WorldWideScience

Sample records for modeling radiation forces

  1. Uncertainities in carbon dioxide radiative forcing in atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Cess, R.D.; Zhang, M.H. (State Univ. of New York, Stony Brook, NY (United States)); Potter, G.L.; Gates, W.L.; Taylor, K.E. (Lawrence Livermore National Laboratory, CA (United States)); Colman, R.A.; Fraser, J.R.; McAvaney, B.J. (Bureau of Meterorology Research Centre, Victoria (Australia)); Dazlich, D.A.; Randall, D.A. (Colorado State Univ., Fort Collins, CO (United States)); Del Genio, A.D.; Lacis, A.A. (Goddard Institute for Space Studies, New York, NY (United States)); Esch, M.; Roeckner, E. (Max Planck Institute for Meteorology, Hamburg (Germany)); Galin, V. (Russian Academy of Sciences, Moscow (Russian Federation)); Hack, J.J.; Kiehl, J.T. (National Center for Atmospheric Research, Boulder, CO (United States)); Ingram, W.J. (Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)); Le Treut, H.; Lli, Z.X. (Laboratoire de Meteorologie Dynamique, Paris (France)); Liang, X.Z.; Wang, W.C. (State Univ. of New York, Albany, NY (United States)); Mahfouf,

    1993-11-19

    Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  2. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    Science.gov (United States)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  3. A Matlab Toolbox for Parametric Identification of Radiation-Force Models of Ships and Offshore Structures

    Directory of Open Access Journals (Sweden)

    Tristan Perez

    2009-01-01

    Full Text Available This article describes a Matlab toolbox for parametric identification of fluid-memory models associated with the radiation forces ships and offshore structures. Radiation forces are a key component of force-to- motion models used in simulators, motion control designs, and also for initial performance evaluation of wave-energy converters. The software described provides tools for preparing non-parmatric data and for identification with automatic model-order detection. The identification problem is considered in the frequency domain.

  4. Quantifying the effects of aviation on radiative forcing and temperature with a climate response model

    OpenAIRE

    Lim, L; Lee, D. S.; Sausen, R.; Ponater, M.

    2007-01-01

    Simplified climate models can be used to calculate and to compare temperature response contributions from small forcings without the need for considerable computer resources. A linear climate response model using Green’s functions has been formulated to calculate radiative forcing (RF) and the global mean temperature response from aviation. The model, LinClim, can calculate aviation RF for CO2, O3, CH4, water vapour, contrails, sulphate and black carbon aerosols. From these RFs, temperatur...

  5. Modeling Study of the Global Distribution of Radiative Forcing by Dust Aerosol

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; MA Jinghui; ZHENG Youfei

    2010-01-01

    To quantitatively understand the dust aerosol effects on climate change, we calculated the global dis-tribution of direct radiative forcing due to dust aerosol under clear and cloudy skies in both winter and summer, by using an improved radiative transfer model and the global distribution of dust mass concentra-tion given by GADS (Global Aerosol Data Set). The results show that the global means of the solar forcing due to dust aerosol at the tropopause for winter and summer are -0.48 and -0.50 W m-2, respectively; the corresponding values for the longwave forcing due to dust are 0.11 and 0.09 W m-2, respectively. At the surface, the global means of the solar forcing clue to dust are -1.36 W m-2 for winter and -1.56 W m-2 for summer, whereas the corresponding values for the longwave forcing are 0.27 and 0.23 W m-2, respectively. This work points out that the absolute values of the solar forcing due to dust aerosol at both the tropopause and surface increase linearly with the cosine of solar zenith angle and surface albedo. The solar zenith angle influences both the strength and distribution of the solar forcing greatly. Clouds exert great effects on the direct radiative forcing of dust, depending on many factors including cloud cover, cloud height, cloud water path, surface albedo, solar zenith angle, etc. The effects of low clouds and middle clouds are larger than those of high clouds. The existence of clouds reduces the longwave radiative forcing at the tropopause, where the influences of low clouds are the most obvious. Therefore, the impacts of clouds should not be ignored when estimating the direct radiative forcing due to dust aerosol.

  6. Dust vertical profile impact on global radiative forcing estimation using a coupled chemical-transport–radiative-transfer model

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2013-07-01

    Full Text Available Atmospheric mineral dust particles exert significant direct radiative forcings and are important drivers of climate and climate change. We used the GEOS-Chem global three-dimensional chemical transport model (CTM coupled with the Fu-Liou-Gu (FLG radiative transfer model (RTM to investigate the dust radiative forcing and heating rate based on different vertical profiles for April 2006. We attempt to actually quantify the sensitivities of radiative forcing to dust vertical profiles, especially the discrepancies between using realistic and climatological vertical profiles. In these calculations, dust emissions were constrained by observations of aerosol optical depth (AOD. The coupled calculations utilizing a more realistic dust vertical profile simulated by GEOS-Chem minimize the physical inconsistencies between 3-D CTM aerosol fields and the RTM. The use of GEOS-Chem simulated vertical profile of dust extinction, as opposed to the FLG prescribed vertical profile, leads to greater and more spatially heterogeneous changes in the estimated radiative forcing and heating rate produced by dust. Both changes can be attributed to a different vertical structure between dust and non-dust source regions. Values of the dust vertically resolved AOD per grid level (VRAOD are much larger in the middle troposphere, though smaller at the surface when the GEOS-Chem simulated vertical profile is used, which leads to a much stronger heating rate in the middle troposphere. Compared to the FLG vertical profile, the use of GEOS-Chem vertical profile reduces the solar radiative forcing at the top of atmosphere (TOA by approximately 0.2–0.25 W m−2 over the African and Asian dust source regions. While the Infrared (IR radiative forcing decreases 0.2 W m−2 over African dust belt, it increases 0.06 W m−2 over the Asian dust belt when the GEOS-Chem vertical profile is used. Differences in the solar radiative forcing at the surface between the use of the GEOS-Chem and

  7. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2010-02-01

    Full Text Available Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing.

    Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is −0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between −0.32 to −0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  8. On the radiative forcing of volcanic plumes: modelling the impact of Mount Etna in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Pasquale Sellitto

    2015-12-01

    Full Text Available The impact of small to moderate volcanic eruptions on the regional to global radiative forcing and climate is still largely unknown and thought to be presently underestimated. In this work, daily average shortwave radiative forcing efficiencies at the surface (RFEdSurf, at top of the atmosphere (RFEdTOA and their ratio (f, for upper tropospheric volcanic plumes with different optical characterization, are derived using the radiative transfer model UVSPEC and the LibRadtran suite. The optical parameters of the simulated aerosol layer, i.e., the Ångströem coefficient (alpha, the single scattering albedo (SSA and the asymmetry factor (g, have been varied to mimic volcanic ash (bigger and more absorbing particles, sulphate aerosols (smaller and more reflective particles and intermediate/mixed conditions. The characterization of the plume and its vertical distribution have been set-up to simulate Mount Etna, basing on previous studies. The radiative forcing and in particular the f ratio is strongly affected by the SSA and g, and to a smaller extent by alpha, especially for sulphates-dominated plumes. The impact of the altitude and thickness of the plume on the radiative forcing, for a fixed optical characterization of the aerosol layer, has been found negligible (less than 1% for RFEdSurf, RFEdTOA and f. The simultaneous presence of boundary layer/lower tropospheric marine or dust aerosols, like expected in the Mediterranean area, modulates only slightly (up to 12 and 14% for RFEdSurf and RFEdTOA, and 3 to 4% of the f ratio the radiative effects of the upper tropospheric volcanic layer.

  9. Modelling the effect of the radiation reaction force on the acceleration of ultra-thin foils

    Science.gov (United States)

    Duff, M. J.; Capdessus, R.; King, M.; Del Sorbo, D.; Ridgers, C. P.; McKenna, P.

    2017-05-01

    An investigation of the effects of the radiation reaction force on radiation pressure acceleration is presented. Through 1D(3V) PIC code simulations, it is found that radiation reaction causes a decrease in the target velocity during the interaction of an ultra-intense laser pulse with a solid density thin foil of varying thickness. This change in the target velocity can be related to the loss of backwards-directed electrons due to cooling and reflection in the laser field. The loss of this electron population changes the distribution of the emitted synchrotron radiation. We demonstrate that it is the emission of radiation which leads to the observed decrease in target velocity. Through a modification to the light sail equation of motion (which is used to describe radiation pressure acceleration in thin foils), which accounts for the conversion of laser energy to synchrotron radiation, we can describe this change in target velocity. This model can be tested in future experiments with ultra-high intensity lasers, and will lead to a better understanding of the process of relativistically induced transparency in the new intensity regime.

  10. Monsoon sensitivity to aerosol direct radiative forcing in the community atmosphere model

    Science.gov (United States)

    Sajani, S.; Krishna Moorthy, K.; Rajendran, K.; Nanjundiah, Ravi S.

    2012-08-01

    Aerosol forcing remains a dominant uncertainty in climate studies. The impact of aerosol direct radiative forcing on Indian monsoon is extremely complex and is strongly dependent on the model, aerosol distribution and characteristics specified in the model, modelling strategy employed as well as on spatial and temporal scales. The present study investigates (i) the aerosol direct radiative forcing impact on mean Indian summer monsoon when a combination of quasi-realistic mean annual cycles of scattering and absorbing aerosols derived from an aerosol transport model constrained with satellite observed Aerosol Optical Depth (AOD) is prescribed, (ii) the dominant feedback mechanism behind the simulated impact of all-aerosol direct radiative forcing on monsoon and (iii) the relative impacts of absorbing and scattering aerosols on mean Indian summer monsoon. We have used CAM3, an atmospheric GCM (AGCM) that has a comprehensive treatment of the aerosol-radiation interaction. This AGCM has been used to perform climate simulations with three different representations of aerosol direct radiative forcing due to the total, scattering aerosols and black carbon aerosols. We have also conducted experiments without any aerosol forcing. Aerosol direct impact due to scattering aerosols causes significant reduction in summer monsoon precipitation over India with a tendency for southward shift of Tropical Convergence Zones (TCZs) over the Indian region. Aerosol forcing reduces surface solar absorption over the primary rainbelt region of India and reduces the surface and lower tropospheric temperatures. Concurrent warming of the lower atmosphere over the warm oceanic region in the south reduces the land-ocean temperature contrast and weakens the monsoon overturning circulation and the advection of moisture into the landmass. This increases atmospheric convective stability, and decreases convection, clouds, precipitation and associated latent heat release. Our analysis reveals a

  11. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E.; Zubov, V.; Egorova, T.; Ozolin, Y. [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1997-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  12. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  13. Cloud Radiative Forcing in Asian Monsoon Region Simulated by IPCC AR4 AMIP Models

    Institute of Scientific and Technical Information of China (English)

    LI Jiandong; LIU Yimin; WU Guoxiong

    2009-01-01

    This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0°-50°N,60°-150°E)simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models.During boreal winter,no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP.During boreal summer,there are larger biases for central location and intensity of simulated CRF in active convective regions.The CRF biases are closely related to the rainfall biases in the models.Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high,and that the biases and diversity in SWCF are larger than that in LWCF.The annual cycle of simulated CRF over East Asia (0°-50°N,100°-145°E) is also examined.Though many models capture the basic annual cycle in tropics,strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models.As a whole,GFDL-CM2.1,MPI-ECHAM5,UKMO-HadGAM1,and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region,and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP,and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.

  14. Modeling nitrate aerosol distributions and its direct radiative forcing in East Asia with RAMS-CMAQ

    Institute of Scientific and Technical Information of China (English)

    Xiao Han; Meigen Zhang; Baorong Zhou

    2013-01-01

    The geographical and seasonal characteristics in nitrate aerosol and its direct radiative forcing over East Asia are analyzed by using the air quality modeling system RAMS-CMAQ coupled with an aerosol optical properties/radiative transfer module.For evaluating the model performance,nitrate ion concentration in precipitation,and mixing ratios of PM1o,and some gas precursors of aerosol during the whole year of 2007 are compared against surface observations at 17 stations located in Japan,Korea,and China,and the satellite retrieved NO2 columns.The comparison shows that the simulated values are generally in good agreement with the observed ones.Simulated monthly averaged values are mostly within a factor of 2 of the measurements at the observation stations.The distribution patterns of NO2 from simulation and satellite measurement are also similar with each other.Analysis of the distribution features of monthly and yearly averaged mass concentration and direct radiative forcing (DRF) of nitrate indicates that the nitrate aerosol could reach about 25-30% of the total aerosol mass concentration and DRF in Sichuan Basin,Southeast China,and East China where the high mass burden of all major aerosols concentrated.The high-est mass concentration and strongest DRF of nitrate could exceed 40 μg/m3 and-5 W/m2,respectively.It also indicates that other aerosol species,such as carbonaceous and mineral particles,could obviously influence the nitrate DRF for they are often internally mixed with each other.

  15. Aerosol absorption and radiative forcing

    Directory of Open Access Journals (Sweden)

    P. Stier

    2007-05-01

    Full Text Available We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006 significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the short-wave anthropogenic aerosol top-of-atmosphere (TOA radiative forcing clear-sky from –0.79 to –0.53 W m−2 (33% and all-sky from –0.47 to –0.13 W m−2 (72%. Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19 W m−2 (36% clear-sky and of 0.12 W m−2 (92% all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05 W

  16. Uncertainty in modeling dust mass balance and radiative forcing from size parameterization

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2013-07-01

    Full Text Available This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the dust size parameterization. Simulations are conducted quasi-globally (180° W–180° E and 60° S–70° N using the WRF-Chem model with three different approaches to represent dust size distribution (8-bin, 4-bin, and 3-mode. The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode approach retains more fine dust particles but fewer coarse dust particles due to its prescribed σg of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (∼6000 Tg yr-1, the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg and 25% (49.1 Tg higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (-2 and atmospheric warming (0.39∼0.96 W m-2 and in a tremendous difference of a factor of ∼10 in dust TOA cooling (-0.24∼-2.20 W m-2. An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size

  17. Radiative forcing and climate metrics for ozone precursor emissions: the impact of multi-model averaging

    Directory of Open Access Journals (Sweden)

    C. R. MacIntosh

    2014-10-01

    Full Text Available Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOC and CO. When these ozone changes are used to calculate radiative forcing (RF (and climate metrics such as the global warming potential (GWP and global temperature potential (GTP there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane lifetime changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in 4 regions (East Asia, Europe, North America and South Asia. We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOC and 2% for NOx. Differences of up to 60% for NOx 7% for VOC and 3% for CO are introduced into the 20 year GWP as a result of the exponential decay terms, with similar values for the 20 years GTP. However, estimates of the SD calculated from the ensemble-mean input fields (where the SD at each point on the model grid is added to or subtracted from the mean field are almost always substantially larger in RF, GWP and GTP metrics than the true SD, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. We find that the effect is generally most marked for the case of NOx emissions, where the net effect is a smaller residual of terms of opposing signs. For example, the SD for the 20 year GWP is two to three times larger using the ensemble-mean fields than using the individual models to calculate the RF. Hence, while the average of multi-model

  18. Radiative forcing and climate metrics for ozone precursor emissions: the impact of multi-model averaging

    Directory of Open Access Journals (Sweden)

    C. R. MacIntosh

    2015-04-01

    Full Text Available Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds and CO. When these ozone changes are used to calculate radiative forcing (RF (and climate metrics such as the global warming potential (GWP and global temperature-change potential (GTP there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia. We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3

  19. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Zhongwei; Bi, Jianrong; Zhang, Wu; Shi, Jinsen; Yang, Lei; Li, Deshuai; Li, Jinxin

    2014-12-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust mass balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.

  20. Force approach to radiation reaction

    Energy Technology Data Exchange (ETDEWEB)

    López, Gustavo V., E-mail: gulopez@udgserv.cencar.udg.mx

    2016-02-15

    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion of a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.

  1. Force approach to radiation reaction

    Science.gov (United States)

    López, Gustavo V.

    2016-02-01

    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion of a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.

  2. A modeling study of effective radiative forcing and climate response due to increased methane concentration

    Directory of Open Access Journals (Sweden)

    Bing Xie

    2016-12-01

    Full Text Available An atmospheric general circulation model BCC_AGCM2.0 and observation data from ARIS were used to calculate the effective radiative forcing (ERF due to increased methane concentration since pre-industrial times and its impacts on climate. The ERF of methane from 1750 to 2011 was 0.46 W m−2 by taking it as a well-mixed greenhouse gas, and the inhomogeneity of methane increased its ERF by about 0.02 W m−2. The change of methane concentration since pre-industrial led to an increase of 0.31 °C in global mean surface air temperature and 0.02 mm d−1 in global mean precipitation. The warming was prominent over the middle and high latitudes of the Northern Hemisphere (with a maximum increase exceeding 1.4 °C. The precipitation notably increased (maximum increase of 1.8 mm d−1 over the ocean between 10°N and 20°N and significantly decreased (maximum decrease >–0.6 mm d−1 between 10°S and 10°N. These changes caused a northward movement of precipitation cell in the Intertropical Convergence Zone (ITCZ. Cloud cover significantly increased (by approximately 4% in the high latitudes in both hemispheres, and sharply decreased (by approximately 3% in tropical areas.

  3. Modeled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Herber, A.; Kondo, Y.; Li, S.-M.; Moteki, N.; Koike, M.; Oshima, N.; Schwarz, J. P.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T. K.; Bian, H.; Chin, M.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2014-08-01

    Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparision. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modeled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.

  4. Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Herber, A.; Kondo, Y.; Li, S.-M.; Moteki, N.; Koike, M.; Oshima, N.; Schwarz, J. P.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T. K.; Bian, H.; Chin, M.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2014-11-01

    Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long-range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present-day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparison. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modelled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.

  5. Modeled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations

    Directory of Open Access Journals (Sweden)

    B. H. Samset

    2014-08-01

    Full Text Available Atmospheric black carbon (BC absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF. However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparision. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modeled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.

  6. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime in AeroCom Phase II Constrained by Aircraft Observations

    Energy Technology Data Exchange (ETDEWEB)

    Samset, B. H.; Myhre, G.; Herber, Andreas; Kondo, Yutaka; Li, Shao-Meng; Moteki, N.; Koike, Makoto; Oshima, N.; Schwarz, Joshua P.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Berntsen, T.; Bian, Huisheng; Chin, M.; Diehl, Thomas; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kirkevag, A.; Lamarque, Jean-Francois; Lin, Guang; Liu, Xiaohong; Penner, Joyce E.; Schulz, M.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, Kostas; Zhang, Kai

    2014-11-27

    Black carbon (BC) aerosols absorb solar radiation, and are generally held to exacerbate global warming through exerting a positive radiative forcing1. However, the total contribution of BC to the ongoing changes in global climate is presently under debate2-8. Both anthropogenic BC emissions and the resulting spatial and temporal distribution of BC concentration are highly uncertain2,9. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood, leading to large estimated uncertainty in BC concentration at high altitudes and far from emission sources10. These uncertainties limit our ability to quantify both the historical, present and future anthropogenic climate impact of BC. Here we compare vertical profiles of BC concentration from four recent aircraft measurement campaigns with 13 state of the art aerosol models, and show that recent assessments may have overestimated present day BC radiative forcing. Further, an atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in transport dominated remote regions. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in the multi-model median direct BC forcing from fossil fuel and biofuel burning over the industrial era.

  7. Assessment of aerosol radiative forcing in the North-Eastern region of India using radiative transfer model and regional climate model

    Science.gov (United States)

    Pathak, Binita; Bhuyan, Pradip

    Regional characterization of atmospheric aerosols is essential from the viewpoint of reducing the current uncertainties in the understanding of their climate implications at regional and global scale. The north-eastern part of India owing to its unique topography and geography located at sub Himalayan range and the middle of Indian Subcontinent and South-East Asian region as well as with scattered local hilly regions persevere complex aerosol environment. Collocated measurements of parameters corresponding to aerosol optical and physical properties i.e., spectral aerosol optical depths (AODs) by a 10 channel Multi-Wavelength solar Radiometer (MWR), near surface aerosol mass concentration of composite aerosols by a Quartz Crystal Microbalance Impactor (QCM) and Black Carbon (BC) mass concentration by an Aethalometer have been used in the Optical Properties of Aerosols and Clouds (OPAC) model to estimate the optical properties of composite aerosols over Dibrugarh (27.3ºN, 94.6ºE, 111 m amsl) for the short wavelength range. The OPAC outputs are then used as inputs to the Rdiative Transfer model ‘Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART)’, developed by the University of California, Santa Barbara, to derive the shortwave aerosol radiative properties. The aerosol optical depth shows maximum value in pre-monsoon season and minimum in post-monsoon season. Columnar aerosols are bimodal in nature with dominant contribution from fine mode aerosols. Unlike columnar aerosols surface aerosol concentration including black carbon shows maximum value in winter and minimum in monsoon season. The aerosol radiative forcing (ARF) estimated for the period pre-monsoon 2008-winter 2013 shows maximum value in the pre-monsoon season at the surface as well as in the atmosphere corresponding to highest columnar aerosol loading. The surface forcing varies between -37 Wm-2 in Pre-monsoon 2009 and 2011 to -13 Wm-2 in Post-monsoon 2008 while forcing in the Atmosphere

  8. Aerosol modeling in CNRM-CM: evaluation of recent developments on natural aerosols and implications for aerosol radiative forcing

    Science.gov (United States)

    Nabat, Pierre; Michou, Martine; Watson, Laura; Saint-Martin, David

    2017-04-01

    Aerosols interact with shortwave and longwave radiation with ensuing consequences on the radiative budget and climate. Their representation in climate models is consequently essential to estimate their radiative forcing and their role in the climate system. However, up to now, the evaluation of these aerosol schemes is often limited to the integrated atmospheric aerosol content given by the aerosol optical depth (AOD). In the climate model CNRM-CM, the TACTIC (Tropospheric Aerosols for ClimaTe in CNRM-CM, Michou et al., 2015) aerosol scheme includes the five main aerosol species (desert dust, sea-salt, sulfate, black carbon and organic matter). Recent developments have been carried out to improve the representation of natural aerosols, namely the inclusion of the parameterization of Grythe et al. (2014) for sea-salt emissions, the revision of the size distribution of sea-salt aerosols, and the increase of the number of bins to represent dust aerosols. The objective of this work is to evaluate the contribution of these developments to the representation of aerosols in CNRM-CM, using not only AOD from satellite data, but also aerosol vertical distribution and concentrations from in-situ measurements. Simulations have thus been carried out using different configurations of the aerosol scheme over the period 2000-2015, to allow for an evaluation against available measurements. The results show a relatively good performance of the model, but also reveal some discrepancies in the aerosol vertical distribution. The impact on the radiative budget of these changes in aerosol loads has been estimated, and shows the importance of the representation of natural aerosols for the estimation of aerosol radiative forcing.

  9. Collective effects in the radiation pressure force

    CERN Document Server

    Bachelard, R; Guerin, W; Kaiser, R

    2016-01-01

    We discuss the role of diffuse, Mie and cooperative scattering on the radiation pressure force acting on the center of mass of a cloud of cold atoms. Even though a mean-field Ansatz (the `timed Dicke state'), previously derived from a cooperative scattering approach, has been shown to agree satisfactorily with experiments, diffuse scattering also describes very well most features of the radiation pressure force on large atomic clouds. We compare in detail an incoherent, random walk model for photons and a diffraction approach to the more complete description based on coherently coupled dipoles. We show that a cooperative scattering approach, although it provides a quite complete description of the scattering process, is not necessary to explain the previous experiments on the radiation pressure force.

  10. Radiative screening of fifth forces

    CERN Document Server

    Burrage, Clare; Millington, Peter

    2016-01-01

    We describe a symmetron model in which the screening of fifth forces arises at the one-loop level through the Coleman-Weinberg mechanism of spontaneous symmetry breaking. We show that such a theory can avoid current constraints on the existence of fifth forces, but still has the potential to give rise to observable deviations from general relativity.

  11. Black carbon radiative forcing derived from AERONET measurements and models over an urban location in the southeastern Iberian Peninsula

    Science.gov (United States)

    Valenzuela, A.; Arola, A.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.

    2017-07-01

    This paper provides an account of observed variations in Black carbon (BC) aerosol concentrations and their induced radiative forcing for the first time over Granada a measurement site in Southeastern Iberian Peninsula. Column-integrated BC concentrations were retrieved for the period 2005-2012. Monthly averages of BC concentrations (± one standard deviation) ranged from higher values in January and December with 4.0 ± 2.5 and 4 ± 3 mg/m2, respectively, to lower values in July and August with 1.6 ± 1.2 and 2.0 ± 0.5 mg/m2, respectively. This reduction is not only observed in the average values, but also in the median, third and first quartiles. The average BC concentration in winter (3.8 ± 0.6 mg/m2) was substantially higher than in summer (1.9 ± 0.3 mg/m2), being the eight-year average of 2.9 ± 0.9 mg/m2. The reduction in the use of fossil fuels during the economic crisis contributed significantly to reduced atmospheric loadings of BC. According to our analysis this situation persisted until 2010. BC concentration values were analyzed in terms of air mass influence using cluster analysis. BC concentrations for cluster 1 (local and regional areas) showed high correlations with air masses frequency in winter and autumn. In these seasons BC sources were related to the intense road traffic and increased BC emissions from domestic heating. High BC concentrations were found in autumn just when air mass frequencies for cluster 3 (Mediterranean region) were more elevated, suggesting that air masses coming from that area transport biomass burning particles towards Granada. BC aerosol optical properties were retrieved from BC fraction using aerosol AERONET size volume distribution and Mie theory. A radiative transfer model (SBDART) was used to estimate the aerosol radiative forcing separately for composite aerosol (total aerosols) and exclusively for BC aerosols. The mean radiative forcing for composite aerosol was + 23 ± 6 W/m2 (heating rate of + 0.21 ± 0.06 K

  12. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate

    Directory of Open Access Journals (Sweden)

    D. A. Hauglustaine

    2014-03-01

    Full Text Available The ammonia cycle and nitrate particle formation have been introduced in the LMDz-INCA global model. Both fine nitrate particles formation in the accumulation mode and coarse nitrate forming on existing dust and sea-salt particles are considered. The model simulates distributions of nitrates and related species in agreement with previous studies and observations. The calculated present-day total nitrate direct radiative forcing since the pre-industrial is −0.056 W m−2. This forcing has the same magnitude than the forcing associated with organic carbon particles and represents 18% of the sulfate forcing. Fine particles largely dominate the nitrate forcing representing close to 90% of this value. The model has been used to investigate the future changes in nitrates and direct radiative forcing of climate based on snapshot simulations for the four Representative Concentration Pathway (RCP scenarios and for the 2030, 2050 and 2100 time horizons. Due to a decrease in fossil fuel emissions in the future, the concentrations of most of the species involved in the nitrate-ammonium-sulfate system drop by 2100 except for ammonia which originates from agricultural practices and for which emissions significantly increase in the future. Despite the decrease of nitrate surface levels in Europe and Northern America, the global burden of accumulation mode nitrates increases by up to a factor of 2.6 in 2100. This increase in nitrate in the future arises despite decreasing NOx emissions due to increased availability of ammonia to form ammonium nitrate. The total aerosol direct forcing decreases from its present-day value of −0.234 W m−2 to a range of −0.070 to −0.130 W m−2 in 2100 based on the considered scenario. The direct forcing decreases for all aerosols except for nitrates for which the direct negative forcing increases to a range of −0.060 to −0.115 W m−2 in 2100. Including nitrates in the radiative forcing calculations increases the

  13. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate

    Science.gov (United States)

    Hauglustaine, D. A.; Balkanski, Y.; Schulz, M.

    2014-10-01

    The ammonia cycle and nitrate particle formation are introduced into the LMDz-INCA (Laboratoire de Météorologie Dynamique, version 4 - INteraction with Chemistry and Aerosols, version 3) global model. An important aspect of this new model is that both fine nitrate particle formation in the accumulation mode and coarse nitrate forming on existing dust and sea-salt particles are considered. The model simulates distributions of nitrates and related species in agreement with previous studies and observations. The calculated present-day total nitrate direct radiative forcing since the pre-industrial is -0.056 W m-2. This forcing corresponds to 18% of the sulfate forcing. Fine particles largely dominate the nitrate forcing, representing close to 90% of this value. The model has been used to investigate the future changes in nitrates and direct radiative forcing of climate based on snapshot simulations for the four representative concentration pathway (RCP) scenarios and for the 2030, 2050, and 2100 time horizons. Due to a decrease in fossil fuel emissions in the future, the concentration of most of the species involved in the nitrate-ammonium-sulfate system drop by 2100 except for ammonia, which originates from agricultural practices and for which emissions significantly increase in the future. Despite the decrease of nitrate surface levels in Europe and North America, the global burden of accumulation mode nitrates increases by up to a factor of 2.6 in 2100. This increase in ammonium nitrate in the future arises despite decreasing NOx emissions due to increased availability of ammonia to form ammonium nitrate. The total aerosol direct forcing decreases from its present-day value of -0.234 W m-2 to a range of -0.070 to -0.130 W m-2 in 2100 based on the considered scenario. The direct forcing decreases for all aerosols except for nitrates, for which the direct negative forcing increases to a range of -0.060 to -0.115 W m-2 in 2100. Including nitrates in the radiative

  14. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    Science.gov (United States)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  15. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  16. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  17. Modelling long-term impacts of mountain pine beetle outbreaks on merchantable biomass, ecosystem carbon, albedo, and radiative forcing

    Science.gov (United States)

    Landry, Jean-Sébastien; Parrott, Lael; Price, David T.; Ramankutty, Navin; Damon Matthews, H.

    2016-09-01

    The ongoing major outbreak of mountain pine beetle (MPB) in forests of western North America has led to considerable research efforts. However, many questions remain unaddressed regarding its long-term impacts, especially when accounting for the range of possible responses from the non-target vegetation (i.e., deciduous trees and lower-canopy shrubs and grasses). We used the Integrated BIosphere Simulator (IBIS) process-based ecosystem model along with the recently incorporated Marauding Insect Module (MIM) to quantify, over 240 years, the impacts of various MPB outbreak regimes on lodgepole pine merchantable biomass, ecosystem carbon, surface albedo, and the net radiative forcing on global climate caused by the changes in ecosystem carbon and albedo. We performed simulations for three locations in British Columbia, Canada, with different climatic conditions, and four scenarios of various coexisting vegetation types with variable growth release responses. The impacts of MPB outbreaks on merchantable biomass (decrease) and surface albedo (increase) were similar across the 12 combinations of locations and vegetation coexistence scenarios. The impacts on ecosystem carbon and radiative forcing, however, varied substantially in magnitude and sign, depending upon the presence and response of the non-target vegetation, particularly for the two locations not subjected to growing-season soil moisture stress; this variability represents the main finding from our study. Despite major uncertainty in the value of the resulting radiative forcing, a simple analysis also suggested that the MPB outbreak in British Columbia will have a smaller impact on global temperature over the coming decades and centuries than a single month of global anthropogenic CO2 emissions from fossil fuel combustion and cement production. Moreover, we found that (1) outbreak severity (i.e., per-event mortality) had a stronger effect than outbreak return interval on the variables studied, (2) MPB

  18. Strong enhancement of dispersion forces from microwave radiation

    Science.gov (United States)

    Sernelius, B. E.

    2002-11-01

    We have studied non-thermal effects of microwave radiation on the forces between objects. This is the first step in a study of possible effects of microwave radiation from cellular phones on biological tissue. We have used a simplified model for human blood cells in blood. We find for the normal radiation level of cellular phones an enhancement of the attractive force with ten orders of magnitude as compared to the corresponding effect at thermal radiation.

  19. High-resolution African population projections from radiative forcing and socio-economic models, 2000 to 2100

    Science.gov (United States)

    Boke-Olén, Niklas; Abdi, Abdulhakim M.; Hall, Ola; Lehsten, Veiko

    2017-01-01

    For its fifth assessment report, the Intergovernmental Panel on Climate Change divided future scenario projections (2005-2100) into two groups: Socio-Economic Pathways (SSPs) and Representative Concentration Pathways (RCPs). Each SSP has country-level urban and rural population projections, while the RCPs are based on radiative forcing caused by greenhouse gases, aerosols and associated land-use change. In order for these projections to be applicable in earth system models, SSP and RCP population projections must be at the same spatial scale. Thus, a gridded population dataset that takes into account both RCP-based urban fractions and SSP-based population projection is needed. To support this need, an annual (2000-2100) high resolution (approximately 1km at the equator) gridded population dataset conforming to both RCPs (urban land use) and SSPs (population) country level scenario data were created.

  20. The initial dispersal and radiative forcing of a Northern Hemisphere mid-latitude super volcano: a model study

    Directory of Open Access Journals (Sweden)

    C. Timmreck

    2006-01-01

    Full Text Available The chemistry climate model MAECHAM4/ CHEM with interactive and prognostic volcanic aerosol and ozone was used to study the initial dispersal and radiative forcing of a possible Northern Hemisphere mid-latitude super eruption. Tropospheric climate anomalies are not analysed since sea surface temperatures are kept fixed. Our experiments show that the global dispersal of a super eruption located at Yellowstone, Wy. is strongly dependent on the season of the eruption. In Northern Hemisphere summer the volcanic cloud is transported westward and preferentially southward, while in Northern Hemisphere winter the cloud is transported eastward and more northward compared to the summer case. Aerosol induced heating leads to a more global spreading with a pronounced cross equatorial transport. For a summer eruption aerosol is transported much further to the Southern Hemisphere than for a winter eruption. In contrast to Pinatubo case studies, strong cooling tendencies appear with maximum peak values of less than −1.6 K/day three months after the eruption in the upper tropical stratosphere. This strong cooling effect weakens with decreasing aerosol density over time and initially prevents the aerosol laden air from further active rising. All-sky net radiative flux changes of less than −32 W/m2 at the surface are about a factor of 6 larger than for the Pinatubo eruption. Large positive flux anomalies of more than 16 W/m2 are found in the first months in the tropics and sub tropics. These strong forcings call for a fully coupled ocean/atmosphere/chemistry model to study climate sensitivity to such a super-eruption.

  1. The Radiation Magnetic Force (FmR)

    Science.gov (United States)

    Yousif, Mahmoud

    2017-01-01

    The detection of Circular Magnetic Field (CMF), associated with electrons movement, not incorporated in theoretical works; is introduced as elements of attraction and repulsion for magnetic force between two conductors carrying electric currents; it also created magnetic force between charged particles and magnetic field, or Lorentz force; CMF contain energy of Electromagnetic Radiation (EM-R); a relationship has been established between the magnetic part of the EM-R, and radiation force, showing the magnetic force as a frequency controlled entity, in which a Radiation Magnetic Force formula is derived, the force embedded EM-Wave, similar to Electromagnetic Radiation Energy given by Planck's formula; the force is accountable for electron removal from atom in the Photoelectric Effects, stabilizing orbital atoms, excitation and ionization atoms, initiating production of secondary EM-R in Compton Effect mechanism; the paper aimed at reviving the wave nature of EM-R, which could reflects in a better understanding of the microscopic-world.

  2. Photoacoustic radiation force on a microbubble

    Science.gov (United States)

    Erkol, Hakan; Aytac-Kipergil, Esra; Unlu, Mehmet Burcin

    2014-08-01

    We investigate the radiation force on a microbubble due to the photoacoustic wave which is generated by using a pulsed laser. In particular, we focus on the dependence of pulsed laser parameters on the radiation force. In order to do so, we first obtain a new and comprehensive analytical solution to the photoacoustic wave equation based on the Fourier transform for various absorption profiles. Then, we write an expression of the radiation force containing explicit laser parameters, pulse duration, and beamwidth of the laser. Furthermore, we calculate the primary radiation force acting on a microbubble. We show that laser parameters and the position of the microbubble relative to a photoacoustic source have a considerable effect on the primary radiation force. By means of recent developments in laser technologies that render tunability of pulse duration and repetition frequency possible, an adjustable radiation force can be applied to microbubbles. High spatial control of applied force is ensured on account of smaller focal spots achievable by focused optics. In this context, conventional piezoelectric acoustic source applications could be surpassed. In addition, it is possible to increase the radiation force by making source wavelength with the absorption peak of absorber concurrent. The application of photoacoustic radiation force can open a cache of opportunities such as manipulation of microbubbles used as contrast agents and as carrier vehicles for drugs and genes with a desired force along with in vivo applications.

  3. Assessment of Clear Sky Radiative Forcing in the Caribbean Region Using an Aerosol Dispersion Model and Ground Radiometry During Puerto Rico Dust Experiment

    Science.gov (United States)

    Gasso, Santiago; Qi, Qiang; Westpthal, Douglas; Reid, Jeffery; Tsay, Si-Chee

    2004-01-01

    This study investigates the surface and top of the atmosphere solar radiative forcing by long-range transport of Saharan dust. The calculations of radiative forcing are based on measurements collected in the Puerto Rico Dust Experiment (PRIDE) carried out during July, 2000. The purpose of the experiment was the characterization of the Saharan dust plume, which frequently reaches the Caribbean region during the summer. The experiment involved the use of three approaches to study the plume: space and ground based remote sensing, airborne and ground based in-situ measurements and aerosol dispersion modeling. The diversity of measuring platforms provides an excellent opportunity for determination of the direct effect of dust on the clear sky radiative forcing. Specifically, comparisons of heating rates, surface and TOA fluxes derived from the Navy global aerosol dispersion model NAAPS (NRL Aerosol Analysis and Prediction System) and actual measurements of fluxes from ground and space based platforms are shown. In addition, the direct effect of dust on the clear sky radiative forcing is modeled. The extent and time of evolution of the radiative properties of the plume are computed with the aerosol concentrations modeled by NAAPS. Standard aerosol parameterizations, as well as in-situ composition and size distributions measured during PRIDE, are utilized to compute the aerosol optical depth, single scattering albedo and asymmetry factor. Radiative transfer computations are done with an in-house modified spectral radiative transfer code (Fu-Liou). The code includes gas absorption and cloud particles (ice and liquid phase) and it allows the input of meteorological data. The code was modified to include modules for the aerosols contribution to the calculated fluxes. This comparison study helps to narrow the current uncertainty in the dust direct radiative forcing, as recently reported in the 2001 IPCC assessment.

  4. A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model

    Directory of Open Access Journals (Sweden)

    D. Goto

    2011-04-01

    Full Text Available The direct radiative forcing by sulfate aerosols is still uncertain, mainly because the uncertainties are largely derived from differences in sulfate column burdens and its vertical distributions among global aerosol models. One of possible reasons of the large difference in the computed values is that the radiative forcing delicately depends on various simplifications of the sulfur processes made in the models. In this study, therefore, we investigated impacts of different parts of the sulfur chemistry module in a global aerosol model, SPRINTARS, on the sulfate distribution and its radiative forcing. Important studies were effects of simplified and more physical-based sulfur processes in terms of treatment of sulfur chemistry, oxidant chemistry, and dry deposition process of sulfur components. The results showed that the difference in the aqueous-phase sulfur chemistry among these treatments has the largest impact on the sulfate distribution. Introduction of all the improvements mentioned above brought the model values noticeably closer to in-situ measurements than those in the simplified methods used in the original SPRINTARS model. At the same time, these improvements also led the computed sulfate column burdens and its vertical distributions in good agreement with other AEROCOM model values. The global annual mean radiative forcings due to aerosol direct effect of anthropogenic sulfate was thus estimated to be −0.3 W m−2, whereas the original SPRINTARS model showed −0.2 W m−2. The magnitude of the difference between original and improved methods was approximately 50% of the uncertainty among estimates by the world's global aerosol models reported by the IPCC-AR4 assessment report. Findings in the present study, therefore, may suggest that the model differences in the simplifications of the sulfur processes are still a part of the large uncertainty in their simulated radiative forcings.

  5. Radiation Forces and Torques without Stress (Tensors)

    Science.gov (United States)

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  6. Radiation Forces and Torques without Stress (Tensors)

    Science.gov (United States)

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  7. Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability

    Directory of Open Access Journals (Sweden)

    C. Déandreis

    2012-06-01

    Full Text Available This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate.

    The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m−2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m−2. The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO4 m−3 in our model.

    The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate

  8. A Modeling Study of the Effects of Direct Radiative Forcing Due to Carbonaceous Aerosol on the Climate in East Asia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; WANG Zhili; GUO Pinwen; WANG Zaizhi

    2009-01-01

    The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause negative forcing at the top of the atmosphere (TOA) and surface under clear sky conditions, but positive forcing at the TOA and weak negative forcing at the surface under all sky conditions. Hence, clouds could change the sign of the direct radiative forcing at the TOA, and weaken the forcing at the surface. Carbonaceous aerosols have distinct effects on the summer climate in East Asia. In southern China and India, it caused the surface temperature to increase, but the total cloud cover and precipitation to decrease. However, the opposite effects are caused for most of northern China and Bangladesh. Given the changes in temperature, vertical velocity, and surface streamflow caused by carbonaceous aerosol in this simulation, carbonaceous aerosol could also induce summer precipitation to decrease in southern China but increase in northern China.

  9. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    D. S. Stevenson

    2013-03-01

    Full Text Available Ozone (O3 from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP has been used to calculate tropospheric ozone radiative forcings (RFs. All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750 to present-day (2010 tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%, nitrogen oxides (31 ± 9%, carbon monoxide (15 ± 3% and non-methane volatile organic compounds (9 ± 2%; earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m−2; relative to 1750 for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5 of 350, 420, 370 and 460 (in 2030, and 200, 300, 280 and 600 (in 2100. Models show some coherent responses of ozone to climate change

  10. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; hide

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  11. A Study on Sulfate Optical Properties and Direct Radiative Forcing Using LASG-IAP General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    LI Jiandong; Zhian SUN; LIU Yimin; Jiangnan LI; Wei-Chyung WANG; WU Guoxiong

    2012-01-01

    The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology,both of which undergo strong regional and seasonal variations.Because the optical properties of sulfate aerosols are also sensitive to atmospheric relative humidity,in this study we first examine the scheme for optical properties that considers hydroscopic growth.Next,we investigate the seasonal and regional distributions of sulfate DRF using the sulfate loading simulated from NCAR CAM-Chem together with the meteorology modeled from a spectral atmospheric general circulation model (AGCM) developed by LASG-IAP.The global annual-mean sulfate loading of 3.44 mg m -2 is calculated to yield the DRF of -1.03and -0.57 W m-2 for clear-sky and all-sky conditions,respectively.However,much larger values occur on regional bases.For example,the maximum all-sky sulfate DRF over Europe,East Asia,and North America can be up to -4.0 W m-2.The strongest all-sky sulfate DRF occurs in the Northern Hemispheric July,with a hemispheric average of -1.26 W m-2.The study results also indicate that the regional DRF are strongly affected by cloud and relative humidity,which vary considerably among the regions during different seasons.This certainly raises the issue that the biases in model-simulated regional meteorology can introduce biases into the sulfate DRF.Hence,the model processes associated with atmospheric humidity and cloud physics should be modified in great depth to improve the simulations of the LASG-IAP AGCM and to reduce the uncertainty of sulfate direct effects on global and regional climate in these simulations.

  12. Modeling Study of the Impact of Heterogeneous Reactions on Dust Surfaces on Aerosol Optical Depth and Direct Radiative Forcing over East Asia in Springtime

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Wei; HAN Zhi-Wei

    2011-01-01

    The spatial distributions and interannual variations of aerosol concentrations, aerosol optical depth (AOD), aerosol direct radiative forcings, and their responses to heterogeneous reactions on dust surfaces over East Asia in March 2006-10 were investigated by utilizing a regional coupled climate-chemistry/aerosol model. Anthropogenic aerosol concentrations (inorganic + carbonaceous) were higher in March 2006 and 2008, whereas soil dust reached its highest levels in March 2006 and 2010, resulting in stronger aerosol radiative forcings in these periods. The domain and five-year (2006-10) monthly mean concentrations of anthropogenic and dust aerosols, AOD, and radiative forcings at the surface (SURF) and at the top of the atmosphere (TOA) in March were 2.4 μg m 3 13.1 lag m^-3, 0.18, -19.0 W m^-2, and -7.4 W m^-2, respectively. Heterogeneous reactions led to an increase of total inorganic aerosol concentration; however, the ambient inorganic aerosol concentration decreased, resulting in a smaller AOD and weaker aerosol radiative forcings. In March 2006 and 2010, the changes in ambient inorganic aerosols, AOD, and aerosol radiative forcings were more evident. In terms of the domain and five-year averages, the total inorganic aerosol concentrations increased by 13.7% (0.17 μg m^-3) due to heterogeneous reactions, but the ambient inorganic aerosol concentrations were reduced by 10.5% (0.13 lag m-3). As a result, the changes in AOD, SURF and TOA radiative forcings were estimated to be -3.9% (-0.007), -1.7% (0.34 W m^-2), and -4.3% (0.34 W m^-2), respectively, in March over East Asia.

  13. Radiation damping forces and radiation from charged particles

    Science.gov (United States)

    Klepikov, N. P.

    1985-06-01

    In the present evaluation of reported results on the radiation reaction force to which a charged particle is subject, the expression obtained for this force by Lorentz (1909), Abraham (1904), and Dirac (1938) is noted to be in physically reasonable agreement with the radiation of energy, momentum and angular momentum; it has, moreover, been successfully used in investigations of the motion of particles in a field. A theory is presented for the losses of energy, momentum, and angular momentum by a system of charged particles as they move together, taking the external field, the radiation damping forces, and the retarded Lienard-Wiechert forces into account. Formulas are given for the spectral and angular distribution of the radiation from a system of particles, and a system of equations is constructed for finding the angular momenta of EM waves radiated by particles of the system.

  14. METHODOLOGICAL NOTES: Radiation damping forces and radiation from charged particles

    Science.gov (United States)

    Klepikov, N. P.

