Canada, the health authorities have no access to comprehensive profile of the communities built over uranium-rich micro-geological settings. The present indoor radon monitoring guideline is unable to provide an accurate identification of health hazards due to discounting several parameters of housing characteristics. To explore indoor radon levels in a micro-geological setting known for high uranium in bedrock and to develop a theoretical model for a revised radon testing protocol. We surveyed a remote Inuit community in Labrador, located in the midst of uranium belt. We selected 25 houses by convenience sampling and placed electret-ion-chamber radon monitoring devices in the lowest levels of the house (basement/crawl space). The standard radon study questionnaire developed and used by Health Canada was used. 7 (28%) houses had radon levels above the guideline value (range 249 to 574 Bq/m(3)). Housing characteristics, such as floors, sump holes, ventilation, and heating systems were suspected for high indoor radon levels and health consequences. There is a possibility of the existence of high-risk community in a low-risk region. The regional and provincial health authorities would be benefited by consulting geologists to identify potentially high-risk communities across the country. Placing testing devices in the lowest levels provides more accurate assessment of indoor radon level. The proposed protocol, based on synchronized testing of radon (at the lowest level of houses and in rooms of normal occupancy) and thorough inspection of the houses will be a more effective lung cancer prevention strategy.

  4. Indoor Radon in Micro-geological Setting of an Indigenous Community in Canada: A Pilot Study for Hazard Identification

    Directory of Open Access Journals (Sweden)

    Atanu Sarkar

    2017-04-01

    Full Text Available Background: Radon is the second leading cause of lung cancer after smoking. In Canada, the health authorities have no access to comprehensive profile of the communities built over uranium-rich micro-geological settings. The present indoor radon monitoring guideline is unable to provide an accurate identification of health hazards due to discounting several parameters of housing characteristics. Objective: To explore indoor radon levels in a micro-geological setting known for high uranium in bedrock and to develop a theoretical model for a revised radon testing protocol. Methods: We surveyed a remote Inuit community in Labrador, located in the midst of uranium belt. We selected 25 houses by convenience sampling and placed electret-ion-chamber radon monitoring devices in the lowest levels of the house (basement/crawl space. The standard radon study questionnaire developed and used by Health Canada was used. Results: 7 (28% houses had radon levels above the guideline value (range 249 to 574 Bq/m3. Housing characteristics, such as floors, sump holes, ventilation, and heating systems were suspected for high indoor radon levels and health consequences. Conclusion: There is a possibility of the existence of high-risk community in a low-risk region. The regional and provincial health authorities would be benefited by consulting geologists to identify potentially high-risk communities across the country. Placing testing devices in the lowest levels provides more accurate assessment of indoor radon level. The proposed protocol, based on synchronized testing of radon (at the lowest level of houses and in rooms of normal occupancy and thorough inspection of the houses will be a more effective lung cancer prevention strategy.

  5. Measurements of radon around closed uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Sadaaki E-mail: furuta@ningyo.jnc.go.jp; Ito, Kimio; Ishimori, Yuu

    2002-07-01

    There are several waste rock yards at closed uranium mines around Ningyo-toge, in the Western Honshu Island of Japan, and measurements of radon were carried out by both the passive method and the sampling method around these yards. As comparatively high radon concentrations were observed in two districts through routine measurements, more detailed measurements were made by the passive method in these districts. The impact of radon emanation from the waste rock yards was small for both residential districts and around these yards when considering the natural background level of radon. In addition, by simultaneous continuous measurements of radon and its progeny at two locations, it was estimated that the effective dose caused by the representative uranium waste rock yards was less than the public effective dose limit of 1 mSv year{sup -1} at the fenced boundary of the waste rock site.

  6. Indoor radon survey in the Vojvodina region

    Energy Technology Data Exchange (ETDEWEB)

    Forkapic, S.; Todorovic, N.; Bikit, I.; Mrda, D.; Slivka, J.; Veskovic, M. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad (Serbia)

    2010-07-01

    The results of an indoor radon survey in the Vojvodina region (Serbia) are presented. Long-term average radon measurements in an existing building can be measured relatively simply and inexpensively using a passive device, such as an alpha track detector. Houses in the suburbs were chosen as the target locations of the present investigations. Indoor radon concentrations were measured with CR-39 alpha track detectors at {approx}1000 locations in Vojvodina during the winter period. Effect of floor level, space under the rooms, boarding and the heating system on radon accumulation are discussed in this paper. For the dwellings typical of such regions, we measure a mean annual radon activity concentration of 112 Bq/m{sup 3} (747 measurements using the alpha track detector CR-39). (authors)

  7. Radon in houses and soil of Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Radolic, V.; Vukovic, B.; Stanic, D.; Miklavcic, I.; Planinic, J. [Osijek Univ., Dept. of Physics (Croatia)

    2006-07-01

    Long-term indoor radon measurements in thousand Croatian homes, randomly selected, were performed by the LR-115 track etch detectors during a year 2003/2004. The obtained values of arithmetic means of radon concentrations in 20 Croatian counties were in range from 33 to 198 Bq/m{sup 3}, while the arithmetic and geometric means for Croatia were 68 and 50 Bq/m{sup 3}, respectively. Indoor radon concentrations follow log-normal distribution and the percentage of dwellings with concentrations above 400 Bq/m{sup 3} was 1.8 %. Radon concentrations in soil gas, at depth of 0.8 m, were measured by 'Alphaguard' measuring system. Association between levels of indoor and soil radon was investigated. (authors)

  8. A complete low cost radon detection system.

    Science.gov (United States)

    Bayrak, A; Barlas, E; Emirhan, E; Kutlu, Ç; Ozben, C S

    2013-08-01

    Monitoring the (222)Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center.

  9. Radon exposure and oropharyngeal cancer risk.

    Science.gov (United States)

    Salgado-Espinosa, Tania; Barros-Dios, Juan Miguel; Ruano-Ravina, Alberto

    2015-12-01

    Oropharyngeal cancer is a multifactorial disease. Alcohol and tobacco are the main risk factors. Radon is a human carcinogen linked to lung cancer risk, but its influence in other cancers is not well known. We aim to assess the effect of radon exposure on the risk of oral and pharyngeal cancer through a systematic review of the scientific literature. This review performs a qualitative analysis of the available studies. 13 cohort studies were included, most of them mortality studies, which analysed the relationship between occupational or residential radon exposure with oropharyngeal cancer mortality or incidence. Most of the included studies found no association between radon exposure and oral and pharyngeal cancer. This lack of effect was observed in miners studies and in general population studies. Further research is necessary to quantify if this association really exists and its magnitude, specially performing studies in general population, preferably living in areas with high radon levels.

  10. A global numerical study of radon-222 and lead-210 in the atmosphere using the AES and York University CDT General Circulation Model (AYCG)

    Science.gov (United States)

    Beagley, Stephen R.; Degrandpre, Jean; Mcconnell, John C.; Laprise, Rene; Mcfarlane, Norman

    1994-01-01

    The Canadian Climate Center (CCC) GCM has been modified to allow its use for studies in atmospheric chemistry. The initial experiments reported here have been run to test and allow sensitivity studies of the new transport module. The impact of different types of parameterization for the convective mixing have been studied based on the large scale evolution of Rn-222 and Pb-210. Preliminary results have shown that the use of a scheme, which mixes unstable columns over a very short time scale, produces a global distribution of lead that agrees in some aspects with observations. The local impact of different mixing schemes on a short lived tracer like the radon is very important.

  11. Comparison of in vitro cell models in predicting in vivo brain entry of drugs.

    Science.gov (United States)

    Hakkarainen, Jenni J; Jalkanen, Aaro J; Kääriäinen, Tiina M; Keski-Rahkonen, Pekka; Venäläinen, Tetta; Hokkanen, Juho; Mönkkönen, Jukka; Suhonen, Marjukka; Forsberg, Markus M

    2010-12-15

    Although several in vitro models have been reported to predict the ability of drug candidates to cross the blood-brain barrier, their real in vivo relevance has rarely been evaluated. The present study demonstrates the in vivo relevance of simple unidirectional permeability coefficient (P(app)) determined in three in vitro cell models (BBMEC, Caco-2 and MDCKII-MDR1) for nine model drugs (alprenolol, atenolol, metoprolol, pindolol, entacapone, tolcapone, baclofen, midazolam and ondansetron) by using dual probe microdialysis in the rat brain and blood as an in vivo measure. There was a clear correlation between the P(app) and the unbound brain/blood ratios determined by in vivo microdialysis (BBMEC r=0.99, Caco-2 r=0.91 and MDCKII-MDR1 r=0.85). Despite of the substantial differences in the absolute in vitro P(app) values and regardless of the method used (side-by-side vs. filter insert system), the capability of the in vitro models to rank order drugs was similar. By this approach, thus, the additional value offered by the true endothelial cell model (BBMEC) remains obscure. The present results also highlight the need of both in vitro as well as in vivo methods in characterization of blood-brain barrier passage of new drug candidates.

  12. Probabilistic Assessment of Radon Transport at the Monticello, Utah Uranium Mill Tailings Disposal Site

    Science.gov (United States)

    Arnold, B. W.; Ho, C. K.; Cochran, J. R.; Taira, R. Y.

    2001-12-01

    One objective of the cover design at the Monticello site is attenuation of the radon emanation from the mill tailings to the atmosphere. The landfill cover acts as a diffusion barrier, allowing time for the decay of the relatively short-lived Rn-222 gas during migration through the pore spaces of the cover soil. The conceptual model of radon migration through the landfill cover is one-dimensional upward transport driven by the difference in concentration in the tailings and the atmosphere. The processes affecting transport are molecular diffusion and radioactive decay. Uncertainty in the radon emanation rate from the tailings, as well as uncertainties in the effective diffusion coefficient and moisture content for individual layers in the landfill cover are assessed for both present and future conditions. Transport of radon gas by diffusion is enhanced at higher moisture content because of the reduced air phase volume in the soil under these conditions. In a competing manner, higher moisture content results in a lower effective diffusion coefficient for radon gas. Multiple realizations of the system and simulations of radon transport were performed using the RAECOM and FRAMES computer programs. Results indicate a very low probability of exceeding the regulatory limit of 20 pCi/m2/s under present conditions and a low probability of exceedence for future conditions. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  13. Final report of evaluation of dose and measurement of radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A mean annual exposure to radon daughters in indoor air was estimated on the basis of measurement of radon concentration in indoor air in Japan from fiscal 1992 to 1996. Doses were estimated by UNSCEAR method. The representative values in this report show the mean values in whole Japan. Each dose in the local area was different reflecting the different concentration of radon daughters. However, the same parameters were used in each area. When mean annual dose of radon daughters was estimated, we used 15.5 Bq m{sup -3} mean annual exposure to radon daughters in indoor air, 5 Bq m{sup -3} that in outdoor air, 0.4 the equilibrium factor indoor, 0.6 the equilibrium factor outdoor and 0.9 of P. The model of UNSCEAR based on these above values gave 0.46 mSv y{sup -1} mean annual dose of radon daughters which were consisted of from 0.38 mSv y{sup -1} in Kanto district to 0.52 mSv y{sup -1} Kyushu, Okinawa district. (S.Y.)

  14. Novel method of measurement of radon exhalation from building materials.

    Science.gov (United States)

    Awhida, A; Ujić, P; Vukanac, I; Đurašević, M; Kandić, A; Čeliković, I; Lončar, B; Kolarž, P

    2016-11-01

    In the era of the energy saving policy (i.e. more air tight doors and windows), the radon exhaled from building materials tends to increase its concentration in indoor air, which increases the importance of the measurement of radon exhalation from building materials. This manuscript presents a novel method of the radon exhalation measurement using only a HPGe detector or any other gamma spectrometer. Comparing it with the already used methods of radon exhalation measurements, this method provides the measurement of the emanation coefficient, the radon diffusion length and the radon exhalation rate, all within the same measurement, which additionally defines material's radon protective properties. Furthermore it does not necessitate additional equipment for radon or radon exhalation measurement, which simplifies measurement technique, and thus potentially facilitates introduction of legal obligation for radon exhalation determination in building materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  16. A comparison of contemporary and retrospective radon gas measurements in high radon dwellings in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, K.; McLaughlin, J.P. [University College Dublin (Ireland); Fenton, D.; Colgan, P.A. [Radiological Protection Institute of Ireland, Dublin (Ireland)

    2006-07-01

    Little correlations has been found between contemporary radon gas measurements made in the past and retrospective radon gas measurements in Irish dwellings. This would suggest that these two techniques would result in two significantly different cumulative radon exposure estimates. Contemporary radon gas measurements made a few years apart in the same room of a dwelling were found to be significantly different. None of these differences could be explained by known changes to the rooms themselves., such ventilation or structural alterations to the room. This highlights the limitations of the contemporary radon gas measurements as a surrogate measurement for use in residential radon epidemiology. The contemporary radon gas measurements made by the Radiological Protection Institute of Ireland (R.P.I.I.) and University College of Dublin (U.C.D.) do not cover the same exposure period as the retrospective estimates and so the accuracy of the retrospective measurements cannot be demonstrated. A weak correlation can be seen between the retrospective radon gas estimates and a combination of the two contemporary radon gas estimates. It is not unreasonable to expect improvement in the correlation if further contemporary radon gas measurements were made in these rooms. (N.C.)

  17. Experimental assessment of indoor radon and soil gas variability: the RADON project

    Science.gov (United States)

    Barbosa, S. M.; Pereira, A. J. S. C.; Neves, L. J. P. F.; Steinitz, G.; Zafrir, H.; Donner, R.; Woith, H.

    2012-04-01

    Radon is a radioactive noble gas naturally present in the environment, particularly in soils derived from rocks with high uranium content. Radon is formed by alpha decay from radium within solid mineral grains, but can migrate via diffusion and/or advection into the air space of soils, as well as into groundwater and the atmosphere. The exhalation of radon from the pore space of porous materials into the atmosphere of indoor environments is well known to cause adverse health effects due to the inhalation of radon's short-lived decay products. The danger to human health is particularly acute in the case of poorly ventilated dwellings located in geographical areas of high radon potential. The RADON project, funded by the Portuguese Science Foundation (FCT), aims to evaluate the temporal variability of radon in the soil and atmosphere and to examine the influence of meteorological effects in radon concentration. For that purpose an experimental monitoring station is being installed in an undisturbed dwelling located in a region of high radon potential near the old uranium mine of Urgeiriça (central Portugal). The rationale of the project, the set-up of the experimental radon monitoring station, and preliminary monitoring results will be presented.

  18. Evaluation of the atmospheric transport in a GCM using radon measurements: sensitivity to cumulus convection parameterization

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2008-05-01

    Full Text Available The radioactive species radon (222Rn has long been used as a test tracer for the numerical simulation of large scale transport processes. In this study, radon transport experiments are carried out using an atmospheric GCM with a finite-difference dynamical core, the van Leer type FFSL advection algorithm, and two state-of-the-art cumulus convection parameterization schemes. Measurements of surface concentration and vertical distribution of radon collected from the literature are used as references in model evaluation.

    The simulated radon concentrations using both convection schemes turn out to be consistent with earlier studies with many other models. Comparison with measurements indicates that at the locations where significant seasonal variations are observed in reality, the model can reproduce both the monthly mean surface radon concentration and the annual cycle quite well. At those sites where the seasonal variation is not large, the model is able to give a correct magnitude of the annual mean. In East Asia, where radon simulations are rarely reported in the literature, detailed analysis shows that our results compare reasonably well with the observations.

    The most evident changes caused by the use of a different convection scheme are found in the vertical distribution of the tracer. The scheme associated with weaker upward transport gives higher radon concentration up to about 6 km above the surface, and lower values in higher altitudes. In the lower part of the atmosphere results from this scheme does not agree as well with the measurements as the other scheme. Differences from 6 km to the model top are even larger, although we are not yet able to tell which simulation is better due to the lack of observations at such high altitudes.

