WorldWideScience

Sample records for modeling radiant energy

  1. Conversion of radiant light energy in photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Cornet, J.F.; Dussap, C.G.; Gros, J.B. (Univ. Blase Pascal, Aubiere (France). Lab. de Genie Chimique Biologique)

    1994-06-01

    The conversion of radiant light energy into chemical affinity by microorganisms in photobioreactors is examined. The kinetics of entropy production in the system is theoretically established from entropy and energy balances for the material and photonic phases in the reactor. A negative chemical affinity term compensated for by a radiant energy term at a higher level of energy characterizes photosynthetic organisms. The local volumetric rate of radiant light energy absorbed, which appears in the dissipation function as an irreversible term, is calculated for monodimensional approximations providing analytical solutions and for general tridimensional equations requiring the solution of a new numerical algorithm. Solutions for the blue-green alga Spirulina platensis cultivated in photoreactors with different geometries and light energy inputs are compared. Thermodynamic efficiency of the photosynthesis is calculated. The highest value of 15% found for low radiant energy absorption rates corresponds to a maximum quantum yield in the reactor.

  2. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5

  3. Radiant recuperator modelling and design

    Directory of Open Access Journals (Sweden)

    Knežević Suzana D.

    2017-01-01

    Full Text Available Recuperators are frequently used in glass production and metallurgical processes to preheat combustion air by heat exchange with high temperature flue gases. Mass and energy balances of a 15 m high, concurrent radiant recuperator used in a glass fiber production process are given. The balances are used: for validation of a cell modeling method that predicts the performance of different recuperator designs, and for finding a simple solution to improve the existing recuperator. Three possible solutions are analyzed: to use the existing recuperator as a countercurrent one, to add an extra cylinder over the existing construction, and to make a system that consists of a central pipe and two concentric annular ducts. In the latter, two air streams flow in opposite directions, whereas air in the inner annular passage flows concurrently or countercurrently to flue gases. Compared with the concurrent recuperator, the countercurrent has only one drawback: the interface temperature is higher at the bottom. The advantages are: lower interface temperature at the top where the material is under maximal load, higher efficiency, and smaller pressure drop. Both concurrent and countercurrent double pipe-in-pipe systems are only slightly more efficient than pure concurrent and countercurrent recuperators, respectively. Their advantages are smaller interface temperatures whereas the disadvantages are their costs and pressure drops. To implement these solutions, the average velocities should be: for flue gas around 5 m/s, for air in the first passage less than 2 m/s, and for air in the second passage more than 25 m/s. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. EE 33027

  4. Thermal model of attic systems with radiant barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K.E.

    1991-07-01

    This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.

  5. Clouds and the Earth's Radiant Energy System

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)

    The Clouds and the Earth's Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. The CERES instrument provides radiometric measurements of the Earth's atmosphere from three broadband channels. The CERES missions are a follow-on to the successful Earth Radiation Budget Experiment (ERBE) mission. The first CERES instrument (PFM) was launched on November 27, 1997, as part of the Tropical Rainfall Measuring Mission (TRMM). Two CERES instruments (FM1 and FM2) were launched into polar orbit on board the EOS flagship Terra on December 18, 1999, and two additional CERES instruments (FM3 and FM4) were launched on board EOS Aqua on May 4,2002. [Mission Objectives] The scientific justification for the CERES measurements can be summarized by three assertions: (1) changes in the radiative energy balance of the Earth-atmosphere system can cause long-term climate changes (e.g., carbon dioxide inducing global warming); (2) besides the systematic diurnal and seasonal cycles of incoming solar energy, changes in cloud properties (amount, height, optical thickness) cause the largest changes of the Earth's radiative energy balance; and (3) cloud physics is one of the weakest components of current climate models used to predict potential global climate change. CERES has four main objectives: 1) For climate change analysis, provide a continuation of the ERBE record of radiative fluxes at the top of the atmosphere (TOA), analyzed using the same algorithms that produced the ERBE data. 2) Double the accuracy of estimates of radiative fluxes at TOA and the Earth's surface. 3) Provide the first long-term global estimates of the radiative fluxes within the Earth's atmosphere. 4) Provide cloud property estimates that are consistent with the radiative fluxes from surface to TOA. [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  6. Design of energy efficient building with radiant slab cooling

    Science.gov (United States)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  7. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Directory of Open Access Journals (Sweden)

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  8. Mathematical modelling, variational formulation and numerical simulation of the energy transfer process in a gray plate in the presence of a thermal radiant source

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-05-01

    The energy transfer process in a gray, opaque and rigid plate, heated by an external thermal radiant source, is considered. The source is regarded as a spherical black body, with radius a (a → 0) and uniform heat generation, placed above the plate. A mathematical model is constructed, assuming that the heat transfer from/to the plate takes place by thermal radiation. The obtained mathematical model is nonlinear. Is presented a suitable variational principle which is employed for simulating some particular cases. (author)

  9. Clouds and the Earth's Radiant Energy System (CERES)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Clouds and the Earth's Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. The CERES instruments provide radiometric...

  10. ''Super-radiant'' states in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Auerbach, N.

    1994-01-01

    A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work

  11. Radiant energy dosimeter for field use

    Science.gov (United States)

    A. Broido; A.W. McMasters

    1967-01-01

    Thermal radiation measurements in Project Flambeau fires involved a limited number of conventional radiometers located outside the fire periphery. A simple, cheap, easily-fabricated, light-weight, self-contained, rugged dosimeter was desired to withstand a hot fire environment, including a specific energy input of 5,000 cal cm -2, and to record...

  12. Radiant energy collection and conversion apparatus and method

    Science.gov (United States)

    Hunt, A.J.

    The apparatus for collecting radiant energy and converting to alternate energy forms includes a housing having an interior space and a radiation transparent window allowing solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past the window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  13. A radiant energy imaging apparatus for examination of a body

    International Nuclear Information System (INIS)

    Swift, D.D.

    1981-01-01

    A radiant energy imaging apparatus for obtaining CT scans is described. It employs a rotating unit operative to produce a scanning pencil beam of X-ray radiant energy by use of a mechanical scanning device. This consists of a first collimator which shapes radiation emitted from an X-ray source into a fan-shaped beam of X-rays, and a second collimator comprising a disc-shaped chopper wheel which is rotated through the fan-shaped beam. A single pencil beam is produced and caused to scan through an angle, sufficiently great to embrace a cross section of a body being examined, onto a single detector forming a portion of the rotating unit and located on the side of the body opposite to the X-ray source and mechanical scanning device. In addition to being used as a CT scanner, the system can be used to generate its own localization images and to perform digital radiography on those images and, because of the relative rotation feature, can be employed in this mode of operation to obtain anterior-posterior, lateral or oblique images at any desired angle. (Auth.)

  14. Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Carman, Stephen L.; Cooper, John E.; Miller, James; Harrison, Edwin F.; Barkstrom, Bruce R.

    1992-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) experiment will play a major role in NASA's multi-platform Earth Observing System (EOS) program to observe and study the global climate. The CERES instruments will provide EOS scientists with a consistent data base of accurately known fields of radiation and of clouds. CERES will investigate the important question of cloud forcing and its influence on the radiative energy flow through the Earth's atmosphere. The CERES instrument is an improved version of the ERBE (Earth Radiation Budget Experiment) broadband scanning radiometer flown by NASA from 1984 through 1989. This paper describes the science of CERES, presents an overview of the instrument preliminary design, and outlines the issues related to spacecraft pointing and attitude control.

  15. Clouds and the Earth's Radiant Energy System (CERES) experiment

    Science.gov (United States)

    Cooper, John E.; Barkstrom, Bruce R.; Kopia, Leonard P.

    1992-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) experiment will play a major role in NASA's planned multi-instrument multi-satellite Earth Observing System (EOS) program to observe and study the total Earth System on a global scale. The CERES experiment will provide EOS with a consistent data base of accurately known fields of radiation and of clouds; and will investigate the important question of the impact of clouds upon the radiative energy flow through the earth-atmosphere system. The CERES instruments will be an improved version of the Earth Radiation Budget Experiment (ERBE) broadband scanning radiometer instruments flown by NASA in the 1980s. This paper describes the CERES experiment approach and the current CERES instrument design status.

  16. 16 CFR Figure 8 to Subpart A of... - Standard Radiant Heat Energy Flux Profile

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Standard Radiant Heat Energy Flux Profile 8 Figure 8 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER..., Subpt. A, Fig. 8 Figure 8 to Subpart A of Part 1209—Standard Radiant Heat Energy Flux Profile EC03OC91...

  17. Dynamic heat transfer modeling and parametric study of thermoelectric radiant cooling and heating panel system

    International Nuclear Information System (INIS)

    Luo, Yongqiang; Zhang, Ling; Liu, Zhongbing; Wang, Yingzi; Wu, Jing; Wang, Xiliang

    2016-01-01

    Highlights: • Dynamic model of thermoelectric radiant panel system is established. • The internal parameters of thermoelectric module are dynamically calculated in simulation. • Both artificial neural networks model and system model are verified through experiment data. • Optimized system structure is obtained through parametric study. - Abstract: Radiant panel system can optimize indoor thermal comfort with lower energy consumption. The thermoelectric radiant panel (TERP) system is a new and effective prototype of radiant system using thermoelectric module (TEM) instead of conventional water pipes, as heat source. The TERP can realize more stable and easier system control as well as lower initial and operative cost. In this study, an improved system dynamic model was established by combining analytical system model and artificial neural networks (ANN) as well as the dynamic calculation functions of internal parameters of TEM. The double integral was used for the calculation of surface average temperature of TERP. The ANN model and system model were in good agreement with experiment data in both cooling and heating mode. In order to optimize the system design structure, parametric study was conducted in terms of the thickness of aluminum panel and insulation, as well as the arrangement of TEMs on the surface of radiant panel. It was found through simulation results that the optimum thickness of aluminum panel and insulation are respectively around 1–2 mm and 40–50 mm. In addition, TEMs should be uniformly installed on the surface of radiant panel and each TEM should stand at the central position of a square-shaped typical region with length around 0.387–0.548 m.

  18. Design and Analysis of a Floor Radiant Heating System Based on Energy Substitution Technology

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2018-03-01

    Full Text Available With the development of renewable energy, energy substitution technology has been applied to many fields. This research suggests that solar energy, as renewable energy, takes the place of conventional energy: a floor radiant heating system driven by solar energy is combined with a photovoltaic floor radiant heating system, and the photothermal floor radiant heating system has been proposed and investigated in this study. This research also designs a fuzzy PID (Proportion, Integration, Differentiation control system to control the indoor temperature within the set range precisely. In this paper, the proposed floor radiant heating system has been tested and analyzed. The experimental results show that the inhomogeneity of the indoor floor surface temperature distribution is larger than that of other places, and the standard deviation of the indoor floor surface temperature can reach 1.87 °C. The standard deviation was approximately 0.36 °C at 0.6 m, 1.2 m and 1.8 m, which indicates this is suitable for habitation. Three kinds of floor radiant heating systems were compared and analyzed to demonstrate the advantage of the proposed floor radiant heating system. The calculation method of the heating system was proposed and applied to the actual heating system in this paper. The proposed floor radiant heating system is a highly efficient and environmental protection system that can be used for heating extensive areas to realize the objective of energy saving and emission reduction.

  19. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  20. SOLWEIG 1.0 Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings

    Science.gov (United States)

    Lindberg, Fredrik; Holmer, Björn; Thorsson, Sofia

    2008-09-01

    The mean radiant temperature, Tmrt, which sums up all shortwave and longwave radiation fluxes (both direct and reflected) to which the human body is exposed is one of the key meteorological parameters governing human energy balance and the thermal comfort of man. In this paper, a new radiation model (SOLWEIG 1.0), which simulates spatial variations of 3D radiation fluxes and Tmrt in complex urban settings, is presented. The Tmrt is derived by modelling shortwave and longwave radiation fluxes in six directions (upward, downward and from the four cardinal points) and angular factors. The model requires a limited number of inputs, such as direct, diffuse and global shortwave radiation, air temperature, relative humidity, urban geometry and geographical information (latitude, longitude and elevation). The model was evaluated using 7 days of integral radiation measurements at two sites with different building geometries a large square and a small courtyard in Göteborg, Sweden (57°N) across different seasons and in various weather conditions. The evaluation reveals good agreement between modelled and measured values of Tmrt, with an overall good correspondence of R 2 = 0.94, ( p < 0.01, RMSE = 4.8 K). SOLWEIG 1.0 is still under development. Future work will incorporate a vegetation scheme, as well as an improvement of the estimation of fluxes from the four cardinal points.

  1. SOLWEIG 1.0--modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings.

    Science.gov (United States)

    Lindberg, Fredrik; Holmer, Björn; Thorsson, Sofia

    2008-09-01

    The mean radiant temperature, T(mrt), which sums up all shortwave and longwave radiation fluxes (both direct and reflected) to which the human body is exposed is one of the key meteorological parameters governing human energy balance and the thermal comfort of man. In this paper, a new radiation model (SOLWEIG 1.0), which simulates spatial variations of 3D radiation fluxes and T(mrt) in complex urban settings, is presented. The T(mrt) is derived by modelling shortwave and longwave radiation fluxes in six directions (upward, downward and from the four cardinal points) and angular factors. The model requires a limited number of inputs, such as direct, diffuse and global shortwave radiation, air temperature, relative humidity, urban geometry and geographical information (latitude, longitude and elevation). The model was evaluated using 7 days of integral radiation measurements at two sites with different building geometries--a large square and a small courtyard in Göteborg, Sweden (57 degrees N)--across different seasons and in various weather conditions. The evaluation reveals good agreement between modelled and measured values of T(mrt), with an overall good correspondence of R (2) = 0.94, (p < 0.01, RMSE = 4.8 K). SOLWEIG 1.0 is still under development. Future work will incorporate a vegetation scheme, as well as an improvement of the estimation of fluxes from the four cardinal points.

  2. Bi-radiant oven: a low-energy oven system. Volume I. Development and assessment

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, D.P.; Peart, M.V.

    1980-04-01

    The Bi-Radiant Oven system has three important features which provide improved performance. First, the cavity walls are highly reflective rather than absorptive thereby allowing these surfaces to operate at cooler temperatures. Second, the heating elements, similar in construction to those in a conventional oven, but operating at much lower temperatures, provide a prescribed, balanced radiant flux to the top and bottom surfaces of the food product. And third, the baking and roasting utensil has a highly absorptive finish. Instrumentation and methods of measurements have been developed for obtaining the important oven and food parameters during baking: wall, oven air, food and element temperatures; food mass loss rate; irradiance distribution; and convection heat flux. Observations on an experimental oven are presented and discussed. Thermal models relating the irradiance distribution to oven parameters have been compared with measurements using a new heat flux gage developed for the project. Using the DOE recommended test procedures, oven efficiencies of 20 to 23% have been measured. The heating requirements have been determined for seven food types: biscuits, meat loaf, baked foods, apple crisp, cornbread, macaroni and cheese casserole, and cheese souffle. Comparison of energy use with a conventional electric oven shows that energy savings greater than 50% can be realized. Detailed energy balances have been performed on two foods - beef roasts and yellow cake. Consideration of consumer acceptability of this new oven concept have been addressed.

  3. Testing and thermal modeling of radiant panels systems as commissioning tool

    International Nuclear Information System (INIS)

    Fonseca Diaz, Nestor; Cuevas, Cristian

    2010-01-01

    This paper presents the results of a study performed to develop a thermal modeling of radiant panels systems to be used in situ, as diagnosis tool in commissioning processes to determine the main operating conditions of the system in cooling or heating mode. The model considers the radiant panels as a finned heat exchanger in dry regime. By using as inputs the ceiling and room dimensions, the radiant ceiling material properties and the measurements of air and water mass flow rates and temperatures, the model is able to calculate the radiant ceiling capacity, ceiling surface average temperature, water exhaust temperature and resultant temperature as a comfort indicator. The modeling proposed considers combined convection, perforation effect and a detailed radiative heat exchange method for radiant ceiling systems. An example of each system considered in this study is shown, illustrating the validation of the model. A sensitive analysis of the model is performed.

  4. Energy efficiency and indoor thermal perception. A comparative study between radiant panel and portable convective heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H.; Morsy, Mahmoud Gaber [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut, 71516 (Egypt)

    2010-11-15

    This study investigates experimentally the thermal perception of indoor environment for evaluating the ability of radiant panel heaters to produce thermal comfort for space occupants as well as the energy consumption in comparison with conventional portable natural convective heaters. The thermal perception results show that, compared with conventional convection heater, a radiantly heated office room maintains a lower ambient air temperature while providing equal levels of thermal perception on the thermal dummy head as the convective heater and saves up to 39.1% of the energy consumption per day. However, for human subjects' vote experiments, the results show that for an environmentally controlled test room at outdoor environment temperatures of 0C and 5C, using two radiant panel heaters with a total capacity of 580 W leads to a better comfort sensation than the conventional portable natural convective heater with a 670 W capacity, with an energy saving of about 13.4%. In addition, for an outdoor environment temperature of 10C, using one radiant panel heater with a capacity of 290 W leads to a better comfort sensation than the conventional convection heater with a 670 W capacity, with an energy saving of about 56.7%. From the analytical results, it is found that distributing the radiant panel heater inside the office room, one on the wall facing the window and the other on the wall close to the window, provides the best operative temperature distribution within the room.

  5. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    Science.gov (United States)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  6. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Science.gov (United States)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  7. Atmospheric radiative flux divergence from Clouds and Earth Radiant Energy System (CERES)

    Science.gov (United States)

    Smith, Louis G.; Charlock, Thomas P.; Crommelynk, D.; Rutan, David; Gupta, Shashi

    1990-01-01

    A major objective of the Clouds and Earth Radiant Energy System (CERES) is the computation of vertical profiles through the atmosphere of the divergence of radiation flux, with global coverage. This paper discusses the need for radiation divergence and presents some options for its inference from CERES measurements and other data from the Earth Observating System.

  8. Photosynthesis and leaf morphology of Liquidambar styraciflua L. under variable urban radiant-energy conditions

    Science.gov (United States)

    Kjelgren, Roger K.; Clark, James R.

    1992-09-01

    Diminished sunlight, characteristic of urban canyons, has been suggested as being potentially limiting to plant growth. This study investigated the response of sweetgum ( Liquidambar styraciflua L.) to variable irradiance in a range of urban locations. Diurnal photosynthesis was measured in situ on mature trees, comparing an open site at an urban park with an urban canyon that received 4 h of midday sun in midsummer. Photosynthesis for trees growing in the canyon was lower both during shaded and sunlit periods compared with trees at the park. Photosynthesis of detached shoots in a growth chamber was greater in canyon than park foliage at low irradiance, indicating possible photosynthetic shade acclimation analogous to tree species growing in the forest understorey. Shoot and trunk growth and morphological characteristics were measured on L. styraciflua growing along boulevards at 15 additional urban sites and related to seasonal interception of solar radiation. Angular elevation and orientation of buildings and trees that defined the horizon topography at each site were used in modeling the potential irradiance of global shortwave radiation. Seasonal irradiance among sites ranged from 21% in the urban core to nearly 95% in outlying residential districts of that potentially received under an unobstructed horizon. Shade acclimation was confirmed by differences in leaf morphology, as foliage became flatter, thinner, and more horizontally oriented at sites with lower irradiance. Photosynthetic and morphological acclimation to shade did not compensate for lower available radiant energy as both shoot and trunk growth decreased at sites of lower irradiance. Unlike the forest understorey, the static light environment of urban canyons may subject shade-intolerant species such as L. styraciflua to chronic, low-radiant-energy stress.

  9. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  10. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... in the ventilation losses (or gains). At low air-change rates (below 0.5 ACH), radiant and air-based terminals have similar energy needs. For higher air change rate, the energy consumption of radiant terminals is lower than that of air-based terminals due to the higher air temperature. At 2 ACH, the energy savings...... of a radiant wall can be estimated to around 10% compared to the active chilled beam (in terms of delivered energy). The asymmetry between air and radiant temperature, the air temperature gradient and the possible short-circuit between inlet and outlet all play a role equally important in decreasing...

  11. The Clouds and the Earth's Radiant Energy System Elevation Bearing Assembly Life Test

    Science.gov (United States)

    Brown, Phillip L.; Miller, James B.; Jones, William R., Jr.; Rasmussen, Kent; Wheeler, Donald R.; Rana, Mauro; Peri, Frank

    1999-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) elevation scan bearings lubricated with Pennzane SHF X2000 and 2% lead naphthenate (PbNp) were life tested for a seven-year equivalent Low Earth Orbit (LEO) operation. The bearing life assembly was tested continuously at an accelerated and normal rate using the scanning patterns developed for the CERES Earth Observing System AM-1 mission. A post-life-test analysis was performed on the collected data, bearing wear, and lubricant behavior.

  12. Radiometric Performance of the Clouds and The Earth's Radiant Energy System (CERES) Proto-Flight Model on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft for 1998

    Science.gov (United States)

    Priestley, Kory J.; Lee, Robert B., III; Green, Richard N.; Thomas, Susan; Wilson, Robert S.

    1999-01-01

    On November 27, 1997 the CERES Proto-Flight Model (PFM) instrument package was launched on the NASA Tropical Rainfall Measuring Mission (TRMM) spacecraft National Space Development Agency) NASA /Japan launch vehicle placed the TRMM spacecraft into a low-inclination 35-deg, 350-km altitude orbit. Analysis of the first thirteen months of on-orbit internal calibration and calibration validation studies indicate that the ground-based radiometric calibrations, which were tied to ITS'90 have been successfully carried into orbit to within 0.12, 0.08, and 0.29 percent for the Total, Window and Shortwave channels respectively. Additionally, these analyses have indicated that on-orbit radiometric stability has remained at levels of better than 0.13. 0.2 and 0.2-percent for the Total Window and Shortwave channels. In TOA these levels correspond to magnitudes of less than 0.3, 0.2 and 0.15 v /sq m.

  13. Effects of Floor Covering Resistance of a Radiant Floor on System Energy and Exergy Performances

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Floor covering resistance (material and thickness) can be influenced by subjective choices (architectural design, interior design, texture, etc.) with significant effects on the performance of a radiant heating and cooling system. To study the effects of floor covering resistance on system...... performance, a water-based radiant floor heating and cooling system (dry, wooden construction) was considered to be coupled to an air-to-water heat pump, and the effects of varying floor covering resistances (0.05 m2K/W, 0.09 m2K/W and 0.15 m2K/W) on system performance were analyzed in terms of energy...... and exergy. In order to achieve the same heating and cooling outputs, higher average water temperatures are required in the heating mode (and lower temperatures in the cooling mode) with increasing floor covering resistance. These temperature requirements decrease the heat pump’s performance (lower...

  14. Radiant Research. Institute for Energy Technology 1948-98

    International Nuclear Information System (INIS)

    Njoelstad, Olav

    1999-01-01

    Institutt for Atomenergi (IFA), or Institute for Atomic Energy, at Kjeller, Norway, was founded in 1948. The history of the institute as given in this book was published in 1999 on the occasion of the institute's 50th anniversary. The scope of the institute was to do research and development as a foundation for peaceful application of nuclear energy and radioactive substances in Norway. The book tells the story of how Norway in 1951 became the first country after the four superpowers and Canada to have its own research reactor. After the completion of the reactor, the institute experienced a long and successful period and became the biggest scientific and technological research institute in Norway. Three more reactors were built, one in Halden and two at Kjeller. Plans were developed to build nuclear powered ships and nuclear power stations. It became clear, however, in the 1970s, that there was no longer political support for nuclear power in Norway, and it was necessary for the institute to change its research profile. In 1980, the institute changed its name to Institutt for energiteknikk (IFE), or Institute for energy technology, to signal the broadened scope. The book describes this painful but successful readjustment and shows how IFE in the 1980s and 1990s succeeded in using its special competence from the nuclear field to establish special competence in new research fields with great commercial potential

  15. Molecules, Water, and Radiant Energy: New Clues for the Origin of Life

    Science.gov (United States)

    Pollack, Gerald H.; Figueroa, Xavier; Zhao, Qing

    2009-01-01

    We here examine the putative first step in the origin of life: the coalescence of dispersed molecules into a more condensed, organized state. Fresh evidence implies that the driving energy for this coalescence may come in a manner more direct than previously thought. The sun’s radiant energy separates charge in water, and this free charge demonstrably induces condensation. This condensation mechanism puts water as a central protagonist in life rather than as an incidental participant, and thereby helps explain why life requires water. PMID:19468316

  16. Thermal Comfort and Energy Consumption Using Different Radiant Heating/Cooling Systems in a Modern Office Building

    Science.gov (United States)

    Nemethova, Ema; Stutterecker, Werner; Schoberer, Thomas

    2017-06-01

    The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II.) for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.

  17. Thermal Comfort and Energy Consumption Using Different Radiant Heating/Cooling Systems in a Modern Office Building

    Directory of Open Access Journals (Sweden)

    Nemethova Ema

    2017-06-01

    Full Text Available The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II. for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.

  18. Cloud Effects on Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data

    Science.gov (United States)

    Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.

    2008-01-01

    The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.

  19. Clouds and the Earth's Radiant Energy System (CERES) Visualization Single Satellite Footprint (SSF) Plot Generator

    Science.gov (United States)

    Barsi, Julia A.

    1995-01-01

    The first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched in 1997 to collect data on the Earth's radiation budget. The data retrieved from the satellite will be processed through twelve subsystems. The Single Satellite Footprint (SSF) plot generator software was written to assist scientists in the early stages of CERES data analysis, producing two-dimensional plots of the footprint radiation and cloud data generated by one of the subsystems. Until the satellite is launched, however, software developers need verification tools to check their code. This plot generator will aid programmers by geolocating algorithm result on a global map.

  20. Using Lunar Observations to Validate In-Flight Calibrations of Clouds and Earth Radiant Energy System Instruments

    Science.gov (United States)

    Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan

    2014-01-01

    The validation of in-orbit instrument performance requires stability in both instrument and calibration source. This paper describes a method of validation using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. Unlike internal calibrations, the Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, in-orbit observations have become standardized and compiled for the Flight Models-1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance parameters which can be gleaned are detector gain, pointing accuracy and static detector point response function validation. Lunar observations are used to examine the stability of all three detectors on each of these instruments from 2006 to present. This validation method has yielded results showing trends per CERES data channel of 1.2% per decade or less.

  1. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...... not achieve the same uniformity in space. The active chilled beam theoretically achieves the most uniform comfort conditions (when disregarding the risk of draught), followed by the radiant ceiling. The least uniform conditions were obtained with the cooled floor due to large differences between the sitting...

  2. The Effects of Mean Radiant Temperature on Thermal Comfort, Energy Consumption and Control – A Critical Overview

    NARCIS (Netherlands)

    E. Halawa; J. van Hoof; V. Soebarto

    2014-01-01

    Halawa, E., van Hoof, J., Soebarto, V. (2014) The Effects of Mean Radiant Temperature on Thermal Comfort, Energy Consumption and Control – A Critical Overview. Renewable & Sustainable Energy Review 37:907-918 doi: 10.1016/j.rser.2014.05.040

  3. Solar–terrestrial radiant-energy regimes and temperature anomalies of natural and artificial turfs

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2016-01-01

    Highlights: • Solar and terrestrial radian energy regimes affect temperature response of sports turfs. • Adjacent natural and artificial turfs were monitored with replications on sunny days. • Artificial turf has meager albedo, low specific heat and moisture to augment warming. • Artificial turf surface and substrate reach 70 °C but cool down effectively at night. • Artificial turf may induce heat stress on athletes in hot summer afternoon. - Abstract: Artificial turf can develop unusually high surface temperature on hot sunny days. Solar and terrestrial radiant energy regimes as key determinants of thermal performance deserve detailed investigation. This study evaluated six components of the radiant-energy environment of a natural turf (NT) and a contiguous artificial turf (AT) sports fields in Hong Kong: direct solar, reflected solar, net solar, sky thermal, ground thermal, and net thermal. Temperature was monitored at five positions: air at 150 cm, 50 cm and 15 cm height, turf surface, and substrate. The experiment included four replications, namely two summer sunny days, and two duplicated instrument sets at each turf site. The two sites reacted very differently to the same intense daily sum of solar radiation input of 23.70 MW m −2 with 9 h of bright sunshine (>120 W m −2 ), and daily sum of sky thermal radiation input of 38.59 MW m −2 . The maximum direct solar radiation reached 976.1 W m −2 at 1245 h. NT albedo of 0.23 vis-à-vis AT of merely 0.073, and higher moisture content and specific heat of NT materials, presented critical differences. The hydrophobic and generally dry plastic (polyethylene) pile-fibers and black rubber-granule infill materials have low specific heat. Intense incoming shortwave and longwave radiation absorbed readily by AT materials raised turf surface temperature to 70.2 °C and substrate 69.3 °C, in comparison with <40 °C at NT. A cascading warming effect was triggered, beginning with low albedo, high net solar

  4. Determination of Unfiltered Radiances from the Clouds and the Earth's Radiant Energy System (CERES) Instrument

    Science.gov (United States)

    Loeb, N. G.; Priestley, K. J.; Kratz, D. P.; Geier, E. B.; Green, R. N.; Wielicki, B. A.; Hinton, P. OR.; Nolan, S. K.

    2001-01-01

    A new method for determining unfiltered shortwave (SW), longwave (LW) and window (W) radiances from filtered radiances measured by the Clouds and the Earth's Radiant Energy System (CERES) satellite instrument is presented. The method uses theoretically derived regression coefficients between filtered and unfiltered radiances that are a function of viewing geometry, geotype and whether or not cloud is present. Relative errors in insta.ntaneous unfiltered radiances from this method are generally well below 1% for SW radiances (approx. 0.4% 1(sigma) or approx.l W/sq m equivalent flux), < 0.2% for LW radiances (approx. 0.1% 1(sigma) or approx.0.3 W/sq m equivalent flux) and < 0.2% (approx. 0.1% 1(sigma) for window channel radiances.

  5. Clouds and the Earth's Radiant Energy System (CERES) - An Earth Observing System experiment

    Science.gov (United States)

    Wielicki, Bruce A.; Barkstrom, Bruce R.

    1991-01-01

    An overview is presented of the CERES experiment that is designed not only to monitor changes in the earth's radiant energy system and cloud systems but to provide these data with enough accuracy and simultaneity to examine the critical climate/cloud feedback mechanisms which may play a major role in determining future changes in the climate system. CERES will estimate not only the flow of radiation at the top of the atmosphere, but also more complete cloud properties that will permit determination of radiative fluxes within the atmosphere and at the surface. The CERES radiation budget data is also planned for utilization in a wide range of other Earth Observing System interdisciplinary science investigations, including studies of land, biological, ocean and atmospheric processes.

  6. The Influence of a Radiant Panel System with Integrated Phase Change Material on Energy Use and Thermal Indoor Environment

    DEFF Research Database (Denmark)

    Nielsen, Lin Flemming; Bourdakis, Eleftherios; Kazanci, Ongun Berk

    2018-01-01

    This study examined the effect on energy use and thermal comfort when combining microencapsulated phase change material (PCM) with radiant ceiling panels in a two-person office. The performance of the system was studied during the cooling season in the climates of Copenhagen, Denmark, and Rome...

  7. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  8. Extinction of radiant energy by large atmospheric crystals with different shapes

    International Nuclear Information System (INIS)

    Shefer, Olga

    2016-01-01

    The calculated results of extinction characteristics of visible and infrared radiation for large semi-transparent crystals are obtained by hybrid technique, which is a combination of the geometric optics method and the physical optics method. Energy and polarization characteristics of the radiation extinction in terms of the elements of the extinction matrix for individual large crystals and ensemble of crystals are discussed. Influences of particle shapes, aspect ratios, parameters of size distribution, complex refractive index, orientation of crystals, wavelength, and the polarization state of an incident radiation on the extinction are illustrated. It is shown that the most expressive and stable features of energy and polarization characteristics of the extinction are observed in the midinfrared region, despite the fact that the ice particles significantly absorb the radiant energy of this spectrum. It is demonstrated that the polarized extinction characteristics can reach several tens of percent at IR wavelengths. For the large crystals, the conditions of occurrence of the spectral behavior of the extinction coefficient in the visible, near-IR, and mid-IR wavelength ranges are determined. - Highlights: • Method of physical optics is used at coherent sum of diffracted and refracted fields. • The extinction characteristics in terms of elements of extinction matrix are obtained. • Influence of shapes and sizes of large particles on the extinction is evaluated. • Conditions of occurrence of extinction features are determined.

  9. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J.V.; Cadene, V.; Occelli, R. [Universite de Provence, 13 - Marseille (France)

    1996-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  10. Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment

    Science.gov (United States)

    Wielicki, Bruce A.; Barkstrom, Bruce R.; Harrison, Edwin F.; Lee, Robert B., III; Smith, G. Louis; Cooper, John E.

    1996-01-01

    Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities.

  11. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. Volume 1; Overviews (subsystem 0)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator); Baum, Bryan A.; Cess, Robert D.; Charlock, Thomas P.; Coakley, James A.; Green, Richard N.; Lee, Robert B., III; Minnis, Patrick; Smith, G. Louis

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 1 provides both summarized and detailed overviews of the CERES Release 1 data analysis system. CERES will produce global top-of-the-atmosphere shortwave and longwave radiative fluxes at the top of the atmosphere, at the surface, and within the atmosphere by using the combination of a large variety of measurements and models. The CERES processing system includes radiance observations from CERES scanning radiometers, cloud properties derived from coincident satellite imaging radiometers, temperature and humidity fields from meteorological analysis models, and high-temporal-resolution geostationary satellite radiances to account for unobserved times. CERES will provide a continuation of the ERBE record and the lowest error climatology of consistent cloud properties and radiation fields. CERES will also substantially improve our knowledge of the Earth's surface radiation budget.

  12. The Clouds and the Earth's Radiant Energy System (CERES) Sensors and Preflight Calibration Plans

    Science.gov (United States)

    Lee, Robert B., III; Barkstrom, Bruce R.; Smith, G. Louis; Cooper, John E.; Kopia, Leonard P.; Lawrence, R. Wes; Thomas, Susan; Pandey, Dhirendra K.; Crommelynck, Dominique A. H.

    1996-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft sensors are designed to measure broadband earth-reflected solar shortwave (0.3-5 microns) and earth-emitted longwave (5- > 100 microns) radiances at the top of the atmosphere as part of the Mission to Planet Earth program. The scanning thermistor bolometer sensors respond to radiances in the broadband shortwave (0.3-5 microns) and total-wave (0.3- > 100 microns) spectral regions, as well as to radiances in the narrowband water vapor window (8-12 microns) region. 'ne sensors are designed to operate for a minimum of 5 years aboard the NASA Tropical Rainfall Measuring Mission and Earth Observing System AM-1 spacecraft platforms that are scheduled for launches in 1997 and 1998, respectively. The flight sensors and the in-flight calibration systems will be calibrated in a vacuum ground facility using reference radiance sources, tied to the international temperature scale of 1990. The calibrations will be used to derive sensor gains, offsets, spectral responses, and point spread functions within and outside of the field of view. The shortwave, total-wave, and window ground calibration accuracy requirements (1 sigma) are +/-0.8, +/-0.6, and +/-0.3 W /sq m/sr, respectively, while the corresponding measurement precisions are +/-O.5% and +/-1.0% for the broadband longwave and shortwave radiances, respectively. The CERES sensors, in-flight calibration systems, and ground calibration instrumentation are described along with outlines of the preflight and in-flight calibration approaches.