    1985-06-01

    A review of the literature on the radiation reaction force on a charged particle shows that the expression given for this force obtained by Lorentz, Abraham, and Dirac is in physically reasonable agreement with the radiation of energy, momentum, and angular momentum, and is successfully used in investigating the motion of particles in a field. A selection of physical solutions by the methods presented herein guarantees that the conservation laws are satisfied. In the first approximation, which is the only one utilized in the majority of physical situations, radiation damping does not depend on assumptions concerning the structure of the charge of the particle. A theory is presented of the losses of energy, momentum and angular momentum by a system of charged particles in the course of their moving together taking into account the external field, the radiation damping forces, and the retarded Lienard-Wiechert forces. Formulas are given for the spectral and angular distribution of the radiation from a system of particles. The concept of a center of a system of events with relativistic particles is utilized in constructing a system of equations for finding the angular momenta of the electromagnetic waves radiated by particles of the system. The angular distribution and the total intensity of the radiation from a system of particles at an arbitrary instant of time is obtained. Using the example of the joint synchrotron radiation from two particles the consistency of all three approaches to the radiation from a system of particles is demonstrated.

  15. Estimation of shortwave direct aerosol radiative forcing at four locations on the Indo-Gangetic plains: Model results and ground measurement

    Science.gov (United States)

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2017-08-01

    This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.

  16. About Radiation Reaction with Force Approach

    CERN Document Server

    Velazquez, Gustavo Lopez

    2015-01-01

    The difficulty of usual approach to radiation reaction is pointed out , and a possible approach based on the force acting to the charged particle which produces the acceleration itself, is presented. This approach brings about an expression such that acceleration is zero whenever the external force is zero.

  17. Regional temperature change potentials for short-lived climate forcers based on radiative forcing from multiple models

    Science.gov (United States)

    Aamaas, Borgar; Berntsen, Terje K.; Fuglestvedt, Jan S.; Shine, Keith P.; Collins, William J.

    2017-09-01

    We calculate the absolute regional temperature change potential (ARTP) of various short-lived climate forcers (SLCFs) based on detailed radiative forcing (RF) calculations from four different models. The temperature response has been estimated for four latitude bands (90-28° S, 28° S-28° N, 28-60° N, and 60-90° N). The regional pattern in climate response not only depends on the relationship between RF and surface temperature, but also on where and when emissions occurred and atmospheric transport, chemistry, interaction with clouds, and deposition. We present four emissions cases covering Europe, East Asia, the global shipping sector, and the entire globe. Our study is the first to estimate ARTP values for emissions during Northern Hemisphere summer (May-October) and winter season (November-April). The species studied are aerosols and aerosol precursors (black carbon, organic carbon, SO2, NH3), ozone precursors (NOx, CO, volatile organic compound), and methane (CH4). For the response to BC in the Arctic, we take into account the vertical structure of the RF in the atmosphere, and an enhanced climate efficacy for BC deposition on snow. Of all SLCFs, BC is the most sensitive to where and when the emissions occur, as well as giving the largest difference in response between the latitude bands. The temperature response in the Arctic per unit BC emission is almost four times larger and more than two times larger than the global average for Northern Hemisphere winter emissions for Europe and East Asia, respectively. The latitudinal breakdown likely gives a better estimate of the global temperature response as it accounts for varying efficacies with latitude. An annual pulse of non-methane SLCF emissions globally (representative of 2008) lead to a global cooling. In contrast, winter emissions in Europe and East Asia give a net warming in the Arctic due to significant warming from BC deposition on snow.

  18. Radiation Reaction Force on a Particle

    OpenAIRE

    Fearn, H.; Bengtsson, J.

    2012-01-01

    The Abrahamn Lorentz radiation reaction force term, with da/dt, derived in text books is shown to be incomplete. We show that, with the addition of a term, the classical radiation reaction force can be generalized to the relativistic force expression. This addition is the Poynting Robertson term, seen mostly in astrophysics and usually missing from texts in electromagnetism. With this term added, it takes into account the rate of change of mass dm/dt of the particle and makes the generalizati...

  19. THE IMPACT OF RELATIVE HUMIDITY ON THE RADIATIVE PROPERTY AND RADIATIVE FORCING OF SULFATE AEROSOL

    Institute of Scientific and Technical Information of China (English)

    张立盛; 石广玉

    2001-01-01

    With the data of complex refractive index of sulfate aerosol, the radiative properties of the aerosol under 8 relative humidity conditions are calculated in this paper. By using the concentration distribution from two CTM models and LASG GOALS/AGCM, the radiative forcing due to hygroscopic sulfate aerosol is simulated. The results show that: (1) With the increase of relative humidity, the mass extinction coefficiency factor decreases in the shortwave spectrum: single scattering albedo keeps unchanged except for a little increase in longwave spectrum, and asymmetry factor increases in whole spectrum. (2) Larger differences occur in radiative forcing simulated by using two CTM data, and the global mean forcing is -0. 268 and -0. 816 W/m2,respectively. (3) When the impact of relative humidity on radiative property is taken into account,the distribution pattern of radiative forcing due to the wet particles is very similar to that of dry sulfate, but the forcing value decreases by 6%.

  20. A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model

    Directory of Open Access Journals (Sweden)

    D. Goto

    2011-11-01

    Full Text Available The direct radiative forcing by sulfate aerosols is still uncertain, mainly because the uncertainties are largely derived from differences in sulfate column burdens and its vertical distributions among global aerosol models. One possible reason for the large difference in the computed values is that the radiative forcing delicately depends on various simplifications of the sulfur processes made in the models. In this study, therefore, we investigated impacts of different parts of the sulfur chemistry module in a global aerosol model, SPRINTARS, on the sulfate distribution and its radiative forcing. Important studies were effects of simplified and more physical-based sulfur processes in terms of treatment of sulfur chemistry, oxidant chemistry, and dry deposition process of sulfur components. The results showed that the difference in the aqueous-phase sulfur chemistry among these treatments has the largest impact on the sulfate distribution. Introduction of all the improvements mentioned above brought the model values noticeably closer to in-situ measurements than those in the simplified methods used in the original SPRINTARS model. At the same time, these improvements also brought the computed sulfate column burdens and its vertical distributions into good agreement with other AEROCOM model values. The global annual mean radiative forcing due to the direct effect of anthropogenic sulfate aerosol was thus estimated to be −0.26 W m−2 (−0.30 W m−2 with a different SO2 inventory, whereas the original SPRINTARS model showed −0.18 W m−2 (−0.21 W m−2 with a different SO2 inventory. The magnitude of the difference between original and improved methods was approximately 50% of the uncertainty among estimates by the world's global aerosol models reported by the IPCC-AR4 assessment report. Findings in the present study, therefore, may suggest that the model differences in the

  1. Radiation force and balance of electromagnetic momentum

    Science.gov (United States)

    Campos, I.; Jiménez, J. L.; Roa-Neri, J. A. E.

    2016-07-01

    Some force densities can be expressed as a divergence of a stress tensor, as is the case with the electromagnetic force density. We have shown elsewhere that from the Maxwell equations several balance equations of electromagnetic momentum can be derived, depending on the form these equations are expressed in terms of fields E, D, B, H, and polarisations P and M. These balance equations imply different force densities and different stress tensors, providing a great flexibility to solve particular problems. Among these force densities we have found some proposed in the past with plausibility arguments, like the Einstein-Laub force density, while other proposed force densities appear as particular or limit cases of these general force densities, like the Helmholtz force density. We calculate the radiation force of an electromagnetic wave incident on a semi-infinite negligibly absorbing material using these balance equations, corroborating in this way that the surface integration of the stress tensor gives the same result that the calculation made through a volume integration of the force density, as done by Bohren. As is usual in applications of Gauss’s theorem, the surface on which the surface integral is to be performed must be chosen judiciously, and due care of discontinuities on the boundary conditions must be taken. Advanced undergraduates and graduate students will find a different approach to new aspects of the interaction of radiation with matter.

  2. Simulated 2050 aviation radiative forcing from contrails and aerosols

    Science.gov (United States)

    Chen, Chih-Chieh; Gettelman, Andrew

    2016-06-01

    The radiative forcing from aviation-induced cloudiness is investigated by using the Community Atmosphere Model Version 5 (CAM5) in the present (2006) and the future (through 2050). Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing in 2050 can reach 87 mW m-2, an increase by a factor of 7 from 2006, and thus does not scale linearly with fuel emission mass. This is due to non-uniform regional increase in air traffic and different sensitivities for contrail radiative forcing in different regions. CAM5 simulations indicate that negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds in 2050 can be as large as -160 mW m-2, an increase by a factor of 4 from 2006. As a result, the net 2050 radiative forcing of contrail cirrus and aviation aerosols may have a cooling effect on the planet. Aviation sulfate aerosols emitted at cruise altitude can be transported down to the lower troposphere, increasing the aerosol concentration, thus increasing the cloud drop number concentration and persistence of low-level clouds. Aviation black carbon aerosols produce a negligible net forcing globally in 2006 and 2050 in this model study. Uncertainties in the methodology and the modeling are significant and discussed in detail. Nevertheless, the projected percentage increase in contrail radiative forcing is important for future aviation impacts. In addition, the role of aviation aerosols in the cloud nucleation processes can greatly influence on the simulated radiative forcing from aircraft-induced cloudiness and even change its sign. Future research to confirm these results is necessary.

  3. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2010-09-01

    Full Text Available A fully coupled meteorology-chemistry-aerosol model (WRF-Chem is applied to simulate mineral dust and its shortwave (SW radiative forcing over North Africa. Two dust emission schemes (GOCART and DUSTRAN and two aerosol models (MADE/SORGAM and MOSAIC are adopted in simulations to investigate the modeling sensitivities to dust emissions and aerosol size treatments. The modeled size distribution and spatial variability of mineral dust and its radiative properties are evaluated using measurements (ground-based, aircraft, and satellites during the AMMA SOP0 campaign from 6 January to 3 February of 2006 (the SOP0 period over North Africa. Two dust emission schemes generally simulate similar spatial distributions and temporal evolutions of dust emissions. Simulations using the GOCART scheme with different initial (emitted dust size distributions require ~40% difference in total emitted dust mass to produce similar SW radiative forcing of dust over the Sahel region. The modal approach of MADE/SORGAM retains 25% more fine dust particles (radius<1.25 μm but 8% less coarse dust particles (radius>1.25 μm than the sectional approach of MOSAIC in simulations using the same size-resolved dust emissions. Consequently, MADE/SORGAM simulates 11% higher AOD, up to 13% lower SW dust heating rate, and 15% larger (more negative SW dust radiative forcing at the surface than MOSAIC over the Sahel region. In the daytime of the SOP0 period, the model simulations show that the mineral dust heats the lower atmosphere with an average rate of 0.8 ± 0.5 K day−1 over the Niamey vicinity and 0.5 ± 0.2 K day−1 over North Africa and reduces the downwelling SW radiation at the surface by up to 58 W m−2 with an average of 22 W m−2 over North Africa. This highlights the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, the WRF

  4. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2010-04-01

    Full Text Available A fully coupled meteorology-chemistry-aerosol model (WRF-Chem is applied to simulate mineral dust and its shortwave (SW radiative forcing over North Africa. Two dust emission schemes (GOCART and DUSTRAN and two aerosol models (MADE/SORGAM and MOSAIC are adopted in simulations to investigate the modeling sensitivities to dust emissions and aerosol size treatments. The modeled size distribution and spatial variability of mineral dust and its radiative properties are evaluated using measurements (ground-based, aircraft, and satellites during the AMMA SOP0 campaign from 6 January to 3 February of 2006 (the SOP0 period over North Africa. Two dust emission schemes generally simulate similar spatial distributions and temporal evolutions of dust emissions. Simulations using the GOCART scheme with different initial (emitted dust size distributions show that the difference of initial dust size distributions can result in significant difference (up to ~50% in simulating SW dust heating and SW dust radiative forcing at the surface over the Sahel region. The modal approach of MADE/SORGAM retains 25% more fine dust particles (radius <1.25 μm but 8% less coarse dust particles (radius >1.25 μm than the sectional approach of MOSAIC in simulations using the same size-resolved dust emissions. Consequently, MADE/SORGAM simulates 11% higher AOD, up to 13% lower SW dust heating rate, and 15% larger (more negative SW dust radiative forcing at the surface than MOSAIC over the Sahel region. In the daytime of the SOP0 period, the model simulations show that mineral dust heats the lower atmosphere (1–3 km with a maximum rate of 0.8±0.5 K day−1 below 1 km and reduces the downwelling SW radiation at the surface by up to 58 W m−2 over the Sahel region. This highlights the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, the WRF-Chem simulations can

  5. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  6. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  7. Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Cherian, Ribu; Collins, William; Faluvegi, Greg; Flanner, Mark; Forster, Piers; Hodnebrog, Øivind; Klimont, Zbigniew; Lund, Marianne T.; Mülmenstädt, Johannes; Myhre, Cathrine Lund; Olivié, Dirk; Prather, Michael; Quaas, Johannes; Samset, Bjørn H.; Schnell, Jordan L.; Schulz, Michael; Shindell, Drew; Skeie, Ragnhild B.; Takemura, Toshihiko; Tsyro, Svetlana

    2017-02-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. -1 to -3 % yr-1 in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by +0.17 ± 0.08 W m-2, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5. The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  8. Acoustic radiation force analysis using finite difference time domain method.

    Science.gov (United States)

    Grinenko, A; Wilcox, P D; Courtney, C R P; Drinkwater, B W

    2012-05-01

    Acoustic radiation force exerted by standing waves on particles is analyzed using a finite difference time domain Lagrangian method. This method allows the acoustic radiation force to be obtained directly from the solution of nonlinear fluid equations, without any assumptions on size or geometry of the particles, boundary conditions, or acoustic field amplitude. The model converges to analytical results in the limit of small particle radii and low field amplitudes, where assumptions within the analytical models apply. Good agreement with analytical and numerical models based on solutions of linear scattering problems is observed for compressible particles, whereas some disagreement is detected when the compressibility of the particles decreases.

  9. Surface energy budget responses to radiative forcing at Summit, Greenland

    Science.gov (United States)

    Miller, Nathaniel B.; Shupe, Matthew D.; Cox, Christopher J.; Noone, David; Persson, P. Ola G.; Steffen, Konrad

    2017-02-01

    /unstable regime with solar radiation. Relationships between forcing terms and responding surface fluxes show that the upwelling longwave radiation produces 65-85 % (50-60 %) of the total response in the winter (summer) and the non-radiative terms compensate for the remaining change in the combined downwelling longwave and net shortwave radiation. Because melt conditions are rarely reached at Summit, these relationships are documented for conditions of surface temperature below 0 °C, with and without solar radiation. This is the first time that forcing and response term relationships have been investigated in detail for the Greenland SEB. These results should both advance understanding of process relationships over the Greenland Ice Sheet and be useful for model validation.

  10. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    Science.gov (United States)

    Bradway, David Pierson

    heart function. Presented is the first use of transthoracic ARFI imaging in a serial study of heart failure in a porcine model. Results demonstrate the ability of transthoracic ARFI to image cyclically-varying stiffness changes in healthy and infarcted myocardium under good B-mode imaging conditions at depths in the range of 3-5 cm. Challenging imaging scenarios such as deep regions of interest, vigorous lateral motion and stable, reverberant clutter are analyzed and discussed. Results are then presented from the first study of clinical feasibility of transthoracic cardiac ARFI imaging. At the Duke University Medical Center, healthy volunteers and patients having magnetic resonance imaging-confirmed apical infarcts were enrolled for the study. The number of patients who met the inclusion criteria in this preliminary clinical trial was low, but results showed that the limitations seen in animal studies were not overcome by allowing transmit power levels to exceed the FDA mechanical index (MI) limit. The results suggested the primary source of image degradation was clutter rather than lack of radiation force. Additionally, the transthoracic method applied in its present form was not shown capable of tracking propagating ARFI-induced shear waves in the myocardium. Under current instrumentation and processing methods, results of these studies support feasibility for transthoracic ARFI in high-quality B-Mode imaging conditions. Transthoracic ARFI was not shown sensitive to infarct or to tracking heart failure in the presence of clutter and signal decorrelation. This work does provide evidence that transthoracic ARFI imaging is a safe non-invasive tool, but clinical efficacy as a diagnostic tool will need to be addressed by further development to overcome current challenges and increase robustness to sources of image degradation.

  11. Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models

    Directory of Open Access Journals (Sweden)

    M. Lawrence

    2012-06-01

    Full Text Available In this study we compare the response of four state-of-the-art Earth system models to climate engineering under scenario G1 of two model intercomparison projects: GeoMIP (Geoengineering Model Intercomparison Project and IMPLICC (EU project "Implications and risks of engineering solar radiation to limit climate change". In G1, the radiative forcing from an instantaneous quadrupling of the CO2 concentration, starting from the preindustrial level, is balanced by a reduction of the solar constant. Model responses to the two counteracting forcings in G1 are compared to the preindustrial climate in terms of global means and regional patterns and their robustness. While the global mean surface air temperature in G1 remains almost unchanged compared to the control simulation, the meridional temperature gradient is reduced in all models. Another robust response is the global reduction of precipitation with strong effects in particular over North and South America and northern Eurasia. In comparison to the climate response to a quadrupling of CO2 alone, the temperature responses are small in experiment G1. Precipitation responses are, however, in many regions of comparable magnitude but globally of opposite sign.

  12. Megacity Radiative Forcing: A Mexico City Case Study

    Science.gov (United States)

    Dubey, M.; Olsen, S.; Mazzoleni, C.; Chylek, P.; Zhang, Y.; Randerson, J. T.; Horowitz, L.

    2007-05-01

    We assess the radiative forcing of the largest megacity in North America, Mexico City. While particular aspects of the regional environmental impacts of cities on their surroundings have been thoroughly investigated, e.g., air quality and acid rain, relatively little effort has been focused on the net radiative impact of a megacity on global climate. The range of radiative impacts from a megacity covers many spatial and temporal scales from short-term regional-scale effects due to aerosols and relatively short-lived gases (ozone) to long-term global-scale impacts due to longer-lived trace gases (e.g., carbon dioxide, methane). In this study we combine chemistry-transport model simulations from the Model for Ozone And Related Chemical Tracers (MOZART-2) with in situ and satellite observations from the Aerosol Robotic Network (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to calculate the global radiative forcing of megacity emissions. We also explore the radiative impact of various emission control strategies that focus on improving regional air quality. Our results suggest that the warming by greenhouse gases like carbon dioxide and ozone can be moderated or exacerbated by aerosols depending on their optical properties. As the size and number of megacities increase and clean air regulations are implemented, metrics such as the net radiative forcing may become increasingly important in comparing the impact of urban centers and assessing the trade-offs between improving local air quality and minimizing global radiative impacts.

  13. Liquid lens using acoustic radiation force.

    Science.gov (United States)

    Koyama, Daisuke; Isago, Ryoichi; Nakamura, Kentaro

    2011-03-01

    A liquid lens is proposed that uses acoustic radiation force with no mechanical moving parts. It consists of a cylindrical acrylic cell filled with two immiscible liquids (degassed water and silicone oil) and a concave ultrasound transducer. The focal point of the transducer is located on the oil-water interface, which functions as a lens. The acoustic radiation force is generated when there is a difference in the acoustic energy densities of different media. An acoustic standing wave was generated in the axial direction of the lens and the variation of the shape of the oil-water interface was observed by optical coherence tomography (OCT). The lens profile can be rapidly changed by varying the acoustic radiation force from the transducer. The kinematic viscosity of silicone oil was optimized to minimize the response times of the lens. Response times of 40 and 80 ms when switching ultrasonic radiation on and off were obtained with a kinematic viscosity of 200 cSt. The path of a laser beam transmitted through the lens was calculated by ray-tracing simulations based on the experimental results obtained by OCT. The transmitted laser beam could be focused by applying an input voltage. The liquid lens could be operated as a variable-focus lens by varying the input voltage.

  14. Shortwave Cloud Radiative Forcing on Major Stratus Cloud Regions in AMIP-type Simulations of CMIP3 and CMIP5 Models

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; LI Jian

    2013-01-01

    Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models.In this study,shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluated for Atmospheric Models Intercomparison Project (AMIP)-type simulations of models involved in the third and fifth phases of the Coupled Models Intercomparison Project (CMIP3 and CMIP5).Over stratus regions,large deviations in both climatological mean and seasonal cycle of SWCF are found among the models.An ambient field sorted by dynamic (vertical motion) and thermodynamic (inversion strength or stability) regimes is constructed and used to measure the response of SWCF to large-scale controls.In marine boundary layer regions,despite both CMIP3 and CMIP5 models being able to capture well the center and range of occurrence frequency for the ambient field,most of the models fail to simulate the dependence of SWCF on boundary layer inversion and the insensitivity of SWCF to vertical motion.For eastern China,there are large differences even in the simulated ambient fields.Moreover,almost no model can reproduce intense SWCF in rising motion and high stability regimes.It is also found that models with a finer grid resolution have no evident superiority than their lower resolution versions.The uncertainties relating to SWCF in state-of-the-art models may limit their performance in IPCC experiments.

  15. Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing

    Directory of Open Access Journals (Sweden)

    H.-W. Jacobi

    2014-10-01

    Full Text Available Black carbon (BC in the snow in the Himalayas has recently attracted considerable interest due to its impact on snow albedo, snow and glacier melting, regional climate and water resources. A single particle soot photometer (SP2 instrument was used to measure refractory BC (rBC in a series of surface snow samples collected in the upper Khumbu Valley in Nepal between November 2009 and February 2012. The obtained time series indicates annual cycles with maximum concentration before the onset of the monsoon season and fast decreases in rBC during the monsoon period. Measured concentrations ranged from a few ppb up to 70 ppb rBC. However, due to the handling of the samples the measured concentrations possess rather large uncertainties. Detailed modeling of the snowpack including the measured range and an estimated upper limit of rBC concentrations was performed to study the role of BC in the seasonal snowpack. Simulations were performed for three winter seasons with the snowpack model Crocus including a detailed description of the radiative transfer inside the snowpack. While the standard Crocus model strongly overestimates the height and the duration of the seasonal snowpack, a better calculation of the snow albedo with the new radiative transfer scheme enhanced the representation of the snow. However, the period with snow on the ground neglecting BC in the snow was still over-estimated between 37 and 66 days, which was further diminished by 8 to 15% and more than 40% in the presence of 100 or 300 ppb of BC. Compared to snow without BC the albedo is on average reduced by 0.027 and 0.060 in the presence of 100 and 300 ppb BC. While the impact of increasing BC in the snow on the albedo was largest for clean snow, the impact on the local radiative forcing is the opposite. Here, increasing BC caused an even larger impact at higher BC concentrations. This effect is related to an accelerated melting of the snowpack caused by a more efficient metamorphism

  16. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    Science.gov (United States)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  17. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    J. Kazil

    2010-05-01

    Full Text Available Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative budget. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are −1.15 W/m2 for charged H2SO4/H2O nucleation, −0.235 W/m2 for cluster activation, and −0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is −2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with −2.18 W/m2 to total absorbed solar short-wave radiation, compared to −0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative budget over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of

  18. Comparison of the electron-spin force and radiation reaction force

    Science.gov (United States)

    Mahajan, Swadesh M.; Asenjo, Felipe A.; Hazeltine, Richard D.

    2015-02-01

    It is shown that the forces that originate from the electron-spin interacting with the electromagnetic field can play, along with the Lorentz force, a fundamentally important role in determining the electron motion in a high energy density plasma embedded in strong high-frequency radiation, a situation that pertains to both laser-produced and astrophysical systems. These forces, for instance, dominate the standard radiation reaction force as long as there is a `sufficiently' strong ambient magnetic field for affecting spin alignment. The inclusion of spin forces in any advanced modelling of electron dynamics pertaining to high energy density systems (for instance in particle-in-cell codes), therefore, is a must.

  19. Global and regional radiative forcing from 20 % reductions in BC, OC and SO4 - an HTAP2 multi-model study

    Science.gov (United States)

    Weum Stjern, Camilla; Hallvard Samset, Bjørn; Myhre, Gunnar; Bian, Huisheng; Chin, Mian; Davila, Yanko; Dentener, Frank; Emmons, Louisa; Flemming, Johannes; Søvde Haslerud, Amund; Henze, Daven; Eiof Jonson, Jan; Kucsera, Tom; Tronstad Lund, Marianne; Schulz, Michael; Sudo, Kengo; Takemura, Toshihiko; Tilmes, Simone

    2016-11-01

    In the Hemispheric Transport of Air Pollution Phase 2 (HTAP2) exercise, a range of global atmospheric general circulation and chemical transport models performed coordinated perturbation experiments with 20 % reductions in emissions of anthropogenic aerosols, or aerosol precursors, in a number of source regions. Here, we compare the resulting changes in the atmospheric load and vertically resolved profiles of black carbon (BC), organic aerosols (OA) and sulfate (SO4) from 10 models that include treatment of aerosols. We use a set of temporally, horizontally and vertically resolved profiles of aerosol forcing efficiency (AFE) to estimate the impact of emission changes in six major source regions on global radiative forcing (RF) pertaining to the direct aerosol effect, finding values between. 51.9 and 210.8 mW m-2 Tg-1 for BC, between -2.4 and -17.9 mW m-2 Tg-1 for OA and between -3.6 and -10.3 W m-2 Tg-1 for SO4. In most cases, the local influence dominates, but results show that mitigations in south and east Asia have substantial impacts on the radiative budget in all investigated receptor regions, especially for BC. In Russia and the Middle East, more than 80 % of the forcing for BC and OA is due to extra-regional emission reductions. Similarly, for North America, BC emissions control in east Asia is found to be more important than domestic mitigations, which is consistent with previous findings. Comparing fully resolved RF calculations to RF estimates based on vertically averaged AFE profiles allows us to quantify the importance of vertical resolution to RF estimates. We find that locally in the source regions, a 20 % emission reduction strengthens the radiative forcing associated with SO4 by 25 % when including the vertical dimension, as the AFE for SO4 is strongest near the surface. Conversely, the local RF from BC weakens by 37 % since BC AFE is low close to the ground. The fraction of BC direct effect forcing attributable to intercontinental transport, on the

  20. On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing

    Directory of Open Access Journals (Sweden)

    B. M. Monge-Sanz

    2013-09-01

    Full Text Available This study evaluates effects and applications of a new linear parameterisation for stratospheric methane and water vapour. The new scheme (CoMeCAT is derived from a 3-D full-chemistry-transport model (CTM. It is suitable for any global model, and is shown here to produce realistic profiles in the TOMCAT/SLIMCAT 3-D CTM and the ECMWF (European Centre for Medium-Range Weather Forecasts general circulation model (GCM. Results from the new scheme are in good agreement with the full-chemistry CTM CH4 field and with observations from the Halogen Occultation Experiment (HALOE. The scheme is also used to derive stratospheric water increments, which in the CTM produce vertical and latitudinal H2O variations in fair agreement with satellite observations. Stratospheric H2O distributions in the ECMWF GCM show realistic overall features, although concentrations are smaller than in the CTM run (up to 0.5 ppmv smaller above 10 hPa. The potential of the new CoMeCAT tracer for evaluating stratospheric transport is exploited to assess the impacts of nudging the free-running GCM to ERA-40 and ERA-Interim reanalyses. The nudged GCM shows similar transport patterns to the offline CTM forced by the corresponding reanalysis data. The new scheme also impacts radiation and temperature in the model. Compared to the default CH4 climatology and H2O used by the ECMWF radiation scheme, the main effect on ECMWF temperatures when considering both CH4 and H2O from CoMeCAT is a decrease of up to 1.0 K over the tropical mid/low stratosphere. The effect of using the CoMeCAT scheme for radiative forcing (RF calculations is investigated using the offline Edwards–Slingo radiative transfer model. Compared to the default model option of a tropospheric global 3-D CH4 value, the CoMeCAT distribution produces an overall change in the annual mean net RF of up to −30 mW m−2.

  1. Modeling of 2008 Kasatochi volcanic sulfate direct radiative forcing: assimilation of OMI SO2 plume height data and comparison with MODIS and CALIOP observations

    Directory of Open Access Journals (Sweden)

    A. H. Omar

    2012-10-01

    Full Text Available Volcanic SO2 column amount and injection height retrieved from the Ozone Monitoring Instrument (OMI with the Extended Iterative Spectral Fitting (EISF technique are used to initialize a global chemistry transport model (GEOS-Chem to simulate the atmospheric transport and lifecycle of volcanic SO2 and sulfate aerosol from the 2008 Kasatochi eruption, and to subsequently estimate the direct shortwave, top-of-the-atmosphere radiative forcing of the volcanic sulfate aerosol. Analysis shows that the integrated use of OMI SO2 plume height in GEOS-Chem yields: (a good agreement of the temporal evolution of 3-D volcanic sulfate distributions between model simulations and satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS and Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP, and (b a e-folding time for volcanic SO2 that is consistent with OMI measurements, reflecting SO2 oxidation in the upper troposphere and stratosphere is reliably represented in the model However, a consistent (~25% low bias is found in the GEOS-Chem simulated SO2 burden, and is likely due to a high (~20% bias of cloud liquid water amount (as compared to the MODIS cloud product and the resultant stronger SO2 oxidation in the GEOS meteorological data during the first week after eruption when part of SO2 underwent aqueous-phase oxidation in clouds. Radiative transfer calculations show that the forcing by Kasatochi volcanic sulfate aerosol becomes negligible 6 months after the eruption, but its global average over the first month is −1.3 W m−2 with the majority of the forcing-influenced region located north of 20° N, and with daily peak values up to −2 W m−2 on days 16–17. Sensitivity experiments show that every 2 km decrease of SO2 injection height in the GEOS-Chem simulations will result in a ~25% decrease in volcanic sulfate forcing; similar sensitivity but opposite sign also holds for a 0.03 μm increase of geometric radius of the

  2. Modeling of 2008 Kasatochi volcanic sulfate direct radiative forcing: assimilation of OMI SO2 plume height data and comparison with MODIS and CALIOP observations

    Directory of Open Access Journals (Sweden)

    N. Krotkov

    2013-02-01

    Full Text Available Volcanic SO2 column amount and injection height retrieved from the Ozone Monitoring Instrument (OMI with the Extended Iterative Spectral Fitting (EISF technique are used to initialize a global chemistry transport model (GEOS-Chem to simulate the atmospheric transport and lifecycle of volcanic SO2 and sulfate aerosol from the 2008 Kasatochi eruption, and to subsequently estimate the direct shortwave, top-of-the-atmosphere radiative forcing of the volcanic sulfate aerosol. Analysis shows that the integrated use of OMI SO2 plume height in GEOS-Chem yields: (a good agreement of the temporal evolution of 3-D volcanic sulfate distributions between model simulations and satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS and Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP, and (b an e-folding time for volcanic SO2 that is consistent with OMI measurements, reflecting SO2 oxidation in the upper troposphere and stratosphere is reliably represented in the model. However, a consistent (~25% low bias is found in the GEOS-Chem simulated SO2 burden, and is likely due to a high (~20% bias of cloud liquid water amount (as compared to the MODIS cloud product and the resultant stronger SO2 oxidation in the GEOS meteorological data during the first week after eruption when part of SO2 underwent aqueous-phase oxidation in clouds. Radiative transfer calculations show that the forcing by Kasatochi volcanic sulfate aerosol becomes negligible 6 months after the eruption, but its global average over the first month is −1.3 Wm−2, with the majority of the forcing-influenced region located north of 20° N, and with daily peak values up to −2 Wm−2 on days 16–17. Sensitivity experiments show that every 2 km decrease of SO2 injection height in the GEOS-Chem simulations will result in a ~25 % decrease in volcanic sulfate forcing; similar sensitivity but opposite sign also holds for a 0.03 μm increase of geometric radius of

  3. Modeling of 2008 Kasatochi Volcanic Sulfate Direct Radiative Forcing: Assimilation of OMI SO2 Plume Height Data and Comparison with MODIS and CALIOP Observations

    Science.gov (United States)

    Wang, J.; Park, S.; Zeng, J.; Ge, C.; Yang, K.; Carn, S.; Krotkov, N.; Omar, A. H.

    2013-01-01

    Volcanic SO2 column amount and injection height retrieved from the Ozone Monitoring Instrument (OMI) with the Extended Iterative Spectral Fitting (EISF) technique are used to initialize a global chemistry transport model (GEOS-Chem) to simulate the atmospheric transport and lifecycle of volcanic SO2 and sulfate aerosol from the 2008 Kasatochi eruption, and to subsequently estimate the direct shortwave, top-of-the-atmosphere radiative forcing of the volcanic sulfate aerosol. Analysis shows that the integrated use of OMI SO2 plume height in GEOS-Chem yields: (a) good agreement of the temporal evolution of 3-D volcanic sulfate distributions between model simulations and satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), and (b) an e-folding time for volcanic SO2 that is consistent with OMI measurements, reflecting SO2 oxidation in the upper troposphere and stratosphere is reliably represented in the model. However, a consistent (approx. 25 %) low bias is found in the GEOS-Chem simulated SO2 burden, and is likely due to a high (approx.20 %) bias of cloud liquid water amount (as compared to the MODIS cloud product) and the resultant stronger SO2 oxidation in the GEOS meteorological data during the first week after eruption when part of SO2 underwent aqueous-phase oxidation in clouds. Radiative transfer calculations show that the forcing by Kasatochi volcanic sulfate aerosol becomes negligible 6 months after the eruption, but its global average over the first month is -1.3W/sq m, with the majority of the forcing-influenced region located north of 20degN, and with daily peak values up to -2W/sq m on days 16-17. Sensitivity experiments show that every 2 km decrease of SO2 injection height in the GEOS-Chem simulations will result in a approx.25% decrease in volcanic sulfate forcing; similar sensitivity but opposite sign also holds for a 0.03 m increase of geometric radius of

  4. Interplay between radiation pressure force and scattered light intensity in the cooperative scattering by cold atoms

    CERN Document Server

    Bienaime, Tom; Chabe, Julien; Rouabah, Mohamed-Taha; Bellando, Louis; Courteille, Philippe W; Piovella, Nicola; Kaiser, Robin

    2013-01-01

    The interplay between the superradiant emission of a cloud of cold two-level atoms and the radiation pressure force is discussed. Using a microscopic model of coupled atomic dipoles driven by an external laser, the radiation field and the average radiation pressure force are derived. A relation between the far-field scattered intensity and the force is derived, using the optical theorem. Finally, the scaling of the sample scattering cross section with the parameters of the system is studied.

  5. A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models

    OpenAIRE

    Vuolo, M. R.; M. Schulz; Balkanski, Y.; Takemura, T.

    2014-01-01

    The quantification and understanding of direct aerosol forcing is essential in the study of climate. One of the main issues that makes its quantification difficult is the lack of a complete understanding of the role of the vertical distribution of aerosols and clouds. This work aims at reducing the uncertainty of aerosol top-of-the-atmosphere (TOA) forcing due to the vertical superposition of several short-lived atmospheric components, in particular different aerosol species...

  6. Material fabrication using acoustic radiation forces

    Science.gov (United States)

    Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ

    2015-12-01

    Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.

  7. Magnetic resonance acoustic radiation force imaging.

    Science.gov (United States)

    McDannold, Nathan; Maier, Stephan E

    2008-08-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are "stiffness weighted" and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery.

  8. Radiative Forcing and Climate Response: From Paleoclimate to Future Climate

    Science.gov (United States)

    Caldeira, K.; Cao, L.

    2011-12-01

    time-scale feedbacks could double climate sensitivity over that estimated by century-scale models. The inclusion of these feedbacks may be one reason why paleoclimate studies seem to indicate a much higher climate sensitivity than do the current generation of climate models that focus on the physics of century-scale climate change. What is the relevance of "equilibrium" climate change on a dynamic planet? Each gas or aerosol has a different time evolution in the atmosphere, so the time evolution of the climate response to a methane release, an aerosol release, and a carbon dioxide release would be very different, even if they had the same initial radiative forcing (or radiative forcing integrated to some time horizon, as is done in Global Warming Potential calculations). Furthermore, the climate response to emissions of these radiatively active substances will depend, to some extent, on the state of the climate system into which these substances are introduced. Changes in continental positions and altitudes can affect snow and glacier feedbacks. Changes in ocean heat transport can affect cloud properties and the distribution of sea-ice. For many applications, it may be more fruitful to focus on the time-evolution of the climate response to emissions and abandon the concept of climate sensitivity to radiative forcing.

  9. Halogen chemistry reduces tropospheric O3 radiative forcing

    Science.gov (United States)

    Sherwen, Tomás; Evans, Mat J.; Carpenter, Lucy J.; Schmidt, Johan A.; Mickley, Loretta J.

    2017-01-01

    Tropospheric ozone (O3) is a global warming gas, but the lack of a firm observational record since the preindustrial period means that estimates of its radiative forcing (RFTO3) rely on model calculations. Recent observational evidence shows that halogens are pervasive in the troposphere and need to be represented in chemistry-transport models for an accurate simulation of present-day O3. Using the GEOS-Chem model we show that tropospheric halogen chemistry is likely more active in the present day than in the preindustrial. This is due to increased oceanic iodine emissions driven by increased surface O3, higher anthropogenic emissions of bromo-carbons, and an increased flux of bromine from the stratosphere. We calculate preindustrial to present-day increases in the tropospheric O3 burden of 113 Tg without halogens but only 90 Tg with, leading to a reduction in RFTO3 from 0.43 to 0.35 Wm-2. We attribute ˜ 50 % of this reduction to increased bromine flux from the stratosphere, ˜ 35 % to the ocean-atmosphere iodine feedback, and ˜ 15 % to increased tropospheric sources of anthropogenic halogens. This reduction of tropospheric O3 radiative forcing due to halogens (0.087 Wm-2) is greater than that from the radiative forcing of stratospheric O3 (˜ 0.05 Wm-2). Estimates of RFTO3 that fail to consider halogen chemistry are likely overestimates (˜ 25 %).

  10. Sensitivity of aerosol radiative forcing calculations to spectral resolution

    Energy Technology Data Exchange (ETDEWEB)

    Grant, K.E.

    1996-10-01

    Potential impacts of aerosol radiative forcing on climate have generated considerable recent interest. An important consideration in estimating the forcing from various aerosol components is the spectral resolution used for the solar radiative transfer calculations. This paper examines the spectral resolution required from the viewpoint of overlapping spectrally varying aerosol properties with other cross sections. A diagnostic is developed for comparing different band choices, and the impact of these choices on the radiative forcing calculated for typical sulfate and biomass aerosols was investigated.

  11. Effective radiative forcing from historical land use change

    Science.gov (United States)

    Andrews, Timothy; Betts, Richard A.; Booth, Ben B. B.; Jones, Chris D.; Jones, Gareth S.

    2017-06-01

    The effective radiative forcing (ERF) from the biogeophysical effects of historical land use change is quantified using the atmospheric component of the Met Office Hadley Centre Earth System model HadGEM2-ES. The global ERF at 2005 relative to 1860 (1700) is -0.4 (-0.5) Wm-2, making it the fourth most important anthropogenic driver of climate change over the historical period (1860-2005) in this model and larger than most other published values. The land use ERF is found to be dominated by increases in the land surface albedo, particularly in North America and Eurasia, and occurs most strongly in the northern hemisphere winter and spring when the effect of unmasking underlying snow, as well as increasing the amount of snow, is at its largest. Increased bare soil fraction enhances the seasonal cycle of atmospheric dust and further enhances the ERF. Clouds are shown to substantially mask the radiative effect of changes in the underlying surface albedo. Coupled atmosphere-ocean simulations forced only with time-varying historical land use change shows substantial global cooling (d T = -0.35 K by 2005) and the climate resistance (ERF/d T = 1.2 Wm-2 K-1) is consistent with the response of the model to increases in CO2 alone. The regional variation in land surface temperature change, in both fixed-SST and coupled atmosphere-ocean simulations, is found to be well correlated with the spatial pattern of the forced change in surface albedo. The forcing-response concept is found to work well for historical land use forcing—at least in our model and when the forcing is quantified by ERF. Our results suggest that land-use changes over the past century may represent a more important driver of historical climate change then previously recognised and an underappreciated source of uncertainty in global forcings and temperature trends over the historical period.

  12. Solar radiation models - review

    Directory of Open Access Journals (Sweden)

    M. Jamil Ahmad, G.N. Tiwari

    2010-05-01

    Full Text Available In the design and study of solar energy, information on solar radiation and its components at a given location is very essential. Solar radiation data are required by solar engineers, architects, agriculturists and hydrologists for many applications such as solar heating, cooking, drying and interior illumination of buildings. For this purpose, in the past, several empirical correlations have been developed in order to estimate the solar radiation around the world. The main objective of this study is to review the global solar radiation models available in the literature. There are several formulae which relate global radiation to other climatic parameters such as sunshine hours, relative humidity and maximum temperature. The most commonly used parameter for estimating global solar radiation is sunshine duration. Sunshine duration can be easily and reliably measured and data are widely available.

  13. Anthropogenic Aerosols in Asia, Radiative Forcing, and Climate Change

    Science.gov (United States)

    Ramaswamy, V.; Bollasina, M. A.; Ming, Y.; Ocko, I.; Persad, G.

    2014-12-01

    Aerosols arising as a result of human-induced emissions in Asia form a key 'driver' in causing pollution and in the forcing of anthropogenic climate change. The manner of the forced climate change is sensitive to the scattering and absorption properties of the aerosols and the aerosol-cloud microphysical interactions. Using the NOAA/ GFDL global climate models and observations from multiple platforms, we investigate the radiative perturbations due to the 20th Century sulfate and carbonaceous aerosol emissions and the resultant impacts on surface temperature, tropical precipitation, Indian monsoon, hemispheric circulation, and atmospheric and oceanic heat transports. The influence of the aerosol species has many contrasts with that due to the anthropogenic well-mixed greenhouse gas emissions e.g., the asymmetry in the hemispheric climate response, but is subject to larger uncertainties. The aerosol forcing expected in the future indicates a significant control on the 21st Century anthropogenic climate change in Asia.

  14. Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2013-01-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  15. Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions

    Science.gov (United States)

    Bellouin, Nicolas; Baker, Laura; Hodnebrog, Øivind; Olivié, Dirk; Cherian, Ribu; Macintosh, Claire; Samset, Bjørn; Esteve, Anna; Aamaas, Borgar; Quaas, Johannes; Myhre, Gunnar

    2016-11-01

    Predictions of temperature and precipitation responses to changes in the anthropogenic emissions of climate forcers require the quantification of the radiative forcing exerted by those changes. This task is particularly difficult for near-term climate forcers like aerosols, methane, and ozone precursors because their short atmospheric lifetimes cause regionally and temporally inhomogeneous radiative forcings. This study quantifies specific radiative forcing, defined as the radiative forcing per unit change in mass emitted, for eight near-term climate forcers as a function of their source regions and the season of emission by using dedicated simulations by four general circulation and chemistry-transport models. Although differences in the representation of atmospheric chemistry and radiative processes in different models impede the creation of a uniform dataset, four distinct findings can be highlighted. Firstly, specific radiative forcing for sulfur dioxide and organic carbon are stronger when aerosol-cloud interactions are taken into account. Secondly, there is a lack of agreement on the sign of the specific radiative forcing of volatile organic compound perturbations, suggesting they are better avoided in climate mitigation strategies. Thirdly, the strong seasonalities of the specific radiative forcing of most forcers allow strategies to minimise positive radiative forcing based on the timing of emissions. Finally, European and shipping emissions exert stronger aerosol specific radiative forcings compared to East Asia where the baseline is more polluted. This study can therefore form the basis for further refining climate mitigation options based on regional and seasonal controls on emissions. For example, reducing summertime emissions of black carbon and wintertime emissions of sulfur dioxide in the more polluted regions is a possible way to improve air quality without weakening the negative radiative forcing of aerosols.

  16. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    D. S. Stevenson

    2012-10-01

    Full Text Available Ozone (O3 from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP has been used to calculate tropospheric ozone radiative forcings (RFs. We calculate a~value for the pre-industrial (1750 to present-day (2010 tropospheric ozone RF of 0.40 W m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (47%, nitrogen oxides (29%, carbon monoxide (15% and non-methane volatile organic compounds (9%; earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 0.042 W m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (W m−2; relative to 1850 – add 0.04 W m−2 to make relative to 1750 for the Representative Concentration Pathways in 2030 (2100 of: RCP2.6: 0.31 (0.16; RCP4.5: 0.38 (0.26; RCP6.0: 0.33 (0.24; and RCP8.5: 0.42 (0.56. Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in

  17. Radiative forcing in the ACCMIP historical and future climate simulations

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2013-03-01

    Full Text Available The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5. The models reproduce present-day total aerosol optical depth (AOD relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980–2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects. The models' all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range −0.26 W m−2; −0.06 to −0.49 W m−2. Screening based on model skill in capturing observed AOD yields a best estimate of −0.42 W m−2; −0.33 to −0.50 W m−2, including adjustment for missing aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to −58% to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is −1.17 W m−2; −0.71 to −1.44 W m−2. Thus adjustments, including clouds, typically cause greater forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global aerosol RF

  18. Radiative forcing in the ACCMIP historical and future climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shindell, D. T.; Lamarque, J. -F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, A. J.; Dalsoren, S.; Easter, R.; Ghan, S.; Horowitz, L.; Liu, X.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R.; Sudo, K.; Szopa, S.; Takemura, T.; Voulgarakis, A.; Yoon, J. -H.; Lo, F.

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models’ all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) -0.26Wm-2-2. Screening based on model skill in capturing observed AOD yields a best estimate of -0.42Wm-2-2models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to -58 %) to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is -1.17Wm-2-2forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global

  19. Force-Depending Radiation Reaction study in an undulator devise

    CERN Document Server

    López, Gustavo V

    2016-01-01

    The effect of force-depending radiation reaction on charge motion traveling inside an undulator is studied using the new force approach for radiation reaction. The effect on the dynamics of a charged particle is determined with the hope that this one can be measured experimentally and can be determined whether or not this approach points on the right direction to understand the nature of radiation reaction.

  20. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-04-01

    To better quantify radiative effects of dust over the Arabian Peninsula we have developed a standalone column radiation transport model coupled with the Mie calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments are carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18-20 March 2012. Comprehensive ground-based observations and satellite retrievals are used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing are estimated both from the model and from observations. Diurnal cycle of the the shortwave instantaneous dust direct radiative forcing is studied for a range of aerosol and surface characteristics representative for the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing are evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions along with anisotropic aerosol scattering are mostly responsible for diurnal effects. We also discuss estimates of the climatological dust instantaneous direct radiative forcing over land and the Red Sea using two approaches. The first approach is based on the probability density function of the aerosol optical depth, and the second is based on the climatologically average Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  1. Total aerosol effect: forcing or radiative flux perturbation?