  19. Evaluation of the atmospheric transport in a GCM using radon measurements: sensitivity to cumulus convection parameterization

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2008-02-01

    Full Text Available The radioactive species radon (222Rn has long been used as a test tracer for the numerical simulation of large scale transport processes. In this study, radon transport experiments are carried out using an atmospheric GCM with a finite-difference dynamical core, the van Leer type FFSL advection algorithm and two state-of-the-art cumulus convection parameterization schemes. Measurements of surface concentration and vertical distribution of radon collected from literature are used as references in model evaluation.

    The simulated radon concentrations using both convection schemes turn out to be consistent with earlier studies with many other models. Comparison with measurements indicates that at the locations where significant seasonal variations are observed in reality, the model can reproduce both the monthly mean surface radon concentration and the annual cycle quite well. At those sites where the seasonal variation is not large, the model is able to give a correct magnitude of the annual mean. In East Asia, where radon simulations are rarely reported in literature, detailed analysis shows that our results compare reasonably well with the observations.

    The most evident changes caused by the use of a different convection scheme are found in the vertical distribution of the tracer. The scheme associated with a weaker upward transport gives higher radon concentration up to about 6 km above the surface, and lower values in higher altitudes. In the lower part of the atmosphere results from this scheme does not agree as well with the measurements as the other scheme. Differences from 6 km to the model top are even larger, although we are not yet able to tell which simulation is better due to the lack of observations at such high altitudes.

  20. DPM simulation in an underground entry:Comparison between particle and species models

    Institute of Scientific and Technical Information of China (English)

    Thiruvengadam Magesh; Zheng Yi; Tien Jerry C.

    2016-01-01

    The diesel particulate matter (DPM) emission from diesel powered equipment in underground mines can cause health hazards including cancer to the miners. The understanding of the DPM propagation pattern under realistic mining condition is required for selecting proper DPM control strategies and to improve working practices in underground mines. In this paper, three dimensional simulations of DPM emission from the exhaust tail pipe of a load-haul-dump (LHD) vehicle and its subsequent distribution inside an isolated zone in the typical underground mine are carried out using two different solution models avail-able in Ansys Fluent. The incoming fresh air into the isolated zone is treated as a continuous phase and DPM is treated either as a continuous phase (gas) or as a secondary discrete phase (particle). Species transport model is used when DPM is treated as gas and discrete phase model is used when DPM is assumed to behave like a particle. The distributions of DPM concentration inside the isolated zone obtained from each method are presented and compared. From the comparison results, an accurate and economical solution technique for DPM evaluation can be selected.

  1. Radon in the soil air of Estonia.

    Science.gov (United States)

    Petersell, Valter; Täht-Kok, Krista; Karimov, Mark; Milvek, Heli; Nirgi, Siim; Raha, Margus; Saarik, Krista

    2017-01-01

    Several investigations in Estonia during 1996¬-1999 have shown that permissible level (200 Bq/m(3)) of radon (222Rn) in indoor air is exceeded in 33% of the inspected dwellings. This makes Estonia one of the five countries with highest radon risk in Europe (Fig 1). Due to correlation between the soil radon risk level and radon concentration in houses, small scale radon risk mapping of soil air was carried out (one study point per 70-100 km(2)). It turned out that one-third of Estonian mainland has high radon risk potential, where radon concentration in soil air exceeds safe limit of 50 kBq/m(3). In order to estimate radon content in soil air, two different methods developed in Sweden were used simultaneously. Besides measuring radon content from soil air at the depth of 80 cm with an emanometer (RnM), maximum potential content of radon in soil (RnG) was estimated based on the rate of eU (226Ra) concentration in soil, which was acquired by using gamma-ray spectrometer. Mapping and following studies revealed that simultaneously measured RnG and RnM in study points may often differ. To inspect the cause, several monitoring points were set up in places with different geological conditions. It appeared that unlike the RnG content, which remains close to average level in repeated measurements, the RnM content may differ more than three times periodically. After continuous observations it turned out that concentration of directly measured radon depended on various factors being mostly controlled by mineral composition of soil, properties of topsoil as well as different factors influencing aeration of soil. The results of Rn monitoring show that reliable level of radon risk in Estonian soils can only be acquired by using calculated Rn-concentration in soil air based on eU content and directly measured radon content of soil air in combination with interpreting specific geological and geochemical situations in the study points. Copyright © 2016 Elsevier Ltd. All rights

  2. Surface-water radon-222 distribution along the west-central Florida shelf

    Science.gov (United States)

    Smith, C.G.; Robbins, L.L.

    2012-01-01

    In February 2009 and August 2009, the spatial distribution of radon-222 in surface water was mapped along the west-central Florida shelf as collaboration between the Response of Florida Shelf Ecosystems to Climate Change project and a U.S. Geological Survey Mendenhall Research Fellowship project. This report summarizes the surface distribution of radon-222 from two cruises and evaluates potential physical controls on radon-222 fluxes. Radon-222 is an inert gas produced overwhelmingly in sediment and has a short half-life of 3.8 days; activities in surface water ranged between 30 and 170 becquerels per cubic meter. Overall, radon-222 activities were enriched in nearshore surface waters relative to offshore waters. Dilution in offshore waters is expected to be the cause of the low offshore activities. While thermal stratification of the water column during the August survey may explain higher radon-222 activities relative to the February survey, radon-222 activity and integrated surface-water inventories decreased exponentially from the shoreline during both cruises. By estimating radon-222 evasion by wind from nearby buoy data and accounting for internal production from dissolved radium-226, its radiogenic long-lived parent, a simple one-dimensional model was implemented to determine the role that offshore mixing, benthic influx, and decay have on the distribution of excess radon-222 inventories along the west Florida shelf. For multiple statistically based boundary condition scenarios (first quartile, median, third quartile, and maximum radon-222 inshore of 5 kilometers), the cross-shelf mixing rates and average nearshore submarine groundwater discharge (SGD) rates varied from 100.38 to 10-3.4 square kilometers per day and 0.00 to 1.70 centimeters per day, respectively. This dataset and modeling provide the first attempt to assess cross-shelf mixing and SGD on such a large spatial scale. Such estimates help scale up SGD rates that are often made at 1- to 10-meter

  3. Atmospheric dispersion of radon around uranium mill tailings of the former Pridneprovsky Chemical Plant in Ukraine.

    Science.gov (United States)

    Kovalets, Ivan V; Asker, Christian; Khalchenkov, Alexander V; Persson, Christer; Lavrova, Tatyana V

    2017-06-01

    Simulations of atmospheric dispersion of radon around the uranium mill tailings of the former Pridneprovsky Chemical Plant (PChP) in Ukraine were carried out with the aid of two atmospheric dispersion models: the Airviro Grid Model and the CALMET/CALPUFF model chain. The available measurement data of radon emission rates taken in the territories and the close vicinity of tailings were used in simulations. The results of simulations were compared to the yearly averaged measurements of concentration data. Both models were able to reasonably reproduce average radon concentration at the Sukhachivske site using averaged measured emission rates as input together with the measured meteorological data. At the same time, both models significantly underestimated concentrations as compared to measurements collected at the PChP industrial site. According to the results of both dispersion models, it was shown that only addition of significant radon emission rate from the whole territory of PChP in addition to emission rates from the tailings could explain the observed concentration measurements. With the aid of the uncertainty analysis, the radon emission rate from the whole territory of PChP was estimated to be between 1.5 and 3.5 Bq·m(-2)s(-1). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Seasonal behavior of radon decay products in indoor air and resulting radiation dose to human respiratory tract

    Directory of Open Access Journals (Sweden)

    A.M.A. Mostafa

    2015-01-01

    Full Text Available Most of radiation hazard of indoor radon is largely due to the radon progenies, which are inhaled and deposited in the human respiratory tract. It is essential to evaluate aerodynamic characteristics of the radon progenies, which are either attached or unattached to aerosol particles, because the dose is strongly dependent on the location of deposition in respiratory tract and hence on the aerodynamic characteristics of the aerosol particles. This paper presents the seasonal behavior of radon decay products in indoor air under domestic conditions at Nagoya University, Japan. A low pressure cascade impactor as an instrument for classifying aerosol sizes and imaging plate as a radiation detector have been employed to characterize the activity size distribution of short-lived radon decay products. In parallel, radon and its progenies concentrations were measured. Taking into account the progeny characteristics, the inhalation dose in the different seasons was also estimated based on a lung dose model with the structure that is related to the ICRP66 respiratory tract model. The result evident that, the highest dose 0.22 mSvy−1 was observed during the winter where the highest value of equilibrium equivalent concentration of radon (EEC and lowest value of the activity median aerodynamic diameter (AMAD were found in this season; whereas, the dose in spring appeared to be lowest 0.02 mSvy−1.

  5. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry.

    Science.gov (United States)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future.

  6. High sensitivity radon emanation measurements.

    Science.gov (United States)

    Zuzel, G; Simgen, H

    2009-05-01

    The presented radon detection technique employs miniaturized ultra-low background proportional counters. (222)Rn samples are purified, mixed with a counting gas and filled into a counter using a special glass vacuum line. The absolute sensitivity of the system is estimated to be 40 microBq (20 (222)Rn atoms). For emanation investigations two metal sealed stainless steel vessels and several glass vials are available. Taking into account their blank contributions, measurements at a minimum detectable activity of about 100 microBq can be performed.

  7. Measurements of radon and chemical elements: Popocatepetl volcano; Mediciones de radon y elementos quimicos: Volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Armienta, M.A.; Valdes, C.; Mena, M. [IGFUNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Seidel, J.L.; Monnin, M. [UMR 5569 CNRS Hydrosciences, Montpellier (France)

    2002-07-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  8. Radon, Smoking, and Lung Cancer: The Need to Refocus Radon Control Policy

    Science.gov (United States)

    Mendez, David; Philbert, Martin A.

    2013-01-01

    Exposure to radon is the second leading cause of lung cancer, and the risk is significantly higher for smokers than for nonsmokers. More than 85% of radon-induced lung cancer deaths are among smokers. The most powerful approach for reducing the public health burden of radon is shaped by 2 overarching principles: public communication efforts that promote residential radon testing and remediation will be the most cost effective if they are primarily directed at current and former smokers; and focusing on smoking prevention and cessation is the optimal strategy for reducing radon-induced lung cancer in terms of both public health gains and economic efficiency. Tobacco control policy is the most promising route to the public health goals of radon control policy. PMID:23327258

  9. Radon progeny deposition in track-detection diffusion chambers

    CERN Document Server

    Pressyanov, D; Simeonov, G

    1999-01-01

    The sensitivity dependence for cylindrical diffusion chambers that are used for radon track-detection measurements on the deposition fraction of radon progeny atoms has been theoretically studied (sensitivity is the ratio: area track density/integrated sup 2 sup 2 sup 2 Rn activity concentration). Experimentally, the sensitivity values of both the metal- and plastic-made chambers were determined. Results indicate that the experimental sensitivity for metal chambers is in accordance with the theoretical model while a deviation of 15% is observed for plastic chambers. The uncertainty in the sensitivity values that is related to possible variations of the diffusion coefficient for sup 2 sup 1 sup 8 Po atoms was estimated to be less than 10%. (author)

  10. Ingredients for a Dutch radon action plan, based on a national survey in more than 2500 dwellings.

    Science.gov (United States)

    Smetsers, R C G M Ronald; Blaauboer, R O Roelf; Dekkers, S A J Fieke

    2016-12-01

    A new Euratom directive demands that Member States establish a national action plan for indoor radon. Important requirements are a national reference level for the radon concentration in dwellings, actions to identify dwellings with radon concentrations that might exceed this reference level and the encouragement of appropriate measures to reduce the radon concentrations in dwellings where these are high. This paper provides ingredients and recommendations for a national action plan for radon in dwellings, applicable to the Netherlands. The approach presented here, which may serve as a model for other countries or regions with a comparatively favourable indoor radon situation, is based on the analysis of radon data from a national survey in more than 2500 Dutch dwellings, built since 1930. The annual average activity concentration of radon in dwellings in the Netherlands equals 15.6 ± 0.3 Bq m(-3). The 50th and 95th percentiles were found to be 12.2 and 38.0 Bq m(-3), respectively. In 0.4 per cent of the dwellings we found values above 100 Bq m(-3). Radon concentrations showed correlations with type of dwelling, year of construction, ventilation system, soil type and smoking behaviour of inhabitants. The survey data suggest that it is feasible for the Netherlands to adopt a national reference level for radon in dwellings of 100 Bq m(-3), in line with recommendations by WHO and ICRP. We were able to predict dwellings with a moderate probability for radon concentrations above 100 Bq m(-3) by applying a combination of three selection criteria: location, type of dwelling and manner of ventilation. Of the existing 6.2 million dwellings in the Netherlands (built since 1930), approximately 23-24 thousand are suspected to exceed this level. Some 80% of these are found in the group of naturally ventilated single-family dwellings in either the southern part of Limburg (approx. 13 thousand) or the Meuse-Rhine-Waal river delta (approx. six thousand). This selected

  11. Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP)

    OpenAIRE

    Christou, Michalis; Christoudias, Theodoros; Morillo, Julián; Alvarez, Damian; Merx, Hendrik

    2016-01-01

    We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing ...

  12. Modeling the disequilibrium species for Jupiter and Saturn: Implications for Juno and Saturn entry probe

    CERN Document Server

    Wang, Dong; Mousis, Olivier

    2016-01-01

    Disequilibrium species have been used previously to probe the deep water abundances and the eddy diffusion coefficient for giant planets. In this paper, we present a diffusion-kinetics code that predicts the abundances of disequilibrium species in the tropospheres of Jupiter and Saturn with updated thermodynamic and kinetic data. The dependence on the deep water abundance and the eddy diffusion coefficient is investigated. We quantified the disagreements in CO kinetics that comes from using different reaction networks and identified C$_2$H$_6$ as a useful tracer for the eddy diffusion coefficient. We first apply a H/P/O reaction network to Jupiter and Saturn's atmospheres and suggest a new PH$_3$ destruction pathway. New chemical pathways for SiH$_4$ and GeH$_4$ destruction are also suggested, and another AsH$_3$ destruction pathway is investigated thanks to new thermodynamic and kinetic data. These new models should enhance the interpretation of the measurement of disequilibrium species by JIRAM on board Jun...

  13. Observations of surface radon in Central Italy

    Science.gov (United States)

    Carlo, Piero Di; Pitari, Giovanni; de Luca, Natalia; Battisti, Domenico

    2009-07-01

    Two years of in situ radon concentration measurements in the atmospheric surface layer have been collected in a central Italy town (L’Aquila), located in the Aterno river valley. These data have been analyzed in order to study the controlling mechanisms of surface radon abundance; observations of coincident meteorological parameters confirmed the role of dynamics on the local removal rate of this tracer. The relatively high negative correlation of hourly data of surface wind speed and radon activity concentration ( R = -0.54, on annual scale) suggests that dynamical removal of radon is one of the most important controlling processes of the tracer accumulation in the atmospheric surface layer. An attempt is made to quantify the precipitation impact on radon soil fluxes. No anticorrelation of radon and precipitation comes out from the data ( R = -0.15), as in previous studies. However, since the main physical parameter affecting the ground radon release is expected to be the soil accumulation of water, snow or ice, the emission flux has also been correlated with soil moisture; in this way a much clearer anticorrelation is found ( R = -0.54).

  14. A Rapid Method for Radon Determination

    Energy Technology Data Exchange (ETDEWEB)

    Enkhbat, N.; Shin, S. G.; Key, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Norov, N. [National University of Mongolia, Ulaanbaatar (Mongolia); Kim, G. [Kungpook National University, Daegu (Korea, Republic of); Namkung, W.; Lee, H. S. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2015-05-15

    Research carried out in last decades has shown that more than 70% of a total annual radioactive dose received by people originates from natural sources of ionizing radiation, whereby 40% is due to inhalation and ingestion of natural radioactive gas radon {sup 222}Rn and its progeny. Radon has 3.5 days of half-life. However, its progeny is dangerous than Radon in the view of radiation protection. Radon measurement is commonly used in controlling radon concentration in underground mine, closed room and in forecasting earthquake. Radon gas emission rate in the immediate opening of the west ventilation shaft depends on the operation of the ventilation system, duration of ventilation system operation, and the air flow rate through the underground development. Specific activity of radon progeny in air (RaA (Po-218), RaB (Pb-214) and RaC (Bi-214)) and Ra-222 in radioactive equilibrium was calculated by formula 1 and 2, respectively. We include result of measurement carried out in the air around a mining. In Fig.2 shown that the distribution of Po-218, Pb-214, Bi-214 and Ra-222 isotopes releasing from west ventilation shaft in Gurvanbulag underground uranium mine in the eastern part of Mongolia.