  13. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.L.; Desaulty, M. [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1996-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  14. Finite-volume model for chemical vapor infiltration incorporating radiant heat transfer. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.W.; Starr, T.L. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-05-01

    Most finite-volume thermal models account for the diffusion and convection of heat and may include volume heating. However, for certain simulation geometries, a large percentage of heat flux is due to thermal radiation. In this paper a finite-volume computational procedure for the simulation of heat transfer by conduction, convection and radiation in three dimensional complex enclosures is developed. The radiant heat transfer is included as a source term in each volume element which is derived by Monte Carlo ray tracing from all possible radiating and absorbing faces. The importance of radiative heat transfer is illustrated in the modeling of chemical vapor infiltration (CVI) of tubes. The temperature profile through the tube preform matches experimental measurements only when radiation is included. An alternative, empirical approach using an {open_quotes}effective{close_quotes} thermal conductivity for the gas space can match the initial temperature profile but does not match temperature changes that occur during preform densification.

  15. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant h...... installations. For similar reasons, as well as possible peak load reduction and energy savings, radiant systems are being widely applied in commercial and industrial buildings....

  16. A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2015-01-01

    In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed...... that the maximum differences between the calculated surface temperature and heat transfer using the proposed model and the measured data were 0.8 ºC and 8.1 W/m2 for radiant floor heating system when average water temperature between 40 ºC and 60 ºC. For the corresponding values were 0.3 ºC and 2.0 W/m2...... for radiant floor cooling systems when average water temperature between 10 ºC and 20 ºC. Numerically simulated data in this study were also used to validate the proposed model. The results showed that the surface temperature and heat transfer of radiant floor calculated by the proposed model agreed very well...

  17. Clouds and Earth Radiant Energy System (CERES), a Review: Past, Present and Future

    Science.gov (United States)

    Smith, G. L.; Priestley, K. J.; Loeb, N. G.; Wielicki, B. A.; Charlock, T. P.; Minnis, P.; Doelling, D. R.; Rutan, D. A.

    2011-01-01

    The Clouds and Earth Radiant Energy System (CERES) project s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers. A validation protocol including in-flight calibrations and comparisons of measurements has reduced the instrument errors to less than 1%. The data are processed through three editions. The first edition provides a timely flow of data to investigators and the third edition provides data products as accurate as possible with resources available. A suite of cloud properties retrieved from the MODerate-resolution Imaging Spectroradiometer (MODIS) by the CERES team is used to identify the cloud properties for each pixel in order to select the BRDF for each pixel so as to compute radiation fluxes from radiances. Also, the cloud information is used to compute radiation at the surface and through the atmosphere and to facilitate study of the relationship between clouds and the radiation budget. The data products from CERES include, in addition to the reflected solar radiation and Earth emitted radiation fluxes at TOA, the upward and downward shortwave and longwave radiation fluxes at the surface and at various levels in the atmosphere. Also at the surface the photosynthetically active radiation

  18. Some effects of 8-12 micron radiant energy transfer on the mass and heat budgets of cloud droplets

    Science.gov (United States)

    Barkstrom, B. R.

    1978-01-01

    In standard treatments of the mass and energy budget of cloud droplets, radiant energy transfer is neglected on the grounds that the temperature difference between the droplet and its surroundings is small. This paper includes the effect of radiant heating and cooling of droplets by using the Eddington approximation for the solution of the radiative transfer equation. Although the calculation assumes that the cloud is isothermal and has a constant size spectrum with altitude, the heating or cooling of droplets by radiation changes the growth rate of the droplets very significantly. At the top of a cloud with a base at 2500 m and a top at 3000 m, a droplet will grow from 9.5 to 10.5 microns in about 4 min, assuming a supersaturation ratio of 1.0013. Such a growth rate is more than 20 times the growth rate for condensation alone, and may be expected to have a significant impact on estimates of precipitation formation as well as on droplet spectrum calculations.

  19. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  20. Mathematical Modeling of Radiant Heat Transfer in Mirror Systems Considering Deep Reflecting Surface Defects

    Directory of Open Access Journals (Sweden)

    V. V. Leonov

    2014-01-01

    Full Text Available When designing large-sized mirror concentrating systems (MCS for high-temperature solar power plants, one must have at disposal reasonably reliable and economical methods and tools, making it possible to analyze its characteristics, to predict them depending on the operation conditions and accordingly to choose the most suitable system for the solution of particular task.Experimental determination of MCS characteristics requires complicated and expensive experimentation, having significant limitations on interpretation of the results, as well as limitations imposed due to the size of the structure. Therefore it is of particular interest to develop a mathematical model capable of estimating power characteristics of MCS considering the influence of operating conditions, design features, roughness and other surface defects.For efficient solution of the tasks the model must ensure simulation of solar radiant flux as well as simulation of geometrical and optical characteristics of reflection surface and their interaction. In this connection a statistical mathematical model of radiation heat exchange based on use of Monte Carlo methods and Finite Element Method was developed and realized in the software complex, making it possible to determine main characteristics of the MCS.In this paper the main attention is given to definition of MCS radiation characteristics with account for deep reflecting surface defects (cavities, craters. Deep cavities are not typical for MCS, but their occurrence is possible during operation as a result of erosion or any physical damage. For example, for space technology it is primarily micrometeorite erosion.

  1. Analysis of annual thermal and moisture performance of radiant barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K.E.

    1991-04-01

    This report summarizes a project to model the annual thermal and moisture performance of radiant barrier systems installed in residential attics. A previously developed model for the thermal performance of attics with radiant barriers was modified to allow estimates of moisture condensation on the underside of radiant barriers that are laid directly on top of existing attic insulation. The model was partially validated by comparing its predictions of ceiling heat flows and moisture condensation with data and visual observations made during a field experiment with full-size houses near Knoxville, Tennessee. Since the model predictions were found to be in reasonable agreement with the experimental data, the models were used to estimate annual energy savings and moisture accumulation rates for a wide variety of climatic conditions. The models results have been used to identify locations where radiant barriers are cost effective and also where radiant barriers have potential for causing moisture problems. 58 refs., 20 figs., 32 tabs.

  2. Experimental setup to determine the pulse energies and radiant exposures for excimer lasers with repetition rates ranging from 100 to 1050 Hz.

    Science.gov (United States)

    Mrochen, Michael; Wuellner, Christian; Rose, Kristin; Donitzky, Christof

    2009-10-01

    To evaluate the feasibility of surface profiling for central ablation depth measurements and determine experimentally the required single-pulse energies and radiant exposures to achieve equivalent central ablation depths on bovine corneas for a myopic correction of -6.00 diopters (optical zone 6.5 mm) performed with laser repetition rates ranging from 100 to 1050 Hz. Institute for Refractive and Ophthalmic Surgery, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Freshly enucleated bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated. The shot pattern for the myopic correction was maintained during all experiments; the pulse laser energy was adjusted to achieve equal ablation depths for all repetition rates. Pulse energy, radiant exposure, and pulse duration were monitored to determine the required laser parameter. The variations (standard deviation) of the profile measurements were +/-0.45 microm or less for PMMA and +/-1.50 microm or less for bovine corneas. Measurements with bovine corneas should be performed within 3 minutes or less to avoid larger variations in profile measurements. Increasing the repetition rate from 100 Hz to 1050 Hz required an increase in peak radiant exposure from 400 mJ/cm(2) to 530 mJ/cm(2) to achieve equal ablation for the myopic correction. The required increase in the mean radiant exposure ranged from 190 to 260 mJ/cm(2). Higher-repetition-rate excimer lasers require increased radiant exposure. Further experimental studies should be performed to determine the relevance of spatial and temporal spot positioning, ablation-plume dynamics, and temperature increases during high-repetition-rate laser treatments.

  3. Design and Control of Hydronic Radiant Cooling Systems

    Science.gov (United States)

    Feng, Jingjuan

    Improving energy efficiency in the Heating Ventilation and Air conditioning (HVAC) systems in buildings is critical to achieve the energy reduction in the building sector, which consumes 41% of all primary energy produced in the United States, and was responsible for nearly half of U.S. CO2 emissions. Based on a report by the New Building Institute (NBI), when HVAC systems are used, about half of the zero net energy (ZNE) buildings report using a radiant cooling/heating system, often in conjunction with ground source heat pumps. Radiant systems differ from air systems in the main heat transfer mechanism used to remove heat from a space, and in their control characteristics when responding to changes in control signals and room thermal conditions. This dissertation investigates three related design and control topics: cooling load calculations, cooling capacity estimation, and control for the heavyweight radiant systems. These three issues are fundamental to the development of accurate design/modeling tools, relevant performance testing methods, and ultimately the realization of the potential energy benefits of radiant systems. Cooling load calculations are a crucial step in designing any HVAC system. In the current standards, cooling load is defined and calculated independent of HVAC system type. In this dissertation, I present research evidence that sensible zone cooling loads for radiant systems are different from cooling loads for traditional air systems. Energy simulations, in EnergyPlus, and laboratory experiments were conducted to investigate the heat transfer dynamics in spaces conditioned by radiant and air systems. The results show that the magnitude of the cooling load difference between the two systems ranges from 7-85%, and radiant systems remove heat faster than air systems. For the experimental tested conditions, 75-82% of total heat gain was removed by radiant system during the period when the heater (simulating the heat gain) was on, while for air

  4. Coloration Determination of Spectral Darkening Occurring on a Broadband Earth Observing Radiometer: Application to Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Matthews, Grant; Priestley, Kory; Loeb, Norman G.; Loukachine, Konstantin; Thomas, Susan; Walikainen, Dale; Wielicki, Bruce A.

    2006-01-01

    It is estimated that in order to best detect real changes in the Earth s climate system, space based instrumentation measuring the Earth Radiation Budget (ERB) must remain calibrated with a stability of 0.3% per decade. Such stability is beyond the specified accuracy of existing ERB programs such as the Clouds and the Earth s Radiant Energy System (CERES, using three broadband radiometric scanning channels: the shortwave 0.3 - 5microns, total 0.3. > 100microns, and window 8 - 12microns). It has been shown that when in low earth orbit, optical response to blue/UV radiance can be reduced significantly due to UV hardened contaminants deposited on the surface of the optics. Since typical onboard calibration lamps do not emit sufficient energy in the blue/UV region, this darkening is not directly measurable using standard internal calibration techniques. This paper describes a study using a model of contaminant deposition and darkening, in conjunction with in-flight vicarious calibration techniques, to derive the spectral shape of darkening to which a broadband instrument is subjected. Ultimately the model uses the reflectivity of Deep Convective Clouds as a stability metric. The results of the model when applied to the CERES instruments on board the EOS Terra satellite are shown. Given comprehensive validation of the model, these results will allow the CERES spectral responses to be updated accordingly prior to any forthcoming data release in an attempt to reach the optimum stability target that the climate community requires.

  5. Relationship Between the Clouds and the Earth's Radiant Energy System (CERES) Measurements and Surface Temperatures of Selected Ocean Regions

    Science.gov (United States)

    Pandey, Dhirendra, K.; Lee, Robert B., III; Brown, Shannon B.; Paden, Jack; Spence, Peter L.; Thomas, Susan; Wilson, Robert S.; Al-Hajjah, Aiman

    2001-01-01

    Clear sky longwave radiances and fluxes are compared with the sea surface temperatures for three oceanic regions: Atlantic, Indian, and Pacific. The Clouds and the Earth's Radiant Energy System (CERES) measurements were obtained by the three thermistor bolometers: total channel which measures the radiation arising from the earth-atmosphere system between 0.3 - greater than 100 micrometers; the window channel which measures the radiation from 8-12 micrometers; and the shortwave channel which measures the reflected energy from 0.3 - less than 5.0 micrometers. These instruments have demonstrated measurement precisions of approximately 0.3% on the International Temperature Scale of 1990 (ITS-90) between ground and on-orbit sensor calibrations. In this work we have used eight months of clear sky earth-nadir-view radiance data starting from January 1998 through August 1998. We have found a very strong correlation of 0.97 between the CERES window channel's weekly averaged unfiltered spectral radiance values at satellite altitude (350 km) and the corresponding weekly averaged sea surface temperature (SST) data covering all the oceanic regions. Such correlation can be used in predicting the sea surface temperatures using the present CERES Terra's window channel radiances at satellite altitude very easily.

  6. Evaluation of Clouds and the Earth's Radiant Energy System (CERES) Scanner Pointing Accuracy using a Coastline Detection System

    Science.gov (United States)

    Currey, Chris; Smith, Lou; Neely, Bob

    1998-01-01

    Clouds and the Earth's Radiant Energy System (CERES) is a National Aeronautics and Space Administration (NASA) investigation to examine the role of clouds in the radiative energy flow through the Earth-atmosphere system. The first CERES scanning radiometer was launched on November 27, 1997 into a 35 inclination, 350 km altitude orbit, on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. The CERES instrument consists of a three channel scanning broadband radiometer. The spectral bands measure shortwave (0.3 - 5 microns), window (8 - 12 microns), and total (0.3 - 100 microns) radiation reflected or emitted from the Earth-atmosphere system. Each Earth viewing measurement is geolocated to the Earth fixed coordinate system using satellite ephemeris, Earth rotation and geoid, and instrument pointing data. The interactive CERES coastline detection system is used to assess the accuracy of the CERES geolocation process. By analyzing radiative flux gradients at the boundaries of ocean and land masses, the accuracy of the scanner measurement locations may be derived for the CERES/TRMM instrument/satellite system. The resulting CERES measurement location errors are within 10% of the nadir footprint size. Precise pointing knowledge of the Visible and Infrared Scanner (VIRS) is required for convolution of cloud properties onto the CERES footprint; initial VIRS coastline results are included.

  7. Estimate of Top-of-Atmosphere Albedo for a Molecular Atmosphere over Ocean using Clouds and the Earth's Radiant Energy System (CERES) Measurements

    Science.gov (United States)

    Kato, S.; Loeb, N. G.; Rutledge, C. K.

    2002-01-01

    The shortwave broadband albedo at the top of a molecular atmosphere over ocean between 40deg N and 40deg S is estimated using radiance measurements from the Clouds and the Earth's Radiant Energy System (CERES) instrument and the Visible Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The albedo monotonically increases from 0.059 at a solar zenith angle of 10deg to 0.107 at a solar zenith angle of 60deg. The estimated uncertainty in the albedo is 3.5 x 10(exp -3) caused by the uncertainty in CERES-derived irradiances, uncertainty in VIRS-derived aerosol optical thicknesses, variations in ozone and water vapor, and variations in surface wind speed. The estimated uncertainty is similar in magnitude to the standard deviation of 0.003 that is derived from 72 areas divided by 20deg latitude by 20deg longitude grid boxes. The empirically estimated albedo is compared with the modeled albedo using a radiative transfer model combined with an ocean surface bidirectional reflectivity model. The modeled albedo with standard tropical atmosphere is 0.061 and 0.111 at the solar zenith angles of 10deg and 60deg, respectively. This empirically estimated albedo can be used to estimate the direct radiative effect of aerosols at the top of the atmosphere over oceans.

  8. Global, Multi-Year Analysis of Clouds and Earth's Radiant Energy System Terra Observations and Radiative Transfer Calculations

    Science.gov (United States)

    Charlock, T. P.; Rose, F. G.; Rutan, D. A.; Coleman, L. H.; Caldwell, T.; Zentz, S.

    2005-01-01

    An extended record of the Terra Surface and Atmosphere Radiation Budget (SARB) computed by CERES (Clouds and Earth s Radiant Energy System) is produced in gridded form, facilitating an investigation of global scale direct aerosol forcing. The new gridded version (dubbed FSW) has a spacing of 1 at the Equator. A companion document (Rutan et al. 2005) focuses on advances to (and validation of) the ungridded, footprint scale calculations (dubbed CRS), primarily in clear-sky conditions. While mainly intended to provide observations of fluxes at the top of atmosphere (TOA), CERES (Wielicki et al. 1996) includes a program to also compute the fluxes at TOA, within the atmosphere and at the surface, and also to validate the results with independent ground based measurements (Charlock and Alberta 1996). ARM surface data has been a focus for this component of CERES. To permit the user to infer cloud forcing and direct aerosol forcing with the computed SARB, CERES includes surface and TOA fluxes that have been computed for cloud-free (clear) and aerosol free (pristine) footprints; this accounts for aerosol effects (SW scattering and absorption, and LW scattering, absorption and emission) to both clear and cloudy skies.

  9. Ground Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission Spacecraft Thermistor Bolometers

    Science.gov (United States)

    Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.

  10. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    Science.gov (United States)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  11. Clouds and the earth's radiant energy system (CERES) - Instrument design and development

    Science.gov (United States)

    Kopia, Leonard P.

    1991-01-01

    Measurements of the earth's reflected shortwave and emitted longwave energy and of the effect of clouds on these quantities are planned using a refined version of the Earth Radiation Budget Experiment (ERBE) scanning instrument. The CERES instruments are being designed to accumulate earth radiance measurements with a repeatability of better than 0.5 percent over their five year life. Beginning in 1996, flights are planned on both polar and low earth orbit satellites to obtain the required temporal and spatial coverage. The design and development of CERES are discussed.

  12. Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document. Volume 3; Cloud Analyses and Determination of Improved Top of Atmosphere Fluxes (Subsystem 4)

    Science.gov (United States)

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 3 details the advanced CERES methods for performing scene identification and inverting each CERES scanner radiance to a top-of-the-atmosphere (TOA) flux. CERES determines cloud fraction, height, phase, effective particle size, layering, and thickness from high-resolution, multispectral imager data. CERES derives cloud properties for each pixel of the Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and the Earth Observing System (EOS) moderate-resolution imaging spectroradiometer. Cloud properties for each imager pixel are convolved with the CERES footprint point spread function to produce average cloud properties for each CERES scanner radiance. The mean cloud properties are used to determine an angular distribution model (ADM) to convert each CERES radiance to a TOA flux. The TOA fluxes are used in simple parameterization to derive surface radiative fluxes. This state-of-the-art cloud-radiation product will be used to substantially improve our understanding of the complex relationship between clouds and the radiation budget of the Earth-atmosphere system.

  13. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    International Nuclear Information System (INIS)

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  14. Simplified model and performance analysis for top insulated metal ceiling radiant cooling panels with serpentine tube arrangement

    Directory of Open Access Journals (Sweden)

    Guoqing Yu

    2018-03-01

    Full Text Available This paper develops a simplified model for top insulated metal ceiling radiant cooling panels with serpentine tube arrangement (CRCP-s to predict the mean panel temperature, outlet water temperature and cooling capacity. The simplified model needs no complicated calculation and can be conducted with a calculator. Experiment was conducted for two kinds of CRCP-s, comparisons indicate that the model predicted outlet water temperature and cooling capacity agree well with experiment measured results. The differences between model predicted and experiment measured results are acceptable for most engineering purpose, and the thermal performance analysis were conducted by the model. The results show that: (1 The tube spacing has significant effect on the cooling capacity within the applicable range of tube spacing from 0.05m to 0.3 m; (2 The tube thermal conductivity affect the cooling capacity significantly if it is less than 1.0 W/(m K; (3 The plate thickness has significant effect of the cooling capacity, if the plate thickness is less than 0.5 mm; (4 The water flowrate should be large enough to keep the flow in turbulent regime.

  15. Radiant cooling in US office buildings: Towards eliminating the perception of climate-imposed barriers

    Energy Technology Data Exchange (ETDEWEB)

    Stetiu, Corina [Univ. of California, Berkeley, CA (United States)

    1998-01-01

    Much attention is being given to improving the efficiency of air-conditioning systems through the promotion of more efficient cooling technologies. One such alternative, radiant cooling, is the subject of this thesis. Performance information from Western European buildings equipped with radiant cooling systems indicates that these systems not only reduce the building energy consumption but also provide additional economic and comfort-related benefits. Their potential in other markets such as the US has been largely overlooked due to lack of practical demonstration, and to the absence of simulation tools capable of predicting system performance in different climates. This thesis describes the development of RADCOOL, a simulation tool that models thermal and moisture-related effects in spaces equipped with radiant cooling systems. The thesis then conducts the first in-depth investigation of the climate-related aspects of the performance of radiant cooling systems in office buildings. The results of the investigation show that a building equipped with a radiant cooling system can be operated in any US climate with small risk of condensation. For the office space examined in the thesis, employing a radiant cooling system instead of a traditional all-air system can save on average 30% of the energy consumption and 27% of the peak power demand due to space conditioning. The savings potential is climate-dependent, and is larger in retrofitted buildings than in new construction. This thesis demonstrates the high performance potential of radiant cooling systems across a broad range of US climates. It further discusses the economics governing the US air-conditioning market and identifies the type of policy interventions and other measures that could encourage the adoption of radiant cooling in this market.

  16. Radiant cooling of an enclosure

    International Nuclear Information System (INIS)

    Chebihi, Abdeslam; Byun, Ki-Hong; Wen Jin; Smith, Theodore F.

    2006-01-01

    The purpose of this study is to analyze the potential for radiant cooling using the atmospheric sky window and to evaluate the desired characteristics of a radiant cooling material (RCM) applied to the ceiling window of a three-dimensional enclosure. The thermal characteristics of the system are governed by the geometry, ambient temperature, sky radiative temperature, amount of solar energy and its direction, heat transfer modes, wall radiative properties, and radiative properties of the RCMs. A semi-gray band analysis is utilized for the solar and infrared bands. The radiosity/irradiation method is used in each band to evaluate the radiant exchanges in the enclosure. The radiative properties for the RCM are varied in a parametric study to identify the desired properties of RCMs. For performance simulation of real RCMs, the radiative properties are calculated from spectral data. The desired solar property is a high reflectance for both opaque and semi-transparent RCMs. For a semi-transparent RCM, a low value of the solar transmittance is preferred. The desired infrared property is a high emittance for an opaque RCM. For a semi-transparent RCM, a high infrared transmittance is desired, and the emittance should be greater than zero

  17. Experimental evaluation of an active solar thermoelectric radiant wall system

    International Nuclear Information System (INIS)

    Liu, ZhongBing; Zhang, Ling; Gong, GuangCai; Han, TianHe

    2015-01-01

    Highlights: • A novel active solar thermoelectric radiant wall are proposed and tested. • The novel wall can control thermal flux of building envelope by using solar energy. • The novel wall can eliminate building envelop thermal loads and provide cooling capacity for space cooling. • Typical application issues including connection strategies, coupling with PV system etc. are discussed. - Abstract: Active solar thermoelectric radiant wall (ASTRW) system is a new solar wall technology which integrates thermoelectric radiant cooling and photovoltaic (PV) technologies. In ASTRW system, a PV system transfers solar energy directly into electrical energy to power thermoelectric cooling modes. Both the thermoelectric cooling modes and PV system are integrated into one enclosure surface as radiant panel for space cooling and heating. Hence, ASTRW system presents fundamental shift from minimizing building envelope energy losses by optimizing the insulation thickness to a new regime where active solar envelop is designed to eliminate thermal loads and increase the building’s solar gains while providing occupant comfort in all seasons. This article presents an experimental study of an ASTRW system with a dimension of 1580 × 810 mm. Experimental results showed that the inner surface temperature of the ASTRW is 3–8 °C lower than the indoor temperature of the test room, which indicated that the ASTRW system has the ability to control thermal flux of building envelope by using solar energy and reduce the air conditioning system requirements. Based on the optimal operating current of TE modules and the analysis based upon PV modeling theories, the number and type of the electrical connections for the TE modules in ASTRW system are discussed in order to get an excellent performance in the operation of the ASTRW system

  18. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J. [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1996-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.

  19. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...

  20. Parameter optimization through performance analysis of model based control of a batch heat treatment furnace with low NO x radiant tube burner

    International Nuclear Information System (INIS)

    Tiwari, Manish Kumar; Mukhopadhyay, Achintya; Sanyal, Dipankar

    2005-01-01

    A model based control structure for heat treating a 0.5% C steel slab in a batch furnace with low NO x radiant tube burner is designed and tested for performance to yield optimal parameter values using the model developed in the companion paper. Combustion is considered in a highly preheated and product gas diluted mode. Controlled combustion with a proposed arrangement for preheating and diluting the air by recirculating the exhaust gas that can be retrofitted with an existing burner yields satisfactory performance and emission characteristics. Finally, the effect of variable property considerations are presented and critically analyzed

  1. Radiant heat loss versus radiant heat gain in premature neonates under radiant warmers.

    Science.gov (United States)

    Baumgart, S

    1990-01-01

    Premature infants nursed on open radiant warmer beds are exposed to short-wavelength infrared power density distributed evenly over the bed surface. Additionally, infants' sides are exposed to relatively cooler nursery walls, and to the radiant warmer bed platform which may heat and reradiate to the baby. Therefore, infants may not only gain heat from the warmer (Q radiant warmer) but lose or gain radiant heat to the sides as well (+/- Q radiant loss). In order to quantitate these parameters, ten premature newborn infants nursed under radiant warmers servocontrolled to 36.5 degrees C skin temperature (weight 1.27 +/- 0.24 SD kg, gestation 31 +/- 3 weeks) were investigated, and partitional calorimetry previously reported. In the present study, calculation of net rate of radiant heat transfer (Q net radiant) was made from these data (-2.63 +/- -1.52 kcal/kg/h), and compared to direct measurements of Q radiant warmer (-2.49 +/- -0.90 kcal/kg/h). The present report further partitions net radiant heat transfer to evaluate Q radiant loss: -0.13 +/- 1.82 kcal/kg/h (range -3.16 to 1.93). From these calculations mean radiant temperature of this environment was estimated (45.3 +/- 4.3 degrees C) and compared to the radiant warmer temperature received (45.0 +/- 2.9 degrees C). This information suggests other strategies to reduce radiant heat loss as well as convective and evaporative losses in premature neonates nursed on open radiant warmer beds.

  2. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 2; Geolocation, calibration, and ERBE-like analyses (subsystems 1-3)

    Science.gov (United States)

    Wielicki, B. A. (Principal Investigator); Barkstrom, B. R. (Principal Investigator); Charlock, T. P.; Baum, B. A.; Green, R. N.; Minnis, P.; Smith, G. L.; Coakley, J. A.; Randall, D. R.; Lee, R. B., III

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 2 details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using established ERBE techniques. Hourly TOA fluxes are computed from the instantaneous values by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.

  3. Optical Sensors for Planetary Radiant Energy (OSPREy): Calibration and Validation of Current and Next-Generation NASA Missions

    Science.gov (United States)

    Hooker, Stanford B.; Bernhard, Germar; Morrow, John H.; Booth, Charles R.; Comer, Thomas; Lind, Randall N.; Quang, Vi

    2012-01-01

    A principal objective of the Optical Sensors for Planetary Radiance Energy (OSPREy) activity is to establish an above-water radiometer system as a lower-cost alternative to existing in-water systems for the collection of ground-truth observations. The goal is to be able to make high-quality measurements satisfying the accuracy requirements for the vicarious calibration and algorithm validation of next-generation satellites that make ocean color and atmospheric measurements. This means the measurements will have a documented uncertainty satisfying the established performance metrics for producing climate-quality data records. The OSPREy approach is based on enhancing commercial-off-the-shelf fixed-wavelength and hyperspectral sensors to create hybridspectral instruments with an improved accuracy and spectral resolution, as well as a dynamic range permitting sea, Sun, sky, and Moon observations. Greater spectral diversity in the ultraviolet (UV) will be exploited to separate the living and nonliving components of marine ecosystems; UV bands will also be used to flag and improve atmospheric correction algorithms in the presence of absorbing aerosols. The short-wave infrared (SWIR) is expected to improve atmospheric correction, because the ocean is radiometrically blacker at these wavelengths. This report describes the development of the sensors, including unique capabilities like three-axis polarimetry; the documented uncertainty will be presented in a subsequent report.

  4. Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data

    Science.gov (United States)

    Chen, Yu-Cheng; Chen, Chih-Yu; Matzarakis, Andreas; Liu, Jin-King; Lin, Tzu-Ping

    2016-06-01

    Assessment of outdoor thermal comfort is becoming increasingly important due to the urban heat island effect, which strongly affects the urban thermal environment. The mean radiant temperature (Tmrt) quantifies the effect of the radiation environment on humans, but it can only be estimated based on influencing parameters and factors. Knowledge of Tmrt is important for quantifying the heat load on human beings, especially during heat waves. This study estimates Tmrt using several methods, which are based on climatic data from a traditional weather station, microscale ground surface measurements, land surface temperature (LST) and light detection and ranging (LIDAR) data measured using airborne devices. Analytical results reveal that the best means of estimating Tmrt combines information about LST and surface elevation information with meteorological data from the closest weather station. The application in this method can eliminate the inconvenience of executing a wide range ground surface measurement, the insufficient resolution of satellite data and the incomplete data of current urban built environments. This method can be used to map a whole city to identify hot spots, and can be contributed to understanding human biometeorological conditions quickly and accurately.

  5. NPP Clouds and the Earth's Radiant Energy System (CERES) Predicted Sensor Performance Calibration and Preliminary Data Product Performance

    Science.gov (United States)

    Priestly, Kory; Smith, George L.; Thomas, Susan; Maddock, Suzanne L.

    2009-01-01

    Continuation of the Earth Radiation Budget (ERB) Climate Data Record (CDR) has been identified as critical in the 2007 NRC Decadal Survey, the Global Climate Observing System WCRP report, and in an assessment titled Impacts of NPOESS Nunn-McCurdy Certification on Joint NASA-NOAA Climate Goals. In response, NASA, NOAA and NPOESS agreed in early 2008 to fly the final existing CERES Flight Model (FM-5) on the NPP spacecraft for launch in 2010. Future opportunities for ERB CDR continuity consist of procuring an additional CERES Sensor with modest performance upgrades for flight on the NPOESS C1 spacecraft in 2013, followed by a new CERES follow-on sensor for flight in 2018 on the NPOESS C3 spacecraft. While science goals remain unchanged for the long-term ERB Climate Data Record, it is now understood that the task of achieving these goals is more difficult for two reasons. The first is an increased understanding of the dynamics of the Earth/atmosphere system which demonstrates that rigorous separation of natural variability from anthropogenic change on decadal time scales requires higher accuracy and stability than originally envisioned. Secondly, future implementation scenarios involve less redundancy in flight hardware (1 vs. 2 orbits and operational sensors) resulting in higher risk of loss of continuity and reduced number of independent observations to characterize performance of individual sensors. Although EOS CERES CDR's realize a factor of 2 to 4 improvement in accuracy and stability over previous ERBE CDR's, future sensors will require an additional factor of 2 improvement to answer rigorously the science questions moving forward. Modest investments, defined through the CERES Science Team s 30-year operational history of the EOS CERES sensors, in onboard calibration hardware and pre-flight calibration and test program will ensure meeting these goals while reducing costs in re-processing scientific datasets. The CERES FM-5 pre-flight radiometric

  6. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation

    Science.gov (United States)

    Lindberg, Fredrik; Grimmond, C. S. B.

    2011-10-01

    The solar and longwave environmental irradiance geometry (SOLWEIG) model simulates spatial variations of 3-D radiation fluxes and mean radiant temperature ( T mrt) as well as shadow patterns in complex urban settings. In this paper, a new vegetation scheme is included in SOLWEIG and evaluated. The new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. For the calculation of 3-D radiation fluxes and T mrt, SOLWEIG only requires a limited number of inputs, such as global shortwave radiation, air temperature, relative humidity, geographical information (latitude, longitude and elevation) and urban geometry represented by high-resolution ground and building digital elevation models (DEM). Trees and bushes are represented by separate DEMs. The model is evaluated using 5 days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in Göteborg, Sweden (57°N). There is good agreement between modelled and observed values of T mrt, with an overall correspondence of R 2 = 0.91 ( p human comfort, building design, planning and evaluation of instrument exposure.

  7. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat gains......: overheating has been observed due to the absence of solar shading and the limited cooling capacity of the terminals. No local discomfort has been observed although some segments of the thermal manikin were slightly colder....

  8. Energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available The construction industry has turned to energy modelling in order to assist them in reducing the amount of energy consumed by buildings. However, while the energy loads of buildings can be accurately modelled, energy models often under...

  9. Radiometric measurements of wall temperatures in the 800 K to 1150 K range for a quartz radiant heating tube

    International Nuclear Information System (INIS)

    Blevins, L.G.; Sivathanu, Y.R.; Gore, J.P.; Shahien, M.A.

    1995-01-01

    Many industrial applications require heat transfer to a load in an inert environment, which can be achieved by using gas-fired radiant tubes. A radiant tube consists of a flame confined in a cylindrical metal or ceramic chamber. The flame heats the tube wall, which in turn radiates to the load. One important characteristic of radiant heating tubes is wall temperature uniformity. Numerical models of radiant tubes have been used to predict wall temperatures, but there is a lack of experimental data for validation. Recently, Namazian et al., Singh and Gorski, and Peters et al. have measured wall temperature profiles of radiant tubes using thermocouples. 13 refs., 3 figs

  10. Convective and radiative heat transfer in MHD radiant boilers

    Science.gov (United States)

    Im, K. H.; Ahluwalia, R. K.

    1981-10-01

    A combined convection-gas radiation, two-zone flow model is formulated for study of the heat transfer characteristics of MHD radiant boilers. The radiative contributions of carbon dioxide, water vapor, potassium atoms, and slag particles are included in the formulation, and are determined by solving the radiation transport equation using the P1 approximation. The scattering and absorption cross sections of slag particles are calculated from Mie theory. The model is used to analyze the scale-up of heat transfer in radiant boilers with refractory thickness, wall emissivity, and boiler size under conditions of a gas composition and slag particle spectrum typical of coal-fired MHD combustion. A design procedure is suggested for sizing radiant boilers so as to achieve the required heat extraction rate and to provide a flow residence time that is adequate for decomposition of NO(x) to acceptable levels.

  11. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  12. Application of a radiant heat transfer model to complex industrial reactive flows: combustion chambers, electric arcs; Application d`un modele de transfert radiatif a des ecoulements reactifs industriels complexes: chambres de combustion, arcs electriques

    Energy Technology Data Exchange (ETDEWEB)

    Mechitoua, N.; Dalsecco, S.; Delalondre, C.; Simonin, O. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d`Hydraulique

    1996-12-31

    The direction of studies and researches (DER) of Electricite de France (EdF) has been involved for several years in a research program on turbulent reactive flows. The objectives of this program concern: the reduction of pollutant emissions from existing fossil-fueled power plants, the study of new production means (fluidized beds), and the promotion of electric power applications in the industry. An important part of this program is devoted to the development and validation of 3-D softwares and to the modeling of physical phenomena. This paper presents some industrial applications (furnaces, boilers, electric arcs) for which radiant heat transfers play an important role and the radiation models used. (J.S.) 8 refs.

  13. Numerical analysis of diffuse ceiling ventilation and its integration with a radiant ceiling system

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Chen, Qingyan

    2017-01-01

    A novel system combining diffuse ceiling ventilation and radiant ceiling was proposed recently, with the aim of providing energy efficient and comfort environment to office buildings. Designing of such a system is challenging because of complex interactions between the two subsystems and a large...... number of design parameters encountered in practice. This study aimed to develop a numerical model that can reliably predict the airflow and thermal performance of the integrated system during the design stage. The model was validated by experiments under different operating conditions. The validated...

  14. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant...... heating and cooling with pipes embedded in room surfaces (floor, wall, and ceiling), the application increased significantly worldwide. Earlier application of radiant heating systems was mainly for residential buildings because of its comfort and free use of floor space without any obstruction from...