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  2. ATHENA radiation model

    Energy Technology Data Exchange (ETDEWEB)

    Shumway, R.W.

    1987-10-01

    The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs.

  3. Atmospheric aerosol radiative forcing over a semi-continental location Tripura in North-East India: Model results and ground observations.

    Science.gov (United States)

    Dhar, Pranab; De, Barin Kumar; Banik, Trisanu; Gogoi, Mukunda M; Babu, S Suresh; Guha, Anirban

    2017-02-15

    Northeast India (NEI) is located within the boundary of the great Himalayas in the north and the Bay of Bengal (BoB) in the southwest, experiences the mixed influence of the westerly dust advection from the Indian desert, anthropogenic aerosols from the highly polluted Indo-Gangetic Plains (IGP) and marine aerosols from BoB. The present study deals with the estimation and characterization of aerosol radiative forcing over a semi-continental site Tripura, which is a strategic location in the western part of NEI having close proximity to the outflow of the IGP. Continuous long term measurements of aerosol black carbon (BC) mass concentrations and columnar aerosol optical depth (AOD) are used for the estimation of aerosol radiative forcing in each monthly time scale. The study revealed that the surface forcing due to aerosols was higher during both winter and pre-monsoon seasons, having comparable values of 32W/m(2) and 33.45W/m(2) respectively. The atmospheric forcing was also higher during these months due to increased columnar aerosol loadings (higher AOD ~0.71) shared by abundant BC concentrations (SSA ~0.7); while atmospheric forcing decreased in monsoon due to reduced magnitude of BC (SSA ~0.94 in July) as well as columnar AOD. The top of the atmosphere (TOA) forcing is positive in pre-monsoon and monsoon months with the highest positive value of 3.78W/m(2) in June 2012. The results are discussed in light of seasonal source impact and transport pathways from adjacent regions.

  4. Radiative Forcing in the ACCMIP Historical and Future Climate Simulations

    Science.gov (United States)

    Shindell, Drew Todd; Lamarque, J.-F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; hide

    2013-01-01

    A primary goal of the Atmospheric Chemistry and Climate Model IntercomparisonProject (ACCMIP) was to characterize the short-lived drivers of preindustrial to 2100climate change in the current generation of climate models. Here we evaluate historicaland 5 future radiative forcing in the 10 ACCMIP models that included aerosols, 8 of whichalso participated in the Coupled Model Intercomparison Project phase 5 (CMIP5).The models generally reproduce present-day climatological total aerosol opticaldepth (AOD) relatively well. components to this total, however, and most appear to underestimate AOD over East10 Asia. The models generally capture 1980-2000 AOD trends fairly well, though theyunderpredict AOD increases over the YellowEastern Sea. They appear to strongly underestimate absorbing AOD, especially in East Asia, South and Southeast Asia, SouthAmerica and Southern Hemisphere Africa.We examined both the conventional direct radiative forcing at the tropopause (RF) and the forcing including rapid adjustments (adjusted forcing AF, including direct andindirect effects). The models calculated all aerosol all-sky 1850 to 2000 global meanannual average RF ranges from 0.06 to 0.49 W m(sup -2), with a mean of 0.26 W m(sup -2) and a median of 0.27 W m(sup -2. Adjusting for missing aerosol components in some modelsbrings the range to 0.12 to 0.62W m(sup -2), with a mean of 0.39W m(sup -2). Screen20ing the models based on their ability to capture spatial patterns and magnitudes ofAOD and AOD trends yields a quality-controlled mean of 0.42W m(sup -2) and range of0.33 to 0.50 W m(sup -2) (accounting for missing components). The CMIP5 subset of ACCMIPmodels spans 0.06 to 0.49W m(sup -2), suggesting some CMIP5 simulations likelyhave too little aerosol RF. A substantial, but not well quantified, contribution to histori25cal aerosol RF may come from climate feedbacks (35 to 58). The mean aerosol AF during this period is 1.12W m(sup -2) (median value 1.16W m(sup -2), range 0.72 to1.44W m

  5. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring;

    2012-01-01

    We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles...... parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties....

  6. Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon

    Science.gov (United States)

    Chung, Serena H.; Seinfeld,John H.

    2008-01-01

    The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.

  7. Response of cloud supersaturation to radiative forcing

    Science.gov (United States)

    Davies, R.

    1985-01-01

    Time-dependent solutions are obtained for droplet temperatures and supersaturation, in a study of the diffusional growth or evaporation of cloud droplets due to net emission or absorption of radiation, taking into account the partitioning of the net radiation budget between the droplets and the ambient air. Radiative perturbations are noted to result in very high rates of change in droplet temperatures. As the droplets evaporate or grow due to radiative effects, the saturation ratio of the ambient air adjusts in keeping with changes in the water vapor density and temperature of the air.

  8. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E.W.; Kelder, H.; Velthoven, P.F.J. van; Wauben, W.M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J.P.; Velders, G.J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J.; Scheeren, B.A. [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1997-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  9. Effect of secondary radiation force on aggregation between encapsulated microbubbles

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan-Li; Zheng Hai-Rng; Tang Meng-Xing; Zhang Dong

    2011-01-01

    Secondary radiation force can be an attractive force causing aggregates of encapsulated microbubbles in ultrasonic molecular imaging. The influence of the secondary radiation force on aggregation between two coated bubbles is investigated in this study. Numerical calculations are performed based on four simultaneous differential equations of radial and translational motions.Results show that the secondary force can change from attraction to repulsion during approach,and stable microbubble pairs can be formed in the vicinity of resonant regions; the possibility of microbubble aggregations can be reduced by using low exciting amplitude,ultrasonic frequencies deviating from the resonant frequencies or microbubbles with small compressibility.

  10. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Ricchiazzi, P.; O' Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  11. Generalization of the Force Approach to Radiation Reaction

    CERN Document Server

    Lopez, Gustavo V

    2016-01-01

    A generalization of the force approach to radiation reaction is given, taken into consideration an arbitrary motion of the charged particle . The expression obtained brings about the expression already given for the linear an the circular acceleration cases.

  12. Radiative forcing in the ACCMIP historical and future climate simulations

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2012-08-01

    Full Text Available A primary goal of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP was to characterize the short-lived drivers of preindustrial to 2100 climate change in the current generation of climate models. Here we evaluate historical and future radiative forcing in the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5.

    The models generally reproduce present-day climatological total aerosol optical depth (AOD relatively well. They have quite different contributions from various aerosol components to this total, however, and most appear to underestimate AOD over East Asia. The models generally capture 1980–2000 AOD trends fairly well, though they underpredict AOD increases over the Yellow/Eastern Sea. They appear to strongly underestimate absorbing AOD, especially in East Asia, South and Southeast Asia, South America and Southern Hemisphere Africa.

    We examined both the conventional direct radiative forcing at the tropopause (RF and the forcing including rapid adjustments (adjusted forcing; AF, including direct and indirect effects. The models' calculated all aerosol all-sky 1850 to 2000 global mean annual average RF ranges from −0.06 to −0.49 W m−2, with a mean of −0.26 W m−2 and a median of −0.27 W m−2. Adjusting for missing aerosol components in some models brings the range to −0.12 to −0.62 W m−2, with a mean of −0.39 W m−2. Screening the models based on their ability to capture spatial patterns and magnitudes of AOD and AOD trends yields a quality-controlled mean of −0.42 W m−2 and range of −0.33 to −0.50 W m−2 (accounting for missing components. The CMIP5 subset of ACCMIP models spans −0.06 to −0.49 W m−2, suggesting some CMIP5 simulations likely have too little aerosol RF. A substantial, but not

  13. Estimation of mineral dust direct radiative forcing at the European Aerosol Research Lidar NETwork site of Lecce, Italy, during the ChArMEx/ADRIMED summer 2013 campaign: Impact of radiative transfer model spectral resolutions

    Science.gov (United States)

    Barragan, Ruben; Romano, Salvatore; Sicard, Michaël.; Burlizzi, Pasquale; Perrone, Maria Rita; Comeron, Adolfo

    2016-09-01

    A field campaign took place in the western and central Mediterranean basin on June-July 2013 in the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/)/ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region, http://adrimed.sedoo.fr/) project to characterize the aerosol direct radiative forcing (DRF) over the Mediterranean. This work focuses on the aerosol DRF estimations at Lecce (40.33°N; 18.11°E; 30 m above sea level) during the Saharan dust outbreak that affected southern Italy from 20 to 24 June 2013. The Global Atmospheric Model (GAME) and the Two-Stream (TS) model were used to calculate the instantaneous aerosol DRF in the short-wave (SW) and long-wave (LW) spectral ranges, at the surface and at the top of the atmosphere (TOA). The main differences between the two models were due to the different numerical methods to solve the radiative transfer (RT) equations and to the more detailed spectral resolution of GAME compared to that of TS. 167 and 115 subbands were used by GAME in the 0.3-4 and 4-37 µm spectral ranges, respectively. Conversely, the TS model used 8 and 11 subbands in the same spectral ranges, respectively. We found on 22 June that the SW-DRFs from the two models were in good agreement, both at the TOA and at the surface. The instantaneous SW-DRFs at the surface and at the TOA varied from -50 to -34 W m-2 and from -6 to +8 W m-2, respectively, while the surface and TOA LW-DRFs ranged between +3.5 and +8.0 W m-2 and between +1.7 and +6.9 W m-2, respectively. In particular, both models provided positive TOA SW-DRFs at solar zenith angles smaller than 25° because of the mixing of the desert dust with anthropogenic pollution during its transport to the study site. In contrast, the TS model overestimated the GAME LW-DRF up to about 5 and 7.5 times at the surface and at the TOA, respectively, when the dust particle contribution was largest. The low spectral

  14. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  15. Black carbon radiative forcing at TOA decreased during aging

    Science.gov (United States)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-01

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  16. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  17. The Impacts of Optical Properties on Radiative Forcing Due to Dust Aerosol

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; SHI Guangyu; LI Shuyan; LI Wei; WANG Biao; HUANG Yanbin

    2006-01-01

    There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering albedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.

  18. Simulation of the spatial distribution of mineral dust and its direct radiative forcing over Australia

    Directory of Open Access Journals (Sweden)

    Omid Alizadeh Choobari

    2013-05-01

    Full Text Available Direct radiative forcing by mineral dust is important as it significantly affects the climate system by scattering and absorbing short-wave and long-wave radiation. The multi-angle imaging spectro radiometer (MISR and cloud–aerosol lidar with orthogonal polarisation (CALIOP aerosol data are used to observe mineral dust distribution over Australia. In addition, the weather research and forecasting with chemistry (WRF/Chem model is used to estimate direct radiative forcing by dust. At the surface, the model domain clear-sky short-wave and long-wave direct radiative forcing by dust averaged for a 6-month period (austral spring and summer was estimated to be −0.67 W m−2 and 0.13 W m−2, respectively. The long-wave warming effect of dust therefore offsets 19.4% of its short-wave cooling effect. However, over Lake Eyre Basin where coarse particles are more abundant, the long-wave warming effect of dust offsets 60.9% of the short-wave cooling effect. At the top of the atmosphere (TOA, clear-sky short-wave and long-wave direct radiative forcing was estimated to be −0.26 W m−2 and −0.01 W m−2, respectively. This leads to a net negative direct radiative forcing of dust at the TOA, indicating cooling of the atmosphere by an increase in outgoing radiation. Short-wave and long-wave direct radiative forcing by dust is shown to have a diurnal variation due to changes in solar zenith angle and in the intensity of infrared radiation. Atmospheric heating due to absorption of short-wave radiation was simulated, while the interaction of dust with long-wave radiation was associated with atmospheric cooling. The net effect was cooling of the atmosphere near the surface (below 0.2 km, with warming of the atmosphere at higher altitudes.

  19. Modeling Radiation Fog

    Science.gov (United States)

    K R, Sreenivas; Mohammad, Rafiuddin

    2016-11-01

    Predicting the fog-onset, its growth and dissipation helps in managing airports and other modes of transport. After sunset, occurrence of fog requires moist air, low wind and clear-sky conditions. Under these circumstances radiative heat transfer plays a vital role in the NBL. Locally, initiation of fog happens when the air temperature falls below the dew-point. Thus, to predict the onset of fog at a given location, one has to compute evolution of vertical temperature profile. Earlier,our group has shown that the presence of aerosols and vertical variation in their number density determines the radiative-cooling and hence development of vertical temperature profile. Aerosols, through radiation in the window-band, provides an efficient path for air layers to lose heat to the cold, upper atmosphere. This process creates cooler air layer between warmer ground and upper air layers and resulting temperature profile facilitate the initiation of fog. Our results clearly indicates that accounting for the presence of aerosols and their radiative-transfer is important in modeling micro-meteorological process of fog formation and its evolution. DST, Govt. INDIA.

  20. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  1. The radiative forcing potential of different climate geoengineering options

    Directory of Open Access Journals (Sweden)

    T. M. Lenton

    2009-01-01

    Full Text Available Climate geoengineering proposals seek to rectify the Earth's current radiative imbalance, either by reducing the absorption of incoming solar (shortwave radiation, or by removing CO2 from the atmosphere and transferring it to long-lived reservoirs, thus increasing outgoing longwave radiation. A fundamental criterion for evaluating geoengineering options is their climate cooling effectiveness, which we quantify here in terms of radiative forcing potential. We use a simple analytical approach, based on the global energy balance and pulse response functions for the decay of CO2 perturbations. This aids transparency compared to calculations with complex numerical models, but is not intended to be definitive. Already it reveals some significant errors in existing calculations, and it allows us to compare the relative effectiveness of a range of proposals. By 2050, only stratospheric aerosol injections or sunshades in space have the potential to cool the climate back toward its pre-industrial state, but some land carbon cycle geoengineering options are of comparable magnitude to mitigation "wedges". Strong mitigation, i.e. large reductions in CO2 emissions, combined with global-scale air capture and storage, afforestation, and bio-char production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100, thus removing the need for other geoengineering. Alternatively, strong mitigation stabilising CO2 at 500 ppm, combined with geoengineered increases in the albedo of marine stratiform clouds, grasslands, croplands and human settlements might achieve a patchy cancellation of radiative forcing. Ocean fertilisation options are only worthwhile if sustained on a millennial timescale and phosphorus addition probably has greater long-term potential than iron or nitrogen fertilisation. Enhancing ocean upwelling or downwelling have trivial effects on any

  2. The radiative forcing potential of different climate geoengineering options

    Directory of Open Access Journals (Sweden)

    T. M. Lenton

    2009-08-01

    Full Text Available Climate geoengineering proposals seek to rectify the Earth's current and potential future radiative imbalance, either by reducing the absorption of incoming solar (shortwave radiation, or by removing CO2 from the atmosphere and transferring it to long-lived reservoirs, thus increasing outgoing longwave radiation. A fundamental criterion for evaluating geoengineering options is their climate cooling effectiveness, which we quantify here in terms of radiative forcing potential. We use a simple analytical approach, based on energy balance considerations and pulse response functions for the decay of CO2 perturbations. This aids transparency compared to calculations with complex numerical models, but is not intended to be definitive. It allows us to compare the relative effectiveness of a range of proposals. We consider geoengineering options as additional to large reductions in CO2 emissions. By 2050, some land carbon cycle geoengineering options could be of comparable magnitude to mitigation "wedges", but only stratospheric aerosol injections, albedo enhancement of marine stratocumulus clouds, or sunshades in space have the potential to cool the climate back toward its pre-industrial state. Strong mitigation, combined with global-scale air capture and storage, afforestation, and bio-char production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100, thus removing the need for other geoengineering. Alternatively, strong mitigation stabilising CO2 at 500 ppm, combined with geoengineered increases in the albedo of marine stratiform clouds, grasslands, croplands and human settlements might achieve a patchy cancellation of radiative forcing. Ocean fertilisation options are only worthwhile if sustained on a millennial timescale and phosphorus addition may have greater long-term potential than iron or nitrogen fertilisation. Enhancing ocean

  3. The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities

    Science.gov (United States)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential

  4. Frequency adaptation for enhanced radiation force amplitude in dynamic elastography.

    Science.gov (United States)

    Ouared, Abderrahmane; Montagnon, Emmanuel; Kazemirad, Siavash; Gaboury, Louis; Robidoux, André; Cloutier, Guy

    2015-08-01

    In remote dynamic elastography, the amplitude of the generated displacement field is directly related to the amplitude of the radiation force. Therefore, displacement improvement for better tissue characterization requires the optimization of the radiation force amplitude by increasing the push duration and/or the excitation amplitude applied on the transducer. The main problem of these approaches is that the Food and Drug Administration (FDA) thresholds for medical applications and transducer limitations may be easily exceeded. In the present study, the effect of the frequency used for the generation of the radiation force on the amplitude of the displacement field was investigated. We found that amplitudes of displacements generated by adapted radiation force sequences were greater than those generated by standard nonadapted ones (i.e., single push acoustic radiation force impulse and supersonic shear imaging). Gains in magnitude were between 20 to 158% for in vitro measurements on agar-gelatin phantoms, and 170 to 336% for ex vivo measurements on a human breast sample, depending on focus depths and attenuations of tested samples. The signal-to-noise ratio was also improved more than 4-fold with adapted sequences. We conclude that frequency adaptation is a complementary technique that is efficient for the optimization of displacement amplitudes. This technique can be used safely to optimize the deposited local acoustic energy without increasing the risk of damaging tissues and transducer elements.

  5. Indirect radiative forcing by ion-mediated nucleation of aerosol

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-12-01

    Full Text Available A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN in generating new particles and cloud condensation nuclei (CCN in the atmosphere. Here we implement the IMN scheme into the Community Atmosphere Model version 5 (CAM5. Our simulations show that, compared to globally averaged results based on H2SO4-H2O binary homogeneous nucleation (BHN, the presence of ionization (i.e., IMN halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~3, CCN burden by ~10% (at 0.2% supersaturation to 65% (at 1.0% supersaturation, and cloud droplet number burden by ~18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing (SWCF by 3.67 W m−2 (more negative and longwave cloud forcing by 1.78 W m−2 (more positive, with large spatial variations. The effect of ionization on SWCF derived from this study (3.67 W m−2 is a factor of ~3 higher that of a previous study (1.15 W m−2 based on a different ion nucleation scheme and climate model. Based on the present CAM5 simulation, the 5-yr mean impacts of solar cycle induced changes in ionization rates on CCN and cloud forcing are small (~−0.02 W m−2 but have larger inter-annual (from −0.18 to 0.17 W m−2 and spatial variations.

  6. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    Science.gov (United States)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  7. Anthropogenic influence on SOA and the resulting radiative forcing

    Directory of Open Access Journals (Sweden)

    C. R. Hoyle

    2009-04-01

    Full Text Available The effect of chemical changes in the atmosphere since the pre-industrial period on the distributions and burdens of Secondary Organic Aerosol (SOA has been calculated using the off-line aerosol chemistry transport model Oslo CTM2. The production of SOA was found to have increased from about 35 Tg yr−1 to 53 Tg yr−1 since pre-industrial times, leading to an increase in the global annual mean SOA burden from 0.33 Tg to 0.50 Tg, or about 51%. The effect of allowing semi-volatile species to partition to sulphate aerosol was also tested, leading to an increase in SOA production from about 43 Tg yr−1 to 69 Tg yr−1 since pre-industrial times, while the annual mean SOA burden increased from 0.44 Tg to 0.70 Tg, or about 59%. The increases were greatest over industrialised areas, especially when partitioning to sulphate aerosol was allowed, as well as over regions with high biogenic precursor emissions. The contribution of emissions from different sources to the larger SOA burdens has been calculated. The results suggest that the majority of the increase was caused by emissions of primary organic aerosols (POA, from fossil fuel and bio fuel combustion. As yet, very few radiative forcing estimates of SOA exist, and no such estimates were provided in the latest IPCC report. In this study, we found that the change in SOA burden caused a radiative forcing (defined here as the difference between the pre-industrial and the present day run of −0.09 W m−2, when SOA was allowed to partition to both organic and sulphate aerosols, and −0.06 W m−2 when only partitioning to organic aerosols was assumed. Therefore, the radiative forcing of SOA was found to be stronger than the best estimate for POA in the latest IPCC assessment.

  8. Radiative forcings for 28 potential Archean greenhouse gases

    Directory of Open Access Journals (Sweden)

    B. Byrne

    2014-05-01

    Full Text Available Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP. CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar. For CO2 to resolve the FYSP alone, 0.21 bar is needed with 0.5 bar of atmospheric pressure, 0.13 bar with 1 bar of atmospheric pressures, or 0.07 bar with 2 bar of atmospheric pressure. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 W m−2 for background pressures of 0.5, 1 or 2 bar, likely limiting the utility of CH4 for warming the Archean. For the other 26 HITRAN gases, radiative forcings of up to a few to 10 W m−2 are obtained from concentrations of 0.1–1 ppmv for many gases. We further calculate the reduction of radiative forcing due to gas overlap for the 20 strongest gases. We recommend the forcings provided here be used both as a first reference for which gases are likely good greenhouse gases, and as a standard set of calculations for validation of radiative forcing calculations for the Archean.

  9. Direct Radiative Forcing of Anthropogenic Aerosols over Oceans from Satellite Observations

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin; SHI Guangyu; QIN Shiguang; YANG Su; ZHANG Peng

    2011-01-01

    Anthropogenic aerosols play an important role in the atmospheric energy balance. Anthropogenic aerosol optical depth (AOD) and its accompanying shortwave radiative forcing (RF) are usually simulated by numerical models. Recently, with the development of space-borne instruments and sophisticated retrieval algorithms, it has become possible to estimate aerosol radiative forcing based on satellite observations. In this study, we have estimated shortwave direct radiative forcing due to anthropogenic aerosols over oceans in all-sky conditions by combining clouds and the Single Scanner Footprint data of the Clouds and Earth's Radiant Energy System (CERES/SSF) experiment, which provide measurements of upward shortwave fluxes at the top of atmosphere, with Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products. We found that globally averaged aerosol radiative forcing over oceans in the clear-sky conditions and all-sky conditions were -1.03±0.48 W m-2 and -0.34 ±0.16 W m-2, respectively. Direct radiative forcing by anthropogenic aerosols shows large regional and seasonal variations. In some regions and in particular seasons, the magnitude of direct forcing by anthropogenic aerosols can be comparable to the forcing of greenhouse gases. However, it shows that aerosols caused the cooling effect, rather than warming effect from global scale, which is different from greenhouse gases.

  10. Competition between radiative and strong force decay

    Science.gov (United States)

    Tabor, Samuel

    2017-01-01

    For nuclear states unbound to neutron decay, radiative emission is often assumed to not dominate over neutron decay mediated by the far stronger strong interaction, except for very low neutron energies and high angular momentum barriers. Recent experimental investigations of 19O and 27 Mg populated in heavy-ion fusion-evaporation reactions have revealed predominantly gamma decays from a number of states unbound to neutron decay by up to 2 MeV. In most cases the angular momentum barrier is not sufficient to inhibit neutron decay enough to allow E-M decay with widths of up to an eV or so to win. Other inhibitions to particle decay, including low spectroscopic factors, will be discussed. Supported in part by NSF Grant No. 1401574.

  11. Acoustic radiation force and torque on an absorbing particle

    CERN Document Server

    Silva, Glauber T

    2013-01-01

    Exact formulas of the radiation force and torque exerted on an absorbing particle in the Rayleigh scattering limit caused by an arbitrary harmonic acoustic wave are presented. They are used to analyze the trapping conditions by a single-beam acoustical tweezer based on a spherically focused ultrasound beam. Results reveal that particle's absorption has a pivotal role in single-beam trapping. Furthermore, we obtain the radiation torque induced by a Bessel beam in an on-axis particle.

  12. Image reconstruction with acoustic radiation force induced shear waves

    Science.gov (United States)

    McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.

    2003-05-01

    Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.

  13. Manipulating particles with light: radiation and gradient forces

    Science.gov (United States)

    Bradshaw, David S.; Andrews, David L.

    2017-05-01

    The manipulation of matter with electromagnetic radiation is a capacity that has been known for over a century. However, the prominence of such optical effects only grew rapidly following the invention of optical tweezers in the 1980s. While both the original theory and the early trapping techniques are based on the radiation force, optical tweezing uses the gradient force. This paper aims to differentiate between these two clearly distinct types of optical forces, which are sometimes confused in the literature. We also discuss three completely separate forms of optical torque that can be applied to a particle, also due to an electromagnetic field. These involve the transfer of either spin or orbital angular momentum from the beam to the particle, depending on the character of the light, or the often overlooked alignment effect that can act on a cylindrical particle due to a gradient force.

  14. A study of the acoustical radiation force considering attenuation

    Science.gov (United States)

    Wu, RongRong; Liu, XiaoZhou; Gong, XiuFen

    2013-07-01

    Acoustical tweezer is a primary application of the radiation force of a sound field. When an ultrasound focused beam passes through a micro-particle, like a cell or living biological specimens, the particle will be manipulated accurately without physical contact and invasion, due to the three-dimensional acoustical trapping force. Based on the Ray acoustics approach in the Mie regime, this work discusses the effects on the particle caused by Gaussian focused ultrasound, studies the acoustical trapping force of spherical Mie particles by ultrasound in any position, and analyzes the numerical calculation on the two-dimensional acoustical radiation force. This article also analyzes the conditions for the acoustical trapping phenomenon, and discusses the impact of the initial position and size of the particle on the magnitude of the acoustical radiation force. Furthermore, this paper considers the ultrasonic attenuation in a particle in the case of two-dimension, studies the attenuation's effects on the acoustical trapping force, and amends the calculation to the ordinary case with attenuation.

  15. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  16. A New Method of Comparing Forcing Agents in Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.; Jarvis, Andrew

    2015-10-14

    We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approach for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.

  17. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-12-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series of simulations have been performed by varying the amount of dust aerosols present in the atmosphere to study the trends in ground temperature, heating rate and radiative forcing for both its longwave and shortwave components. A case study for dust storm is also performed as dust storms are common in Arabian Peninsula. A sensitivity analyses is also performed to study the relationship of surface temperature minimum and maximum against aerosol concentration, single scattering albedo and asymmetry factor. These analyses are performed to get more insight into the role of dust aerosols on radiative forcing.

  18. Effect of cruise altitude and alternative aviation fuels on radiative forcing

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.

    2011-01-01

    The radiative forcing caused by the emissions of jet aircraft is calculated using data from an aircraft performance model. Data from the performance model is needed to calculate the emissions of the aircraft. The sensitivity function and lifetime of the emitted gasses and particles are used to calcu

  19. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

    Directory of Open Access Journals (Sweden)

    T. C. Bond

    2011-02-01

    12 additional models. We outline a framework for combining a large number of simple models with a smaller number of enhanced models that have greater complexity. Adjustments for black carbon internal mixing and for regional variability are discussed. Emitting regions with more deep convection have greater model diversity. Our best estimate of global-mean SFP is +1.03 ± 0.52 GJ g−1 for direct atmosphere forcing of black carbon, +1.15 ± 0.53 GJ g−1 for black carbon including direct and cryosphere forcing, and −0.064 (−0.02, −0.13 GJ g−1 for organic matter. These values depend on the region and timing of emission. The lowest OM:BC mass ratio required to produce a neutral effect on top-of-atmosphere direct forcing is 15:1 for any region. Any lower ratio results in positive direct forcing. However, important processes, particularly cloud changes that tend toward cooling, have not been included here.

    Global-average SFP for energy-related emissions can be converted to a 100-year GWP of about 740 ± 370 for BC without snow forcing, and 830 ± 440 with snow forcing. 100-year GWP for OM is −46 (−18, −92. Best estimates of atmospheric radiative impact (without snow forcing by black and organic matter are +0.47 ± 0.26 W m−2 and −0.17 (−0.07, −0.35 W m−2 for BC and OM, respectively, assuming total emission rates of 7.4 and 45 Tg yr−1. Anthropogenic forcing is +0.40 ± 0.18 W m−2 and −0.13 (−0.05, −0.25 W m−2 for BC and OM, respectively, assuming anthropogenic emission rates of 6.3 and 32.6 Tg yr−1. Black carbon forcing is only 18% higher than that given by the Intergovernmental Panel on Climate Change (IPCC, although the value presented here includes enhanced absorption due to internal mixing.

  20. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years.

    Science.gov (United States)

    Joos, Fortunat; Spahni, Renato

    2008-02-05

    The rate of change of climate codetermines the global warming impacts on natural and socioeconomic systems and their capabilities to adapt. Establishing past rates of climate change from temperature proxy data remains difficult given their limited spatiotemporal resolution. In contrast, past greenhouse gas radiative forcing, causing climate to change, is well known from ice cores. We compare rates of change of anthropogenic forcing with rates of natural greenhouse gas forcing since the Last Glacial Maximum and of solar and volcanic forcing of the last millennium. The smoothing of atmospheric variations by the enclosure process of air into ice is computed with a firn diffusion and enclosure model. The 20th century increase in CO(2) and its radiative forcing occurred more than an order of magnitude faster than any sustained change during the past 22,000 years. The average rate of increase in the radiative forcing not just from CO(2) but from the combination of CO(2), CH(4), and N(2)O is larger during the Industrial Era than during any comparable period of at least the past 16,000 years. In addition, the decadal-to-century scale rate of change in anthropogenic forcing is unusually high in the context of the natural forcing variations (solar and volcanoes) of the past millennium. Our analysis implies that global climate change, which is anthropogenic in origin, is progressing at a speed that is unprecedented at least during the last 22,000 years.

  1. Net radiative forcing from widespread deployment of photovoltaics.

    Science.gov (United States)

    Nemet, Gregory F

    2009-03-15

    If photovoltaics (PV) are to contribute significantly to stabilizing the climate, they will need to be deployed on the scale of multiple terawatts. Installation of that much PV would cover substantial portions of the Earth's surface with dark-colored, sunlight-absorbing panels, reducing the Earth's albedo. How much radiative forcing would result from this change in land use? How does this amount compare to the radiative forcing avoided by substituting PV for fossil fuels? This analysis uses a series of simple equations to compare the two effects and finds that substitution dominates; the avoided radiative forcing due to substitution of PV for fossil fuels is approximately 30 times largerthan the forcing due to albedo modification. Sensitivity analysis, including discounting of future costs and benefits, identifies unfavorable yet plausible configurations in which the albedo effect substantially reduces the climatic benefits of PV. The value of PV as a climate mitigation option depends on how it is deployed, not just how much it is deployed--efficiency of PV systems and the carbon intensity of the substituted energy are particularly important

  2. A Comparison of Pre-monsoonal and Monsoonal Radiative Forcing by Anthropogenic Aerosols over South Asia

    Science.gov (United States)

    Lee, S.; Cohen, J. B.; Wang, C.

    2012-12-01

    Radiative forcing by anthropogenic aerosols after monsoon onset is often considered unimportant compared to forcing during the pre-monsoonal period, due to precipitation scavenging. We tested this assumption for the South Asian monsoon using three model runs with forcing prescribed during the pre-monsoonal period (March-May), monsoon period (June-September) and both periods. The forcing represents the direct radiative effects of sulfate, organic carbon and black carbon. It was derived from a set of Kalman filter-optimised black carbon emissions from a modelling system based on the CAM3 GCM, a two-moment multi-scheme aerosol and radiation model, and a coupled urban scale processing package; we expect it to be reliable within its given error bounds. The monthly climatological forcing values were prescribed over South Asia every year for 100 years to CESM 1.0.4, a coupled atmosphere-ocean model. We shall compare the three resultant climatologies with climatologies from a no aerosol model and a full aerosol model.

  3. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn [Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-14

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  4. Net radiative forcing due to changes in regional emissions of tropospheric ozone precursors

    Science.gov (United States)

    Naik, Vaishali; Mauzerall, Denise; Horowitz, Larry; Schwarzkopf, M. Daniel; Ramaswamy, V.; Oppenheimer, Michael

    2005-12-01

    The global distribution of tropospheric ozone (O3) depends on the emission of precursors, chemistry, and transport. For small perturbations to emissions, the global radiative forcing resulting from changes in O3 can be expressed as a sum of forcings from emission changes in different regions. Tropospheric O3 is considered in present climate policies only through the inclusion of indirect effect of CH4 on radiative forcing through its impact on O3 concentrations. The short-lived O3 precursors (NOx, CO, and NMHCs) are not directly included in the Kyoto Protocol or any similar climate mitigation agreement. In this study, we quantify the global radiative forcing resulting from a marginal reduction (10%) in anthropogenic emissions of NOx alone from nine geographic regions and a combined marginal reduction in NOx, CO, and NMHCs emissions from three regions. We simulate, using the global chemistry transport model MOZART-2, the change in the distribution of global O3 resulting from these emission reductions. In addition to the short-term reduction in O3, these emission reductions also increase CH4 concentrations (by decreasing OH); this increase in CH4 in turn counteracts part of the initial reduction in O3 concentrations. We calculate the global radiative forcing resulting from the regional emission reductions, accounting for changes in both O3 and CH4. Our results show that changes in O3 production and resulting distribution depend strongly on the geographical location of the reduction in precursor emissions. We find that the global O3 distribution and radiative forcing are most sensitive to changes in precursor emissions from tropical regions and least sensitive to changes from midlatitude and high-latitude regions. Changes in CH4 and O3 concentrations resulting from NOx emission reductions alone produce offsetting changes in radiative forcing, leaving a small positive residual forcing (warming) for all regions. In contrast, for combined reductions of anthropogenic

  5. Implications of multiple scattering on the assessment of black carbon aerosol radiative forcing

    Science.gov (United States)

    Nair, Vijayakumar S.; Suresh Babu, S.; Krishna Moorthy, K.; Satheesh, S. K.

    2014-11-01

    The effects of radiative coupling between scattering and absorbing aerosols, in an external mixture, on the aerosol radiative forcing (ARF) due to black carbon (BC), its sensitivity to the composite aerosol loading and composition, and surface reflectance are investigated using radiative transfer model simulations. The ARF due to BC is found to depend significantly on the optical properties of the ‘neighboring’ (non-BC) aerosol species. The scattering due to these species significantly increases the top of the atmospheric warming due to black carbon aerosols, and significant changes in the radiative forcing efficiency of BC. This is especially significant over dark surfaces (such as oceans), despite the ARF due to BC being higher over snow and land-surfaces. The spatial heterogeneity of this effect (coupling or multiple scattering by neighboring aerosol species) imposes large uncertainty in the estimation ARF due to BC aerosols, especially over the oceans.

  6. Halogen chemistry reduces tropospheric O3 radiative forcing

    DEFF Research Database (Denmark)

    Sherwen, Tomás; Evans, Mat J.; Carpenter, Lucy J.

    2017-01-01

    Tropospheric ozone (O3) is a global warming gas, but the lack of a firm observational record since the preindustrial period means that estimates of its radiative forcing (RFTO3) rely on model calculations. Recent observational evidence shows that halogens are pervasive in the troposphere and need...

  7. Numerical study of acoustic streaming and radiation forces on micro particles

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob Herring; Muller, Peter Barkholt; Barnkob, Rune;

    2012-01-01

    , and 2) Stokes drag from the induced acoustic streaming flow. Both effects are second order and require the solution of the full linearized Navier-Stokes equation in order to be captured correctly. The model shows the transition from streaming drag to radiation force dominated regimes. The transition...

  8. Diurnal cycle of the dust instantaneous direct radiative forcing over the Arabian Peninsula

    KAUST Repository

    Osipov, S.

    2015-08-27

    In this study we attempted to better quantify radiative effects of dust over the Arabian Peninsula and their dependence on input parameters. For this purpose we have developed a stand-alone column radiation transport model coupled with the Mie, T-matrix and geometric optics calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments were carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18–20 March 2012. Comprehensive ground-based observations and satellite retrievals were used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing were estimated both from the model and observations. Diurnal cycle of the shortwave instantaneous dust direct radiative forcing was studied for a range of aerosol and surface characteristics representative of the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing were evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions, along with anisotropic aerosol scattering, are mostly responsible for diurnal effects.

  9. Aerosol types and radiative forcing estimates over East Asia

    Science.gov (United States)

    Bhawar, Rohini L.; Lee, Woo-Seop; Rahul, P. R. C.

    2016-09-01

    Using the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data sets along with the CSIRO-MK 3.6.0 model simulations, we analyzed the aerosol optical depth (AOD) variability during March-May (MAM), June-August (JJA) along with their annual mean variability over East Asia for the period 2006-2012. The CALIPSO measurements correlated well with the MODIS measurements and the CSIRO-MK 3.6.0 model simulations over the spatial distribution patterns of the aerosols, but CALIPSO underestimated the magnitudes of the AOD. Maximum smoke aerosol loading is observed to occur during JJA, as a result of wind transport from Southern China while dust loading dominated during MAM via the transport from desert region. The vertical distribution profiles revealed that there is uniform distribution of smoke aerosols during both MAM and JJA, only differing at the altitude at which they peak; while the dust aerosols during MAM showed a significant distribution from the surface to 10 km altitude and JJA was marked with lower dust loading at the same altitudes. Both dust and smoke aerosols warm the atmosphere in MAM but due to the absorbing nature of smoke aerosols, they cause considerable cooling at the surface which is double when compared to the dust aerosols. The top of the atmosphere aerosol radiative forcing (ARF) due to smoke and dust aerosols is positive in MAM which indicates warming over East Asia. During MAM a consistent declining trend of the surface ARF due to smoke aerosols persisted over the last three decades as conspicuously evidenced from model analysis; the decline is ∼10 W/m2 from 1980 to 2012.

  10. Observational determination of surface radiative forcing by CO2 from 2000 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Daniel R.; Collins, William D.; Gero, P. Johnathan; Torn, Margaret S.; Mlawer, Eli J.; Shippert, Timothy R.

    2015-02-25

    The climatic impact of CO2 and other greenhouse gases is usually quantified in terms of radiative forcing1, calculated as the difference between estimates of the Earth’s radiation field from pre-industrial and present-day concentrations of these gases. Radiative transfer models calculate that the increase in CO2 since 1750 corresponds to a global annual-mean radiative forcing at the tropopause of 1.82 ± 0.19 W m-2 (ref. 2). However, despite widespread scientific discussion and modelling of the climate impacts of well-mixed greenhouse gases, there is little direct observational evidence of the radiative impact of increasing atmospheric CO2. Here we present observationally based evidence of clear-sky CO2 surface radiative forcing that is directly attributable to the increase, between 2000 and 2010, of 22 parts per million atmospheric CO2. The time series of this forcing at the two locations—the Southern Great Plains and the North Slope of Alaska—are derived from Atmospheric Emitted Radiance Interferometer spectra3 together with ancillary measurements and thoroughly corroborated radiative transfer calculations4. The time series both show statistically significant trends of 0.2 W m-2 per decade (with respective uncertainties of ±0.06 W m-2 per decade and ±0.07 W m-2 per decade) and have seasonal ranges of 0.1–0.2 W m-2. This is approximately ten per cent of the trend in downwelling longwave radiation5, 6, 7. These results confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions, and provide empirical evidence of how rising CO2 levels, mediated by temporal variations due to photosynthesis and respiration, are affecting the surface energy balance.

  11. Cooperative scattering and radiation pressure force in dense atomic clouds

    CERN Document Server

    Bachelard, Romain; Courteille, Philippe

    2011-01-01

    We consider the collective scattering by a cloud of $N$ two-level atoms driven by an uniform radiation field. Dense atomic clouds can be described by a continuous density and the problem reduces to deriving the spectrum of the atom-atom coupling operator. For clouds much larger than the optical wavelength, the spectrum is treated as a continuum, and analytical expressions for several macroscopic quantities, such as scattered radiation intensity and radiation pressure force, are derived. The analytical results are then compared to the exact $N$-body solution and with those obtained assuming a symmetric timed Dicke state. In contrast with the symmetric timed Dicke state, our calculations takes account of the back action of the atoms on the driving field leading to phase shifts due to the finite refraction of the cloud.

  12. An overview of black carbon deposition and its radiative forcing over the Arctic

    Directory of Open Access Journals (Sweden)

    Ting-Feng Dou

    2016-09-01

    Full Text Available This paper gives an overview of the current understanding of the observations of black carbon (BC in snow and ice, and the estimates of BC deposition and its radiative forcing over the Arctic. Both of the observations and model results show that, in spring, the average BC concentration and the resulting radiative forcing in Russian Arctic > Canadian and Alaskan Arctic > Arctic Ocean and Greenland. The observed BC concentration presented a significant decrease trend from the Arctic coastal regions to the center of Arctic Ocean. In summer, due to the combined effects of BC accumulation and enlarged snow grain size, the averaged radiative forcing per unit area over the Arctic Ocean is larger than that over each sector of the Arctic in spring. However, because summer sea ice is always covered by a large fraction of melt ponds, the role of BC in sea ice albedo evolution during this period is secondary. Multi-model mean results indicate that the annual mean radiative forcing from all sources of BC in snow and ice over the Arctic was ∼0.17 W m−2. Wet deposition is the dominant removal mechanism in the Arctic, which accounts for more than 90% of the total deposition. In the last part, we discuss the uncertainties in present modeling studies, and suggest potential approaches to reduce the uncertainties.

  13. Accounting for radiative forcing from albedo change in future global land-use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  14. Assessing estimates of radiative forcing for solar geoengineering starts with accurate aerosol radiative properties

    Science.gov (United States)

    Dykema, J. A.; Keith, D.; Keutsch, F. N.

    2016-12-01

    The deliberate modification of Earth's albedo as a complement to mitigation in order to slow climate change brings with it a range of risks. A range of different approaches have been studied, including the injection of aerosol particles into the stratosphere to decrease solar energy input into the climate system. Key side effects from this approach include ozone loss and radiative heating. Both of these side effects may produce dynamical changes with further consequences for stratospheric and tropospheric climate. Studies of past volcanic eruptions suggest that sulfate aerosol injection may be capable of achieving a compensating radiative forcing of -1 W m-2 or more. It is also expected that such injection of sulfate aerosols will result in loss of stratospheric ozone and of significant infrared heating. The problems resulting from sulfate aerosols intended have motivated the investigation of alternative materials, including high refractive index solid materials. High refractive index materials have the potential to scatter more efficiently per unit mass, leading to a reduction in surface area for heterogeneous chemistry, and, depending on details of absorption, less radiative heating. Fundamentally, assessing these trade-offs requires accurate knowledge of the complex refractive index of materials being considered over the full range of wavelengths relevant to atmospheric radiative transfer, that is, from ultraviolet to far-infrared. Our survey of the relevant literature finds that such measurements are not available for all materials of interest at all wavelengths. We utilize a method developed in astrophysics to fill in spectral gaps, and find that some materials may heat the stratosphere substantially more than was found in previous work. Stratospheric heating can warm the tropical tropopause layer, increasing the flux of water vapor into the stratosphere, with further consequences for atmospheric composition and radiative forcing. We analyze this consequence

  15. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing

    Science.gov (United States)

    Bintanja, Richard; Krikken, Folmer

    2015-04-01

    Observed and projected climate warming is strongest in the Arctic regions, and maximum in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. However, the impact of seasonally varying climate forcing has not been identified and quantified. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming is very sensitive to the season in which the radiative forcing occurs. More specifically, Arctic warming and sea ice decline (especially in winter) are particularly sensitive to forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, wintertime radiative forcing yields a more evenly distributed winter warming, which, surprisingly, in certain regions is even smaller than that due to spring forcing. The dependence of the magnitude and pattern of Arctic warming on the seasonality of the climate forcing has important implications in terms of projected increases in anthropogenic forcing. For instance, shipping-induced emissions such as those of black carbon are projected to peak in the ice-free summer and will thereby exert a comparatively strong impact on Arctic warming.

  16. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2010-02-12

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing (outgoing shortwave+longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 Wm{sup -2}, and temperature decreased by {approx}0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental U.S. the total outgoing radiation increased by 2.3 Wm{sup -2}, and land surface temperature decreased by {approx}0.03 K for an average 0.01 increase in surface albedo. Based on these forcings, the expected emitted CO{sub 2} offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be {approx} 57 Gt CO{sub 2}. A more meaningful evaluation of the impacts of urban albedo increases on global climate and the expected CO{sub 2} offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  17. Surface aerosol radiative forcing derived from collocated ground-based radiometric observations during PRIDE, SAFARI, and ACE-Asia.

    Science.gov (United States)

    Hansell, Richard A; Tsay, Si-Chee; Ji, Qiang; Liou, K N; Ou, Szu-Cheng

    2003-09-20

    An approach is presented to estimate the surface aerosol radiative forcing by use of collocated cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Puerto Rico Dust Experiment 2000, South African Fire Atmosphere Research Initiative (SAFARI) 2000, and Aerosol Characterization Experiment-Asia 2001. We show that aerosol optical depths from the Multiple-Filter Rotating Shadowband Radiometer data match closely with those from the Cimel sunphotometer data for two SAFARI-2000 dates. The observed aerosol radiative forcings were interpreted on the basis of results from the Fu-Liou radiative transfer model, and, in some cases, cross checked with satellite-derived forcing parameters. Values of the aerosol radiative forcing and forcing efficiency, which quantifies the sensitivity of the surface fluxes to the aerosol optical depth, were generated on the basis of a differential technique for all three campaigns, and their scientific significance is discussed.

  18. Modeling meteorological forcing of snowcover in forests

    Science.gov (United States)

    Hellstrom, Robert Ake

    2000-11-01

    The architectural properties of a forest are known to modify significantly meteorological forcing of snowcover. Current numerical snow models utilize a wide range of vegetation representations that limit their application to particular biomes or for basic research on specialized problems. Most do not explicitly represent the combined effects of the canopy on processes of mass and energy transfer beneath the canopy. This project develops forest canopy sub-models that estimate the below-canopy solar and longwave irradiance, wind speed, and accumulation of precipitation, based on meteorological measurements above the canopy and parameters of forest architecture. The wind and solar radiation sub-model predictions were independently compared with meteorological observations at deciduous and coniferous sites in the snowbelt region of northern Michigan. The solar radiation and wind models required adjustments to match sub-canopy measurements. The primary experiment compared the simulations and measurements of snow depth for eight modified versions of the Utah Energy Balance (UEB) snow model during the 1998-99 snowcover season at the two forest sites and a near-by open site. Independent inclusion of each sub-model and a new stability scheme in the UEB model revealed significant sensitivity of modeled snow depth to stability and each of the four processes estimated by the sub-models. The original UEB model uses a simple forest canopy parameterization that does not consider precipitation interception. Comparison of the original and modified UEB models significantly improved simulations of snow depth at the open and coniferous sites, but performance was slightly worse for a leafless deciduous site. Unlike the modified model, the analysis suggests that the original model produces inconsistent results, which reduces its potential for application to different biomes. Results suggest that opposing processes of energy and mass exchange tend to moderate meteorological forcing

  19. Influence of future air pollution mitigation strategies on total aerosol radiative forcing

    Directory of Open Access Journals (Sweden)

    S. Kloster

    2008-11-01

    Full Text Available We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030 and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030.