  15. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities.

    Science.gov (United States)

    Chen, Jing; Ford, Ken L

    2017-01-01

    Exposure to indoor radon is identified as the main source of natural radiation exposure to the population. Since radon in homes originates mainly from soil gas radon, it is of public interest to study the correlation between radon in soil and radon indoors in different geographic locations. From 2007 to 2010, a total of 1070 sites were surveyed for soil gas radon and soil permeability. Among the sites surveyed, 430 sites were in 14 cities where indoor radon information is available from residential radon and thoron surveys conducted in recent years. It is observed that indoor radon potential (percentage of homes above 200 Bq m(-3); range from 1.5% to 42%) correlates reasonably well with soil radon potential (SRP: an index proportional to soil gas radon concentration and soil permeability; average SRP ranged from 8 to 26). In five cities where in-situ soil permeability was measured at more than 20 sites, a strong correlation (R(2) = 0.68 for linear regression and R(2) = 0.81 for non-linear regression) was observed between indoor radon potential and soil radon potential. This summary report shows that soil gas radon measurement is a practical and useful predictor of indoor radon potential in a geographic area, and may be useful for making decisions around prioritizing activities to manage population exposure and future land-use planning. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology.

    Science.gov (United States)

    Appleton, J D; Doyle, E; Fenton, D; Organo, C

    2011-06-01

    The probability of homes in Ireland having high indoor radon concentrations is estimated on the basis of known in-house radon measurements averaged over 10 km × 10 km grid squares. The scope for using airborne gamma-ray spectrometer data for the Tralee-Castleisland area of county Kerry and county Cavan to predict the radon potential (RP) in two distinct areas of Ireland is evaluated in this study. Airborne data are compared statistically with in-house radon measurements in conjunction with geological and ground permeability data to establish linear regression models and produce radon potential maps. The best agreement between the percentage of dwellings exceeding the reference level (RL) for radon concentrations in Ireland (% > RL), estimated from indoor radon data, and modelled RP in the Tralee-Castleisland area is produced using models based on airborne gamma-ray spectrometry equivalent uranium (eU) and ground permeability data. Good agreement was obtained between the % > RL from indoor radon data and RP estimated from eU data in the Cavan area using terrain specific models. In both areas, RP maps derived from eU data are spatially more detailed than the published 10 km grid map. The results show the potential for using airborne radiometric data for producing RP maps.

  17. Soil radon levels across the Amer fault

    Energy Technology Data Exchange (ETDEWEB)

    Font, Ll. [Grup de Fisica de les Radiacions, Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)], E-mail: lluis.font@uab.cat; Baixeras, C.; Moreno, V. [Grup de Fisica de les Radiacions, Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bach, J. [Unitat de Geodinamica externa, Departament de Geologia, Edifici Cs, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)

    2008-08-15

    Soil radon levels have been measured across the Amer fault, which is located near the volcanic region of La Garrotxa, Spain. Both passive (LR-115, time-integrating) and active (Clipperton II, time-resolved) detectors have been used in a survey in which 27 measurement points were selected in five lines perpendicular to the Amer fault in the village area of Amer. The averaged results show an influence of the distance to the fault on the mean soil radon values. The dynamic results show a very clear seasonal effect on the soil radon levels. The results obtained support the hypothesis that the fault is still active.

  18. Risks related to exposure to radon

    Directory of Open Access Journals (Sweden)

    Juan Miguel Barros Dios

    2010-12-01

    Full Text Available They discuss the different scientific evidence that radon and its short half-life descendants are responsible for the appearance of a considerable number of lung cancers among the exposed population in homes and public buildings (occupational exposure. It also draws a small glimpse at the road traveled by this knowledge and acceptance difficult administrations in many countries and, in particular, of Spain, as well as the various investigations that the team do Galego Radon and Radon Laboratory from Galicia, the area of Public Health, University of Santiago de Compostela (USC, are contributing to scientific knowledge. Finally, they appreciate the few legislative initiatives on the problem in Spain.

  19. Radon screening for XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Sebastian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2015-07-01

    Radon with its isotope {sup 222}Rn is one of the dominant sources of internal background in liquid xenon detectors searching for low energetic rare events like WIMP-nucleon scattering. In my talk I briefly review the problem posed by {sup 222}Rn and motivate the screening strategy followed by XENON1T. I introduce the radon emanation technique making use of ultra low background proportional counters and present selected results obtained during the design and construction phases of XENON1T. Finally, I sketch advances in radon emanation assay techniques and give a short outlook on upcoming measurements.

  20. Radon - kilder og måling

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Wraber, Ida Kristina

    Når man skal vurdere en bygnings indeklima er det vigtigt at have viden om radonindholdet. Denne viden får man ved måling, da radon hverken kan ses, lugtes, høres, smages eller føles. Denne anvisning redegør for radons oprindelse og indvirkning på menneskers sundhed. Anvisningen beskriver metoder...... til måling og analyse af radonindholdet i en bygnings indeluft. Læseren får indsigt i, hvordan man relativt let med standardiserede metoder kan eftervise, om en bygning opfylder bygningsreglementets krav til radon i indeluften. Anvisningen henvender sig til bygningsejere, bygherrer, projekterende og...

  1. Coprecipitation of radon oxide with cesium fluoroxenate

    Energy Technology Data Exchange (ETDEWEB)

    Avrorin, V.V.; Krasikova, R.N.; Nefedov, V.D.; Toropova, M.A.

    1986-03-01

    This paper presents a study of the processes of coprecipitation of radon oxide with cesium fluoroxenate in aqueous solutions. It has been shown that the reason for the coprecipitation in the case at hand is the occurrence of a process of isomorphous cocrystallization. The results obtained are examined as a confirmation of the suggestion that the hydrolysis product of the radon fluoride which is formed on thermal initiation of reaction in the rn-F2-BrF5-NaF system is radon trioxide, Rno3.

  2. Analysis of radon, uranium 238 and thorium 232 in potable waters: Dose to adult members of the Moroccan urban population

    Science.gov (United States)

    Misdaq, M. A.; Ouabi, H.; Merzouki, A.

    2007-10-01

    Uranium (238U) and thorium (232Th) concentrations as well as radon (222Rn) and thoron (220Rn) alpha-activities per unit volume have been measured inside various potable water samples collected from nineteen cities in Morocco by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). Measured radon alpha-activities ranged from (0.37 ± 0.02) Bq l-1 to (13.6 ± 1.10) Bq l-1 for the potable water samples studied. Alpha-activities due to radon from the ingestion of the studied potable water samples were determined in different compartments of the gastrointestinal system by using the ICRP compartmental model for radon. Annual committed equivalent doses due to radon were evaluated in the gastrointestinal compartments from the ingestion of the potable water samples studied. The influence of the target tissue mass, radon intake and alpha-activity integral due to radon on the annual committed equivalent doses in the gastrointestinal compartments was investigated.

  3. Using radon-222 to study coastal groundwater/surface-water interaction in the Crau coastal aquifer (southeastern France)

    Science.gov (United States)

    Mayer, Adriano; Nguyen, Bach Thao; Banton, Olivier

    2016-11-01

    Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada "single-well method" (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).

  4. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products; Messungen der Groessenverteilungen von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexposition verursachten Lungenkrebsrisikos

    Energy Technology Data Exchange (ETDEWEB)

    Haninger, T.

    1997-12-31

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ``dose conversion convention``. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/P{sup eq}, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/P{sup eq} coefficients indicate the effective dose E per unit exposure P{sup eq} to radon decay products. (orig./CB) [Deutsch] Eines der groessten Probleme des Strahlenschutzes ist der Schutz der Bevoelkerung vor einer Strahlenexposition durch Radon und seine Folgeprodukte. Die Quantifizierung des Lungenkrebsrisikos, das durch Radonexpositionen in Wohnungen und an Arbeitsplaetzen verursacht wird, ist ein grosses Problem, weil epidemiologische Studien ein anderes Ergebnis liefern, als die indirekte Methode der Abschaetzung mit dosimetrischen Atemtrakt-Modellen. Eine wichtige Aufgabe der vorliegenden Arbeit war es, unterschiedliche Expositionsbedingungen zu charakterisieren und die Unsicherheiten zu quantifizieren, die sich aus der

  5. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products; Messungen der Groessenverteilungen von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexposition verursachten Lungenkrebsrisikos

    Energy Technology Data Exchange (ETDEWEB)

    Haninger, T.

    1997-12-31

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ``dose conversion convention``. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/P{sup eq}, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/P{sup eq} coefficients indicate the effective dose E per unit exposure P{sup eq} to radon decay products. (orig./CB) [Deutsch] Eines der groessten Probleme des Strahlenschutzes ist der Schutz der Bevoelkerung vor einer Strahlenexposition durch Radon und seine Folgeprodukte. Die Quantifizierung des Lungenkrebsrisikos, das durch Radonexpositionen in Wohnungen und an Arbeitsplaetzen verursacht wird, ist ein grosses Problem, weil epidemiologische Studien ein anderes Ergebnis liefern, als die indirekte Methode der Abschaetzung mit dosimetrischen Atemtrakt-Modellen. Eine wichtige Aufgabe der vorliegenden Arbeit war es, unterschiedliche Expositionsbedingungen zu charakterisieren und die Unsicherheiten zu quantifizieren, die sich aus der

  6. Quantitative Interpretation of Air Radon Progeny Fluctuations in Terms of Stability Conditions in the Atmospheric Boundary Layer

    Science.gov (United States)

    Salzano, Roberto; Pasini, Antonello; Casasanta, Giampietro; Cacciani, Marco; Perrino, Cinzia

    2016-09-01

    Determining the mixing height using a tracer can improve the information obtained using traditional techniques. Here we provide an improved box model based on radon progeny measurements, which considers the vertical entrainment of residual layers and the variability in the soil radon exhalation rate. The potential issues in using progeny instead of radon have been solved from both a theoretical and experimental perspective; furthermore, the instrumental efficiency and the counting scheme have been included in the model. The applicability range of the box model has been defined by comparing radon-derived estimates with sodar and lidar data. Three intervals have been analyzed ("near-stable", "transition" and "turbulent"), and different processes have been characterized. We describe a preliminary application case performed in Rome, Italy, while case studies will be required to determine the range limits that can be applied in any circumstances.

  7. Methodology developed to make the Quebec indoor radon potential map.

    Science.gov (United States)

    Drolet, Jean-Philippe; Martel, Richard; Poulin, Patrick; Dessau, Jean-Claude

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal-Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal-Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m(3) in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists.

  8. Methodology developed to make the Quebec indoor radon potential map

    Energy Technology Data Exchange (ETDEWEB)

    Drolet, Jean-Philippe, E-mail: jean-philippe.drolet@ete.inrs.ca [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Martel, Richard [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Poulin, Patrick [Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, G1V 5B3 Quebec (Canada); Dessau, Jean-Claude [Agence de la santé et des services sociaux des Laurentides, 1000 rue Labelle, J7Z 5 N6 Saint-Jérome (Canada)

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m{sup 3} in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for

  9. DETERMINATION OF RADIUM AND RADON CONCENTRATIONS IN SOME ROCK SAMPLES

    OpenAIRE

    BAYKARA, Oktay

    2006-01-01

    The concentrations of radium (226Ra), radon (222Rn) and radon exhalation rate in nine rock samples have been determined using solid-state nuclear track detectors (CR-39). The measured maximum values of radium, radon and radon exhalation rate in rock samples were found to be 24.62 Bq/kg, 4911.32 Bq/m3 and 4,86 Bqm-2h-1, respectively. Linear correlation was observed among radon concentration, radon exhalation and radium concentration. The linear correlation coefficient between radium content an...

  10. Thorough investigations on indoor radon in Baita radon-prone area (Romania)

    Energy Technology Data Exchange (ETDEWEB)

    Cucos, Alexandra; Cosma, Constantin [Faculty of Environmental Science and Engineering, ' Babes-Bolyai' University, Fantanele No. 30, 400294, Cluj-Napoca (Romania); Dicu, Tiberius, E-mail: tiberius.dicu@ubbcluj.ro [Faculty of Environmental Science and Engineering, ' Babes-Bolyai' University, Fantanele No. 30, 400294, Cluj-Napoca (Romania); Begy, Robert; Moldovan, Mircea; Papp, Botond; Nita, Dan; Burghele, Bety [Faculty of Environmental Science and Engineering, ' Babes-Bolyai' University, Fantanele No. 30, 400294, Cluj-Napoca (Romania); Sainz, Carlos [Faculty of Environmental Science and Engineering, ' Babes-Bolyai' University, Fantanele No. 30, 400294, Cluj-Napoca (Romania); Department of Medical Physics, Faculty of Medicine, University of Cantabria, c/Herrera Oria s/n., 39011, Santander (Spain)

    2012-08-01

    A comprehensive radon survey has been carried out in Baita radon-prone area, Transylvania, Romania, in 4 localities (Baita, Nucet, Finate, and Cimpani) situated in the vicinity of former Romanian uranium mines. Indoor radon concentrations have been measured in 1128 ground floor rooms and cellars of 303 family houses by using CR-39 diffusion type radon detectors. The annual average of indoor radon concentration for Baita area was found to be 241 {+-} 178 Bq m{sup -3}, which is about two times higher than the average value of 126 Bq m{sup -3}, computed for Romania. About 28% of investigated houses exceed the reference level of radon gas in dwellings of 300 Bq m{sup -3}. The indoor radon measurements on each house have been carried out in several rooms simultaneously with the aim of obtaining a more detailed picture on the exposure to radon in the studied area. An analysis on the variability of radon levels among floors (floor-to-floor variation) and rooms (room-to-room variation) and also the influence of factors like the presence of cellar or the age of the building is presented. The coefficient of variation (CV) within ground floor rooms of the same house (room-to-room variation) ranged between 0.9 and 120.8%, with an arithmetic mean of 46.2%, a large variability among rooms within surveyed dwellings being clearly identified. The mean radon concentration in bedrooms without cellar was higher than in bedrooms above the cellar, the difference being statistically significant (t test, one tail, p < 0.001, n = 82). For houses built during 1960-1970 an increasing trend for radon levels was observed, but overall there was no significant difference in indoor radon concentrations by age of dwelling (one-way ANOVA test, p > 0.05). - Highlights: Black-Right-Pointing-Pointer The annual average of indoor radon concentration for Baita area was 241 {+-} 178 Bq m{sup -3}. Black-Right-Pointing-Pointer A large variability among rooms within surveyed dwellings was clearly evidenced

  11. Comparison of retrospective and contemporary indoor radon measurements in a high-radon area of Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, Z.S. [Institute of Nuclear Sciences ' Vinca' , Belgrade (Serbia); Yarmoshenko, I.V. [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation)], E-mail: ivy@ecko.uran.ru; Kelleher, K. [Radiological Protection Institute of Ireland, Dublin (Ireland); Paridaens, J. [SCK.CEN Mol (Belgium); Mc Laughlin, J.P. [School of Physics, University College Dublin (Ireland); Celikovic, I.; Ujic, P. [Institute of Nuclear Sciences ' Vinca' , Belgrade (Serbia); Onischenko, A.D. [Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation); Jovanovic, S.; Demajo, A. [Institute of Nuclear Sciences ' Vinca' , Belgrade (Serbia); Birovljev, A. [Radonlab Ltd., Oslo (Norway); Bochicchio, F. [Italian National Institute of Health, Rome (Italy)

    2007-11-15

    In Niska Banja, Serbia, which is a high-radon area, a comparison was made between two retrospective radon measuring methods and contemporary radon measurements. The two retrospective methods derive the radon concentrations that occurred in dwellings over longer periods in the past, based on the amount of trapped {sup 210}Po on the surface of glass objects (surface traps, ST) or in the bulk of porous materials (volume traps, VT). Both surface implanted {sup 210}Po in glass objects and contemporary radon in air were measured in 46 rooms, distributed in 32 houses of this radon spa-town, using a dual alpha track detector configuration (CR-39 and LR115) and CR-39 track etched detectors, respectively. In addition to the use of surface trap measurements, in 18 rooms (distributed in 15 houses) VT samples of suitable material were also collected, allowing to compare ST and VT retrospective radon concentration estimates. For each room, contemporary annual radon concentrations (CONT) were measured or estimated using seasonal correction factors. The distribution of the radon concentration in all data sets was found to be close to lognormal (Chi-square test > 0.05). Geometric means (GM) are similar, ranging from 1040 to 1380 Bq m{sup -3}, whereas geometric standard deviations (GSD) for both the retrospective methods are greater than for the CONT method, showing reasonable agreement between VT, ST and CONT measurements. A regression analysis, with respect to the lognormal distribution of each data set, shows that for VT-ST the correlation coefficient r is 0.85, for VT-CONT r is 0.82 and for ST-CONT r is 0.73. Comparison of retrospective and contemporary radon concentrations with regard to supposed long-term indoor radon changes further supports the principal agreement between the retrospective and conventional methods.