  15. The optimization design and parametric study of thermoelectric radiant cooling and heating panel

    International Nuclear Information System (INIS)

    Shen, Limei; Tu, Zhilong; Hu, Qiang; Tao, Cheng; Chen, Huanxin

    2017-01-01

    Highlights: • Design procedure of TE radiant panel is proposed. • Thermal physical model combined thermoelectric effect and radiation law is developed. • An optimization design configuration of TE radiant panel is presented and validated. • The temperature distribution uniformity of TE radiant panel is studied. • We discuss the thermal characterization representation approach of TE radiant. - Abstract: Thermoelectric radiant air-conditioning (TE-RAC) system is a promising approach to implement thermoelectric technology in large-scale refrigeration system applications in future. However, no standard exists for the in situ design and the performance evaluation of thermoelectric radiant heating/cooling panel. Thus, this study aims to not only clarify the design procedure but also to share our thermal physical model and design configurations of the thermoelectric radiant panel to serve as a reference for other similar design cases. In addition, a simplified representation approach for the thermal characterization of thermoelectric panels is also discussed. The main design variables are the number of thermoelectric modules and the size of radiant panels. The inner surface transient temperature distribution of thermoelectric radiant panels is discussed, and the approaches for improving the uniformity of the inner surface temperature are proposed. The influence of cooling/heating load on the uniformity of the inner surface temperature is a slight larger than the size of the panel, so the matching design is very important. The results show that the optimal thickness of thermoelectric radiant panels is 4 mm, and the number of thermoelectric modules (TEM) is 16 per square meter, which also could solve the issues about dew formation and uniformity of inner surface temperature.

  16. Flammability properties and radiant fraction of FRT wood plastic composites using mass loss calorimeter under HRR hood

    Science.gov (United States)

    Mark A. Dietenberger; Charles R. Boardman; Nicole Stark

    2017-01-01

    A special test arrangement was used to assess the flammability of 4 different wood plastic composites (WPC), most with fire retardants, all of which has a tendency to high smoke production leading to high radiant energy losses to the apparatus walls. The mass loss calorimeter (MLC) was modified to include a thermopile on the exhaust pipe stack to compensate for radiant...

  17. Brazilian energy model

    Science.gov (United States)

    1981-05-01

    A summary of the energy situation in Brazil is presented. Energy consumption rates, reserves of primary energy, and the basic needs and strategies for meeting energy self sufficiency are discussed. Conserving energy, increasing petroleum production, and utilizing other domestic energy products and petroleum by-products are discussed. Specific programs are described for the development and use of alcohol fuels, wood and charcoal, coal, schist, solar and geothermal energy, power from the sea, fresh biomass, special batteries, hydrogen, vegetable oil, and electric energy from water power, nuclear, and coal. Details of the energy model for 1985 are given. Attention is also given to the energy demands and the structure of global energy from 1975 to 1985.

  18. Development of Personalized Radiant Cooling System for an Office Room

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Vaibhav [Malaviya National Institute of Technology (MNIT), Jaipur, India; Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    The building industry nowadays is facing two major challenges increased concern for energy reduction and growing need for thermal comfort. These challenges have led many researchers to develop Radiant Cooling Systems that show a large potential for energy savings. This study aims to develop a personalized cooling system using the principle of radiant cooling integrated with conventional all-air system to achieve better thermal environment at the workspace. Personalized conditioning aims to create a microclimatic zone around a single workspace. In this way, the energy is deployed only where it is actually needed, and the individual s needs for thermal comfort are fulfilled. To study the effect of air temperature along with air temperature distribution for workspace, air temperature near the vicinity of the occupant has been obtained as a result of Computational Fluid Dynamics (CFD) simulation using FLUENT. The analysis showed that personalized radiant system improves thermal environment near the workspace and allows all-air systems to work at higher thermostat temperature without compromising the thermal comfort, which in turn reduces its energy consumption.

  19. Radiant vessel auxiliary cooling system

    Science.gov (United States)

    Germer, John H.

    1987-01-01

    In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

  20. Comparison of Software Models for Energy Savings from Cool Roofs

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  1. Interrelation between mean radiant temperature and room geometry

    OpenAIRE

    Kalmár, Ferenc; Kalmár, Tünde

    2012-01-01

    Energy saving is one of the most important research directions in the building sector. Daily new HVAC solutions and equipments are developed aiming higher efficiency and lower fossil fuel utilisation. There are cases when only the energy quantity is taken into account and the human side of the problem is neglected. The new energy saving ideas should be analysed from thermal comfort point too. The aim of our research was to see which the influence of the room geometry on the mean radiant tempe...

  2. Prelaunch Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission and Earth Observing System Morning (EOS-AM1) Spacecraft Thermistor Bolometer Sensors

    Science.gov (United States)

    Lee, Robert B., III; Barkstrom, Bruce R.; Bitting, Herbert C.; Crommelynck, Dominique A. H.; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Smith, G. Louis; Thomas, Susan; Thornhill, K. Lee; hide

    1998-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometer sensors measure earth radiances in the broadband shortwave solar (O.3 - 5.0 micron and total (0.3 to 100 microns) spectral bands as well as in the 8-12 microns water vapor window spectral band. On November 27, 1997, the launch of the Tropical Rainfall Measuring Mission (TRMM) spacecraft placed the first set of CERES sensors into orbit, and 30 days later, the sensors initiated operational measurements of the earth radiance fields. In 1998, the Earth Observing System morning (EOS-AM1) spacecraft will place the second and third sensor sets into orbit. The prelaunch CERES sensors' count conversion coefficients (gains and zero-radiance offsets) were determined in vacuum ground facilities. The gains were tied radiometrically to the International Temperature Scale of 1990 (ITS-90). The gain determinations included the spectral properties (reflectance, transmittance, emittance, etc.) of both the sources and sensors as well as the in-field-of-view (FOV) and out-of-FOV sensor responses. The resulting prelaunch coefficients for the TRMM and EOS-AM1 sensors are presented. Inflight calibration systems and on-orbit calibration approaches are described, which are being used to determine the temporal stabilities of the sensors' gains and offsets from prelaunch calibrations through on-orbit measurements. Analyses of the TRMM prelaunch and on-orbit calibration results indicate that the sensors have retained their ties to ITS-90 at accuracy levels better than /- 0.3% between the 1995 prelaunch and 1997 on-orbit calibrations.

  3. Modeling of radiant heat transfers in non-grey gases using the discrete ordinate method in association with a narrow bands statistical model; Modelisation des transferts radiatifs dans des gaz non gris par la methode des ordonnees discretes associee a un modele statistique a bandes etroites

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.B. de; Delmas, A.; Sacadura, J.F. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1996-12-31

    A formulation based on the use of the discrete ordinate method applied to the integral form of the radiant heat transfer equation is proposed for non-grey gases. The correlations between transmittances are neglected and no explicit wall reflexion is considered. The configuration analyzed consists in a flat layer of non-isothermal steam-nitrogen mixture. Cavity walls are grey with diffuse reflexion and emission. A narrow band statistical model is used to represent the radiative properties of the gas. The distribution of the radiative source term inside the cavity is calculated along two temperature profiles in a uniform steam concentration. Results obtained using this simplified approach are in good agreement with those found in the literature for the same temperature and concentration distributions. This preliminary study seems to indicate that the algorithm based on the integration of radiant heat transfer along the luminance path is less sensitive to de-correlation effects than formulations based on the differential form the the radiant heat transfer. Thus, a more systematic study of the influence of the neglecting of correlations on the integral approach is analyzed in this work. (J.S.) 16 refs.

  4. Top-of-Atmosphere Shortwave Broadband Observed Radiance and Estimated Irradiance over Polar Regions from Clouds and the Earth's Radiant Energy System (CERES) Instruments on Terra

    Science.gov (United States)

    Kato, S.; Loeb, N. G.

    2004-01-01

    Empirical angular distribution models for estimating top-of-atmosphere shortwave irradiances from radiance measurements over permanent snow, fresh snow and sea ice are developed using CERES measurements on Terra. Permanent snow angular distribution models depend on cloud fraction, cloud optical thickness, and snow brightness. Fresh snow and sea ice angular distribution models depend on snow and sea ice fraction, cloud fraction, cloud optical thickness, and snow and ice brightness. These classifications lead to 10 scene types for permanent snow and 25 scene types for fresh snow and sea ice. The average radiance over clear-sky permanent snow is more isotropic with satellite viewing geometry than that over overcast permanent snow. On average, the albedo of clear-sky permanent snow varies from 0.65 to 0.68 for solar zenith angles between 60$logical and\\circ$ and 80 deg, while the corresponding albedo of overcast scenes varies from 0.70 to 0.73. Clear-sky permanent snow albedos over Antarctica estimated from two independent angular distribution models are consistent to within 0.6%, on average. Despite significant variability in sea ice optical properties with season, the estimated mean relative albedo error is -1 % for very dark sea ice and 0.1% for very bright sea ice when albedos derived from different viewing angles are averaged. The estimated regional root-mean-square (RMS) relative albedo error is 5.6% and 2.6% when the sea ice angular distribution models are applied to a region that contains very dark and very bright sea ice, respectively. Similarly, the estimated relative albedo bias error for fresh snow is -0.1% for very dark snow.

  5. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  6. Energy balance climate models

    Science.gov (United States)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  7. Energy model in regional energy system

    International Nuclear Information System (INIS)

    Mura, P.G.; Baccoli, R.; Carlini, U.; Innamorati, R.; Mariotti, S.

    2005-01-01

    In this report is presented a computational model for analysis of energy, materials and mass flux in a complex energy system, at regional scale level. Specifically is described a calculation model of electric power generation for emission forecasting of CO 2 , SO x , NO x , particulate matter, ashes, limestone, chalks [it

  8. Model of contract of purchase of the electric power produced by facilities that use the radiant energy of the sun and benefiting from the electricity purchase obligation. Established after enforcement of the article 5 of the decree from May 10, 2001 and approved by the minister attended to energy; Modele de contrat d'achat de l'energie electrique produite par les installations utilisant l'energie radiative du soleil et beneficiant de l'obligation d'achat d'electricite. Etablie en application de l'article 5 du decret du 10 mai 2001 et approuve par le Ministre charge de l'electricite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This model of contract comprises 3 parts. The first part describes the general conditions of electric power purchase: aim of the contract, connection to the grid and delivery point, producer's facility, reciprocal commitments and stoppages for maintenance purpose, energy and power metering and control, energy delivery, payment for the purchased power (payment and payment indexing), taxes, payments, contract enforcement, date line, suspension, modification or cancellation, conciliation in case of dispute. A recall of the tariffs mentioned in the by-law from March 13, 2002, of the approximation rules and a model of certificate are given in appendixes. The second part gives some complements to the general conditions (purchaser and producer corporate, characteristics of the facility, details about the connection and delivery point, description of the metering system, tariffs of purchase and indexing, payment of bills, contract characteristics, subscription for a power supply contract). The third part is a model of contract for low voltage photovoltaic facilities. (J.S.)

  9. Measurement of radiant properties of ceramic foam

    International Nuclear Information System (INIS)

    Hoornstra, J.; Turecky, M.; Maatman, D.

    1994-07-01

    An experimental facility is described for the measurement of the normal spectral and total emissivity and transmissivity of semi-transparent materials in the temperature range of 600 C to 1200 C. The set-up was used for the measurement of radiation properties of highly porous ceramic foam which is used in low NO x radiant burners. Emissivity and transmissivity data were measured and are presented for coated and uncoated ceramic foam of different thicknesses. (orig.)

  10. Radiant heat and thermal comfort in vehicles.

    Science.gov (United States)

    Devonshire, Joel M; Sayer, James R

    2005-01-01

    Infrared-reflective (IRR) treatment of automotive glass has been shown to reduce air temperature in vehicle cabins, thereby increasing fuel economy and occupant comfort. Its effect on radiant heat, however, may augment these benefits. In this study, the hypothesis that radiant heat affects subjective comfort ratings in a vehicle was tested. IRR films were systematically applied to the driver-side window of an outdoor stationary vehicle. In Phase 1, cabin air temperature was controlled while participants rated their thermal comfort. In Phase 2, air temperature was adjusted according to participants' responses. Results in Phase 1 showed that the IRR treatment improved thermal comfort on the left forearm, which was exposed to direct solar irradiance, but not whole-body thermal comfort. In Phase 2, participants indicated that they were comfortable at a higher air temperature (mean of 2.5 degrees F [1.4 degrees C]) with the IRR treatment than in the untreated condition. The results indicate that reducing radiant heat via IRR treatment affects subjective assessments of thermal comfort and allows occupants to maintain the same level of comfort in a warmer vehicle cabin. Applications of this research include future implementations of IRR treatment on automotive glass that may lead to greater fuel economy savings and occupant comfort than have previously been estimated.

  11. Energy models: methods and trends

    International Nuclear Information System (INIS)

    Reuter, A.; Kuehner, R.; Wohlgemuth, N.

    1996-01-01

    Energy environmental and economical systems do not allow for experimentation since this would be dangerous, too expensive or even impossible. Instead, mathematical models are applied for energy planning. Experimenting is replaced by varying the structure and some parameters of 'energy models', computing the values of depending parameters, comparing variations, and interpreting their outcomings. Energy models are as old as computers. In this article the major new developments in energy modeling will be pointed out. We distinguish between 3 reasons of new developments: progress in computer technology, methodological progress and novel tasks of energy system analysis and planning

  12. Radiant heat transfer network in the simulated protective clothing ; System under high heat flux

    NARCIS (Netherlands)

    Fukazawa, T.; Hartog, E.A. den; Daanen, H.A.M.; Penders-van Elk, N.; Tochihara, Y.; Havenith, G.

    2005-01-01

    A radiant network model was developed for design of the protective clothing system against solar and infrared radiative heat flux. A one-dimensional model was employed in the present study, because the aim of this study was to obtain precise temperature distribution through the system with use of a

  13. Artifacts in the measurement of skin temperature under infant radiant warmers.

    Science.gov (United States)

    LeBlanc, M H; Edwards, N K

    1985-01-01

    All skin temperature probes measure, to some extent, operative temperature as well as skin temperature, and thus artifactually measure a temperature different from true skin temperature. To assess the magnitude and direction of these artifacts in the measurement of surface temperature in radiant warmers designed for human infants, the artifactual deviation of measured surface temperatures from mean surface temperature was determined under a short-wavelength warmer and a long-wavelength radiant warmer, using a copper ball as an experimental model. The measurements were made using both a disk-shaped thermistor and a tubular thermistor. All measurements were made near the top of the hemisphere of the ball facing the heating element of the warmer. In all cases, the average artifact was negative. That is, even on the surface of the ball near the radiant heat source, the surface temperature probes recorded an artifactually low temperature. In the analogous clinical setting, a somewhat larger negative artifact would be expected.

  14. Heat transfer characteristics of a porous radiant burner under the influence of a 2-D radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Prabal; Mishra, S.C. E-mail: scm_iitg@yahoo.com; Trimis, D.; Durst, F

    2004-04-01

    This paper deals with the heat transfer analysis of a 2-D rectangular porous radiant burner. Combustion in the porous medium is modelled as a spatially dependent heat generation zone. The gas and the solid phases are considered in non-local thermal equilibrium, and separate energy equations are used for the two phases. The solid phase is assumed to be absorbing, emitting and scattering, while the gas phase is considered transparent to radiation. The radiative part of the energy equation is solved using the collapsed dimension method. The alternating direction implicit scheme is used to solve the transient 2-D energy equations. Effects of various parameters on the performance of the burner are studied.

  15. Ten questions about radiant heating and cooling systems

    DEFF Research Database (Denmark)

    Rhee, Kyu-Nam; Olesen, Bjarne W.; Kim, Kwang Woo

    2017-01-01

    and cooling. On the other hand, the RHC system has limitations such as complicated control of Thermally Activated Building System (TABS), acoustical issues, higher capital cost and cooling load than conventional air systems, and so on. For now, the required mitigation of these limitations and the need......Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used...... studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating...

  16. Three-dimensional simulation of super-radiant Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Li, D.; Imasaki, K.; Yang, Z.; Park, Gun-Sik

    2006-01-01

    A simulation of coherent and super-radiant Smith-Purcell radiation is performed in the gigahertz regime using a three-dimensional particle-in-cell code. The simulation model supposes a rectangular grating to be driven by a single electron bunch and a train of periodic bunches, respectively. The true Smith-Purcell radiation is distinguished from the evanescent wave, which has an angle independent frequency lower than the minimum allowed Smith-Purcell frequency. We also find that the super-radiant radiations excited by periodic bunches are emitted at higher harmonics of the bunching frequency and at the corresponding Smith-Purcell angles

  17. Italian energy scenarios: Markal model

    International Nuclear Information System (INIS)

    Gracceva, Francesco

    2005-01-01

    Energy scenarios carried out through formal models comply with scientific criteria such as internal coherence and transparency. Besides, Markal methodology allows a good understanding of the complex nature of the energy system. The business-as-usual scenario carried out through the Markal-Italy model shows that structural changes occurring in end-use sectors will continue to drive up energy consumption, in spite of the slow economic growth and the quite high energy prices [it

  18. Calculation codes for radiant heat transfers; Les codes de calcul de rayonnement thermique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document reports on 12 papers about computerized simulation and modeling of radiant heat transfers and fluid flows in various industrial and domestic situations: space heating, metal industry (furnaces, boilers..), aerospace industry (turbojet engines, combustion chambers) etc.. This workshop was organized by the ``radiation`` section of the French society of thermal engineers. (J.S.)

  19. Energy models for the FRG

    International Nuclear Information System (INIS)

    Voss, A.

    1976-01-01

    The development and application of energy models as helping factors in planning and decision making has gained more importance in all regions of energy economy and energy policy in recent times. This development not only covered models for the single branches and companies like, for example, for improving power plant systems, but also models showing the whole energy system. These models aim at analizing the possibilities of developing the energy supply with regard to aspects of the entire system, paying special attention to the integration of the energy system into economic and ecological side conditions. The following essay briefly explains the energy models developed for the Federal Republic of Germany after analizing the set of problems of energy and the demands on the energy planning methods arising from them. The energy model system developed by the programming team 'Systems research and technological development' of the nuclear research plant in Juelich is dealt with very intensively, explaining some model results as examples. Finally, the author gives his opinion on the problem of the integration and conversion of model studies in the process of decision making. (orig.) [de

  20. Radiant warmers versus incubators for regulating body temperature in newborn infants.

    Science.gov (United States)

    Flenady, V J; Woodgate, P G

    2003-01-01

    The provision of a thermoneutral environment is an essential component of the immediate and longer term care of newborn infants. A variety of methods are currently employed including incubators and open-care systems, with or without modifications such as heat shields and plastic wrap. The system used must allow ready access to the infant but should also minimise alterations in the immediate environment. To assess the effects of radiant warmers versus incubators on neonatal fluid and electrolyte balance, morbidity and mortality. The standard search strategy of the Cochrane Neonatal Review Group was used. This included searches of electronic databases: Oxford Database of Perinatal Trials, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2003), MEDLINE (1966 -2003), and CINAHL (1982-2003), previous reviews including cross references, abstracts, conferences, symposia proceedings, expert informants and journal hand searching mainly in the English language. Randomised or quasi-randomised trials in which radiant warmers were compared to incubators in a neonatal population. Independent data extraction and quality assessment of included trials was conducted by the authors. Data were analysed using relative risk (RR) and weighted mean difference (WMD). Results are presented with 95% confidence intervals. Meta-analysis was undertaken using a fixed effect model. Eight studies are included in this review; six employed a crossover design. In the overall comparison of radiant warmers vs incubators, radiant warmers caused a statistically significant increase in insensible water loss (IWL) [WMD 0.94g/Kg/day (95% CI 0.47, 1.41)] and a trend towards increased oxygen consumption which was not statistically significant [WMD 0.27mL/kg/min (95% CI -0.09, 0.63)]. Due to small numbers, effects on important clinical outcomes could not be adequately assessed. A comparison of radiant warmers with heat shields vs incubators without heat shields showed a

  1. Inventory of state energy models

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

    1980-03-31

    These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

  2. Study on coal char ignition by radiant heat flux.

    Science.gov (United States)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90–200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  3. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  4. Energy modelling in sensor networks

    Directory of Open Access Journals (Sweden)

    D. Schmidt

    2007-06-01

    Full Text Available Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  5. Analysis of directional radiative behavior and heating efficiency for a gas-fired radiant burner

    International Nuclear Information System (INIS)

    Li, B.X.; Lu, Y.P.; Liu, L.H.; Kudo, K.; Tan, H.P.

    2005-01-01

    For the purpose of energy conservation and uniform heating of object surface, a gas-fired porous radiant burner with a bundle of reflecting tubes is developed. A physical model is developed to simulate the directional radiative behavior of this heating device, in which the Monte Carlo method based on the concept of radiation distribution factor is used to compute the directional radiative behavior. The effects of relating parameters on the directional behavior of radiative heating and the heating efficiency are analyzed. With the increase of the length-to-radius ratio of tube, the radiation heating efficiency decreases, but the radiation energy incident on the object surface is more collimated. The radiation heating efficiency increases with the specular reflectivity. With the increase in length of tube segment with specular reflective surface, the radiation heating efficiency increases, but the extent of concentration and collimation of radiative energy decreases. For real design of the heating device, some trade-offs are needed to balance the radiation heating efficiency and the uniformity of radiative heating of object surface

  6. Radiant non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.

    2017-10-31

    A radiant, non-catalytic recuperative reformer has a flue gas flow path for conducting hot exhaust gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is positioned adjacent to the flue gas flow path to permit heat transfer from the hot exhaust gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, a portion of the reforming mixture flow path is positioned outside of flue gas flow path for a relatively large residence time.

  7. Regions in Energy Market Models

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.

    2007-02-01

    This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  8. Regions in Energy Market Models

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-18

    This report explores the different options for spatial resolution of an energy market model and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  9. Alternate Models to Dark Energy

    OpenAIRE

    Arun, Kenath; Gudennavar, S B; Prasad, A; Sivaram, C

    2017-01-01

    One of the unresolved questions currently in cosmology is that of the non-linear accelerated expansion of the universe. This has been attributed to the so called Dark Energy (DE). The accelerated expansion of the universe is deduced from measurements of Type Ia supernovae. Here we propose alternate models to account for the Type Ia supernovae measurements without invoking dark energy.

  10. Alternate models to dark energy

    Science.gov (United States)

    Arun, Kenath; Gudennavar, S. B.; Prasad, A.; Sivaram, C.

    2018-01-01

    One of the unresolved questions currently in cosmology is that of the non-linear accelerated expansion of the universe. This has been attributed to the so called Dark Energy (DE). The accelerated expansion of the universe is deduced from measurements of Type Ia supernovae. Here we propose alternate models to account for the Type Ia supernovae measurements without invoking dark energy.

  11. Radiant heat transfer of bicycle helmets and visors.

    Science.gov (United States)

    Brühwiler, Paul A

    2008-08-01

    Twenty-six bicycle helmets and their associated visors were characterized for radiant heat transfer using a thermal manikin headform in a climate chamber to assess their ability to protect the wearer from heating by the sun. A single configuration for applied radiant flow of 9.3 W was used to assess the roles of the forward and upper vents and the visor. The helmets shielded 50-75% of the radiant heating without a visor and 65-85% with one. Twenty-three visors were shown to result in a relevant reduction of radiant heating of the face (>0.5 W), with 15 reaching approximately 1 W. Heating of the visor and/or helmet and subsequent heating of the air flowing into the helmet was nevertheless found to be a relevant effect in many cases, suggesting that simple measures like reflective upper surfaces could noticeably improve the radiant heat rejection without changing the helmet structure. The forward vents in the helmets that allow the transmission of radiant heat are often important for forced convection, so that minimizing radiant heating geneally reduces the maximization of forced convective heat loss for current helmets.

  12. A Simulation Study on the Performance of Radiant Ceilings Combined with Free-Hanging Horizontal Sound Absorbers

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Domínguez, L. Marcos; Rage, Niels

    2018-01-01

    Radiant heating and cooling systems, and Thermally Active Building Systems (TABS) in particular, have several advantages such as benefiting from the low temperature heating and high temperature cooling principle, coupling with renewable energy sources, peak shifting and peak load reductions. When...... using TABS, most building simulation models assume an uncovered ceiling; however, this might not be the case in practice, due to the use of free-hanging horizontal (or vertical) sound absorbers for the control of room acoustic conditions. The use of sound absorbers will decrease the performance...... simulation software with a recently developed plug-in that allows simulating the effects of horizontal sound absorbers on the performance of TABS and on the thermal indoor environment. The change in thermal indoor environment and in performance of TABS were quantified, and the simulation results were...

  13. Modeling renewable energy company risk

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2012-01-01

    The renewable energy sector is one of the fastest growing components of the energy industry and along with this increased demand for renewable energy there has been an increase in investing and financing activities. The tradeoff between risk and return in the renewable energy sector is, however, precarious. Renewable energy companies are often among the riskiest types of companies to invest in and for this reason it is necessary to have a good understanding of the risk factors. This paper uses a variable beta model to investigate the determinants of renewable energy company risk. The empirical results show that company sales growth has a negative impact on company risk while oil price increases have a positive impact on company risk. When oil price returns are positive and moderate, increases in sales growth can offset the impact of oil price returns and this leads to lower systematic risk.

  14. Energy-economic policy modeling

    Science.gov (United States)

    Sanstad, Alan H.

    2018-01-01

    Computational models based on economic principles and methods are powerful tools for understanding and analyzing problems in energy and the environment and for designing policies to address them. Among their other features, some current models of this type incorporate information on sustainable energy technologies and can be used to examine their potential role in addressing the problem of global climate change. The underlying principles and the characteristics of the models are summarized, and examples of this class of model and their applications are presented. Modeling epistemology and related issues are discussed, as well as critiques of the models. The paper concludes with remarks on the evolution of the models and possibilities for their continued development.

  15. Error analysis of thermocouple measurements in the Radiant Heat Facility

    International Nuclear Information System (INIS)

    Nakos, J.T.; Strait, B.G.

    1980-12-01

    The measurement most frequently made in the Radiant Heat Facility is temperature, and the transducer which is used almost exclusively is the thermocouple. Other methods, such as resistance thermometers and thermistors, are used but very rarely. Since a majority of the information gathered at Radiant Heat is from thermocouples, a reasonable measure of the quality of the measurements made at the facility is the accuracy of the thermocouple temperature data

  16. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies.

    Science.gov (United States)

    Krüger, E L; Minella, F O; Matzarakis, A

    2014-10-01

    Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature T(mrt) are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine T(mrt) is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine T(mrt) is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature T(mrt) in terms of differences to a reference condition (T(mrt) calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The T(mrt) obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for T(mrt) calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate T(mrt) when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation

  17. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies

    Science.gov (United States)

    Krüger, E. L.; Minella, F. O.; Matzarakis, A.

    2014-10-01

    Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature Tmrt are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine Tmrt is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine Tmrt is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature Tmrt in terms of differences to a reference condition (Tmrt calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The Tmrt obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for Tmrt calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate Tmrt when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation data measured at

  18. Free of pollution gas - an utopia or attainable goal? Gas radiant burner with a small capacity

    International Nuclear Information System (INIS)

    Hofbauer, P.; Bornscheuer, W.

    1993-01-01

    The firm Viessmann has developed a gas radiant burner for boiler capacities up to 100 kN combusting gas with extremely low pollutant emissions. This is possible since from the reaction zone a considerable part of the combustion heat is delivered through radiation by means of a glowing special steel structure. The theoretical fundamentals are explained by means of considerations regarding the equilibrium and a reaction kinetic numerical model. (orig.) [de

  19. Model of Nordic energy market

    International Nuclear Information System (INIS)

    Gjelsvik, E.; Johnsen, T.; Mysen, H.T.

    1992-01-01

    Simulation results are given of the consumption of electricity and oil in Denmark, Norway and Sweden based on the demand section of a Nordic energy market model which is in the process of being developed in Oslo under the auspices of the Nordic Council of Ministers. The model incorporates supply, and trade between countries so that it can be analyzed how trading can contribute to goals within energy and environmental policies and to cost effective activities aimed at reducing pollution. The article deals in some detail with the subject of how taxation on carbon dioxide emission can influence pollution abatement and with energy consumption development within individual sectors in individual Northern countries. The model of energy demand is described with emphasis on the individual sectors of industry, transport, service and private households. Simulation results giving the effects of energy consumption and increased taxation on fossil fuels are given. On this background the consequences of the adaption of power plants is discussed and a sketch is given of a Nordic electric power market incorporating trading. (AB) (15 refs.)

  20. Thermal Performance Analysis of Reinforced Concrete Floor Structure with Radiant Floor Heating System in Apartment Housing

    Directory of Open Access Journals (Sweden)

    Young-Sun Jeong

    2015-01-01

    Full Text Available The use of the resilient materials in the radiant floor heating systems of reinforced concrete floor in apartment housing is closely related to the reduction of the floor impact sound and the heating energy loss. This study examined the thermal conductivity of expanded polystyrene (EPS foam used for the resilient material in South Korea and analysed the thermal transfer of reinforced concrete floor structure according to the thermal conductivity of the resilient materials. 82 EPS specimens were used to measure the thermal conductivity. The measured apparent density of EPS resilient materials ranged between 9.5 and 63.0 kg/m3, and the thermal conductivity ranged between 0.030 and 0.046 W/(m·K. As the density of resilient materials made of expanded polystyrene foam increases, the thermal conductivity tends to proportionately decrease. To set up reasonable thermal insulation requirements for radiant heating floor systems, the thermal properties of floor structure according to thermal insulation materials must be determined. Heat transfer simulations were performed to analyze the surface temperature, heat loss, and heat flow of floor structure with radiant heating system. As the thermal conductivity of EPS resilient material increased 1.6 times, the heat loss was of 3.4% increase.

  1. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 4; Determination of surface and atmosphere fluxes and temporally and spatially averaged products (subsystems 5-12); Determination of surface and atmosphere fluxes and temporally and spatially averaged products

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator); Baum, Bryan A.; Charlock, Thomas P.; Green, Richard N.; Lee, Robert B., III; Minnis, Patrick; Smith, G. Louis; Coakley, J. A.; Randall, David R.

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 4 details the advanced CERES techniques for computing surface and atmospheric radiative fluxes (using the coincident CERES cloud property and top-of-the-atmosphere (TOA) flux products) and for averaging the cloud properties and TOA, atmospheric, and surface radiative fluxes over various temporal and spatial scales. CERES attempts to match the observed TOA fluxes with radiative transfer calculations that use as input the CERES cloud products and NOAA National Meteorological Center analyses of temperature and humidity. Slight adjustments in the cloud products are made to obtain agreement of the calculated and observed TOA fluxes. The computed products include shortwave and longwave fluxes from the surface to the TOA. The CERES instantaneous products are averaged on a 1.25-deg latitude-longitude grid, then interpolated to produce global, synoptic maps to TOA fluxes and cloud properties by using 3-hourly, normalized radiances from geostationary meteorological satellites. Surface and atmospheric fluxes are computed by using these interpolated quantities. Clear-sky and total fluxes and cloud properties are then averaged over various scales.

  2. Radiant{trademark} Liquid Radioisotope Intravascular Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Eigler, N.; Whiting, J.; Chernomorsky, A.; Jackson, J.; Knapp, F.F., Jr.; Litvack, F.

    1998-01-16

    RADIANT{trademark} is manufactured by United States Surgical Corporation, Vascular Therapies Division, (formerly Progressive Angioplasty Systems). The system comprises a liquid {beta}-radiation source, a shielded isolation/transfer device (ISAT), modified over-the-wire or rapid exchange delivery balloons, and accessory kits. The liquid {beta}-source is Rhenium-188 in the form of sodium perrhenate (NaReO{sub 4}), Rhenium-188 is primarily a {beta}-emitter with a physical half-life of 17.0 hours. The maximum energy of the {beta}-particles is 2.1 MeV. The source is produced daily in the nuclear pharmacy hot lab by eluting a Tungsten-188/Rhenium-188 generator manufactured by Oak Ridge National Laboratory (ORNL). Using anion exchange columns and Millipore filters the effluent is concentrated to approximately 100 mCi/ml, calibrated, and loaded into the (ISAT) which is subsequently transported to the cardiac catheterization laboratory. The delivery catheters are modified Champion{trademark} over-the-wire, and TNT{trademark} rapid exchange stent delivery balloons. These balloons have thickened polyethylene walls to augment puncture resistance; dual radio-opaque markers and specially configured connectors.

  3. The geothermal energy, a model energy

    International Nuclear Information System (INIS)

    2004-11-01

    This book, largely illustrated by photos maps and schemes, takes stock on the knowledge on the geothermal energy, the low and high energy applications and the evolutions. Examples describe the french context and the channels of heat and electric power production. (A.L.B.)

  4. Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure.

    Science.gov (United States)

    Shortall, A; El-Mahy, W; Stewardson, D; Addison, O; Palin, W

    2013-05-01

    The principal objective of this study was to determine whether the bulk fracture resistance of ten light activated composites varied over a clinically realistic range of radiant exposures between 5 and 40 J/cm(2). Ten operators were tested for clinically simulated radiant exposure delivery from a Bluephase(®) (Ivoclar Vivadent, Schaan, Liechtenstein) LED light to an occlusal cavity floor in tooth 27 in a mannequin head using a MARC(®)-Patient Simulator (Bluelight Analytics Inc., Halifax, NS) device. Notch disc test samples were prepared to determine the torque resistance to fracture (T) of the composites. Samples were irradiated with the same monowave Bluephase(®) light for 10s, 20s or 40s at distances of 0mm or 7 mm. After 24h, storage samples were fractured in a universal testing machine and torque to failure was derived. Radiant exposure delivered in the clinical simulation ranged from 14.3% to 69.4% of maximum mean radiant exposure deliverable at 0mm in a MARC(®)-Resin Calibrator (Bluelight Analytics Inc., Halifax, NS) test device. Mean torque to failure increased significantly (Pradiant exposure for 8 out of 10 products. The micro-fine hybrid composite Gradia Direct anterior (GC) had the lowest mean (S.D.) T between 10.3 (1.8)N/mm and 13.7 (2.2)N/mm over the tested radiant exposure range. Three heavily filled materials Majesty Posterior, Clearfil APX and Clearfil Photo-Posterior (Kuraray) had mean T values in excess of 25 N/mm following 40 J/cm(2) radiant exposure. Mean T for Z100 (3MESPE) and Esthet-X (Dentsply) increased by 10% and 91% respectively over the tested range of radiant exposures. Individual products require different levels of radiant exposure to optimize their fracture resistance. Light activated composites vary in the rate at which they attain optimal fracture resistance. Unless the clinician accurately controls all the variables associated with energy delivery, there is no way of predicting that acceptable fracture resistance will be

  5. Energy-balance climate models

    Science.gov (United States)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  6. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    CERN Document Server

    Rabus, H; Scholze, F; Thornagel, R; Ulm, G

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to th...

  7. Physiological reaction of men under excercise to radiant heat.

    Science.gov (United States)

    Furuya, T; Kubota, T

    1975-03-01

    To investigate the effect of the radiant heat on the human body in a hot environment, the subjects exposed their nude back to a radiant heat of 1.3 and 2.6 cal/cm-2. min, using the exsiccating infrared illuminators under a hot ambient condition of a temperature 31 degrees C, with a relative humidity of 55% and a 0.5 m/sec air flow. The 8 subjects were healthy male college students aged 20 to 25. The following results were obtained by estimating the physiological reactions to different degrees of radiant heat at rest for 60 minutes and during exercise for 30 minutes on a bicycle ergometer by 272 kg. m/min (or 600 kp. m/min). 1) The mean skin temperature, heart rate, respiration rate and body weight loss rate increased at rest in parallel with the degree of the radiant heat, and during exercise the mean skin temperature, heart rate, respiration rate, body weight loss rate and respiratory volume increased, but the NA+ LOSS RATE DECREASED. The regression equation was obtained to show the quantitative relationship between the degree of the radiant heat and the physiological body reactions. 2) By computing the Heat Tolerance Index by Inoue et al., it was clarified that the higher the degree of the radiant heat was, the smaller was the index. And as there was a close correlation between the indices both at rest and during exercise, it was suggested that for the evaluation of heat tolerance, the radiant heat by the infrared illuminators is applicable as additional heat loading besides hot water bathing or staying in a hot chamber.