    We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to −2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2 under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by −1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions.

    We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in

  20. Influence of future air pollution mitigation strategies on total aerosol radiative forcing

    Directory of Open Access Journals (Sweden)

    S. Kloster

    2008-03-01

    Full Text Available We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030 and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030.

    We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to −2.05 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2 under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by −1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing cloud be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extend be controlled by greenhouse gas emissions.

    We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in

  1. Radiative forcings for 28 potential Archean greenhouse gases

    CERN Document Server

    Byrne, Brendan

    2014-01-01

    Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar of atmospheric N2. For CO2 to resolve the FYSP alone at 2.8 Gyr BP (80% of present solar luminosity), 0.32 bar is needed with 0.5 bar of atmospheric N2, 0.20 bar with 1 bar of atmospheric N2, or 0.11 bar with 2 bar of atmospheric N2. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 Wm-2 for background pressures of 0.5, 1 or 2 bar, likely limiting ...

  2. Tropospheric Radiative Forcing from EL Chichon and MT. Pinatubo: Theory and Observations

    Science.gov (United States)

    Dutton, Ellsworth George

    1995-01-01

    forcing is applied to a simple hemispheric tropospheric temperature change model, assuming constant cloudiness and surface albedo, in an effort to explain observed global temperature records (NOAA Microwave Sounding Unit) following the two eruptions. Excellent agreement is seen between explained (modeled) and observed global and hemispheric temperature changes after the Mt. Pinatubo eruption, but not following that of El Chichon. Details of this work and some discussion of the results are given. A simple parameterization of the radiative forcing calculations is given that may prove useful in higher spatial and temporal resolution investigations.

  3. Which forcing data errors matter most when modeling seasonal snowpacks?

    Science.gov (United States)

    Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.

    2014-12-01

    High quality forcing data are critical when modeling seasonal snowpacks and snowmelt, but their quality is often compromised due to measurement errors or deficiencies in gridded data products (e.g., spatio-temporal interpolation, empirical parameterizations, or numerical weather model outputs). To assess the relative impact of errors in different meteorological forcings, many studies have conducted sensitivity analyses where errors (e.g., bias) are imposed on one forcing at a time and changes in model output are compared. Although straightforward, this approach only considers simplistic error structures and cannot quantify interactions in different meteorological forcing errors (i.e., it assumes a linear system). Here we employ the Sobol' method of global sensitivity analysis, which allows us to test how co-existing errors in six meteorological forcings (i.e., air temperature, precipitation, wind speed, humidity, incoming shortwave and longwave radiation) impact specific modeled snow variables (i.e., peak snow water equivalent, snowmelt rates, and snow disappearance timing). Using the Sobol' framework across a large number of realizations (>100000 simulations annually at each site), we test how (1) the type (e.g., bias vs. random errors), (2) distribution (e.g., uniform vs. normal), and (3) magnitude (e.g., instrument uncertainty vs. field uncertainty) of forcing errors impact key outputs from a physically based snow model (the Utah Energy Balance). We also assess the role of climate by conducting the analysis at sites in maritime, intermountain, continental, and tundra snow zones. For all outputs considered, results show that (1) biases in forcing data are more important than random errors, (2) the choice of error distribution can enhance the importance of specific forcings, and (3) the level of uncertainty considered dictates the relative importance of forcings. While the relative importance of forcings varied with snow variable and climate, the results broadly

  4. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China

    Science.gov (United States)

    Xin, Jinyuan; Gong, Chongshui; Wang, Shigong; Wang, Yuesi

    2016-05-01

    The optical properties of dust aerosols were measured using narrow-band data from a portable sun photometer at four desert and semi-desert stations in northwestern China from 2004 to 2007. Ground-based and satellite observations indicated absorbing dust aerosol loading over the region surrounded by eight large-scale deserts. Radiation forcing was identified by using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The ranges of annual mean aerosol optical depth (AOD), Angström exponents, and single-scattering albedo (SSA) were from 0.25 to 0.35, from - 0.73 to 1.18, and from 0.77 to 0.86, respectively. The ranges of annual mean aerosol direct radiative forcing values at the top of the atmosphere (TOA), mid-atmosphere, and on the surface were from 3.9 to 12.0, from 50.0 to 53.1, and from - 39.1 to - 48.1 W/m2, respectively. The aerosols' optical properties and radiative characteristics showed strong seasonal variations in both the desert and semi-desert regions. Strong winds and relatively low humidity will lead dust aerosols in the atmosphere to an increase, which played greatly affected these optical properties during spring and winter in northwestern China. Based on long-term observations and retrieved data, aerosol direct radiative forcing was confirmed to heat the atmosphere (50-53 W/m2) and cool the surface (- 39 to - 48 W/m2) above the analyzed desert. Radiative forcing in the atmosphere in spring and winter was 18 to 21 W/m2 higher than other two seasons. Based on the dust sources around the sites, the greater the AOD, the more negative the forcing. The annual averaged heating rates for aerosols close to the ground (1 km) were approximately 0.80-0.85 K/day.

  5. Gravitational self-force from radiation-gauge metric perturbations

    CERN Document Server

    Pound, Adam; Barack, Leor

    2014-01-01

    Calculations of the gravitational self-force (GSF) in curved spacetime require as input the metric perturbation in a sufficiently regular gauge. A basic challenge in the program to compute the GSF for orbits around a Kerr black hole is that the standard procedure for reconstructing the perturbation is formulated in a class of radiation gauges, in which the particle singularity is non-isotropic and extends away from the particle's location. Here we present two practical schemes for calculating the GSF using a radiation-gauge reconstructed metric as input. The schemes are based on a detailed analysis of the local structure of the particle singularity in the radiation gauges. We identify 3 types of radiation gauges: two containing a radial string-like singularity emanating from the particle, either in one direction ("half-string" gauges) or both directions ("full-string" gauges); and a third type containing no strings but with a jump discontinuity across a surface intersecting the particle. Based on a flat-space...

  6. Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-06-17

    Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  7. Radiative Forcing Due to Major Aerosol Emitting Sectors in China and India

    Science.gov (United States)

    Streets, David G.; Shindell, Drew Todd; Lu, Zifeng; Faluvegi, Greg

    2013-01-01

    Understanding the radiative forcing caused by anthropogenic aerosol sources is essential for making effective emission control decisions to mitigate climate change. We examined the net direct plus indirect radiative forcing caused by carbonaceous aerosol and sulfur emissions in key sectors of China and India using the GISS-E2 chemistry-climate model. Diesel trucks and buses (67 mW/ sq. m) and residential biofuel combustion (52 mW/ sq. m) in India have the largest global mean, annual average forcings due mainly to the direct and indirect effects of BC. Emissions from these two sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert a negative forcing of about -30 mW/ sq. m from production of sulfate. Aerosol forcings are largest locally, with direct forcings due to residential biofuel combustion of 580 mW/ sq. m over India and 416 mW/ sq. m over China, but they extend as far as North America, Europe, and the Arctic

  8. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    Directory of Open Access Journals (Sweden)

    A. Schmidt

    2012-03-01

    Full Text Available Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. Here, we use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI and present-day (PD conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of −1.06 W m−2 in the PI era but only −0.56 W m−2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a −50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between −1.16 W m−2 and −0.86 W m−2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate.

  9. A simulation technique for 3D MR-guided acoustic radiation force imaging

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Allison, E-mail: apayne@ucair.med.utah.edu [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84112 (United States); Bever, Josh de [Department of Computer Science, University of Utah, Salt Lake City, Utah 84112 (United States); Farrer, Alexis [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Coats, Brittany [Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Parker, Dennis L. [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84108 (United States); Christensen, Douglas A. [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  10. Contrasting regional versus global radiative forcing by megacity pollution emissions

    Science.gov (United States)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  11. Indirect Radiative Forcing and Climatic Effect of the Anthropogenic Nitrate Aerosol on Regional Climate of China

    Institute of Scientific and Technical Information of China (English)

    LI Shu; WANG Wijian; ZHUANG Bingliang; HAN Yong

    2009-01-01

    The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were couplcd, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigate the spatial distribution of anthropogenic nitrate aerosols, indirect radiative forcing, as well as its climatic effect over China. TACM includes the thermodynamic equilibrium model ISORROPIA and a condensed gas-phase chemistry model. Investigations show that the concentration of nitrate aerosols is relatively high over North and East China with a maximum of 29μg m-3 in January and 8 μg m-3 in July.Due to the influence of air temperature on thermodynamic equilibrium, wet scavenging of precipitation and the monsoon climate, there are obvious seasonal differences in nitrate concentrations. The average indirect radiative forcing at the tropopause due to nitrate aerosols is -1.63 W m-2 in January and -2.65 W m-2 in July, respectively. In some areas, indirect radiative forcing reaches -10 W m-2. Sensitivity tests show that nitrate aerosols make the surface air temperature drop and the precipitation reduce on the national level. The mean changes in surface air temperature and precipitation are -0.13 K and -0.01 mm d-1 in January and -0.09 K and -0.11 mm d-1 in July, respectively, showing significant differences in different regions.

  12. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  13. Radiative Forcing of SO2 and Nox: A Case Study in Beijing

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A case study was performed in Beijing in 2000 to observe concentrations of SO2 and NOx in the atmosphere and to evaluate their radiative impact. It was found that the concentrations of these gases are usually high in the morning due to a temperature inversion in the boundary layer. The average concentrations obtained from the observations are much higher than those used in the McClatchey reference atmosphere. The radiative impacts of these gases are calculated using a line-by-line radiative transfer model. The results show that the radiative forcing at the surface due to SO2 is 0.0576 W m-2 and that due to NOx is 0.0032 W m-2. These figures are almost compatible with that due to CFC11.

  14. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    Energy Technology Data Exchange (ETDEWEB)

    Lipkens, Bart, E-mail: blipkens@wne.edu [Mechanical Engineering, Western New England University, Springfield, Massachusetts, 01119 (United States); Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com [Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713–8029 (United States)

    2015-10-28

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  15. Large Aerosol Radiative Forcing due to the 1997 Indonesian Forest Fire

    Science.gov (United States)

    Podgorny, I. A.; Li, F.; Ramanathan, V.

    2003-01-01

    During the last decade, the feedback between El Niño and biomass burning caused the Indonesia's forest fire aerosols to be the second most significant source of anthropogenic aerosol over the tropical Indian Ocean after the South Asian Haze. In this paper, the estimates of the radiative forcing during the 1997 Indonesia's forest fire have been obtained by integrating satellite derived aerosol optical depths and cloud cover with in-situ observations of single scattering albedo and a Monte-Carlo Aerosol-Cloud radiation model. The haze reduced the seasonal average solar radiation absorbed by the equatorial Indian ocean by as much as 30 to 60 W m-2 during September to November 1997, and increased the atmospheric solar heating by as much as 50% to 100% within the first 3 kilometers. The radiative forcing at the top of the atmosphere (TOA) was in the range of 5 to 15 W m-2 under cloudy skies. The significance of such large radiative flux changes to the tropical ocean-atmosphere heat budget and climate needs to be examined with climate models.

  16. Measurement of the acoustic radiation force on a sphere embedded in a soft solid

    CERN Document Server

    Lidon, Pierre; Taberlet, Nicolas; Manneville, Sébastien

    2016-01-01

    The acoustic radiation force exerted on a small sphere located at the focus of an ultrasonic beam is measured in a soft gel. It is proved to evolve quadratically with the local amplitude of the acoustic field. Strong oscillations of the local pressure are observed and attributed to an acoustic Fabry-P{\\'e}rot effect between the ultrasonic emitter and the sphere. Taking this effect into account with a simple model, a quantitative link between the radiation force and the acoustic pressure is proposed and compared to theoretical predictions in the absence of dissipation. The discrepancy between experiment and theory suggests that dissipative effects should be taken into account for fully modeling the observations.

  17. Characterizing stiffness of human prostates using acoustic radiation force.

    Science.gov (United States)

    Zhai, Liang; Madden, John; Foo, Wen-Chi; Mouraviev, Vladimir; Polascik, Thomas J; Palmeri, Mark L; Nightingale, Kathryn R

    2010-10-01

    Acoustic Radiation Force Impulse (ARFI) imaging has been previously reported to portray normal anatomic structures and pathologies in ex vivo human prostates with good contrast and resolution. These findings were based on comparison with histological slides and McNeal's zonal anatomy. In ARFI images, the central zone (CZ) appears darker (smaller displacement) than other anatomic zones and prostate cancer (PCa) is darker than normal tissue in the peripheral zone (PZ). Since displacement amplitudes in ARFI images are determined by both the underlying tissue stiffness and the amplitude of acoustic radiation force that varies with acoustic attenuation, one question that arises is how the relative displacements in prostate ARFI images are related to the underlying prostatic tissue stiffness. In linear, isotropic elastic materials and in tissues that are relatively uniform in acoustic attenuation (e.g., liver), relative displacement in ARFI images has been shown to be correlated with underlying tissue stiffness. However, the prostate is known to be heterogeneous. Variations in acoustic attenuation of prostatic structures could confound the interpretation of ARFI images due to the associated variations in the applied acoustic radiation force. Therefore, in this study, co-registered three-dimensional (3D) ARFI datasets and quantitative shear wave elasticity imaging (SWEI) datasets were acquired in freshly-excised human prostates to investigate the relationship between displacement amplitudes in ARFI prostate images and the matched reconstructed shear moduli. The lateral time-to-peak (LTTP) algorithm was applied to the SWEI data to compute the shear-wave speed and reconstruct the shear moduli. Five types of prostatic tissue (PZ, CZ, transition zone (TZ) and benign prostatic hyperplasia (BPH), PCa and atrophy) were identified, whose shear moduli were quantified to be 4.1 +/- 0.8 kPa, 9.9 +/- 0.9 kPa, 4.8 +/- 0.6 kPa, 10.0 +/- 1.0 kPa and 8.0 kPa, respectively. Linear

  18. Characterizing the stiffness of Human Prostates using Acoustic Radiation Force

    Science.gov (United States)

    Zhai, Liang; Madden, John; Foo, Wen-Chi; Mouraviev, Vladimir; Polascik, Thomas J.; Palmeri, Mark L.; Nightingale, Kathryn R.

    2012-01-01

    Acoustic Radiation Force Impulse (ARFI) imaging has been previously reported to portray normal anatomic structures and pathologies in ex vivo human prostates with good contrast and resolution. These findings were based on comparison with histological slides and McNeal’s zonal anatomy. In ARFI images, the central zone (CZ) appears darker (smaller displacement) than other anatomic zones, and prostate cancer (PCa) is darker than normal tissue in the peripheral zone (PZ). Since displacement amplitudes in ARFI images are determined by both the underlying tissue stiffness and the amplitude of acoustic radiation force which varies with acoustic attenuation, one question that arises is: how are the relative displacements in prostate ARFI images related to the underlying prostatic tissue stiffness? In linear, isotropic elastic materials and in tissues that are relatively uniform in acoustic attenuation (e.g. liver), relative displacement in ARFI images has been shown to be correlated with underlying tissue stiffness. However, the prostate is known to be heterogeneous. Variations in acoustic attenuation of prostatic structures could confound the interpretation of ARFI images due to the associated variations in the applied acoustic radiation force. Therefore, in this study, co-registered three-dimensional (3D) ARFI datasets and quantitative shear wave elasticity imaging (SWEI) datasets were acquired in freshly excised human prostates to investigate the relationship between displacement amplitudes in ARFI prostate images and the matched reconstructed shear moduli. The lateral time-to-peak (LTTP) algorithm was applied to the SWEI data to compute the shear wave speed and reconstruct the shear moduli. Five types of prostatic tissue (PZ, CZ, transition zone (TZ) and benign prostatic hyperplasia (BPH), PCa, and atrophy) were identified, whose shear moduli were quantified to be 4.1±0.8 kPa, 9.9±0.9 kPa, 4.8±0.6 kPa, 10.0±1.0 kPa and 8.0 kPa, respectively. Linear regression was

  19. Direct Radiative Forcing and Climatic Effects of Aerosols over East Asia by RegCM3

    Institute of Scientific and Technical Information of China (English)

    JU Li-Xia; HAN Zhi-Wei

    2011-01-01

    The authors used a high-resolution regional climate model (RegCM3) coupled with a chemistry/ aerosol module to simulate East Asian climate in 2006 and to test the climatic impacts of aerosols on regional- scale climate. The direct radiative forcing and climatic effects of aerosols (dust, sulfate, black carbon, and organic carbon) were discussed. The results indicated that aerosols generally produced negative radiative forcing at the top-of-the-atmosphere (TOA) over most areas of East Asia. The radiative forcing induced by aerosols exhibited significant seasonal and regional variations, with the strongest forcing occurring in summer. The aerosol feed- backs on surface air temperature and precipitation were clear. Surface cooling dominated features over the East Asian continental areas, which varied in the approximate range of-0.5 to -2℃ with the maximum up to -3℃ in summer over the deserts of West China. The aerosols induced complicated variations of precipitation. Except in summer, the rainfall generally varied in the range of-1 to 1 mm d^-1 over most areas of China.

  20. Radiation Pressure Force from Optical Cycling on a Polyatomic Molecule

    CERN Document Server

    Kozyryev, Ivan; Matsuda, Kyle; Hemmerling, Boerge; Doyle, John M

    2016-01-01

    We demonstrate multiple photon cycling and radiative force deflection on the triatomic free radical strontium monohydroxide (SrOH). Optical cycling is achieved on SrOH in a cryogenic buffer-gas beam by employing the rotationally closed $P\\left(N''=1\\right)$ branch of the vibronic transition $\\tilde{X}^{2}\\Sigma^{+}\\left(000\\right)\\leftrightarrow\\tilde{A}^{2}\\Pi_{1/2}\\left(000\\right)$. A single repumping laser excites the Sr-O stretching vibrational mode, and photon cycling of the molecule deflects the SrOH beam by an angle of $0.2^{\\circ}$ via scattering of $\\sim100$ photons per molecule. This approach can be used for direct laser cooling of SrOH and more complex, isoelectronic species.

  1. Cooperative scattering and radiation pressure force in dense atomic clouds

    Energy Technology Data Exchange (ETDEWEB)

    Bachelard, R. [University of Nova Gorica, School of Applied Sciences, Vipavska 11c SI-5270 Ajdovscina (Slovenia); Piovella, N. [Dipartimento di Fisica, Universita Degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Courteille, Ph. W. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13560-970 Sao Carlos, SP (Brazil)

    2011-07-15

    Atomic clouds prepared in ''timed Dicke'' states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully et al., Phys. Rev. Lett. 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.

  2. Persistent spread in seasonal albedo change radiative forcings linked to forest cover changes at northern latitudes

    Science.gov (United States)

    Bright, R. M.; Myhre, G.; Astrup, R. A.; Antón-Fernández, C.; Strømman, A. H.

    2014-12-01

    Large-scale land use and land cover change (LULCC) can significantly affect regional climates from changes in surface biogeophysics, and a substantial part of historical LULCC from forest to crop or pasture occurred in the mid- and high-latitudes of North America and Eurasia where the snow-masking effect of forests often leads to a negative radiative forcing from albedo changes linked to deforestation. Results from several recent historical LULCC modeling studies, however, reveal an order of magnitude spread in climate forcing from the snow-masking effect by forests. This is likely because, in months with snow cover, the interactions between vegetation and snow significantly complicate the relationship between the change in forest cover fraction and albedo, thus accurate characterizations of land surface-albedo dynamics are essential given the importance of albedo feedbacks when ground or canopy surfaces are covered in snow Here, we evaluate snow masking parameterization schemes of seven prominent climate models in greater detail in order to pinpoint major sources of the persistent variability in albedo predictions across models. Using a comprehensive dataset of forest structure, meteorology, and daily MODIS albedo observations spanning three winter-spring seasons in three regions of boreal Norway, we estimate radiative forcings connected to canopy snow masking and compare it to the observed forcings. We develop a physically-based regression model and compare its performance to existing modeling schemes, concluding with a discussion on the utility of purely empirical parameterizations relative to those rooted in radiative transfer theory and/or process-based modeling.

  3. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    Science.gov (United States)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  4. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Science.gov (United States)

    Kopacz, M.; Mauzerall, D. L.; Wang, J.; Leibensperger, E. M.; Henze, D. K.; Singh, K.

    2011-03-01

    The remote and high elevation regions of central Asia are influenced by black carbon (BC) emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5-15 W m-2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  5. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2011-03-01

    Full Text Available The remote and high elevation regions of central Asia are influenced by black carbon (BC emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  6. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2010-09-01

    Full Text Available The remote and high elevation regions of central Asia are influenced by black carbon (BC emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and estimate the forcing due to the BC induced snow-albedo effect at about 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo accelerates glacier melting. Our analysis can help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  7. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  8. Placement and efficiency effects on radiative forcing of solar installations

    Science.gov (United States)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-09-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  9. Letter to the Editor Aerosol radiative forcing over land: effect of surface and cloud reflection

    Directory of Open Access Journals (Sweden)

    S. K. Satheesh

    Full Text Available It is now clearly understood that atmospheric aerosols have a significant impact on climate due to their important role in modifying the incoming solar and outgoing infrared radiation. The question of whether aerosol cools (negative forcing or warms (positive forcing the planet depends on the relative dominance of absorbing aerosols. Recent investigations over the tropical Indian Ocean have shown that, irrespective of the comparatively small percentage contribution in optical depth ( ~ 11%, soot has an important role in the overall radiative forcing. However, when the amount of absorbing aerosols such as soot are significant, aerosol optical depth and chemical composition are not the only determinants of aerosol climate effects, but the altitude of the aerosol layer and the altitude and type of clouds are also important. In this paper, the aerosol forcing in the presence of clouds and the effect of different surface types (ocean, soil, vegetation, and different combinations of soil and vegetation are examined based on model simulations, demonstrating that aerosol forcing changes sign from negative (cooling to positive (warming when reflection from below (either due to land or clouds is high.Key words. Atmospheric composition and structure (aerosols and particles History of Geophysics (atmospheric sciences Hydrology (anthropogenic effects

  10. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing

    Science.gov (United States)

    Bintanja, R.; Krikken, F.

    2016-12-01

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively ‘absorbed’ by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  11. Adjustable virtual pore-size filter for automated sample preparation using acoustic radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Jung, B; Fisher, K; Ness, K; Rose, K; Mariella, R

    2008-05-22

    We present a rapid and robust size-based separation method for high throughput microfluidic devices using acoustic radiation force. We developed a finite element modeling tool to predict the two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices. Here we compare the results from this model with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes and compressidensities. These experimental parametric studies also provide insight into the development of an adjustable 'virtual' pore-size filter as well as optimal operating conditions for various microparticle sizes. We demonstrated the separation of Saccharomyces cerevisiae and MS2 bacteriophage using acoustic focusing. The acoustic radiation force did not affect the MS2 viruses, and their concentration profile remained unchanged. With optimized design of our microfluidic flow system we were able to achieve yields of > 90% for the MS2 with > 80% of the S. cerevisiae being removed in this continuous-flow sample preparation device.

  12. Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid

    CERN Document Server

    Leao-Neto, J P

    2015-01-01

    We provide a detailed analysis on the acoustic radiation force and torque exerted on a homogeneous viscoelastic particle in the long-wave limit (the particle radius is much smaller than the incident wavelength) by an arbitrary wave. We assume that the particle behaves as a linear viscoelastic solid, which obeys the fractional Kelvin-Voigt model. Simple analytical expressions for the radiation force and torque are obtained considering the low- and high-frequency approximation in the viscoelastic model. The developed theory is used to describe the interaction of acoustic waves (traveling and standing plane waves, and zero- and first-order Bessel beams) with a low- and high-density polyethylene particle chosen as examples. Negative axial radiation force and torque are predicted when the ratio of the longitudinal to shear relaxation times is smaller than a constant that depends on the speed of sound in the particle. In addition, a full 3D tractor Bessel vortex beam acting on the high-density polyethylene is depic...

  13. Role of the radiation-reaction force in the optical response of two-dimensional crystals

    CERN Document Server

    Merano, Michele

    2016-01-01

    A classical theory of a radiating two-dimensional crystal is proposed and an expression for the radiative-reaction force is derived. It is shown how this force, acting on the dipoles forming the material, induces a flow of energy away from the dipole vibrations into radiative electromagnetic energy. As conservation of energy requires, the time-average work per unit time and unit area done by the radiation-reaction force is negative and equal in absolute value to the time-average intensity radiated by the crystal.

  14. Parameterization of clouds and radiation in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  15. Radiative Forcing and Climate Response Due to Black Carbon in Snow and Ice

    Institute of Scientific and Technical Information of China (English)

    WANG Zhili; ZHANG Hua; SHEN Xueshun

    2011-01-01

    The radiative forcing and climate response due to black carbon (BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model (BCC_AGCM2.0.1) developed by the National Climate Center (NCC) of the China Meteorological Administration (CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m-2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m-2.The global annual mean surface temperature increased 0.071℃ due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter (spring) increased by 0.83℃ (0.6℃) and 0.83℃ (0.46℃),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic. However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.

  16. Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios

    NARCIS (Netherlands)

    Rose, S.K.; Kriegler, E.; Bibas, R.; Calvin, K.; Popp, A.; van Vuuren, D.P.; Weyant, J.

    2014-01-01

    Climate policies must consider radiative forcing from Kyoto greenhouse gases, as well as other forcing constituents, such as aerosols and tropospheric ozone that result from air pollutants. Non-Kyoto forcing constituents contribute negative, as well as positive forcing, and overall increases in tota

  17. Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios

    NARCIS (Netherlands)

    Rose, S.K.; Kriegler, E.; Bibas, R.; Calvin, K.; Popp, A.; van Vuuren, D.P.; Weyant, J.

    2014-01-01

    Climate policies must consider radiative forcing from Kyoto greenhouse gases, as well as other forcing constituents, such as aerosols and tropospheric ozone that result from air pollutants. Non-Kyoto forcing constituents contribute negative, as well as positive forcing, and overall increases in

  18. Investigating the Effects of Non-Gravitational Force Modelling on GPS Satellite Orbits

    Science.gov (United States)

    Petrie, E. J.; King, R. W.; Herring, T.; Ziebart, M. K.

    2011-12-01

    Non-gravitational forces such as solar radiation pressure, earth radiation pressure, antenna thrust and thermal re-radiation are relatively small contributors to the overall GPS satellite orbital force budget. However, if neglected, these small non-gravitationally induced accelerations produce significant errors in satellite positions and velocities when integrated over time. For applications where centimetre level orbital accuracy is required (i.e. ppb accuracy ground positioning), these forces must be accounted for either through realistic a priori physical models and/or appropriate parameter estimation. Current GPS processing approaches typically use an approximate solar radiation pressure force, together with estimated parameters that are meant to account for non-modeled forces. These parameters often fall into the categories of scaling and sinusoidal once-per-revolution parameters. Here we investigate the effects of using more detailed physically based models of radiation forces and interaction between these models and the parameterisation of the non-modeled forces. Ideally, with a complete physical model, additional parameters are not required. Reduction of the number of empirical parameters estimated can result in large effects on the stability of the terrestrial reference frame determined with GPS. These analyses are done using an adapted version of the GAMIT processing software which includes a Fourier series model for radiation forces developed at University College London.

  19. Gravitational self-force from radiation-gauge metric perturbations

    Science.gov (United States)

    Pound, Adam; Merlin, Cesar; Barack, Leor

    2014-01-01

    Calculations of the gravitational self-force (GSF) on a point mass in curved spacetime require as input the metric perturbation in a sufficiently regular gauge. A basic challenge in the program to compute the GSF for orbits around a Kerr black hole is that the standard procedure for reconstructing the metric perturbation is formulated in a class of “radiation” gauges, in which the particle singularity is nonisotropic and extends away from the particle’s location. Here we present two practical schemes for calculating the GSF using a radiation-gauge reconstructed metric as input. The schemes are based on a detailed analysis of the local structure of the particle singularity in the radiation gauges. We show that three types of radiation gauge exist: two containing a radial stringlike singularity emanating from the particle, either in one direction (“half-string” gauges) or both directions (“full-string” gauges); and a third type containing no strings but with a jump discontinuity (and possibly a delta function) across a surface intersecting the particle. Based on a flat-space example, we argue that the standard mode-by-mode reconstruction procedure yields the “regular half” of a half-string solution, or (equivalently) either of the regular halves of a no-string solution. For the half-string case, we formulate the GSF in a locally deformed radiation gauge that removes the string singularity near the particle. We derive a mode-sum formula for the GSF in this gauge, which is analogous to the standard Lorenz-gauge formula but requires a correction to the values of the regularization parameters. For the no-string case, we formulate the GSF directly, without a local deformation, and we derive a mode-sum formula that requires no correction to the regularization parameters but involves a certain averaging procedure. We explain the consistency of our results with Gralla’s invariance theorem for the regularization parameters, and we discuss the

  20. Experimental Study of Acoustic Radiation Force of an Ultrasound Beam on Absorbing and Scattering Objects

    Science.gov (United States)

    Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2016-01-01

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter. PMID:27147775

  1. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, Anastasiia V., E-mail: niko200707@mail.ru; Kryzhanovsky, Maxim A.; Tsysar, Sergey A. [Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Kreider, Wayne [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St. Seattle WA 98105 (United States); Sapozhnikov, Oleg A. [Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St. Seattle WA 98105 (United States)

    2015-10-28

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  2. Mathematical Model of Gravitational and Electrostatic Forces

    OpenAIRE

    Krouglov, Alexei

    2006-01-01

    Author presents mathematical model for acting-on-a-distance attractive and repulsive forces based on propagation of energy waves that produces Newton expression for gravitational and Coulomb expression for electrostatic forces. Model uses mathematical observation that difference between two inverse exponential functions of the distance asymptotically converges to function proportional to reciprocal of distance squared.

  3. Anthropogenic radiative forcing time series from pre-industrial times until 2010

    Directory of Open Access Journals (Sweden)

    R. B. Skeie

    2011-11-01

    Full Text Available In order to use knowledge of past climate change to improve our understanding of the sensitivity of the climate system, detailed knowledge about the time development of radiative forcing (RF of the earth atmosphere system is crucial. In this study, time series of anthropogenic forcing of climate from pre-industrial times until 2010, for all well established forcing agents, are estimated. This includes presentation of RF histories of well mixed greenhouse gases, tropospheric ozone, direct- and indirect aerosol effects, surface albedo changes, stratospheric ozone and stratospheric water vapour. For long lived greenhouse gases, standard methods are used for calculating RF, based on global mean concentration changes. For short lived climate forcers, detailed chemical transport modelling and radiative transfer modelling using historical emission inventories is performed. For the direct aerosol effect, sulphate, black carbon, organic carbon, nitrate and secondary organic aerosols are considered. For aerosol indirect effects, time series of both the cloud lifetime effect and the cloud albedo effect are presented. Radiative forcing time series due to surface albedo changes are calculated based on prescribed changes in land use and radiative transfer modelling. For the stratospheric components, simple scaling methods are used. Long lived greenhouse gases (LLGHGs are the most important radiative forcing agent with a RF of 2.83±0.28 W m−2 in year 2010 relative to 1750. The two main aerosol components contributing to the direct aerosol effect are black carbon and sulphate, but their contributions are of opposite sign. The total direct aerosol effect was −0.48±0.32 W m−2 in year 2010. Since pre-industrial times the positive RF (LLGHGs and tropospheric O3 has been offset mainly by the direct and indirect aerosol effects, especially in the second half of the 20th century, which possibly lead to a decrease in the total

  4. Building an open-source simulation platform of acoustic radiation force-based breast elastography.

    Science.gov (United States)

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-07

    Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. 'ground truth') in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity-one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In

  5. Building an open-source simulation platform of acoustic radiation force-based breast elastography

    Science.gov (United States)

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-01

    Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast

  6. Methodologies in the modeling of combined chemo-radiation treatments

    Science.gov (United States)

    Grassberger, C.; Paganetti, H.

    2016-11-01

    The variety of treatment options for cancer patients has increased significantly in recent years. Not only do we combine radiation with surgery and chemotherapy, new therapeutic approaches such as immunotherapy and targeted therapies are starting to play a bigger role. Physics has made significant contributions to radiation therapy treatment planning and delivery. In particular, treatment plan optimization using inverse planning techniques has improved dose conformity considerably. Furthermore, medical physics is often the driving force behind tumor control and normal tissue complication modeling. While treatment optimization and outcome modeling does focus mainly on the effects of radiation, treatment modalities such as chemotherapy are treated independently or are even neglected entirely. This review summarizes the published efforts to model combined modality treatments combining radiation and chemotherapy. These models will play an increasing role in optimizing cancer therapy not only from a radiation and drug dosage standpoint, but also in terms of spatial and temporal optimization of treatment schedules.

  7. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.

    Science.gov (United States)

    Hahn, Philipp; Leibacher, Ivo; Baasch, Thierry; Dual, Jurg

    2015-11-21

    The numerical prediction of acoustofluidic particle motion is of great help for the design, the analysis, and the physical understanding of acoustofluidic devices as it allows for a simple and direct comparison with experimental observations. However, such a numerical setup requires detailed modeling of the acoustofluidic device with all its components and thorough understanding of the acoustofluidic forces inducing the particle motion. In this work, we present a 3D trajectory simulation setup that covers the full spectrum, comprising a time-harmonic device model, an acoustic streaming model of the fluid cavity, a radiation force simulation, and the calculation of the hydrodynamic drag. In order to make quantitatively accurate predictions of the device vibration and the acoustic field, we include the viscous boundary layer damping. Using a semi-analytical method based on Nyborg's calculations, the boundary-driven acoustic streaming is derived directly from the device simulation and takes into account cavity wall vibrations which have often been neglected in the literature. The acoustic radiation forces and the hydrodynamic drag are calculated numerically to handle particles of arbitrary shape, structure, and size. In this way, complex 3D particle translation and rotation inside experimental microdevices can be predicted. We simulate the rotation of a microfiber in an amplitude-modulated 2D field and analyze the results with respect to experimental observations. For a quantitative verification, the motion of an alumina microdisk is compared to a simple experiment. Demonstrating the potential of the simulation setup, we compute the trajectory of a red blood cell inside a realistic microdevice under the simultaneous effects of acoustic streaming and radiation forces.

  8. Harmonic tracking of acoustic radiation force-induced displacements.

    Science.gov (United States)

    Doherty, Joshua R; Dahl, Jeremy J; Trahey, Gregg E

    2013-11-01

    Ultrasound-based elasticity imaging methods rely upon accurate estimates of tissue deformation to characterize the mechanical properties of soft tissues. These methods are corrupted by clutter, which can bias and/or increase variance in displacement estimates. Harmonic imaging methods are routinely used for clutter suppression and improved image quality in conventional B-mode ultrasound, but have not been utilized in ultrasound-based elasticity imaging methods. We introduce a novel, fully-sampled pulse-inversion harmonic method for tracking tissue displacements that corrects the loss in temporal sampling frequency associated with conventional pulse-inversion techniques. The method is implemented with acoustic radiation force impulse (ARFI) imaging to monitor the displacements induced by an impulsive acoustic radiation force excitation. Custom pulse sequences were implemented on a diagnostic ultrasound scanner to collect spatially-matched fundamental and harmonic information within a single acquisition. B-mode and ARFI images created from fundamental data collected at 4 MHz and 8 MHz are compared with 8-MHz harmonic images created using a band-pass filter approach and the fully sampled pulse-inversion method. In homogeneous, tissue-mimicking phantoms, where no visible clutter was observed, there was little difference in the axial displacements, estimated jitter, and normalized cross-correlation among the fundamental and harmonic tracking methods. The similarity of the lower- and higher-frequency methods suggests that any improvement resulting from the increased frequency of the harmonic components is negligible. The harmonic tracking methods demonstrated a marked improvement in B-mode and ARFI image quality of in vivo carotid arteries. Improved feature detection and decreased variance in estimated displacements were observed in the arterial walls of harmonic ARFI images, especially in the pulse-inversion harmonic ARFI images. Within the lumen, the harmonic tracking

  9. Harmonic Tracking of Acoustic Radiation Force Induced Displacements

    Science.gov (United States)

    Doherty, Joshua R.; Dahl, Jeremy J.; Trahey, Gregg E.

    2014-01-01

    Ultrasound-based elasticity imaging methods rely upon accurate estimates of tissue deformation to characterize the mechanical properties of soft tissues. These methods are corrupted by clutter, which can bias and/or increase variance in displacement estimates. Harmonic imaging methods are routinely used for clutter suppression and improved image quality in conventional B-mode ultrasound, but have not been utilized in ultrasound-based elasticity imaging methods. We introduce a novel, fully-sampled pulse inversion harmonic method for tracking tissue displacements that corrects the loss in temporal sampling frequency associated with conventional pulse inversion techniques. The method is implemented with Acoustic Radiation Force Impulse (ARFI) imaging to monitor the displacements induced by an impulsive acoustic radiation force excitation. Custom pulse sequences were implemented on a diagnostic ultrasound scanner to collect spatially-matched fundamental and harmonic information within a single acquisition. B-mode and ARFI images created from fundamental data collected at 4 MHz and 8 MHz are compared with 8 MHz harmonic images created using a bandpass filter approach and the fully sampled pulse inversion method. In homogeneous, tissue-mimicking phantoms, where no visible clutter was observed, there was little difference in the axial displacements, estimated jitter, and normalized cross-correlation among the fundamental and harmonic tracking methods. The similarity of the lower and higher frequency methods suggests that any improvement due to the increased frequency of the harmonic components is negligible. The harmonic tracking methods demonstrated a marked improvement in B-mode and ARFI image quality of in vivo carotid arteries. Improved feature detection and decreased variance in estimated displacements were observed in the arterial walls of harmonic ARFI images, especially in the pulse inversion harmonic ARFI images. Within the lumen, the harmonic tracking methods

  10. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    Science.gov (United States)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  11. Parameterization of sea-salt optical properties and physics of the associated radiative forcing

    Directory of Open Access Journals (Sweden)

    J. Li

    2008-03-01

    radiative forcing, with the forcing diminishing to zero as the surface albedo tends to unity. We anticipate this new sea-salt optical property parameterization will be useful for GCM models due to its simplicity, computational efficiency, and that its sensitivities have been explored and summarized in this work.

  12. Cloud-Aerosol-Radiation (CAR ensemble modeling system

    Directory of Open Access Journals (Sweden)

    X.-Z. Liang

    2013-04-01

    Full Text Available A Cloud-Aerosol-Radiation (CAR ensemble modeling system has been developed to incorporate the largest choices of alternative parameterizations for cloud properties (cover, water, radius, optics, geometry, aerosol properties (type, profile, optics, radiation transfers (solar, infrared, and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world leading general circulation models (GCMs. The CAR provides a unique framework to determine (via intercomparison across all schemes, reduce (via optimized ensemble simulations, and attribute specific key factors for (via physical process sensitivity analyses the model discrepancies and uncertainties in representing greenhouse gas, aerosol and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purpose, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  13. Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia

    Science.gov (United States)

    Davison, P. S.; Roberts, D. L.; Arnold, R. T.; Colvile, R. N.

    2004-05-01

    The El Niño event of 1997-1998 caused a severe reduction of rainfall in Indonesia that promoted the spread of forest fires, leading to a pervasive haze in the region. Here we use fire coverage data from the 1997 World Fire Atlas with a review of other available data and literature to estimate the distribution of particulate emissions from August to November 1997 and the particle size and radiative properties. Our preferred estimate of the total particulate emissions is approximately 41 Tg. The emissions have been used to drive an atmospheric model to simulate the distribution of the haze and its direct radiative effect, with and without allowing for the effects of the smoke on the atmospheric evolution. Model diagnostics of the aerosol and its radiative impact are compared with measurements and output from other models. Large decreases in the incident solar flux at the surface are obtained in the region. The simulated global mean shortwave radiative forcing at the top of the atmosphere, averaged over the 4 months, is -0.32 Wm-2. The accuracy of this calculation is discussed, and the importance of the Indonesian fires in particular and of biomass burning in general is assessed.

  14. Indirect effect of changing aerosol concentrations on methane and ozone radiative forcing

    Science.gov (United States)

    Rowlinson, Matthew; Rap, Alexandru; Arnold, Steve; Forster, Piers; Chipperfield, Martyn

    2017-04-01

    Atmospheric aerosols interact with climate in number of complex ways and quantifying the overall effect remains the dominant uncertainty in estimating anthropogenic climate forcing (IPCC, 2013). The radiative forcing (RF) caused by the direct effect of aerosol interacting with radiation is estimated at -0.35 (-0.85 to +0.15) Wm-2, while cloud-aerosol interactions are estimated at -0.45 (-1.2 to 0.0) Wm-2 (IPCC, 2013). The net impact is a cooling with an effective radiative forcing (ERF) of 0.9 (-1.9 to -0.1) Wm-2 (IPCC, 2013). One effect of aerosols which has not been well evaluated is their effect on atmospheric chemistry. Atmospheric aerosols provide a surface for homogeneous reactions to occur, altering reactions rates and the availability of oxidants, thereby influencing the removal/production of radiatively important species such as methane (CH4) and tropospheric ozone (O3). Oxidants such as the hydroxyl radical (OH) determine the atmospheric lifetime and hence burden of CH4, therefore changes to atmospheric aerosols which impact oxidation chemistry will also influence RF due to CH4. This effect could enhance or offset the negative RF of aerosols, depending on how the individual aerosol changes availability of oxidants. Quantifying the importance of this mechanism for RF is necessary to provide accurate estimates of the effect of aerosols, and assess relative effectiveness of measures to decrease aerosol emissions and precursors. Using a sophisticated aerosol micro-physics model (GLOMAP) coupled to the TOMCAT three-dimensional chemical transport model, we separately simulate changes in atmospheric composition resulting from a 50% decline in anthropogenic emissions of black carbon aerosol (BC), volatile organic compounds (VOCs) and anthropogenic precursors of sulphate and nitrate. The impact of changes to each aerosol on lifetime of CH4 is then calculated to establish the resulting impact on CH4 burden and RF. Cutting global anthropogenic SO2 emissions by 50

  15. Galactic cosmic radiation environment models

    Science.gov (United States)

    Badhwar, G. D.; O'Neill, P. M.; Troung, A. G.

    2001-02-01

    Models of the radiation environment in free space and in near earth orbits are required to estimate the radiation dose to the astronauts for Mars, Space Shuttle, and the International Space Station missions, and to estimate the rate of single event upsets and latch-ups in electronic devices. Accurate knowledge of the environment is critical for the design of optimal shielding during both the cruise phase and for a habitat on Mars or the Moon. Measurements of the energy spectra of galactic cosmic rays (GCR) have been made for nearly four decades. In the last decade, models have been constructed that can predict the energy spectra of any GCR nuclei to an accuracy of better than 25%. Fresh and more accurate measurements have been made in the last year. These measurements can lead to more accurate models. Improvements in these models can be made in determining the local interstellar spectra and in predicting the level of solar modulation. It is the coupling of the two that defines a GCR model. This paper reviews of two of the more widely used models, and a comparison of their predictions with new proton and helium data from the Alpha Magnetic Spectrometer (AMS), and spectra of beryllium to iron in the ~40 to 500 MeV/n acquired by the Advanced Composition Explorer (ACE) during the 1997-98 solar minimum. Regressions equations relating the IMP-8 helium count rate to the solar modulation deceleration parameter calculated using the Climax neutron monitor rate have been developed and may lead to improvements in the predictive capacity of the models. .

  16. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  17. O{sub 3} and stratospheric H{sub 2}O radiative forcing resulting from a supersonic jet transport emission scenario

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, A.S.; Kinnison, D.E.; Penner, J.E.; Grant, K.E.; Tamaresis, J.; Connell, P.S. [Lawrence Livermore National Lab., CA (United States). Atmospheric Science Research Div.

    1996-01-01

    The tropospheric radiative forcing has been calculated for ozone and water vapor perturbations caused by a realistic High Speed Civil Transport (HSCT) aircraft emission scenario. Atmospheric profiles of water vapor and ozone were obtained using the LLNL 2-D chemical-radiative-transport model (CRT) of the global troposphere and stratosphere. IR radiative forcing calculations were made with the LLNL correlated k-distribution radiative transfer model. UV-Visible-Near IR radiative forcing calculations were made with the LLNL two stream solar radiation model. For the case of water vapor the IR and Near IR radiative forcing was determined at five different latitudes and then averaged using an appropriate latitudinal average to obtain the global average value. Global average values of radiative forcing were approximately 1.2--2.6 10{sup {minus}3} W/m{sup 2}, depending on the background atmospheric water vapor profile. This result is consistent with prior published values for a similar aircraft scenario and supports the conclusion that the water vapor climate forcing effect is very small. The radiative forcing in the IR and UV-Visible spectral ranges, due to the ozone perturbation, was calculated for the globally averaged atmosphere. Global average values of the radiative forcing were 0.034 W/m{sup 2} for the UV-Visible spectral range and 0.006 W/m{sup 2} for the IR spectral range (0.04 W/m{sup 2} total). This result is also consistent with the range of published values obtained for a similar HSCT scenario. As was the case for water vapor, the ozone forcing is too small to be of major consequence.