  12. Comparison of retrospective and contemporary indoor radon measurements in a high-radon area of Serbia.

    Science.gov (United States)

    Zunić, Z S; Yarmoshenko, I V; Kelleher, K; Paridaens, J; Mc Laughlin, J P; Celiković, I; Ujić, P; Onischenko, A D; Jovanović, S; Demajo, A; Birovljev, A; Bochicchio, F

    2007-11-15

    In Niska Banja, Serbia, which is a high-radon area, a comparison was made between two retrospective radon measuring methods and contemporary radon measurements. The two retrospective methods derive the radon concentrations that occurred in dwellings over longer periods in the past, based on the amount of trapped (210)Po on the surface of glass objects (surface traps, ST) or in the bulk of porous materials (volume traps, VT). Both surface implanted (210)Po in glass objects and contemporary radon in air were measured in 46 rooms, distributed in 32 houses of this radon spa-town, using a dual alpha track detector configuration (CR-39 and LR115) and CR-39 track etched detectors, respectively. In addition to the use of surface trap measurements, in 18 rooms (distributed in 15 houses) VT samples of suitable material were also collected, allowing to compare ST and VT retrospective radon concentration estimates. For each room, contemporary annual radon concentrations (CONT) were measured or estimated using seasonal correction factors. The distribution of the radon concentration in all data sets was found to be close to lognormal (Chi-square test>0.05). Geometric means (GM) are similar, ranging from 1040 to 1380 Bq m(-3), whereas geometric standard deviations (GSD) for both the retrospective methods are greater than for the CONT method, showing reasonable agreement between VT, ST and CONT measurements. A regression analysis, with respect to the lognormal distribution of each data set, shows that for VT-ST the correlation coefficient r is 0.85, for VT-CONT r is 0.82 and for ST-CONT r is 0.73. Comparison of retrospective and contemporary radon concentrations with regard to supposed long-term indoor radon changes further supports the principal agreement between the retrospective and conventional methods.

  13. Thorough investigations on indoor radon in Băiţa radon-prone area (Romania).

    Science.gov (United States)

    Cucoş Dinu, Alexandra; Cosma, Constantin; Dicu, Tiberius; Begy, Robert; Moldovan, Mircea; Papp, Botond; Niţă, Dan; Burghele, Bety; Sainz, Carlos

    2012-08-01

    A comprehensive radon survey has been carried out in Băiţa radon-prone area, Transylvania, Romania, in 4 localities (Băiţa, Nucet, Fînaţe, and Cîmpani) situated in the vicinity of former Romanian uranium mines. Indoor radon concentrations have been measured in 1128 ground floor rooms and cellars of 303 family houses by using CR-39 diffusion type radon detectors. The annual average of indoor radon concentration for Băiţa area was found to be 241±178 Bq m(-3), which is about two times higher than the average value of 126 Bq m(-3), computed for Romania. About 28% of investigated houses exceed the reference level of radon gas in dwellings of 300 Bq m(-3). The indoor radon measurements on each house have been carried out in several rooms simultaneously with the aim of obtaining a more detailed picture on the exposure to radon in the studied area. An analysis on the variability of radon levels among floors (floor-to-floor variation) and rooms (room-to-room variation) and also the influence of factors like the presence of cellar or the age of the building is presented. The coefficient of variation (CV) within ground floor rooms of the same house (room-to-room variation) ranged between 0.9 and 120.8%, with an arithmetic mean of 46.2%, a large variability among rooms within surveyed dwellings being clearly identified. The mean radon concentration in bedrooms without cellar was higher than in bedrooms above the cellar, the difference being statistically significant (t test, one tail, pradon levels was observed, but overall there was no significant difference in indoor radon concentrations by age of dwelling (one-way ANOVA test, p>0.05).

  14. Radon measurements in some areas in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Khan, M.A. [Physics Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, P.O. Box 164, Dhaka-1000 (Bangladesh)], E-mail: hamidkhan1950@yahoo.com; Chowdhury, M.S. [Physics Department, Dhaka University, Dhaka-1000 (Bangladesh)

    2008-08-15

    A survey of radon level measurements using CR-39 has been carried out in some of urban and rural residential areas and one gas explosion area in Bangladesh. The lowest level of radon concentration was found to be 49Bqm{sup -3} inside a hospital in Cox's Bazar district and the highest level was found to be 835Bqm{sup -3} inside a mud-made old residential house in Sylhet city. It was observed that old residential houses were found to have higher levels of radon concentrations compared to newly built houses. The radon level at the gas explosion area at Magurchara in Moulvibazar district was found to be 408{+-}98Bqm{sup -3}.

  15. GEOMETRICALLY INVARIANT WATERMARKING BASED ON RADON TRANSFORMATION

    Institute of Scientific and Technical Information of China (English)

    Cai Lian; Du Sidan; Gao Duntang

    2005-01-01

    The weakness of classical watermarking methods is the vulnerability to geometrical distortions that widely occur during normal use of the media. In this letter, a new imagewatermarking method is presented to resist Rotation, Scale and Translation (RST) attacks. The watermark is embedded into a domain obtained by taking Radon transform of a circular area selected from the original image, and then extracting Two-Dimensional (2-D) Fourier magnitude of the Radon transformed image. Furthermore, to prevent the watermarked image from degrading due to inverse Radon transform, watermark signal is inversely Radon transformed individually.Experimental results demonstrate that the proposed scheme is able to withstand a variety of attacks including common geometric attacks.

  16. Radon measurement using a liquid scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko; Morishima, Hiroshige; Kawai, Hiroshi; Kondo, Sohei (Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.); Mifune, Masaki; Konishi, Masanobu; Shirai, Chiaki

    1992-12-01

    A convenient radon detecting device for the purpose of estimating natural radiation exposure is described. The [alpha] radioactivity of radon gas absorbed in fine active carbon particles exposed to air is measured with a liquid scintillation spectrometer (Packard-PICO-RAD system). Its detection limits are 2mBq/l in air and 0.5 Bq/l in water with an accuracy of about 10 %. Radon concentrations at Misasa hot springs in Tottori prefecture were measured using this method. They were 0.16 [approx] 7.7 Bq/l in a bath room and 0.057 [approx] 0.36 Bq/l outdoors. Radon concentrations of the hot springs were 82 [approx] 1,700 Bq/l. (author).

  17. Radon Transform and Light-Cone Distributions

    Science.gov (United States)

    Teryaev, O. V.

    2016-08-01

    The relevance of Radon transform for generalized and transverse momentum dependent parton distributions is discussed. The new application for conditional (fracture) parton distributions and dihadron fragmentation functions is suggested.

  18. Radon in private drinking water wells.

    Science.gov (United States)

    Otahal, P; Merta, J; Burian, I

    2014-07-01

    At least 10% of inhabitants in the Czech Republic are supplied with water from private sources (private wells, boreholes). With the increasing cost of water, the number of people using their own sources of drinking water will be likely to increase. According to the Decree of the State Office for Nuclear Safety about the Radiation Protection 307/2002 as amended by Decree 499/2005, the guideline limit for the supplied drinking water ('drinking water for public supply') for radon concentration is 50 Bq·l(-1). This guideline does not apply to private sources of drinking water. Radon in water influences human health by ingestion and also by inhalation when radon is released from water during showering and cooking. This paper presents results of measurements of radon concentrations in water from private wells in more than 300 cases. The gross concentration of alpha-emitting radionuclides and the concentrations of radium and uranium were also determined.

  19. El gas radon y la hormesis

    National Research Council Canada - National Science Library

    Garzon Valencia, Gustavo

    2006-01-01

    ..., el cual sale desde el interior de la Tierra. Una construccion con poca ventilacion puede servir de lugar de acumulacion del gas radon y por lo tanto puede aumentar las dosis efectivas de radiactividad sobre el organismo de sus residentes...

  20. Radon Exhalation Considered in Building Material Standard

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In order to investigate the relationship between radon exhalation and specific activity of natural nuclides in building material, here different kinds of samples of building materials were measured by the

  1. Novel Radon Sub-Slab Suctioning System

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    the zone below the ground-floor construction. For this purpose a new system of prefabricated lightweight elements is introduced. The effectiveness of the system is demonstrated for the case of a ground-floor reinforced concrete slab situated on top of a rigid insulation layer (consisting of a thermal......A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within...... a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses...

  2. Distribution of indoor radon levels in Mexico

    CERN Document Server

    Espinosa, G; Rickards, J; Gammage, R B

    1999-01-01

    Our laboratory has carried out a systematic monitoring and evaluation of indoor radon concentration levels in Mexico for ten years. The results of the distribution of indoor radon levels for practically the entire country are presented, together with information on geological characteristics, population density, socioeconomic levels of the population, and architectural styles of housing. The measurements of the radon levels were made using the passive method of nuclear tracks in solids with the end-cup system. CR-39 was used as the detector material in combination with a one-step chemical etching procedure and an automatic digital- image counting system. Wherever a high level was measured, a confirming measurement was made using a dynamic method. The results are important for future health studies, including the eventual establishment of patterns for indoor radon concentration, as it has been done in the USA and Europe.

  3. Machine learning for the analysis of indoor radon distribution, compared with ordinary kriging.

    Science.gov (United States)

    Pegoretti, S; Verdi, L

    2009-12-01

    Having a reliable forecasting tool is necessary to correctly identify radon prone areas, especially in cases where the variable of interest is the indoor radon concentration. An appropriate characterisation of the features of the buildings becomes fundamental. In this work, the results obtained (in global and local scale) using the following approaches for estimating the concentration of indoor radon at locations that were not sampled were compared: geostatistical model, based on ordinary kriging, and machine learning (ML) technique. In the first case, algorithms designed for the specific and fine treatment (by modelling the variographic structure) of the spatial component of the phenomenon were used, whereas in the second case a model that can also exploit information linked to other variables that characterise each single dwelling in which the measure was conducted was used. For locations having large errors, the ML approach provides better results, due to the information related to 'soil contact' and 'building material'.

  4. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    Science.gov (United States)

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  5. Adaptive Text Entry for Mobile Devices

    DEFF Research Database (Denmark)

    Proschowsky, Morten Smidt

    for mobile devices and a framework for adaptive context-aware language models. Based on analysis of current text entry methods, the requirements to the new text entry methods are established. Transparent User guided Prediction (TUP) is a text entry method for devices with one dimensional touch input. It can......The reduced size of many mobile devices makes it difficult to enter text with them. The text entry methods are often slow or complicated to use. This affects the performance and user experience of all applications and services on the device. This work introduces new easy-to-use text entry methods...... to improve the models of human motor behaviour. TUP-Key is a variant of TUP, designed for 12 key phone keyboards. It is introduced in the thesis but has not been implemented or evaluated. Both text entry methods support adaptive context-aware language models. YourText is a framework for adaptive context...

  6. RADON AND CARCINOGENIC RISK IN MOSCOW

    Directory of Open Access Journals (Sweden)

    S. M. Golovanev

    2015-01-01

    Full Text Available Objective: comparative evaluation of carcinogenic risk inMoscowfrom radon in indoor and atmospheric pollutants.Materials and methods: the lung cancer incidence in Moscow; radiation-hygienic passport of the territory; .U.S. EPA estimated average age at all and radon induced deaths, years of life lost; Report of UNSCEAR 2006 and WHO handbook on indoor radon, 2009. Trend analysis of incidence; evaluation of the excess relative risk; assessment of ratio radon-induced population risk and published values оf total population carcinogenic risk from chemical carcinogens.Results: it is shown that the 304 cases of lung cancer per year (1. 85 10-3 on average from 2006 to 2011 (21280diseases for 70 years in addition to background level induced by radon; the differences in average trends of all lungcancer incidence in the districts can exceed 25%.Conclusion. The potential of risk reduction by measures of mitigation radon concentration exceeds 5 times the cost efficiency to reduce emissions from vehicles and can reduce cancer incidence, on average 236 cases per year; population risk 16520 cases over 70 years or save not less than 2832 person-years of life per year. The annual effect of reducing losses from not-survival of 12 years as a result of radon-induced lung cancer deaths exceeds 14160000 dollars. The evaluating of the carcinogenic risk from radon in accordance with the definition of population risk increases the predictive evaluation of the effectiveness of preventive measures more than twice.

  7. Evaluation of the effect of a cover layer on radon exhalation from uranium mill tailings: transient radon flux analysis.

    Science.gov (United States)

    Ferry, Cécile; Richon, Patrick; Beneito, Alain; Robé, Marie-Christine

    2002-01-01

    An experimental study concerning the transport of 222Rn in uranium mill tailings (UMTs) and in the cover layer was launched in 1997 with the participation of the French uranium mining company (COGEMA). Evaluation of the cover layer's effectiveness in reducing 222Rn flux emanating from UMTs was one of its objectives. In the first phase, the 222Rn flux densities were measured regularly on a UMT layer. In the second phase, the UMT was covered with a one-meter layer of compacted material consisting of crushed waste rock derived from mining activities. Radon-222 flux was then measured at the surface of this cover layer. Observations were compared with radon flux calculated using TRACI, a model for vertical water and gas flow and radon transport. The results show that the calculations bear a fair resemblance to the observations in both cases. They also show that the effectiveness of the cover layer calculated with TRACI, using the thickness and textural properties of the cover material, is very close to the measured effectiveness.

  8. Natural radium and radon tracers to quantify water exchange and movement in reservoirs

    Science.gov (United States)

    Smith, Christopher G.; Baskaran, Mark

    2011-01-01

    Radon and radium isotopes are routinely used to quantify exchange rates between different hydrologic reservoirs. Since their recognition as oceanic tracers in the 1960s, both radon and radium have been used to examine processes such as air-sea exchange, deep oceanic mixing, benthic inputs, and many others. Recently, the application of radon-222 and the radium-quartet (223,224,226,228Ra) as coastal tracers has seen a revelation with the growing interest in coastal groundwater dynamics. The enrichment of these isotopes in benthic fluids including groundwater makes both radium and radon ideal tracers of coastal benthic processes (e.g. submarine groundwater discharge). In this chapter we review traditional and recent advances in the application of radon and radium isotopes to understand mixing and exchange between various hydrologic reservoirs, specifically: (1) atmosphere and ocean, (2) deep and shallow oceanic water masses, (3) coastal groundwater/benthic pore waters and surface ocean, and (4) aquifer-lakes. While the isotopes themselves and their distribution in the environment provide qualitative information about the exchange processes, it is mixing/exchange and transport models for these isotopes that provide specific quantitative information about these processes. Brief introductions of these models and mixing parameters are provided for both historical and more recent studies.