  8. DOE Zero Energy Ready Home Case Study: Amaris Homes, Afton Model

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2017-09-01

    Amaris Homes built this 3,734-ft2 home in Afton, Minnesota, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A high-efficiency gas boiler provides hot water for the zoned radiant floor system as well as for faucets and showers. A high-efficiency heat pump provides zoned cooling.

  9. Balmorel open source energy system model

    DEFF Research Database (Denmark)

    Wiese, Frauke; Bramstoft, Rasmus; Koduvere, Hardi

    2018-01-01

    As the world progresses towards a cleaner energy future with more variable renewable energy sources, energy system models are required to deal with new challenges. This article describes design, development and applications of the open source energy system model Balmorel, which is a result of a l...... transport of local biomass as part of the optimisation and speeding up the model....

  10. Evaluating Energy Efficiency Policies with Energy-Economy Models

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  11. Modelling distributed energy resources in energy service networks

    CERN Document Server

    Acha, Salvador

    2013-01-01

    Focuses on modelling two key infrastructures (natural gas and electrical) in urban energy systems with embedded technologies (cogeneration and electric vehicles) to optimise the operation of natural gas and electrical infrastructures under the presence of distributed energy resources

  12. Sensitivity analysis of the thermal performance of radiant and convective terminals for cooling buildings

    DEFF Research Database (Denmark)

    Le Dréau, J.; Heiselberg, P.

    2014-01-01

    conducted to determine the parameters influencing their thermal performance the most. The air change rate, the outdoor temperature and the air temperature stratification have the largest effect on the cooling need (maintaining a constant operative temperature). For air change rates higher than 0.5 ACH......, differences between terminals can be observed. Due to their higher dependency on the air change rate and outdoor temperature, convective terminals are generally less energy effective than radiant terminals. The global comfort level achieved by the different systems is always within the recommended range......, but differences have been observed in the uniformity of comfort....

  13. Two sustainable energy system analysis models

    DEFF Research Database (Denmark)

    Lund, Henrik; Goran Krajacic, Neven Duic; da Graca Carvalho, Maria

    2005-01-01

    This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy.......This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy....

  14. Energy Blocks — A Physical Model for Teaching Energy Concepts

    Science.gov (United States)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams. Activities and analogies like Energy Theater and Richard Feynman's blocks, as well as the popular money (or wealth) analogy, can also be very effective. The goal of this paper is to describe a physical model of Feynman's blocks that can be employed by instructors to help students learn the following energy-related concepts: 1. The factors affecting each individual mechanical energy storage mode (this refers to what has been traditionally called a form of energy, and while the Modeling Method of instruction is not the focus of this paper, much of the energy related language used is specific to the Modeling Method). For example, how mass or height affects gravitational energy; 2. Energy conservation; and 3. The graphical relationships between the energy storage mode and a factor affecting it. For example, the graphical relationship between elastic energy and the change in length of a spring.

  15. Evaluation of thermal comfort conditions in a localized radiant system placed in front and behind two students seated nearby warmed curtains

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Eusebio Z.E. [FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Lucio, M-1. Manuela J.R. [Agrupamento Vertical Professor Paula Nogueira, R. Comunidade Lusiada, 8700-000 Olhao (Portugal)

    2010-10-15

    In this work the evaluation of thermal comfort conditions, that two students are subjected, in a classroom desk equipped with a localized radiant system placed in front and behind the occupants seated nearby windows equipped with curtains subjected to solar radiation, in Winter conditions, is made. In the simulation, performed in a 2.7 x 2.4 x 2.4 m{sup 3} virtual chamber, two occupants seated in a classroom desk, equipped with two localized radiant surfaces placed in front and two localized radiant surfaces placed behind them, a window subjected to solar radiation and an internal curtain are considered. A numerical model, that allows to simulate the human body thermal, clothing thermal and thermoregulatory systems, in non-uniform environments, is used. The Mean Radiant Temperature, with and without correction, and Radiosity methods are used in the study of the influence of the localized radiant surface, the room surrounding surfaces, the lateral occupant's body, the lateral curtain surface and the lateral solar radiation, in the thermal comfort conditions. In the first part of the study three numerical methods used in the evaluation of internal radiant heat exchanges in an acceptable typical thermal situation are analysed, while in the second part the influence of four important thermal parameters in the thermal comfort level is analysed. In the first part of this work, the localized radiant surfaces and the lateral occupant's body are evaluated in the first test, the localized radiant surfaces, the lateral occupants body and the lateral curtains surface are evaluated in the second test and the localized radiant surfaces, the lateral occupants body, the lateral window glass surface and the lateral solar radiation are evaluated in the third test. In the second part of this work, the influence of air temperature, equal to the room surrounding surfaces temperature, the localized radiant system temperature, the lateral curtains temperature and the air

  16. Use of local convective and radiant cooling at warm environment

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2012-01-01

    . The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The minimal improvement in PAQ was reported when the radiant...

  17. Predictions of the meteor radiant point associated with a comet

    International Nuclear Information System (INIS)

    Hasegawa, Ichiro

    1990-01-01

    Under the condition of equal heliocentric distances on the ecliptic plane, predictions of cometary meteor orbit and its radiant point are presented and discussed in terms of meteor observations. Some adjustment methods regarding the parent cometary orbit in order to fulfill the proposed conditions for the apparition of meteor streams are also presented. (author)

  18. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  19. Economic modelling of energy services: Rectifying misspecified energy demand functions

    International Nuclear Information System (INIS)

    Hunt, Lester C.; Ryan, David L.

    2015-01-01

    Although it is well known that energy demand is derived, since energy is required not for its own sake but for the energy services it produces – such as heating, lighting, and motive power – energy demand models, both theoretical and empirical, often fail to take account of this feature. In this paper, we highlight the misspecification that results from ignoring this aspect, and its empirical implications – biased estimates of price elasticities and other measures – and provide a relatively simple and empirically practicable way to rectify it, which has a strong theoretical grounding. To do so, we develop an explicit model of consumer behaviour in which utility derives from consumption of energy services rather than from the energy sources that are used to produce them. As we discuss, this approach opens up the possibility of examining many aspects of energy demand in a theoretically sound way that have not previously been considered on a widespread basis, although some existing empirical work could be interpreted as being consistent with this type of specification. While this formulation yields demand equations for energy services rather than for energy or particular energy sources, these are shown to be readily converted, without added complexity, into the standard type of energy demand equation(s) that is (are) typically estimated. The additional terms that the resulting energy demand equations include, compared to those that are typically estimated, highlight the misspecification that is implicit when typical energy demand equations are estimated. A simple solution for dealing with an apparent drawback of this formulation for empirical purposes, namely that information is required on typically unobserved energy efficiency, indicates how energy efficiency can be captured in the model, such as by including exogenous trends and/or including its possible dependence on past energy prices. The approach is illustrated using an empirical example that involves

  20. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological...... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  1. Asymmetric Laser Radiant Cooling in Storage Rings

    CERN Document Server

    Bulyak, E V; Zimmermann, F

    2011-01-01

    Laser pulses with small spatial and temporal dimensions can interact with a fraction of the electron bunches circulating in Compton storage rings. We studied synchrotron dynamics of such bunches when laser photons scatter off from the electrons with energy higher than the synchronous energy. In this case of ‘asymmetric cooling', as shown theoretically, the stationary energy spread is much smaller than under conditions of regular scattering; the oscillations are damped faster. Coherent oscillations of large amplitude may be damped in one synchrotron period, which makes this method feasible for injection the bunches into a ring in the longitudinal phase space. The theoretical results are validated with simulations.

  2. Models of Energy Saving Systems

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    1999-01-01

    The paper first describes the concepts and methods around energy saving, such as energy chain, energy services, end-use technologies, secondary energy, etc. Next are discussed the problems of defining and adding energy services and hence end-use energy efficiency or intensity. A section is devoted...... to what is termed lifestyle efficiency, including the cultural values and the ability of the economy to provide the services wanted. As explained, integrated resource planning with its optimizing the whole energy chain cannot be combined with sub-optimizing part of it, for instance the supply technology...... only. The need for including also the economic policy in the energy planning is illustrated with what is termed the efficiency pittfall. This points towards difficulties in imaging an integrated resource planning combined with a liberalized market. The three variable parameters, population, energy...

  3. Rapid Energy Modeling Workflow Demonstration Project

    Science.gov (United States)

    2014-01-01

    Conditioning Engineers BIM Building Information Model BLCC building life cycle costs BPA Building Performance Analysis CAD computer assisted...utilizes information on operations, geometry, orientation, weather, and materials, generating Three-Dimensional (3D) Building Information Models ( BIM ...executed a demonstration of Rapid Energy Modeling (REM) workflows that employed building information modeling ( BIM ) approaches and conceptual energy

  4. Capabilities and accuracy of energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-11-01

    Full Text Available Energy modelling can be used in a number of different ways to fulfill different needs, including certification within building regulations or green building rating tools. Energy modelling can also be used in order to try and predict what the energy...

  5. Radiant smiles everywhere - before the Chernobyl accident

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The business reports presented by the Federal German electric utilities for 1985 are almost all simply brillant. Electricity consumption has been going up, some of the utilities even can boast about rates kept constant over the year. But before the printed business reports could be presented to the meetings of shareholders, a nasty cloud threw a dark shadow over all the brilliant results. The Chernobyl accident made some of the hymns over the nuclear electricity increases and nuclear power in general sound rather queer. Could we do without this energy source. Substituting nuclear power would yearly require: 28 million t of oil, or 41 million t of hard coal, or 142 million t of browncoal, or 38 thousand million cubic metres of natural gas. Extrapolating current conditions and assuming best achievements, renewable energy sources might be able to meet 6 p.c. of the primary energy demands by the year 2000. (orig./HP) [de

  6. Field evaluation of performance of radiant heating/cooling ceiling panel system

    DEFF Research Database (Denmark)

    Li, Rongling; Yoshidomi, Togo; Ooka, Ryozo

    2015-01-01

    As in many other countries in the world, Japan has witnessed an increased focus on low-energy buildings.For testing different engineering solutions for energy-efficient buildings, a low-energy building was builtat the University of Tokyo as an experimental pilot project. In this building, a radiant...... heating/coolingceiling panel system is used. However, no standard exists for the in situ performance evaluation of radiantheating/cooling ceiling systems; furthermore, no published database is available for comparison. Thus,this study aims to not only clarify the system performance but also to share our......, respectively. The upwardheat flux from the panels was found to be as large as 30–40% of the water heating/cooling capacity; thiswould translate into heat loss in certain operating modes. Several proposals for reducing the upwardheat flux were discussed. The measurements also showed that a category B thermal...

  7. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  8. Integrated thermal infrared imaging and structure-from-motion photogrammetry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA, USA

    Science.gov (United States)

    Lewis, A.; Hilley, G. E.; Lewicki, J. L.

    2015-09-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the structure-from-motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 °C and 450 W m- 2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  9. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    Science.gov (United States)

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  10. Energy Systems Modelling Research and Analysis

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Alberg Østergaard, Poul

    2015-01-01

    This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out...... by 11 university and industry partners has improved the basis for decision-making within energy planning and energy scenario making by providing new and improved tools and methods for energy systems analyses....

  11. Pyroelectric Energy Harvesting: Model and Experiments

    Science.gov (United States)

    2016-05-01

    resistance is dependent on the electric field and the temperature , and will decrease as either factor increases, meaning the leakage current increases with...conversion cycles. 5.1 Static Testing The pyroelectric sample was tested under static temperature conditions using the heater element and a Radiant ...influences the polarization of the sample, meaning the amount of charge that will move due to the temperature change varies depending on the electric

  12. Comparing holographic dark energy models with statefinder

    International Nuclear Information System (INIS)

    Cui, Jing-Lei; Zhang, Jing-Fei

    2014-01-01

    We apply the statefinder diagnostic to the holographic dark energy models, including the original holographic dark energy (HDE) model, the new holographic dark energy model, the new agegraphic dark energy (NADE) model, and the Ricci dark energy model. In the low-redshift region the holographic dark energy models are degenerate with each other and with the ΛCDM model in the H(z) and q(z) evolutions. In particular, the HDE model is highly degenerate with the ΛCDM model, and in the HDE model the cases with different parameter values are also in strong degeneracy. Since the observational data are mainly within the low-redshift region, it is very important to break this lowredshift degeneracy in the H(z) and q(z) diagnostics by using some quantities with higher order derivatives of the scale factor. It is shown that the statefinder diagnostic r(z) is very useful in breaking the low-redshift degeneracies. By employing the statefinder diagnostic the holographic dark energy models can be differentiated efficiently in the low-redshift region. The degeneracy between the holographic dark energy models and the ΛCDM model can also be broken by this method. Especially for the HDE model, all the previous strong degeneracies appearing in the H(z) and q(z) diagnostics are broken effectively. But for the NADE model, the degeneracy between the cases with different parameter values cannot be broken, even though the statefinder diagnostic is used. A direct comparison of the holographic dark energy models in the r-s plane is also made, in which the separations between the models (including the ΛCDM model) can be directly measured in the light of the current values {r 0 , s 0 } of the models. (orig.)

  13. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  14. Dynamic energy models and carbon mitigation policies

    Science.gov (United States)

    Tilley, Luke A.

    In this dissertation I examine a specific class of energy models and their implications for carbon mitigation policies. The class of models includes a production function capable of reproducing the empirically observed phenomenon of short run rigidity of energy use in response to energy price changes and long run exibility of energy use in response to energy price changes. I use a theoretical model, parameterized using empirical data, to simulate economic performance under several tax regimes where taxes are levied on capital income, investment, and energy. I also investigate transitions from one tax regime to another. I find that energy taxes intended to reduce energy use can successfully achieve those goals with minimal or even positive impacts on macroeconomic performance. But the transition paths to new steady states are lengthy, making political commitment to such policies very challenging.

  15. Directory of Energy Information Administration models 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

  16. An Empirical Model for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scott, Paul [TransPower, Poway, CA (United States)

    2016-03-17

    Improved models of energy storage systems are needed to enable the electric grid’s adaptation to increasing penetration of renewables. This paper develops a generic empirical model of energy storage system performance agnostic of type, chemistry, design or scale. Parameters for this model are calculated using test procedures adapted from the US DOE Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage. We then assess the accuracy of this model for predicting the performance of the TransPower GridSaver – a 1 MW rated lithium-ion battery system that underwent laboratory experimentation and analysis. The developed model predicts a range of energy storage system performance based on the uncertainty of estimated model parameters. Finally, this model can be used to better understand the integration and coordination of energy storage on the electric grid.

  17. Energy efficiency of electrical infrared heating elements

    International Nuclear Information System (INIS)

    Brown, K.J.; Farrelly, R.; O’Shaughnessy, S.M.; Robinson, A.J.

    2016-01-01

    Highlights: • Characterization of the radiant energy efficiency of infrared heating elements. • Performed for a commercially available ceramic heater element for two cases. • Total radiant power and net radiant efficiency is computed. • Radiant efficiencies are strongly dependant on the input power to the element. • In-plane efficiencies depend on the distance from the heater. - Abstract: A measurement system has been designed to characterize the radiant energy efficiency of infrared heating elements. The system also allows for measurement of the radiant heat flux distribution emitted from radiant heater assemblies. To facilitate these, a 6-axis robotic arm is fitted with a Schmidt–Boelter radiant heat flux gauge. A LabVIEW interface operates the robot and positions the sensor in the desired location and subsequently acquires the desired radiant heat flux measurement. To illustrate the functionality of the measurement system and methodology, radiant heat flux distributions and efficiency calculations are performed for a commercially available ceramic heater element for two cases. In the first, a spherical surface is traced around the entire heater assembly and the total radiant power and net radiant efficiency is computed. In the second, 50 cm × 50 cm vertical planes are traced parallel to the front face of the heater assembly at distances between 10 cm and 50 cm and the in-plane power and efficiencies are computed. The results indicate that the radiant efficiencies are strongly dependant on the input power to the element and, for the in-plane efficiencies, depend on the distance from the heater.

  18. Models for the energy performance of low-energy houses

    DEFF Research Database (Denmark)

    Andersen, Philip Hvidthøft Delff

    of buildings is needed both in order to assess energy-effciency and to operate modern buildings economically. Energy signatures are a central tool in both energy performance assessment and decision making related to refurbishment of buildings. Also for operation of modern buildings with installations......-building. The building is well-insulated and features large modern energy-effcient windows and oor heating. These features lead to increased non-linear responses to solar radiation and longer time constants. The building is equipped with advanced control and measuring equipment. Experiments are designed and performed...... in order to identify important dynamical properties of the building, and the collected data is used for modeling. The thesis emphasizes the statistical model building and validation needed to identify dynamical systems. It distinguishes from earlier work by focusing on modern low-energy construction...

  19. Influence of ground surface characteristics on the mean radiant temperature in urban areas.

    Science.gov (United States)

    Lindberg, Fredrik; Onomura, Shiho; Grimmond, C S B

    2016-09-01

    The effect of variations in land cover on mean radiant temperature (T mrt ) is explored through a simple scheme developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through variations in albedo for the different surfaces. The influence of ground surface materials on T mrt is small compared to the effects of shadowing. Nevertheless, altering ground surface materials could contribute to a reduction in T mrt to reduce the radiant load during heat-wave episodes in locations where shadowing is not an option. Evaluation of the new scheme suggests that despite its simplicity it can simulate the outgoing fluxes well, especially during sunny conditions. However, it underestimates at night and in shadowed locations. One grass surface used to develop the parameterisation, with very different characteristics compared to an evaluation grass site, caused T mrt to be underestimated. The implications of using high temporal resolution (e.g. 15 minutes) meteorological forcing data under partly cloudy conditions are demonstrated even for fairly proximal sites.

  20. Directory of Energy Information Administration Models 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

  1. Directory of Energy Information Administration Models 1994

    International Nuclear Information System (INIS)

    1994-07-01

    This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994

  2. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub

    International Nuclear Information System (INIS)

    Ma, Tengfei; Wu, Junyong; Hao, Liangliang

    2017-01-01

    Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.

  3. Modelling of Integrated Renewable Energy System

    Science.gov (United States)

    Akella, A. K.; Saini, R. P.; Sharma, M. P.

    2007-10-01

    Energy is supplied in the form of electricity, heat or fuels and an energy supply system must guarantee sufficient production and distribution of energy. An energy supply system based on renewable energy can be utilized as integrated renewable energy system (IRES), which can satisfy the energy needs of an area in appropriate & sustainable manner. Given the key role of renewable energy in rural electrification of remote rural areas, the IRES for a given area can be modeled & optimized for meeting the energy needs. In the present paper, Jaunpur block of Uttaranchal state of India has been selected as remote area. Based upon the data collected, the resource potential and energy demand has been calculated & presented. The model on the basis of unit cost of the energy has been optimized using LINDO software 6.10 version. The results indicated that the optimized model has been found to the best choice for meeting the energy needs of the area. The results further indicated that for the above area, either an IRES consisting of the above sources can provide a feasible solution in terms of energy fulfillments in the range of EPDF from 1.0 to 0.75.

  4. World energy projection system: Model documentation

    International Nuclear Information System (INIS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report

  5. Night time cooling by ventilation or night sky radiation combined with in-room radiant cooling panels including phase change materials

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Olesen, Bjarne W.; Grossule, Fabio

    constructed at the Technical University of Denmark, where the outside PVT panels are connected through a storage tank to in-room radiant ceiling panels. The radiant ceiling panels include phase change material (PCM) and embedded pipes for circulating water. Due to the phase change material it is possible...... depending on the sky clearness. This cooling power was enough to remove the stored heat and regenerate the ceiling panels. The validation simulation model results related to PCM were close to the corresponding results extracted from the experiment, while the results related to the production of cold water...

  6. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2016-01-01

    Full Text Available The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical Comfort (OTC model was used for simulation in this study. The model output is comfort scale that refers on ASHRAE definition. The model consists of two regression equations with variables of air temperature, globe temperature, wind speed, humidity and body posture, for two types of activity: walking and seated. From the results it can be stated that there is significant role of wind speed to reduce mean radiant temperature and globe temperature, when the velocity is elevated from 0.5 m/s to 2 m/s. However, the wind has not play significant role when the speed is changed from 2 m/s to 3.5 m/s. The results of the study may inspire us to implement effectiveness of electrical-fan equipment for outdoor space in order to get optimum wind speed, coupled with optimum design of shading devices to minimize radiant temperature for thermal comfort.

  7. A cultural model of household energy consumption

    International Nuclear Information System (INIS)

    Lutzenhiser, Loren

    1992-01-01

    In this paper, we consider the development of demand-side research, from an early interest in conservation behavior to a later focus on physical, economic, psychological and social models of energy consumption. Unfortunately, none of these models account satisfactorily for measured energy consumption in the residential sector. Growing interest in the end-uses of energy (e.g. in support of load forecasting, demand-side management and least-cost utility planning), increasing international studies of energy use, and continuing work in the energy and lifestyles research tradition now support an emerging cultural perspective on household energy use. The ecological foundations of the cultural model and its applications in energy research are discussed, along with some of the analytic consequences of this approach. (author)

  8. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  9. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  10. Modeling Energy and Development : An Evaluation of Models and Concepts

    NARCIS (Netherlands)

    Ruijven, Bas van; Urban, Frauke; Benders, René M.J.; Moll, Henri C.; Sluijs, Jeroen P. van der; Vries, Bert de; Vuuren, Detlef P. van

    2008-01-01

    Most global energy models are developed by institutes from developed countries focusing primarily oil issues that are important in industrialized countries. Evaluation of the results for Asia of the IPCC/SRES models shows that broad concepts of energy and development. the energy ladder and the

  11. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    In this study, a typical office room with a radiant heating system and a mechanical ventilation system was selected as the research subject. Indoor temperature formulas for calculating the room heat loss (including transmission heat loss and ventilation heat loss) and heating capacity of the hybrid...... for calculating ventilation heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems. (C) 2015 Elsevier B.V. All rights reserved....... change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  12. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  13. An experimental investigation devoted to determine heat transfer characteristics in a radiant ceiling heating system

    Science.gov (United States)

    Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai

    2018-02-01

    Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.

  14. Model-Driven Energy Intelligence

    Science.gov (United States)

    2015-03-01

    Buildings Integrator ECIP Environmental Conservation Investment Program ECM electronically commuted motors EISA Energy Independence and Security Act...FIPS Federal Information Processing Standard HBS Honeywell Building Solutions HQUSACE Headquarters, U.S. Army Corps of Engineers HVAC ...conditioning ( HVAC ) design, root causes for anomalous behavior can be more easily understood. Combined visualizations reveal the behavior of specific

  15. Stochastic Modelling of Energy Systems

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae

    2001-01-01

    In this thesis dynamic models of typical components in Danish heating systems are considered. Emphasis is made on describing and evaluating mathematical methods for identification of such models, and on presentation of component models for practical applications. The thesis consists of seven...... of component models, such as e.g. heat exchanger and valve models, adequate for system simulations. Furthermore, the thesis demonstrates and discusses the advantages and disadvantages of using statistical methods in conjunction with physical knowledge in establishing adequate component models of heating...... research papers (case studies) together with a summary report. Each case study takes it's starting point in typical heating system components and both, the applied mathematical modelling methods and the application aspects, are considered. The summary report gives an introduction to the scope...

  16. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  17. Thermal stability of premature infants during routine care under radiant warmers.

    OpenAIRE

    Seguin, J. H.; Vieth, R.

    1996-01-01

    The body temperatures of infants weighing less than 1500 g under radiant warmers during routine care were documented in the first week of life. Ten infants (median gestational age 28 weeks, median birthweight 913 g) were studied. During 30 nursing interventions (mean 9.2 minutes) mean oesophageal and foot temperature changed 0 degrees C and -0.11 degrees C, respectively. A radiant warmer may limit heat loss during interventions because of easy access and rapid radiant warmer responsiveness.

  18. Thermal stability of premature infants during routine care under radiant warmers.

    Science.gov (United States)

    Seguin, J H; Vieth, R

    1996-03-01

    The body temperatures of infants weighing less than 1500 g under radiant warmers during routine care were documented in the first week of life. Ten infants (median gestational age 28 weeks, median birthweight 913 g) were studied. During 30 nursing interventions (mean 9.2 minutes) mean oesophageal and foot temperature changed 0 degrees C and -0.11 degrees C, respectively. A radiant warmer may limit heat loss during interventions because of easy access and rapid radiant warmer responsiveness.

  19. Dark energy observational evidence and theoretical models

    CERN Document Server

    Novosyadlyj, B; Shtanov, Yu; Zhuk, A

    2013-01-01

    The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

  20. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  1. Towards increased policy relevance in energy modeling

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Ramesohl, Stephan; Boyd, Gale

    2003-07-29

    Historically, most energy models were reasonably equipped to assess the impact of a subsidy or change in taxation, but are often insufficient to assess the impact of more innovative policy instruments. We evaluate the models used to assess future energy use, focusing on industrial energy use. We explore approaches to engineering-economic analysis that could help improve the realism and policy relevance of engineering-economic modeling frameworks. We also explore solutions to strengthen the policy usefulness of engineering-economic analysis that can be built from a framework of multi-disciplinary cooperation. We focus on the so-called ''engineering-economic'' (or ''bottom-up'') models, as they include the amount of detail that is commonly needed to model policy scenarios. We identify research priorities for the modeling framework, technology representation in models, policy evaluation and modeling of decision-making behavior.

  2. Energy flow and thermal comfort in buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome

    is based on both radiation and convection. Radiant terminals have the advantage of making use of low grade sources (i.e. low temperature heating and high temperature cooling), thus decreasing the primary energy consumption of buildings. But there is a lack of knowledge on the heat transfer from...... the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam, radiant floor, wall and ceiling) have been compared for a typical office room, both numerically......), radiant and air-based terminals have similar energy needs. For higher air change rate, the energy consumption of radiant terminals is lower than that of air-based terminals due to the higher air temperature. At 2 ACH, the energy savings of a radiant wall can be estimated to around 10 % compared...

  3. On Kinetics Modeling of Vibrational Energy Transfer

    Science.gov (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  4. Energy models for commercial energy prediction and substitution of renewable energy sources

    International Nuclear Information System (INIS)

    Iniyan, S.; Suganthi, L.; Samuel, Anand A.

    2006-01-01

    In this paper, three models have been projected namely Modified Econometric Mathematical (MEM) model, Mathematical Programming Energy-Economy-Environment (MPEEE) model, and Optimal Renewable Energy Mathematical (OREM) model. The actual demand for coal, oil and electricity is predicted using the MEM model based on economic, technological and environmental factors. The results were used in the MPEEE model, which determines the optimum allocation of commercial energy sources based on environmental limitations. The gap between the actual energy demand from the MEM model and optimal energy use from the MPEEE model, has to be met by the renewable energy sources. The study develops an OREM model that would facilitate effective utilization of renewable energy sources in India, based on cost, efficiency, social acceptance, reliability, potential and demand. The economic variations in solar energy systems and inclusion of environmental constraint are also analyzed with OREM model. The OREM model will help policy makers in the formulation and implementation of strategies concerning renewable energy sources in India for the next two decades

  5. Modelling energy utilisation in broiler breeder hens.

    Science.gov (United States)

    Rabello, C B V; Sakomura, N K; Longo, F A; Couto, H P; Pacheco, C R; Fernandes, J B K

    2006-10-01

    1. The objective of this study was to determine a metabolisable energy (ME) requirement model for broiler breeder hens. The influence of temperature on ME requirements for maintenance was determined in experiments conducted in three environmental rooms with temperatures kept constant at 13, 21 and 30 degrees C using a comparative slaughter technique. The energy requirements for weight gain were determined based upon body energy content and efficiency of energy utilisation for weight gain. The energy requirements for egg production were determined on the basis of egg energy content and efficiency of energy deposition in the eggs. 2. The following model was developed using these results: ME = kgW0.75(806.53-26.45T + 0.50T2) + 31.90G + 10.04EM, where kgW0.75 is body weight (kg) raised to the power 0.75, T is temperature ( degrees C), G is weight gain (g) and EM is egg mass (g). 3. A feeding trial was conducted using 400 Hubbard Hi-Yield broiler breeder hens and 40 Peterson males from 31 to 46 weeks of age in order to compare use of the model with a recommended feeding programme for this strain of bird. The application of the model in breeder hens provided good productive and reproductive performance and better results in feed and energy conversion than in hens fed according to strain recommendation. In conclusion, the model evaluated predicted an ME intake which matched breeder hens' requirements.

  6. Radiant science, dark politics: a memoir of the nuclear age

    International Nuclear Information System (INIS)

    Kamen, M.D.

    1985-01-01

    The reviewer describes Radiant Science, Dark Politics: A Memoir of the Nuclear Age in contrast to a memoir by James R. Killian, Jr., a contemporary of Kamen. Kamen, co-discoverer of carbon-14 and a valued member of the Berkeley Radiation Laboratory, was fired in 1944 and blackballed as a security risk. Rehabilitated by the end of the war, his continued fight against political injustice through the McCarthy era colors the book and, for the reviewer, makes it self-serving. Kamen's later scientific work reflected his desire to work alone rather than in collaboration

  7. Radiant coolers - Theory, flight histories, design comparisons and future applications

    Science.gov (United States)

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  8. Luz Pozo Garza: Memoria radiante de una mujer solar

    OpenAIRE

    Blanco, Carmen

    2006-01-01

    The poetry of Luz Poz Garza is a Platonic flashing beauty cosmos ruled by clarity, depth and harmony symbolized in the name that gave birth to it: that of a “solar woman”, fully self-assured in her life and in her work, gathered in the “heart of light” of her poetry. Memoria solar, the title of her complete poetry work, contains the radiant memory of the solar woman, a curved by plenitude cosmos that shelters a first microcosmos (that of her youth poetry), red fruit such as orange o meat appl...

  9. Impacts of Model Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, Rosemarie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  10. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  11. Energy and development : A modelling approach

    NARCIS (Netherlands)

    van Ruijven, B.J.|info:eu-repo/dai/nl/304834521

    2008-01-01

    Rapid economic growth of developing countries like India and China implies that these countries become important actors in the global energy system. Examples of this impact are the present day oil shortages and rapidly increasing emissions of greenhouse gases. Global energy models are used explore

  12. Directory of energy information administration models 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-13

    This updated directory has been published annually; after this issue, it will be published only biennially. The Disruption Impact Simulator Model in use by EIA is included. Model descriptions have been updated according to revised documentation approved during the past year. This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included are 37 EIA models active as of February 1, 1995. The first group is the National Energy Modeling System (NEMS) models. The second group is all other EIA models that are not part of NEMS. Appendix A identifies major EIA modeling systems and the models within these systems. Appendix B is a summary of the `Annual Energy Outlook` Forecasting System.

  13. Modelling the energy transition in cities

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Felix [Wuppertal Univ. (Germany). Dept. of Civil Engineering; Schwarze, Bjoern; Spiekermann, Klaus; Wegener, Michael [Spiekermann und Wegener Urban and Regional Research, Dortmund (Germany)

    2013-09-01

    The history of cities is a history of energy transitions. In the medieval city heating and cooking occurred with wood and peat. The growth of the industrial city in the 19th century was built on coal and electricity. The sprawling metropolis of the 20th century was made possible by oil and gas. How will the city of the 21st century look after the next energy transition from fossil to renewable energy? This paper reports on the extension of an urban land-use transport interaction model to a model of the energy transition in the Ruhr Area, a five-million agglomeration in Germany. The paper presents the planned model extensions and how they are to be integrated into the model and shows first preliminary results.

  14. Teaching model: Energy. 3. rev. ed.

    International Nuclear Information System (INIS)

    1979-01-01

    The model attempts to give a picture of the energy situation and the problems connected with the various energy sources. An 'energy syllabus' is obtained which deals mostly with energy industry and sociopolitical aspects. The material is for teaching from 9th grade onwards; it may be used for socio-economic projects at upper secondary. The book is considered as an attempt at a critical discussion and a better understanding of this important field of economy and, at that, our lives. (orig./HP) [de

  15. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  16. Langevin model of low-energy fission

    Science.gov (United States)

    Sierk, Arnold J.

    2017-09-01

    Background: Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. Purpose: In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. Method: I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses is tabulated on a mesh of approximately 107 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. Results: The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions

  17. Accidental overheating of a newborn under an infant radiant warmer: a lesson for future use.

    Science.gov (United States)

    Molgat-Seon, Y; Daboval, T; Chou, S; Jay, O

    2013-09-01

    A fully functional radiant warmer induced rapid and continuous increases in regional skin temperatures, heart rate, mean arterial blood pressure and respiratory rate in a newborn patient without corrective action. We report this case of passive overheating to create awareness of the risks associated with regulating radiant heat output based upon a single servo-controlled temperature.

  18. 16 CFR Figure 10 to Subpart A of... - Insulation Radiant Panel Test Data Log Format

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Insulation Radiant Panel Test Data Log Format 10 Figure 10 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 10 Figure 10 to Subpart A of Part 1209—Insulation Radiant Panel Test Data Log...

  19. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  20. Human response to local convective and radiant cooling in a warm environment

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2013-01-01

    achieved with personalized ventilation or the tabletop fan. Only minimal improvement in perceived air quality was reported when the radiant panel was used alone, indicating that in a warm environment, local convective cooling is superior to local radiant cooling as a means of improving perceived air...

  1. Human response to local convective and radiant cooling in a warm environment

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2013-01-01

    The response of 24 human subjects to local convective cooling, radiant cooling, and combined radiant and convective cooling was studied at 28°C and 50% relative humidity. The local cooling devices used were (1) a tabletop cooling fan, (2) personalized ventilation providing a stream of clean air, (3...

  2. Policy modeling for industrial energy use

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the

  3. Holographic dark energy in the DGP model

    International Nuclear Information System (INIS)

    Cruz, Norman; Lepe, Samuel; Pena, Francisco; Avelino, Arturo

    2012-01-01

    The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: ε=±1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)

  4. Holographic dark energy in the DGP model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Avelino, Arturo [Universidad de Guanajuato, Departamento de Fisica, DCI, Codigo Postal 37150, Leon, Guanajuato (Mexico)

    2012-09-15

    The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: {epsilon}={+-}1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)

  5. Human response to local convective and radiant cooling in a warm environment

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2013-01-01

    achieved with personalized ventilation or the tabletop fan. Only minimal improvement in perceived air quality was reported when the radiant panel was used alone, indicating that in a warm environment, local convective cooling is superior to local radiant cooling as a means of improving perceived air...... of symptoms was reported with personalized ventilation and with the radiant panel with attached fans, which also caused subjects to report less fatigue. Sick building syndrome symptoms increased most when the tabletop fan, generating movement of polluted room air, was in operation. The temperature......The response of 24 human subjects to local convective cooling, radiant cooling, and combined radiant and convective cooling was studied at 28°C and 50% relative humidity. The local cooling devices used were (1) a tabletop cooling fan, (2) personalized ventilation providing a stream of clean air, (3...

  6. Experimental evaluation of heat transfer coefficients between radiant ceiling and room

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2009-01-01

    The heat transfer coefficients between radiant surfaces and room are influenced by several parameters: surfaces temperature distributions, internal gains, air movements. The aim of this paper is to evaluate the heat transfer coefficients between radiant ceiling and room in typical conditions of o...... in the literature, indicating limitations and possibilities of radiant ceiling systems improvement.......The heat transfer coefficients between radiant surfaces and room are influenced by several parameters: surfaces temperature distributions, internal gains, air movements. The aim of this paper is to evaluate the heat transfer coefficients between radiant ceiling and room in typical conditions...... and convection or as one total parameter, but this choice may lead to different considerations about thermal performance of the system. In order to perform correct evaluations, it is therefore extremely important to use the proper reference temperature. The obtained values confirm tendencies found...