  18. Active-Reserve Force Cost Model

    Science.gov (United States)

    2015-01-01

    of either the Department of Defense or the sponsoring organization. Acknowledgments Thank you to Daniel L. Cuda and Michael C. Frieders for performing...policy, 4 Ronald E. Porten, Daniel L. Cuda , and Arthur C. Yengling, “DoD Force & Infrastructure Categories: A FYDP-Based Conceptual Model of...Daniel L. Cuda , and Arthur C. Yengling. “DoD Force & Infrastructure Categories: A FYDP-Based Conceptual Model of Department of Defense Programs and

  19. COMPARISON OF ON-LINE COUPLED AND CONSTANT TRANSFER SIMULATION METHODS FOR DIRECT RADIATIVE FORCING OF ANTHROPOGENIC SULFATE

    Institute of Scientific and Technical Information of China (English)

    WU Jian; LIU Hong-nian; WANG Wei-guo; LIU Gang

    2006-01-01

    @@ 1 INTRODUCTION Of three main methods for studying the radiative forcing of anthropogenic sulfate and climatic response on the regional scale, the first is, with given rates for transforming SO2 to sulfate, converting actually released SO2 into sulfate and acquiring the distribution of sulfate by computing transfer equations in the climate model.

  20. Radiation force on absorbing targets and power measurements of a high intensity focused ultrasound (HIFU) source

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the analytic expressions for the radiated field of a circular concave piston given by Hasegawa et al.,an integral for calculation of the radiation force on a plane absorbing target in a spherically focused field is derived.A general relation between acoustic power P and normal radiation force Fn is obtained under the condition of kr 1.Numerical computation is carried out by using the symbolic computation program for practically focused sources and absorbing circular targets.The results show that,for a given source,there is a range of target positions where the radiation force is independent of the target’s position under the assumption that the contribution of the acoustic field behind the target to the radiation force can be neglected.The experiments are carried out and confirm that there is a range of target positions where the measured radiation force is basically independent of the target’s position even at high acoustic power (up to 700 W).It is believed that when the radiation force method is used to measure the acoustic power radiated from a focused source,the size of the target must be selected in such a way that no observable sound can be found in the region behind the target.

  1. Cumulative Radiative Forcing Implications of Deployment Strategies for Carbon Capture and Storage

    Science.gov (United States)

    Sathre, R. C.; Masanet, E.

    2011-12-01

    Carbon capture and storage (CCS) is increasingly discussed as a potential means of mitigating the climate disruption associated with fossil fuel use. Some technologies for capturing, transporting, and sequestering carbon dioxide (CO2) are already mature, while others technologies under development may lead to more cost- and energy-efficient CCS systems. Various elements of CCS systems are currently in operation at relatively small scale, but will need to be scaled up very substantially in order to make a significant contribution to climate change mitigation. Because the rate of fossil fuel CO2 emission is continuing to increase and the emitted CO2 will remain in the atmosphere for long time periods, the speed at which CCS is deployed will strongly affect the cumulative CO2 emission and the climate impacts. To better understand these issues, in this analysis we integrate scenario forecasting of energy supply systems, life cycle emission modeling, and time-dependent calculations of cumulative radiative forcing. We develop a series of CCS deployment scenarios that describe plausible future trajectories for CCS implementation in the US electric power plant fleet. The scenarios incorporate dimensions such as speed of deployment build-out, year of initiating deployment, efficiency of capture technology, and installation in new power plants vs. retrofitting existing plants. We conduct life cycle greenhouse gas (GHG) emissions analyses of each scenario to estimate annual emission profiles of CO2, CH4, and N2O over a 90-year time horizon, from 2010 to 2100. We then model the atmospheric dynamics of the emitted GHGs including atmospheric decay and instantaneous radiative forcing patterns over time. Finally, we determine the cumulative radiative forcing of each scenario, which we use as a proxy for surface temperature change and resulting disruption to physical, ecological and social systems. The results show strong climate mitigation benefits of early, aggressive

  2. Anthropogenic sulphate aerosol from India: estimates of burden and direct radiative forcing

    Science.gov (United States)

    Venkataraman, Chandra; Chandramouli, Bharadwaj; Patwardhan, Anand

    A one-box chemical-meteorological model had been formulated to make preliminary estimates of sulphate aerosol formation and direct radiative forcing over India. Anthropogenic SO 2 emissions from India, from industrial fuel use and biomass burning, were estimated at 2.0 Tg S yr -1 for 1990 in the range of previous estimates of 1.54 and 2.55 Tg S yr -1 for 1987. Meteorological parameters for 1990 from 18 Indian Meteorological Department stations were used to estimate spatial average sulphate burdens through formation from SO 2 reactions in gas and aqueous phase and removal by dry and wet deposition. The hydrogen peroxide reaction was found dominating for undepleted oxidant-rich conditions. Monthly mean sulphate burdens ranged from 2-10 mg m -2 with a seasonal variation of winter-spring highs and summer lows in agreement with previous GCM studies. The sulphate burdens are dominated by sulphate removal rates by wet deposition, which are high in the monsoon period from June-November. Monthly mean direct radiative forcing from sulphate aerosols is high (-3.5 and -2.3 W m -2) in December and January, is moderate (-1.3 to -1.5 W m -2) during February to April and November and low (-0.4 to -0.6 W m -2) during May to October also in general agreement with previous GCM estimates. This model, in reasonable agreement with detailed GCM results, gives us a simple tool to make preliminary estimates of sulphate burdens and direct radiative forcing.

  3. Aerosol radiative forcing during African desert dust events (2005-2010) over South-Eastern Spain

    Science.gov (United States)

    Valenzuela, A.; Olmo, F. J.; Lyamani, H.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.

    2012-03-01

    The instantaneous values of the aerosol radiative forcing (ARF) at the surface and the top of the atmosphere (TOA) were calculated during desert dust events occurred at Granada (Southeastern Spain) from 2005 to 2010. For that, the SBDART radiative transfer model was utilized to simulate the global irradiance values (0.3-2.8 μm) at the surface and TOA using as input the aerosol properties derived from a CIMEL sun-photometer measurements and an inversion methodology that uses the sky radiance measurements in principal plane configuration and non-spherical particle shapes approximation. The SBDART modeled global irradiances at surface have been successfully validated against experimental measurements obtained by CM-11 pyranometer, indicating the reliability of the radiative transfer model used in this work for the ARF calculations. The monthly ARF values at surface ranged from -32 W m-2 to -46 W m-2, being larger in April and July than in the rest of months. The seasonal ARF evolution was inconsistent with seasonal aerosol optical depth (AOD) variation due to the effects induced by other aerosol parameter such as the single scattering albedo. The ARF at TOA changed from -9 W m-2 to -29 W m-2. Thus, the atmospheric ARF values (ARF at TOA minus ARF at surface) ranged from +15 to +35 W m-2. These results suggest that the African dust caused local atmospheric heating over the study location. The instantaneous aerosol radiative forcing efficiency (ARFE), aerosol radiative forcing per unit of AOD (440 nm), at surface and TOA during African desert dust events was evaluated according to the desert dust source origins. The ARFE values at surface were relatively high (in absolute term) and were -157 ± 20 (Sector A), -154 ± 23 (Sector B), and -147 ± 23 (Sector C) W m-2. These values were larger than many of the values found in literature which could be due to the presence of more absorbing atmospheric particles during African desert dust intrusions over our study area

  4. Modeling and experimentation of bone drilling forces.

    Science.gov (United States)

    Lee, JuEun; Gozen, B Arda; Ozdoganlar, O Burak

    2012-04-05

    Prediction and control of bone drilling forces are critical to the success of many orthopaedic operations. Uncontrolled and large forces can cause drill-bit breakage, drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a mechanistic model for prediction of thrust forces and torques experienced during bone drilling. The model incorporates the radially varying drill-bit geometry and cutting conditions analytically, while capturing the material and friction properties empirically through a specific energy formulation. The forces from the chisel edge are modeled by considering the indentation process that occurs in the vicinity of the drill-bit axis. A procedure is outlined to calibrate the specific energies, where only a small number of calibration experiments are required for a wide range of drilling conditions and drill-bit geometry. The calibration parameters for the cortical portions of bovine tibia are identified through drilling tests. Subsequently, a series of validation tests are conducted under different feed rates and spindle speeds. The thrust forces and torques were observed to vary considerably between bones from different animals. The forces from the model were seen to match well with those from the experimentation within the inherent variations from the bone characteristics. The model can be used to select favorable drilling conditions, to assist in robotic surgeries, and to design optimal orthopaedic drill bits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Radiation Belt and Plasma Model Requirements

    Science.gov (United States)

    Barth, Janet L.

    2005-01-01

    Contents include the following: Radiation belt and plasma model environment. Environment hazards for systems and humans. Need for new models. How models are used. Model requirements. How can space weather community help?

  6. Radiative forcing of the direct aerosol effect using a multi-observation approach

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2008-07-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  7. Influence of dust charge fluctuation and polarization force on radiative condensation instability of magnetized gravitating dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Prajapati, R.P., E-mail: prajapati_iter@yahoo.co.in; Bhakta, S.

    2015-10-30

    The influence of dust charge fluctuation, thermal speed and polarization force due to massive charged dust grains is studied on the radiative condensation instability (RCI) of magnetized self-gravitating astrophysical dusty (complex) plasma. The dynamics of the charged dust and inertialess electrons are considered while the Boltzmann distributed ions are assumed to be thermal. The dusty fluid model is formulated and the general dispersion relations are derived analytically using the plane wave solutions under the long wavelength limits in both the presence and the absence of dust charge fluctuations. The combined effects of polarization force, dust thermal speed, dust charge fluctuation and dust cyclotron frequency are observed on the low frequency wave modes and radiative modified Jeans Instability. The classical criterion of RCI is also derived which remains unaffected due to the presence of these parameters. Numerical calculations have been performed to calculate the growth rate of the system and plotted graphically. We find that dust charge fluctuation, radiative cooling and polarization force have destabilizing while dust thermal speed and dust cyclotron frequency have stabilizing influence on the growth rate of Jeans instability. The results have been applied to understand the radiative cooling process in dusty molecular cloud when both the dust charging and polarization force are dominant. - Highlights: • We study combined influence of dust charge fluctuation and polarization force on RCI of dusty plasma. • The modified dispersion characteristics and conditions of Jeans and radiative instabilities are obtained. • In the photo-association region various parameters are numerically estimated. • The dust charge fluctuation, radiative cooling and polarization force have destabilizing influence on the growth rate.

  8. Modeling Robot Flexibility for Endpoint Force Control.

    Science.gov (United States)

    1988-05-01

    SIDM 19. KE9Y WORDS fCntknu. OnPVOO&O 0401 It 00041000111O ed 0000#uF 6P 1111411 amA.w) robot force control * robot control / robot dynamics flexible...no. 3, pp. 62-75. [2] Eppinger, S.D. and Seering, W.P. On Dynamic Models of Robot Force Control . In Proceedings of International Conference on...W.P. Understanding Bandwidth Limitations in Robot Force Control . In Proceedings of International Conference on Robotics and Automation. IEEE, April 1987

  9. Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India

    Directory of Open Access Journals (Sweden)

    Deepti Sharma

    2012-01-01

    Full Text Available Impact of dust storms on the aerosol characteristics and radiative forcing over Patiala, northwestern India has been studied during April-June of 2010 using satellite observations and ground-based measurements. Six dust events (DE have been identified during the study period with average values of Aqua-MODIS AOD550 and Microtops-II AOD500 over Patiala as 1.00±0.51 and 0.84±0.41, respectively while Aura-OMI AI exhibits high values ranging from 2.01 to 6.74. The Ångström coefficients α380–870 and β range from 0.12 to 0.31 and 0.95 to 1.40, respectively. The measured spectral AODs, the OPAC-derived aerosol properties and the surface albedo obtained from MODIS were used as main inputs in SBDART model for the calculation of aerosol radiative forcing (ARF over Patiala. The ARF at surface (SRF and top of atmosphere (TOA ranges from ∼−50 to −100 Wm−2 and from ∼−10 to −25 Wm−2, respectively during the maximum of dust storms. The radiative forcing efficiency was found to be −66 Wm−2AOD−1 at SRF and −14 Wm−2AOD−1 at TOA. High values of ARF in the atmosphere (ATM, ranging between ∼+40 Wm−2 and +80.0 Wm−2 during the DE days, might have significant effect on the warming of the lower and middle atmosphere and, hence, on climate over northwestern India.

  10. Anthropogenic sulphate aerosol from India: estimates of burden and direct radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, C.; Chandramouli, B.; Patwardhan, A. [Indian Institute of Technology, Mumbai (India). Centre for Environmental Science and Engineering

    1999-08-01

    The paper describes a one-box chemical-meteorological model formulated to make preliminary estimates of sulphate aerosol formation and direct radiative forcing over India. Anthropogenic SO{sub 2} emissions from India, from industrial fuel use and biomass burning, were estimated at 2.0 Tg S yr{sup -1} for 1990 in the range of previous estimates of 1.54 and 2.55 Tg S yr{sup -1} for 1987. Meteorological parameters for 1990 from 18 Indian Meteorological Department stations were used to estimate spatial average sulphate burdens through formation from SO{sub 2} reactions in gas and aqueous phase and removal by dry and wet deposition. The hydrogen peroxide reaction was found dominating for undepleted oxidant-rich conditions. Monthly mean sulphate burdens ranged from 2-10 mg m{sup -2} with a seasonal variation of winter-spring highs and summer lows in agreement with previous GCM studies. The sulphate burdens are dominated by sulphate removal rates by wet deposition, which are high in the monsoon period from June to November. The model is in reasonable agreement with detailed GCM results and provides a simple tool to make preliminary estimates of sulphate burdens and direct radiative forcing.

  11. Contact force models for multibody dynamics

    CERN Document Server

    Flores, Paulo

    2016-01-01

    This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehens...

  12. A Force Structure Design Model

    Science.gov (United States)

    1991-09-01

    199) WRITE(20,*)’ MODEL FAR10 /ALL/’ WRITE(20, 159) 159 FORMAT(’*------------- LOOP--------------- WRITE(20,*) ’SOLVE FAR10 USING RMIP MINIMIZING...SOLVE FARIO USING RMIP MINIMIZING MAXDEV OPTION X:4:0:1 DISPLAY X.L OPTION FAR:4:O:1; DISPLAY FAR OPTION R:4:0:1 OPTION R1:4:Q:1 OPTION R2:4:0:1...LOOP ------------------------ 102 SOLVE FAR10 USING RMIP MINIMIZING MAXDEV 103 OPTION X:4:0:1 104 DISPLAY X.L 105 OPTION FAR

  13. Radiation force on a spherical object in the field of a focused cylindrical transducer.

    Science.gov (United States)

    Chen, X; Apfel, R E

    1997-05-01

    An exact solution of the radiation force on a spherical object, when positioned on the acoustic axis of a cylindrical transducer, is provided. The solution is valid for any type of sphere of any size. The radiation force function allows the calibration of high-frequency focused ultrasound fields from radiation force measurements and expands the utility of the elastic sphere radiometer developed by Dunn et al. [Acustica 38, 58-61 (1977)]. Numeral results reveal an oscillatory behavior of the radiation force function for small spheres near the transducer surface and this behavior may present an opportunity for particle sorting based on the mechanical properties of the particle and other types of manipulation.

  14. The anomalous radiation force of light on a left-handed material

    Institute of Scientific and Technical Information of China (English)

    Yi Xu-Nong; Liu Jin-Song; Chen Huan; Du Qiu-Jiao

    2010-01-01

    This paper derives the force of the electromagnetic radiation on left-handed materials(LHMs)by a direct applica-tion of the Lorentz law of classical electrodynamics.The expressions of radiation force are given for TE-polarised and TM-polarised fields.The numerical results demonstrate that electromagnetic waves exert an inverse lateral radiation force on each edge of the beams,that is,the lateral pressure is expansive for TE-polarised beams and compressive for TM-polarised beams.The investigation of the radiation force will provide insights into the fundamental properties of LHMs and will provide to better understanding of the interaction of light with LHMs.

  15. TOOL FORCE MODEL FOR DIAMOND TURNING

    Institute of Scientific and Technical Information of China (English)

    Wang Hongxiang; Sun Tao; Li Dan; Dong Shen

    2004-01-01

    A new tool force model to be presented is based upon process geometry and the characteristics of the force system,in which the forces acting on the tool rake face,the cutting edge rounding and the clearance face have been considered,and the size effect is accountable for the new model.It is desired that the model can be well applicable to conventional diamond turning and the model may be employed as a tool in the design of diamond tools.This approach is quite different from traditional investigations primarily based on empirical studies.As the depth of cut becomes the same order as the rounded cutting edge radius,sliding along the clearance face due to elastic recovery of workpiece material and plowing due to the rounded cutting edge may become important in micro-machining,the forces acting on the cutting edge rounding and the clearance face can not be neglected.For this reason,it is very important to understand the influence of some parameters on tool forces and develop a model of the relationship between them.

  16. Experimental study of radiation induced electromotive force effects on mineral insulated cables

    Science.gov (United States)

    Van Nieuwenhove, R.; Vermeeren, L.

    2003-11-01

    Measurements of radiation induced electromotive force (RIEMF) effects on mineral insulated cables in a pure gamma field and in a combined neutron and gamma field are presented and compared to model calculations. The effect of materials in the immediate surroundings of the cable, as predicted by the model calculations, is clearly demonstrated. In a fission reactor environment, delayed current contributions due to the neutron activation and subsequent beta emission in base materials as well as in impurities such as Mn are clearly observed and are well reproduced by model calculations. The prediction of the gamma induced current component was severely complicated by its strong sensitivity to the detailed geometry and the spectrum and the directivity of the gamma field. Although the RIEMF effect on MI cables can therefore in general not be completely eliminated, some guidelines are provided to minimize them.

  17. Directions in Radiation Transport Modelling

    Directory of Open Access Journals (Sweden)

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  18. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate

    NARCIS (Netherlands)

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second

  19. Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

    Science.gov (United States)

    Rozwadowska, Anna; Stachlewska, Iwona S.; Makuch, P.; Markowicz, K. M.; Petelski, T.; Strzałkowska, A.; Zieliński, T.

    2013-05-01

    Properties of atmospheric aerosols and solar radiation reaching the Earth's surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

  20. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate.

    NARCIS (Netherlands)

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second is indire

  1. Acoustofluidics: Theory and simulation of streaming and radiation forces at ultrasound resonances in microfluidic devices

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2009-01-01

    fields, which are directly related to the acoustic radiation force on single particles and to the acoustic streaming of the liquid. For the radiation pressure effects, there is good agreement between theory and simulation, while the numeric results for the acoustic streaming effects are more problematic...

  2. Development of Integrated ASR Model Forcing Data and Their Applications to Improve CAM

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minghua [Research Foundation of the State University of New York, Albany, NY (United States)

    2016-01-01

    In this project, we have (1) improved the constrained variational analysis algorithm of ARM model forcing data, and (2) used the ARM forcing data to identify systematic biases in clouds and radiation in the CAM5 and design new physical parameterizations to improve it.

  3. A cutting force model for micromilling applications

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2006-01-01

    In micro milling the maximum uncut chip thickness is often smaller than the cutting edge radius. This paper introduces a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge radius.......In micro milling the maximum uncut chip thickness is often smaller than the cutting edge radius. This paper introduces a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge radius....

  4. Radiative Forcing associated with Particulate Carbon Emissions resulting from the Use of Mercury Control Technology

    Science.gov (United States)

    Clack, H.; Penner, J. E.; Lin, G.

    2013-12-01

    Mercury is a persistent, toxic metal that bio-accumulates within the food web and causes neurological damage and fetal defects in humans. The U.S. was the first country to regulate the leading anthropogenic source of mercury into the atmosphere: coal combustion for electric power generation. The U.S. EPA's 2005 Clean Air Mercury Rule (CAMR) was replaced and further tightened in 2012 by the Mercury and Air Toxics Standard (MATS), which required existing coal-fired utilities to reduce their mercury emissions by approximately 90% by 2015. Outside the U.S., the Governing Council of the United Nations Environment Programme (UNEP) has passed the legally binding Minamata global mercury treaty that compels its signatory countries to prevent and reduce the emission and release of mercury. The most mature technology for controlling mercury emissions from coal combustion is the injection into the flue gas of powdered activated carbon (PAC) adsorbents having chemically treated surfaces designed to rapidly oxidize and adsorb mercury. However, such PAC is known to have electrical properties that make it difficult to remove from flue gas via electrostatic precipitation, by far the most common particulate control technology used in countries such as the U.S., India, and China which rely heavily on coal for power generation. As a result, PAC used to control mercury emissions can be emitted into the atmosphere, the sub-micron fraction of which may result in unintended radiative forcing similar to black carbon (BC). Here, we estimate the potential increases in secondary BC emissions, those not produced from combustion but arising instead from the use of injected PAC for mercury emission reduction. We also calculate the radiative forcing associated with these secondary BC emissions by using a global atmospheric chemical transport model coupled with a radiative transfer model.

  5. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    CERN Document Server

    Yuan, Yajie; Zrake, Jonathan; East, William E; Blandford, Roger D

    2016-01-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short time scales. These are likely due to rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reaction. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased pol...

  6. Indirect radiative forcing of aerosols via water vapor above non-precipitating maritime cumulus clouds

    Directory of Open Access Journals (Sweden)

    M. A. Pfeffer

    2011-10-01

    Full Text Available Aerosol-cloud-water vapor interactions in clean maritime air have been described for different aerosol sources using the WRF-Chem atmospheric model. The simulations were made over the Lesser Antilles in the region of the RICO measurement campaign where the clouds are low, patchy, typical trade-wind cumuli. In this very clean air, sea salt and DMS are found to have greater effects than anthropogenic pollution on the cloud droplets' effective radii and longwave and shortwave outgoing top of atmosphere radiation. The changes in radiation due to each aerosol source are a function of how each source influences aerosol concentration, cloud droplet number concentration, cloud droplet sizes, and water vapor concentration. Changes in outgoing shortwave radiation are due predominantly to changes in the clouds, followed by the direct aerosol effect which is about 2/3 as important, followed by the effects of water vapor which is in turn about 2/3 as important as the direct effect. Changes in outgoing longwave radiation are due predominantly to changes in the clouds, with changes in water vapor being about 1/10 as important. The simulated changes in water vapor concentration are due to the competing effects of aerosol particles being able to both enhance condensation of available water vapor and enhance evaporation of smaller droplets. These changes are independent of precipitation effects as there is essentially no drizzle in the domain. It is expected that the indirect radiative forcing of aerosols via water vapor may be stronger in dirtier and more strongly convective conditions.

  7. The direct radiative forcing effects of aerosols on the climate in California

    Science.gov (United States)

    Du, Hui

    The Weather Research and Forecast (WRF) model is used to explore the influence of aerosol direct radiative effects on regional climate of California. Aerosol data is provided by the MOZART global chemistry transport model and includes sulfate, black carbon, organic carbon, dust and sea salt. To investigate the sensitivity of aerosol radiative effects to different aerosol species and to the quantity of sulfate and dust, tests are conducted by using different combinations of aerosols and by resetting the quantity of sulfate and dust. The model results show that all the considered aerosols could have a cooling effect of one half to one degree in terms of temperature and that dust and sulfate are the most important aerosols. However, large uncertainties exist. The results suggest that the dust from MOZART is greatly overestimated over the simulation domain. The single scattering albedo (SSA) values of dust used in some global climate models are likely underestimated compared to recent studies on dust optical properties and could result in overestimating the corresponding cooling effects by approximately 0.1 degree. Large uncertainties exist in estimating the roles of different forcing factors which are causing the observed temperature change in the past century in California.

  8. Forces between permanent magnets: experiments and model

    Science.gov (United States)

    González, Manuel I.

    2017-03-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.

  9. The effect of temperature dependent tissue parameters on acoustic radiation force induced displacements

    CERN Document Server

    Suomi, Visa; Konofagou, Elisa; Cleveland, Robin

    2016-01-01

    Multiple ultrasound elastography techniques rely on acoustic radiation force (ARF) in monitoring high-intensity focused ultrasound (HIFU) therapy. However, ARF is dependent on tissue attenuation and sound speed, both of which are also known to change with temperature making the therapy monitoring more challenging. Furthermore, the viscoelastic properties of tissue are also temperature dependent, which affects the displacements induced by ARF. The aim of this study is to quantify the temperature dependent changes in the acoustic and viscoelastic properties of liver and investigate their effect on ARF induced displacements by using both experimental methods and simulations. Furthermore, the temperature dependent viscoelastic properties of liver are experimentally measured over a frequency range of 0.1-200 Hz at temperatures reaching 80 C, and both conventional and fractional Zener models are used to fit the data. The fractional Zener model was found to fit better with the experimental viscoelasticity data with ...

  10. State-Space Realization of the Wave-Radiation Force within FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

    2013-06-01

    Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

  11. Aerosol Climatology at Pune, Western India: Implications to Direct Radiative Forcing and Heating Rates

    Science.gov (United States)

    Pandithurai, G.; Pinker, R. T.; Devara, P. C.; Raj, P. E.; Jayarao, Y.; Dani, K. K.; Maheskumar, R. S.; Sonbawne, S. M.; Saha, S. K.; Bhawar, R.; Shinde, U. P.

    2005-12-01

    Extensive aerosol observations were carried out at Indian Institute of Tropical Meteorology (IITM), Pune, an urban site in the western part of the country, using a Prede (Model POM-01L) sun/sky radiometer and a bi-static Argon ion lidar since December 2000 and October 1986, respectively. The sun/sky radiometer was operated daily at every 15 minute interval during day-time to derive column aerosol optical parameters such as aerosol optical depth (AOD), single scattering albedo (SSA), asymmetry parameter (ASY) while the lidar was operated weekly in the early-night period to derive vertical distributions of aerosol number density. The sun/sky radiance data collected during the above period have been analysed by using the radiative transfer model SkyRadPack version 3.0 (Nakajima et al. 1996) to retrieve AOD, SSA and ASY. AOD and SSA retrieved at 15-minutes interval were averaged to get monthly means. On every year from 2000 to 2005, monthly means of AOD show gradual increase of aerosol loading from December to April and Angstrom exponent decreases from March due to local as well as transported dust from African / Arabian regions through Arabian Sea. Monthly means of SSA show decrease from December to April and the wavelength dependence also indicate the abundance of dust from March to May. Lidar-derived vertical distributions yield minimum during the monsoon months, gradually builds up during the post-monsoon and winter months, and finally peaks during the pre-monsoon months in every year (Devara et al., 2002). The aerosol climatology of optical/radiative parameters and their vertical distribution are used for estimating aerosol radiative forcing (ARF) and atmospheric heating rates by using a discrete-ordinate radiative transfer model (Ricchiazzi et al., 1998, Pandithurai et al. 2004). Details of the experimental methods, data, results of aerosol climatology and implications to radiative forcing and associated heating rates will be presented. References Devara, P

  12. Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing

    Directory of Open Access Journals (Sweden)

    D. G. Streets

    2012-04-01

    Full Text Available We calculate decadal aerosol direct and indirect (warm cloud radiative forcings from US anthropogenic sources over the 1950–2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970–1990, with values over the eastern US (east of 100° W of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2, nitrate (−0.2 W m−2, organic carbon (−0.2 W m−2, and black carbon (+0.4 W m−2. The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50%. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect, mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  13. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    Science.gov (United States)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  14. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shu-Guang

    2016-01-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001–2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m−2 and a standard deviation of 2,589 g C m−2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (−583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m−2 with a standard deviation of 2.87 W m−2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  15. On Oscillations in the Social Force Model

    CERN Document Server

    Kretz, Tobias

    2015-01-01

    The Social Force Model is one of the most prominent models of pedestrian dynamics. As such naturally much discussion and criticism has spawned around it, some of which concerns the existence of oscillations in the movement of pedestrians. This contribution is investigating under which circumstances, parameter choices, and model variants oscillations do occur and how this can be prevented. It is shown that oscillations can be excluded if the model parameters fulfill certain relations. The fact that with some parameter choices oscillations occur and with some not is exploited to verify a specific computer implementation of the model.

  16. Radiation pressure forces on individual micron-size dust particles: a new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Oliver [Institute for Planetology, University of Muenster, Wilhelm-Klemm-Str. 10, D-48149 Muenster (Germany)]. E-mail: okrauss@uni-muenster.de; Wurm, Gerhard [Institute for Planetology, University of Muenster, Wilhelm-Klemm-Str. 10, D-48149 Muenster (Germany)

    2004-12-15

    We present a newly developed experimental setup for the measurement of radiation pressure forces on individual dust particles. The principle of measurement is to observe the momentum transfer from a high-power laser pulse to a particle that is levitated in a quadrupole trap. Microscopic observation of the particle motion provides information on the forces that act on the particle in the directions parallel and perpendicular to the incident laser beam. First measurements with micron-size graphite grains that serve as analog particles for carbonaceous dust grains in various astrophysical environments reveal that such highly irregularly shaped particles show very high ratios of transversal to radial radiation pressure forces.

  17. Strategy to use the Terra Aerosol Information to Derive the Global Aerosol Radiative Forcing of Climate

    Science.gov (United States)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: - From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. - Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. - Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  18. Modeling the Forced Extension of Nicked DNA

    Science.gov (United States)

    Balaeff, Alexander; Craig, Stephen; Beratan, David

    2007-03-01

    The design and study of DNA-based nanodevices has been a topic of considerable interest in the last decade. While the applications of classical continuous DNA structures have been thoroughly studied, nicked DNA structures, i.e., ones that contains breaks (``nicks'') in one or both DNA backbone chains, have received much less attention. Recently, Kersey et al. (JACS, 2004) reported the force spectroscopy of long DNA chains with periodic nicks, self-assembled from short DNA oligomers. We attempt to model the experimental force-extension profiles in a series of steered molecular dynamics simulations. The simulated all-atom model of a basic unit of the long self-assembled chain, a 16bp-long DNA segment with a nick in the middle of one strand, is extended by applying either a constant force or a moving harmonic potential to the DNA ends. The computed force-extension profiles are compared to those for a non-nicked DNA; the dynamics of structural changes in the nicked DNA during the forced extension is discussed. A theoretical framework is established to link the extension and rupture in the simulated basic unit to the corresponding events in the long self-assembled chain.

  19. Modeling capillary forces for large displacements

    NARCIS (Netherlands)

    Mastrangeli, M.; Arutinov, G.; Smits, E.C.P.; Lambert, P.

    2014-01-01

    Originally applied to the accurate, passive positioning of submillimetric devices, recent works proved capillary self-alignment as effective also for larger components and relatively large initial offsets. In this paper, we describe an analytic quasi-static model of 1D capillary restoring forces tha

  20. Computations of radiation force using the translational addition theorem: Applications to acoustical tweezers

    CERN Document Server

    Baggio, André L; Silva, Glauber T

    2012-01-01

    This work proposes a method to compute both axial and transverse radiation forces produced by an ultrasound beam of arbitrary wavefront based on the partial-wave expansion (PWE) and the translational addition theorem for spherical wave functions. The major advantage of using the addition theorem is the computation of acoustic radiation force for a wide variety of beams which satisfy the Helmholtz equation without the need of numerical quadrature schemes. The PWE method is applied to calculate the radiation force exerted on a silicone-oil droplet suspended in water. The force is produced by a single-beam acoustical tweezer composed by a spherically focused transducer with driving frequency of 3.1 MHz and F-number of 1.6. The droplet can be positioned anywhere in the host medium. The radiation force is analyzed in the Rayleigh and resonant scattering regimes. The obtained results in the Rayleigh scattering regime are compared to those calculated with Gor'kov's radiation force theory. It turns out to be that bot...

  1. Dust, Elemental Carbon and Other Impurities on Central Asian Glaciers: Origin and Radiative Forcing

    Science.gov (United States)

    Schmale, J.; Flanner, M.; Kang, S.; Sprenger, M.; Zhang, Q.; Li, Y.; Guo, J.; Schwikowski, M.

    2015-12-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and radiative forcing (RF). 218 snow samples were taken from 13 snow pits on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental and organic carbon by a thermo-optical method, mineral dust by gravimetry, and iron by ICP-MS. Back trajectory ensembles were released every 6 hours with the Lagranto model for the covered period at all sites. Boundary layer "footprints" were calculated to estimate general source regions and combined with MODIS fire counts for potential fire contributions. Albedo reduction due to black carbon and mineral dust was calculated with the Snow-Ice-Aerosol-Radiative model (SNICAR), and surface spectral irradiances were derived from atmospheric radiative transfer calculations to determine the RF under clear-sky and all sky conditions using local radiation measurements. Dust contributions came from Central Asia, the Arabian Peninsula, the Sahara and partly the Taklimakan. Fire contributions were higher in 2014 and generally came from the West and North. We find that EC exerts roughly 3 times more RF than mineral dust in fresh and relatively fresh snow (~5 W/m2) and up to 6 times more in snow that experienced melting (> 10 W/m2) even though EC concentrations (average per snow pit from 90 to 700 ng/g) were up to two orders of magnitude lower than mineral dust (10 to 140 μg/g).

  2. Seasonal variation of columnar aerosol optical properties and radiative forcing over Beijing, China

    Science.gov (United States)

    Yu, Xingna; Lü, Rui; Liu, Chao; Yuan, Liang; Shao, Yixing; Zhu, Bin; Lei, Lu

    2017-10-01

    Long-term seasonal characteristics of aerosol optical properties and radiative forcing at Beijing (during March 2001-March 2015) were investigated using a combination of ground-based Sun/sky radiometer retrievals from the AERONET and a radiative transfer model. Aerosol optical depth (AOD) showed a distinct seasonal variation with higher values in spring and summer, and relatively lower values in fall and winter. Average Angstrom exponent (AE) in spring was lower than other seasons, implying the significant impact of dust episodes on aerosol size distribution. AE mainly distributed between 1.0 and 1.4 with an obvious uni-peak pattern in each season. The observation data showed that high AODs (>1.0) were clustered in the fine mode growth wing and the coarse mode. Compared to AOD, seasonal variation in single scattering albedo (SSA) showed an opposite pattern with larger values in summer and spring, and smaller ones in winter and fall. The highest volume size distribution and median radius of fine mode particles occurred in summer, while those of coarse mode particles in spring. The averaged aerosol radiative forcing (ARF) at the top of the atmosphere (TOA) in spring, summer, fall and winter were -33 ± 22 W m-2, -35 ± 22 W m-2, -28 ± 20 W m-2, and -24 ± 23 W m-2 respectively, and these differences were mainly due to the SSA seasonal variation. The largest positive ARF within atmosphere occurred in spring, implying strong warming in the atmosphere. The low heating ratio in summer was caused by the increase in water vapor content, which enhanced light scattering capacity (i.e., increased SSA).

  3. Off-axial acoustic radiation force of repulsor and tractor bessel beams on a sphere.

    Science.gov (United States)

    Silva, Glauber T; Lopes, J Henrique; Mitri, Farid G

    2013-06-01

    Acoustic Bessel beams are known to produce an axial radiation force on a sphere centered on the beam axis (on-axial configuration) that exhibits both repulsor and tractor behaviors. The repulsor and the tractor forces are oriented along the beam's direction of propagation and opposite to it, respectively. The behavior of the acoustic radiation force generated by Bessel beams when the sphere lies outside the beam's axis (off-axial configuration) is unknown. Using the 3-D radiation force formulas given in terms of the partial wave expansion coefficients for the incident and scattered waves, both axial and transverse components of the force exerted on a silicone- oil sphere are obtained for a zero- and a first-order Bessel vortex beam. As the sphere departs from the beam's axis, the tractor force becomes weaker. Moreover, the behavior of the transverse radiation force field may vary with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on ka values. These results are particularly important for the design of acoustical tractor beam devices operating with Bessel beams.

  4. Off-axial acoustic radiation force of pressor and tractor Bessel beams on a sphere

    CERN Document Server

    Silva, Glauber T; Lobo, Tiago P; Mitri, Farid G

    2012-01-01

    Acoustic Bessel beams are known to produce an axial radiation force on a sphere centered on the beam axis (on-axial configuration) that exhibits both "pressor" and "tractor" behaviors. The pressor and the tractor forces are oriented along the beam's direction of propagation and opposite to it, respectively. The behavior of the acoustic radiation force generated by Bessel beams when the sphere lies outside the beam's axis (off-axial configuration) is unknown. Using the 3D radiation force formulas given in terms of the partial wave expansion coefficients for the incident and scattered waves, both axial and transverse components of the force exerted on a silicone-oil sphere are obtained for a zero- and a first-order Bessel vortex beam. As the sphere departs from the beam's axis, the tractor force becomes weaker. Moreover, the behavior of the transverse radiation force field may vary with the sphere's size factor $ka$ (where $k$ is the wavenumber and $a$ is the sphere radius). Both stable and unstable equilibrium...

  5. Radiative and dynamical modeling of Jupiter's atmosphere

    Science.gov (United States)

    Guerlet, Sandrine; Spiga, Aymeric

    2016-04-01

    Jupiter's atmosphere harbours a rich meteorology, with alternate westward and eastward zonal jets, waves signatures and long-living storms. Recent ground-based and spacecraft measurements have also revealed a rich stratospheric dynamics, with the observation of thermal signatures of planetary waves, puzzling meridional distribution of hydrocarbons at odds with predictions of photochemical models, and a periodic equatorial oscillation analogous to the Earth's quasi-biennal oscillation and Saturn's equatorial oscillation. These recent observations, along with the many unanswered questions (What drives and maintain the equatorial oscillations? How important is the seasonal forcing compared to the influence of internal heat? What is the large-scale stratospheric circulation of these giant planets?) motivated us to develop a complete 3D General Circulation Model (GCM) of Saturn and Jupiter. We aim at exploring the large-scale circulation, seasonal variability, and wave activity from the troposphere to the stratosphere of these giant planets. We will briefly present how we adapted our existing Saturn GCM to Jupiter. One of the main change is the addition of a stratospheric haze layer made of fractal aggregates in the auroral regions (poleward of 45S and 30N). This haze layer has a significant radiative impact by modifying the temperature up to +/- 15K in the middle stratosphere. We will then describe the results of radiative-convective simulations and how they compare to recent Cassini and ground-based temperature measurements. These simulations reproduce surprisingly well some of the observed thermal vertical and meridional gradients, but several important mismatches at low and high latitudes suggest that dynamics also plays an important role in shaping the temperature field. Finally, we will present full GCM simulations and discuss the main resulting features (waves and instabilities). We will also and discuss the impact of the choice of spatial resolution and

  6. Modeling Space Radiation with Radiomimetic Agent Bleomycin

    Science.gov (United States)

    Lu, Tao

    2017-01-01

    Space radiation consists of proton and helium from solar particle events (SPE) and high energy heavy ions from galactic cosmic ray (GCR). This mixture of radiation with particles at different energy levels has different effects on biological systems. Currently, majority studies of radiation effects on human were based on single-source radiation due to the limitation of available method to model effects of space radiation on living organisms. While NASA Space Radiation Laboratory is working on advanced switches to make it possible to have a mixed field radiation with particles of different energies, the radiation source will be limited. Development of an easily available experimental model for studying effects of mixed field radiation could greatly speed up our progress in our understanding the molecular mechanisms of damage and responses from exposure to space radiation, and facilitate the discovery of protection and countermeasures against space radiation, which is critical for the mission to Mars. Bleomycin, a radiomimetic agent, has been widely used to study radiation induced DNA damage and cellular responses. Previously, bleomycin was often compared to low low Linear Energy Transfer (LET) gamma radiation without defined characteristics. Our recent work demonstrated that bleomycin could induce complex clustered DNA damage in human fibroblasts that is similar to DNA damage induced by high LET radiation. These type of DNA damage is difficult to repair and can be visualized by gamma-H2Ax staining weeks after the initial insult. The survival ratio between early and late plating of human fibroblasts after bleomycin treatment is between low LET and high LET radiation. Our results suggest that bleomycin induces DNA damage and other cellular stresses resembling those resulted from mixed field radiation with both low and high LET particles. We hypothesize that bleomycin could be used to mimic space radiation in biological systems. Potential advantages and limitations of

  7. New empirically-derived solar radiation pressure model for GPS satellites

    Science.gov (United States)

    Bar-Sever, Y.; Kuang, D.

    2003-01-01

    Solar radiation pressure force is the second largest perturbation acting on GPS satellites, after the gravitational attraction from the Earth, Sun, and Moon. It is the largest error source in the modeling of GPS orbital dynamics.

  8. The Lorentz Force and the Radiation Pressure of Light

    CERN Document Server

    Rothman, Tony

    2008-01-01

    In order to make plausible the idea that light exerts a pressure on matter, some introductory physics texts consider the force exerted by an electromagnetic wave on an electron. The argument as presented is both mathematically incorrect and has several serious conceptual difficulties without obvious resolution at the classical, yet alone introductory, level. We discuss these difficulties and propose an alternate demonstration.

  9. Modeling traction forces in collective cell migration

    Science.gov (United States)

    Zimmermann, Juliane; Basan, Markus; Hayes, Ryan L.; Rappel, Wouter-Jan; Levine, Herbert

    2015-03-01

    Collective cell migration is an important process in embryonic development, wound healing, and cancer metastasis. We have developed a particle-based simulation for collective cell migration that describes flow patterns and finger formation at the tissue edge observed in wound healing experiments. We can apply methods for calculating intercellular stress to our simulation model, and have thereby provided evidence for the validity of a stress reconstitution method from traction forces used in experiments. To accurately capture experimentally measured traction forces and stresses in the tissue, which are mostly tensile, we have to include intracellular acto-myosin contraction into our simulation. We can then reproduce the experimentally observed behavior of cells moving around a circular obstacle, and suggest underlying mechanisms for cell-cell alignment and generation of traction force patterns.

  10. Decadal Changes in Arctic Radiative Forcing from Aerosols and Tropospheric Ozone

    Science.gov (United States)

    Breider, T. J.; Mickley, L. J.; Jacob, D. J.; Payer Sulprizio, M.; Croft, B.; Ridley, D. A.; Ge, C.; Yang, Q.; Bitz, C. M.; McConnell, J.; Sharma, S.; Skov, H.; Eleftheriadis, K.

    2014-12-01

    Annual average Arctic sea ice coverage has declined by 3.6% per decade since the 1980s, but factors driving this trend are uncertain. Long-term surface observations and ice core records suggest recent, large declines in the Arctic atmospheric burden of sulfate aerosol, which may account in part for the warming trend. The decline in black carbon (BC) aerosol in the Arctic during the same period may partly offset the warming due to decreases in sulfate. Here we use the GEOS-Chem chemical transport model together with a detailed inventory of historical anthropogenic trace gas and primary aerosol emissions to quantify changes in Arctic radiative forcing from tropospheric ozone and aerosol between 1980 and 2010. Previous studies have reported an increasing trend in observed ozone at 500 hPa over Canada, but our simulation shows no significant trend. Over Europe, good agreement is found with observed long-term trends in sulfate in surface air (observed = -0.14±0.02 μg m-3 yr-1, model = -0.13±0.01 μg m-3 yr-1), while the observed trend in sulfate in precipitation (-0.20±0.03 μg m-3 yr-1) is underestimated by 40%. At Alert, the timing of the observed decline in sulfate after 1991 is well captured in the simulation, but the observed trend between 1991 and 2001 (-36.3±4.1 ng m-3 yr-1) is underestimated by 26%. BC observations at remote Arctic surface stations are biased low throughout 1980-2010 by a factor of 2. At Greenland ice cores, observed 1980-2010 trends in sulfate deposition are underestimated by 35%. The smaller model bias in observed sulfate and BC deposition at ice cores in southern Greenland (5% and 65%) compared to northern Greenland (56% and 90%) indicates greater uncertainty in pollution emissions from Eurasian sources. We estimate a surface radiative forcing from atmospheric aerosols in the Arctic during 2008 of -0.51 W m-2. The forcing is largest in spring (-1.36 W m-2) and dominated by sulfate aerosol (87%). We will quantify the contributions to the

  11. Classical tunneling as a consequence of radiation reaction forces

    Science.gov (United States)

    Denef, Frederik; Raeymaekers, Joris; Studer, Urban M.; Troost, Walter

    1997-09-01

    We show that the classical equation of motion of a radiating charged point particle (the Lorentz-Dirac equation) has ``tunneling'' solutions. For a given initial position and velocity we find that, contrary to common belief, several different physically acceptable solutions exist for a range of initial data. Both features are demonstrated for a rectangular barrier. To check that these phenomena are not dependent on the discontinuities of the potential, we also study in detail the solutions for a smoothened (single) potential step.

  12. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    Science.gov (United States)

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters.

  13. Role of radiatively forced temperature changes in enhanced semi-arid warming over East Asia

    Directory of Open Access Journals (Sweden)

    X. Guan

    2015-08-01

    Full Text Available As the climate change occurred over East Asia since 1950s, intense interest and debate have arisen concerning the contribution of human activities to the warming observed in previous decades. In this study, we investigate surface temperature change using a recently developed methodology that can successfully identify and separate the dynamically induced temperature (DIT and radiatively forced temperature (RFT changes in raw surface air temperature (SAT data. For regional averages, DIT and RFT make 43.7 and 56.3 % contributions to the SAT over East Asia, respectively. The DIT changes dominate the SAT decadal variability and are mainly determined by internal climate variability, such as the North Atlantic Oscillation (NAO, Pacific Decadal Oscillation (PDO, and Atlantic Multi-decadal Oscillation (AMO. The radiatively forced SAT changes made major contribution to the global-scale warming trend and the regional-scale enhanced semi-arid warming (ESAW. Such enhanced warming is also found in radiatively forced daily maximum and minimum SAT. The long-term global-mean SAT warming trend is mainly related to radiative forcing produced by global well-mixed greenhouse gases. The regional anthropogenic radiative forcing, however, caused the enhanced warming in the semi-arid region, which may be closely associated with local human activities. Finally, the relationship between global warming hiatus and regional enhanced warming is discussed.

  14. Global analysis of radiative forcing from fire-induced shortwave albedo change

    Directory of Open Access Journals (Sweden)

    G. López-Saldaña

    2014-05-01

    Full Text Available Land surface albedo, a key parameter to derive Earth's surface energy balance, is used in the parameterization of numerical weather prediction, climate monitoring and climate change impact assessments. Changes in albedo due to fire have not been fully investigated at continental and global scale. The main goal of this study therefore, is to quantify the changes in albedo produced by biomass burning activities and their associated shortwave radiative forcing. The study relies on the Moderate Resolution Imaging Spectroradiometer (MODIS MCD64A1 burned area product to create an annual composite of areas affected by fire and the MCD43C2 BRDF-Albedo snow-free product to compute a bihemispherical reflectance time series. The approximate day of burn is used to calculate the instantaneous change in shortwave Albedo. Using the corresponding National Centers for Environmental Prediction (NCEP monthly mean downward solar radiation flux at the surface, the global radiative forcing associated to fire was computed. The analysis reveals a mean decrease in shortwave albedo of −0.023 (1σ = 0.018 causing a mean positive radiative forcing of 6.31 W m–2 (1σ = 5.04 over the 2002–2012 time period in areas affected by fire. The greatest drop in mean shortwave albedo change occurs in 2002, which corresponds to the highest total area burnt (3.66 Mha observed in the same year and produces the highest mean radiative forcing (6.75 W m–2. Africa is the main contributor in terms of burned area but forests globally are giving the highest radiative forcing per unit area, thus give detectable changes in shortwave albedo. The global mean radiative forcing for the whole studied period ~ 0.04 W m–2 shows that the contribution of fires into the Earth system is not insignificant.