  9. On using radon-222 and CO2 to calculate regional-scale CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. I. Hirsch

    2006-11-01

    Full Text Available Because of its ubiquitous release on land and well-characterized atmospheric loss, radon-222 has been very useful for deducing fluxes of greenhouse gases such as CO2, CH4, and N2O. It is shown here that the radon-tracer method, used in previous studies to calculate regional-scale greenhouse gas fluxes, returns a weighted-average flux (the flux field F weighted by the sensitivity of the measurements to that flux field, f rather than an evenly-weighted spatial average flux. A synthetic data study using a Lagrangian particle dispersion model and modeled CO2 fluxes suggests that the discrepancy between the sensitivity-weighted average flux and evenly-weighted spatial average flux can be significant in the case of CO2, due to covariance between F and f for biospheric CO2 fluxes during the growing season and also for anthropogenic CO2 fluxes in general. A technique is presented to correct the radon-tracer derived fluxes to yield an estimate of evenly-weighted spatial average CO2 fluxes. A new method is also introduced for correcting the CO2 flux estimates for the effects of radon-222 radioactive decay in the radon-tracer method.

  10. On using radon-222 and CO2 to calculate regional-scale CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. I. Hirsch

    2007-07-01

    Full Text Available Because of its ubiquitous release on land and well-characterized atmospheric loss, radon-222 has been very useful for deducing fluxes of greenhouse gases such as CO2, CH4, and N2O. It is shown here that the radon-tracer method, used in previous studies to calculate regional-scale greenhouse gas fluxes, returns a weighted-average flux (the flux field F weighted by the sensitivity of the measurements to that flux field, f rather than an evenly-weighted spatial average flux. A synthetic data study using a Lagrangian particle dispersion model and modeled CO2 fluxes suggests that the discrepancy between the sensitivity-weighted average flux and evenly-weighted spatial average flux can be significant in the case of CO2, due to covariance between F and f for biospheric CO2 fluxes during the growing season and also for anthropogenic CO2 fluxes in general. A technique is presented to correct the radon-tracer derived fluxes to yield an estimate of evenly-weighted spatial average CO2 fluxes. A new method is also introduced for correcting the CO2 flux estimates for the effects of radon-222 radioactive decay in the radon-tracer method.

  11. Personal radon dosimetry from eyeglass lenses.

    Science.gov (United States)

    Fleischer, R L; Meyer, N R; Hadley, S A; MacDonald, J; Cavallo, A

    2001-01-01

    Eyeglass lenses are commonly composed of allyl-diglycol carbonate (CR-39), an alpha-particle detecting plastic, thus making such lenses personal radon dosemeters. Samples of such lenses have been obtained, etched to reveal that radon and radon progeny alpha tracks can be seen in abundance, and sensitivities have been calibrated in radon chambers as a primary calibration, and with a uranium-based source of alpha particles as a convenient secondary standard. With one exception natural, environmental (fossil) track densities ranged from less than 3,000 to nearly 70,000 per cm2 for eyeglasses that had been worn for various times from one to nearly five years. Average radon concentrations to which those wearers were exposed are inferred to be in the range 14 to 130 Bq x m(-3) (0.4 to 3.5 pCi x l(-1)). A protocol for consistent, meaningful readout is derived and used. In the exceptional case the fossil track density was 1,780,000 cm(-2) and the inferred (24 h) average radon concentration was 6500 Bq x m(-3) (175 pCi x l(-1)) for a worker at an inactive uranium mine that is used for therapy.

  12. Radon emanation from radium specific adsorbents.

    Science.gov (United States)

    Alabdula'aly, Abdulrahman I; Maghrawy, Hamed B

    2010-01-01

    Pilot studies were undertaken to quantify the total activity of radon that is eluted following no-flow periods from several Ra-226 adsorbents loaded to near exhaustion. The adsorbents studied included two types of barium sulphate impregnated alumina (ABA-8000 and F-1) and Dowex MSC-1 resin treated by either barium hydroxide or barium chloride. In parallel, radium loaded plain activated aluminas and Dowex MSC-1 resin were similarly investigated. The results revealed that radon was quantitatively eluted during the first few bed volumes of column operation after no-flow periods. Although similar radon elution profiles were obtained, the position of the radon peak was found to vary and depended on the adsorbent type. Radon levels up to 24 and 14 kBq dm(-3) were measured after a rest period of 72h from radium exhausted Dowex MSC-1 treated with barium chloride and F-1 impregnated alumina with barium sulphate, respectively. The eluted radon values measured experimentally were compared to those calculated theoretically from accumulated radium quantities for the different media. For plain adsorbents, an agreement better than 10% was obtained. For treated resin-types a consistency within 30% but for impregnated alumina-types high discrepancy between respective values were obtained.

  13. The radon gas. An air pollutant

    Directory of Open Access Journals (Sweden)

    Luis Santiago Quindós Poncela

    2010-12-01

    Full Text Available In this work different aspects about the problem of the radon in dwellings are approached. This gas of natural origin is virtually present in all the soils in the earth’s crust due to the presence of uranium and radium in the composition of them. Depending on architectural factors and of occupancy habits of the house, high concentrations of this gas can be reached indoors. In these situations, there is a quantifiable increment of the risk of developing lung cancer in the inhabitants of the housing. In the last years the methodological improvements in the realization of epidemiologic studies have led to the obtaining of scientific evidences about the relationship between the presence of indoor radon and the risk of lung cancer. This relationship, found years ago in workers of uranium mines, has been corroborated in the case of the residential radon by the light of several recent meta-analysis performed on groups of epidemiologic studies. More than 6.000 radon measurements have been carried out in Spain during the last 25 years. A summary of the results obtained from the main national radon surveys are also presented, as well as the criteria recently established by the Spanish Nuclear Safety Council concerning radon action levels in dwellings and workplaces.

  14. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 2: APPENDICES

    Science.gov (United States)

    Growing concern about health risks associated with exposure to indoor radon, a radioactive gas found in varying amounts in nearly all houses, has underscored the need for dependable radon reduction methods in existing and newly constructed houses. Responding to this need, the U....

  15. Radon and radon-daughter concentrations in air in the vicinity of the Anaconda Uranium Mill

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M H; Lindstrom, J B; Dungey, C E; Kisieleski, W E

    1979-11-01

    Radon concentration, working level, and meteorological variables were measured continuously from June 1977 through June 1978 at three stations in the vicinity of the Anaconda Uranium Mill with measurements integrated to hourly intervals. Both radon and daughters show strong variations associated with low wind velocities and stable atmospheric conditions, and diurnal variations associated with thermal inversions. Average radon concentration shows seasonal dependence with highest concentrations observed during fall and winter. Comparison of radon concentrations and working levels between three stations shows strong dependence on wind direction and velocity. Radon concentrations and working-level distributions for each month and each station were analyzed. The average maximum, minimum, and modal concentration and working levels were estimated with observed frequencies. The highest concentration is 11,000 pCi/m/sup 3/ on the tailings. Working-level variations parallel radon variations but lag by less than one hour. The highest working levels were observed at night when conditions of higher secular radioactive equilibrium for radon daughters exist. Background radon concentration was measured at two stations, each located about 25 km from the mill, and the average is 408 pCi/m/sup 3/. Average working-level background is 3.6 x 10/sup -3/.

  16. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    Science.gov (United States)

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H2O and BigBottle RAD-H2O. The results have shown good agreement between this method and the standard methods.

  17. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 2: APPENDICES

    Science.gov (United States)

    Growing concern about health risks associated with exposure to indoor radon, a radioactive gas found in varying amounts in nearly all houses, has underscored the need for dependable radon reduction methods in existing and newly constructed houses. Responding to this need, the U....

  18. Re-entry flight clearance

    NARCIS (Netherlands)

    Juliana, S.

    2006-01-01

    The objective of the research was to identify and evaluate promising mathematical techniques for re-entry flight clearance. To fulfil this objective, two mathematical methods were investigated and developed: μ analysis for linear models and interval analysis for both linear and non-linear model

  19. Estimating dosimetric quantities of radon progeny using human CT scan data and small tissue volume analysis with Geant4 code system

    Directory of Open Access Journals (Sweden)

    Van Den Akker Evelynn

    2015-01-01

    Full Text Available Estimating the health effects of radon exposure is of great interest because radon is considered the second leading cause of lung cancer after smoking. The dose-response curve is not well understood at low-dose levels where radon exposure is estimated. Therefore, the health mechanisms of radiation due to radon progeny at the cellular and molecular levels are of interest for providing an indication of a possible threshold value above which the exposure may indicate cancer formation. In this paper we present a macroscopic and cellular level numerical analysis of the radon-induced dose estimates based on the Geant4 code system. Macroscopic estimates are assessed based on patient-specific computer tomography scans that provide geometries easily applicable to modeling radiation effects of the radon progeny sources. A small tissue volumes analysis based on the Geant4 code system is developed so as to provide information about the interactions and particle track structures at the microscopic (cellular levels producing the dosimetric effects of radon short-lived progenies. The results presented in this paper also call attention to the capabilities of Geant4 to provide radon-related dosimetric parameters of large and small-scale biological systems.

  20. How to Ensure Low Radon Concentrations in Indoor Environments

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Wraber, Ida Kristina

    2011-01-01

    This paper focuses on methods for measuring radon levels in the indoor air in buildings as well as on concrete solutions that can be carried out in the building to prevent radon leakage and to lower the radon concentration in the indoor air of new buildings. The radon provision in the new Danish...... Building Regulations from 2010 has been tightened as a result of new recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for its harmfulness. It is therefore important to reduce the radon concentration as much as possible in new...... buildings. The airtightness is a major factor when dealing with radon in buildings. Above the ground it is important to build airtight in compliance with energy requirements and against the ground it is important to prevent radon from seeping into the building. There is a direct connection between...

  1. Radon exhalation rates of some granites used in Serbia

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available In order to address concern about radon exhalation in building material, radon exhalation rate was determined for different granites available on Serbian market. Radon exhalation rate, along with mass exhalation rate and effective radium content were determined by closed chamber method and active continuous radon measurement technique. For this research, special chambers were made and tested for back diffusion and leakage, and the radon concentrations measured were included in the calculation of radon exhalation. The radon exhalation rate ranged from 0.161 Bq/m2h to 0.576 Bq/m2h, the mass exhalation rate from 0.167 Bq/kgh to 0.678 Bq/kgh, while the effective radium content was found to be from 12.37 Bq/kg to 50.23 Bq/kg. The results indicate that the granites used in Serbia have a low level of radon exhalation.

  2. Radon removal from gaseous xenon with activated charcoal

    Science.gov (United States)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y.; Liu, J.; Martens, K.; Moriyama, S.; Nakahata, M.; Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A.; Suzuki, Y.; Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D.; Yamashita, M.; Hosokawa, K.; Murata, A.; Otsuka, K.; Takeuchi, Y.; Kusaba, F.; Motoki, D.; Nishijima, K.; Tasaka, S.; Fujii, K.; Murayama, I.; Nakamura, S.; Fukuda, Y.; Itow, Y.; Masuda, K.; Nishitani, Y.; Takiya, H.; Uchida, H.; Kim, Y. D.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Lee, J. S.; Xmass Collaboration

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity vRn of radon and vXe of xenon in the trap with vRn/vXe=(0.96±0.10)×10-3 at -85 °C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  3. A new method for the determination of geophysical parameters by radon concentration measurements in bore-hole.

    Science.gov (United States)

    Papp, B; Deák, F; Horváth, A; Kiss, A; Rajnai, G; Szabó, Cs

    2008-11-01

    We propose a new method to measure the (222)Rn concentration in a closed bore-hole and to use the results for estimation of the diffusion parameter and the average radium content of the surrounding geological formations. In a closed bore-hole, only several meters from the surface, the radon concentration is rather constant (in the +/-15% range) under different meteorological conditions. The inflow of radon gas, after removing the radon from the bore-hole by dry nitrogen, shows characteristic time-dependence, which is determined by the diffusion parameter for radon in the surrounding environment. The experimental data were well described by a straightforward model calculation. From the results estimate can be given for the diffusion parameter and for the average radium content of the surrounding geological formation.

  4. High concentrations of radon. Specifically affected buildings; Hohe Radonkonzentrationen. Besonders betroffene Gebaeudetypen

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Winfried [Bundesamt fuer Strahlenschutz, Berlin (Germany)

    2015-07-01

    The paper presents a concept for the prognosis of exceeding probabilities of thresholds of radon in dwellings in different building types. A transfer model for the interface subsoil - building was used as a basis. The partial datasets obtained by stratification of five relevant building characteristics can be de-scribed by a 3-parametric-lognormal distribution good in most times. The available data permit statistical predictions to 60 combinations of building characteristics for the region ''east'' and 85 combinations of building characteristics for the region ''West''. The uncertainties for the probability of exceeding a threshold were estimated from the data with bootstrapping. The importance of different building characteristics for the presence of enhanced radon concentrations can be predicted from the results of this estimation. Therefore, targeting of affected buildings is possible on this basis. Regional prognoses of exceeding probabilities for building types with high presence can also be created by the use of transfer factors. A Strategy to reduce the health risk from radon in the long run might be derived, where alongside the delineation of radon prone areas, special attention should be paid to a set out building characteristics, also outside the radon prone areas.

  5. Radon risk mapping in southern Belgium: an application of geostatistical and GIS techniques.

    Science.gov (United States)

    Zh, H C; Charlet, J M; Poffijn, A

    2001-05-14

    A data set of long-term radon measurements in approximately 2200 houses in southern Belgium has been collected in an on-going national radon survey. The spatial variation of indoor Rn concentrations is modelled by variograms. A radon distribution map is produced using the log-normal kriging technique. A GIS is used to digitise, process and integrate a variety of data, including geological maps, Rn concentrations associated with house locations and an administrative map, etc. It also allows evaluation of the relationships between various spatial data sets with the goal of producing radon risk maps. Based on geostatistical mapping and spatial analysis, we define three categories of risk areas: high risk, medium risk and low risk area. The correlation between radon concentrations and geological features is proved in this study. High and medium Rn risk zones are dominantly situated in bedrock from the Cambrian to Lower Devonian, although a few medium risk zones are within the Jurassic. It is evident that high-risk zones are related to a strongly folded and fractured context.

  6. Deposition pattern of inhaled radon progeny size distribution in human lung

    Directory of Open Access Journals (Sweden)

    Amer Mohamed

    2014-07-01

    Full Text Available One of the important factors controlling the distribution of radiation dose to the different portions of the human respiratory tract is the deposition pattern of radon progeny containing aerosol. Based on the activity size distribution parameters of radon progeny, which were measured in Minia University, the deposition behavior of radon progeny (attached and unattached has been studied by using a stochastic deposition model. The attached fraction was collected using a low pressure Berner cascade impactor technique. A screen diffusion battery was used for collecting the unattached fraction. Most of the attached activities for 222Rn progeny were associated with aerosol particles of the accumulation mode. The bronchial deposition fraction of particles in the size range of attached radon progeny was found to be lower than those of unattached progeny. The effect of radon progeny deposition by adult male has been also studied for various levels of physical exertion. An increase in the breathing rate was found to decrease the fraction with which inhaled progeny were deposited in the bronchi. As the ventilation rate increases from 0.54 to 1.5 m3 h−1, the average deposition fraction of airway generation 1 through 8 are expected to decrease by 22% for 1.4 nm particles and by 38% for 150 nm particles.

  7. Radon

    Science.gov (United States)

    ... face' showdown over Obama-era tailpipe rule Blog: Yoga, Tai Chi and Your Lungs: The Benefits of ... list_name').hide(); } $("#local_list_xml").quickPagination(); }, error: function() { console.log("An error occurred while processing XML ...

  8. Relations among soil radon, environmental parameters, volcanic and seismic events at Mt. Etna (Italy)

    Science.gov (United States)

    Giammanco, S.; Ferrera, E.; Cannata, A.; Montalto, P.; Neri, M.