  7. A Meta Model for Domestic Energy Consumption

    Directory of Open Access Journals (Sweden)

    K.,J SREEKANTH

    2011-01-01

    Full Text Available Prediction of energy consumption particularly in micro level is of vital importance in terms of energy planning and also implementation of any Clean Development Mechanism (CDM activities that has become the order of the world today. It may be difficult to model household energy consumption using conventional methods such as time series forecasting due to many influencing factors. This paper presents a step wise regression model for forecasting domestic energy consumption based on micro level household survey data collected from Kerala, a state in southern part of India. The analysis of the data reveals significant influence of socio-economic, demographic, geographic, and family attributes upon total household energy requirements. While a wide variation in the pattern of energy requirements across the domestic sector belonging to different expenditure classes, per capita income level can be identified as the most important explanatory variable influencing variation in energy requirements. The models developed also demonstrates the influence of per capita land area, residential area among the higher income group while average age and literacy forms significant variables among the lower income group.

  8. Improved diagnostic model for estimating wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Endlich, R.M.; Lee, J.D.

    1983-03-01

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  9. Interacting Dark Energy Models and Observations

    Science.gov (United States)

    Shojaei, Hamed; Urioste, Jazmin

    2017-01-01

    Dark energy is one of the mysteries of the twenty first century. Although there are candidates resembling some features of dark energy, there is no single model describing all the properties of dark energy. Dark energy is believed to be the most dominant component of the cosmic inventory, but a lot of models do not consider any interaction between dark energy and other constituents of the cosmic inventory. Introducing an interaction will change the equation governing the behavior of dark energy and matter and creates new ways to explain cosmic coincidence problem. In this work we studied how the Hubble parameter and density parameters evolve with time in the presence of certain types of interaction. The interaction serves as a way to convert dark energy into matter to avoid a dark energy-dominated universe by creating new equilibrium points for the differential equations. Then we will use numerical analysis to predict the values of distance moduli at different redshifts and compare them to the values for the distance moduli obtained by WMAP (Wilkinson Microwave Anisotropy Probe). Undergraduate Student

  10. Energy laboratory data and model directory

    Science.gov (United States)

    Lahiri, S.; Carson, J.

    1981-07-01

    Over the past several years M.I.T. faculty, staff, and students have produced a substantial body of research and analysis relating to the production, conversion,, and use of energy in domestic and international markets. Much of this research takes the form of models and associated data bases that have enduring value in policy studies (models) and in supporting related research and modeling efforts (date). For such models and data it is important to ensure that the useful life cycle does not end with the conclusion of the research project. This directory is an important step in extending the usefulness of models and data bases available at the M.I.T. Energy Laboratory. It will be updated from time to time to include new models and data bases that have been developed, or significant changes that have occurred.

  11. Energy and Development. A Modelling Approach

    International Nuclear Information System (INIS)

    Van Ruijven, B.J.

    2008-01-01

    Rapid economic growth of developing countries like India and China implies that these countries become important actors in the global energy system. Examples of this impact are the present day oil shortages and rapidly increasing emissions of greenhouse gases. Global energy models are used to explore possible future developments of the global energy system and identify policies to prevent potential problems. Such estimations of future energy use in developing countries are very uncertain. Crucial factors in the future energy use of these regions are electrification, urbanisation and income distribution, issues that are generally not included in present day global energy models. Model simulations in this thesis show that current insight in developments in low-income regions lead to a wide range of expected energy use in 2030 of the residential and transport sectors. This is mainly caused by many different model calibration options that result from the limited data availability for model development and calibration. We developed a method to identify the impact of model calibration uncertainty on future projections. We developed a new model for residential energy use in India, in collaboration with the Indian Institute of Science. Experiments with this model show that the impact of electrification and income distribution is less univocal than often assumed. The use of fuelwood, with related health risks, can decrease rapidly if the income of poor groups increases. However, there is a trade off in terms of CO2 emissions because these groups gain access to electricity and the ownership of appliances increases. Another issue is the potential role of new technologies in developing countries: will they use the opportunities of leapfrogging? We explored the potential role of hydrogen, an energy carrier that might play a central role in a sustainable energy system. We found that hydrogen only plays a role before 2050 under very optimistic assumptions. Regional energy

  12. Energy and Development. A Modelling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Van Ruijven, B.J.

    2008-12-17

    Rapid economic growth of developing countries like India and China implies that these countries become important actors in the global energy system. Examples of this impact are the present day oil shortages and rapidly increasing emissions of greenhouse gases. Global energy models are used to explore possible future developments of the global energy system and identify policies to prevent potential problems. Such estimations of future energy use in developing countries are very uncertain. Crucial factors in the future energy use of these regions are electrification, urbanisation and income distribution, issues that are generally not included in present day global energy models. Model simulations in this thesis show that current insight in developments in low-income regions lead to a wide range of expected energy use in 2030 of the residential and transport sectors. This is mainly caused by many different model calibration options that result from the limited data availability for model development and calibration. We developed a method to identify the impact of model calibration uncertainty on future projections. We developed a new model for residential energy use in India, in collaboration with the Indian Institute of Science. Experiments with this model show that the impact of electrification and income distribution is less univocal than often assumed. The use of fuelwood, with related health risks, can decrease rapidly if the income of poor groups increases. However, there is a trade off in terms of CO2 emissions because these groups gain access to electricity and the ownership of appliances increases. Another issue is the potential role of new technologies in developing countries: will they use the opportunities of leapfrogging? We explored the potential role of hydrogen, an energy carrier that might play a central role in a sustainable energy system. We found that hydrogen only plays a role before 2050 under very optimistic assumptions. Regional energy

  13. Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus

    In this thesis, we consider control strategies for flexible distributed energy resources in the future intelligent energy system – the Smart Grid. The energy system is a large-scale complex network with many actors and objectives in different hierarchical layers. Specifically the power system must...... significantly. A Smart Grid calls for flexible consumers that can adjust their consumption based on the amount of green energy in the grid. This requires coordination through new large-scale control and optimization algorithms. Trading of flexibility is key to drive power consumption in a sustainable direction....... In Denmark, we expect that distributed energy resources such as heat pumps, and batteries in electric vehicles will mobilize part of the needed flexibility. Our primary objectives in the thesis were threefold: 1.Simulate the components in the power system based on simple models from literature (e.g. heat...

  14. Methods of total spectral radiant flux realization at VNIIOFI

    Science.gov (United States)

    Ivashin, Evgeniy; Lalek, Jan; Rybczyński, Andrzej; Ogarev, Sergey; Khlevnoy, Boris; Dobroserdov, Dmitry; Sapritsky, Victor

    2018-02-01

    VNIIOFI carries out works on realization of independent methods for realization of the total spectral radiant flux (TSRF) of incoherent optical radiation sources - reference high-temperature blackbodies (BB), halogen lamps, and LED with quasi-Lambert spatial distribution of radiance. The paper describes three schemes for measuring facilities using photometers, spectroradiometers and computer-controlled high class goniometer. The paper describes different approaches for TSRF realization at the VNIIOFI National radiometric standard on the basis of high-temperature BB and LED sources, and gonio-spectroradiometer. Further, they are planned to be compared, and the use of fixed-point cells (in particular, based on the high-temperature δ(MoC)-C metal-carbon eutectic with a phase transition temperature of 2583 °C corresponding to the metrological optical “source-A”) as an option instead of the BB is considered in order to enhance calibration accuracy.

  15. Addressing Energy System Modelling Challenges: The Contribution of the Open Energy Modelling Framework (oemof)

    DEFF Research Database (Denmark)

    Hilpert, Simon; Günther, Stephan; Kaldemeyer, Cord

    2017-01-01

    complexity of energy systems and high uncertainties on different levels. In addition, interdisciplinary modelling is necessary for getting insight in mechanisms of an integrated world. At the same time models need to meet scientific standards as public acceptance becomes increasingly important......The process of modelling energy systems is accompanied by challenges inherently connected with mathematical modelling. However, due to modern realities in the 21st century, existing challenges are gaining in magnitude and are supplemented with new ones. Modellers are confronted with a rising....... In this intricate environment model application as well as result communication and interpretation is also getting more difficult. In this paper we present the open energy modelling framework (oemof) as a novel approach for energy system modelling and derive its contribution to existing challenges. Therefore, based...

  16. A Statistical Model for Energy Intensity

    Directory of Open Access Journals (Sweden)

    Marjaneh Issapour

    2012-12-01

    Full Text Available A promising approach to improve scientific literacy in regards to global warming and climate change is using a simulation as part of a science education course. The simulation needs to employ scientific analysis of actual data from internationally accepted and reputable databases to demonstrate the reality of the current climate change situation. One of the most important criteria for using a simulation in a science education course is the fidelity of the model. The realism of the events and consequences modeled in the simulation is significant as well. Therefore, all underlying equations and algorithms used in the simulation must have real-world scientific basis. The "Energy Choices" simulation is one such simulation. The focus of this paper is the development of a mathematical model for "Energy Intensity" as a part of the overall system dynamics in "Energy Choices" simulation. This model will define the "Energy Intensity" as a function of other independent variables that can be manipulated by users of the simulation. The relationship discovered by this research will be applied to an algorithm in the "Energy Choices" simulation.

  17. Metamaterial Model of Tachyonic Dark Energy

    Directory of Open Access Journals (Sweden)

    Igor I. Smolyaninov

    2014-02-01

    Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.

  18. Luz Pozo Garza: Memoria radiante de una mujer solar

    Directory of Open Access Journals (Sweden)

    Blanco, Carmen

    2006-08-01

    Full Text Available The poetry of Luz Poz Garza is a Platonic flashing beauty cosmos ruled by clarity, depth and harmony symbolized in the name that gave birth to it: that of a “solar woman”, fully self-assured in her life and in her work, gathered in the “heart of light” of her poetry. Memoria solar, the title of her complete poetry work, contains the radiant memory of the solar woman, a curved by plenitude cosmos that shelters a first microcosmos (that of her youth poetry, red fruit such as orange o meat apple, and a second microcosmos (that of her maturity poetry of white or blue flower of total mystic lucidity, such as solar camellia, rose o lotus.La poesía de Luz Pozo Garza es un cosmos fulgurante de belleza platónica regida por la claridad, la profundidad y la armonía simbolizadas en el nombre que lo dio a luz, el de una “mujer solar” plenamente autoafirmada en su vida y en su obra, unidas en el “corazón de Luz” de su poesía. Memoria solar, el título de su obra poética completa contiene su memoria radiante de mujer solar, un cosmos curvo de plenitud que guarda un microcosmos primero, el de su poesía de juventud, de fruto rojo, cual naranja o manzana de la carne, y un microcosmos segundo, el de su poesía de madurez, de flor blanca o azul de la total lucidez mística, cual camelia, rosa o loto solares.

  19. OSeMOSYS Energy Modeling Using an Extended UTOPIA Model

    Science.gov (United States)

    Lavigne, Denis

    2017-01-01

    The OSeMOSYS project offers open-access energy modeling to a wide audience. Its relative simplicity makes it appealing for academic research and governmental organizations to study the impacts of policy decisions on an energy system in the context of possibly severe greenhouse gases emissions limitations. OSeMOSYS is a tool that enhances the…

  20. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  1. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.

    1994-06-01

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  2. Hidden past of dark energy cosmological models

    International Nuclear Information System (INIS)

    Fernandez-Jambrina, L.

    2007-01-01

    In this Letter we analyse the possibility of having homogeneous isotropic cosmological models with observers reaching t=∞ in finite proper time. It is shown that just observationally-suggested dark energy models with w element of (-5/3,-1) show this feature and that they are endowed with an exotic curvature singularity. Furthermore, it is shown that non-accelerated observers in these models may experience a duration of the universe as short as desired by increasing their linear momentum. A subdivision of phantom models in two families according to this behavior is suggested

  3. Economic Modeling of Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    Rui Bo

    2013-04-01

    Full Text Available Due to the variable nature of wind resources, the increasing penetration level of wind power will have a significant impact on the operation and planning of the electric power system. Energy storage systems are considered an effective way to compensate for the variability of wind generation. This paper presents a detailed production cost simulation model to evaluate the economic value of compressed air energy storage (CAES in systems with large-scale wind power generation. The co-optimization of energy and ancillary services markets is implemented in order to analyze the impacts of CAES, not only on energy supply, but also on system operating reserves. Both hourly and 5-minute simulations are considered to capture the economic performance of CAES in the day-ahead (DA and real-time (RT markets. The generalized network flow formulation is used to model the characteristics of CAES in detail. The proposed model is applied on a modified IEEE 24-bus reliability test system. The numerical example shows that besides the economic benefits gained through energy arbitrage in the DA market, CAES can also generate significant profits by providing reserves, compensating for wind forecast errors and intra-hour fluctuation, and participating in the RT market.

  4. Simple Model for Detonation Energy and Rate

    Science.gov (United States)

    Lauderbach, Lisa M.; Souers, P. Clark

    2017-06-01

    A simple model is used to derive the Eyring equation for the size effect and detonation rate, which depends on a constant energy density. The rate derived from detonation velocities is then converted into a rate constant to be used in a reactive flow model. The rate might be constant if the size effect curve is straight, but the rate constant will change with the radius of the sample and cannot be a constant. This is based on many careful cylinder tests have been run recently on LX-17 with inner copper diameters ranging from 12.7 to 101.6 mm. Copper wall velocities at scaled displacements of 6, 12.5 and 19 mm equate to values at relative volumes of 2.4, 4.4 and 7.0. At each point, the velocities from 25.4 to 101.6 mm are constant within error whereas the 12.7 mm velocities are lower. Using the updated Gurney model, the energy densities at the three larger sizes are also constant. Similar behavior has been seen in LX-14, LX-04, and an 83% RDX mix. A rough saturation has also been in old ANFO data for diameters of 101.6 mm and larger. Although the energy densities saturate, the detonation velocities continue to increase with size. These observations suggest that maximum energy density is a constant for a given explosive of a given density. The correlation of energy density with detonation velocity is not good because the latter depends on the total energy of the sample. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Towards an energy end use model

    International Nuclear Information System (INIS)

    Smith Fontana, Raul

    2003-01-01

    The general equilibrium energy end use model proposed, uses linear programming as te basic and central element to optimization of variables defined in the economic and energy areas of the country related to a four factors structure: Energy, Raw Material, Capital and Labor, and related to the sectors: Residential, Commercial, Industrial, Transportation and Import/Export. Input-Output coefficients are defined in an input-output matrix of processes representing the supply of Electricity (generated by nuclear- not available in Chile-hydro, gas, fuel-oil and coal), Petroleum, Imported Natural Gas (transported and distributed) National Natural Gas, LPG, Coal, Wood and representing a demand of Residential, Commercial, Industrial, Transportation and Import/Export. There is an interaction of the final demand composition, the prices of capital, labor and taxes with the levels of operation for each process and the prices of goods and services. In addition to the prices of fuels for each annual period, to the supply and demand of energy and to the total demand it can forecast the optimum coefficients of the final demand. If the data to be collected result reasonably complete and consistent, the model will be useful for planning. A special effort should be placed in specifying a certain number of typical energy activities, the available options for fuels, the selection of them attending rational market decisions and conservation according to well known economical criteria of substitution. To simulate the process of options selection given by the activities and to allow substitutions, it is possible to introduce the logit function characterized by a Weibull distribution and the generalized substitution function characterized by the constant electricity. The model would allow, assuming differents scenario, to visualize general policies in the penetration of energy technologies. To study the penetration of electric energy generated by nuclear, in which the country does not have

  6. Learning curves in energy planning models

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, L.; Kypreos, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This study describes the endogenous representation of investment cost learning curves into the MARKAL energy planning model. A piece-wise representation of the learning curves is implemented using Mixed Integer Programming. The approach is briefly described and some results are presented. (author) 3 figs., 5 refs.

  7. Energy consumption modeling during dairy sewage pretreatment

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł; Boruszko, Dariusz

    2017-11-01

    The research was conducted in a dairy WWTP located in north-eastern Poland with the average flow of 546 m3d-1 and PE 11500 in 2016. Energy consumption was measured with the help of Lumel 3-phase network parameter transducers installed within the plant. The modeling was conducted based on the quantity and quality of raw sewage, after its screening, averaging and dissolved air flotation. The following parameters were determined: BOD5, COD. N-total and P-total. During the research period. 15 measurement series were carried out. Pollution loads removed in primary treatment varied from 167.0 to 803.5 kgO2d-1 and 1205.9 to 10032 kgO2d-1 for BOD5 and COD respectively. The energy consumption share during dairy pretreatment in relation to the total energy consumption was in the range from 13.8 to 28.5% with the mean value of 18.7% during the research period. Energy consumption indicators relating to removed pollution loads for primary treatment were established with the mean values of 0.74 and 0.83 kWhkg-1d-1 for BOD5 and COD respectively. An attempt was made to determine the influence of raw sewage characteristics and pretreatment efficiency on energy consumption of the object. A model of energy consumption during pretreatment was estimated according to the experimental data obtained in the research period. It was modeled using the linear regression model and principal component analysis.

  8. Energy consumption modeling during dairy sewage pretreatment

    Directory of Open Access Journals (Sweden)

    Dąbrowski Wojciech

    2017-01-01

    Full Text Available The research was conducted in a dairy WWTP located in north-eastern Poland with the average flow of 546 m3d-1 and PE 11500 in 2016. Energy consumption was measured with the help of Lumel 3-phase network parameter transducers installed within the plant. The modeling was conducted based on the quantity and quality of raw sewage, after its screening, averaging and dissolved air flotation. The following parameters were determined: BOD5, COD. N-total and P-total. During the research period. 15 measurement series were carried out. Pollution loads removed in primary treatment varied from 167.0 to 803.5 kgO2d-1 and 1205.9 to 10032 kgO2d-1 for BOD5 and COD respectively. The energy consumption share during dairy pretreatment in relation to the total energy consumption was in the range from 13.8 to 28.5% with the mean value of 18.7% during the research period. Energy consumption indicators relating to removed pollution loads for primary treatment were established with the mean values of 0.74 and 0.83 kWhkg-1d-1 for BOD5 and COD respectively. An attempt was made to determine the influence of raw sewage characteristics and pretreatment efficiency on energy consumption of the object. A model of energy consumption during pretreatment was estimated according to the experimental data obtained in the research period. It was modeled using the linear regression model and principal component analysis.

  9. Heat transfer in hybrid fibre reinforced concrete-steel composite column exposed to a gas-fired radiant heater

    Science.gov (United States)

    Štefan, R.; Procházka, J.; Novák, J.; Fládr, J.; Wald, F.; Kohoutková, A.; Scheinherrová, L.; Čáchová, M.

    2017-09-01

    In the paper, a gas-fired radiant heater system for testing of structural elements and materials at elevated temperatures is described. The applicability of the system is illustrated on an example of the heat transfer experiment on a hybrid fibre reinforced concrete-steel composite column specimen. The results obtained during the test are closely analysed by common data visualization techniques. The experiment is simulated by a mathematical model of heat transfer, assuming the material data of the concrete determined by in-house measurements. The measured and calculated data are compared and discussed.

  10. Economic models for battery energy storage

    International Nuclear Information System (INIS)

    Reckrodt, R.C.; Anderson, M.D.; Kluczny, R.M.

    1990-01-01

    While the technology required to produce viable Battery Energy Storage System exists, the economic feasibility (cost vs. benefits) of building these systems requires justification. First, a generalized decision diagram was developed to ensure that all of the economic factors were considered and properly related for the customer-side-of-the meter. Next, two economic models that had consistently given differing results were compared. One was the McKinney model developed at UM-Rolla in 1987; the second was the SYSPLAN model developed by Battelle. Differences were resolved on a point by point basis with reference to the current economic environment. The economic model was upgraded to include the best of both models based on the resolution of these differences. The upgrades were implemented as modifications to the original SYSPLAN (1986 version) to preserve user friendliness. In this paper four specific cases are evaluated and compared. The results are as predicted, since comparison was made with two known models

  11. Energy Blocks--A Physical Model for Teaching Energy Concepts

    Science.gov (United States)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams.…

  12. Development of an Integrated Global Energy Model

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1999-01-01

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E 3 ) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term (approximately2,100) context. The E 3 model so developed was applied to create a Los Alamos presence in this E 3 area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E 3 model have been presented at a variety of national and international conferences and workshops. Through use of the E 3 model Los Alamos was afforded the opportunity to participate in a multi-national E 3 study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E 3 model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project

  13. Models for efficient integration of solar energy

    DEFF Research Database (Denmark)

    Bacher, Peder

    the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast...... the power output from PV and solar thermal collector systems. The first approach is based on a developed statistical clear-sky model, which is used for estimating the clear-sky output solely based on observations of the output. This enables local effects such as shading from trees to be taken into account....... The second approach to solar power forecasting is based on conditional parametric modelling. It is well suited for forecasting of solar thermal power, since is it can be make non-linear in the inputs. The approach is also extended to a probabilistic solar power forecasting model. The statistical clear...

  14. High energy model for irregular absorbing particles

    International Nuclear Information System (INIS)

    Chiappetta, Pierre.

    1979-05-01

    In the framework of a high energy formulation of relativistic quantum scattering a model is presented which describes the scattering functions and polarization of irregular absorbing particles, whose dimensions are greater than the incident wavelength. More precisely in the forward direction an amplitude parametrization of eikonal type is defined which generalizes the usual diffraction theory, and in the backward direction a reflective model is used including a shadow function. The model predictions are in good agreement with the scattering measurements off irregular compact and fluffy particles performed by Zerull, Giese and Weiss (1977)

  15. PECULIARITIES OF THE RENEWABLE ENERGY BUSINESS MODELS

    Directory of Open Access Journals (Sweden)

    BĂLOI Ionut-Cosmin

    2014-07-01

    Full Text Available By exploring the competitiveness of industries and companies, we could identify the factors whose importance is likely to generate competitive advantage. An inventory of content elements of the business model summarizes the clearest opportunities and prospects. The objectives developed throughout the paper want to identify the pillars of a renewable business model and to describe the strategic dimensions of their capitalisation in regional and national energy entrepreneurship. The trend of increasing the renewable energy business volume is driven by the entrepreneurs and company’s availability to try new markets, with many unpredictable implications and the willingness of these players or their creditors to spend their savings, in various forms, for the concerned projects. There is no alternative to intensive investment strategies, given that the small projects are not able to create high value and competitiveness for interested entrepreneurs. For this reason, the international practice shows that the business models in energy production are supported by partnerships and networks of entrepreneurs who are involved in the development of large projects. The most important feature of renewable business initiatives is on attracting the latest clean emerging technologies, and obviously the investors who can assume the risk of such great projects. The benefits of a well developed business model recommend a prudent approach in the launching in the investment strategies, because the competitive contexts hide always some dissatisfaction of the partners that endanger the business concept’s success. The small firms can develop a profitable business model by exploring the opportunity of the alliances, namely the particular joint ventures (association between Romanian and foreign firms. The advantages of joint venture's partners are considerable; they include access to expertise, resources and other assets that the partners could not achieve on their own

  16. Modelling the impact of energy taxation

    International Nuclear Information System (INIS)

    Sjoedin, J.

    2002-01-01

    Energy taxation in Sweden is complicated and strongly guides and governs district energy production. Consequently, there is a need for methods for accurate calculation and analysis of effects that different energy tax schemes may have on district energy utilities. Here, a practicable method to analyse influence of such governmental policy measures is demonstrated. The Swedish Government has for some years now been working on a reform of energy taxation, and during this process, several interest groups have expressed their own proposals for improving and developing the system of energy taxation. Together with the present system of taxation, four new alternatives, including the proposed directive of the European Commission, are outlined in the paper. In a case study, an analysis is made of how the different tax alternatives may influence the choice of profitable investments and use of energy carriers in a medium-sized district-heating utility. The calculations are made with a linear-programming model framework. By calculating suitable types and sizes of new investments, if any, and the operation of existing and potential plants, total energy costs are minimized. Results of the analysis include the most profitable investments, which fuel should be used, roughly when during a year plants should be in operation, and at what output. In most scenarios, the most profitable measure is to invest in a waste incineration plant. However, a crucial assumption is, with reference to the new Swedish waste disposal act, a significant income from incinerating refuse. Without this income, different tax schemes result in different technical solutions being most profitable. An investment in cogeneration seems possible in only one scenario. It is also found that particular features of some alternatives seem to oppose both main governmental policy goals, and intentions of the district heating company. (Author)

  17. Dynamic energy-demand models. A comparison

    International Nuclear Information System (INIS)

    Yi, Feng

    2000-01-01

    This paper compares two second-generation dynamic energy demand models, a translog (TL) and a general Leontief (GL), in the study of price elasticities and factor substitutions of nine Swedish manufacturing industries: food, textiles, wood, paper, printing, chemicals, non-metallic minerals, base metals and machinery. Several model specifications are tested with likelihood ratio test. There is a disagreement on short-run adjustments; the TL model accepts putty-putty production technology of immediate adjustments, implying equal short- and long-run price elasticities of factors, while the GL model rejects immediate adjustments, giving out short-run elasticities quite different from the long-run. The two models also disagree in substitutability in many cases. 21 refs

  18. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  19. Radiant heat increases piglets’ use of the heated creep area on the critical days after birth

    DEFF Research Database (Denmark)

    Larsen, Mona Lilian Vestbjerg; Thodberg, Karen; Pedersen, Lene Juul

    2017-01-01

    The aim of the present study was to investigate how piglets’ use of a creep area is affected by using radiant heat compared to an incandescent light bulb. It was hypothesised that radiant heat would increase the use of the creep area. Twenty litters were randomly assigned to one of two heat sources...... in the creep area: (1) an incandescent light bulb (STANDARD, n=10) or (2) a radiant heat source (RADIANT, n=10) with five of each type of heat source in each of two batches. Observations on piglets’ position in the pen were made by scan sampling every ten minutes in a 4-hour period from 1100 to 1500 h on day 1...

  20. New models intensify the purchase of energy

    International Nuclear Information System (INIS)

    Vesimaeki, P.; Lampinen, J.

    2001-01-01

    Models, designed for planning and optimisation of the purchase of energy, combined with high-quality expertise have an impact on the costs of energy companies. Optimisation has a significant role in power plant investments and in planning the power distribution of wholesale electric power. After the liberation of the electricity markets, the planning of the electricity purchase and the optimisation have obtained totally new roles in estimating the cost effects of present and new customers. Electrowatt-Ekono has developed a windows-based COPSIM software for planning of electric power purchase. The software is in active use in Electrowatt-Ekono. The energy purchase is optimised on yearly basis or on a shorter period by one hour steps based on hourly variation of energy purchase, power plant characteristics, power consumption rates and the prices of the fuels, power and heat. COPSIM takes the effect of external temperature on the power generation of backpressure and gas turbine plants into account. The software optimises also the power distribution of wholesale power. By the software it is possible to model different types of power plants, purchase of power, power sales, different power plant shares, thermal power stations, purchase and sales of heat, heat storage and heat transfer between different heating networks

  1. Stochastic Modelling of Wireless Energy Transfer

    Science.gov (United States)

    Veilleux, Shaun; Almaghasilah, Ahmed; Abedi, Ali; Wilkerson, DeLisa

    2017-01-01

    This study investigates the efficiency of a new method of powering remote sensors by the means of wireless energy transfer. The increased use of sensors for data collection comes with the inherent cost of supplying power from sources such as power cables or batteries. Wireless energy transfer technology eliminates the need for power cables or periodic battery replacement. The time and cost of setting up or expanding a sensor network will be reduced while allowing sensors to be placed in areas where running power cables or battery replacement is not feasible. This paper models wireless channels for power and data separately. Smart scheduling for the data channel is proposed to avoid transmitting data on a noisy channel where the probability of data loss is high to improve power efficiency. Analytical models have been developed and verified using simulations.

  2. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    OpenAIRE

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    Radiant floor cooling systems are increasingly being used in transition spaces with large glazed surfaces, such as atria, airports, and perimeter areas. For these cases, the cooling capacity can increase significantly according to the scientific literature. However, current design standards and test methods provide only limited guidance on sizing of radiant floor cooling systems and their associated air systems in the presence of solar radiation. The goals of this study are to 1) review curre...

  3. Magnetized anisotropic dark energy models with constant ...

    Indian Academy of Sciences (India)

    2016-11-03

    Nov 3, 2016 ... Bianchi type-III cosmological model in the presence of magnetic aeolotropic dark energy. The only gen- eralization of the EoS parameter of the perfect fluid could also be to work out the EoS parameter singly on ... EoS parameters for the fluid on x-,y- and z-axes respectively, ω is the deviation-free EoS ...

  4. Zero-point energy in bag models

    International Nuclear Information System (INIS)

    Milton, K.A.

    1979-01-01

    The zero-point (Casimir) energy of free vector (gluon) fields confined to a spherical cavity (bag) is computed. With a suitable renormalization the result for eight gluons is E = + 0.51/a. This result is substantially larger than that for a spherical shell (where both interior and exterior modes are present), and so affects Johnson's model of the QCD vacuum. It is also smaller than, and of opposite sign to, the value used in bag model phenomenology, so it will have important implications there. 1 figure

  5. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  6. Chameleon dark energy models with characteristic signatures

    International Nuclear Information System (INIS)

    Gannouji, Radouane; Moraes, Bruno; Polarski, David; Mota, David F.; Winther, Hans A.; Tsujikawa, Shinji

    2010-01-01

    In chameleon dark energy models, local gravity constraints tend to rule out parameters in which observable cosmological signatures can be found. We study viable chameleon potentials consistent with a number of recent observational and experimental bounds. A novel chameleon field potential, motivated by f(R) gravity, is constructed where observable cosmological signatures are present both at the background evolution and in the growth rate of the perturbations. We study the evolution of matter density perturbations on low redshifts for this potential and show that the growth index today γ 0 can have significant dispersion on scales relevant for large scale structures. The values of γ 0 can be even smaller than 0.2 with large variations of γ on very low redshifts for the model parameters constrained by local gravity tests. This gives a possibility to clearly distinguish these chameleon models from the Λ-cold-dark-matter (ΛCDM) model in future high-precision observations.

  7. Drinking caused by exposing dogs to radiant heat.

    Science.gov (United States)

    O'Connor, W J

    1977-01-01

    1. Exposure to radiant heat caused dogs to pant and lose water by evaporation at rates of 40-70 g/hr. 2. When water was offered at intervals during the heating, the dogs drank at about half of the opportunities. The individual drinks were small but, by their repetition, loss of water by evaporation during heating was approximately matched by drinking. 3. Water given by stomach tube reduced drinking during a subsequent period of heating. 4. When water was offered more than 15 min after the end of a period of heating, after panting had ceased, drinking occurred only if the water loss exceeded 50-70 g, about 0-6% of the body water. This is regarded as drinking due to loss of water, beyond a threshold of dehydration necessary to stimulate drinking with the dog at rest. When water was offered during heating, drinking occurred with dehydration less than this threshold. 5. The drinking produced by heating was similar to that produced by running (O'Connor, 1975). When the animal ran under heat, panting was more severe and the water loss greater (85-150 g/hr); it was approximately matched by more drinking. PMID:839452

  8. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    Henao, Diego Alberto; Cano C, Carlos Andres; Amell Arrieta, Andres A.

    2002-01-01

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  9. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  10. Towards low carbon business park energy systems: Classification of techno-economic energy models

    International Nuclear Information System (INIS)

    Timmerman, Jonas; Vandevelde, Lieven; Van Eetvelde, Greet

    2014-01-01

    To mitigate climate destabilisation, human-induced greenhouse gas emissions urgently need to be curbed. A major share of these emissions originates from the industry and energy sectors. Hence, a low carbon shift in industrial and business park energy systems is called for. Low carbon business parks minimise energy-related carbon dioxide emissions by maximal exploitation of local renewable energy production, enhanced energy efficiency, and inter-firm heat exchange, combined in a collective energy system. The holistic approach of techno-economic energy models facilitates the design of such systems, while yielding an optimal trade-off between energetic, economic and environmental performances. However, no models custom-tailored for industrial park energy systems are detected in literature. In this paper, existing energy model classifications are scanned for adequate model characteristics and accordingly, a confined number of models are selected and described. Subsequently, a practical typology is proposed, existing of energy system evolution, optimisation, simulation, accounting and integration models, and key model features are compared. Finally, important features for a business park energy model are identified. - Highlights: • A holistic perspective on (low carbon) business park energy systems is introduced. • A new categorisation of techno-economic energy models is proposed. • Model characteristics are described per model category. • Essential model features for business park energy system modelling are identified. • A strategy towards a techno-economic energy model for business parks is proposed

  11. Applications of GARCH models to energy commodities

    Science.gov (United States)

    Humphreys, H. Brett

    This thesis uses GARCH methods to examine different aspects of the energy markets. The first part of the thesis examines seasonality in the variance. This study modifies the standard univariate GARCH models to test for seasonal components in both the constant and the persistence in natural gas, heating oil and soybeans. These commodities exhibit seasonal price movements and, therefore, may exhibit seasonal variances. In addition, the heating oil model is tested for a structural change in variance during the Gulf War. The results indicate the presence of an annual seasonal component in the persistence for all commodities. Out-of-sample volatility forecasting for natural gas outperforms standard forecasts. The second part of this thesis uses a multivariate GARCH model to examine volatility spillovers within the crude oil forward curve and between the London and New York crude oil futures markets. Using these results the effect of spillovers on dynamic hedging is examined. In addition, this research examines cointegration within the oil markets using investable returns rather than fixed prices. The results indicate the presence of strong volatility spillovers between both markets, weak spillovers from the front of the forward curve to the rest of the curve, and cointegration between the long term oil price on the two markets. The spillover dynamic hedge models lead to a marginal benefit in terms of variance reduction, but a substantial decrease in the variability of the dynamic hedge; thereby decreasing the transactions costs associated with the hedge. The final portion of the thesis uses portfolio theory to demonstrate how the energy mix consumed in the United States could be chosen given a national goal to reduce the risks to the domestic macroeconomy of unanticipated energy price shocks. An efficient portfolio frontier of U.S. energy consumption is constructed using a covariance matrix estimated with GARCH models. The results indicate that while the electric

  12. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus

    2014-01-01

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  13. Energy Efficiency Model for Induction Furnace

    Science.gov (United States)

    Dey, Asit Kr

    2018-01-01

    In this paper, a system of a solar induction furnace unit was design to find out a new solution for the existing AC power consuming heating process through Supervisory control and data acquisition system. This unit can be connected directly to the DC system without any internal conversion inside the device. The performance of the new system solution is compared with the existing one in terms of power consumption and losses. This work also investigated energy save, system improvement, process control model in a foundry induction furnace heating framework corresponding to PV solar power supply. The results are analysed for long run in terms of saving energy and integrated process system. The data acquisition system base solar foundry plant is an extremely multifaceted system that can be run over an almost innumerable range of operating conditions, each characterized by specific energy consumption. Determining ideal operating conditions is a key challenge that requires the involvement of the latest automation technologies, each one contributing to allow not only the acquisition, processing, storage, retrieval and visualization of data, but also the implementation of automatic control strategies that can expand the achievement envelope in terms of melting process, safety and energy efficiency.

  14. Underwater Noise Modelling of Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Future large-scale implementation of wave energy converts (WECs) will introduce an anthropogenic activity in the ocean which may contribute to underwater noise. The Ocean houses several marine species with acoustic sensibility; consequently the potential impact of the underwater noise needs to be addressed. At present, there are no acoustic impact studies based on acquired data. The WEAM project (Wave Energy Acoustic Monitoring) aims at developing an underwater noise monitoring plan for WECs. The development of an acoustic monitoring plan must consider the sound propagation in the ocean, identify noise sources, understand the operational characteristics and select adequate instrumentation. Any monitoring strategy must involve in-situ measurements. However, the vast distances which sound travels within the ocean, can make in-situ measurements covering the entire area of interest, impracticable. This difficulty can be partially overcome through acoustic numerical modelling. This paper presents a synthetic study, on the application of acoustic forward modelling and the evaluation of the impact of noise produced by wave energy devices on marine mammals using criteria based on audiograms of dolphins, or other species. The idea is to illustrate the application of that methodology, and to show to what extent it allows for estimating distances of impacts due to acoustic noise.