  15. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.

    Science.gov (United States)

    Mitri, F G

    2009-12-01

    Particle manipulation using the acoustic radiation force of Bessel beams is an active field of research. In a previous investigation, [F.G. Mitri, Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers, Annals of Physics 323 (2008) 1604-1620] an expression for the radiation force of a zero-order Bessel beam standing wave experienced by a sphere was derived. The present work extends the analysis of the radiation force to the case of a high-order Bessel beam (HOBB) of positive order m having an angular dependence on the phase phi. The derivation for the general expression of the force is based on the formulation for the total acoustic scattering field of a HOBB by a sphere [F.G. Mitri, Acoustic scattering of a high-order Bessel beam by an elastic sphere, Annals of Physics 323 (2008) 2840-2850; F.G. Mitri, Equivalence of expressions for the acoustic scattering of a progressive high order Bessel beam by an elastic sphere, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 56 (2009) 1100-1103] to derive the general expression for the radiation force function YJm,st(ka,beta,m)Bessel beam standing wave incident upon a rigid sphere immersed in non-viscous water are computed. The rigid sphere calculations for YJm,st(ka,beta,m)Bessel beam standing wave (m=0). The proposed theory is of particular interest essentially due to its inherent value as a canonical problem in particle manipulation using the acoustic radiation force of a HOBB standing wave on a sphere. It may also serve as the benchmark for comparison to other solutions obtained by strictly numerical or asymptotic approaches.

  16. Optical quantification of harmonic acoustic radiation force excitation in a tissue-mimicking phantom

    CERN Document Server

    Suomi, Visa; Cleveland, Robin

    2016-01-01

    Optical tracking was used to characterize acoustic radiation force (ARF) induced displacements in a tissue-mimicking phantom. Amplitude modulated (AM) 3.3 MHz ultrasound was used to induce ARF in the phantom which was embedded with 10 {\\mu}m microspheres that were tracked using a microscope objective and high speed camera. For sine and square AM the harmonic components of the fundamental and second and third harmonic frequencies were measured. The displacement amplitudes were found to increase linearly with ARF up to 10 {\\mu}m with sine modulation having 19.5% lower peak-to-peak amplitude values than square modulation. Square modulation produced almost no second harmonic but energy was present in the third harmonic. For the sine modulation energy was present in the second harmonic and low energy in the third harmonic. A finite element model was used to simulate the deformation and was both qualitatively and quantitatively in agreement with the measurements.

  17. Applications of acoustic radiation force impulse quantification in chronic kidney disease: A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang [Dept. of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing (China)

    2016-08-15

    Acoustic radiation force impulse (ARFI) imaging is an emerging technique with great promise in the field of elastography. Previous studies have validated ARFI quantification as a method of estimating fibrosis in chronic liver disease. Similarly, fibrosis is the principal process underlying the progression of chronic kidney disease, which is the major cause of renal failure. However, the quantification of tissue stiffness using ARFI imaging is more complex in the kidney than in the liver. Moreover, not all previous studies are comparable because they employed different procedures. Therefore, subsequent studies are warranted, both in animal models and in clinical patients, in order to better understand the histopathological mechanisms associated with renal elasticity and to further improve this imaging method by developing a standardized guidelines for its implementation.

  18. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  19. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    Science.gov (United States)

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  20. An exploration in acoustic radiation force experienced by cylindrical shells via resonance scattering theory.

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-04-01

    In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces.

  1. The impact of diurnal variations of air traffic on contrail radiative forcing

    Directory of Open Access Journals (Sweden)

    N. Stuber

    2007-06-01

    Full Text Available We combined high resolution aircraft flight data from the EU Fifth Framework Programme project AERO2k with analysis data from the ECMWF's integrated forecast system to calculate diurnally resolved 3-D contrail cover. We scaled the contrail cover in order to match observational data for the Bakan area (eastern-Atlantic/western-Europe.

    We found that less than 40% of the global distance travelled by aircraft is due to flights during local night time. Yet, due to the cancellation of shortwave and longwave effects during daytime, night time flights contribute a disproportional 60% to the global annual mean forcing. Under clear sky conditions the night flights contribute even more disproportionally at 76%. There are pronounced regional variations in night flying and the associated radiative forcing. Over parts of the North Atlantic flight corridor 75% of air traffic and 84% of the forcing occurs during local night, whereas only 35% of flights are during local night in South-East Asia, yet these contribute 68% of the radiative forcing. In general, regions with a significant local contrail radiative forcing are also regions for which night time flights amount to less than half of the daily total of flights. Therefore, neglecting diurnal variations in air traffic/contrail cover by assuming a diurnal mean contrail cover can over-estimate the global mean radiative forcing by up to 30%.

  2. Modelling Fluidelastic Instability Forces in Tube Arrays

    Science.gov (United States)

    Anderson, J. Burns

    Historically, heat exchangers have been among the most failure prone components in nuclear power plants. Most of these failures are due to tube failures as a result of corrosion, fatigue and fretting wear. Fatigue and fretting wear are a result of flow induced vibration through turbulent buffeting and fluidelastic instability mechanisms. Fluidelastic instability is by far the most important and complex mechanism. This research deals with modelling fluidelastic instability and the resulting tube response. The proposed time domain model uses the concept of a flow cell (Hassan & Hayder [16]) to represent the complex flow field inside a shell and tube heat exchanger and accounts for temporal variations in the flow separation points as a result of tube motion. The fluidelastic forces are determined by predicting the attachment lengths. The predicted forces are used to simulate the response of a single flexible tube inside a shell and tube heat exchanger. It was found that accounting for temporal variations in the separation points predicted lower critical flow velocities, than that of fixed attachment and separation points. Once unstable a phase lag is predicted between the fluidelastic forces and tube response. It was determined that the predicted critical flow velocities agreed well with available experimental data. The developed model represents an important step towards a realistic fluidelastic instability model which can be used to design the new generation nuclear steam generators.

  3. Comparison of three vertically resolved ozone data sets: climatology, trends and radiative forcings

    Directory of Open Access Journals (Sweden)

    B. Hassler

    2013-06-01

    Full Text Available Climate models that do not simulate changes in stratospheric ozone concentrations require the prescription of ozone fields to accurately calculate UV fluxes and stratospheric heating rates. In this study, three different global ozone time series that are available for this purpose are compared: the data set of Randel and Wu (2007 (RW07, Cionni et al. (2011 (SPARC, and Bodeker et al. (2013 (BDBP. All three data sets represent multiple-linear regression fits to vertically resolved ozone observations, resulting in a spatially and temporally continuous stratospheric ozone field covering at least the period from 1979 to 2005. The main differences among the data sets result from regression models, which use different observations and include different basis functions. The data sets are compared against ozonesonde and satellite observations to assess how the data sets represent concentrations, trends and interannual variability. In the Southern Hemisphere polar region, RW07 and SPARC underestimate the ozone depletion in spring ozonesonde measurements. A piecewise linear trend regression is performed to estimate the 1979–1996 ozone decrease globally, covering a period of extreme depletion in most regions. BDBP overestimates Arctic and tropical ozone depletion over this period relative to the available measurements, whereas the depletion is underestimated in RW07 and SPARC. While the three data sets yield ozone concentrations that are within a range of different observations, there is a large spread in their respective ozone trends. One consequence of this is differences of almost a factor of four in the calculated stratospheric ozone radiative forcing between the data sets (RW07: −0.038 Wm−2, SPARC: −0.033 Wm−2, BDBP: −0.119 Wm−2, important in assessing the contribution of stratospheric ozone depletion to the total anthropogenic radiative forcing.

  4. Ozone precursors have regionally variable effect on radiative forcing

    Science.gov (United States)

    Schultz, Colin

    2013-02-01

    When released near the surface, carbon monoxide, assorted nitrogen oxides (NOx ), and nonmethane hydrocarbons (NMHC) contribute to the production of ozone, a key component of photochemical smog, which is known to have serious deleterious effects on human health. However, when ozone gets lifted into the troposphere, it is a greenhouse gas. That these ozone precursors have such a dual-pronged effect—affecting both human health and the global radiation budget—suggests that mitigating their emissions could be a potential method to both improve air quality and dampen the rate of anthropogenic climate change.

  5. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [VTT Energy, Espoo (Finland)

    1995-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  6. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    Science.gov (United States)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2004-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  7. The dynamic radiation environment assimilation model (DREAM)

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Tokar, Robert L [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory; Friedel, Reiner H [Los Alamos National Laboratory

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  8. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    Full Text Available Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ, direct radiative effect (DRE by natural and anthropogenic aerosols, and direct climate forcing (DCF by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation at the top-of-atmosphere (TOA to be about -5.5±0.2 Wm-2 (median ± standard error from various methods over the global ocean. Accounting for thin cirrus

  9. Resonance-Radiation Force Exerted by a Circularly Polarized Light on an Atomic Wave Packet

    Institute of Scientific and Technical Information of China (English)

    YE Yong-Hua; ZENG Gao-Jian; LI Jin-Hui

    2006-01-01

    We study the behaviour of an atomic wave packet in a circularly polarized light, and especially give the calculation of the radiative force exerted by the circularly polarized light on the atomic wave packet under the resonance condition. A general method of the calculation is presented and the result is interesting. For example, under the condition that the wave packet is very narrow or/and the interaction is very strong, no matter whether the atom is initially in its ground state or excited state, as time approaches to infinity, the resonance-radiation force exerted by the light on the atom approaches to zero. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is a even function, then the resonance-radiation force exerted by the light on the atom is equal to zero.

  10. Hemodynamic forces in a model left ventricle

    Science.gov (United States)

    Domenichini, Federico; Pedrizzetti, Gianni

    2016-12-01

    Intraventricular pressure gradients were clinically demonstrated to represent one useful indicator of the left ventricle (LV) function during the development of heart failure. We analyze the fluid dynamics inside a model LV to improve the understanding of the development of hemodynamic forces (i.e., mean pressure gradient) in normal conditions and their modification in the presence of alterations of LV tissue motion. To this aim, the problem is solved numerically and the global force exchanged between blood flow and LV boundaries is computed by volume integration. We also introduce a simplified analytical model, based on global conservation laws, to estimate hemodynamic forces from the knowledge of LV tissue information commonly available in cardiac imaging. Numerical results show that the normal intraventricular gradients feature a deep brief suction at early diastolic filling and a persistent thrust during systolic ejection. In presence of abnormalities of the wall motion, the loss of time synchrony is more relevant than the loss of spatial uniformity in modifying the normal pressure gradient spatiotemporal pattern. The main findings are reproduced in the integral model, which represents a possible easy approach for integrating fluid dynamics evaluations in the clinical examination.

  11. Radiative forcing and climate response to projected 21st century aerosol decreases

    Directory of Open Access Journals (Sweden)

    D. M. Westervelt

    2015-03-01

    Full Text Available It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80% by the year 2100, according to the four Representative Concentration Pathway (RCP scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3 to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m−2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d−1. Regionally and locally, climate impacts can be much larger, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm d−1 precipitation increase, a 7 g m−2 LWP decrease, and a 2 μm increase in cloud droplet effective radius. Future aerosol decreases could be responsible for 30–40% of total climate warming by 2100 in East Asia, even under the high greenhouse gas emissions scenario (RCP8.5. The expected unmasking of global warming caused

  12. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    Science.gov (United States)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    Biomass-burning (BB) aerosols are the significant contributor to the regional/global aerosol loading and radiation budgets. BB aerosols affect the radiation budget of the earth and atmosphere by scattering and absorbing directly the incoming solar and outgoing terrestrial radiation. These aerosols can exert either cooling or warming effect on climate, depending on the balance between scattering and absorption. BB activities in the form of wildland forest fires and agricultural crop burning are very pronounced in the Indochina peninsular regions in Southeast Asia mainly in spring (late February to April) season. The region of interest includes Doi Ang Khang (19.93° N, 99.05° E, 1536 msl) in northern Thailand, as part of the Seven South East Asian Studies (7-SEAS)/BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment) campaign in 2013. In this study, for the first time, the direct aerosol radiative effects of BB aerosols over near-source BB emissions, during the peak loading spring season, in northern Indochina were investigated by using ground-based physical, chemical, and optical properties of aerosols as well as the aerosol optical and radiative transfer models. Information on aerosol parameters in the field campaign was used in the OPAC (Optical Properties of Aerosols and Clouds) model to estimate various optical properties corresponding to aerosol compositions. Clear-sky shortwave direct aerosol radiative effects were further estimated with a raditive transfer model SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer). The columnar aerosol optical depth (AOD500) was found to be ranged from 0.26 to 1.13 (with the mean value 0.71 ± 0.24). Fine-mode (fine mode fraction ≈0.98, angstrom exponent ≈1.8) and significantly absorbing aerosols (columnar single-scattering albedo ≈0.89, asymmetry-parameter ≈0.67 at 441 nm wavelength) dominated in this region. Water soluble and black carbon (BC) aerosols mainly

  13. Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties

    Directory of Open Access Journals (Sweden)

    X. Ma

    2012-06-01

    Full Text Available Aerosol direct radiative forcing (DRF plays an important role in global climate change but has a large uncertainty. Here we investigate aerosol DRF with GEOS-Chem-APM, a recently developed global aerosol microphysical model that is designed to capture key particle properties (size, composition, coating of primary particles by volatile species, etc.. The model, with comprehensive chemistry, microphysics and up-to-date emission inventories, is driven by assimilated meteorology, which is presumably more realistic compared to the model-predicted meteorology. For this study, the model is extended by incorporating a radiation transfer model. Optical properties are calculated using Mie theory, where the core-shell configuration could be treated with the refractive indices from the recently updated values available in the literature. The surface albedo is taken from MODIS satellite retrievals for the simulation year, in which the data set for the 8-day mean at 0.05° (5600 m resolution for 7 wavebands is provided. We derive the total and anthropogenic aerosol DRF, mainly focus on the results of anthropogenic aerosols, and then compare with those values reported in previous studies. In addition, we examine the anthropogenic aerosol DRF's dependence on several key factors, including the particle size of black carbon (BC and primary organic carbon (POC, the density of BC and the mixing state. Our studies show that the anthropogenic aerosol DRF at top of atmosphere (TOA for all sky is −0.41 W m−2. However, the sensitivity experiments suggest that the magnitude could vary from −0.08 W m−2 to −0.61 W m−2, depending on assumptions regarding the mixing state, size and density of particles.

  14. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    Directory of Open Access Journals (Sweden)

    O. E. García

    2012-06-01

    Full Text Available The shortwave radiative forcingF and the radiative forcing efficiency (ΔFeff of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA and at the Bottom Of Atmosphere (BOA modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere in similar observational conditions (i.e., for solar zenith angles between 55° and 65° in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from −122 ± 37 Wm−2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45 at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and −42 ± 22 Wm−2 (AOD = 0.9 ± 0.5 at the TOA for the pure mineral dust also in this region up to −6 ± 3 Wm−2 and −4 ± 2 Wm−2 (AOD = 0.03 ± 0.02 at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions atmospheric aerosols lead to a warming of the Earth-atmosphere system.

  15. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. I. Star Formation Rate and Efficiency

    Science.gov (United States)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2016-10-01

    Radiation feedback from stellar clusters is expected to play a key role in setting the rate and efficiency of star formation in giant molecular clouds. To investigate how radiation forces influence realistic turbulent systems, we have conducted a series of numerical simulations employing the Hyperion radiation hydrodynamics solver, considering the regime that is optically thick to ultraviolet and optically thin to infrared radiation. Our model clouds cover initial surface densities between Σ cl,0∼ 10--300 M⊙ pc-2, with varying initial turbulence. We follow them through turbulent, self-gravitating collapse, star cluster formation, and cloud dispersal by stellar radiation. All our models display a log-normal distribution of gas surface density Σ for an initial virial parameter αvir,0=2, the log-normal standard deviation is σln Σ =1-1.5 and the star formation rate coefficient ɛff,ρ=0.3-0.5, both of which are sensitive to turbulence but not radiation feedback. The net star formation efficiency (SFE) ɛfinal increases with Σcl,0 and decreases with α vir,0. We interpret these results via a simple conceptual framework, whereby steady star formation increases the radiation force, such that local gas patches at successively higher Σ become unbound. Based on this formalism (with fixed σln Σ), we provide an analytic upper bound on ɛfinal, which is in good agreement with our numerical results. The final SFE depends on the distribution of Eddington ratios in the cloud and is strongly increased by the turbulent compression of gas.

  16. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2006-01-01

    Full Text Available Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the solar energy budget at the top of the atmosphere (ToA yields a new harmonized estimate for the aerosol direct radiative forcing (RF under all-sky conditions. On a global annual basis RF is −0.22 Wm−2, ranging from +0.04 to −0.41 Wm−2, with a standard deviation of ±0.16 Wm−2. Anthropogenic nitrate and dust are not included in this estimate. No model shows a significant positive all-sky RF. The corresponding clear-sky RF is −0.68 Wm−2. The cloud-sky RF was derived based on all-sky and clear-sky RF and modelled cloud cover. It was significantly different from zero and ranged between −0.16 and +0.34 Wm−2. A sensitivity analysis shows that the total aerosol RF is influenced by considerable diversity in simulated residence times, mass extinction coefficients and most importantly forcing efficiencies (forcing per unit optical depth. The clear-sky forcing efficiency (forcing per unit optical depth has diversity comparable to that for the all-sky/ clear-sky forcing ratio. While the diversity in clear-sky forcing efficiency is impacted by factors such as aerosol absorption, size, and surface albedo, we can show that the all-sky/clear-sky forcing ratio is important because all-sky forcing estimates require proper representation of cloud fields and the correct relative altitude placement between absorbing aerosol and clouds. The analysis of the sulphate RF shows that long sulphate residence times are compensated by low mass extinction coefficients and vice versa. This is explained by more sulphate particle humidity growth and thus higher extinction in those models where short-lived sulphate

  17. Dynamic simulation of viscoelastic soft tissue in acoustic radiation force creep imaging.

    Science.gov (United States)

    Zhao, Xiaodong; Pelegri, Assimina A

    2014-09-01

    Acoustic radiation force (ARF) creep imaging applies step ARF excitation to induce creep displacement of soft tissue, and the corresponding time-dependent responses are used to estimate soft tissue viscoelasticity or its contrast. Single degree of freedom (SDF) and homogeneous analytical models have been used to characterize soft tissue viscoelasticity in ARF creep imaging. The purpose of this study is to investigate the fundamental limitations of the commonly used SDF and homogeneous assumptions in ARF creep imaging. In this paper, finite element (FE) models are developed to simulate the dynamic behavior of viscoelastic soft tissue subjected to step ARF. Both homogeneous and heterogeneous models are studied with different soft tissue viscoelasticity and ARF configurations. The results indicate that the SDF model can provide good estimations for homogeneous soft tissue with high viscosity, but exhibits poor performance for low viscosity soft tissue. In addition, a smaller focal region of the ARF is desirable to reduce the estimation error with the SDF models. For heterogeneous media, the responses of the focal region are highly affected by the local heterogeneity, which results in deterioration of the effectiveness of the SDF and homogeneous simplifications.

  18. Radiation Reaction as a Non-conservative Force

    CERN Document Server

    Aashish, Sandeep

    2016-01-01

    We study a system of a finite-size charged particle and electromagnetic field by exploiting the Hamilton's principle for classical non-conservative systems introduced recently by Galley[1] and obtain the equation of motion of the charged particle which turns out to be the same as obtained by Jackson[2]. We show that radiation reaction stems from the non-conservative potential of the effective Lagrangian. We derive the Abraham-Lorentz equation using the effective non-conservative Lagrangian for a point charge. We establish a correspondence between a charge interacting with its own electromagnetic field and that of a particle interacting with infinite bath oscillators which in turn affords a way to justify the non-conservative nature of the former system.

  19. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029 (United States)

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  20. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure

    Science.gov (United States)

    Šantić, N.; Dubček, T.; Aumiler, D.; Buljan, H.; Ban, T.

    2015-09-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.

  1. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wenjuan [Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697 (United States); Li, Rui [Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612 (United States); Ma, Teng; Kirk Shung, K.; Zhou, Qifa [Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089 (United States); Chen, Zhongping, E-mail: z2chen@uci.edu [Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697 (United States)

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  2. Tunable optical lens array using viscoelastic material and acoustic radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Daisuke, E-mail: dkoyama@mail.doshisha.ac.jp; Kashihara, Yuta; Matsukawa, Mami [Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Hatanaka, Megumi [Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Nakamura, Kentaro [Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-26, Nagatsutacho, Midoriku, Yokohama 226-8503 (Japan)

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  3. Impurity radiation in DEMO systems modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lux, H., E-mail: Hanni.Lux@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Kemp, R.; Ward, D.J. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sertoli, M. [Max-Planck-Institut für Plasma Physik, D-85748 Garching (Germany)

    2015-12-15

    Highlights: • Solving the exhaust problem is crucial for DEMO. • Here, we discuss the new impurity radiation model in the systems code PROCESS. • Furthermore, we assess its effect on DEMO design. • More appropriate scalings will significantly enhance predictions for DEMO. • The controllability of highly radiative scenarios remains to be shown. - Abstract: For fusion reactors with ITER divertor technology, it will be imperative to significantly reduce the heat flux into the divertor e.g. by seeded impurity radiation. This has to be done without affecting the accessibility of a high performance scenario. To assess the implications of seeded plasma impurities on DEMO design, we have developed an impurity radiation model for radiation inside the separatrix. Evaluating the validity of our model, we find the assumption of a local ionisation equilibrium to be appropriate for our purposes and the assumption of flat impurity profiles – even though not satisfactory – to represent the best currently possible. Benchmarking our model against other codes highlights the need to use up to date atomic loss function data. From the impurity radiation perspective, the main uncertainties in current DEMO design stem from the lack of confinement and L-H-threshold scalings that can be robustly extrapolated to highly radiative DEMO scenarios as well as the lack of appropriate models for the power flow from the separatrix into the divertor that include radiation in the scrape off layer. Despite these uncertainties in the model we can exclude that significant fuel dilution through seeded impurities (with Z ≥ Z{sub Ar}) will be an issue for DEMO, but the controllability of highly radiative scenarios still needs to be coherently shown.

  4. Simulations of Cloud-Radiation Interaction Using Large-Scale Forcing Derived from the CINDY/DYNAMO Northern Sounding Array

    Science.gov (United States)

    Wang, Shuguang; Sobel, Adam H.; Fridlind, Ann; Feng, Zhe; Comstock, Jennifer M.; Minnis, Patrick; Nordeen, Michele L.

    2015-01-01

    The recently completed CINDY/DYNAMO field campaign observed two Madden-Julian oscillation (MJO) events in the equatorial Indian Ocean from October to December 2011. Prior work has indicated that the moist static energy anomalies in these events grew and were sustained to a significant extent by radiative feedbacks. We present here a study of radiative fluxes and clouds in a set of cloud-resolving simulations of these MJO events. The simulations are driven by the large-scale forcing data set derived from the DYNAMO northern sounding array observations, and carried out in a doubly periodic domain using the Weather Research and Forecasting (WRF) model. Simulated cloud properties and radiative fluxes are compared to those derived from the S-PolKa radar and satellite observations. To accommodate the uncertainty in simulated cloud microphysics, a number of single-moment (1M) and double-moment (2M) microphysical schemes in the WRF model are tested. The 1M schemes tend to underestimate radiative flux anomalies in the active phases of the MJO events, while the 2M schemes perform better, but can overestimate radiative flux anomalies. All the tested microphysics schemes exhibit biases in the shapes of the histograms of radiative fluxes and radar reflectivity. Histograms of radiative fluxes and brightness temperature indicate that radiative biases are not evenly distributed; the most significant bias occurs in rainy areas with OLR less than 150 W/ cu sq in the 2M schemes. Analysis of simulated radar reflectivities indicates that this radiative flux uncertainty is closely related to the simulated stratiform cloud coverage. Single-moment schemes underestimate stratiform cloudiness by a factor of 2, whereas 2M schemes simulate much more stratiform cloud.

  5. A diffraction correction for storage and loss moduli imaging using radiation force based elastography

    Science.gov (United States)

    Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc

    2017-01-01

    Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study

  6. Radiative forcing and feedback by forests in warm climates - a sensitivity study

    Science.gov (United States)

    Port, Ulrike; Claussen, Martin; Brovkin, Victor

    2016-07-01

    We evaluate the radiative forcing of forests and the feedbacks triggered by forests in a warm, basically ice-free climate and in a cool climate with permanent high-latitude ice cover using the Max Planck Institute for Meteorology Earth System Model. As a paradigm for a warm climate, we choose the early Eocene, some 54 to 52 million years ago, and for the cool climate, the pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet for the early Eocene climate and for pre-industrial conditions. The warming can be attributed to different feedback processes, though. The lapse-rate and water-vapour feedback is stronger for the early Eocene climate than for the pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate and water-vapour feedback for the early Eocene climate. Subsequently, global mean warming by forests is weaker for the early Eocene climate than for pre-industrial conditions. Sea-ice related feedbacks are weak for the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than for pre-industrial conditions. When the land is covered with dark soils, and hence, albedo differences between forests and soil are small, forests cool the early Eocene climate more than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger for the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.

  7. Offsetting features of climate responses to anthropogenic sulfate and black carbon direct radiative forcings

    Science.gov (United States)

    Ocko, I.; Ramaswamy, V.

    2012-12-01

    The two most prominent anthropogenic aerosols—sulfate and black carbon—affect Earth's radiation budget in opposing ways. Here we examine how these aerosols independently impact the climate, by simulating climate responses from pre-industrial times (1860) to present-day (2000) for isolated sulfate and black carbon direct radiative forcings. The NOAA Geophysical Fluid Dynamics Laboratory CM2.1 global climate model is employed with prescribed distributions of externally mixed aerosols. We find that sulfate and black carbon induce opposite effects for a myriad of climate variables. Sulfate (black carbon) is generally cooling (warming), shifts the ITCZ southward (northward), reduces (enhances) the SH Hadley Cell, enhances (reduces) the NH Hadley Cell, and increases (decreases) total sea ice volume. Individually, sulfate and black carbon affect Hadley Cell circulation more than long-lived greenhouse gases, but the net aerosol effect is a weakened response due to opposite behaviors somewhat canceling out the individual effects. Because anthropogenic aerosols are a critical contributor to Earth's climate conditions, this study has implications for future climate changes as well.

  8. Acoustofluidics: theory and simulation of radiation forces at ultrasound resonances in microfluidic devices

    DEFF Research Database (Denmark)

    Barnkob, Rune; Bruus, Henrik

    2009-01-01

    Theoretical analysis is combined with numerical simulations to optimize designs and functionalities of acoustofluidic devices, i.e. microfluidic devices in which ultrasound waves are used to anipulate biological particles. The resonance frequencies and corresponding modes of the acoustic fields...... the largest possible acoustic powers are obtained in the microfluidic system, the time-averaged acoustic radiation force on single particles is determined. Schemes for in situ calibration of this force are presented and discussed....

  9. Synthetic Lorentz force in classical atomic gases via Doppler effect and radiation pressure

    CERN Document Server

    Dubček, T; Jukić, D; Aumiler, D; Ban, T; Buljan, H

    2014-01-01

    We theoretically predict a novel type of synthetic Lorentz force for classical (cold) atomic gases, which is based on the Doppler effect and radiation pressure. A fairly uniform and strong force can be constructed for gases in macroscopic volumes of several cubic millimeters and more. This opens the possibility to mimic classical charged gases in magnetic fields, such as those in a tokamak, in cold atom experiments.

  10. Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions

    Science.gov (United States)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2011-08-01

    We examine the aerosol radiative effects due to aerosols emitted from different emission sectors (anthropogenic and natural) and originating from different geographical regions within and outside India during the northeast (NE) Indian winter monsoon (January-March). These studies are carried out through aerosol transport simulations in the general circulation (GCM) model of the Laboratoire de Météorologie Dynamique (LMD). The model estimates of aerosol single scattering albedo (SSA) show lower values (0.86-0.92) over the region north to 10°N comprising of the Indian subcontinent, Bay of Bengal, and parts of the Arabian Sea compared to the region south to 10°N where the estimated SSA values lie in the range 0.94-0.98. The model estimated SSA is consistent with the SSA values inferred through measurements on various platforms. Aerosols of anthropogenic origin reduce the incoming solar radiation at the surface by a factor of 10-20 times the reduction due to natural aerosols. At the top-of-atmosphere (TOA), aerosols from biofuel use cause positive forcing compared to the negative forcing from fossil fuel and natural sources in correspondence with the distribution of SSA which is estimated to be the lowest (0.7-0.78) from biofuel combustion emissions. Aerosols originating from India and Africa-west Asia lead to the reduction in surface radiation (-3 to -8 W m -2) by 40-60% of the total reduction in surface radiation due to all aerosols over the Indian subcontinent and adjoining ocean. Aerosols originating from India and Africa-west Asia also lead to positive radiative effects at TOA over the Arabian Sea, central India (CNI), with the highest positive radiative effects over the Bay of Bengal and cause either negative or positive effects over the Indo-Gangetic plain (IGP).

  11. Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia

    Institute of Scientific and Technical Information of China (English)

    HUANG Jianping; WANG Yujie; WANG Tianhe; YI Yuhong

    2006-01-01

    The dusty cloud radiative forcing over the middle latitude regions of East Asia was estimated by using the 2-year (July 2002-June 2004) data of collocated clouds and the Earth's radiant energy system (CERES) scanner and moderate resolution imaging spectroradiometer (MOD1S) from Aqua Edition 1B SSF (single scanner footprint). The dusty cloud is defined as the cloud in dust storm environment or dust contaminated clouds. For clouds growing in the presence of dust, the instantaneous short-wave (SW) forcing at the top of the atmosphere (TOA) is about - 275.7 W/m2 for cloud over dust (COD) region. The clouds developing in no-dust cloud (CLD) regions yield the most negative short-wave (SW) forcing ( - 311.0 W/m2), which is about 12.8 % stronger than those in COD regions.For long-wave (LW) radiative forcing, the no-dust cloud (CLD) is around 102.8 W/m2, which is 20% less than the LW forcing from COD regions. The instantaneous TOA net radiative forcing for the CLD region is about - 208.2 W/m2, which is 42.1% larger than the values of COD regions. The existence of dust aerosols under clouds significantly reduces the cooling effect of clouds.

  12. Source sector and region contributions to concentration and direct radiative forcing of black carbon in China

    Science.gov (United States)

    Li, Ke; Liao, Hong; Mao, Yuhao; Ridley, David A.

    2016-01-01

    We quantify the contributions from five domestic emission sectors (residential, industry, transportation, energy, and biomass burning) and emissions outside of China (non-China) to concentration and direct radiative forcing (DRF) of black carbon (BC) in China for year 2010 using a nested-grid version of the global chemical transport model (GEOS-Chem) coupled with a radiative transfer model. The Hemispheric Transport of Air Pollution (HTAP) anthropogenic emissions of BC for year 2010 are used in this study. Simulated surface-layer BC concentrations in China have strong seasonal variations, which exceed 9 μg m-3 in winter and are about 1-5 μg m-3 in summer in the North China Plain and the Sichuan Basin. Residential sector is simulated to have the largest contribution to surface BC concentrations, by 5-7 μg m-3 in winter and by 1-3 μg m-3 in summer, reflecting the large emissions from winter heating and the enhanced wet deposition during summer monsoon. The contribution from industry sector is the second largest and shows relatively small seasonal variations; the emissions from industry sector contribute 1-3 μg m-3 to BC concentrations in the North China Plain and the Sichuan Basin. The contribution from transportation sector is the third largest, followed by that from biomass burning and energy sectors. The non-China emissions mainly influence the surface-layer concentrations of BC in western China; about 70% of surface-layer BC concentration in the Tibet Plateau is attributed to transboundary transport. Averaged over all of China, the all-sky DRF of BC at the top of the atmosphere (TOA) is simulated to be 1.22 W m-2. Sensitivity simulations show that the TOA BC direct radiative forcings from the five domestic emission sectors of residential, industry, energy, transportation, biomass burning, and non-China emissions are 0.44, 0.27, 0.01, 0.12, 0.04, and 0.30 W m-2, respectively. The domestic and non-China emissions contribute 75% and 25% to BC DRF in China

  13. Linear Latent Force Models using Gaussian Processes

    CERN Document Server

    Álvarez, Mauricio A; Lawrence, Neil D

    2011-01-01

    Purely data driven approaches for machine learning present difficulties when data is scarce relative to the complexity of the model or when the model is forced to extrapolate. On the other hand, purely mechanistic approaches need to identify and specify all the interactions in the problem at hand (which may not be feasible) and still leave the issue of how to parameterize the system. In this paper, we present a hybrid approach using Gaussian processes and differential equations to combine data driven modelling with a physical model of the system. We show how different, physically-inspired, kernel functions can be developed through sensible, simple, mechanistic assumptions about the underlying system. The versatility of our approach is illustrated with three case studies from motion capture, computational biology and geostatistics.

  14. Ground-based measurements of aerosol optical properties and radiative forcing in North China

    Institute of Scientific and Technical Information of China (English)

    Hongbin Chen; Xiangao Xia; Pucai Wang; Wenxing Zhang

    2007-01-01

    In order to gain an insight into the aerosol properties and their climatic effect over the continental source regions of China, it is of significance to carry out long-term ground-based measurements of aerosol optical properties and radiative forcing. A couple of temporary and permanent Aerosol Robotic Network (AERONET) sites and three comprehensive radiative sites were established in China as a result of international cooperation in recent years. Heavy aerosol loading and significant temporal and spatial variation over North China are revealed by the AERONET data.Aerosol-induced reductions in surface radiation budget are examined on the basis of collocated observations by sun photometers and pyranometers.

  15. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  16. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  17. Control of shortwave radiation parameterization on tropical climate SST-forced simulation

    Science.gov (United States)

    Crétat, Julien; Masson, Sébastien; Berthet, Sarah; Samson, Guillaume; Terray, Pascal; Dudhia, Jimy; Pinsard, Françoise; Hourdin, Christophe

    2016-09-01

    SST-forced tropical-channel simulations are used to quantify the control of shortwave (SW) parameterization on the mean tropical climate compared to other major model settings (convection, boundary layer turbulence, vertical and horizontal resolutions), and to pinpoint the physical mechanisms whereby this control manifests. Analyses focus on the spatial distribution and magnitude of the net SW radiation budget at the surface (SWnet_SFC), latent heat fluxes, and rainfall at the annual timescale. The model skill and sensitivity to the tested settings are quantified relative to observations and using an ensemble approach. Persistent biases include overestimated SWnet_SFC and too intense hydrological cycle. However, model skill is mainly controlled by SW parameterization, especially the magnitude of SWnet_SFC and rainfall and both the spatial distribution and magnitude of latent heat fluxes over ocean. On the other hand, the spatial distribution of continental rainfall (SWnet_SFC) is mainly influenced by convection parameterization and horizontal resolution (boundary layer parameterization and orography). Physical understanding of the control of SW parameterization is addressed by analyzing the thermal structure of the atmosphere and conducting sensitivity experiments to O3 absorption and SW scattering coefficient. SW parameterization shapes the stability of the atmosphere in two different ways according to whether surface is coupled to atmosphere or not, while O3 absorption has minor effects in our simulations. Over SST-prescribed regions, increasing the amount of SW absorption warms the atmosphere only because surface temperatures are fixed, resulting in increased atmospheric stability. Over land-atmosphere coupled regions, increasing SW absorption warms both atmospheric and surface temperatures, leading to a shift towards a warmer state and a more intense hydrological cycle. This turns in reversal model behavior between land and sea points, with the SW scheme that

  18. Abrupt transition from natural to anthropogenic aerosol radiative forcing: Observations at the ABC-Maldives Climate Observatory

    Science.gov (United States)

    Ramana, M. V.; Ramanathan, V.

    2006-10-01

    Using aerosol-radiation observations over the north Indian Ocean, we show how the monsoon transition from southwest to northeast flow gives rise to a similar transition in the direct aerosol radiative forcing from natural to anthropogenic forcing. These observations were taken at the newly built aerosol-radiation-climate observatory at the island of Hanimaadhoo (6.776°N, 73.183°E) in the Republic of Maldives. This observatory is established as a part of Project Atmospheric Brown Clouds (ABC) and is referred to as the ABC-Maldives Climate Observatory at Hanimaadhoo (ABC_MCOH). The transition from the southwest monsoon during October to the northeast monsoon flow during early November occurs abruptly over a period of few weeks over ABC-MCOH and reveals a dramatic contrast between the natural marine aerosols transported from the south Indian Ocean by the southwest monsoon and that of the polluted aerosols transported from the south and Southeast Asian region by the northeast monsoon. We document the change in the microphysical properties and the irradiance at the surface, to identify the human signature on aerosol radiative forcing. We first establish the precision of surface radiometric observations by comparing simultaneous observations using calibrated Kipp & Zonen and Eppley pyrheliometers and pyranometers for direct, diffuse and global solar radiation. We show that the direct, diffuse and global radiation can be measured within a precision of about 3 to 5 Wm-2. Furthermore, when we include the observed aerosol optical properties as input into the Monte Carlo Aerosol Cloud Radiation (MACR) model (developed by us using Indian Ocean Experiment data), the simulated fluxes agree with the observed direct, diffuse and global fluxes within the measurement accuracy. A steady southwest monsoon flow of about 5 to 7 ms-1 persists until middle of October which switches to an abrupt change in direction to northeast flow of similar speeds bringing in polluted air from south

  19. Parameterization of sea-salt optical properties and physics of the associated radiative forcing

    Science.gov (United States)

    Li, J.; Ma, X.; von Salzen, K.; Dobbie, S.

    2008-08-01

    The optical properties of sea-salt aerosol have been parameterized at shortwave and longwave wavelengths. The optical properties were parameterized in a simple functional form in terms of the ambient relative humidity based on Mie optical property calculations. The proposed parameterization is tested relative to Mie calculations and is found to be accurate to within a few percent. In the parameterization, the effects of the size distribution on the optical properties are accounted for in terms of effective radius of the sea-salt size distribution. This parameterization differs from previous works by being formulated directly with the wet sea-salt size distribution and, to our knowledge, this is the first published sea-salt parameterization to provide a parameterization for both shortwave and longwave wavelengths. We have used this parameterization in a set of idealized 1-D radiative transfer calculations to investigate the sensitivity of various attributes of sea-salt forcing, including the dependency on sea-salt column loading, effective variance, solar angle, and surface albedo. From these sensitivity tests, it is found that sea-salt forcings for both shortwave and longwave spectra are linearly related to the sea-salt loading for realistic values of loadings. The radiative forcing results illustrate that the shortwave forcing is an order of magnitude greater than the longwave forcing results and opposite in sign, for various loadings. Forcing sensitivity studies show that the influence of effective variance for sea-salt is minor; therefore, only one value of effective variance is used in the parameterization. The dependence of sea-salt forcing with solar zenith angle illustrates an interesting result that sea-salt can generate a positive top-of-the-atmosphere result (i.e. warming) when the solar zenith angle is relatively small (i.e. <30°). Finally, it is found that the surface albedo significantly affects the shortwave radiative forcing, with the forcing

  20. Hydrological and ecological implications of radiative forcing by dust in snow

    Science.gov (United States)

    Painter, T.; Bryant, A. C.; Deems, J. S.; Skiles, M.

    2012-12-01

    The runoff from the Colorado River supplies water to over 30 million people in seven US states and Mexico. Climate change projections suggest that this runoff will decrease in the next 50 years by 7-20% due to increases in evapotranspiration and decreases in the ratio of snowfall to rain. Such scenarios challenge the sustainability of the freshwater supply to the southwest US. Recent research however has shown that radiative forcing by dust in snow has been shortening snow cover duration by several weeks due to a 5-7-fold increase in dust loading relative to prior to the European-settlement of the western US in the mid-1800s. In the mountains of the Upper Colorado River, the absolute dust radiative forcing across the period ranges from 30 to 75 W m-2, in turn shortening snow cover duration by 21 to 51 days. Extended to the scale of the Upper Colorado River Basin, this impact has brought peak normalized runoff at Lee's Ferry, AZ (Lake Powell) more than three weeks earlier and reduced the total annual runoff by an average of ~5%. In this region, earlier snowmelt forced by dust radiative forcing impacts alpine vegetation by increasing synchronicity in phenology across the alpine landscape with increasingly earlier snowmelt. Whereas reduced dust load results in topographically-sensitive melt and loss of snow cover, the more spatially-uniform snowmelt from dust radiative forcing leads to synchronized growth and flowering across the landscape. Water managers in the Upper Colorado basin now seek detailed real-time knowledge of dust presence, radiative forcing, and its potential to accelerate snowmelt, as well as understanding its implications for water supply under current conditions and in a changed climate. Likewise, water stakeholder groups, water conservation districts, and state and federal agencies are discussing efforts to restabilize soil surfaces in the dust-emitting regions to mitigate impacts of dust on snowmelt and runoff. However, as these policy

  1. Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, S.; Bierwirth, E.; Wendisch, M. (Leipzig Inst. for Meteorology (LIM), Univ. of Leipzig, Leipzig (Germany)), e-mail: s.bauer@uni-leipzig.de; Esselborn, M.; Petzold, A.; Trautmann, T. (Deutsches Zentrum fur Luft- und Raumfahrt (DLR), Oberpfaffenhofen (Germany)); Macke, A. (Leibniz Inst. for Tropospheric Research (IfT) (Germany))

    2011-09-15

    Airborne measurements of upward solar spectral irradiances were performed during the second Saharan Mineral dUst experiMent (SAMUM-2) campaign based on the Cape Verde Islands. Additionally, airborne high resolution lidar measurements of vertical profiles of particle extinction coefficients were collected in parallel to the radiation data. Aerosol layers of Saharan dust, partly mixed with biomass-burning smoke, were probed. With corresponding radiative transfer simulations the single scattering albedo and the asymmetry parameter of the aerosol particles were derived although with high uncertainty. The broad-band aerosol solar radiative forcing at the top of atmosphere was calculated and examined as a function of the aerosol types. However, due to uncertainties in both the measurements and the calculations the chemical composition cannot be identified. In addition, a mostly measurement-based method to derive the broad-band aerosol solar radiative forcing was used. This approach revealed clear differences of broad-band net irradiances as a function of the aerosol optical depth. The data were used to identify different aerosol types from different origins. Higher portions of biomass-burning smoke lead to larger broad-band net irradiances

  2. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  3. Cirrus cloud radiative forcing on surface-level shortwave and longwave irradiances at regional and global scale

    Science.gov (United States)

    Dupont, J. C.; Haeffelin, M.; Long, C. N.

    2009-04-01

    Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle. According to satellite passive remote sensing high-altitude clouds cover as much as 40% of the earth's surface on average and can reach 70% of cloud cover over the Tropics. Hence, given their very large cloud cover, the relatively small instantaneous radiative effects of these cirrus clouds can engender a significant cumulative radiative forcing at the surface. Precise calculations of the cirrus cloud radiative forcing are obtained from the difference between measured radiative fluxes downwelling at the surface in the presence of cirrus clouds (broadband flux measurements) and computed clear sky references (parametric models with RMS error water vapor content obtained in studying the 4 observatories allows us to quantify the combined influence of aerosol optical thickness and integrated water vapor on CRFSW* : 10 to 20 % CRFSW* range for turbid and pristine atmosphere. Moreover, the sensitivity of the CRFLW to both cloud emissivity and cloud temperature (noted CRFLW*) is established and the influence of integrated water vapor on CRFLW* quantified: partial infrared opacity for arctic site (dry atmosphere) and quasi-total infrared opacity for tropical site (wet atmosphere), respectively 20% and 97% of opacity. Cirrus cloud radiative forcing parameterizations are hence developed starting from the ground-based collocated measurements. They relate CRFSW or CRFLW to cirrus cloud macrophysical properties, atmospheric humidity, aerosol content and solar zenith angle. Satellite measurements are used next as input parameters to the cirrus cloud radiative forcing parameterizations to calculate CRFSW and CRFLW at global scale. CALIOP provide aerosol and cirrus cloud properties and AIRS the integrated water vapor. Meridian distribution are shown and discussed. They reveal a positive cirrus cloud net radiative effect (CRFSW + CRFLW) from

  4. A toy model linking atmospheric thermal radiation and sea ice growth

    Science.gov (United States)

    Thorndike, A. S.

    1992-01-01

    A simplified analytical model of sea ice growth is presented where the atmosphere is in thermal radiative equilibrium with the ice. This makes the downwelling longwave radiation reaching the ice surface an internal variable rather than a specified forcing. Analytical results demonstrate how the ice state depends on properties of the ice and on the externally specified climate.

  5. The NIAID Radiation Countermeasures Program business model.

    Science.gov (United States)

    Hafer, Nathaniel; Maidment, Bert W; Hatchett, Richard J

    2010-12-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Radiation/Nuclear Medical Countermeasures Development Program has developed an integrated approach to providing the resources and expertise required for the research, discovery, and development of radiation/nuclear medical countermeasures (MCMs). These resources and services lower the opportunity costs and reduce the barriers to entry for companies interested in working in this area and accelerate translational progress by providing goal-oriented stewardship of promising projects. In many ways, the radiation countermeasures program functions as a "virtual pharmaceutical firm," coordinating the early and mid-stage development of a wide array of radiation/nuclear MCMs. This commentary describes the radiation countermeasures program and discusses a novel business model that has facilitated product development partnerships between the federal government and academic investigators and biopharmaceutical companies.