    2013-12-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol probe located on the upper NE flank of Mt. Etna volcano (Italy), close both to the Piano Provenzana fault and to the NE-Rift. Seismic, volcanological and radon data were analysed together with data on environmental parameters, such as air and soil temperature, barometric pressure, snow and rain fall. In order to find possible correlations among the above parameters, and hence to reveal possible anomalous trends in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-day time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-day moving averages showed that, similar to multivariate linear regression analysis, the summer period was characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allowed to study the relations among different signals either in the time or in the frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Using the above analysis, two periods were recognized when radon variations were significantly correlated with marked soil temperature changes and also with local seismic or volcanic activity. This allowed to produce two different physical models of soil gas transport that explain the

  9. Active versus passive radon monitoring at the Yucca Mountain site

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, M.D. [Science Applications International Corp., Las Vegas, NV (United States)

    1994-12-31

    Federal Regulations have mandated that a baseline assessment for the Yucca Mountain Site be performed. This includes the detection and monitoring of specific radionuclides present at the site. These radionuclides include radon 222, a decay progeny of naturally occurring uranium. Two radon monitoring systems are utilized at the Yucca Mountain site to detect ambient levels of radon. The first is a passive time integrated system, and the second is a continuous radon monitoring (CRM) system.

  10. The reliability of radon as seismic precursor

    Science.gov (United States)

    Emilian Toader, Victorin; Moldovan, Iren Adelina; Ionescu, Constantin; Marmureanu, Alexandru

    2016-04-01

    Our multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains) includes radon concentration monitoring in five stations. We focus on lithosphere and near surface low atmosphere phenomena using real-time information about seismicity, + / - ions, clouds, solar radiation, temperature (air, ground), humidity, atmospheric pressure, wind speed and direction, telluric currents, variations of the local magnetic field, infrasound, variations of the atmospheric electrostatic field, variations in the earth crust with inclinometers, electromagnetic activity, CO2 concentration, ULF radio wave propagation, seismo-acoustic emission, animal behavior. The main purpose is to inform the authorities about risk situation and update hazard scenarios. The radon concentration monitoring is continuously with 1 hour or 3 hours sample rate in locations near to faults in an active seismic zone characterized by intermediate depth earthquakes. Trigger algorithms include standard deviation, mean and derivative methods. We correlate radon concentration measurements with humidity, temperature and atmospheric pressure from the same equipment. In few stations we have meteorological information, too. Sometime the radon concentration has very high variations (maxim 4535 Bq/m3 from 106 Bq/m3) in short time (1 - 2 days) without being accompanied by an important earthquake. Generally the cause is the high humidity that could be generated by tectonic stress. Correlation with seismicity needs information from minimum 6 month in our case. For 10605 hours, 618 earthquakes with maxim magnitude 4.9 R, we have got radon average 38 Bq/m3 and exposure 408111 Bqh/m3 in one station. In two cases we have correlation between seismicity and radon concentration. In other one we recorded high variation because the location was in an area with multiple faults and a river. Radon can be a seismic precursor but only in a multidisciplinary network. The anomalies for short or long period of

  11. Increasing the accuracy and temporal resolution of two-filter radon-222 measurements by correcting for the instrument response

    Science.gov (United States)

    Griffiths, Alan D.; Chambers, Scott D.; Williams, Alastair G.; Werczynski, Sylvester

    2016-06-01

    Dual-flow-loop two-filter radon detectors have a slow time response, which can affect the interpretation of their output when making continuous observations of near-surface atmospheric radon concentrations. While concentrations are routinely reported hourly, a calibrated model of detector performance shows that ˜ 40 % of the signal arrives more than an hour after a radon pulse is delivered. After investigating several possible ways to correct for the detector's slow time response, we show that a Bayesian approach using a Markov chain Monte Carlo sampler is an effective method. After deconvolution, the detector's output is redistributed into the appropriate counting interval and a 10 min temporal resolution can be achieved under test conditions when the radon concentration is controlled. In the case of existing archived observations, collected under less ideal conditions, the data can be retrospectively reprocessed at 30 min resolution. In one case study, we demonstrate that a deconvolved radon time series was consistent with the following: measurements from a fast-response carbon dioxide monitor; grab samples from an aircraft; and a simple mixing height model. In another case study, during a period of stable nights and days with well-developed convective boundary layers, a bias of 18 % in the mean daily minimum radon concentration was eliminated by correcting for the instrument response.

  12. RESOLVING THE RADON PROBLEM IN CLINTON, NEW JERSEY HOUSES

    Science.gov (United States)

    The paper discusses the resolution of a radon problem in Clinton, New Jersey, where significantly elevated radon concentrations were found in several adjacent houses. The U.S. EPA screened 56 of the houses and selected 10 for demonstration of radon reduction techniques. Each of t...

  13. RESOLVING THE RADON PROBLEM IN CLINTON, NEW JERSEY HOUSES

    Science.gov (United States)

    The paper discusses the resolution of a radon problem in Clinton, New Jersey, where significantly elevated radon concentrations were found in several adjacent houses. The U.S. EPA screened 56 of the houses and selected 10 for demonstration of radon reduction techniques. Each of t...

  14. Assessment of indoor radon gas concentration change of college

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul [Dept. of of Radiological Technology, Shingu College, Seongnam (Korea, Republic of); Lee, Ju Young [Dept. of Radiological Technology, Songho College, Hoengseong (Korea, Republic of)

    2017-03-15

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction.

  15. From Complex Fractional Fourier Transform to Complex Fractional Radon Transform

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; JIANG Nian-Quan

    2004-01-01

    We show that for n-dimensional complex fractional Fourier transform the corresponding complex fractional Radon transform can also be derived, however, it is different from the direct product of two n-dimensional real fractional Radon transforms. The complex fractional Radon transform of two-mode Wigner operator is calculated.

  16. 40 CFR 61.203 - Radon monitoring and compliance procedures.

    Science.gov (United States)

    2010-07-01

    ..., each owner or operator of an inactive phosphogypsum stack shall test the stack for radon-222 flux in... the radon-222 flux testing. Each report shall also include the following information: (i) The name and... provide EPA with a report detailing the actions taken and the results of the radon-222 flux testing....

  17. Fractional Radon Transform and Transform of Wigner Operator

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; CHEN Jun-Hua

    2003-01-01

    Based on the Radon transform and fractional Fourier transform we introduce the fractional Radon trans-formation (FRT). We identify the transform kernel for FRT. The FRT of Wigner operator is derived, which naturallyreduces to the projector of eigenvector of the rotated quadrature in the usual Radon transform case.

  18. Residential Radon Exposure and Skin Cancer Incidence in a Prospective Danish Cohort

    DEFF Research Database (Denmark)

    Brauner, Elvira Vaclavik; Loft, Steffen; Sørensen, Mette

    2015-01-01

    Background Although exposure to UV radiation is the major risk factor for skin cancer, theoretical models suggest that radon exposure can contribute to risk, and this is supported by ecological studies. We sought to confirm or refute an association between long-term exposure to residential radon...... and the risk for malignant melanoma (MM) and non-melanoma skin cancer (NMSC) using a prospective cohort design and long-term residential radon exposure. Methods During 1993-1997, we recruited 57,053 Danish persons and collected baseline information. We traced and geocoded all residential addresses...... exposure may contribute to development of basal cell carcinoma of the skin. We cannot exclude confounding from sunlight and cannot conclude on causality, as the relationship was stronger amongst persons living in apartments and nonexistent amongst those living in single detached homes....

  19. Determination of radon exhalation from construction materials using VOC emission test chambers.

    Science.gov (United States)

    Richter, M; Jann, O; Kemski, J; Schneider, U; Krocker, C; Hoffmann, B

    2013-10-01

    The inhalation of (222) Rn (radon) decay products is one of the most important reasons for lung cancer after smoking. Stony building materials are an important source of indoor radon. This article describes the determination of the exhalation rate of stony construction materials by the use of commercially available measuring devices in combination with VOC emission test chambers. Five materials - two types of clay brick, clinker brick, light-weight concrete brick, and honeycomb brick - generally used for wall constructions were used for the experiments. Their contribution to real room concentrations was estimated by applying room model parameters given in ISO 16000-9, RP 112, and AgBB. This knowledge can be relevant, if for instance indoor radon concentration is limited by law. The test set-up used here is well suited for application in test laboratories dealing with VOC emission testing.

  20. Compilation of geogenic radon potential map of Pest County, Hungary

    Science.gov (United States)

    Szabó, K. Zs.; Pásztor, L.; Horváth, Á.; Bakacsi, Zs.; Szabó, J.; Szabó, Cs.

    2010-05-01

    222Rn and its effect on the human health have recently received major importance in environmental studies. This natural radioactive gas accounts for about 9% of lung cancer death and about 2% of all deaths from cancer in Europe due to indoor radon concentrations. It moves into the buildings from the natural decay chain of uranium in soils, rocks and building materials. Radon mapping regionalizes the average hazard from radon in a selected area as a radon risk map. Two major methods (concerning the applied radon data) have been used for mapping. One uses indoor radon data whereas the other is based on soil gas radon data. The outputs of the second approach are the geogenic radon potential maps. The principal objective of our work is to take the first step in geogenic radon mapping in Hungary. Soil samples collected in Pest County (Central Region of Hungary) in the frame of a countrywide soil survey (Soil Information and Monitoring System) were studied to have empirical information of the potential radon risk. As the first two steps radium concentration of soil samples, collected at 43 locations sampling soil profiles by genetic horizons from the surface level down to 60-150 cm, were determined using HPGe gamma-spectroscopy technique, as well as measurement of radon exhalation on the soil samples were carried out applying closed radon accumulation chamber coupled with RAD7 radon monitor detector. From these data the exhalation coefficient was calculated, which shows how many percent of the produced radon can come out from the sample. This rate strongly depends on the depth: at circa 100 cm a drastic decrease have been noticed, which is explained by the change in soil texture. The major source of indoor radon is the soil gas radon concentration (Barnet et al., 2005). We estimated this value from the measured radon exhalation and calculated soil porosity and density. The soil gas radon concentration values were categorized after Kemski et al. (2001) and then the

  1. Radon as a groundwater tracer in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Grolander, Sara

    2009-10-15

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  2. The study of the correlation between (α, γ) induced events with respect to Radon annual modulation.

    Science.gov (United States)

    Tiwari, Ashok; Zhang, Chao; Mei, Dongming

    2017-01-01

    We observed (α, γ) reaction that generates high energy gammas in Soudan mine with a 12 liter liquid scintillation detector. With a model established to describe the correlation between (α, γ) induced events with radon annual modulation, we demonstrate that (α, γ) induced events are highly correlated with the radon modulation. These (α, γ) induced events can be potential background events for rare event physics. This work is supported by NSF in part by the NSF PHY-0758120, DOE grant DE-FG02-10ER46709, and the state of South Dakota.

  3. Metrology of the radon in air volume activity at the italian radon reference chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sciocchetti, G.; Cotellessa, G.; Soldano, E.; Pagliari, M. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia Roma (Italy)

    2006-07-01

    The approach of the Italian National Institute of Ionising Radiations (I.N.M.R.I.-ENEA) on radon metrology has been based on a complete and integrated system which can be used to calibrate the main types of {sup 222}Rn in air measuring instruments with international traceability. The Italian radon reference chamber is a research and calibration facility developed at the Casaccia Research Center in Roma. This facility has an inner volume of one m{sup 3}. The wall is a cylindrical stainless steel vessel coupled with an automated climate apparatus operated both at steady and dynamic conditions. The control and data acquisition equipment is based on Radotron system, developed to automate the multitasking management of different sets of radon monitors and climatic sensors. A novel approach for testing passive radon monitors with an alpha track detector exposure standard has been developed. It is based on the direct measurement of radon exposure with a set of passive integrating monitors based on the new ENEA piston radon exposure meter. This paper describes the methodological approach on radon metrology, the status-of-art of experimental apparatus and the standardization procedures. (authors)

  4. Radon in soil gas in Kosovo.

    Science.gov (United States)

    Kikaj, Dafina; Jeran, Zvonka; Bahtijari, Meleq; Stegnar, Peter

    2016-11-01

    An assessment of the radiological situation due to exposure to radon and gamma emitting radionuclides was conducted in southern Kosovo. This study deals with sources of radon in soil gas. A long-term study of radon concentrations in the soil gas was carried out using the SSNTDs (CR-39) at 21 different locations in the Sharr-Korabi zone. The detectors were exposed for an extended period of time, including at least three seasonal periods in a year and the sampling locations were chosen with respect to lithology. In order to determine the concentration of the natural radioactive elements (238)U and (226)Ra, as a precursor of (222)Rn, soil samples were collected from each measuring point from a depth of 0.8 m, and measured by gamma spectrometry. The levels (Bq kg(-1)) of naturally occurring radionuclides and levels (kBq m(-3)) of radon in soil gas obtained at a depth 0.8 m of soil were: 21-53 for (226)Ra, 22-160 for (238)U and 0.295-32 for (222)Rn. With respect to lithology, the highest value for (238)U and (226)Ra were found in limestone and the highest value for (222)Rn was found in metamorphic rocks. In addition, the results showed seasonal variations of the measured soil gas radon concentrations with maximum concentration in the spring months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Indoor radon concentrations in Adana, Turkey.

    Science.gov (United States)

    Degerlier, M; Celebi, N

    2008-01-01

    The indoor radon concentration in Adana, Turkey was measured in living rooms of 52 houses during winter 2005 and 57 houses during summer 2005. Forty-four houses were selected for both winter and summer researches for estimating seasonal variations. Indoor radon concentrations were measured seasonally over hotter and colder 2 months over the whole year, using CR-39 passive nuclear track radon detectors. The radon concentrations were ranged from 15 to 97 Bq m(-3) on January-February 2005 for 60 d and from 5 to 70 Bq m(-3) on June-July 2005 for 60 d. The average summer concentration measured was 25.8 Bq m(-3) and the average winter concentration was 48.9 Bq m(-3) in 44 houses that observed seasonal variations. The differences between winter and summer periods were ranged from 1 to 77 Bq m(-3). The average value in both winter and summer periods is 37 Bq m(-3) in 44 houses that observed seasonal variations. This value is below the worldwide indoor radon concentration distribution of 46 Bq m(-3). The annual effective dose equivalent from (222)Rn was 0.9 mSv y(-1).

  6. Radon measurements with a PIN photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Martin, A. [Laboratorio de Investigacion en Baja Radiactividad (LIBRA), Edificio I-D, Campus Miguel Delibes, Universidad de Valladolid, Valladolid 47011 (Spain) and Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain)]. E-mail: alonsomm@libra.uva.es; Gutierrez-Villanueva, J.L. [Laboratorio de Investigacion en Baja Radiactividad (LIBRA), Edificio I-D, Campus Miguel Delibes, Universidad de Valladolid, Valladolid 47011 (Spain); Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain); Munoz, J.M. [Departamento de Electricidad y Electronica, Universidad de Valladolid, Valladolid 47011 (Spain); Garcia-Talavera, M. [Laboratorio de Investigacion en Baja Radiactividad (LIBRA), Edificio I-D, Campus Miguel Delibes, Universidad de Valladolid, Valladolid 47011 (Spain); Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain); Adamiec, G. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain); Iniguez, M.P. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Valladolid 47011 (Spain)

    2006-10-15

    Silicon photodiodes are well suited to detect alphas coming from different sources as neutron reactions or radon daughters. In this work a radon in air detecting device, using an 18x18 mm silicon PIN photodiode is studied. The ionized airborne decay products formed during radon diffusion were focused by an accelerating high voltage to the PIN surface. Several conducting rings were disposed inside a cylindrical PVC vessel in such a way that they reproduced the electric field created by a punctual charge located behind PIN position. Alpha spectra coming from the neutral and ionized species deposited on the PIN surface, dominated by {sup 218}Po and {sup 214}Po progeny peaks, were recorded for varying conditions. Those include radon concentration from a Pylon source, high voltage (thousands of volts) and PIN inverse bias voltage. Different parameters such as temperature and humidity were also registered during data acquisition. The increase in the particle collection efficiency with respect to zero electric field was compared with the corresponding to a parallel plates configuration. A discussion is made in terms of the most appropriate voltages for different radon concentrations.