  15. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  16. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study......In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  17. The multi-factor energy input–output model

    International Nuclear Information System (INIS)

    Guevara, Zeus; Domingos, Tiago

    2017-01-01

    Energy input–output analysis (EIO analysis) is a noteworthy tool for the analysis of the role of energy in the economy. However, it has relied on models that provide a limited description of energy flows in the economic system and do not allow an adequate analysis of energy efficiency. This paper introduces a novel energy input–output model, the multi-factor energy input–output model (MF-EIO model), which is obtained from a partitioning of a hybrid-unit input–output system of the economy. This model improves on current models by describing the energy flows according to the processes of energy conversion and the levels of energy use in the economy. It characterizes the vector of total energy output as a function of seven factors: two energy efficiency indicators; two characteristics of end-use energy consumption; and three economic features of the rest of the economy. Moreover, it is consistent with the standard model for EIO analysis, i.e., the hybrid-unit model. This paper also introduces an approximate version of the MF-EIO model, which is equivalent to the former under equal energy prices for industries and final consumers, but requires less data processing. The latter is composed by two linked models: a model of the energy sector in physical units, and a model of the rest of the economy in monetary units. In conclusion, the proposed modelling framework improves EIO analysis and extends EIO applications to the accounting for energy efficiency of the economy. - Highlights: • A novel energy input–output model is introduced. • It allows a more adequate analysis of energy flows than current models. • It describes energy flows according to processes of energy conversion and use. • It can be used for other environmental applications (material use and emissions). • An approximate version of the model is introduced, simpler and less data intensive.

  18. Development of a non-premix radiant burner. Evaluation of design possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, P.; Myken, A.N.; Rasmussen, N.B.

    1996-12-31

    The objective of the project period is to: make a study into materials suitable for the NPRB (Non-Premix Radiant Burner); chhose the materials for the construction; make proposals for the design of the NPRB; test the different proposals with a CFD-model (Computational Fluid Dynamics). In pursuit of finding a suitable material it is necessary first to estimate the maximum temperature that will occur in the burner. A realistic temperature was estimated to 2100-2300 K. After the literature study a few materials seemed promising. The final choice was made after having contacted some of the leading producers. One producer could produce burners of one of the suggested materials, zirconia. Several construction ideas for the NPRB have been discussed and some of them tested with a CFD-model. The proposed burner concept has been modified in order to obtain a homogenous temperature distribution, enhance air and gas mixing and reduce the maximum material temperature. The conditions for the CFD-calculations have been as follows: burner height x width: 300 mm x 300 mm; fuel input: 50kW (specific load: 550 kW/m{sup 2}); combustion air temperature: 800 deg. C; furnace temperature: 900 deg. C; excess air: 5%. The most promising way to disbribute the gas in the burner is by using perforated ceramic tubes. The CFD-calculations have been based on ten tubes with an outer diameter of 10 mm, each perforated with 40 1 mm holes. From the CFD-calculations it can be concluded that a cavity for mixing gas and hot air is necessary between two layers of ceramic foam. From the CFD-calculations it also can be concluded that the distance between the gas jets can be increased while the diameter of the jets should be decreased. From the CFD calculations it can be seen that a large amount of unburned fuel will leave the surface of the burner. It is suggested to add an extra ceramic foam to the construction to increase the burnout of the fuel in the burner. This concept has been developed for

  19. The role of nuclear energy for Korean long-term energy supply strategy : application of energy demand-supply model

    International Nuclear Information System (INIS)

    Chae, Kyu Nam

    1995-02-01

    An energy demand and supply analysis is carried out to establish the future nuclear energy system of Korea in the situation of environmental restriction and resource depletion. Based on the useful energy intensity concept, a long-term energy demand forecasting model FIN2USE is developed to integrate with a supply model. The energy supply optimization model MESSAGE is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Long-term demand for useful energy used as an exogeneous input of the energy supply model is derived from the trend of useful energy intensity by sectors and energy carriers. Supply-side optimization is performed for the overall energy system linked with the reactor and nuclear fuel cycle strategy. The limitation of fossil fuel resources and the CO 2 emission constraints are reflected as determinants of the future energy system. As a result of optimization of energy system using linear programming with the objective of total discounted system cost, the optimal energy system is obtained with detailed results on the nuclear sector for various scenarios. It is shown that the relative importance of nuclear energy would increase especially in the cases of CO 2 emission constraint. It is concluded that nuclear reactor strategy and fuel cycle strategy should be incorporated with national energy strategy and be changed according to environmental restriction and energy demand scenarios. It is shown that this modelling approach is suitable for a decision support system of nuclear energy policy

  20. Absence of Energy Level Crossing for the Ground State Energy of the Rabi Model

    OpenAIRE

    Hirokawa, Masao; Hiroshima, Fumio

    2012-01-01

    The Hamiltonian of the Rabi model is considered. It is shown that the ground state energy of the Rabi Hamiltonian is simple for all values of the coupling strength, which implies the ground state energy does not cross other energy

  1. Assessment of radiant temperature in a closed incubator.

    Science.gov (United States)

    Décima, Pauline; Stéphan-Blanchard, Erwan; Pelletier, Amandine; Ghyselen, Laurent; Delanaud, Stéphane; Dégrugilliers, Loïc; Telliez, Frédéric; Bach, Véronique; Libert, Jean-Pierre

    2012-08-01

    In closed incubators, radiative heat loss (R) which is assessed from the mean radiant temperature (Tr) accounts for 40-60% of the neonate's total heat loss. In the absence of a benchmark method to calculate Tr--often considered to be the same as the air incubator temperature-errors could have a considerable impact on the thermal management of neonates. We compared Tr using two conventional methods (measurement with a black-globe thermometer and a radiative "view factor" approach) and two methods based on nude thermal manikins (a simple, schematic design from Wheldon and a multisegment, anthropometric device developed in our laboratory). By taking the Tr estimations for each method, we calculated metabolic heat production values by partitional calorimetry and then compared them with the values calculated from V(O2) and V(CO2) measured in 13 preterm neonates. Comparisons between the calculated and measured metabolic heat production values showed that the two conventional methods and Wheldon's manikin underestimated R, whereas when using the anthropomorphic thermal manikin, the simulated versus clinical difference was not statistically significant. In conclusion, there is a need for a safety standard for measuring TR in a closed incubator. This standard should also make available estimating equations for all avenues of the neonate's heat exchange considering the metabolic heat production and the modifying influence of the thermal insulation provided by the diaper and by the mattress. Although thermal manikins appear to be particularly appropriate for measuring Tr, the current lack of standardized procedures limits their widespread use.

  2. Establishing an Integration-Energy-Practice Model for Improving Energy Performance Indicators in ISO 50001 Energy Management Systems

    Directory of Open Access Journals (Sweden)

    Tsung-Yung Chiu

    2012-12-01

    Full Text Available Global energy sources are gradually becoming scarce and prices are continually rising. Governments and businesses in various countries are actively developing technologies for energy management and developing new sources of energy. On 15 June 2011, the International Organization for Standardization (ISO announced the ISO 50001 standard for energy management systems. Organizations and enterprises are confronted with challenges associated with enhancing energy performance indicators, continuing to improve energy consumption efficiency, and managing third-party international certifications. This study conducted cases studies of businesses that have introduced an ISO 50001 energy management system by using an integration-energy-practice model to improve energy performance indicators and to complete the international auditing and certification procedures for ISO 50001 energy management systems. Based on case study results, the achievement rates for annual energy performance indicators increased, thereby enhancing the energy intensity efficiency. Establishing an integration-energy-practice model for introducing an ISO 50001 energy management system can efficiently meet demands for energy performance indicators and pass the international certification for ISO 50001 energy management systems. The proposed model efficiently provides enterprises with methods for developing sustainable energy management. It integrates internal and external technical resources to establish energy technology think tanks, for promoting successful technology and experiences to various sectors, thereby allowing enterprises to integrate energy management, increase energy efficiency, and meet the ISO 50001 international standard for energy management systems.

  3. Entanglement in holographic dark energy models

    International Nuclear Information System (INIS)

    Horvat, R.

    2010-01-01

    We study a process of equilibration of holographic dark energy (HDE) with the cosmic horizon around the dark-energy dominated epoch. This process is characterized by a huge amount of information conveyed across the horizon, filling thereby a large gap in entropy between the system on the brink of experiencing a sudden collapse to a black hole and the black hole itself. At the same time, even in the absence of interaction between dark matter and dark energy, such a process marks a strong jump in the entanglement entropy, measuring the quantum-mechanical correlations between the horizon and its interior. Although the effective quantum field theory (QFT) with a peculiar relationship between the UV and IR cutoffs, a framework underlying all HDE models, may formally account for such a huge shift in the number of distinct quantum states, we show that the scope of such a framework becomes tremendously restricted, devoid virtually any application in other cosmological epochs or particle-physics phenomena. The problem of negative entropies for the non-phantom stuff is also discussed.

  4. Modeling of greenhouse with PCM energy storage

    International Nuclear Information System (INIS)

    Najjar, Atyah; Hasan, Afif

    2008-01-01

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 deg. C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse

  5. Modeling of greenhouse with PCM energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Atyah [Computation Science, Birzeit University, Birzeit (PS); Hasan, Afif [Mechanical Engineering Department, Birzeit University, Birzeit (PS)

    2008-11-15

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse. (author)

  6. Local and regional energy companies offering energy services: Key activities and implications for the business model

    International Nuclear Information System (INIS)

    Kindström, Daniel; Ottosson, Mikael

    2016-01-01

    Highlights: • Many companies providing energy services are experiencing difficulties. • This research identifies key activities for the provision of energy services. • Findings are aggregated to the business-model level providing managerial insights. • This research identifies two different business model innovation paths. • Energy companies may need to renew parts of, or the entire, business model. - Abstract: Energy services play a key role in increasing energy efficiency in the industry. The key actors in these services are the local and regional energy companies that are increasingly implementing energy services as part of their market offering and developing service portfolios. Although expectations for energy services have been high, progress has so far been limited, and many companies offering energy services, including energy companies, are experiencing difficulties in implementing energy services and providing them to the market. Overall, this research examines what is needed for local and regional energy companies to successfully implement energy services (and consequently provide them to the market). In doing this, a two-stage process is used: first, we identify key activities for the successful implementation of energy services, and second, we aggregate the findings to the business model level. This research demonstrates that to succeed in implementing energy services, an energy company may need to renew parts or all of its existing product-based business model, formulate a new business model, or develop coexisting multiple business models. By discussing two distinct business model innovation processes, this research demonstrates that there can be different paths to success.

  7. Model projections for household energy use in India

    NARCIS (Netherlands)

    van Ruijven, B.J.; van Vuuren, D.P.; de Vries, B.J.M.; Isaac, M.; van der Sluijs, J.P.; Lucas, P.L.; Balachandra, P.

    2011-01-01

    Energy use in developing countries is heterogeneous across households. Present day global energy models are mostly too aggregate to account for this heterogeneity. Here, a bottom-up model for residential energy use that starts from key dynamic concepts on energy use in developing countries is

  8. Data mining, mining data : energy consumption modelling

    Energy Technology Data Exchange (ETDEWEB)

    Dessureault, S. [Arizona Univ., Tucson, AZ (United States)

    2007-09-15

    Most modern mining operations are accumulating large amounts of data on production and business processes. Data, however, provides value only if it can be translated into information that appropriate users can utilize. This paper emphasized that a new technological focus should emerge, notably how to concentrate data into information; analyze information sufficiently to become knowledge; and, act on that knowledge. Researchers at the Mining Information Systems and Operations Management (MISOM) laboratory at the University of Arizona have created a method to transform data into action. The data-to-action approach was exercised in the development of an energy consumption model (ECM), in partnership with a major US-based copper mining company, 2 software companies, and the MISOM laboratory. The approach begins by integrating several key data sources using data warehousing techniques, and increasing the existing level of integration and data cleaning. An online analytical processing (OLAP) cube was also created to investigate the data and identify a subset of several million records. Data mining algorithms were applied using the information that was isolated by the OLAP cube. The data mining results showed that traditional cost drivers of energy consumption are poor predictors. A comparison was made between traditional methods of predicting energy consumption and the prediction formed using data mining. Traditionally, in the mines for which data were available, monthly averages of tons and distance are used to predict diesel fuel consumption. However, this article showed that new information technology can be used to incorporate many more variables into the budgeting process, resulting in more accurate predictions. The ECM helped mine planners improve the prediction of energy use through more data integration, measure development, and workflow analysis. 5 refs., 11 figs.

  9. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2017-10-16

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.

  10. Demonstrating sustainable energy: A review-based model of sustainable energy demonstration projects

    NARCIS (Netherlands)

    Bossink, Bart

    2017-01-01

    This article develops a model of sustainable energy demonstration projects, based on a review of 229 scientific publications on demonstrations in renewable and sustainable energy. The model addresses the basic organizational characteristics (aim, cooperative form, and physical location) and learning

  11. Nuclear energy, renewable energy, and economic growth in developed and developing countries : A modelling analysis from simultaneous-equation models

    OpenAIRE

    Anis Omri; Anissa Chaibi

    2014-01-01

    This paper investigates the causal relationship among two types of energy consumption (nuclear energy and renewable energy) and economic growth using dynamic simultaneous-equation panel data models for 17 developed and developing countries. Our results in

  12. Black Hole Universe Model and Dark Energy

    Science.gov (United States)

    Zhang, Tianxi

    2011-01-01

    Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.

  13. Indoor environmental quality (IEQ) and building energy optimization through model predictive control (MPC)

    Science.gov (United States)

    Woldekidan, Korbaga

    This dissertation aims at developing a novel and systematic approach to apply Model Predictive Control (MPC) to improve energy efficiency and indoor environmental quality in office buildings. Model predictive control is one of the advanced optimal control approaches that use models to predict the behavior of the process beyond the current time to optimize the system operation at the present time. In building system, MPC helps to exploit buildings' thermal storage capacity and to use the information on future disturbances like weather and internal heat gains to estimate optimal control inputs ahead of time. In this research the major challenges of applying MPC to building systems are addressed. A systematic framework has been developed for ease of implementation. New methods are proposed to develop simple and yet reasonably accurate models that can minimize the MPC development effort as well as computational time. The developed MPC is used to control a detailed building model represented by whole building performance simulation tool, EnergyPlus. A co-simulation strategy is used to communicate the MPC control developed in Matlab platform with the case building model in EnergyPlus. The co-simulation tool used (MLE+) also has the ability to talk to actual building management systems that support the BACnet communication protocol which makes it easy to implement the developed MPC control in actual buildings. A building that features an integrated lighting and window control and HVAC system with a dedicated outdoor air system and ceiling radiant panels was used as a case building. Though this study is specifically focused on the case building, the framework developed can be applied to any building type. The performance of the developed MPC was compared against a baseline control strategy using Proportional Integral and Derivative (PID) control. Various conventional and advanced thermal comfort as well as ventilation strategies were considered for the comparison. These

  14. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    ARL-TR-8155 ● SEP 2017 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model... Energy Research, Volume 5 (Solar Radiation Flux Model) by Clayton Walker and Gail Vaucher Computational and Information Sciences Directorate, ARL...2017 June 28 4. TITLE AND SUBTITLE Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model) 5a. CONTRACT NUMBER ROTC Internship

  15. Hybrid Hydro Renewable Energy Storage Model

    Science.gov (United States)

    Dey, Asit Kr

    2018-01-01

    This paper aims at presenting wind & tidal turbine pumped-storage solutions for improving the energy efficiency and economic sustainability of renewable energy systems. Indicated a viable option to solve problems of energy production, as well as in the integration of intermittent renewable energies, providing system flexibility due to energy load’s fluctuation, as long as the storage of energy from intermittent sources. Sea water storage energy is one of the best and most efficient options in terms of renewable resources as an integrated solution allowing the improvement of the energy system elasticity and the global system efficiency.

  16. One-dimensional energy flow model for poroelastic material

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kang, Yeon June

    2009-01-01

    This paper presents a one-dimensional energy flow model to investigate the energy behavior for poroelastic media coupled with acoustical media. The proposed energy flow model is expressed by an independent energy governing equation that is classified into each wave component propagating in poroelastic media. The energy governing equation is derived using the General Energetic Method (GEM). To facilitate a comparison with the classical solution based on the conventional displacement-base formulation, approximate solutions of energy density and intensity are obtained. Furthermore, the limitations and usability of the proposed energy flow model for poroelastic media are described.

  17. A decision model for energy resource selection in China

    International Nuclear Information System (INIS)

    Wang Bing; Kocaoglu, Dundar F.; Daim, Tugrul U.; Yang Jiting

    2010-01-01

    This paper evaluates coal, petroleum, natural gas, nuclear energy and renewable energy resources as energy alternatives for China through use of a hierarchical decision model. The results indicate that although coal is still the major preferred energy alternative, it is followed closely by renewable energy. The sensitivity analysis indicates that the most critical criterion for energy selection is the current energy infrastructure. A hierarchical decision model is used, and expert judgments are quantified, to evaluate the alternatives. Criteria used for the evaluations are availability, current energy infrastructure, price, safety, environmental impacts and social impacts.

  18. Numerical investigation on the convective heat transfer in a spiral coil with radiant heating

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2016-01-01

    Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006

  19. EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING

    Directory of Open Access Journals (Sweden)

    Milan Đorđević

    2017-12-01

    Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.

  20. Modeling and Simulation of Smart Energy Systems

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2015-01-01

    At a global level, it is essential that the world transfers from fossil fuels to renewable energy resources to minimize the implications of climate change, which has been clearly demonstrated by the Intergovernmental Panel on Climate Change (IPCC, 2007a). At a national level, for most countries......, the transition to renewable energy will improve energy security of supply, create new jobs, enhance trade, and consequently grow the national economy. However, even with such promising consequences, renewable energy only provided approximately 13% of the world's energy in 2007 (International Energy Agency, 2009a......). Therefore, identifying how to utilize more renewable energy is one of the most pressing challenges facing many countries at present. Owing to the ever-growing complexity of modern energy systems, energy-system-analysis tools are often used to analyze the potential of renewable energy in future energy...

  1. Spherical collapse models with clustered dark energy

    Science.gov (United States)

    Chang, Chia-Chun; Lee, Wolung; Ng, Kin-Wang

    2018-03-01

    We investigate the clustering effect of dark energy (DE) in the formation of galaxy clusters using the spherical collapse model. Assuming a fully clustered DE component, the spherical overdense region is treated as an isolated system which conserves the energy separately for both matter and DE inside the spherical region. Then, by introducing a parameter r to characterize the degree of DE clustering, which is defined by the nonlinear density contrast ratio of matter to DE at turnaround in the recollapsing process, i.e. r ≡δde,taNL /δm,taNL, we are able to uniquely determine the spherical collapsing process and hence obtain the virialized overdensity Δvir through a proper virialization scheme. Estimation of the virialized overdensities from current observation on galaxy clusters suggests that 0 . 5 clustered DE with w < - 0 . 9. Also, we compare our method to the linear perturbation theory that deals with the growth of DE perturbation at early times. While both results are consistent with each other, our method is practically simple and it shows that the collapse process is rather independent of initial DE perturbation and its evolution at early times.

  2. Energy demand modelling and GHG emission reduction: case study Croatia

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Novosel, Tomislav

    2013-01-01

    and develop new energy policy towards energy efficiency and renewable energy sources, in order to comply with all of the presented tasks. Planning future energy demand, considering various policy options like regulation, fiscal and financial measures, becomes one of the crucial issues of future national...... energy strategy. This paper analyses Croatian long term energy demand and its effect on the future national GHG emissions. For that purpose the national energy demand model was constructed (NeD model). The model is comprised out of six modules each representing one sector, following Croatian national...... energy balance; industry, transport, households, services, agriculture and construction. For three of the modules (industry, transport and households) previously developed long term energy demand models were used, while for the remaining three new models were constructed. As an additional feature, new...

  3. COMPUTER MODELLING OF ENERGY SAVING EFFECTS

    Directory of Open Access Journals (Sweden)

    Marian JANCZAREK

    2016-09-01

    Full Text Available The paper presents the analysis of the dynamics of the heat transfer through the outer wall of the thermal technical spaces, taking into account the impact of the sinusoidal nature of the changes in atmospheric temperature. These temporal variations of the input on the outer surface of the chamber divider result at the output of the sinusoidal change on the inner wall of the room, but suitably suppressed and shifted in phase. Properly selected phase shift is clearly important for saving energy used for the operation associated with the maintenance of a specific regime of heat inside the thermal technical chamber support. Laboratory tests of the model and the actual object allowed for optimal design of the chamber due to the structure of the partition as well as due to the orientation of the geographical location of the chamber.

  4. Developing an Energy Performance Modeling Startup Kit

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-10-01

    In 2011, the NAHB Research Center began assessing the needs and motivations of residential remodelers regarding energy performance remodeling. This report outlines: the current remodeling industry and the role of energy efficiency; gaps and barriers to adding energy efficiency into remodeling; and support needs of professional remodelers to increase sales and projects involving improving home energy efficiency.

  5. Mean radiant temperature in idealised urban canyons--examples from Freiburg, Germany.

    Science.gov (United States)

    Herrmann, Jan; Matzarakis, Andreas

    2012-01-01

    Studies on the thermal comfort of humans in urban areas require meteorological data such as air temperature, air humidity, wind speed, and short- and long-wave fluxes. In such studies radiation fluxes can be expressed by the mean radiant temperature--a parameter with high variability in urban areas due to variability in global radiation. Wind speed in urban areas is influenced by urban obstacles and their orientation. Both mean radiant temperature and wind speed can be modified or changed by different height-to-width ratios or orientation of urban structures. Modifications to these parameters by typical urban structures (represented by the height-to-width ratio) can result in variation of mean radiant temperature over a range of more than 30°C, which can correspond to three levels of thermal stress. The results presented here provide a possible means of comparing different urban configurations in different climate regions.

  6. Mean radiant temperature in idealised urban canyons—examples from Freiburg, Germany

    Science.gov (United States)

    Herrmann, Jan; Matzarakis, Andreas

    2012-01-01

    Studies on the thermal comfort of humans in urban areas require meteorological data such as air temperature, air humidity, wind speed, and short- and long-wave fluxes. In such studies radiation fluxes can be expressed by the mean radiant temperature—a parameter with high variability in urban areas due to variability in global radiation. Wind speed in urban areas is influenced by urban obstacles and their orientation. Both mean radiant temperature and wind speed can be modified or changed by different height-to-width ratios or orientation of urban structures. Modifications to these parameters by typical urban structures (represented by the height-to-width ratio) can result in variation of mean radiant temperature over a range of more than 30°C, which can correspond to three levels of thermal stress. The results presented here provide a possible means of comparing different urban configurations in different climate regions.

  7. Western China energy development and west to east energy transfer: Application of the Western China Sustainable Energy Development Model

    International Nuclear Information System (INIS)

    Chen Wenying; Li Hualin; Wu Zongxin

    2010-01-01

    China is striving for coordinated regional economic development and to solve the energy shortage in eastern China through a western China development plan with one focus being energy development and west to east energy transfer. This paper describes Western China Sustainable Energy Development Model (WSED) to evaluate various energy development scenarios for western China. The model includes a Western China MARKAL model, a Computable General Equilibrium Model for Western China (WCGE), and an Energy Service Demand Projection Model (ESDP). The ESDP provides energy service demand projections for the Western China MARKAL model, while the WCGE provides macroeconomic inputs for the ESDP and analyzes the impact of different energy development scenarios on western China economy. A reference scenario and several different west to east energy transfer scenarios with and without consideration of the water constraints and the endogenous technology learning are presented. The modeling describes the energy consumption, carbon emissions, water consumption, energy investment cost, and the impact on western China GDP of the different scenarios through the year 2050. These results have implications on sustainable energy development policies and sustainable west to east energy transfer strategies.

  8. Water loss from the skin of term and preterm infants nursed under a radiant heater.

    Science.gov (United States)

    Kjartansson, S; Arsan, S; Hammarlund, K; Sjörs, G; Sedin, G

    1995-02-01

    The rate of evaporation from the skin (g/m2/h) was measured in 12 full-term and 16 preterm infants (gestational age 25-34 wk) both during incubator care and when nursed under a radiant heater. The method for evaporation rate measurement is noninvasive and based on determination of the water vapor pressure gradient close to the skin surface. Measurements were first made with the infant nursed in an incubator with a controlled environment with respect to humidity, temperature, and air velocity. The measurements in the term infants were performed at an ambient relative humidity (RH) of 50%, and in the preterm infants first at 50% and subsequently at 30-40%. Evaporation rate was then measured with the infant nursed under a radiant heater. In term infants, mean evaporation rate was 3.3 g/m2/h during incubator care (RH 50%) and 4.4 g/m2/h during care under the radiant heater. In preterm infants, the corresponding values were 15.5 g/m2/h in the incubator at RH 50%, 16.7 g/m2/h at RH 30-40%, and 17.9 g/m2/h under the radiant heater. It is concluded that the evaporative water loss from the skin depends on the ambient water vapor pressure, irrespective of whether the infant is nursed in an incubator or under a radiant heater. The higher rate of evaporation during care under a radiant heater is due to the lower ambient water vapor pressure and not to any direct effect of the nonionizing radiation on the skin.

  9. Effects of pollen of pinus thunbergii induced by different radiant factors

    International Nuclear Information System (INIS)

    Huang Qunce; Liang Qiuxia; Li Guoping

    2008-01-01

    The effects of pollens and pollen tubes of Pinus thunbergii induced respectively by N + beam, γ-ray and ultraviolet ray were measured, and the differences of the effects caused by the different radiant factors were distinguished. The results showed that there was obvious difference in the damages of the pollen germination and the pollen tube growth led by the radiant factors. The curve of dose effects from γ-ray irradiation was similarly S type, and that from ultraviolet ray treatment approximately L type. The effects from ion implantation expressed the two characteristics, the curve of the saddle type and the top inflation of pollen tube. (authors)

  10. Effect of a radiant heater on post-operative hypothermia: comparison with a reflective blanket.

    Science.gov (United States)

    Bredahl, C; Lambert-Jensen, P; Freundlich, M

    1995-11-01

    Thirty patients with post-operative hypothermia following major surgery (thoracic, abdominal, orthopaedic) were allocated randomly to either active warming with a radiant heater (500 W) or passive rewarming with a reflective blanket. Rectal temperature, mean skin temperature (at four measuring sites), continuous haemoglobin saturation and shivering were measured for 2 h post-operatively. Although post-operative heat supply with a radiant heater resulted in faster rewarming, there were no differences between the two groups with respect to haemoglobin saturation and shivering.

  11. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise

    OpenAIRE

    Gueritee, Julien; Tipton, Michael J.

    2015-01-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18 °C, 22 °C or 26 °C air were exposed to increasing air velocities up to 3 m s− 1 and self-adjusted the intensity of the direct radiant heat received on the front of the body to j...

  12. Thermal environment in a simulated double office room with convective and radiant cooling systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Rezgals, Lauris

    2017-01-01

    The thermal environment in a double office room obtained with chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and overhead mixing total volume ventilation (MTVV) under summer (cooling) condition was compared. Design (peak......) and usual (average) heat load from solar radiation, office equipment, lighting and occupants was simulated, respectively at 62 W/m2 and 38 W/m2 under four different workstation layouts. Air temperature, globe (operative) temperature, radiant asymmetry, air velocity and turbulent intensity were measured...

  13. International energy market dynamics: a modelling approach. Tome 2

    International Nuclear Information System (INIS)

    Nachet, S.

    1996-01-01

    This work is an attempt to model international energy market and reproduce the behaviour of both energy demand and supply. Energy demand was represented using sector versus source approach. For developing countries, existing link between economic and energy sectors were analysed. Energy supply is exogenous for energy sources other than oil and natural gas. For hydrocarbons, exploration-production process was modelled and produced figures as production yield, exploration effort index, ect. The model build is econometric and is solved using a software that was constructed for this purpose. We explore the energy market future using three scenarios and obtain projections by 2010 for energy demand per source and oil and natural gas supply per region. Economic variables are used to produce different indicators as energy intensity, energy per capita, etc. (author). 378 refs., 26 figs., 35 tabs., 11 appends

  14. International energy market dynamics: a modelling approach. Tome 1

    International Nuclear Information System (INIS)

    Nachet, S.

    1996-01-01

    This work is an attempt to model international energy market and reproduce the behaviour of both energy demand and supply. Energy demand was represented using sector versus source approach. For developing countries, existing link between economic and energy sectors were analysed. Energy supply is exogenous for energy sources other than oil and natural gas. For hydrocarbons, exploration-production process was modelled and produced figures as production yield, exploration effort index, etc. The model built is econometric and is solved using a software that was constructed for this purpose. We explore the energy market future using three scenarios and obtain projections by 2010 for energy demand per source and oil natural gas supply per region. Economic variables are used to produce different indicators as energy intensity, energy per capita, etc. (author). 378 refs., 26 figs., 35 tabs., 11 appends

  15. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  16. Radiant warmer power and body size as determinants of insensible water loss in the critically ill neonate.

    Science.gov (United States)

    Baumgart, S; Engle, W D; Fox, W W; Polin, R A

    1981-12-01

    Twelve critically ill neonates mechanically ventilated for respiratory failure (mean weight 1.33 kg, mean gestation 31 wk) were studied to quantitate the effects of radiant power from a radiant warming device, body weight, and body surface area on insensible water loss. Radiant power density (Mw/cm2) was measured using a wattmeter and thermopile transducer. Insensible water loss was measured using a Potter Baby Scale. Weight correlated inversely with insensible water loss, (r = -0.86, P less than 0.001). Radiant power density correlated inversely to weight, (r = -0.71, P less than 0.001). There was a significant increase in insensible water loss as radiant power density increased, (r = 0.54, P less than 0.05). Net radiant power received (W/kg) by infants over their exposed surface area, correlated directly to insensible water loss, (r = 0.67, P less than 0.01) irrespective of body weight. Critically ill neonates ventilated for respiratory failure and nursed under radiant warmers incurred greater insensible water losses than previously reported for well infants. The magnitude of this increased insensible water loss is inversely related to body size and is determined directly by the radiant power density required to maintain body temperature.

  17. Energy demand in Portuguese manufacturing: a two-stage model

    International Nuclear Information System (INIS)

    Borges, A.M.; Pereira, A.M.

    1992-01-01

    We use a two-stage model of factor demand to estimate the parameters determining energy demand in Portuguese manufacturing. In the first stage, a capital-labor-energy-materials framework is used to analyze the substitutability between energy as a whole and other factors of production. In the second stage, total energy demand is decomposed into oil, coal and electricity demands. The two stages are fully integrated since the energy composite used in the first stage and its price are obtained from the second stage energy sub-model. The estimates obtained indicate that energy demand in manufacturing responds significantly to price changes. In addition, estimation results suggest that there are important substitution possibilities among energy forms and between energy and other factors of production. The role of price changes in energy-demand forecasting, as well as in energy policy in general, is clearly established. (author)

  18. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  19. Programming models for energy-aware systems

    Science.gov (United States)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  20. Model projections for household energy use in developing countries

    NARCIS (Netherlands)

    Daioglou, V.; Ruijven, B.J. van; Vuuren, D.P. van

    2012-01-01

    The residential sector plays an important role in the energy system of developing countries. In this paper we introduce a bottom up simulation model for household energy use. The model describes energy demand for several end-use functions based on a set of physical drivers, such as floor space and

  1. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  2. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  3. Numerical Analysis of Three-Dimensional Natural Convection in a Closed Rectangular Cavity Under Conditions of Radiant Heating and Conjugate Heat Exchange

    Directory of Open Access Journals (Sweden)

    Nee Alexander E.

    2017-01-01

    Full Text Available The numerical simulation results of three-dimensional natural convection in a closed cavity were presented under conditions of the bottom horizontal solid-fluid interface radiant heating and conjugate heat exchange. Conservation equations of mass, momentum, and energy were formulated in terms of vorticity vector – vector potential – temperature dimensionless variables and solved by means of the finite difference method. It was found that the heat transfer process under study had a significant unsteady nature. According to the results of conjugate heat exchange integral analysis, it was shown that similar trends of mean Nusselt numbers versus dimensionless time were formed for both two and three dimensional problem formulations.

  4. Radiant and convective heat transfer for flow of a transparent gas in a short tube with prescribed sinusoidal wall heat flux

    International Nuclear Information System (INIS)

    de Lemos, M.J.S.

    1982-01-01

    The present analysis accounts for radiant and convective heat transfer for a transparent fluid flowing in a short tube with prescribed wall heat flux. The heat flux distribution used was of sine shape with maximum at the middle of the tube. Such a solution is the approximate one for axial power in a nuclear reactor. The solutions for the tube wall and gas bulk temperatures were obtained by successive substitutions for the wall and gas balance energy equations. The results show a decrease of 30% for the maximum wall temperature using black surface (e = 1). In this same case, the increasing in the gas temperature shows a decrease of 58%

  5. Numerical analysis of the potential of using light radiant ceilings in combination with diffuse ventilation to achieve thermal comfort in NZEB buildings

    DEFF Research Database (Denmark)

    Krusaa, Marie Rugholm; Hviid, Christian Anker; Kolarik, Jakub

    be developed. Hydronic radiant ceiling systems with large surfaces for heat transfer are well suited for the usage of LTH-HTC. In this paper, the aim is to create a system that can be flexible and include ventilation. The system analysed are a suspended capillary tube ceiling placed on top of perforated gypsum...... basis in the dynamic building simulation tool IDA Indoor Climate and Energy (IDA ICE). The office building contains both offices and meeting rooms. Worst-case scenarios are investigated in the office building considering heat gains, solar gains and the temperature offset between supply water temperature...

  6. Nonlinear spherical perturbations in Quintessence Models of Dark Energy

    OpenAIRE

    Rajvanshi, Manvendra Pratap; Bagla, Jasjeet Singh

    2018-01-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter $w$ for dark energy differs from $-1$ in dynamical dark energy (DDE). Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by m...

  7. Quantification model for energy consumption in edification

    Directory of Open Access Journals (Sweden)

    Mercader, Mª P.

    2012-12-01

    Full Text Available The research conducted in this paper focuses on the generation of a model for the quantification of energy consumption in building. This is to be done through one of the most relevant environmental impact indicators associated with weight per m2 of construction, as well as the energy consumption resulting from the manufacturing process of materials used in building construction. The practical application of the proposed model on different buildings typologies in Seville, will provide information regarding the building materials, the subsystems and the most relevant construction elements. Hence, we will be able to observe the impact the built surface has on the environment. The results obtained aim to reference the scientific community, providing quantitative data comparable to other types of buildings and geographical areas. Furthermore, it may also allow the analysis and the characterization of feasible solutions to reduce the environmental impact generated by the different materials, subsystems and construction elements commonly used in the different building types defined in this study.