  6. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rudong; Wang, Hailong; Qian, Yun; Rasch, Philip J.; Easter, Richard C.; Ma, Po-Lun; Singh, Balwinder; Huang, Jianping; Fu, Qiang

    2015-01-01

    the HTP, this contribution is extremely sensitive to changes in the local emissions. Lastly, we show that the annual mean radiative forcing (0.42 W m-2) due to BC in snow outweighs the BC dimming effect-0.3 W m-2)at the surface over the HTP, although the mean BC-in- snow forcing is likely overestimated. We find strong seasonal and sub -region variation with a peak value of 5W m-2 in the spring over Northwest Plateau. The annual mean dust-in-snow forcing is comparable to that of BC over the entire HTP but significantly larger than BC over the North east Plateau. Such a large forcing of BC in snow is sufficient to cause earlier snow melting and potentially contribute to the acceleration of glacier retreat

  7. Topography and Radiative Forcing Patterns on Glaciers in the Karakoram Himalaya

    Science.gov (United States)

    Dobreva, I. D.; Bishop, M. P.; Liu, J. C.; Liang, D.

    2015-12-01

    Glaciers in the western Himalaya exhibit significant spatial variations in morphology and dynamics. Climate, topography and debris cover variations are thought to significantly affect glacier fluctuations and glacier sensitivity to climate change, although the role of topography and radiative forcing have not been adequately characterized and related to glacier fluctuations and dynamics. Consequently, we examined the glaciers in the Karakoram Himalaya, as they exhibit high spatial variability in glacier fluctuation rates and ice dynamics including flow velocity and surging. Specifically, we wanted to examine the relationships between these glacier characteristics and temporal patterns of surface irradiance over the ablation season. To accomplish this, we developed and used a rigorous GIS-based solar radiative transfer model that accounts for the direct and diffuse-skylight irradiance components. The model accounts for multiple topographic effects on the magnitude of irradiance reaching glacier surfaces. We specifically used the ASTER GDEM digital elevation model for irradiance simulations. We then examined temporal patterns of irradiance at the grid-cell level to identify the dominant patterns that were used to train a 3-layer artificial neural network. Our results demonstrate that there are unique spatial and temporal patterns associated with downwasting and surging glaciers, and that these patterns partially account for the spatial distribution of advancing and retreating glaciers. Lower-altitude terminus regions of surging glaciers exhibited relatively low surface irradiance values that decreased in magnitude with time, demonstrating that high-velocity surging glaciers facilitate relief production and exhibit steeper surface irradiance gradients with altitude. Collectively, these results demonstrate the important role that local and regional topography play in governing climate-glacier dynamics in the Himalaya.

  8. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-08-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of PAN, resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia. Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways. The total global net RF for NMVOCs is estimated as 0.0277 W m−2 (~1.8% of CO2 RF since the preindustrial. The 100 yr and 20 yr global warming potentials (GWP100, GWP20 are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and −1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to differences among models in ozone, methane, and sulfate sensitivities, and the climate forcings included in each estimate. Accounting for a~fuller set of RF contributions may change the relative magnitude of each

  9. Avoiding numerical pitfalls in social force models

    Science.gov (United States)

    Köster, Gerta; Treml, Franz; Gödel, Marion

    2013-06-01

    The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.

  10. Kinetic Study of Radiation-reaction-limited Particle Acceleration During the Relaxation of Unstable Force-free Equilibria

    Science.gov (United States)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D.

    2016-09-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.

  11. An exploration of ozone changes and their radiative forcing prior to the chlorofluorocarbon era

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2002-01-01

    Full Text Available Using historical observations and model simulations, we investigate ozone trends prior to the mid-1970s onset of halogen-induced ozone depletion. Though measurements are quite limited, an analysis based on multiple, independent data sets (direct and indirect provides better constraints than any individual set of observations. We find that three data sets support an apparent long-term stratospheric ozone trend of -7.2 ± 2.3 DU during 1957-1975, which modeling attributes primarily to water vapor increases. The results suggest that 20th century stratospheric ozone depletion may have been roughly 50% more than is generally supposed. Similarly, three data sets support tropospheric ozone increases over polluted Northern Hemisphere continental regions of 8.2 ± 2.1 DU during this period, which are mutually consistent with the stratospheric trends. As with paleoclimate data, which is also based on indirect proxies and/or limited spatial coverage, these results must be interpreted with caution. However, they provide the most thorough estimates presently available of ozone changes prior to the coincident onset of satellite data and halogen dominated ozone changes. If these apparent trends were real, the radiative forcing by stratospheric ozone since the 1950s would then have been -0.15 ± 0.05 W/m2, and -0.2 W/m2 since the preindustrial. For tropospheric ozone, it would have been 0.38 ± 0.10 W/m2 since the late 1950s. Combined with even a very conservative estimate of tropospheric ozone forcing prior to that time, this would be larger than current estimates since 1850 which are derived from models that are even less well constrained. These calculations demonstrate the importance of gaining a better understanding of historical ozone changes.

  12. Optical observations of acoustical radiation force effects on individual air bubbles

    NARCIS (Netherlands)

    Palanchon, Peggy; Tortoli, Piero; Bouakaz, Ayache; Versluis, Andreas Michel; de Jong, N.

    2005-01-01

    Previous studies dealing with contrast agent microbubbles have demonstrated that ultrasound (US) can significantly influence the movement of microbubbles. In this paper, we investigated the influence of the acoustic radiation force on individual air bubbles using high-speed photography. We emphasize

  13. Heat transfer in a gray tube with forced convection, internal radiation and axial wall conduction

    Science.gov (United States)

    Chung, B. T. F.; Thompson, J. E.

    1983-01-01

    A method of successive approximations is employed to solve the problem of heat transfer to a transparent gas flowing through a radiating-conducting tube with turbulent forced convection between the tube wall and the gas, and with energy generation in the wall. Emphasis is given to the effect of emissivity of the wall to the tube and gas temperature profiles.

  14. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  15. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    Science.gov (United States)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  16. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    Science.gov (United States)

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties.

  17. Active Path Selection of Fluid Microcapsules in Artificial Blood Vessel by Acoustic Radiation Force

    Science.gov (United States)

    Masuda, Kohji; Muramatsu, Yusuke; Ueda, Sawami; Nakamoto, Ryusuke; Nakayashiki, Yusuke; Ishihara, Ken

    2009-07-01

    Micrometer-sized microcapsules collapse upon exposure to ultrasound. Use of this phenomenon for a drug delivery system (DDS), not only for local delivery of medication but also for gene therapy, should be possible. However, enhancing the efficiency of medication is limited because capsules in suspension diffuse in the human body after injection, since the motion of capsules in blood flow cannot be controlled. To control the behavior of microcapsules, acoustic radiation force was introduced. We detected local changes in microcapsule density by producing acoustic radiation force in an artificial blood vessel. Furthermore, we theoretically estimated the conditions required for active path selection of capsules at a bifurcation point in the artificial blood vessel. We observed the difference in capsule density at both in the bifurcation point and in alternative paths downstream of the bifurcation point for different acoustic radiation forces. Comparing the experimental results with those obtained theoretically, the conditions for active path selection were calculated from the acoustic radiation force and fluid resistance of the capsules. The possibility of controlling capsule flow towards a specific point in a blood vessel was demonstrated.

  18. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    Science.gov (United States)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    Aerosols are a major atmospheric variable which perturb the Earth-atmosphere radiation balance by absorbing and scattering the solar and terrestrial radiation. Aerosols are produced by natural and anthropogenic processes. The presence of different types of aerosol over a location and aerosols transported from long-range can give rise to different mixing states because of aging and interaction among the different aerosol species. Knowledge of the mixing state of aerosols is important for an accurate assessment of aerosols in climate forcing, as assumptions regarding the mixing state of aerosol and its effect on optical properties can give rise to uncertainties in modeling their direct and indirect effects [1]. Seasonal variations in mixing states of aerosols over an urban (Kanpur) and a rural location (Gandhi College) in the Indo-Gangetic Plain (IGP) are determined using the measured and modeled aerosol optical properties, and the impact of aerosol mixing state on aerosol radiative forcing are investigated. IGP is one of the most populated and polluted river basins in the world, rich in fertile lands and agricultural production. Kanpur is an urban, industrial and densely populated city, and has several large/small scale industries and vehicles, while Gandhi College in IGP is a rural village, located southeast of Kanpur. Aerosol optical properties obtained from Aerosol Robotic Network sun/sky radiometers [2] over these two environmentally distinct locations in Indo-Gangetic Plain are used in the study, along with aerosol vertical profiles obtained from CALIPSO (Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations. Probable mixing state of aerosols is determined utilizing the aerosol optical properties viz., aerosol optical depth, single scattering albedo and asymmetry parameter. The coated-sphere Mie calculation requires the refractive index of core and shell species, and the radius of core and shell particles. Core to shell radius

  19. Evapo-transpiration, role of aerosol radiative forcing: a study over a dense canopy

    Science.gov (United States)

    Bhanage, VInayak; Latha, R.; Murthy, B. S.

    2016-05-01

    Current study uses Satellite and Reanalysis data to quantify the effect of aerosol on ET at various space and time scales. All the data are obtained for the period June 2008 to May 2009 over Dibrugarh district, Assam, Indi a where NDVI has limited change of through the year. Monthly Evapo-Transpiration (ET, cumulative), Normalized Difference Vegetation Index (NDVI) and Aerosol Optical Depth (AOD) are retrieved from satellite images of Terra-MODIS. The AOD data are evaluated against in-situ observations. Maximum values of AOD are observed in the pre-monsoon season while minimum AOD values are perceived in October and November. Aerosol Radiative Forcing (ARF) is calculated by using the MERRA data sets of `clean-clear radiation' and `clear-radiation' at surface over the study area. Maximum aerosol radiative forcing is observed during the pre-monsoon season; this is in tune with ground observations. Strong positive correlation (r=0.75) between ET and NDVI is observed and it is found that the dense vegetative surfaces exhibit higher rate of evapo-transpiration. A strong positive correlation (r= -0.85) between ARF at surface and AOD is observed with radiative forcing efficiency of 35 W/m2. A statistical regression equation of ET a s a function of NDVI and AOD i.e. ET = 0.25 + (-84.27) * AOD + (131.51) * NDVI, is obtained that shows a correlation of 0.824.

  20. Modeling Impaired Hippocampal Neurogenesis after Radiation Exposure.

    Science.gov (United States)

    Cacao, Eliedonna; Cucinotta, Francis A

    2016-03-01

    Radiation impairment of neurogenesis in the hippocampal dentate gyrus is one of several factors associated with cognitive detriments after treatment of brain cancers in children and adults with radiation therapy. Mouse models have been used to study radiation-induced changes in neurogenesis, however the models are limited in the number of doses, dose fractions, age and time after exposure conditions that have been studied. The purpose of this study is to develop a novel predictive mathematical model of radiation-induced changes to neurogenesis using a system of nonlinear ordinary differential equations (ODEs) to represent the time, age and dose-dependent changes to several cell populations participating in neurogenesis as reported in mouse experiments exposed to low-LET radiation. We considered four compartments to model hippocampal neurogenesis and, consequently, the effects of radiation treatment in altering neurogenesis: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN) and (4) glioblasts (GB). Because neurogenesis is decreasing with increasing mouse age, a description of the age-related dynamics of hippocampal neurogenesis is considered in the model, which is shown to be an important factor in comparisons to experimental data. A key feature of the model is the description of negative feedback regulation on early and late neuronal proliferation after radiation exposure. The model is augmented with parametric descriptions of the dose and time after irradiation dependences of activation of microglial cells and a possible shift of NSC proliferation from neurogenesis to gliogenesis reported at higher doses (∼10 Gy). Predictions for dose-fractionation regimes and for different mouse ages, and prospects for future work are then discussed.

  1. Direct and semi-direct radiative forcing of smoke aerosols over clouds

    Science.gov (United States)

    Wilcox, E. M.

    2012-01-01

    Observations from Earth observing satellites indicate that dark carbonaceous aerosols that absorb solar radiation are widespread in the tropics and subtropics. When these aerosols mix with clouds, there is generally a reduction of cloudiness owing to absorption of solar energy in the aerosol layer. Over the subtropical South Atlantic Ocean, where smoke from savannah burning in southern Africa resides above a persistent deck of marine stratocumulus clouds, radiative heating of the smoke layer leads to a thickening of the cloud layer. Here, satellite observations of the albedo of overcast scenes of 25 km2 size or larger are combined with additional satellite observations of clouds and aerosols to estimate the top-of-atmosphere direct radiative forcing attributable to presence of dark aerosol above bright cloud, and the negative semi-direct forcing attributable to the thickening of the cloud layer. The average positive direct radiative forcing by smoke over an overcast scene is 9.2±6.6 W m-2 for cases with an unambiguous signal of absorbing aerosol over cloud in passive ultraviolet remote sensing observations. However, cloud liquid water path is enhanced by 16.3±7.7 g m-2 across the range of values for sea surface temperature for cases of smoke over cloud. The negative radiative forcing associated with this semi-direct effect of smoke over clouds is estimated to be -5.9±3.5 W m-2. Therefore, the cooling associated with the semi-direct cloud thickening effect compensates for greater than 60 % of the direct radiative effect. Accounting for the frequency of occurrence of significant absorbing aerosol above overcast scenes leads to an estimate of the average direct forcing of 1.0±0.7 W m-2 contributed by these scenes averaged over the subtropical southeast Atlantic Ocean during austral winter. The regional average of the negative semi-direct forcing is -0.7±0.4 W m-2. Therefore, smoke aerosols overlaying the decks of overcast marine stratocumulus clouds considered

  2. Dark Radiation Confronting LHC in Z' Models

    CERN Document Server

    Solaguren-Beascoa, A

    2012-01-01

    Recent cosmological data favour additional relativistic degrees of freedom beyond the three active neutrinos and photons, often referred to as "dark radiation". Extensions of the SM involving TeV-scale Z' gauge bosons generically contain superweakly interacting light right-handed neutrinos which can constitute this dark radiation. In this letter we confront the requirement on the parameters of the E6 Z' models to account for the present evidence of dark radiation with the already existing constraints from searches for new neutral gauge bosons at LHC7.

  3. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  4. Numerical Simulations of Turbulent, Molecular Clouds Regulated by Radiation Feedback Forces I: Star Formation Rate and Efficiency

    CERN Document Server

    Raskutti, Sudhir; Skinner, M Aaron

    2016-01-01

    Radiation feedback from stellar clusters is expected to play a key role in setting the rate and efficiency of star formation in giant molecular clouds (GMCs). To investigate how radiation forces influence realistic turbulent systems, we have conducted a series of numerical simulations employing the {\\it Hyperion} radiation hydrodynamics solver, considering the regime that is optically thick to ultraviolet (UV) and optically thin to infrared (IR) radiation. Our model clouds cover initial surface densities between $\\Sigma_{\\rm cl,0} \\sim 10-300~M_{\\odot}~{\\rm pc^{-2}}$, with varying initial turbulence. We follow them through turbulent, self-gravitating collapse, formation of star clusters, and cloud dispersal by stellar radiation. All our models display a lognormal distribution of gas surface density $\\Sigma$; for an initial virial parameter $\\alpha_{\\rm vir,0} = 2$, the lognormal standard deviation is $\\sigma_{\\rm ln \\Sigma} = 1-1.5$ and the star formation rate coefficient $\\varepsilon_{\\rm ff,\\bar\\rho} = 0.3-...

  5. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles

    Science.gov (United States)

    Bauer, E.; Ganopolski, A.

    2014-07-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate and dust deposition records suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key elements controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these elements are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters can be reasonably constrained, the simulated dust DRF spans a~wide uncertainty range related to the strong nonlinearity of the Earth system. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several watts per square metre in regions close to major dust sources and negligible values elsewhere. In the case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In the case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods, which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters, dust DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  6. Sensitivity simulations with direct radiative forcing by aeolian dust during glacial cycles

    Science.gov (United States)

    Bauer, E.; Ganopolski, A.

    2014-01-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate variables and dust deposits suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key factors controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these factors are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters are reasonably constrained by use of these studies, the simulated dust DRF spans a wide uncertainty range related to nonlinear dependencies. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several W m-2 in regions close to major dust sources and negligible values elsewhere. In case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters the DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  7. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  8. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    Science.gov (United States)

    Li, Xiaoqiong; Ting, Mingfang

    2016-12-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  9. Canonical Ensemble Model for Black Hole Radiation

    Indian Academy of Sciences (India)

    Jingyi Zhang

    2014-09-01

    In this paper, a canonical ensemble model for the black hole quantum tunnelling radiation is introduced. In this model the probability distribution function corresponding to the emission shell is calculated to second order. The formula of pressure and internal energy of the thermal system is modified, and the fundamental equation of thermodynamics is also discussed.

  10. Aerosol radiative forcing during African desert dust events (2005–2010 over Southeastern Spain

    Directory of Open Access Journals (Sweden)

    A. Valenzuela

    2012-11-01

    Full Text Available The daily (24 h averages of the aerosol radiative forcing (ARF at the surface and the top of the atmosphere (TOA were calculated during desert dust events over Granada (southeastern Spain from 2005 to 2010. A radiative transfer model (SBDART was utilized to simulate the solar irradiance values (0.31–2.8 μm at the surface and TOA, using as input aerosol properties retrieved from CIMEL sun photometer measurements via an inversion methodology that uses the sky radiance measurements in principal plane configuration and a spheroid particle shape approximation. This inversion methodology was checked by means of simulated data from aerosol models, and the derived aerosol properties were satisfactorily compared against well-known AERONET products. Good agreement was found over a common spectral interval (0.2–4.0 μm between the simulated SBDART global irradiances at surface and those provided by AERONET. In addition, simulated SBDART solar global irradiances at the surface have been successfully validated against CM-11 pyranometer measurements. The comparison indicates that the radiative transfer model slightly overestimates (mean bias of 3% the experimental solar global irradiance. These results show that the aerosol optical properties used to estimate ARF represent appropriately the aerosol properties observed during desert dust outbreak over the study area. The ARF mean monthly values computed during desert dust events ranged from −13 ± 8 W m−2 to −34 ± 15 W m−2 at surface, from −4 ± 3 W m−2 to −13 ± 7 W m−2 at TOA and from +6 ± 4 to +21 ± 12 W m−2 in the atmosphere. We have checked if the differences found in aerosol optical properties among desert dust sectors translate to differences in ARF. The mean ARF at surface (TOA were −20 ± 12 (−5 ± 5 W m−2, −21 ± 9 (−7 ± 5 W m−2 and −18 ± 9 (−6 ± 5 W m−2 for sector A

  11. Aerosol radiative forcing during African desert dust events (2005-2010) over Southeastern Spain

    Science.gov (United States)

    Valenzuela, A.; Olmo, F. J.; Lyamani, H.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.

    2012-11-01

    The daily (24 h) averages of the aerosol radiative forcing (ARF) at the surface and the top of the atmosphere (TOA) were calculated during desert dust events over Granada (southeastern Spain) from 2005 to 2010. A radiative transfer model (SBDART) was utilized to simulate the solar irradiance values (0.31-2.8 μm) at the surface and TOA, using as input aerosol properties retrieved from CIMEL sun photometer measurements via an inversion methodology that uses the sky radiance measurements in principal plane configuration and a spheroid particle shape approximation. This inversion methodology was checked by means of simulated data from aerosol models, and the derived aerosol properties were satisfactorily compared against well-known AERONET products. Good agreement was found over a common spectral interval (0.2-4.0 μm) between the simulated SBDART global irradiances at surface and those provided by AERONET. In addition, simulated SBDART solar global irradiances at the surface have been successfully validated against CM-11 pyranometer measurements. The comparison indicates that the radiative transfer model slightly overestimates (mean bias of 3%) the experimental solar global irradiance. These results show that the aerosol optical properties used to estimate ARF represent appropriately the aerosol properties observed during desert dust outbreak over the study area. The ARF mean monthly values computed during desert dust events ranged from -13 ± 8 W m-2 to -34 ± 15 W m-2 at surface, from -4 ± 3 W m-2 to -13 ± 7 W m-2 at TOA and from +6 ± 4 to +21 ± 12 W m-2 in the atmosphere. We have checked if the differences found in aerosol optical properties among desert dust sectors translate to differences in ARF. The mean ARF at surface (TOA) were -20 ± 12 (-5 ± 5) W m-2, -21 ± 9 (-7 ± 5) W m-2 and -18 ± 9 (-6 ± 5) W m-2 for sector A (northern Morocco; northwestern Algeria), sector B (western Sahara, northwestern Mauritania and southwestern Algeria), and sector C

  12. Response of Colorado river runoff to dust radiative forcing in snow

    Science.gov (United States)

    Painter, T.H.; Deems, J.S.; Belnap, J.; Hamlet, A.F.; Landry, C.C.; Udall, B.

    2010-01-01

    The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Hereweuse the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ???5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.

  13. Infrared radiation models for atmospheric ozone

    Science.gov (United States)

    Kratz, David P.; Ces, Robert D.

    1988-01-01

    A hierarchy of line-by-line, narrow-band, and broadband infrared radiation models are discussed for ozone, a radiatively important atmospheric trace gas. It is shown that the narrow-band (Malkmus) model is in near-precise agreement with the line-by-line model, thus providing a means of testing narrow-band Curtis-Godson scaling, and it is found that this scaling procedure leads to errors in atmospheric fluxes of up to 10 percent. Moreover, this is a direct consequence of the altitude dependence of the ozone mixing ratio. Somewhat greater flux errors arise with use of the broadband model, due to both a lesser accuracy of the broadband scaling procedure and to inherent errors within the broadband model, despite the fact that this model has been tuned to the line-by-line model.

  14. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia

    Science.gov (United States)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, L. Ruby

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF, including direct, semi-direct and indirect forcing) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at many sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korea, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 μm or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan, which indicates the possible influence of pollutant transport from polluted area of East Asia. The model underestimates SO42- and organic carbon (OC) concentrations over mainland China by about a factor of 2, while overestimates NO3- concentration in autumn along the Yangtze River. The model captures the dust events at the Zhangye site in the semi-arid region of China. AOD is high over Southwest and Central China in winter and spring and over North China in winter, spring and summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over adjacent oceans at the top of atmosphere (TOA), 5-30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO42-, NO3- and NH4

  15. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  16. Developing Snow Model Forcing Data From WRF Model Output to Aid in Water Resource Forecasting

    Science.gov (United States)

    Havens, S.; Marks, D. G.; Watson, K. A.; Masarik, M.; Flores, A. N.; Kormos, P.; Hedrick, A. R.

    2015-12-01

    Traditional operational modeling tools used by water managers in the west are challenged by more frequently occurring uncharacteristic stream flow patterns caused by climate change. Water managers are now turning to new models based on the physical processes within a watershed to combat the increasing number of events that do not follow the historical patterns. The USDA-ARS has provided near real time snow water equivalent (SWE) maps using iSnobal since WY2012 for the Boise River Basin in southwest Idaho and since WY2013 for the Tuolumne Basin in California that feeds the Hetch Hetchy reservoir. The goal of these projects is to not only provide current snowpack estimates but to use the Weather Research and Forecasting (WRF) model to drive iSnobal in order to produce a forecasted stream flow when coupled to a hydrology model. The first step is to develop methods on how to create snow model forcing data from WRF outputs. Using a reanalysis 1km WRF dataset from WY2009 over the Boise River Basin, WRF model results like surface air temperature, relative humidity, wind, precipitation, cloud cover, and incoming long wave radiation must be downscaled for use in iSnobal. iSnobal results forced with WRF output are validated at point locations throughout the basin, as well as compared with iSnobal results forced with traditional weather station data. The presentation will explore the differences in forcing data derived from WRF outputs and weather stations and how this affects the snowpack distribution.

  17. Force 2025 and Beyond Strategic Force Design Analytic Model

    Science.gov (United States)

    2017-01-12

    list and start and end times of each task. Table 1 shows the basic data needed for our example model in the AMD unit and mission space. Table 1... basically two parts; an objective (or functional) hierarchy linking the overall objective through sub-objectives (or tasks) to attributes (or required...used with any popular algebraic modeling and solver software, including packages such as pyomo in Python or lpSolve in R using the lp_solve solver

  18. Direct Radiative Forcing from Saharan Mineral Dust Layers from In-situ Measurements and Satellite Retrievals

    Science.gov (United States)

    Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.

    2016-12-01

    Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.

  19. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere

    Science.gov (United States)

    Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.

    2017-07-01

    Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.

  20. Atomic force microscopy of model lipid membranes.

    Science.gov (United States)

    Morandat, Sandrine; Azouzi, Slim; Beauvais, Estelle; Mastouri, Amira; El Kirat, Karim

    2013-02-01

    Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.

  1. Thermal scale modeling of radiation-conduction-convection systems.

    Science.gov (United States)

    Shannon, R. L.

    1972-01-01

    Investigation of thermal scale modeling applied to radiation-conduction-convection systems with particular emphasis on the spacecraft cabin atmosphere/cabin wall thermal interface. The 'modified material preservation,' 'temperature preservation,' 'scaling compromises,' and 'Nusselt number preservation' scale modeling techniques and their inherent limitations and problem areas are described. The compromised scaling techniques of mass flux preservation and heat transfer coefficient preservation show promise of giving adequate thermal similitude while preserving both gas and temperature in the scale model. The use of these compromised scaling techniques was experimentally demonstrated in tests of full scale and 1/4 scale models. Correlation of test results for free and forced convection under various test conditions shows the effectiveness of these scaling techniques. It is concluded that either mass flux or heat transfer coefficient preservation may result in adequate thermal similitude depending on the system to be modeled. Heat transfer coefficient preservation should give good thermal similitude for manned spacecraft scale modeling applications.

  2. Cloud and Radiation Processes Simulated by a Coupled Atmosphere-Ocean Model

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; DING Yihui; XU Ying

    2007-01-01

    Using NCC/IAP T63 coupled atmosphere-ocean general circulation model (AOGCM), two 20-yr integrations were processed, and their ability to simulate cloud and radiation was analysed in detail. The results show that the model can simulate the basic distribution of cloud cover, and however, obvious differences still exist compared with ISCCP satellite data and ERA reanalysis data. The simulated cloud cover is less in general, especially the abnormal low values in some regions of ocean. By improving the cloud cover scheme,simulated cloud cover in the eastern Pacific and Atlantic, summer hemisphere's oceans from subtropical to mid-latitude is considerably improved. But in the tropical Indian Ocean and West Pacific the cloud cover difference is still evident, mainly due to the deficiency of high cloud simulation in these regions resulting from deep cumulus convection. In terms of the analysis on radiation and cloud radiative forcing, we find that simulation on long wave radiation is better than short wave radiation. The simulation error of short wave radiation is caused mostly by the simulation difference in short wave radiative forcing, sea ice, and snow cover, and also by not involving aerosol's effect. The simulation error of long wave radiation is mainly resulting from deficiency in simulating cloud cover and underlying surface temperature. Corresponding to improvement of cloud cover, the simulated radiation (especially short wave radiation) in eastern oceans,summer hemisphere's oceans from subtropical to mid-latitude is remarkably improved. This also bring sobvious improvement to net radiation in these regions.

  3. A study of longwave radiation codes for climate studies: Validation with ARM observations and tests in general circulation models. Final report, September 15, 1990--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, R.G.; Baer, F.

    1998-09-01

    DOE has launched a major initiative -- the Atmospheric Radiation Measurements (ARM) Program -- directed at improving the parameterization of the physics governing cloud and radiative processes in general circulation models (GCMs). One specific goal of ARM is to improve the treatment of radiative transfer in GCMs under clear-sky, general overcast and broken cloud conditions. In 1990, the authors proposed to contribute to this goal by attacking major problems connected with one of the dominant radiation components of the problem -- longwave radiation. In particular, their long-term research goals are to: develop an optimum longwave radiation model for use in GCMs that has been calibrated with state-of-the-art observations, assess the impact of the longwave radiative forcing in a GCM, determine the sensitivity of a GCM to the radiative model used in it, and determine how the longwave radiative forcing contributes relatively when compared to shortwave radiative forcing, sensible heating, thermal advection and expansion.

  4. Tailored long range forces on polarizable particles by collective scattering of broadband radiation

    Science.gov (United States)

    Holzmann, D.; Ritsch, H.

    2016-10-01

    Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds.

  5. Modeling the radiation pattern of LEDs.

    Science.gov (United States)

    Moreno, Ivan; Sun, Ching-Cherng

    2008-02-01

    Light-emitting diodes (LEDs) come in many varieties and with a wide range of radiation patterns. We propose a general, simple but accurate analytic representation for the radiation pattern of the light emitted from an LED. To accurately render both the angular intensity distribution and the irradiance spatial pattern, a simple phenomenological model takes into account the emitting surfaces (chip, chip array, or phosphor surface), and the light redirected by both the reflecting cup and the encapsulating lens. Mathematically, the pattern is described as the sum of a maximum of two or three Gaussian or cosine-power functions. The resulting equation is widely applicable for any kind of LED of practical interest. We accurately model a wide variety of radiation patterns from several world-class manufacturers.

  6. Identification of impact force acting on composite laminated plates using the radiated sound measured with microphones

    Science.gov (United States)

    Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao

    2017-09-01

    Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.

  7. Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980

    Science.gov (United States)

    Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.

    2017-03-01

    Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.

  8. Fracture model of radiation blistering

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, K.; Higashida, Y.

    1979-06-01

    The formation process of blisters is interpreted by a fracture model on the basis of the stress fields around a lenticular bubble calculated in a previous paper. This model implicitly presumes a microcrack nucleated at a depth near the projected range of the ions. Two factors are separated theoretically to explain the blister formation: One is a geometrical factor which depends only on the ratio of size to depth, from a free surface, and the other factor is proportional to the square of the ratio between the internal gas pressure of the bubble to plastic yield stress of the target materials, depending entirely on the physical and chemical properties of the materials and gas atoms. The relation between the blister diameter and the cover thickness must be basically linear as expected from the first factor, but is modulated by the second factor, giving a slight departure from linearity as observed by experiment. The ratio of the gas pressure to the yield stress must be 0.02--0.2 in magnitude and depends on the ion energy and the target materials. This value leads to an estimation that the amount of gas atoms contained in the blister is about 10% of the injected ions. Griffith's criterion for the crack propagation in the subsurface layer with taking into account of ductility of the materials near the crack tip was derived, and showed that the estimated internal pressure of the blister is far smaller than the necessary pressure to satisfy the criterion. The objections against the gas-pressure model were criticized on the basis of the present model.

  9. Do radiative feedbacks depend on the structure and type of climate forcing, or only on the spatial pattern of surface temperature change?

    Science.gov (United States)

    Haugstad, A.; Battisti, D. S.; Armour, K.

    2016-12-01

    Earth's climate sensitivity depends critically on the strength of radiative feedbacks linking surface warming to changes in top-of-atmosphere (TOA) radiation. Many studies use a simplistic idea of radiative feedbacks, either by treating them as global mean quantities, or by assuming they can be defined uniquely by geographic location and thus that TOA radiative response depends only on local surface warming. For example, a uniform increase in sea-surface temperature has been widely used as a surrogate for global warming (e.g., Cess et al 1990 and the CMIP 'aqua4k' simulations), with the assumption that this produces the same radiative feedbacks as those arising from a doubling of carbon dioxide - even though the spatial patterns of warming differ. However, evidence suggests that these assumptions are not valid, and local feedbacks may be integrally dependent on the structure of warming or type of climate forcing applied (Rose et al 2014). This study thus investigates the following questions: to what extent do local feedbacks depend on the structure and type of forcing applied? And, to what extent do they depend on the pattern of surface temperature change induced by that forcing? Using an idealized framework of an aquaplanet atmosphere-only model, we show that radiative feedbacks are indeed dependent on the large scale structure of warming and type of forcing applied. For example, the climate responds very differently to two forcings of equal global magnitude but applied in different global regions; the pattern of local feedbacks arising from uniform warming are not the same as that arising from polar amplified warming; and the same local feedbacks can be induced by distinct forcing patterns, provided that they produce the same pattern of surface temperature change. These findings suggest that the so-called `efficacies' of climate forcings can be understood simply in terms of how local feedbacks depend on the temperature patterns they induce.

  10. Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum

    Science.gov (United States)

    Heyn, Irene; Block, Karoline; Mülmenstädt, Johannes; Gryspeerdt, Edward; Kühne, Philipp; Salzmann, Marc; Quaas, Johannes

    2017-01-01

    In its fifth assessment report (AR5), the Intergovernmental Panel on Climate Change provides a best estimate of the effective radiative forcing (ERF) due to anthropogenic aerosol at -0.9 W m-2. This value is considerably weaker than the estimate of -1.2 W m-2 in AR4. A part of the difference can be explained by an offset of +0.2 W m-2 which AR5 added to all published estimates that only considered the solar spectrum, in order to account for adjustments in the terrestrial spectrum. We find that, in the CMIP5 multimodel median, the ERF in the terrestrial spectrum is small, unless microphysical effects on ice- and mixed-phase clouds are parameterized. In the latter case it is large but accompanied by a very strong ERF in the solar spectrum. The total adjustments can be separated into microphysical adjustments (aerosol "effects") and thermodynamic adjustments. Using a kernel technique, we quantify the latter and find that the rapid thermodynamic adjustments of water vapor and temperature profiles are small. Observation-based constraints on these model results are urgently needed.

  11. PORTER S FIVE FORCES MODEL SCOTT MORTON S FIVE FORCES MODEL BAKOS TREACY MODEL ANALYZES STRATEGIC INFORMATION SYSTEMS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Indra Gamayanto

    2004-01-01

    Full Text Available Wollongong City Council (WCC is one of the most progressive and innovative local government organizations in Australia. Wollongong City Council use Information Technology to gain the competitive advantage and to face a global economy in the future. Porter's Five Force model is one of the models that can be using at Wollongong City Council because porter's five Forces model has strength in relationship between buyer and suppliers (Bargaining power of suppliers and bargaining power of buyers. Other model such as Scott Morton's Five Forces model has strength to analyze the social impact factor, so to gain competitive advantage in the future and have a good IT/IS strategic planning; this model can be use also. Bakos & Treacy model almost the same as Porter's model but Bakos & Treacy model can also be applying into Wollongong City Council to improve the capability in Transforming organization, efficiency, and effectiveness.

  12. Status of Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-01-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EDP) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii.

  13. Computation of the acoustic radiation force using the finite-difference time-domain method.

    Science.gov (United States)

    Cai, Feiyan; Meng, Long; Jiang, Chunxiang; Pan, Yu; Zheng, Hairong

    2010-10-01

    The computational details related to calculating the acoustic radiation force on an object using a 2-D grid finite-difference time-domain method (FDTD) are presented. The method is based on propagating the stress and velocity fields through the grid and determining the energy flow with and without the object. The axial and radial acoustic radiation forces predicted by FDTD method are in excellent agreement with the results obtained by analytical evaluation of the scattering method. In particular, the results indicate that it is possible to trap the steel cylinder in the radial direction by optimizing the width of Gaussian source and the operation frequency. As the sizes of the relating objects are smaller than or comparable to wavelength, the algorithm presented here can be easily extended to 3-D and include torque computation algorithms, thus providing a highly flexible and universally usable computation engine.

  14. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Majid, E-mail: majid_rajabi@iust.ac.ir; Mojahed, Alireza

    2016-09-15

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  15. Influence of radiation reaction force on ultraintense laser-driven ion acceleration.

    Science.gov (United States)

    Capdessus, R; McKenna, P

    2015-05-01

    The role of the radiation reaction force in ultraintense laser-driven ion acceleration is investigated. For laser intensities ∼10(23)W/cm(2), the action of this force on electrons is demonstrated in relativistic particle-in-cell simulations to significantly enhance the energy transfer to ions in relativistically transparent targets, but strongly reduce the ion energy in dense plasma targets. An expression is derived for the revised piston velocity, and hence ion energy, taking account of energy loses to synchrotron radiation generated by electrons accelerated in the laser field. Ion mass is demonstrated to be important by comparing results obtained with proton and deuteron plasma. The results can be verified in experiments with cryogenic hydrogen and deuterium targets.

  16. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2016-09-01

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  17. Evaluating Direct Radiative Effects of Absorbing Aerosols on Atmospheric Dynamics with Aquaplanet and Regional Model Results

    Science.gov (United States)

    Can, Ö.; Tegen, I.; Quaas, J.

    2015-12-01

    Effects of absorbing aerosol on atmospheric dynamics are usually investigated with help of general circulation models or also regional models that represent the atmospheric system as realistic as possible. Reducing the complexity of models used to study the effects of absorbing aerosol on atmospheric dynamics helps to understand underlying mechanisms. In this study, by using ECHAM6 General Circulation Model (GCM) in an Aquaplanet setting and using simplified aerosol climatology, an initial idealization step has been taken. The analysis only considers direct radiative effects, furthering the reduction of complex model results. The simulations include cases including aerosol radiative forcing, no aerosol forcing, coarse mode aerosol forcing only (as approximation for mineral dust forcing) and forcing with increased aerosol absorption. The results showed that increased absorption affects cloud cover mainly in subtropics. Hadley circulation is found to be weakened in the increased absorption case. To compare the results of the idealized model with a more realistic model setting, the results of the regional model COSMO-MUSCAT that includes interactive mineral dust aerosol and considers the effects of dust radiative forcing are also analyzed. The regional model computes the atmospheric circulation for the year 2007 twice, including the feedback of dust and excluding the dust aerosol forcing. It is investigated to which extent the atmospheric response to the dust forcing agrees with the simplified Aquaplanet results. As expected, in the regional model mineral dust causes an increase in the temperature right above the dust layer while reducing the temperature close to the surface. In both models the presence of aerosol forcing leads to increased specific humidity, close to ITCZ. Notwithstanding the difference magnitudes, comparisons of the global aquaplanet and the regional model showed similar patterns. Further detailed comparisons will be presented.

  18. Anthropogenic radiative forcing of southern African and Southern Hemisphere climate variability and change

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2014-10-01

    Full Text Available This paper explores the hypothesis that the more realistic depiction of the atmosphere's ability to absorb and release radiation in atmospheric model simulations, through the more realistic representation of the time-varying concentrations...

  19. The JPL Neptune Radiation Model (NMOD)

    Science.gov (United States)

    Garrett, Henry; Evans, Robin

    2017-01-01

    The objective of this study is the development of a comprehensive radiation model of the Neptunian environment for JPL mission planning. The ultimate goal is to provide a description of the high-energy electron and proton environments and the magnetic field at Neptune that can be used for engineering design. The JPL Neptune Radiation Model (NMOD) models the high-energy electrons and protons between 0.025 MeV and 5 MeV based on the California Institute of Technology's Cosmic Ray Subsystem and the Applied Physics Laboratory's Low Energy Charged Particle Detector on Voyager 2. As in previous JPL radiation models, the form of the Neptunian model is based on magnetic field coordinates and requires a conversion from spacecraft coordinates to Neptunian-centered magnetic "B-L" coordinates. Two types of magnetic field models have been developed for Neptune: 1) simple "offset, tilted dipoles" (OTD), and 2) a complex, multi-pole expansion model ("O8"). A review of the existing data on Neptune and a search of the NASA Planetary Data System (PDS) were completed to obtain the most current descriptions of the Neptunian high-energy particle environment. These data were fit in terms of the O8 B-L coordinates to develop the electron and proton flux models. The flux predictions of the new model were used to estimate the total ionizing dose (TID) rate along the Neptunian equator, meridional flux contours for the electrons and protons, and for flux and dose comparisons with the other radiation belts in the Solar System.

  20. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    Science.gov (United States)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-02-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  1. Classical Radiation Reaction Off-Shell Corrections to the Covariant Lorentz Force

    OpenAIRE

    Oron, O.; Horwitz, L. P.

    2000-01-01

    It has been shown by Gupta and Padmanabhan that the radiation reaction force of the Abraham-Lorentz-Dirac equation can be obtained by a coordinate transformation from the inertial frame of an accelerating charged particle to that of the laboratory. We show that the problem may be formulated in a flat space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg- Feynman-Schwinger covariant mechanics...

  2. Plasma acceleration and cooling by strong laser field due to the action of radiation reaction force.

    Science.gov (United States)

    Berezhiani, V I; Mahajan, S M; Yoshida, Z

    2008-12-01

    It is shown that for super intense laser pulses propagating in a hot plasma, the action of the radiation reaction force (appropriately incorporated into the equations of motion) causes strong bulk plasma motion with the kinetic energy raised even to relativistic values; the increase in bulk energy is accompanied by a corresponding cooling (intense cooling) of the plasma. The effects are demonstrated through explicit analytical calculations.

  3. Acoustic radiation force impulse imaging for evaluation of renal parenchyma elasticity in diabetic nephropathy.

    Science.gov (United States)

    Goya, Cemil; Kilinc, Faruk; Hamidi, Cihad; Yavuz, Alpaslan; Yildirim, Yasar; Cetincakmak, Mehmet Guli; Hattapoglu, Salih

    2015-02-01

    OBJECTIVE. The goal of this study is to evaluate the changes in the elasticity of the renal parenchyma in diabetic nephropathy using acoustic radiation force impulse imaging. SUBJECTS AND METHODS. The study included 281 healthy volunteers and 114 patients with diabetic nephropathy. In healthy volunteers, the kidney elasticity was assessed quantitatively by measuring the shear-wave velocity using acoustic radiation force impulse imaging based on age, body mass index, and sex. The changes in the renal elasticity were compared between the different stages of diabetic nephropathy and the healthy control group. RESULTS. In healthy volunteers, there was a statistically significant correlation between the shear-wave velocity values and age and sex. The shear-wave velocity values for the kidneys were 2.87, 3.14, 2.95, 2.68, and 2.55 m/s in patients with stage 1, 2, 3, 4, and 5 diabetic nephropathy, respectively, compared with 2.35 m/s for healthy control subjects. Acoustic radiation force impulse imaging was able to distinguish between the different diabetic nephropathy stages (except for stage 5) in the kidneys. The threshold value for predicting diabetic nephropathy was 2.43 m/s (sensitivity, 84.1%; specificity, 67.3%; positive predictive value, 93.1%; negative predictive value 50.8%; accuracy, 72.1%; positive likelihood ratio, 2.5; and negative likelihood ratio, 0.23). CONCLUSION. Acoustic radiation force impulse imaging could be used for the evaluation of the renal elasticity changes that are due to secondary structural and functional changes in diabetic nephropathy.

  4. The effect of temperature dependent tissue parameters on acoustic radiation force induced displacements

    Science.gov (United States)

    Suomi, Visa; Han, Yang; Konofagou, Elisa; Cleveland, Robin O.

    2016-10-01

    Multiple ultrasound elastography techniques rely on acoustic radiation force (ARF) in monitoring high-intensity focused ultrasound (HIFU) therapy. However, ARF is dependent on tissue attenuation and sound speed, both of which are also known to change with temperature making the therapy monitoring more challenging. Furthermore, the viscoelastic properties of tissue are also temperature dependent, which affects the displacements induced by ARF. The aim of this study is to quantify the temperature dependent changes in the acoustic and viscoelastic properties of liver and investigate their effect on ARF induced displacements by using both experimental methods and simulations. Furthermore, the temperature dependent viscoelastic properties of liver are experimentally measured over a frequency range of 0.1-200 Hz at temperatures reaching 80 °C, and both conventional and fractional Zener models are used to fit the data. The fractional Zener model was found to fit better with the experimental viscoelasticity data with respect to the conventional model with up to two orders of magnitude lower sum of squared errors (SSE). The characteristics of experimental displacement data were also seen in the simulations due to the changes in attenuation coefficient and lesion development. At low temperatures before thermal ablation, attenuation was found to affect the displacement amplitude. At higher temperature, the decrease in displacement amplitude occurs approximately at 60-70 °C due to the combined effect of viscoelasticity changes and lesion growth overpowering the effect of attenuation. The results suggest that it is necessary to monitor displacement continuously during HIFU therapy in order to ascertain when ablation occurs.

  5. Implications of Representative Concentration Pathway 4.5 Methane Emissions to Stabilize Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, William R.; Janetos, Anthony C.

    2013-02-01

    Increases in the abundance of methane (CH4) in the Earth’s atmosphere are responsible for significant radiative forcing of climate change (Forster et al., 2007; Wuebbles and Hayhoe, 2002). Since 1750, a 2.5 fold increase in atmospheric CH4 contributed 0.5 W/m2 to direct radiative forcing and an additional 0.2 W/m2 indirectly through changes in atmospheric chemistry. Next to water and carbon dioxide (CO2), methane is the most abundant greenhouse gas in the troposphere. Additionally, CH4 is significantly more effective as a greenhouse gas on a per molecule basis than is CO2, and increasing atmospheric CH4 has been second only to CO2 in radiative forcing (Forster et al., 2007). The chemical reactivity of CH4 is important to both tropospheric and stratospheric chemistry. Along with carbon monoxide, methane helps control the amount of the hydroxyl radical (OH) in the troposphere where oxidation of CH4 by OH leads to the formation of formaldehyde, carbon monoxide, and ozone.

  6. Radiation pressure force emission line profiles and black hole mass in active galactic nuclei

    CERN Document Server

    Netzer, H

    2010-01-01

    We present a new analysis of the motion of broad line region (BLR) clouds in active galactic nuclei (AGNs) taking into account the combined influence of gravity and radiation pressure force. We calculate cloud orbits under a large range of conditions and include the effect of a changing column density as a function of location. The dependence of radiation pressure force on the level of ionization and the column density are accurately computed. The main results are: a. The mean cloud location r(BLR) and the line widths (FWHMs) are combined in such a way that the simple virial mass estimate, r{BLR} FWHM^2/G, gives a reasonable approximation to the black hole mass M even when radiation pressure force is important. The reason is that L/M rather than L is the main parameter affecting the planar cloud motion. b. Reproducing the observed mean radius, FWHM and intensity of H-beta and CIV 1549 requires at least two different populations of clouds. c. The cloud location is a function of both L^{1/2} and L/M. Given this...

  7. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    Science.gov (United States)

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.