  7. Radon monitoring in Bologna (Italy) homes

    Energy Technology Data Exchange (ETDEWEB)

    Beozzo, M.; Bottazzi, E.; Degli Esposti, L.; Folesani, M.; Frassinetti, J.; Giacomelli, G.; Lembo, L.; Maltoni, G.; Massera, F.; Nicoli, F. (Bologna Univ. (Italy). Dept. di Fisica ENEA Centro Ricerche Energia, Bologna (Italy). Area Energia, Ambiente e Salute Istituto Nazionale di Fisica Nucleare, Bologna (Italy))

    1991-01-01

    This paper first reviews the origin and behaviour of naturally present radon gas which is thought to account for more than 50% of radiation doses derived from natural radioactivity and deemed responsible for increased risk of lung cancer. An analysis is made of the many factors influencing radon concentration levels in residential buildings. These include such factors as the presence of thermal bridges, type of ventilation and seasonal climatic variations. In addition, since the density of radon is eight times greater than that of air, concentration levels vary greatly according to room height above ground level. The paper then reports on a home radon monitoring campaign conducted by ENEA (Italian Commission for New Technologies, Energy and Environment) with the aim of providing sufficient and accurate information to public health authorities to enable them to set up and implement effective radiation protection policies. The monitoring was done with two methods to allow comparisons to be made. One was based on the use of a passive nuclear trace detector (CR-39), the other, based on the use of gas adsorption by activated carbon. Results with the two methods agreed well and only modest amounts of indoor radon were detected.

  8. Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units.

    Science.gov (United States)

    Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios Gruson, Martha; Baechler, Sébastien

    2015-09-01

    According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as

  9. Determination of Radon concentration in air using scinti-cell radon monitor

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst; Morishima, Hiroshige; Arai, Naoki; Shiraishi, Masatoshi; Shigehara, Makiko [Dept. of Nuclear Engineering, School of Science and Technology, Kinki Univ., Higashi-Osaka, Osaka(Japan); Mifune, Masaaki

    2000-01-01

    This study is carried out the methodology characteristics of {sup 222}Rn (Radon) concentration in air using the scinti-cell radon monitor (Trace environmental level detector (PMT-TEL) and Lucas cell (300 A), Pylon Co. and the determination of Radon concentrations in air on Misasa spa area in Tottori pref. and Ikeda spa in Shimane pref. on November 1995 and 1996. We have reached to the following results; (1) Minimum detectable Radon concentrations in air using the scinti-cell monitor are 7.6 Bq/m{sup 3} with 23% of accuracy (relative standard deviation) on the grab sampling of Lucas cell and 0.58 Bq/m{sup 3} with that of 17% on the continuous measuring of PMT-TEL, when it measured after 3.5 hours on the air sampling to determine the mean radon concentrations. The radon concentrations by the PMT-TEL method is about ten times more detectable than those by Lucas cell, that the former is the most sensitive among the detectors used on this research and is able to detect low level environmental concentrations, particularly outdoor and the later is valuable to use conveniently and portably on grab spot sampling of high level radon concentrations indoor air. (2) On the comparison of characteristics on spot monitoring of radon in air, a pico-rad method is suitable for the determination of the mean concentration for continuous sampling period by PMT-TEL and Lucas cell 300 A, and the variation of radon concentration can be observed on elapse of time course. (author)

  10. Radon exhalation rates corrected for leakage and back diffusion – Evaluation of radon chambers and radon sources with application to ceramic tile

    Directory of Open Access Journals (Sweden)

    M. Abo-Elmagd

    2014-10-01

    Full Text Available The natural radon decay, leakage and back diffusion are the main removal processes of radon from its container. Ignoring these processes leads to underestimate the measured value of radon related parameters like exhalation rate and radium content. This work is aimed to evaluate two different radon chambers through determining their leakage rate λv and evaluation of radon source by determine its back diffusion rate λb inside the evaluated radon chambers as well as a small sealed cup. Two different methods are adapted for measuring both the leakage rate and the back diffusion rate. The leakage rate can be determined from the initial slope of the radon decay curve or from the exponential fitting of the whole decay curve. This can be achieved if a continuous monitoring of radon concentration inside the chamber is available. Also, the back diffusion rate is measured by sealing the radon source in the chamber and used the initial slope of the buildup curve to determine λb and therefore the exhalation rate of the source. This method was compared with simple equation for λb based on the ratio of the source to the chamber volume. The obtained results are applied to ceramic tile as an important radon source in homes. The measurement is targeted the ceramic glaze before and after firing as well as the obtained tile after adhere the glaze on the tile main body. Also, six different tile brands from Egyptian market are subjected to the study for comparison.

  11. Entry Facilitation by Environmental Groups

    NARCIS (Netherlands)

    van der Made, Allard; Schoonbeek, Lambert

    We consider a model of vertical product differentiation where consumers care about the environmental damage their consumption causes. An environmental group is capable of increasing consumers' environmental concern via a costly campaign. We show that the prospect of such a campaign can induce entry

  12. Entry Facilitation by Environmental Groups

    NARCIS (Netherlands)

    van der Made, Allard; Schoonbeek, Lambert

    2009-01-01

    We consider a model of vertical product differentiation where consumers care about the environmental damage their consumption causes. An environmental group is capable of increasing consumers' environmental concern via a costly campaign. We show that the prospect of such a campaign can induce entry

  13. Natural air ventilation in underground galleries as a tool to increase radon sampling volumes for geologic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Eff-Darwich, Antonio [Departamento de Edafologia y Geologia, Universidad de La Laguna, Av. Astrofisico Francisco, Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Instituto de Astrofisica de Canarias, c/Via Lactea s/n, 38205 La Laguna, Tenerife (Spain)], E-mail: adarwich@ull.es; Vinas, Ronaldo [Departamento de Edafologia y Geologia, Universidad de La Laguna, Av. Astrofisico Francisco, Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Soler, Vicente [Estacion Volcanologica de Canarias, IPNA-CSIC, Av. Astrofisico Francisco Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Nuez, Julio de la; Quesada, Maria L. [Departamento de Edafologia y Geologia, Universidad de La Laguna, Av. Astrofisico Francisco, Sanchez s/n, 38206 La Laguna, Tenerife (Spain)

    2008-09-15

    A simple numerical model was implemented to infer airflow (natural ventilation) in underground tunnels from the differences in the temporal patterns of radon, {sup 222}Rn, concentration time-series that were measured at two distant points in the interior of the tunnels. The main purpose of this work was to demonstrate that the installation of radon monitoring stations closer to the entrance of the tunnels was sufficient to remotely analyse the distribution of radon concentration in their interiors. This could ease the monitoring of radon, since the effective sampling volume of a single monitoring station located closer to the entrance of a tunnel is approximately 30,000 times larger than the sampling volume of a sub-soil radon sensor. This methodology was applied to an underground gallery located in the volcanic island of Tenerife, Canary Islands. This island constitutes an ideal laboratory to study the geo-dynamical behaviour of radon because of the existence of a vast network of galleries that conforms the main water supply of the island.

  14. Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest

    Science.gov (United States)

    Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.

    1994-01-01

    A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.

  15. Multagenicity of radon and radon daughters. Final technical report, January 1, 1993--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1997-06-01

    The objective of this research was to investigate the dose-response relationship with regard to the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose-rate dependence was studied, as well as the nature of the DNA lesions. The effect of DNA repair on the lethal and mutagenic effects of exposure and on the character of the DNA lesions was investigated by comparing the response of L5178Y strains that differ in their ability to rejoin X radiation-induced DNA double strand breaks. The nature of radon/radon daughter-induced mutational lesions in human lymphoblasts was also investigated.

  16. The use of track registration detectors to reconstruct contemporary and historical airborne radon ( sup 2 sup 2 sup 2 Rn) and radon progeny concentrations for a radon-lung cancer epidemiologic study

    CERN Document Server

    Steck, D J

    1999-01-01

    Epidemiologic studies that investigate the relationship between radon and lung cancer require accurate estimates for the long-term average concentrations of radon progeny in dwellings. Year-to-year and home-to-home variations of radon in domestic environments pose serious difficulties for reconstructing an individual's long-term radon-related exposure. The use of contemporary radon gas concentrations as a surrogate for radon-related dose introduces additional uncertainty in dose assessment. Studies of glass exposed in radon chambers and in a home show that radon progeny deposited on, and implanted in, glass hold promise for reconstructing past radon concentrations in a variety of atmospheres. We developed an inexpensive track registration detector for the Iowa Radon Lung Cancer Study (IRLCS) that simultaneously measures contemporary airborne radon concentrations, surface deposited alpha activity density, and implanted sup 2 sup 1 sup 0 Po activity density. The implanted activity is used to reconstruct the cum...

  17. Indoor radon and decay products: Concentrations, causes, and control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-11-01

    This report is another in the on going technical report series that addresses various aspects of the DOE Radon Research Program. It provides an overview of what is known about the behavior of radon and its decay products in the indoor environment and examines the manner in which several important classes of factors -- structural, geological, and meteorological -- affect indoor radon concentrations. Information on US indoor radon concentrations, currently available monitoring methods and novel radon control strategies are also explored. 238 refs., 22 figs., 9 tabs.

  18. Measurement of soil and indoor radon in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Torri, G.; Azimi-Garakani, D.; Oppon, O.C.; Piermattei, S.; Susanna, A.F.; Seidel, J.-L.; Tommasino, L.; Ardanese, L. (ENEA, Rome (Italy))

    1988-01-01

    In spite of the fact that in the majority of cases the most important radon source is the soil and the rock beneath the house, no large scale survey of soil radon has ever been made in Italy. In this paper the results of a large scale survey of soil radon are presented from measurements made in hundreds of different sites in Latium and Campania. For several locations, results of measurements gathered for different years are described and up-dated. As a pilot project for indoor radon survey monthly variations of radon concentrations in typical houses have been investigated. (author).

  19. The European radon mapping project

    Energy Technology Data Exchange (ETDEWEB)

    Bossew, P., E-mail: pbossew@bfs.de [German Federal Office for Radiation Protection, Berlin (Germany); Tollefsen, T.; Gruber, V.; De Cort, M., E-mail: tore.tollefsen@jrc.ec.europa.eu, E-mail: valeria.gruber@gmail.com, E-mail: marc.de-cort@jrc.ec.europa.eu [Institute for Transuranium Elements, Ispra, VA (Italy). DG Joint Research Centre. European Commission

    2013-07-01

    There is almost unanimous agreement that indoor radon (Rn) represents a hazard to human health. Large-scale epidemiological studies gave evidence that Rn is the second-most important cause o flung cancer after smoking and that also relatively low Rn concentrations can be detrimental. This has increasingly led to attempts to limit Rn exposure through regulation, mainly building codes. The proposed Euratom Basic Safety Standards (BSS) require Member States to establish Rn action plans aimed at reducing Rn risk, and to set reference values for Imitating indoor Rn concentration. In 2006 the JRC started a project on mapping Rn at the European level, in addition and complementary lo (but not as a substitute for) national efforts. These maps are part of the European Atlas of Natural Radiation project. which is planned eventually 10 comprise geographical assessments of ali sources of exposure to natural radiation. Started first, a map of indoor Rn is now in an advanced phase, but still incomplete as national Rn surveys are ongoing in a number of European countries. A European map of geogenic Rn, conceptually and technically more complicated, was started in 2008. The main difficulty encountered is heterogeneity of survey designs, measurement and evaluation methods and database semantics and structures. An important part or the work on the Atlas is therefore to harmonize data and methods. We present the current state of the Rn maps and discuss some of the methodological challenges. (author)

  20. Turbidimetry for measurement of radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanqiang [HuBei Provincial Academy of Medical Sciences, WuHan (China). Inst. of Radioactive Protection

    1993-12-31

    This paper describes a turbidimetric technique counting the tracks registered on CR-39 foils exposed to radon. Instead of eyeview through microscope, by using the differential spectrophotometer, strong correlation between the radon cumulative concentration and track turbidence was observed(r=0.999). Under the etching condition of 7.07 mol{center_dot}L{sup -1} KOH water solution at 80{sup o}C for 16 hr, linear regression showed that the ratio of track turbidence and cumulative concentration of radon exposure was 1.99 x 10{sup -1} turbidence (KBq m{sup -1}h){sup -1} and the determination limit was 36 KBq m{sup -3}h. The details of the experiments are represented in this paper. (Author).

  1. Radon barrier: Method of testing airtightness

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Buch-Hansen, Thomas Cornelius

    2017-01-01

    The test method NBI 167/02 Radon membrane: Test of airtightness can be used for determining the airtightness of a radon barrier as a system solution. The test determines the air infiltration through the radon barrier for a number of levels of air pressure differences. The airflow through versus...... the difference in air pressure over the barrier is measured. The air pressure difference is kept constant, at a number of manually controlled levels. At each pressure level, the difference is measured in a single point close to the point where the suction for lowering the air pressure is located. Improvements...... to the test method were suggested. A digital stirring and control system, and a method for determining the mean air pressure difference, as well as a method for testing barriers with a very low air infiltration, were provided. The digital stirring and control system ensured automatic control and measuring...

  2. Indoor radon levels and lung cancer risk estimates in seven cities of the Bahawalpur Division, Pakistan.

    Science.gov (United States)

    Matiullah; Ahad, A; Rehman, S; Mirza, M L

    2003-01-01

    Indoor radon concentration levels were measured in seven major cities of the Bahawalpur Division, Pakistan. These included Fort Abbas, Minchin Abad, Hasilpur, Bahawalpur, Liaqatpur, Rahimyar Khan and Sadiq Abad. In order to select houses for this survey, the inhabitants were approached through their school-registered children. Due to several constraints, only those 100 houses were chosen in each city that were relatively the best representatives of the built-up area. The selected houses were then divided into live categories according to the house locations and building characteristics. CR-39 detectors, placed in polyethylene bags. were installed at head height in bedrooms and sitting rooms of all the selected houses and were exposed to radon and its daughter products for 90 days. Four such measurements were performed over a year in order to average out the seasonal variation in radon levels. After exposure, all the detectors were etched and counted under an optical microscope. The track densities of four measurements were averaged out and related to radon concentration levels. The radon levels were found to be 20, 20, 26, 28, 34, 42, 47 Bq m(-3) in the bedrooms and 24, 26, 27, 26, 37, 40, 43 Bq m(-3) in sitting rooms of Hasilpur, Rahimyar Khan, Minchin Abad, Fort Abbas, Sadiq Abad, Bahawalpur and Liaqatpur respectively. The observed variation in the radon level may be attributed to the geological variation in the area. Based on the observed data, excess lung cancer risk was assessed using the risk factors recommended by the USEPA, UNSCEAR and the ICRP. According to the EPA model, the lifetime excess lung cancer risk due to the lifetime exposure is found to vary from 12-102 per million per year in the houses surveyed. This variation is from 16-114 and 26-62 per million per year if UNSCEAR and ICRP limits are applied respectively.