    La investigación realizada en el presente trabajo plantea la generación de un modelo de cuantificación del consumo energético en edificación, a través de uno de los indicadores de impacto ambiental más relevantes asociados al peso por m2 de construcción, el consumo energético derivado del proceso de fabricación de los materiales de construcción empleados en edificación. La aplicación práctica del modelo propuesto sobre diferentes tipologías edificatorias en Sevilla aportará información respecto a los materiales de construcción, subsistemas y elementos constructivos más impactantes, permitiendo visualizar la influencia que presenta la superficie construida en cuanto al impacto ambiental generado. Los resultados obtenidos pretenden servir de referencia a la comunidad científica, aportando datos num

  8. Spherical collapse model in agegraphic dark energy cosmologies

    Science.gov (United States)

    Rezaei, Mehdi; Malekjani, Mohammad

    2017-09-01

    Under the commonly used spherical collapse model, we study how dark energy affects the growth of large scale structures of the Universe in the context of agegraphic dark energy models. The dynamics of the spherical collapse of dark matter halos in nonlinear regimes is determined by the properties of the dark energy model. We show that the main parameters of the spherical collapse model are directly affected by the evolution of dark energy in the agegraphic dark energy models. We compute the spherical collapse quantities for different values of agegraphic model parameter α in two different scenarios: first, when dark energy does not exhibit fluctuations on cluster scales, and second, when dark energy inside the overdense region collapses similar to dark matter. Using the Sheth-Tormen and Reed mass functions, we investigate the abundance of dark matter halos in the framework of agegraphic dark energy cosmologies. The model parameter α is a crucial parameter in order to count the abundance of dark matter halos. Specifically, the present analysis suggests that the agegraphic dark energy model with a bigger (smaller) value of α predicts less (more) virialized halos with respect to that of Λ CDM cosmology. We also show that in agegraphic dark energy models, the number of halos strongly depends on clustered or uniformed distributions of dark energy.

  9. New model. Local financing for local energy

    International Nuclear Information System (INIS)

    Detroy, Florent

    2015-01-01

    While evoking the case of the VMH Energies company in the Poitou-Charentes region, and indicating the difference between France and Germany in terms of wind and photovoltaic energy production potential, of number of existing local companies, and of citizen-based funding, this article shows that renewable energies could put the energy production financing in France into question again, with a more important participation of local communities and of their inhabitants. The author describes how the law on energy transition makes this possible, notably with the strengthening of citizen participation. The author evokes some French local experiments and the case of Germany where this participation is already very much developed

  10. EFFECT OF THE SCREENS RADIANT REFLECTANCE ON THERMAL TRANSPORT PROCESS IN THE CLADDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    V. D. Sizov

    2016-01-01

    Full Text Available The article analyses variants of the heat insulating layers disposition in relation to the cladding load-carrying structures and demonstrates prime advantages and drawbacks of the three variants. The authors notice that from the heat-engineering viewpoint the variant with exterior side winterization is the most favourable. However, utilizing micromodules as heat-insulating layers screened with leafing aluminum makes it necessary to account for the screens reflecting power. It allows reducing the irradiating component in the combined value of thermal transport through the enclosure and consequently raises the structure thermal resistance or, with parity of these values, leads to lower thickness of the heat-insulating layer. The known data applied for calculating the total heat transmission helps demonstrate reduction of the general heat flux value by 1.4 times, and the heat transmission resistance by 1.76 m2 deg./W. This allows reducing thickness of the heat-insulating layer (with regard of two screens by 0.07 m. Computations illustrate the fact that account for the radiant reflectance of screening enables lowering the rated heat flux passing through the enclosure. Which again allows decreasing the structure thermal resistance and its general thickness (by 70 mm at the expense of small thickness of the heat insulation of micromodules. The humidity regime calculations establish good acceptability of the enclosure service conditions in winter. The period will see no real water vapour condensation. The plotted diagrams of the cladding heat-and-humidity conditions demonstrate that condensation zones do not affect the layer of thermal insulation (micromodules. And the condensation zone with reduction of the heat-insulating layer appears only during ‘severe’ outside temperature conditions of a cold month. Reduced to 230 mm thickness of the wall construction allows utilizing ‘old’ stock of forms with prefabricated panels in parallel with energy

  11. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  12. Communication strategies for two models of discrete energy harvesting

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Popovski, Petar

    2014-01-01

    Energy harvesting is becoming a viable option for powering small wireless devices. Energy for data transmission is supplied by the nature, such that when a transmission is about to take place in an arbitrary instant, the amount of available energy is a random quantity. The arrived energy is stored...... in a battery and transmissions are interrupted if the battery runs out of energy. We address communication in slot-based energy harvesting systems, where the transmitter communicates with ON-OFF signaling: in each slot it can either choose to transmit (ON) or stay silent (OFF). Two different models...... of harvesting and communication are addressed. In the first model an energy quantum can arrive, with a certain probability, in each slot. The second model is based on a frame of size F: energy arrives periodically over F slots, in batches containing a random number of energy quanta. We devise achievable...

  13. Quantifying and Disaggregating Consumer Purchasing Behavior for Energy Systems Modeling

    Science.gov (United States)

    Consumer behaviors such as energy conservation, adoption of more efficient technologies, and fuel switching represent significant potential for greenhouse gas mitigation. Current efforts to model future energy outcomes have tended to use simplified economic assumptions ...

  14. The most problematic variable in the course of human-biometeorological comfort assessment — the mean radiant temperature

    Science.gov (United States)

    Kántor, Noémi; Unger, János

    2011-03-01

    This paper gives a review on the topic of the mean radiant temperature Tmrt, the most important parameter influencing outdoor thermal comfort during sunny conditions. Tmrt summarizes all short wave and long wave radiation fluxes reaching the human body, which can be very complex (variable in spatial and also in temporal manner) in urban settings. Thermal comfort researchers and urban planners need easy and sound methodological approaches to assess Tmrt. After the basics of the Tmrt calculation some of the methods suitable for obtaining Tmrt also in urban environments will be presented.. Two of the discussed methods are based on instruments which measure the radiation fluxes integral (globe thermometer, pyranometer-pyrgeometer combination), and three of the methods are based on modelling the radiation environment with PC software (RayMan, ENVI-met and SOLWEIG).

  15. Energy modelling towards low carbon development of Beijing in 2030

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Jiang, Kejun

    2017-01-01

    Beijing, as the capital of China, is under the high pressure of climate change and pollution. The consumption of non-renewable energy is one of the most important sources of the CO2 emissions, which cause climate changes. This paper presents a study on the energy system modelling towards renewable...... scenario 2030, (ii) BAU (business as usual) scenario 2030, and (iii) RES (renewable energies) scenario 2030. The 100% renewable energy system with zero CO2 emission can be achieved by increasing solar energy, biomass and municipal solid waste (MSW) and optimizing heating system. The primary fuel...... energy and low carbon development for the city of Beijing. The analysis of energy system modelling is organized in two steps to explore the alternative renewable energy system in Beijing. Firstly, a reference energy system of Beijing is created based on the available data in 2014. The Energy...

  16. Assessing neonatal heat balance and physiological strain in newborn infants nursed under radiant warmers in intensive care with fentanyl sedation.

    Science.gov (United States)

    Molgat-Seon, Yannick; Daboval, Thierry; Chou, Shirley; Jay, Ollie

    2014-12-01

    To assess heat balance status of newborn infants nursed under radiant warmers (RWs) during intensive care. Heat balance, thermal status and primary indicators of physiological strain were concurrently measured in 14 newborns nursed under RWs for 105 min. Metabolic heat production (M), evaporative heat loss (E), convective (C) and conductive heat flow (K), rectal temperature (T re) and mean skin temperatures (T sk) were measured continuously. The rate of radiant heat required for heat balance (R req) and the rate of radiant heat provided (R prov) were derived. The rate of body heat storage (S) was calculated using a two-compartment model of 'core' (T re) and 'shell' (T sk) temperatures. Mean M, E, C and K were 10.5 ± 2.7 W, 5.8 ± 1.1 W, 6.2 ± 0.8 W and 0.1 ± 0.1 W, respectively. Mean R prov (1.7 ± 2.6 W) and R req (1.7 ± 2.7 W) were similar (p > 0.05). However, while the resultant mean change in body heat content after 105 min was negligible (-0.1 ± 3.7 kJ), acute time-dependent changes in S were evidenced by a mean positive heat storage component of +6.4 ± 2.6 kJ and a mean negative heat storage component of -6.5 ± 3.7 kJ. Accordingly, large fluctuations in both T re and T sk occurred that were actively induced by changes in RW output. Nonetheless, no active physiological responses (heart rate, breathing frequency and mean arterial pressure) to these bouts of heating and cooling were observed. RWs maintain net heat balance over a prolonged period, but actively induce acute bouts of heat imbalance that cause rapid changes in T re and T sk. Transient bouts of heat storage do not exacerbate physiological strain, but could in the longer term.

  17. Effect of radiant heat at the birth site in farrowing crates on hypothermia and behaviour in neonatal piglets.

    Science.gov (United States)

    Andersen, H M-L; Pedersen, L J

    2016-01-01

    It has been documented that floor heating of the farrowing area in loose housed sows improves survival of piglets significantly. However, today, the majority of farrowing pens are designed with crating of sows and slatted floor at the birth site. The aim of this study was to investigate whether providing radiant heat at the birth site to new-born piglets in pens with crated sows reduced hypothermia, time to first milk intake and growth of the piglets during the 1(st) week. Second parity Danish Landrace×Yorkshire sows (n=36) were randomly divided into two groups: Control (CG) and heat (HG). In the area behind the sow (zone 1), two radiant heat panels were mounted above the slatted floor in the HG. The farrowings were attended, and the heaters were turned on at birth of first piglet and turned off 12 h after. Birth time, time to leave zone 1, time to first contact with udder and time to first suckling were registered by direct observation. The piglet's rectal temperature (RT) was measured 15, 30, 60, 120, 180, 240 min after birth and 12, 14 and 24 h after birth of first piglet. Piglets were weighed at birth, 24 and 48 h and 7 days after birth. Data were analysed in a mixed model in SAS. The drop in RT was lower in HG compared with CG (P=0.002), and the RT in HG remained higher than in CG from 30 to 240 min after birth (Pweight gain was found between piglets in HG and CG at 24 h (P=0.23), 48 h (P=0.28) and 7 days after birth (P=0.44). Birth weight had a positive effect on RT (P<0.001) and reduced time to leave zone 1 (P<0.01), reach udder (P<0.001) and time to first suckling (P<0.001). The results showed that radiant heating behind the sows reduced hypothermia in new-born piglets and indicate that providing heat during the first half hour after birth is important.

  18. Model for Analysis of Energy Demand (MAED-2). User's manual

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  19. Model for Analysis of Energy Demand (MAED-2)

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  20. Model for Analysis of Energy Demand (MAED-2). User's manual

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  1. A Romanian energy system model and a nuclear reduction strategy

    DEFF Research Database (Denmark)

    Gota, Dan-Ioan; Lund, Henrik; Miclea, Liviu

    2011-01-01

    energy system are compared to the actual data of Romania of year 2008. First, a comparison is made between the 2008 model and the 2013 strategy scenario corresponding to the grid of the Romanian transmission system operator (TSO) Transelectrica. Then, a comparison is made to a second strategy scenario......This paper presents a model of the Romanian energy system with the purpose of providing a tool for the analysis of future sustainable energy strategies. The model represents the total national energy system and is detailed to the level of hourly demand and production in order to be able to analyse...... the consequences of adding fluctuating renewable energy sources to the system. The model has been implemented into the EnergyPLAN tool and has been validated in order to determine if it can be used as a reference model for other simulations. In EnergyPLAN, two different future strategy scenarios for the Romanian...

  2. The National Energy Modeling System: An overview 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors world energy markets, resource availability and costs, behavior and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. 21 figs.

  3. Nuclear symmetry energy in density dependent hadronic models

    International Nuclear Information System (INIS)

    Haddad, S.

    2008-12-01

    The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)

  4. Quantifying the geopolitical dimension of energy risks: A tool for energy modelling and planning

    International Nuclear Information System (INIS)

    Muñoz, Beatriz; García-Verdugo, Javier; San-Martín, Enrique

    2015-01-01

    Energy risk and security are topical issues in energy analysis and policy. However, the quantitative analysis of energy risk presents significant methodological difficulties, especially when dealing with certain of its more qualitative dimensions. The aim of this paper is to quantitatively estimate the geopolitical risk of energy supply with the help of a multivariate statistical technique, factor analysis. Four partial energy risk factors were computed for 122 countries, which were subsequently aggregated to form the composite GESRI (Geopolitical Energy Supply Risk Index). The results demonstrate that advanced economies present a lower level of geopolitical energy risk, especially countries with energy resources, while less-developed countries register higher levels of risk regardless of their energy production. Although this indicator is computed for countries, it can be aggregated for regions or corridors, and it could also be applied to model and scenario building. The different uses of the GESRI could eventually lead to practical implications in the energy policy field, as well as in the energy planning and energy management areas. - Highlights: • We quantitatively estimate the multidimensional geopolitical risk of energy supply. • Factor analysis was used to reveal energy risk, a variable not directly observable. • Advanced economies with energy resources present the lowest level of energy risk. • Less-developed countries obtain high risk values even when they are energy producers. • The proposed index can be used for energy planning and energy management purposes

  5. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Khatib, Tamer; Elmenreich, Wilfried

    2014-01-01

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  6. Energy demand modelling: pointing out alternative energy sources. The example of industry in OECD countries

    International Nuclear Information System (INIS)

    Renou, P.

    1992-01-01

    This thesis studies energy demand and alternative energy sources in OECD countries. In the first part, the principle models usually used for energy demand modelling. In the second part, the author studies the flexible functional forms (translog, generalized Leontief, generalized quadratic, Fourier) to obtain an estimation of the production function. In the third part, several examples are given, chosen in seven countries (Usa, Japan, Federal Republic of Germany, France, United Kingdom, Italy, Canada). Energy systems analysis in these countries, can help to choose models and gives informations on alternative energies. 246 refs., 24 figs., 27 tabs

  7. Dynamic modeling, simulation and control of energy generation

    CERN Document Server

    Vepa, Ranjan

    2013-01-01

    This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli

  8. Nonlinear wave energy modelling in the surf zone

    Directory of Open Access Journals (Sweden)

    Th. V. Karambas

    1996-01-01

    Full Text Available Breaking wave energy in the surf zone is modelled through the incorporation of the time dependent energy balance equation in a non linear dispersive wave propagation model. The energy equations solved simultaneously with the momentum and continuity equation. Turbulence effects and the non uniform horizontal velocity distribution due to breaking is introduced in both the energy and momentum equations. The dissipation term is a function of the velocity defect derived from a turbulent analysis. The resulting system predicts both wave characteristics (surface elevation and velocity and the energy distribution inside surf zone. The model is validated against experimental data and analytical expressions.

  9. Comparison of a radiant patient warming device with forced air warming during laparoscopic cholecystectomy.

    Science.gov (United States)

    Wong, A; Walker, S; Bradley, M

    2004-02-01

    The importance of maintaining a patient's core body temperature during anaesthesia to reduce the incidence of postoperative complications has been well documented. The standard practice of this institution is the use of a forced air device for intraoperative warming. The purpose of this study was to compare this standard with an alternative warming device using a radiant heat source which only heated the face. This prospective, randomized controlled trial compared the efficacy of two methods of intraoperative warming: the BairHugger (Augustine Medical, U.S.A.) forced air device and the SunTouch (Fisher & Paykel Healthcare, N.Z.) radiant warmer during laparoscopic cholecystectomy in 42 female patients. Oesophageal core temperatures were recorded automatically on to computer during operations using standardised anaesthesia, intravenous infusions and draping. The study failed to show any statistical or clinical difference between the two patient groups in terms of mean core temperature both intraoperatively (P = 0.42) and in the recovery period (P = 0.54). Mean start to end core temperature differences were marginally lower in the radiant group (0.08 degree C) but not statistically or clinically significantly different. Given some of the drawbacks with forced air systems, such as the expense of the single use blanket, this new radiant warming device offers an alternative method of active warming with advantages in terms of cost and possible application to a wide variety of surgical procedures.

  10. Present and projected future mean radiant temperature for three European cities.

    Science.gov (United States)

    Thorsson, Sofia; Rayner, David; Lindberg, Fredrik; Monteiro, Ana; Katzschner, Lutz; Lau, Kevin Ka-Lun; Campe, Sabrina; Katzschner, Antje; Konarska, Janina; Onomura, Shiho; Velho, Sara; Holmer, Björn

    2017-09-01

    Present-day and projected future changes in mean radiant temperature, T mrt in one northern, one mid-, and one southern European city (represented by Gothenburg, Frankfurt, and Porto), are presented, and the concept of hot spots is adopted. Air temperature, T a , increased in all cities by 2100, but changes in solar radiation due to changes in cloudiness counterbalanced or exacerbated the effects on T mrt . The number of days with high T mrt in Gothenburg was relatively unchanged at the end of the century (+1 day), whereas it more than doubled in Frankfurt and tripled in Porto. The use of street trees to reduce daytime radiant heat load was analyzed using hot spots to identify where trees could be most beneficial. Hot spots, although varying in intensity and frequency, were generally confined to near sunlit southeast-southwest facing walls, in northeast corner of courtyards, and in open spaces in all three cities. By adding trees in these spaces, the radiant heat load can be reduced, especially in spaces with no or few trees. A set of design principles for reducing the radiant heat load is outlined based on these findings and existing literature.

  11. Present and projected future mean radiant temperature for three European cities

    Science.gov (United States)

    Thorsson, Sofia; Rayner, David; Lindberg, Fredrik; Monteiro, Ana; Katzschner, Lutz; Lau, Kevin Ka-Lun; Campe, Sabrina; Katzschner, Antje; Konarska, Janina; Onomura, Shiho; Velho, Sara; Holmer, Björn

    2017-09-01

    Present-day and projected future changes in mean radiant temperature, T mrt in one northern, one mid-, and one southern European city (represented by Gothenburg, Frankfurt, and Porto), are presented, and the concept of hot spots is adopted. Air temperature, T a , increased in all cities by 2100, but changes in solar radiation due to changes in cloudiness counterbalanced or exacerbated the effects on T mrt. The number of days with high T mrt in Gothenburg was relatively unchanged at the end of the century (+1 day), whereas it more than doubled in Frankfurt and tripled in Porto. The use of street trees to reduce daytime radiant heat load was analyzed using hot spots to identify where trees could be most beneficial. Hot spots, although varying in intensity and frequency, were generally confined to near sunlit southeast-southwest facing walls, in northeast corner of courtyards, and in open spaces in all three cities. By adding trees in these spaces, the radiant heat load can be reduced, especially in spaces with no or few trees. A set of design principles for reducing the radiant heat load is outlined based on these findings and existing literature.

  12. Theoretical Analysis of Interferometer Wave Front Tilt and Fringe Radiant Flux on a Rectangular Photodetector

    Directory of Open Access Journals (Sweden)

    Franz Konstantin Fuss

    2013-09-01

    Full Text Available This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.

  13. Cooling load calculations of radiant and all-air systems for commercial buildings

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Bauman, Fred; Schiavon, Stefano

    The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when they are...

  14. Towards a generalized energy prediction model for machine tools.

    Science.gov (United States)

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan

    2017-04-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.

  15. Modelling renewable energy economy in Ghana with autometrics

    Energy Technology Data Exchange (ETDEWEB)

    Ackah, Ishmael; Asomani, Mcomari [Africa Centre for Energy Policy, Accra (Ghana); Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana)

    2015-04-15

    Renewable energy consumption has been identified as a potential solution to the intermittent power supply in Ghana. Recently, a Renewable Energy Act has been passed which has a target of 10% of renewable energy component in Ghana's energy mix by 2020. Whilst effort is been made to enhance supply through feed in tariffs, education and tax reduction on renewable energy related equipment, there is the need to understand the drivers of renewable energy demand. In this study, the general unrestricted model through Autometrics is used to estimate the determinants of renewable energy demand in Ghana. The results indicate that both economic factors and non-economic affect the demand for renewable energy. In addition, the underlying energy demand trend exhibits energy using behaviour. The study recommends that economic factors such as consumer subsidies should be considered when promoting renewable energy demand.

  16. Modelling renewable energy economy in Ghana with autometrics

    International Nuclear Information System (INIS)

    Ackah, Ishmael; Asomani, Mcomari

    2015-01-01

    Renewable energy consumption has been identified as a potential solution to the intermittent power supply in Ghana. Recently, a Renewable Energy Act has been passed which has a target of 10% of renewable energy component in Ghana's energy mix by 2020. Whilst effort is been made to enhance supply through feed in tariffs, education and tax reduction on renewable energy related equipment, there is the need to understand the drivers of renewable energy demand. In this study, the general unrestricted model through Autometrics is used to estimate the determinants of renewable energy demand in Ghana. The results indicate that both economic factors and non-economic affect the demand for renewable energy. In addition, the underlying energy demand trend exhibits energy using behaviour. The study recommends that economic factors such as consumer subsidies should be considered when promoting renewable energy demand.

  17. Model of sustainable development of energy system, case of Hamedan

    International Nuclear Information System (INIS)

    Sahabmanesh, Aref; Saboohi, Yadollah

    2017-01-01

    Sustainable economic growth and improvement of the social welfare depend upon the sufficient supply of energy resources, while the utilization of energy resources is one of the main factors of environmental degradation. This research is involved with development of a sustainable energy system model and a new method for sustainability assessment. This model represents the flow of energy from primary resources through processing, conversion, and end-use technologies in an optimization framework where the useful energy demand in various social and economic sectors is met. The impact of energy supply and consumption chain on the environment at each level of energy system is also embedded in the model structure. A multi-criteria analysis of changes is then applied and sustainable development indices of the whole system are concluded. Finally, effects of the energy subsidy policy and high economic growth rate on sustainability of the energy system in three scenarios are analyzed. Results demonstrate that energy subsidy decelerates the improvement rate of the total sustainability index. Also, when a high economic growth is accompanied with the energy subsidy this index reduces considerably. Results show that how penetration of renewable energy potentials changes the sustainability situation of energy systems. - Highlights: • Developing a new model for sustainable energy systems. • Presenting a new method for sustainability assessment of energy systems. • Optimizing the energy flow and capacity expansion of Hamedan energy system. • Utilizing an MCDA approach to obtain sustainability indices of the whole system. • Analysis of energy subsidy and high economic growth on energy sustainability.

  18. Comparison of dark energy models after Planck 2015

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yue-Yao [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2016-11-15

    We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations. (orig.)

  19. Model documentation report: Transportation sector model of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  20. Energy Resilience Modeling for Smart Houses

    NARCIS (Netherlands)

    Ghasemieh, Hamed; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.; Remke, Anne Katharina Ingrid

    The use of renewable energy in houses and neighbourhoods is very much governed by national legislation and has recently led to enormous changes in the energy market and poses a serious threat to the stability of the grid at peak production times. One of the approaches towards a more balanced grid

  1. Visual prosthesis wireless energy transfer system optimal modeling.

    Science.gov (United States)

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  2. Rogeaulito: A World Energy Scenario Modeling Tool for Transparent Energy System Thinking

    International Nuclear Information System (INIS)

    Benichou, Léo; Mayr, Sebastian

    2014-01-01

    Rogeaulito is a world energy model for scenario building developed by the European think tank The Shift Project. It’s a tool to explore world energy choices from a very long-term and systematic perspective. As a key feature and novelty it computes energy supply and demand independently from each other revealing potentially missing energy supply by 2100. It is further simple to use, didactic, and open source. As such, it targets a broad user group and advocates for reproducibility and transparency in scenario modeling as well as model-based learning. Rogeaulito applies an engineering approach using disaggregated data in a spreadsheet model.

  3. Optimal thermal management for low birth weight infants nursed under high-powered radiant warmers.

    Science.gov (United States)

    Malin, S W; Baumgart, S

    1987-01-01

    Servocontrol of skin temperature for the critically ill premature neonate nursed on a radiant warmer bed has been assumed to be analogous to skin temperature control for infants nursed in convection-warmed incubators. There are significant differences between these two warming techniques, and no definitive data exist to aid the clinical specialist in governing radiant warmer control. Eighteen low birth weight premature infants less than 2 weeks of age were studied under powerful overhead radiant warmers to determine the optimal skin temperature for servocontrol of radiant heater output. Anterior abdominal wall temperature was servocontrolled at 35.5 degrees, 36.5 degrees, and 37.5 degrees C in a randomized fashion for three periods of 90 minutes each after thermal equilibrium was established. Oxygen consumption was measured during the entire 90-min sample period at each temperature by a computerized metabolic apparatus to determine the optimal thermal neutral control temperature defined as minimal oxygen consumption with normal body temperature. Skin, deep rectal, and environmental temperature measurements, as well as behavior assessments, were made concurrently. Oxygen consumption was significantly elevated at 35.5 degrees C (8.62 +/- 0.73 mL/kg/min, mean +/- SEM) compared with 36.5 degrees C (7.30 +/- 0.55 mL/kg/min). Changing servocontrol temperature to 37.5 degrees C produced no further significant decrease in oxygen consumption (7.41 +/- 0.70 mL/kg/min), and nine infants manifested supranormal deep rectal temperatures (greater than 37.5 degrees C). Optimal abdominal skin temperature control at 36.5 degrees C (slightly warmer than previously reported but less than 37.5 degrees C) is recommended for premature neonates nursed on radiant warmer beds.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    Science.gov (United States)

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Review of Methods for Buildings Energy Performance Modelling

    Science.gov (United States)

    Krstić, Hrvoje; Teni, Mihaela

    2017-10-01

    Research presented in this paper gives a brief review of methods used for buildings energy performance modelling. This paper gives also a comprehensive review of the advantages and disadvantages of available methods as well as the input parameters used for modelling buildings energy performance. European Directive EPBD obliges the implementation of energy certification procedure which gives an insight on buildings energy performance via exiting energy certificate databases. Some of the methods for buildings energy performance modelling mentioned in this paper are developed by employing data sets of buildings which have already undergone an energy certification procedure. Such database is used in this paper where the majority of buildings in the database have already gone under some form of partial retrofitting – replacement of windows or installation of thermal insulation but still have poor energy performance. The case study presented in this paper utilizes energy certificates database obtained from residential units in Croatia (over 400 buildings) in order to determine the dependence between buildings energy performance and variables from database by using statistical dependencies tests. Building energy performance in database is presented with building energy efficiency rate (from A+ to G) which is based on specific annual energy needs for heating for referential climatic data [kWh/(m2a)]. Independent variables in database are surfaces and volume of the conditioned part of the building, building shape factor, energy used for heating, CO2 emission, building age and year of reconstruction. Research results presented in this paper give an insight in possibilities of methods used for buildings energy performance modelling. Further on it gives an analysis of dependencies between buildings energy performance as a dependent variable and independent variables from the database. Presented results could be used for development of new building energy performance

  6. Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    Energy Technology Data Exchange (ETDEWEB)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K. R.; Venkatesh, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-01

    Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

  7. Developing an Energy Performance Modeling Startup Kit

    Energy Technology Data Exchange (ETDEWEB)

    Wood, A.

    2012-10-01

    In 2011, the NAHB Research Center began the first part of the multi-year effort by assessing the needs and motivations of residential remodelers regarding energy performance remodeling. The scope is multifaceted - all perspectives will be sought related to remodeling firms ranging in size from small-scale, sole proprietor to national. This will allow the Research Center to gain a deeper understanding of the remodeling and energy retrofit business and the needs of contractors when offering energy upgrade services. To determine the gaps and the motivation for energy performance remodeling, the NAHB Research Center conducted (1) an initial series of focus groups with remodelers at the 2011 International Builders' Show, (2) a second series of focus groups with remodelers at the NAHB Research Center in conjunction with the NAHB Spring Board meeting in DC, and (3) quantitative market research with remodelers based on the findings from the focus groups. The goal was threefold, to: Understand the current remodeling industry and the role of energy efficiency; Identify the gaps and barriers to adding energy efficiency into remodeling; and Quantify and prioritize the support needs of professional remodelers to increase sales and projects involving improving home energy efficiency. This report outlines all three of these tasks with remodelers.

  8. Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles.

    Science.gov (United States)

    Park, Jeong-Eun; Kim, Sungi; Son, Jiwoong; Lee, Yeonhee; Nam, Jwa-Min

    2016-12-14

    The plasmonic properties of metal nanostructures have been heavily utilized for surface-enhanced Raman scattering (SERS) and metal-enhanced fluorescence (MEF), but the direct photoluminescence (PL) from plasmonic metal nanostructures, especially with plasmonic coupling, has not been widely used as much as SERS and MEF due to the lack of understanding of the PL mechanism, relatively weak signals, and the poor availability of the synthetic methods for the nanostructures with strong PL signals. The direct PL from metal nanostructures is beneficial if these issues can be addressed because it does not exhibit photoblinking or photobleaching, does not require dye-labeling, and can be employed as a highly reliable optical signal that directly depends on nanostructure morphology. Herein, we designed and synthesized plasmonic cube-in-cube (CiC) nanoparticles (NPs) with a controllable interior nanogap in a high yield from Au nanocubes (AuNCs). In synthesizing the CiC NPs, we developed a galvanic void formation (GVF) process, composed of replacement/reduction and void formation steps. We unraveled the super-radiant character of the plasmonic coupling-induced plasmon mode which can result in highly enhanced PL intensity and long-lasting PL, and the PL mechanisms of these structures were analyzed and matched with the plasmon hybridization model. Importantly, the PL intensity and quantum yield (QY) of CiC NPs are 31 times and 16 times higher than those of AuNCs, respectively, which have shown the highest PL intensity and QY reported for metallic nanostructures. Finally, we confirmed the long-term photostability of the PL signal, and the signal remained stable for at least 1 h under continuous illumination.

  9. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues

  10. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  11. CERES Energy Balanced and Filled(EBAF) Surface Monthly means data in netCDF

    Data.gov (United States)

    National Aeronautics and Space Administration — The Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Surface product provides computed monthly mean surface radiative fluxes...

  12. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  13. Forecast of useful energy for the TIMES-Norway model

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-25

    A regional forecast of useful energy demand in seven Norwegian regions is calculated based on an earlier work with a national forecast. This forecast will be input to the energy system model TIMES-Norway and analyses will result in forecasts of energy use of different energy carriers with varying external conditions (not included in this report). The forecast presented here describes the methodology used and the resulting forecast of useful energy. lt is based on information of the long-term development of the economy by the Ministry of Finance, projections of population growths from Statistics Norway and several other studies. The definition of a forecast of useful energy demand is not absolute, but depends on the purpose. One has to be careful not to include parts that are a part of the energy system model, such as energy efficiency measures. In the forecast presented here the influence of new building regulations and the prohibition of production of incandescent light bulbs in EU etc. are included. Other energy efficiency measures such as energy management, heat pumps, tightening of leaks etc. are modelled as technologies to invest in and are included in the TIMES-Norway model. The elasticity between different energy carriers are handled by the TIMES-Norway model and some elasticity is also included as the possibility to invest in energy efficiency measures. The forecast results in an increase of the total useful energy from 2006 to 2050 by 18 o/o. The growth is expected to be highest in the regions South and East. The industry remains at a constant level in the base case and increased or reduced energy demand is analysed as different scenarios with the TIMES-Norway model. The most important driver is the population growth. Together with the assumptions made it results in increased useful energy demand in the household and service sectors of 25 o/o and 57 % respectively.(au)

  14. Effective dark energy equation of state in interacting dark energy models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Silva, H.M.R. da

    2012-01-01

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  15. Economic Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus

    Model Predictive Control (MPC) can be used to control the energy distribution in a Smart Grid with a high share of stochastic energy production from renewable energy sources like wind. Heat pumps for heating residential buildings can exploit the slow heat dynamics of a building to store heat...

  16. Energy-aware semantic modeling in large scale infrastructures

    NARCIS (Netherlands)

    Zhu, H.; van der Veldt, K.; Grosso, P.; Zhao, Z.; Liao, X.; de Laat, C.

    2012-01-01

    Including the energy profile of the computing infrastructure in the decision process for scheduling computing tasks and allocating resources is essential to improve the system energy efficiency. However, the lack of an effective model of the infrastructure energy information makes it difficult for

  17. Modelling energy expenditure of a brick layer at various postures ...

    African Journals Online (AJOL)

    Energy utilisation at work in the labour-intensive building industry is of prime importance to contractors who match people to jobs. This paper provides an insight into modelling energy expenditure in a specific task, namely brick laying in various postures. It therefore takes previous “generic” biomechanical-energy prediction ...

  18. Thermal energy test apparatus

    Science.gov (United States)

    Audet, N. F.

    1991-10-01

    The Navy Clothing and Textile Research Facility (NCTRF) designed and fabricated a thermal energy test apparatus to permit evaluation of the heat protection provided by crash crew firefighter's proximity clothing materials against radiant and convective heat loads, similar to those found outside the flame zone of aircraft fuel fires. The apparatus employs electrically operated quartz lamp radiant heaters and a hot air convective heater assembly to produce the heat load conditions the materials to be subjected to, and is equipped with heat flux sensors of different sensitivities to measure the incident heat flux on the sample material as well as the heat flux transmitted by the sample. Tests of the apparatus have shown that it can produce radiant heat flux levels equivalent to those estimated to be possible in close proximity to large aircraft fuel fires, and can produce convective heat fluxes equivalent to those measured in close proximity to aircraft fuel fires at upwind and sidewind locations. Work was performed in 1974.

  19. Description and comparison of energy impact assessment models

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, R.A.; Fraley, D.W.

    1977-04-01

    During the past few years the need for more comprehensive analytical techniques for assessing the environmental, economic, and social impacts of energy supply-demand systems and related public policy-making activities has increased. The research and academic communities have responded to this need by developing a wide range of models and other analytical tools for energy impact estimation. The models generally fall into two categories: large-scale and specialized. This report examines the general features and shortcomings of current large-scale and specialized modeling efforts from the point of view of energy impact assessment. Characteristics deemed desirable in large-scale energy-impact-assessment models and related studies are discussed. An outline of criteria for describing and comparing such models is presented, from which seven large-scale energy models and one impact-assessment study are described and compared in considerable detail. Tables are also presented which summarize the results of the categorizations.

  20. General Business Model Patterns for Local Energy Management Concepts

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Sulzer, Sabine

    2016-01-01

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  1. General business model patterns for Local Energy Management concepts

    Directory of Open Access Journals (Sweden)

    Emanuele eFacchinetti

    2016-03-01

    Full Text Available The transition towards a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed and compared. Through a market review a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  2. "Piekara's Chair": Mechanical Model for Atomic Energy Levels.

    Science.gov (United States)

    Golab-Meyer, Zofia

    1991-01-01

    Uses the teaching method of models or analogies, specifically the model called "Piekara's chair," to show how teaching classical mechanics can familiarize students with the notion of energy levels in atomic physics. (MDH)

  3. An agent-based model for energy service companies

    International Nuclear Information System (INIS)

    Robinson, Marguerite; Varga, Liz; Allen, Peter

    2015-01-01

    Highlights: • An agent-based model for household energy efficiency upgrades is considered. • Energy service companies provide an alternative to traditional utility providers. • Household self-financing is a limiting factor to widespread efficiency upgrading. • Longer term service contracts can lead to reduced household energy costs. • Future energy price increases enable service providers to retain their customer base. - Abstract: The residential housing sector is a major consumer of energy accounting for approximately one third of carbon emissions in the United Kingdom. Achieving a sustainable, low-carbon infrastructure necessitates a reduced and more efficient use of domestic energy supplies. Energy service companies offer an alternative to traditional providers, which supply a single utility product to satisfy the unconstrained demand of end users, and have been identified as a potentially important actor in sustainable future economies. An agent-based model is developed to examine the potential of energy service companies to contribute to the large scale upgrading of household energy efficiency, which would ultimately lead to a more sustainable and secure energy infrastructure. The migration of households towards energy service companies is described by an attractiveness array, through which potential customers can evaluate the future benefits, in terms of household energy costs, of changing provider. It is shown that self-financing is a limiting factor to the widespread upgrading of residential energy efficiency. Greater reductions in household energy costs could be achieved by committing to longer term contracts, allowing upgrade costs to be distributed over greater time intervals. A steadily increasing cost of future energy usage lends an element of stability to the market, with energy service companies displaying the ability to retain customers on contract expiration. The model highlights how a greater focus on the provision of energy services, as

  4. Inflation via logarithmic entropy-corrected holographic dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Darabi, F.; Felegary, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of)

    2016-12-15

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  5. Inflation via logarithmic entropy-corrected holographic dark energy model

    International Nuclear Information System (INIS)

    Darabi, F.; Felegary, F.; Setare, M.R.