  8. Aerosol Optical Properties and Its Radiative Forcing over Yulin, China in 2001 and 2002

    Institute of Scientific and Technical Information of China (English)

    CHE Huizheng; ZHANG Xiaoye; Stephane ALFRARO; Bernadette CHATENET; Laurent GOMES; ZHAO Jianqi

    2009-01-01

    The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-bascd Aerosol Robotic Network (AERONET), are analyzed. The seasonal variations in the aerosol optical properties are examined. The effect of meteorological elements (pressure, temperature, water vapor pressure, relative humidity and wind speed) on the aerosol optical properties is also studied. Then, the sources and optical properties under two different cases, a dust event and a pollution event, are compared. The results show that the high aerosol optical depth (AOD) found in Yulin was mostly attributed to the occurrence of dust events in spring from the Mu Us desert and deserts of West China and Mongolia, as well as the impacts of anthropogenic pollutant particles from the middle part of China in the other seasons. The seasonal variation and the probability distribution of the radiative forcing and the radiative forcing efficiency at the surface and the top of the atmosphere are analyzed and regressed using the linear and Gaussian regression methods.

  9. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    Energy Technology Data Exchange (ETDEWEB)

    Prajapati, R. P., E-mail: prajapati-iter@yahoo.co.in; Bhakta, S. [Department of Pure and Applied Physics, Guru Ghasidas Central University, Bilaspur-495009 (C.G.) (India); Chhajlani, R. K. [Retired from School of Studies in Physics, Vikram University, Ujjain-456010 (M.P.) (India)

    2016-05-15

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.

  10. Radiatively induced quark and lepton mass model

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2016-10-01

    We propose a radiatively induced quark and lepton mass model in the first and second generation with extra U (1) gauge symmetry and vector-like fermions. Then we analyze the allowed regions which simultaneously satisfy the FCNCs for the quark sector, LFVs including μ- e conversion, the quark mass and mixing, and the lepton mass and mixing. Also we estimate the typical value for the (g - 2) μ in our model.

  11. Radiative transfer model for Solar System ices

    Science.gov (United States)

    Andrieu, F.; Schmidt, F.; Douté, S.; Schmitt, B.; Brissaud, O.

    2015-10-01

    We developed a radiative transfer model [1] that simulates the bidirectional reflectance of a contaminated slab layer of ice overlaying a granular medium, under geometrical optics conditions. Designed for planetary studies, this model has a fast computer implementation and thus is suitable for planetary high spatial/spectral resolution hyperspectral data analysis. We will present here its principles, its numerical and experimental validations and its possible applications.

  12. Constructing a Mass-Current Radiation-Reaction Force For Numerical Simulations

    CERN Document Server

    Rezzolla, L; Asada, H; Baumgarte, T W; Shapiro, S L

    1999-01-01

    We present a new set of 3.5 Post-Newtonian equations in which Newtonian hydrodynamics is coupled to the nonconservative effects of gravitational radiation emission. Our formalism differs in two significant ways from a similar 3.5 Post-Newtonian approach proposed by Blanchet (1993, 1997). Firstly we concentrate only on the radiation-reaction effects produced by a time-varying mass-current quadrupole $S_{ij}$. Secondly, we adopt a gauge in which the radiation-reaction force densities depend on the fourth time derivative of $S_{ij}$, rather than on the fifth, as in Blanchet's approach. This difference makes our formalism particularly well-suited to numerical implementation and could prove useful in performing fully numerical simulations of the recently discovered $r$-mode instability for rotating neutron stars subject to axial perturbations.

  13. Vegetation Monitoring with Gaussian Processes and Latent Force Models

    Science.gov (United States)

    Camps-Valls, Gustau; Svendsen, Daniel; Martino, Luca; Campos, Manuel; Luengo, David

    2017-04-01

    Monitoring vegetation by biophysical parameter retrieval from Earth observation data is a challenging problem, where machine learning is currently a key player. Neural networks, kernel methods, and Gaussian Process (GP) regression have excelled in parameter retrieval tasks at both local and global scales. GP regression is based on solid Bayesian statistics, yield efficient and accurate parameter estimates, and provides interesting advantages over competing machine learning approaches such as confidence intervals. However, GP models are hampered by lack of interpretability, that prevented the widespread adoption by a larger community. In this presentation we will summarize some of our latest developments to address this issue. We will review the main characteristics of GPs and their advantages in vegetation monitoring standard applications. Then, three advanced GP models will be introduced. First, we will derive sensitivity maps for the GP predictive function that allows us to obtain feature ranking from the model and to assess the influence of examples in the solution. Second, we will introduce a Joint GP (JGP) model that combines in situ measurements and simulated radiative transfer data in a single GP model. The JGP regression provides more sensible confidence intervals for the predictions, respects the physics of the underlying processes, and allows for transferability across time and space. Finally, a latent force model (LFM) for GP modeling that encodes ordinary differential equations to blend data-driven modeling and physical models of the system is presented. The LFM performs multi-output regression, adapts to the signal characteristics, is able to cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. Empirical evidence of the performance of these models will be presented through illustrative examples.

  14. Based on the Force Deployment Model of Unascertained Expectation

    Directory of Open Access Journals (Sweden)

    Jianli Chen

    2013-05-01

    Full Text Available In this study, we utilize the unascertained mathematics method to give the unascertained number of countermeasure of anti-terrorism strategic force deployment and unknown event. It has been defined the situation sets of force deployment, condition density and mathematical expectation of density model. It has been given the unascertained parameters Cij which decide and direct the force deployment. Find out the condition density matrix of force deployment, further get the conditional density of single target force deployment, using the maximum density mathematical expectation in order to get the optimal mathematical model of multiple target force deployment. Analyzing the coefficient of model and provide two kinds of discussed computing method. The model overcomes the limitation of past deterministic thinking method which study the force deployment and provide the decision maker a relative substantial theory evidence.

  15. Tailored long range forces on polarizable particles by collective scattering of broadband radiation

    CERN Document Server

    Holzmann, Daniela

    2016-01-01

    Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation we find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance...

  16. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen;

    2015-01-01

    force, but these models are computationally expensive and are not suitable for evaluating large numbers of different operation conditions or even design optimization. In the present paper, an effort is done to describe these fluid forces and their origin. An example of the total opposing fluid force...

  17. The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions

    Directory of Open Access Journals (Sweden)

    C. Wang

    2009-10-01

    Full Text Available Previous works have suggested that the direct radiative forcing (DRF of black carbon (BC aerosols are able to force a significant change in tropical convective precipitation ranging from the Pacific and Indian Ocean to the Atlantic Ocean. In this in-depth analysis, the sensitivity of this modeled effect of BC on tropical convective precipitation to the emissions of BC from 5 major regions of the world has been examined. In a zonal mean base, the effect of BC on tropical convective precipitation is a result of a displacement of ITCZ toward the forcing (warming hemisphere. However, a substantial difference exists in this effect associated with BC over different continents. The BC effect on convective precipitation over the tropical Pacific Ocean is found to be most sensitive to the emissions from Central and North America due to a persistent presence of BC aerosols from these two regions in the lowermost troposphere over the Eastern Pacific. The BC effect over the tropical Indian and Atlantic Ocean is most sensitive to the emissions from South as well as East Asia and Africa, respectively. Interestingly, the summation of these individual effects associated with emissions from various regions mostly exceeds their actual combined effect as shown in the model run driven by the global BC emissions, so that they must offset each other in certain locations and a nonlinearity of this type of effect is thus defined. It is known that anthropogenic aerosols contain many scattering-dominant constituents that might exert an effect opposite to that of absorbing BC. The combined aerosol forcing is thus likely differing from the BC-only one. Nevertheless, this study along with others of its kind that isolates the DRF of BC from other forcings provides an insight of the potentially important climate response to anthropogenic forcings particularly related to the unique particulate solar absorption.

  18. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    Science.gov (United States)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  19. Switched Dynamical Latent Force Models for Modelling Transcriptional Regulation

    CERN Document Server

    López-Lopera, Andrés F

    2015-01-01

    In order to develop statistical approaches for transcription networks, statistical community has proposed several methods to infer activity levels of proteins, from time-series measurements of targets' expression levels. A few number of approaches have been proposed in order to outperform the representation of fast switching time instants, but computational overheads are significant due to complex inference algorithms. Using the theory related to latent force models (LFM), the development of this project provide a switched dynamical hybrid model based on Gaussian processes (GPs). To deal with discontinuities in dynamical systems (or latent driving force), an extension of the single input motif approach is introduced, that switches between different protein concentrations, and different dynamical systems. This creates a versatile representation for transcription networks that can capture discrete changes and non-linearities in the dynamics. The proposed method is evaluated on both simulated data and real data,...

  20. Seasonal radiative modeling of Titan's stratosphere

    Science.gov (United States)

    Bézard, Bruno; Vinatier, Sandrine; Achterberg, Richard

    2016-10-01

    We have developed a seasonal radiative model of Titan's stratosphere to investigate the time variation of stratospheric temperatures in the 10-3 - 5 mbar range as observed by the Cassini/CIRS spectrometer. The model incorporates gas and aerosol vertical profiles derived from Cassini/CIRS spectra to calculate the heating and cooling rate profiles as a function of time and latitude. In the equatorial region, the radiative equilibrium profile is warmer than the observed one. Adding adiabatic cooling in the energy equation, with a vertical velocity profile decreasing with depth and having w ≈ 0.4 mm sec-1 at 1 mbar, allows us to reproduce the observed profile. The model predicts a 5 K decrease at 1 mbar between 2008 and 2016 as a result of orbit eccentricity, in relatively good agreement with the observations. At other latitudes, as expected, the radiative model predicts seasonal variations of temperature larger than observed, pointing to latitudinal redistribution of heat by dynamics. Vertical velocities seasonally varying between -0.4 and 1.2 mm sec-1 at 1 mbar provide adiabatic cooling and heating adequate to reproduce the time variation of 1-mbar temperatures from 2005 to 2016 at 30°N and S. The model is also used to investigate the role of the strong compositional changes observed at high southern latitudes after equinox in the concomitant rapid cooling of the stratosphere.

  1. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    Directory of Open Access Journals (Sweden)

    I. Cionni

    2011-04-01

    column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF from the 1850s to the 2000s is 0.23 W m−2, lower than previous results. The lower value is mainly due to (i a smaller increase in biomass burning emissions; (ii a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii a larger influence of clouds (which act to reduce the net forcing compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08 W m−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4 value of −0.05 W m−2, but which is within the stated range of −0.15 to +0.05 W m−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1 W m−2 by 2100. The ozone dataset described here has been released for the

  2. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    Directory of Open Access Journals (Sweden)

    I. Cionni

    2011-11-01

    total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF from the 1850s to the 2000s is 0.23 W m−2, lower than previous results. The lower value is mainly due to (i a smaller increase in biomass burning emissions; (ii a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii a larger influence of clouds (which act to reduce the net forcing compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08 W m−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4 value of −0.05 W m−2, but which is within the stated range of −0.15 to +0.05 W m−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1 W m−2 by 2100. The ozone dataset described here has been released for

  3. Impact of dust size parameterizations on aerosol burden and radiative forcing in RegCM4

    Science.gov (United States)

    Tsikerdekis, Athanasios; Zanis, Prodromos; Steiner, Allison L.; Solmon, Fabien; Amiridis, Vassilis; Marinou, Eleni; Katragkou, Eleni; Karacostas, Theodoros; Foret, Gilles

    2017-01-01

    We investigate the sensitivity of aerosol representation in the regional climate model RegCM4 for two dust parameterizations for the period 2007-2014 over the Sahara and the Mediterranean. We apply two discretization methods of the dust size distribution keeping the total mass constant: (1) the default RegCM4 4-bin approach, where the size range of each bin is calculated using an equal, logarithmic separation of the total size range of dust, using the diameter of dust particles, and (2) a newly implemented 12-bin approach with each bin defined according to an isogradient method where the size ranges are dependent on the dry deposition velocity of dust particles. Increasing the number of transported dust size bins theoretically improves the representation of the physical properties of dust particles within the same size bin. Thus, more size bins improve the simulation of atmospheric processes. The radiative effects of dust over the area are discussed and evaluated with the CALIPSO dust optical depth (DOD). This study is among the first studies evaluating the vertical profile of simulated dust with a pure dust product. Reanalysis winds from ERA-Interim and the total precipitation flux from the Climate Research Unit (CRU) observational gridded database are used to evaluate and explain the discrepancies between model and observations. The new dust binning approach increases the dust column burden by 4 and 3 % for fine and coarse particles, respectively, which increases DOD by 10 % over the desert and the Mediterranean. Consequently, negative shortwave radiative forcing (RF) is enhanced by more than 10 % at the top of the atmosphere and by 1 to 5 % on the surface. Positive longwave RF locally increases by more than 0.1 W m-2 in a large portion of the Sahara, the northern part of the Arabian Peninsula and the Middle East. The four-bin isolog method is to some extent numerically efficient, nevertheless our work highlights that the simplified representation of the four

  4. Net radiative forcing and air quality responses to regional CO emission reductions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-05-01

    Full Text Available Carbon monoxide (CO emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005. Net radiative forcing (RF is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m−2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP100 are estimated as −0.124 mW m−2 (Tg CO−1 and 1.34, respectively, for the global CO reduction, and ranging from −0.115 to −0.131 mW m−2 (Tg CO−1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S–28° N followed by the northern midlatitudes (28° N–60° N, independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international

  5. Cosmological Constraints on the Modified Entropic Force Model

    OpenAIRE

    Wei, Hao

    2010-01-01

    Very recently, Verlinde considered a theory in which space is emergent through a holographic scenario, and proposed that gravity can be explained as an entropic force caused by changes in the information associated with the positions of material bodies. Then, motivated by the Debye model in thermodynamics which is very successful in very low temperatures, Gao modified the entropic force scenario. The modified entropic force (MEF) model is in fact a modified gravity model, and the universe can...

  6. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  7. Comparison of three vertically resolved ozone data bases: climatology, trends and radiative forcings

    Directory of Open Access Journals (Sweden)

    B. Hassler

    2012-10-01

    Full Text Available Climate models that do not simulate changes in stratospheric ozone concentrations require ozone input fields to accurately calculate UV fluxes and stratospheric heating rates. In this study, three different global ozone time series that are available for this purpose are compared: the data set of Randel and Wu (2007 (RW07, Cionni et al. (2011 (SPARC, and Bodeker et al. (2012 (BDBP. The latter is a very recent data set, based on the comprehensive ozone measurement database described by Hassler et al. (2008. All three data sets represent multiple-linear regression fits to vertically resolved ozone observations, resulting in a patially and temporally continuous stratospheric ozone field covering at least the period from 1979 to 2005. The main difference between the data sets result from using different observations and including different basis functions for the regression model fits. These three regression-based data sets are compared against observations from ozonesondes and satellites to compare how the data sets represent concentrations, trends, and interannual variability. In the Southern Hemisphere polar region, RW07 and SPARC underestimate the ozone depletion in spring as seen in ozonesonde measurements. A piecewise linear trend regression is performed to estimate the 1979–1996 ozone decrease globally, covering a period of extreme depletion in most regions. BDBP seems to overestimate Arctic and tropical ozone loss over this period somewhat relative to the available measurements, whereas these appear to be underestimated in RW07 and SPARC. In most regions, the three data sets yield ozone values that are within the range of the different observations that serve as input to the regressions. However, the differences among the three suggest that there are large uncertainties in ozone trends. These result in differences of almost a factor of four in radiative forcing, which is important for the resulting climate changes.

  8. Principles of the radiative ablation modeling

    Science.gov (United States)

    Saillard, Yves; Arnault, Philippe; Silvert, Virginie

    2010-12-01

    Indirectly driven inertial confinement fusion (ICF) rests on the setting up of a radiation temperature within a laser cavity and on the optimization of the capsule implosion ablated by this radiation. In both circumstances, the ablation of an optically thick medium is at work. The nonlinear radiation conduction equations that describe this phenomenon admit different kinds of solutions called generically Marshak waves. In this paper, a completely analytic model is proposed to describe the ablation in the subsonic regime relevant to ICF experiments. This model approximates the flow by a deflagrationlike structure where Hugoniot relations are used in the stationary part from the ablation front up to the isothermal sonic Chapman-Jouguet point and where the unstationary expansion from the sonic point up to the external boundary is assumed quasi-isothermal. It uses power law matter properties. It can also accommodate arbitrary boundary conditions provided the ablation wave stays very subsonic and the surface temperature does not vary too quickly. These requirements are often met in realistic situations. Interestingly, the ablated mass rate, the ablation pressure, and the absorbed radiative energy depend on the time history of the surface temperature, not only on the instantaneous temperature values. The results compare very well with self-similar solutions and with numerical simulations obtained by hydrodynamic code. This analytic model gives insight into the physical processes involved in the ablation and is helpful for optimization and sensitivity studies in many situations of interest: radiation temperature within a laser cavity, acceleration of finite size medium, and ICF capsule implosion, for instance.

  9. Inflation model selection meets dark radiation

    Science.gov (United States)

    Tram, Thomas; Vallance, Robert; Vennin, Vincent

    2017-01-01

    We investigate how inflation model selection is affected by the presence of additional free-streaming relativistic degrees of freedom, i.e. dark radiation. We perform a full Bayesian analysis of both inflation parameters and cosmological parameters taking reheating into account self-consistently. We compute the Bayesian evidence for a few representative inflation scenarios in both the standard ΛCDM model and an extension including dark radiation parametrised by its effective number of relativistic species Neff. Using a minimal dataset (Planck low-l polarisation, temperature power spectrum and lensing reconstruction), we find that the observational status of most inflationary models is unchanged. The exceptions are potentials such as power-law inflation that predict large values for the scalar spectral index that can only be realised when Neff is allowed to vary. Adding baryon acoustic oscillations data and the B-mode data from BICEP2/Keck makes power-law inflation disfavoured, while adding local measurements of the Hubble constant H0 makes power-law inflation slightly favoured compared to the best single-field plateau potentials. This illustrates how the dark radiation solution to the H0 tension would have deep consequences for inflation model selection.

  10. Radiative torques: Analytical Model and Basic Properties

    CERN Document Server

    Lazarian, Alex

    2007-01-01

    We attempt to get a physical insight into grain alignment processes by studying basic properties of radiative torques (RATs). For this purpose we consider a simple toy model of a helical grain that reproduces well the basic features of RATs. The model grain consists of a spheroidal body with a mirror attached at an angle to it. Being very simple, the model allows analytical description of RATs that act upon it. We show a good correspondence of RATs obtained for this model and those of irregular grains calculated by DDSCAT. Our analysis of the role of different torque components for grain alignment reveals that one of the three RAT components does not affect the alignment, but induces only for grain precession. The other two components provide a generic alignment with grain long axes perpendicular to the radiation direction, if the radiation dominates the grain precession, and perpendicular to magnetic field, otherwise. We study a self-similar scaling of RATs as a function of $\\lambda/a_{eff}$. We show that th...

  11. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms.

    Science.gov (United States)

    Bouchard, Hugo; Bielajew, Alex

    2015-07-07

    To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano's theorem. Additionally, Lewis' approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano's and Lewis' approaches are stated in this new equation. Fano's theorem is found not to apply in the presence of electromagnetic fields. Lewis' theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms.

  12. Extended Higgs sectors in radiative neutrino models

    Directory of Open Access Journals (Sweden)

    Oleg Antipin

    2017-05-01

    Full Text Available Testable Higgs partners may be sought within the extensions of the SM Higgs sector aimed at generating neutrino masses at the loop level. We study a viability of extended Higgs sectors for two selected models of radiative neutrino masses: a one-loop mass model, providing the Higgs partner within a real triplet scalar representation, and a three-loop mass model, providing it within its two-Higgs-doublet sector. The Higgs sector in the one-loop model may remain stable and perturbative up to the Planck scale, whereas the three-loop model calls for a UV completion around 106 GeV. Additional vector-like lepton and exotic scalar fields, which are required to close one- and three-loop neutrino-mass diagrams, play a decisive role for the testability of the respective models. We constrain the parameter space of these models using LHC bounds on diboson resonances.

  13. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  14. Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations

    Energy Technology Data Exchange (ETDEWEB)

    Forster, P M A F; Taylor, K E

    2006-07-25

    A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled Atmosphere Ocean General Circulation Models (AOGCMs). This 'climate forcing' differs from the conventionally defined radiative forcing as it includes semi-direct effects that account for certain short timescale responses in the troposphere. Firstly, we calculate a climate feedback term from reported values of 2 x CO{sub 2} radiative forcing and surface temperature time series from 70-year simulations by twenty AOGCMs. In these simulations carbon dioxide is increased by 1%/year. The derived climate feedback agrees well with values that we diagnose from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. We find partial compensation between longwave and shortwave feedback terms that lessens the inter-model differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback. These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in 20th and 21st Century simulations in the AOGCMs. We validate the technique using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings we diagnose agree with the conventional forcing time series within {approx}10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of two differences in the longwave climate forcing time series, which may indicate

  15. Ensemble single column modeling (ESCM) in the tropical western Pacific: Forcing data sets and uncertainty analysis

    Science.gov (United States)

    Hume, Timothy; Jakob, Christian

    2005-07-01

    Single column models (SCMs) are useful tools for the evaluation of parameterisations of radiative and moist processes used in general circulation models (GCMs). Most SCM studies to date have concentrated on regions where there is a sufficiently dense observational network to derive the required forcing data. This paper describes an ensemble single column modeling (ESCM) approach where the forcing data are derived from numerical weather prediction (NWP) analysis products. To highlight the benefits of the ESCM approach, four forcing data sets were derived for a two year period at the Tropical Western Pacific ARM (Atmospheric Radiation Measurement Program) sites at Manus Island and Nauru. In the first section of the study, the NWP derived forcing data are validated against a range of observations at the tropical sites. In the second section, the sensitivity of two different SCMs to uncertainties in the forcing data sets are analysed. It is shown that despite the inherent uncertainties in the NWP derived forcing data, an ESCM approach is able to identify errors in the SCM physics. This suggests the ESCM approach is useful for testing parameterisations in relatively observation sparse regions, such as the TWP.

  16. new model for solar radiation estimation from measured air ...

    African Journals Online (AJOL)

    HOD

    Nigerian Meteorological Agency (NIMET) were used as inputs to the ANFIS model and monthly mean global solar radiation was ... models were used to predict solar radiation in Nigeria by. [12-15]. .... calculate them as total output [32] and [34].

  17. Absorbing aerosols: contribution of biomass burning and implications for radiative forcing

    Directory of Open Access Journals (Sweden)

    H. Gadhavi

    2010-01-01

    Full Text Available Absorbing aerosols supplements the global warming caused by greenhouse gases. However, unlike greenhouse gases, the effect of absorbing aerosol on climate is not known with certainty owing to paucity of data. Also, uncertainty exists in quantifying the contributing factors whether it is biomass or fossil fuel burning. Based on the observations of absorption coefficient at seven wavelengths and aerosol optical depth (AOD at five wavelengths carried out at Gadanki (13.5° N, 79.2° E, a remote village in peninsular India, from April to November 2008, as part of the "Study of Atmospheric Forcing and Responses (SAFAR" pilot campaign we discuss seasonal variation of black carbon (BC concentration and aerosol optical depth. Also, using spectral information we estimate the fraction of fossil-fuel and non-fossil fuel contributions to absorption coefficient and contributions of soot (Black Carbon, non-soot fine mode aerosols and coarse mode aerosols to AOD.

    BC concentration is found to be around 1000 ng/m3 during monsoon months (JJAS and around 4000 ng/m3 during pre and post monsoon months. Non-fossil fuel sources contribute nearly 20% to absorption coefficient at 880 nm, which increases to 40% during morning and evening hours. Average AOD is found to be 0.38±0.15, with high values in May and low in September. Soot contributes nearly 10% to the AOD. This information is further used to estimate the clear sky aerosol direct radiative forcing. Top of the atmosphere aerosol radiative forcing varies between −4 to 0 W m−2, except for April when the forcing is positive. Surface level radiative forcing is between −10 to −20 W m−2. The net radiation absorbed within the atmosphere is in the range of 9 to 25 W m−2, of which soot contributes about 80 to 90%.

  18. Direct radiative forcing of aerosols in cloudy condition using CALIPSO satellite data

    Science.gov (United States)

    Oikawa, E.; Nakajima, T.; Winker, D. M.

    2013-12-01

    The aerosol direct effect occurs by direct scattering and absorption of solar and thermal radiation. Shortwave direct aerosol radiative forcing (DARF) under clear-sky condition is estimated about 5 Wm-2 from satellite retrievals and model simulations [Yu et al., 2006ACP]. Simultaneous observations of aerosols and clouds are very limited, thus it is difficult to validate the estimation of DARF under cloudy-sky condition. In 2006, the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite was launched with the space-borne lidar, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). This enabled us to get data of the vertical distribution of aerosols and clouds all over the world. Oikawa et al. [2013JGR] estimated DARF under clear-sky, cloudy-sky, and all-sky conditions using CALIPSO and MODIS (Moderate resolution Imaging Spectrometer) data. Over Atlantic Ocean off southwest Africa, biomass burning aerosols are transported above low-level clouds and cause large positive DARF [Oikawa et al., 2013JGR; Chand et al., 2009Nat. Geosci.; De Graaf et al., 2012JGR; Takemura et al., 2005JGR]. We calculate DARF using CALIOP Level 2 Cloud and Aerosol Layer Products Version 3 and the method of Oikawa et al. [2013]. In this study, we focus on the case that aerosols exist above clouds (above-cloud case) in 2007. Over Atlantic Ocean off southwest Africa, DARF caused by smoke aerosols is +7.1 Wm-2 in September. On the other hand, aerosol optical thickness (AOT) of smoke is small as close to 0 Wm-2 in spring season. Over North Pacific, yellow sand and industrial smoke are transported from Asia and DARF is +5.2 Wm-2 in May. Dust AOT at 532 nm is 0.014 and polluted dust AOT at 532 nm is 0.052; in other words, a large part of dust emitted from Taklamakan and Gobi deserts are mixed with the industrial smoke and transported to the Pacific Ocean according to the CALIPSO algorithms.

  19. The significance of cloud-radiative forcing to the general circulation on climate time scales - A satellite interpretation

    Science.gov (United States)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    This paper focuses on the role of cloud- and surface-atmosphere forcing on the net radiation balance and their potential impact on the general circulation at climate time scales. The globally averaged cloud-forcing estimates and cloud sensitivity values taken from various recent studies are summarized. It is shown that the net radiative heating over the tropics is principally due to high clouds, while the net cooling in mid- and high latitudes is dominated by low and middle clouds.

  20. Simplified model for a ventilated glass window under forced air flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, K.A.R. [Depto. de Engenharia Termica e de Fluidos-FEM-UNICAMP CP: 6122 CEP 13083-970 Campinas, SP (Brazil); Henriquez, J.R. [Depto. de Eng. Mecanica-DEMEC, UFPE Av. Academico Helio Ramos, S/N CEP 50740-530, Recife, PE (Brazil)

    2006-02-01

    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance. (author)

  1. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations

    Science.gov (United States)

    Painter, Thomas H.; Skiles, S. Mckenzie; Deems, Jeffrey S.; Bryant, Ann C.; Landry, Christopher C.

    2012-07-01

    Dust in snow accelerates snowmelt through its direct reduction of snow albedo and its further indirect reduction of albedo by accelerating the growth of snow grains. Since the westward expansion of the United States that began in the mid-19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading, largely from the Colorado Plateau and Great Basin. Radiative forcing of snowmelt by dust is not captured by conventional micrometeorological measurements, and must be monitored by a more comprehensive suite of radiation instruments. Here we present a 6 year record of energy balance and detailed radiation measurements in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Data include broadband irradiance, filtered irradiance, broadband reflected flux, filtered reflected flux, broadband and visible albedo, longwave irradiance, wind speed, relative humidity, and air temperatures. The gradient of the snow surface is monitored weekly and used to correct albedo measurements for geometric effects. The snow is sampled weekly for dust concentrations in plots immediately adjacent to each tower over the melt season. Broadband albedo in the last weeks of snow cover ranged from 0.33 to 0.55 across the 6 years and two sites. Total end of year dust concentration in the top 3 cm of the snow column ranged from 0.23 mg g-1 to 4.16 mg g-1. These measurements enable monitoring and modeling of dust and climate-driven snowmelt forcings in the Upper Colorado River Basin.

  2. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    S. T. Martin

    2004-01-01

    Full Text Available The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US and once for lower side (LS of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO4-2-1, which compare to US values of 0.030 and 13.9 m2 (g SO4-2-1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m-2 are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL=-0.750, FU=-0.930, and DFU,L=24% for full sky calculations without clouds and FL=-0.485, FU=-0.605, and DFU,L=25% when clouds are included. Regionally, DFU,L=48% over the USA, 55% over Europe

  3. A meteorological forcing data set for global crop modeling: Development, evaluation, and intercomparison

    Science.gov (United States)

    Iizumi, Toshichika; Okada, Masashi; Yokozawza, Masayuki

    2014-01-01

    The Global Risk Assessment toward Stable Production of Food (GRASP) project uses global crop models to evaluate the impacts on global food security by changes in climate extremes, water resources, and land use. Such models require meteorological forcing data. This study presents the development of the GRASP forcing data that is a hybrid of the reanalyses (ERA-40 and JRA-25) and observations. The GRASP data offer daily mean, maximum, and minimum 2 m air temperatures as well as precipitation, solar radiation, vapor pressure, and 10 m wind speed over global land areas, excluding Antarctica, for the period 1961-2010 at a grid size of 1.125°. The monthly climatologies of the variables of the GRASP data were forced to be close to those of the observations for the baseline period (1961-1990 or 1983-2005) through bias corrections. The GRASP data are intercompared with other forcing data for land surface modeling (the S06, WATCH Forcing Data, and WATCH Forcing Data Methodology Applied to ERA-Interim data). The results demonstrate that the daily minimum temperature, diurnal temperature range, vapor pressure, solar radiation, and wind speed from the GRASP data are more valuable for crop modeling than the reanalyses and other forcing data. For remaining variables, the reliability of the GRASP data is higher than that of the reanalyses and on a similar level with that of the other forcing data. The GRASP data offer accurate estimates of daily weather as the inputs for crop models, providing unique opportunities to link historical changes in climate with crop production over the last half century.

  4. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  5. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  6. Impact of California's Air Pollution Laws on Black Carbon and their Implications for Direct Radiative Forcing

    Science.gov (United States)

    Bahadur, R.; Feng, Y.; Russell, L. M.; Ramanathan, V.

    2010-12-01

    We examine the temporal and the spatial trends in the concentrations of black carbon (BC) - recorded by the IMPROVE monitoring network for the past 20 years - in California. Annual average BC concentrations in California have decreased by about 50% from 0.46 μg m-3 in 1989 to 0.24 μgm-3 in 2008 compared to a corresponding reductions in diesel BC emissions (also about 50%) from a peak of 0.013 Tg Yr-1 in 1990 to 0.006 Tg Yr-1 by 2008. We attribute the observed negative trends to the deployment of diesel particulate filters. Our conclusion that the reduction in diesel emissions is the primary cause of the observed BC reduction is also substantiated by a significant decrease in the ratio of BC to non-BC aerosols. The absorption efficiency of aerosols at visible wavelengths - determined from the observed scattering coefficient and the observed BC - also decreased by about 50% leading to a model-inferred negative direct radiative forcing (a cooling effect) of -1.4 Wm-2 (±60%) over California. Figure 1 (a) Annual means of measured Black Carbon (left axis) and BC fossil fuel emissions (right axis) in California from 1985 to 2008. Error bars correspond to standard deviation between measurements at each station. Dashed lines indicate a linear fit. Aerosol measurements from the IMPROVE network, emission inventories from (1) CARB, (2) [Ito and Penner, 2005] (b) Annual means of BC measured in Southern (South of 35 N), Northern (North of 38 N), and Central California (c) Annual means of measured Sulfate, Nitrate, and OC from IMPROVE network.

  7. Aerosol shortwave daily radiative effect and forcing based on MODIS Level 2 data in the Eastern Mediterranean (Crete

    Directory of Open Access Journals (Sweden)

    N. Benas

    2011-07-01

    Full Text Available The mean daily shortwave (SW radiation budget was computed on a 10 km × 10 km resolution above FORTH-CRETE AERONET station in Crete, Greece, for the 9-yr period from 2000 to 2008. The area is representative of the Eastern Mediterranean region, where air pollution and diminishing water resources are exacerbated by high aerosol loads and climate change. The present study aims to quantify the aerosol direct effect and forcing on the local energy budget. A radiative transfer model was used, with daily climatological data from the Moderate Resolution Imaging Spectroradiometer (MODIS, on board NASA's Terra and Aqua satellites. The radiative fluxes were computed at the surface, within the atmosphere and at the top of atmosphere (TOA. Downward surface fluxes and aerosol optical thickness (AOT were validated against ground measurements. Daily fluxes reveal the direct radiative effects of dust events, with mean daily values reaching up to −100, 55 and −30 W m−2 at the surface (cooling, within the atmosphere (warming and at TOA (cooling, respectively. Mean monthly values show a decreasing trend of the aerosol direct radiative effect, in agreement with a similar trend in AOT. The analysis of the contribution of anthropogenic and natural aerosol show major peaks of natural aerosol direct effect occurring mainly in spring, while a summer maximum is attributed to anthropogenic aerosol. During their peaks, anthropogenic aerosol forcing can reach values of −15 W m−2 at the surface, 8 W m−2 in the atmosphere and over −4 W m−2 at TOA (monthly mean values. The corresponding daily peak values for natural aerosol are over −10 W m−2, 6 W m−2 and −3 W m−2. Annual mean values and standard deviations (interannual variability of anthropogenic aerosol forcing are −10 ± 3 W m−2 at the surface, 5 ± 1 W m−2 in the atmosphere and −3 ± 1 W m

  8. Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data

    Directory of Open Access Journals (Sweden)

    Y. Balkanski

    2007-01-01

    Full Text Available Modelling studies and satellite retrievals do not agree on the amplitude and/or sign of the direct radiative perturbation from dust. Modelling studies have systematically overpredicted mineral dust absorption compared to estimates based upon satellite retrievals. In this paper we first point out the source of this discrepancy, which originates from the shortwave refractive index of dust used in models. The imaginary part of the refractive index retrieved from AERONET over the range 300 to 700 nm is 3 to 6 times smaller than that used previously to model dust. We attempt to constrain these refractive indices using a mineralogical database and varying the abundances of iron oxides (the main absorber in the visible. We first consider the optically active mineral constituents of dust and compute the refractive indices from internal and external mixtures of minerals with relative amounts encountered in parent soils. We then compute the radiative perturbation due to mineral aerosols for internally and externally mixed minerals for 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume. These constant amounts of hematite allow bracketing the influence of dust aerosol when it is respectively an inefficient, standard and a very efficient absorber. These values represent low, central and high content of iron oxides in dust determined from the mineralogical database. Linke et al. (2006 determined independently that iron-oxides represent 1.0 to 2.5% by volume using x-Ray fluorescence on 4 different samples collected over Morocco and Egypt. Based upon values of the refractive index retrieved from AERONET, we show that the best agreement between 440 and 1020 nm occurs for mineral dust internally mixed with 1.5% volume weighted hematite. This representation of mineral dust allows us to compute, using a general circulation model, a new global estimate of mineral dust perturbation between –0.47 and –0.24 Wm−2 at the top of the atmosphere, and between

  9. Theoretical Modelling of Sound Radiation from Plate

    Science.gov (United States)

    Zaman, I.; Rozlan, S. A. M.; Yusoff, A.; Madlan, M. A.; Chan, S. W.

    2017-01-01

    Recently the development of aerospace, automotive and building industries demands the use of lightweight materials such as thin plates. However, the plates can possibly add to significant vibration and sound radiation, which eventually lead to increased noise in the community. So, in this study, the fundamental concept of sound pressure radiated from a simply-supported thin plate (SSP) was analyzed using the derivation of mathematical equations and numerical simulation of ANSYS®. The solution to mathematical equations of sound radiated from a SSP was visualized using MATLAB®. The responses of sound pressure level were measured at far field as well as near field in the frequency range of 0-200 Hz. Result shows that there are four resonance frequencies; 12 Hz, 60 Hz, 106 Hz and 158 Hz were identified which represented by the total number of the peaks in the frequency response function graph. The outcome also indicates that the mathematical derivation correlated well with the simulation model of ANSYS® in which the error found is less than 10%. It can be concluded that the obtained model is reliable and can be applied for further analysis such as to reduce noise emitted from a vibrating thin plate.

  10. International Space Station Radiation Shielding Model Development

    Science.gov (United States)

    Qualls, G. D.; Wilson, J. W.; Sandridge, C.; Cucinotta, F. A.; Nealy, J. E.; Heinbockel, J. H.; Hugger, C. P.; Verhage, J.; Anderson, B. M.; Atwell, W.

    2001-01-01

    The projected radiation levels within the International Space Station (ISS) have been criticized by the Aerospace Safety Advisory Panel in their report to the NASA Administrator. Methods for optimal reconfiguration and augmentation of the ISS shielding are now being developed. The initial steps are to develop reconfigurable and realistic radiation shield models of the ISS modules, develop computational procedures for the highly anisotropic radiation environment, and implement parametric and organizational optimization procedures. The targets of the redesign process are the crew quarters where the astronauts sleep and determining the effects of ISS shadow shielding of an astronaut in a spacesuit. The ISS model as developed will be reconfigurable to follow the ISS. Swapping internal equipment rack assemblies via location mapping tables will be one option for shield optimization. Lightweight shield augmentation materials will be optimally fit to crew quarter areas using parametric optimization procedures to minimize the augmentation shield mass. The optimization process is being integrated into the Intelligence Synthesis Environment s (ISE s) immersive simulation facility at the Langley Research Center and will rely on High Performance Computing and Communication (HPCC) for rapid evaluation of shield parameter gradients.

  11. Aerosol single scattering albedo and its contribution to radiative forcing dung EAST- AIRE

    Science.gov (United States)

    Lee, K.; Li, Z.

    2007-12-01

    Quantification of aerosol single scattering albedo (SSA) can improve determining aerosol radiative property. Combination technique using MODIS and ground-based Hazemeter measurement data by the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) over China is proposed to retrieve SSA. The accuracy of the retrieval of SSA increases with the aerosol loading and the uncertainties in the SSA retrieval are 0.02~0.03 (AOT=1.0) and up to 0.03~0.05 (AOT=0.5) at 0.47¥ìm, respectively. The comparison of one- year data of retrieved SSA values with those from AERONET inversion product are ~0.03 (RMSD) and ~0.02 (mean bias), respectively. Estimated SSA values were range from 0.89 to 0.93 over the study area. Since SSA is an important factor of aerosol radiative forcing, these will help to understood the study of aerosol climate effects.

  12. Dependence of solar radiative forcing of forest fire aerosol on ageing and state of mixture

    Directory of Open Access Journals (Sweden)

    M. Fiebig

    2003-01-01

    Full Text Available During airborne in situ measurements of particle size distributions in a forest fire plume originating in Northern Canada, an accumulation mode number mean diameter of 0.34 mm was observed over Lindenberg, Germany on 9 August 1998. Realizing that this is possibly the largest value observed for this property in a forest fire plume, scenarios of plume ageing by coagulation are considered to explain the observed size distribution, concluding that the plume dilution was inhibited in parts of the plume. The uncertainties in coagulation rate and transition from external to internal mixture of absorbing forest fire and non-absorbing background particles cause uncertainties in the plume's solar instantaneous radiative forcing of 20-40% and of a factor of 5-6, respectively. Including information compiled from other studies on this plume, it is concluded that the plume's characteristics are qualitatively consistent with a radiative-convective mixed layer.

  13. Optical characteristics of the aerosol in Spain and Austria and its effect on radiative forcing

    Science.gov (United States)

    Horvath, H.; Alados Arboledas, L.; Olmo, F. J.; Jovanović, O.; Gangl, M.; Kaller, W.; SáNchez, C.; Sauerzopf, H.; Seidl, S.

    2002-10-01

    The horizontal and vertical attenuation of the aerosol, the sky radiance, and the light absorption coefficient of the aerosol have been determined at wavelengths in the visible. From this set of data the following optical characteristics of the atmospheric aerosol could be derived: vertical optical depth, horizontal extinction and absorption coefficient, scattering phase function, asymmetry parameter, and single scattering albedo. Campaigns have been performed in Almería, Spain, and Vienna, Austria. The aerosol undergoes a considerable variation, as experienced by many other studies. Sometimes the vertical and the horizontal measurements gave similar data; on other days the aerosol at the surface and the aerosol aloft were completely different. The "clearest" aerosol always had the smallest single scattering albedo and thus relatively the highest light absorption. The optical characteristics of the aerosol in the two very different locations were very similar. Using the measured optical data, a radiative transfer calculation was performed, and the radiation reaching the ground was calculated. Comparing the values for the clear aerosol and the days with higher aerosol load, the radiative forcing due to the additional aerosol particles could be determined. The forcing of the aerosol at the ground is always negative, and at the top of the atmosphere it is close to zero or slightly negative. Its dependence on wavelength and zenith angle is presented. The preindustrial aerosol in Europe was estimated, and the forcing due to the present-day aerosol was determined. At the surface it is negative, but at the top of the atmosphere it is close to zero or positive. This is caused by the light absorption of the European aerosol, which is higher than in most other locations.

  14. A Radiative Transport Model for Blazars

    Science.gov (United States)

    Lewis, Tiffany; Justin, Finke; Becker, Peter A.

    2017-01-01

    Blazars are observed across the electromagnetic spectrum, often with strong variability throughout. The underlying electron distribution associated with the observed emission is typically not computed from first principles. We start from first-principles to build up a transport model, whose solution is the electron distribution, rather than assuming a convenient functional form. Our analytical transport model considers shock acceleration, adiabatic expansion, stochastic acceleration, Bohm diffusion, and synchrotron radiation. We use this solution to generate predictions for the X-ray spectrum and time lags, and compare the results with data products from BeppoSAX observations of X-ray flares from Mrk 421. This new self-consistent model provides an unprecedented view into the jet physics at play in this source, especially the strength of the shock and stochastic acceleration components and the size of the acceleration region.More recently, we augmented the transport model to incorporate Compton scattering, including Klein-Nishina effects. In this case, an analytical solution cannot be derived, and therefore we obtain the steady-state electron distribution computationally. We compare the resulting radiation spectrum with multi-wavelength data for 3C 279. We show that our new Compton + synchrotron blazar model is the first to successfully fit the FermiLAT gamma-ray data for this source based on a first-principles physical calculation.

  15. Explanation for the Transverse Radiation Force Observed on a Vertically Hanging Fiber

    CERN Document Server

    Brevik, Iver

    2014-01-01

    As shown in the experiment of She {\\it et al.} [Phys. Rev. Lett. {\\bf 101}, 243601 (2008)], a weak laser beam sent through a vertically hanging fiber exerts a transverse force and produces a lateral displacement of the fiber's lower end. The experiment is of obvious theoretical interest in connection with the electromagnetic theory of media. Suggested explanations given for this effect in the past include the famous Abraham-Minkowski issue concerning the "correct" photon momentum in matter. In our opinion such an explanation can hardly be right. Instead, we propose instead a very simple description of the effect implying that the sideways deflection is caused by the radiation force on the {\\it obliquely cut} lower end face of the fiber. From a calculation based upon geometrical optics, we find quite good agreement with the observations. We present also, as an alternative approach, a calculation involving wave optics instead of geometrical optics, and find comparable results.

  16. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  17. Infrared absorption cross section, radiative forcing, and GWP of four hydrofluoro(poly)ethers

    Science.gov (United States)

    Myhre, G.; Nielsen, C. J.; Powell, D. L.; Stordal, F.

    Quantitative infrared cross-sections of the unbranched hydrofluoro(poly)ethers CHF 2OCHF 2, CHF 2OCF 2OCHF 2 and CHF 2OCF 2CF 2OCHF 2 have been obtained at 298 K in the region 25-4000 cm -1. Radiative forcing calculations have been performed for these compounds and for CHF 2OCF 2OCF 2CF 2OCHF 2, and the values found per molecule are high compared to those of other CFCs and CFC replacements. Atmospheric lifetimes, calculated on the basis of experimental reaction rates with OH radicals, and global warming potentials are presented for all four compounds.

  18. Radiation forces on a Rayleigh dielectric sphere produced by highly focused parabolic scaling Bessel beams.

    Science.gov (United States)

    Guo, Mengwen; Zhao, Daomu

    2017-02-20

    The radiation forces on a Rayleigh dielectric particle induced by a highly focused parabolic scaling Bessel beam (PSBB) are investigated. Numerical results show that the zero-order PSBB can be used to trap a high-index particle at the focus and near the focus by the first-order PSBB. For the low-index particle, it can be guided or confined in the dark core of the nonzero-order PSBB but cannot be stably trapped in this single-beam trap. Further, we analyze the condition of trapping stability. It is found that the lower limit in the particle radius for stable trapping is different for different orders.

  19. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    Science.gov (United States)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  20. Acoustic radiation force in tissue-like solids due to modulated sound field

    Science.gov (United States)

    Dontsov, Egor V.; Guzina, Bojan B.

    2012-10-01

    The focus of this study is the sustained body force (the so-called acoustic radiation force) in homogeneous tissue-like solids generated by an elevated-intensity, focused ultrasound field (Mach number=O(10-3)) in situations when the latter is modulated by a low-frequency signal. This intermediate-asymptotics problem, which bears relevance to a number of emerging biomedical applications, is characterized by a number of small (but non-vanishing) parameters including the Mach number, the ratio between the modulation and ultrasound frequency, the ratio of the shear to bulk modulus, and the dimensionless attenuation coefficient. On approximating the response of soft tissues as that of a nonlinear viscoelastic solid with heat conduction, the featured second-order problem is tackled via a scaling paradigm wherein the transverse coordinates are scaled by the width of the focal region, while the axial and temporal coordinate are each split into a "fast" and "slow" component with the twin aim of: (i) canceling the linear terms from the field equations governing the propagation of elevated-intensity ultrasound, and (ii) accounting for the effect of ultrasound modulation. In the context of the focused ultrasound analyses, the key feature of the proposed study revolves around the dual-time-scale treatment of the temporal variable, which allows one to parse out the contribution of ultrasound and its modulation in the nonlinear solution. In this way the acoustic radiation force (ARF), giving rise to the mean tissue motion, is exacted by computing the "fast" time average of the germane field equations. A comparison with the existing theory reveals a number of key features that are brought to light by the new formulation, including the contributions to the ARF of ultrasound modulation and thermal expansion, as well as the precise role of constitutive nonlinearities in generating the sustained body force in tissue-like solids by a focused ultrasound beam.