  3. Radon concentration in houses over a closed Hungarian uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Somlai, Janos; Kovacs, Tibor [University of Veszprem Department of Radiochemistry, H-8200, Veszprem P.O.B.: 158 (Hungary); Gorjanacz, Zoran [Mecsek Ore Environmental Protection Co. H-7614, Pecs, P.O.B.: 121 (Hungary); Varhegyi, Andras [Mecsek-OEko Environmental Protection Co. H-7614, Pecs, P.O.B.: 121 (Hungary)

    2006-08-31

    High radon concentration (average 410 kBq m{sup -3}) has been measured in a tunnel of a uranium mine, located 15-55 m below the village of Kovagoszolos, Hungary. The mine was closed in 1997; the artificial ventilation of the tunnel was then terminated and recultivation works begun. In this paper, a study has been made as to whether the tunnel has an influence on the radon concentration of surface dwellings over the mining tunnel. At different distances from the surface projection of the mining tunnel, radon concentration, the gamma dose, radon exhalation and radon concentration of soil gas were measured. The average radon concentration in the dwellings was 483 Bq m{sup -3}. Significantly higher radon concentrations (average 667 Bq m{sup -3}) were measured in houses within +/-150 m from the surface projection of the mining tunnel +50 m, compared with the houses further than the 300-m belt (average 291 Bq m{sup -3}). The average radon concentration of the soil gas was 88.8 kBq m{sup -3}, the average radon exhalation was 71.4 Bq m{sup -2} s{sup -1} and higher values were measured over the passage as well. Frequent fissures crossing the passage and running up to the surface and the high radon concentration generated in the passage (average 410 kBq m{sup -3}) may influence the radon concentration of the houses over the mining tunnel. (author)

  4. Variation in residential radon levels in new Danish homes.

    Science.gov (United States)

    Bräuner, E V; Rasmussen, T V; Gunnarsen, L

    2013-08-01

    Radon-222 gas arises from the radioactive decay of radium-226 and has a half-life of 3.8 days. This gas percolates up through soil into buildings, and if it is not evacuated, there can be much higher exposure levels indoors than outdoors, which is where human exposure occurs. Radon exposure is classified as a human carcinogen, and new Danish homes must be constructed to ensure indoor radon levels below 100 Bq/m(3). Our purpose was to assess how well 200 newly constructed single detached homes perform according to building regulations pertaining to radon and identify the association between indoor radon in these homes and municipality, home age, floor area, floor level, basement, and outer wall and roof construction. Median (5-95 percentile) indoor radon levels were 36.8 (9.0-118) Bq/m(3) , but indoor radon exceeded 100 Bq/m(3) in 14 of these new homes. The investigated variables explained nine percent of the variation in indoor radon levels, and although associations were positive, none of these were statistically significant. In this study, radon levels were generally low, but we found that 14 (7%) of the 200 new homes had indoor radon levels over 100 Bq/m(3). More work is needed to determine the determinants of indoor radon.

  5. Water Entry of Projectiles

    Science.gov (United States)

    Truscott, Tadd T.; Epps, Brenden P.; Belden, Jesse

    2014-01-01

    The free-surface impact of solid objects has been investigated for well over a century. This canonical problem is influenced by many physical parameters, including projectile geometry, material properties, fluid properties, and impact parameters. Through advances in high-speed imaging and visualization techniques, discoveries about the underlying physics have improved our understanding of these phenomena. Improvements to analytical and numerical models have led to critical insights into cavity formation, the depth and time of pinch-off, forces, and trajectories for myriad different impact parameters. This topic spans a wide range of regimes, from low-speed entry phenomena dominated by surface tension to high-speed ballistics, for which cavitation is important. This review surveys experimental, theoretical, and numerical studies over this broad range, utilizing canonical images where possible to enhance intuition and insight into the rich phenomena.

  6. The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment

    CERN Document Server

    Chu, M C; Kwok, M W; Kwok, T; Leung, J K C; Leung, K Y; Lin, Y C; Luk, K B; Pun, C S J

    2016-01-01

    We developed a highly sensitive, reliable and portable automatic system (H$^{3}$) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H$^{3}$ is able to measure radon concentration with a statistical error less than 10\\% in a 1-hour measurement of dehumidified air (R.H. 5\\% at 25$^{\\circ}$C) with radon concentration as low as 50 Bq/m$^{3}$. This is achieved by using a large radon progeny collection chamber, semiconductor $\\alpha$-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013.

  7. Indoor radon survey in dwellings of some regions in Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Khayrat, A.H. E-mail: akhayrat@yahoo.com; Al-Jarallah, M.I.; Fazal-ur-Rehman, X.; Abu-Jarad, F

    2003-06-01

    Indoor radon survey in a total of 241 dwellings, distributed in some regions of Yemen was performed, using CR-39 based radon monitors. The objective of this radon survey is to get representative indoor radon data of three regions, namely Dhamar, Taiz and Hodeidah, situated at different altitudes above sea level. The radon concentrations varied from 3 to 270 Bq m{sup -3} with an average of 42 Bq m{sup -3}. It was found that the average radon concentration in the surveyed areas increases with altitudes. The highest average radon concentration of 59 Bq m{sup -3} was found in Dhamar city while the lowest average concentration of 8 Bq m{sup -3} was found in Hodeidah city.

  8. Entry at Venus

    Science.gov (United States)

    Venkatapathy, Ethiraj; Smith, Brandon

    2016-01-01

    This is lecture to be given at the IPPW 2016, as part of the 2 day course on Short Course on Destination Venus: Science, Technology and Mission Architectures. The attached presentation material is intended to be introduction to entry aspects of Venus in-situ robotic missions. The presentation introduces the audience to the aerodynamic and aerothermodynamic aspects as well as the loads, both aero and thermal, generated during entry. The course touches upon the system design aspects such as TPS design and both high and low ballistic coefficient entry system concepts that allow the science payload to be protected from the extreme entry environment and yet meet the mission objectives.

  9. Lung Cancer Risk from Occupational and Environmental Radon and Role of Smoking in Two Czech Nested Case-Control Studies

    Directory of Open Access Journals (Sweden)

    Ladislav Tomasek

    2013-03-01

    Full Text Available The aim of the present study was to evaluate the risk of lung cancer from combined exposure to radon and smoking. Methodologically, it is based on case-control studies nested within two Czech cohort studies of nearly 11,000 miners followed-up for mortality in 1952–2010 and nearly 12,000 inhabitants exposed to high levels of radon in homes, with mortality follow-up in 1960–2010. In addition to recorded radon exposure, these studies use information on smoking collected from the subjects or their relatives. A total of 1,029 and 370 cases with smoking information have been observed in the occupational and environmental (residential studies, respectively. Three or four control subjects have been individually matched to cases according to sex, year of birth, and age. The combined effect from radon and smoking is analyzed in terms of geometric mixture models of which the additive and multiplicative models are special cases. The resulting models are relatively close to the additive interaction (mixing parameter 0.2 and 0.3 in the occupational and residential studies, respectively. The impact of the resulting model in the residential radon study is illustrated by estimates of lifetime risk in hypothetical populations of smokers and non-smokers. In comparison to the multiplicative risk model, the lifetime risk from the best geometric mixture model is considerably higher, particularly in the non-smoking population.

  10. Recent developments in radon metrology: new aspects in the calibration of radon, thoron and progeny devices.

    Science.gov (United States)

    Röttger, A; Honig, A

    2011-05-01

    Due to the importance of reliable measurements of radon activity concentration, one of the past developments in metrology was applied to the field of radon, thus meeting two basic needs: (1) the harmonisation of metrology within the scope of the mutual recognition arrangement, an arrangement drawn up by the International Committee of Weights and Measures for the mutual recognition of national standards and of calibrations issued by national metrology institutes and (2) the increased demands of the European Atomic Energy Community (EURATOM) directive, transferred into national radiation protection regulations with regard to natural radioactivity and its quality-assured measurements. This paper gives an overview of typical technical procedures in the radon-measuring technique group of PTB, covering all aspects of reference atmospheres (primary standards) for radon, thoron and their respective progenies.

  11. Occupational exposure to radon in Australian Tourist Caves an Australian-wide study of radon levels

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B.; Langroo, R.; Peggie, J.R. [Australian Radiation Laboratory. Yallambie, VIC (Australia); Lyons, R.G. [University of Auckland, Auckland, (New Zealand). Department of Physics; James, J.M. [University of Sydney, Sydney, NSW (Australia). Department of Chemisty

    1996-02-01

    The study described in this report sets out to determine which Australian show caves have long- term radon levels in excess of the proposed action level of 1000 Bq m{sup -3}. The collaborative study between the Australian Radiation Laboratory (ARL), the University of Sydney and the University of Auckland, was carried out with the support of a Research Grant from Worksafe Australia. The aims of this study were to measure radon levels for each season over a period of one year, at representative sites in all developed show caves around Australia, to determine yearly average radon levels for each cave tour, based on these site measurements, to estimate the radiation doses to the tour guides employed in these caves, and to identify caves with radon concentrations in excess of the action level. (authors) 7 refs., 10 tabs., 2 figs.

  12. From the similarities between neutrons and radon to advanced radon-detection and improved cold fusion neutron-measurements

    Science.gov (United States)

    Tommasino, L.; Espinosa, G.

    2014-07-01

    Neutrons and radon are both ubiquitous in the earth's crust. The neutrons of terrestrial origin are strongly related to radon since they originate mainly from the interactions between the alpha particles from the decays of radioactive-gas (namely Radon and Thoron) and the light nuclei. Since the early studies in the field of neutrons, the radon gas was used to produce neutrons by (α, n) reactions in beryllium. Another important similarity between radon and neutrons is that they can be detected only through the radiations produced respectively by decays or by nuclear reactions. These charged particles from the two distinct nuclear processes are often the same (namely alpha-particles). A typical neutron detector is based on a radiator facing a alpha-particle detector, such as in the case of a neutron film badge. Based on the similarity between neutrons and radon, a film badge for radon has been recently proposed. The radon film badge, in addition to be similar, may be even identical to the neutron film badge. For these reasons, neutron measurements can be easily affected by the presence of unpredictable large radon concentration. In several cold fusion experiments, the CR-39 plastic films (typically used in radon and neutron film-badges), have been the detectors of choice for measuring neutrons. In this paper, attempts will be made to prove that most of these neutron-measurements might have been affected by the presence of large radon concentrations.

  13. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.

  14. Novel determination of radon-222 velocity in deep subsurface rocks and the feasibility to using radon as an earthquake precursor

    Science.gov (United States)

    Zafrir, Hovav; Ben Horin, Yochai; Malik, Uri; Chemo, Chaim; Zalevsky, Zeev

    2016-09-01

    A novel technique utilizing simultaneous radon monitoring by gamma and alpha detectors to differentiate between the radon climatic driving forces and others has been improved and used for deep subsurface investigation. Detailed long-term monitoring served as a proxy for studying radon movement within the shallow and deep subsurface, as well as for analyzing the effect of various parameters of the radon transport pattern. The main achievements of the investigation are (a) determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m/h on average; (b) distinguishing between the diurnal periodical effect of the ambient temperature and the semidiurnal effect of the ambient pressure on the radon temporal spectrum; and (c) identification of a radon random preseismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone.

  15. RADON PROGENY AS AN EXPERIMENTAL TOOL FOR DOSIMETRY OF NANOAEROSOLS

    Energy Technology Data Exchange (ETDEWEB)

    Ruzer, Lev; Ruzer, Lev S.; Apte, Michael G.

    2008-02-25

    The study of aerosol exposure and dosimetry measurements and related quantitation of health effects are important to the understanding of the consequences of air pollution, and are discussed widely in the scientific literature. During the last 10 years the need to correlate aerosol exposure and biological effects has become especially important due to rapid development of a new, revolutionary industry ?-- nanotechnology. Nanoproduct commerce is predicted to top $1 trillion by 2015. Quantitative assessment of aerosol particle behavior in air and in lung deposition, and dosimetry in different parts of the lung, particularly for nanoaerosols, remains poor despite several decades of study. Direct measurements on humans are still needed in order to validate the hollow cast, animal studies, and lung deposition modeling. We discuss here the use of nanoscale radon decay products as an experimental tool in the study of local deposition and lung dosimetry for nanoaerosols. The issue of the safe use of radon progeny in such measurements is discussed based on a comparison of measured exposure in 3 settings: general population, miners, and in a human experiment conducted at the Paul Scherer Institute (PSI) in Switzerland. One of the properties of radon progeny is that they consist partly of 1 nm radioactive particles called unattached activity; having extremely small size and high diffusion coefficients, these particles can be potentially useful as radioactive tracers in the study of nanometer-sized aerosols. We present a theoretical and experimental study of the correlation between the unattached activity and aerosol particle surface area, together with a description of its calibration and method for measurement of the unattached fraction.

  16. Log-normality of indoor radon data in the Walloon region of Belgium.

    Science.gov (United States)

    Cinelli, Giorgia; Tondeur, François

    2015-05-01

    The deviations of the distribution of Belgian indoor radon data from the log-normal trend are examined. Simulated data are generated to provide a theoretical frame for understanding these deviations. It is shown that the 3-component structure of indoor radon (radon from subsoil, outdoor air and building materials) generates deviations in the low- and high-concentration tails, but this low-C trend can be almost completely compensated by the effect of measurement uncertainties and by possible small errors in background subtraction. The predicted low-C and high-C deviations are well observed in the Belgian data, when considering the global distribution of all data. The agreement with the log-normal model is improved when considering data organised in homogeneous geological groups. As the deviation from log-normality is often due to the low-C tail for which there is no interest, it is proposed to use the log-normal fit limited to the high-C half of the distribution. With this prescription, the vast majority of the geological groups of data are compatible with the log-normal model, the remaining deviations being mostly due to a few outliers, and rarely to a "fat tail". With very few exceptions, the log-normal modelling of the high-concentration part of indoor radon data is expected to give reasonable results, provided that the data are organised in homogeneous geological groups.

  17. Systematic grid-wise radon concentration measurements and first radon map in Cyprus

    CERN Document Server

    Theodoulou, G; Parpottas, Y; 10.1016/j.radmeas.2012.03.019

    2012-01-01

    A systematic study of the indoor airborne radon concentration in the central part of the Nicosia district was conducted, using high-sensitivity active radon portable detectors of the type "RADIM3A". From a total of 108 measurements in 54 grids of 1 km^2 area each, the overall mean value is 20.6 \\pm 13.2 Bq m^-3 (A.M.\\pm S.D.). That is almost twice less than the corresponding average worldwide value. The radon concentration levels in drinking water were also measured in 24 sites of the residential district, using the high-sensitivity radon detector of the type "RADIM3W". The mean value obtained from these measurements is 243.8 \\pm 224.8 mBq L^-1, which is relatively low compared to the corresponding internationally accepted level. The associated annual effective dose rates to each measurement were also calculated and compared to the corresponding worldwide values. From the geographical coordinates of the measuring sites and the corresponding radon concentration values, the digital radon map of the central part...

  18. Double entry bookkeeping vs single entry bookkeeping

    Directory of Open Access Journals (Sweden)

    Ileana Andreica

    2016-11-01

    Full Text Available Abstract: A financial management eficiently begin, primarily, with an accounting record kept in the best possible conditions, this being conditioned on the adoption of a uniform forms, rational, clear and simple accounting. Throughout history, there have been known two forms of accounting: the simple and double entry. Romanian society after 1990 underwent a substantial change in social structure, the sector on which put a great emphasis being private, that of small manufacturers, peddler, freelance, who work independently and authorized or as associative form (family enterprises, various associations (owners, tenants, etc., liberal professions, etc.. They are obliged to keep a simple bookkeeping, because they have no juridical personality. Companies with legal personality are required to keep double entry bookkeeping; therefore, knowledge and border demarcation between the two forms of organisation of accounting is an essential. The material used for this work is mainly represented by the financial and accounting documents, by the analysis of the economic, by legislative updated sources, and as the method was used the comparison method, using hypothetical data, in case of an authorized individual and a legal entity. Based on the chosen material, an authorized individual (who perform single entry accounting system and a juridical entity (who perform double entry accounting system were selected comparative case studies, using hypothetical data, were analysed advantages and disadvantages in term of fiscal, if using two accounting systems, then were highlighted some conclusion that result.

  19. RADON REDUCTION IN A CRAWL SPACE HOUSE

    Science.gov (United States)

    Radon, a naturally occurring radioactive gas, is drawn from the soil into a house when low air pressure exists in the house. This is a commonplace environmental hazard in the United States, Canada, and northern Europe. The U.S. Environmental Protection Agency (EPA) is developing ...

  20. Protect Your Home and Family from Radon

    Science.gov (United States)

    DALLAS - (Jan. 11, 2016) Radon-the silent killer-is responsible for about 21,000 lung cancer deaths every year. The U.S. Environmental Protection Agency encourages Americans around the country to test their homes for this naturally occurring radioac