    2016-01-01

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  6. The IEA Model of Short-term Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Ensuring energy security has been at the centre of the IEA mission since its inception, following the oil crises of the early 1970s. While the security of oil supplies remains important, contemporary energy security policies must address all energy sources and cover a comprehensive range of natural, economic and political risks that affect energy sources, infrastructures and services. In response to this challenge, the IEA is currently developing a Model Of Short-term Energy Security (MOSES) to evaluate the energy security risks and resilience capacities of its member countries. The current version of MOSES covers short-term security of supply for primary energy sources and secondary fuels among IEA countries. It also lays the foundation for analysis of vulnerabilities of electricity and end-use energy sectors. MOSES contains a novel approach to analysing energy security, which can be used to identify energy security priorities, as a starting point for national energy security assessments and to track the evolution of a country's energy security profile. By grouping together countries with similar 'energy security profiles', MOSES depicts the energy security landscape of IEA countries. By extending the MOSES methodology to electricity security and energy services in the future, the IEA aims to develop a comprehensive policy-relevant perspective on global energy security. This Working Paper is intended for readers who wish to explore the MOSES methodology in depth; there is also a brochure which provides an overview of the analysis and results.

  7. Energy modelling towards low carbon development of Beijing in 2030

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Jiang, Kejun

    2017-01-01

    scenario 2030, (ii) BAU (business as usual) scenario 2030 and (iii) RES (renewable energies) scenario 2030. The results shows that the share of renewables can increase to 100% of electricity and heat production in the RE scenario. The primary fuel consumption is reduced to 155.9 TWh, which is 72 % of fuel......Beijing, as the capacity capital of China, is under the pressure of climate change and pollution. Nonrenewable energy generation and consumption is one of the most important sources of CO2 emissions, which cause climate changes. This paper presents a study on the energy system modeling towards...... renewable energy and low carbon development for the city of Beijing. The analysis of energy system modeling is organized in two steps to explore the potential renewable energy alternative in Beijing. Firstly, a reference energy system of Beijing is created based on the available data in 2014. The Energy...

  8. Research on potential user identification model for electric energy substitution

    Science.gov (United States)

    Xia, Huaijian; Chen, Meiling; Lin, Haiying; Yang, Shuo; Miao, Bo; Zhu, Xinzhi

    2018-01-01

    The implementation of energy substitution plays an important role in promoting the development of energy conservation and emission reduction in china. Energy service management platform of alternative energy users based on the data in the enterprise production value, product output, coal and other energy consumption as a potential evaluation index, using principal component analysis model to simplify the formation of characteristic index, comprehensive index contains the original variables, and using fuzzy clustering model for the same industry user’s flexible classification. The comprehensive index number and user clustering classification based on constructed particle optimization neural network classification model based on the user, user can replace electric potential prediction. The results of an example show that the model can effectively predict the potential of users’ energy potential.

  9. Bases for the Creation of Electric Energy Price Estimate Model

    International Nuclear Information System (INIS)

    Toljan, I.; Klepo, M.

    1995-01-01

    The paper presents the basic principles for the creation and introduction of a new model for the electric energy price estimate and its significant influence on the tariff system functioning. There is also a review of the model used presently for the electric energy price estimate which is based on the model of objectivized values of electric energy plants and production, transmission and distribution facilities, followed by proposed changes which would result in functional and organizational improvements within the electric energy system as the most complex subsystem of the whole power system. The model is based on substantial and functional connection of the optimization and analysis system with the electric energy economic dispatching, including marginal cost estimate and their influence on the tariff system as the main means in achieving better electric energy system's functioning quality. (author). 10 refs., 2 figs

  10. Sustainable energy for the future. Modelling transitions to renewable and clean energy in rapidly developing countries.

    NARCIS (Netherlands)

    Urban, Frauke

    2009-01-01

    The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences

  11. Simple model of stacking-fault energies

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Jacobsen, Lærke Wedel

    1993-01-01

    A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local-density ......A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local...

  12. Modeling and Optimization of an Electrostatic Energy Harvesting Device

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Wang, Fei; Hansen, Ole

    2014-01-01

    Modeling of energy harvesting devices is complicated by the coupling between electrical and mechanical domains. In this paper, we present a coupled electromechanical model for electret-based resonant energy harvesters where the two output pads are placed on the same device side (single...

  13. Modeling fuel cells in integrated multi-energy systems

    NARCIS (Netherlands)

    Gabriellissx, Paolo; Gazzani, Matteo; Mazzotti, Marco

    2017-01-01

    This contribution investigates how different technology modeling methodologies affect the design of decentralized multi-energy systems, especially when fuel cell and energy storage are considered. First, thermoelectric models based on a first-principle approach are implemented to determine the

  14. Developing a Model of the Irish Energy-System

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    to create the model as it accounts for all sectors that need to be considered for integrating large penetrations of renewable energy: the electricity, heat and transport sectors. Before various alternative energy-systems could be investigated for Ireland, a reference model of the existing system needed...

  15. Assessment of Energy Efficient and Model Based Control

    Science.gov (United States)

    2017-06-15

    ARL-TR-8042 ● JUNE 2017 US Army Research Laboratory Assessment of Energy -Efficient and Model- Based Control by Craig Lennon...originator. ARL-TR-8042 ● JUNE 2017 US Army Research Laboratory Assessment of Energy -Efficient and Model- Based Control by Craig...

  16. Energy demand analytics using coupled technological and economic models

    Science.gov (United States)

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  17. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  18. Model for optimum design of standalone hybrid renewable energy ...

    African Journals Online (AJOL)

    An optimization model for the design of a hybrid renewable energy microgrid supplying an isolated load has been developed. This is achieved in two steps. The first step developed a linear programming model that uses the average pattern of demand, wind, and solar energy to determine the optimal configuration.

  19. Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems

    Directory of Open Access Journals (Sweden)

    Fumin Ma

    2015-10-01

    Full Text Available Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry energy transfer system is developed based on model property. Firstly, a reconfigurable energy transfer process model, which is independent of energy types and energy-consuming equipment, is presented from the viewpoint of the cross-coupling effect of energy flow, material flow and information flow. Thereafter the material balance determination is proposed based on both a dynamic incidence matrix and dynamic balance quantity. Moreover, the model-weighted conservation determination theorem is proved, and the energy efficiency analysis method is also discussed. Results confirmed the efficacy of the proposed methods, confirming its potential for use by process industry in energy efficiency analyses.

  20. Model Checking for Energy Efficient Scheduling in Wireless Sensor Networks

    OpenAIRE

    Schmitt, Peter H.; Werner, Frank

    2006-01-01

    Networking and power management of wireless energy - conscious sensor networks is an important area of current research. We investigate a network of MicaZ sensor motes using the ZigBee protocol for communication, and provide a model using Timed Safety Automata. Our analysis focuses on estimating energy consumption by model checking in different scenarios using the Uppaal tool. Special interest is devoted to the energy use in margi...

  1. Energy transition, a new French energy model. Future energies, green growth, sustainable jobs

    International Nuclear Information System (INIS)

    Royal, Segolene

    2014-01-01

    This publication introduces the new French energy policy for energy transition. It presents and comments the main orientations defined for this policy and which are at the base of the French law on energy transition for a green growth. Thus, it addresses the following topics: to define common objectives for a successful energy transition, to strengthen France's energy independence and to struggle against climate change; to better insulate buildings to save energy, to reduce energy bills and to create jobs; to develop clean transports to improve air quality and to protect the health of French people; to promote renewable energies to diversify energies and to valorise resources of French territories; to struggle against wastage and to promote circular economy from product design to product recycling; to simplify and clarify procedures aimed at improving efficiency and competitiveness; to strengthen nuclear safety and citizen information; and to provide citizen, enterprises, territories and the State with the power to act together

  2. Magnetized anisotropic dark energy models with constant ...

    Indian Academy of Sciences (India)

    In this paper, we have studied the solutions of plane-symmetric Universe with variable ω in the presence and the absence of magnetic field of energy density ρ B . A special law of variation for Hubble's parameterproposed by Bermann in {\\it Nuovo Cimento} B 74, 182 (1983) has been utilized to solve the field equations.

  3. Magnetized anisotropic dark energy models with constant ...

    Indian Academy of Sciences (India)

    2016-11-03

    Nov 3, 2016 ... Abstract. In this paper, we have studied the solutions of plane-symmetric Universe with variable ω in the presence and the absence of magnetic field of energy density ρB. A special law of variation for Hubble's parameter proposed by Bermann in Nuovo Cimento B 74, 182 (1983) has been utilized to solve ...

  4. Micro Econometric Modelling of Household Energy Use

    DEFF Research Database (Denmark)

    Leth-Petersen, Søren

    2002-01-01

    Presents a micro econometric analysis of household electricity and natural gas demand for Danish households observed in 1996. Dependence between demand for gas and demand for electricity; Separability of demand for gas from demand for electricity; Relation between energy consumption and the age...

  5. Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models

    International Nuclear Information System (INIS)

    Martinsen, Thomas

    2011-01-01

    This paper describes a method to model the influence by global policy scenarios, particularly spillover of technology learning, on the energy service demand of the non-energy sectors of the national economy. It is exemplified by Norway. Spillover is obtained from the technology-rich global Energy Technology Perspective model operated by the International Energy Agency. It is provided to a national hybrid model where a national bottom-up Markal model carries forward spillover into a national top-down CGE model at a disaggregated demand category level. Spillover of technology learning from the global energy technology market will reduce national generation costs of energy carriers. This may in turn increase demand in the non-energy sectors of the economy because of the rebound effect. The influence of spillover on the Norwegian economy is most pronounced for the production level of industrial chemicals and for the demand for electricity for residential energy services. The influence is modest, however, because all existing electricity generating capacity is hydroelectric and thus compatible with the low emission policy scenario. In countries where most of the existing generating capacity must be replaced by nascent energy technologies or carbon captured and storage the influence on demand is expected to be more significant. - Highlights: → Spillover of global technology learning may be forwarded into a macroeconomic model. → The national electricity price differs significantly between the different global scenarios. → Soft-linking global and national models facilitate transparency in the technology learning effect chain.

  6. Energy-based modelling and control of wind energy conversion system with DFIG

    Science.gov (United States)

    Song, H. H.; Qu, Y. B.

    2011-02-01

    Focusing on wind energy conversion system (WECS) at the doubly-fed induction generator (DFIG) control level, a novel control approach was proposed to optimise wind energy capture from consideration of physical nature and energy relationship. According to energy flowing, the WECS was divided into several multi-ports energy conversion subsystems, and the structure matrices of the subsystems were elaborately designed. Based on this, port-controlled Hamiltonian models of the subsystems were obtained, and energy-based control using the models was provided to realise the machine side and the grid side control objectives of the WECS. The approach was applied on a 2 MW WECS, and compared with classical proportional-integral (PI) controller using MATLAB/Simulink. The results show that the energy-based control not only fully satisfies both side control requirements, but also has more robust control performances for a turbulent wind than the PI control.

  7. Energy efficiency and renewable energy modeling with ETSAP TIAM - challenges, opportunities, and solutions

    DEFF Research Database (Denmark)

    Gregg, Jay Sterling; Balyk, Olexandr; Pérez, Cristian Hernán Cabrera

    The objectives of the Sustainable Energy for All (SE4ALL), a United Nations (UN) global initiative, are to achieve, by 2030: 1) universal access to modern energy services; 2) a doubling of the global rate of improvement in energy efficiency; and 3) a doubling of the share of renewable energy...... in the global energy mix (United Nations, 2011; SE4ALL, 2013a). The purpose of this study is to determine to what extent the energy efficiency objective supports the other two objectives, and to what extent the SE4ALL objectives support the climate target of limiting the global mean temperature increase to 2° C...... over pre-industrial times. To accomplish this, pathways are constructed for each objective, which then form the basis for a scenario analysis using the Energy Technology System Analysis Program TIMES Integrated Assessment Model (ETSAP-TIAM). This presentation focuses on the modeling challenges...

  8. Modelling future private car energy demand in Ireland

    International Nuclear Information System (INIS)

    Daly, Hannah E.; Ó Gallachóir, Brian P.

    2011-01-01

    Targeted measures influencing vehicle technology are increasingly a tool of energy policy makers within the EU as a means of meeting energy efficiency, renewable energy, climate change and energy security goals. This paper develops the modelling capacity for analysing and evaluating such legislation, with a focus on private car energy demand. We populate a baseline car stock and car activity model for Ireland to 2025 using historical car stock data. The model takes account of the lifetime survival profile of different car types, the trends in vehicle activity over the fleet and the fuel price and income elasticities of new car sales and total fleet activity. The impacts of many policy alternatives may only be simulated by such a bottom-up approach, which can aid policy development and evaluation. The level of detail achieved provides specific insights into the technological drivers of energy consumption, thus aiding planning for meeting climate targets. This paper focuses on the methodology and baseline scenario. Baseline results for Ireland forecast a decline in private car energy demand growth (0.2%, compared with 4% in the period 2000–2008), caused by the relative growth in fleet efficiency compared with activity. - Highlights: ► Bottom-up private car energy forecasting model developed. ► The demographic and technological distribution of vehicle activity is a key veriable. ► Irish car energy demand growth predicted to slow steadily. ► Change in vehicle taxation forecast to save 10% energy.

  9. Use of artificial neural networks for transport energy demand modeling

    International Nuclear Information System (INIS)

    Murat, Yetis Sazi; Ceylan, Halim

    2006-01-01

    The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem

  10. Simulation of Solar Energy Use in Livelihood of Buildings

    Science.gov (United States)

    Lvocich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2017-11-01

    Solar energy can be considered as the most technological and economical type of renewable energy. The purpose of the paper is to increase the efficiency of solar energy utilization on the basis of the mathematical simulation of the solar collector. A mathematical model of the radiant heat transfer vacuum solar collector is clarified. The model was based on the process of radiative heat transfer between glass and copper walls with the defined blackness degrees. A mathematical model of the ether phase transition point is developed. The dependence of the reservoir walls temperature change on the ambient temperature over time is obtained. The results of the paper can be useful for the development of prospective sources using solar energy.

  11. Modelling the impact of social network on energy savings

    International Nuclear Information System (INIS)

    Du, Feng; Zhang, Jiangfeng; Li, Hailong; Yan, Jinyue; Galloway, Stuart; Lo, Kwok L.

    2016-01-01

    Highlights: • Energy saving propagation along a social network is modelled. • This model consists of a time evolving weighted directed network. • Network weights and information decay are applied in savings calculation. - Abstract: It is noted that human behaviour changes can have a significant impact on energy consumption, however, qualitative study on such an impact is still very limited, and it is necessary to develop the corresponding mathematical models to describe how much energy savings can be achieved through human engagement. In this paper a mathematical model of human behavioural dynamic interactions on a social network is derived to calculate energy savings. This model consists of a weighted directed network with time evolving information on each node. Energy savings from the whole network is expressed as mathematical expectation from probability theory. This expected energy savings model includes both direct and indirect energy savings of individuals in the network. The savings model is obtained by network weights and modified by the decay of information. Expected energy savings are calculated for cases where individuals in the social network are treated as a single information source or multiple sources. This model is tested on a social network consisting of 40 people. The results show that the strength of relations between individuals is more important to information diffusion than the number of connections individuals have. The expected energy savings of optimally chosen node can be 25.32% more than randomly chosen nodes at the end of the second month for the case of single information source in the network, and 16.96% more than random nodes for the case of multiple information sources. This illustrates that the model presented in this paper can be used to determine which individuals will have the most influence on the social network, which in turn provides a useful guide to identify targeted customers in energy efficiency technology rollout

  12. Protein homology model refinement by large-scale energy optimization.

    Science.gov (United States)

    Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David

    2018-03-20

    Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.

  13. Luminescence model with quantum impact parameter for low energy ions

    CERN Document Server

    Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S

    2002-01-01

    We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.

  14. Modeling Smart Energy Systems for Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2012-01-01

    Integrating large amounts of renewable energy sources like wind and solar power introduces large uctuations in the power production. Either this energy must be stored or consumed right away. Storage solutions are very expensive and not applicable everywhere. So utilizing all of this green energy...... as it is produced requires a very exible and controllable power consumption. Examples of controllable electric loads are heat pumps in buildings and Electric Vehicles (EVs) that are expected to play a large role in the future danish energy system. These units in a smart energy system can potentially oer exibility...... with green and cheap electricity. This situation occurs when there is a lot of excess wind power in the system which is re ected in the electricity price and in turn creates an incentive to absorb the energy. In this paper a decentralized control strategy is investigated where prices indirectly in uence...

  15. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    Science.gov (United States)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  16. Dynamic energy conservation model REDUCE. Extension with experience curves, energy efficiency indicators and user's guide

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.; Rijkers, F.A.M.

    1999-12-01

    The main objective of the energy conservation model REDUCE (Reduction of Energy Demand by Utilization of Conservation of Energy) is the evaluation of the effectiveness of economical, financial, institutional, and regulatory measures for improving the rational use of energy in end-use sectors. This report presents the results of additional model development activities, partly based on the first experiences in a previous project. Energy efficiency indicators have been added as an extra tool for output analysis in REDUCE. The methodology is described and some examples are given. The model has been extended with a method for modelling the effects of technical development on production costs, by means of an experience curve. Finally, the report provides a 'users guide', by describing in more detail the input data specification as well as all menus and buttons. 19 refs

  17. Energy System Planning Analysis Using the Integrated Energy and Macroeconomy Model

    Directory of Open Access Journals (Sweden)

    Helena Bozic

    2007-07-01

    Full Text Available In the past, the energy planners through setting the desired level of economic growth simply used this figure as a base to which additional increases were made, dependent on changing population and supply conditions. Planning proceeded from the national, macroeconomic position, to the aggregate, sectoral and finally project levels. Such process was a virtual one-way linkage from economic growth rate to the energy sector; it is viewed in isolation from the reminder of the economy. Integration of energy system optimization model MARKAL and the macroeconomic growth model MACRO makes possible the analysis of two-way linkage between energy system and the economy. This paper presents review of relation between energy system and economy, including the basics of technology and economy oriented models and their integration in one model with applications.

  18. Near Shore Wave Modeling and applications to wave energy estimation

    Science.gov (United States)

    Zodiatis, G.; Galanis, G.; Hayes, D.; Nikolaidis, A.; Kalogeri, C.; Adam, A.; Kallos, G.; Georgiou, G.

    2012-04-01

    The estimation of the wave energy potential at the European coastline is receiving increased attention the last years as a result of the adaptation of novel policies in the energy market, the concernsfor global warming and the nuclear energy security problems. Within this framework, numerical wave modeling systems keep a primary role in the accurate description of wave climate and microclimate that is a prerequisite for any wave energy assessment study. In the present work two of the most popular wave models are used for the estimation of the wave parameters at the coastline of Cyprus: The latest parallel version of the wave model WAM (ECMWF version), which employs new parameterization of shallow water effects, and the SWAN model, classically used for near shore wave simulations. The results obtained from the wave models near shores are studied by an energy estimation point of view: The wave parameters that mainly affect the energy temporal and spatial distribution, that is the significant wave height and the mean wave period, are statistically analyzed,focusing onpossible different aspects captured by the two models. Moreover, the wave spectrum distribution prevailing in different areas are discussed contributing, in this way, to the wave energy assessmentin the area. This work is a part of two European projects focusing on the estimation of the wave energy distribution around Europe: The MARINA platform (http://www.marina-platform.info/ index.aspx) and the Ewave (http://www.oceanography.ucy.ac.cy/ewave/) projects.

  19. Sublethal toxicant effects with dynamic energy budget theory: model formulation

    OpenAIRE

    Muller, Erik B.; Nisbet, Roger M.; Berkley, Heather A.

    2009-01-01

    We develop and test a general modeling framework to describe the sublethal effects of pollutants by adding toxicity modules to an established dynamic energy budget (DEB) model. The DEB model describes the rates of energy acquisition and expenditure by individual organisms; the toxicity modules describe how toxicants affect these rates by changing the value of one or more DEB parameters, notably the parameters quantifying the rates of feeding and maintenance. We investigate four toxicity modul...

  20. European Climate - Energy Security Nexus. A model based scenario analysis

    International Nuclear Information System (INIS)

    Criqui, Patrick; Mima, Silvana

    2011-01-01

    In this research, we have provided an overview of the climate-security nexus in the European sector through a model based scenario analysis with POLES model. The analysis underline that under stringent climate policies, Europe take advantage of a double dividend in its capacity to develop a new cleaner energy model and in lower vulnerability to potential shocks on the international energy markets. (authors)

  1. European Climate - Energy Security Nexus. A model based scenario analysis

    Energy Technology Data Exchange (ETDEWEB)

    Criqui, Patrick; Mima, Silvana

    2011-01-15

    In this research, we have provided an overview of the climate-security nexus in the European sector through a model based scenario analysis with POLES model. The analysis underline that under stringent climate policies, Europe take advantage of a double dividend in its capacity to develop a new cleaner energy model and in lower vulnerability to potential shocks on the international energy markets. (authors)

  2. Offshore Wind Energy Cost Modeling Installation and Decommissioning

    CERN Document Server

    Kaiser, Mark J

    2012-01-01

    Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation.  This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decom...

  3. A new energy transfer model for turbulent free shear flow

    Science.gov (United States)

    Liou, William W.-W.

    1992-01-01

    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  4. Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Directory of Open Access Journals (Sweden)

    Peter Smolek

    2018-06-01

    Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.

  5. Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?

    Science.gov (United States)

    Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim

    2009-10-09

    We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.

  6. Analysis on the impact of mean radiant temperature for the thermal comfort of underfloor air distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jae Dong [Department of Mechanical Engineering, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747 (Korea, Republic of); Hong, Hiki [Department of Mechanical Engineering, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Yoo, Hoseon [Department of Mechanical Engineering, Soongsil University, Seoul 156-743 (Korea, Republic of)

    2010-12-15

    Despite the potentially significant advantages of underfloor air distribution (UFAD) systems, the shortcomings in fundamental understanding have impeded the use of UFAD systems. A study has been carried out on the thermal stratification which is crucial to system design, energy efficient operation and comfort performance of UFAD systems with an aim of examining impact of mean radiant temperature (MRT) on thermal comfort. Clear elucidation of the benefit of UFAD systems has been shown by comparing it to the traditional overhead air distribution systems. Keeping the same level of comfortable environment in the occupied zone, UFAD systems require much higher temperature of supply air, which represents significant energy savings. The benefit of UFAD systems is more pronounced at the condition of high ceiling height building. Considerable discrepancies in thermal comfort are found on the assumption that air temperature rather than MRT is used for the evaluation of PMV. However, more rigorous analysis including the full radiation simulation does not show any significant difference in PMV distribution. The result of the full radiation simulations requires much longer simulation time but gives similar air temperature distribution and only slightly higher averaged temperature than present approaches. (author)

  7. Model analyses for sustainable energy supply under CO2 restrictions

    International Nuclear Information System (INIS)

    Matsuhashi, Ryuji; Ishitani, Hisashi.

    1995-01-01

    This paper aims at clarifying key points for realizing sustainable energy supply under restrictions on CO 2 emissions. For this purpose, possibility of solar breeding system is investigated as a key technology for the sustainable energy supply. The authors describe their mathematical model simulating global energy supply and demand in ultra-long term. Depletion of non-renewable resources and constraints on CO 2 emissions are taken into consideration in the model. Computed results have shown that present energy system based on non-renewable resources shifts to a system based on renewable resources in the ultra-long term with appropriate incentives

  8. Variable sound speed in interacting dark energy models

    Science.gov (United States)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  9. Statistical model for high energy inclusive processes

    International Nuclear Information System (INIS)

    Pomorisac, B.

    1980-01-01

    We propose a statistical model of inclusive processes. The model is an extension of the model proposed by Salapino and Sugar for the inclusive distributions in rapidity. The model is defined in terms of a random variable on the full phase space of the produced particles and in terms of a Lorentz-invariant probability distribution. We suggest that the Lorentz invariance is broken spontaneously, this may describe the observed anisotropy of the inclusive distributions. Based on this model we calculate the distribution in transverse momentum. An explicit calculation is given of the one-particle inclusive cross sections and the two-particle correlation. The results give a fair representation of the shape of one-particle inclusive cross sections, and positive correlation for the particles emitted. The relevance of our results to experiments is discussed

  10. Radiant Floor Cooling Combined with Mixing Ventilation in a Residential Room

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Tomasi, Roberta

    in progress. An experimental laboratory study in a simulated residential room with a seated occupant simulated by a thermal manikin was performed in order to evaluate thermal comfort and ventilation effectiveness. Thermal comfort was evaluated by means of vertical air temperature and air velocity profiles...... for comfortable thermal environment recommended by the standards. The cooler supply air mixed well and the effect of the position of air terminal devices was small. When warm unconditioned outside air was supplied by mixing ventilation in combination with the radiant floor cooling, low floor temperature......Mixing air ventilation system is one of the main ventilation concepts applied in residential buildings. The effect of combining the mixing ventilation system with the radiant floor heating has been well established, whereas the validation of using the floor for cooling in summer is still...

  11. Super-radiant Smith–Purcell radiation from periodic line charges

    International Nuclear Information System (INIS)

    Li, D.; Hangyo, M.; Tsunawaki, Y.; Yang, Z.; Wei, Y.; Miyamoto, S; Asakawa, M.R.; Imasaki, K.

    2012-01-01

    Smith–Purcell radiation occurs when an electron passes close to the surface of a metallic grating. The radiation becomes coherent when the length of the electron bunch is smaller than the wavelength of the radiation. A train of periodic bunches can enhance the spectral intensity by changing the angular and spectral distribution of the radiation. This is called super-radiant Smith–Purcell radiation, and has been observed in experiments and particle-in-cell simulations. In this paper, we introduce a new method to study this effect by calculating the reflected waves of an incident evanescent wave from periodic line charges. The reflection coefficients are numerically computed, and the spectral distributions of the super-radiant radiation are demonstrated. These analytical results are in agreement with those obtained through part-in-cell simulations.

  12. Energy transition: development of the new French model

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    Many times postponed, the 'programming bill for a new French energy model', commitment of the President of the Republic Francois Hollande, will finally be presented at the Parliament in September with the hope that it will be passed on next spring. Developed on two-pillar approach - energy savings and renewable energies -, this bill should allow France to reduce half of its energy consumption between 2012 and 2050 and to increase the share of renewable energy sources of 14% by 2012 to 32% by 2030 in the power mix. (O.M.)

  13. A simple model for low energy ion-solid interactions

    International Nuclear Information System (INIS)

    Mohajerzadeh, S.; Selvakumar, C.R.

    1997-01-01

    A simple analytical model for ion-solid interactions, suitable for low energy beam depositions, is reported. An approximation for the nuclear stopping power is used to obtain the analytic solution for the deposited energy in the solid. The ratio of the deposited energy in the bulk to the energy deposited in the surface yields a ceiling for the beam energy above which more defects are generated in the bulk resulting in defective films. The numerical evaluations agree with the existing results in the literature. copyright 1997 American Institute of Physics

  14. Modelling and designing electric energy networks

    International Nuclear Information System (INIS)

    Retiere, N.

    2003-11-01

    The author gives an overview of his research works in the field of electric network modelling. After a brief overview of technological evolutions from the telegraph to the all-electric fly-by-wire aircraft, he reports and describes various works dealing with a simplified modelling of electric systems and with fractal simulation. Then, he outlines the challenges for the design of electric networks, proposes a design process, gives an overview of various design models, methods and tools, and reports an application in the design of electric networks for future jumbo jets

  15. Study of thermosiphon and radiant panel passive heating systems for metal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Biehl, F.A.; Schnurr, N.M.; Wray, W.O.

    1983-01-01

    A study of passive-heating systems appropriate for use on metal buildings is being conducted at Los Alamos National Laboratory for the Naval Civil Engineering Laboratory, Port Hueneme, California. The systems selected for study were chosen on the basis of their appropriateness for retrofit applications, although they are also suitable for new construction: simple radiant panels that communicate directly with the building interior and a backflow thermosiphon that provides heat indirectly.

  16. Building an Efficient Model for Afterburn Energy Release

    Energy Technology Data Exchange (ETDEWEB)

    Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

    2012-02-03

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

  17. A New Model to Simulate Energy Performance of VRF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Pang, Xiufeng; Schetrit, Oren; Wang, Liping; Kasahara, Shinichi; Yura, Yoshinori; Hinokuma, Ryohei

    2014-03-30

    This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real

  18. CERES Energy Balanced and Filled(EBAF) TOA Monthly means data in netCDF Edition4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-Of-Atmosphere (TOA) CERES_EBAF-TOA_Edition4.0 data are monthly and...

  19. Effect of aluminized fabrics on radiant protective performance of fire proximity suit materials.

    Science.gov (United States)

    Jin, Lu; Park, Pyoung Kyu; Hong, Kyoung A; Yoon, Kee Jong

    2015-03-01

    Radiant heat may be a significant component of heat exposure in the case of proximity firefighting. To combat high levels of radiant heat, fire proximity suits made of aluminized fabrics (Al-Fb) are commonly used due to their proven radiant protective performance (RPP). In this study RPP of various Al-Fb prepared using different aluminized films (Al-Fl) such as double-sided aluminized film and single-sided aluminized film and different base fabrics such as woven, knit, and nonwoven fabrics are compared. The effect of flexing on RPP and flame protective performance (FPP) of Al-Fb is also examined. The results show that RPP of Al-Fl is affected by the protective film to protect against mechanical or physical damages, and also by their structure such as whether the second reflective aluminum layer is present or not. In addition RPP of Al-Fb is also influenced by the base fabric, especially its surface roughness. The increased surface roughness combined with the damage caused to the aluminum layer after flexing result in reduction of RPP of Al-Fb. The contribution of Al-Fl to FPP of Al-Fb is not as significant as to RPP. Finally, based on the results, some points that may be important in developing and designing fire proximity suits are recommended. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. The simultaneous mass and energy evaporation (SM2E) model.

    Science.gov (United States)

    Choudhary, Rehan; Klauda, Jeffery B

    2016-01-01

    In this article, the Simultaneous Mass and Energy Evaporation (SM2E) model is presented. The SM2E model is based on theoretical models for mass and energy transfer. The theoretical models systematically under or over predicted at various flow conditions: laminar, transition, and turbulent. These models were harmonized with experimental measurements to eliminate systematic under or over predictions; a total of 113 measured evaporation rates were used. The SM2E model can be used to estimate evaporation rates for pure liquids as well as liquid mixtures at laminar, transition, and turbulent flow conditions. However, due to limited availability of evaporation data, the model has so far only been tested against data for pure liquids and binary mixtures. The model can take evaporative cooling into account and when the temperature of the evaporating liquid or liquid mixture is known (e.g., isothermal evaporation), the SM2E model reduces to a mass transfer-only model.

  1. Solar radiation practical modeling for renewable energy applications

    CERN Document Server

    Myers, Daryl Ronald

    2013-01-01

    Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation m

  2. Modelling energy spot prices by Lévy semistationary processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut

    This paper introduces a new modelling framework for energy spot prices based on Lévy semistationary processes. Lévy semistationary processes are special cases of the general class of ambit processes. We provide a detailed analysis of the probabilistic properties of such models and we show how the...... they are able to capture many of the stylised facts observed in energy markets. Furthermore, we derive forward prices based on our spot price model. As it turns out, many of the classical spot models can be embedded into our novel modelling framework....

  3. Model documentation report: Industrial sector demand module of the national energy modeling system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  4. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    Science.gov (United States)

    Kim, Jong Bum; Clayton, Mark J.; Haberl, Jeff S.

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process. PMID:25309954

  5. Translating building information modeling to building energy modeling using model view definition.

    Science.gov (United States)

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  6. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    Directory of Open Access Journals (Sweden)

    WoonSeong Jeong

    2014-01-01

    Full Text Available This paper presents a new approach to translate between Building Information Modeling (BIM and Building Energy Modeling (BEM that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1 the BIM-based Modelica models generated from Revit2Modelica and (2 BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1 enables BIM models to be translated into ModelicaBEM models, (2 enables system interface development based on the MVD for thermal simulation, and (3 facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  7. Energy consumption model on WiMAX subscriber station

    Science.gov (United States)

    Mubarakah, N.; Suherman; Al-Hakim, M. Y.; Warman, E.

    2018-02-01

    Mobile communication technologies move toward miniaturization. Mobile device’s energy source relies on its battery endurance. The smaller the mobile device, it is expected the slower the battery drains. Energy consumption reduction in mobile devices has been of interest of researcher. In order to optimize energy consumption, its usage should be predictable. This paper proposes a model of predicted energy amount consumed by the WiMAX subscriber station by using regression analysis of active WiMAX states and their durations. The proposed model was assessed by using NS-2 simulation for more than a hundred thousand of recorded energy consumptions data in every WiMAX states. The assessment show a small average deviation between predicted and measured energy consumptions, about 0.18% for training data and 0.187% and 0.191% for test data.

  8. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response

    Energy Technology Data Exchange (ETDEWEB)

    Troussel, Ph.; Villette, B.; Oudot, G.; Tassin, V. [CEA/DAM/DIF, Bruyères le Châtel, 91297 Arpajon (France); Emprin, B. [CEA/DAM/DIF, Bruyères le Châtel, 91297 Arpajon (France); Laboratoire Charles Fabry, Institut d’Optique, CNRS, University Paris-Sud, 2, Avenue Augustin Fresnel, RD128, 91127 Palaiseau Cedex (France); Bridou, F.; Delmotte, F. [Laboratoire Charles Fabry, Institut d’Optique, CNRS, University Paris-Sud, 2, Avenue Augustin Fresnel, RD128, 91127 Palaiseau Cedex (France); Krumrey, M. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)

    2014-01-15

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  9. Wave-to-wire Modelling of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ferri, Francesco

    applicable, efficient and reliable wave-to-wire model tool is needed. A wave-to-wire model identifies the relation from the source of energy of a particular location to the expected device productivity. The latter being expressed in terms of electricity fed into the grid. The model needs to output a coarse...

  10. Numerical Modeling of a Wave Energy Point Absorber

    DEFF Research Database (Denmark)

    Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning

    2009-01-01

    The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....

  11. Energy Efficient Wireless Sensor Network Modelling Based on Complex Networks

    OpenAIRE

    Xiao, Lin; Wu, Fahui; Yang, Dingcheng; Zhang, Tiankui; Zhu, Xiaoya

    2016-01-01

    The power consumption and energy efficiency of wireless sensor network are the significant problems in Internet of Things network. In this paper, we consider the network topology optimization based on complex network theory to solve the energy efficiency problem of WSN. We propose the energy efficient model of WSN according to the basic principle of small world from complex networks. Small world network has clustering features that are similar to that of the rules of the network but also has ...

  12. Assessment of energy utilization and leakages in buildings with building information model energy

    Directory of Open Access Journals (Sweden)

    Egwunatum I. Samuel

    2017-03-01

    Full Text Available Given the ability of building information models (BIM to serve as a multidisciplinary data repository, this study attempts to explore and exploit the sustainability value of BIM in delivering buildings that require less energy for operations, emit less carbon dioxide, and provide conducive living environments for occupants. This objective was attained by a critical and extensive literature review that covers the following: (1 building energy consumption, (2 building energy performance and analysis, and (3 BIM and energy assessment. Literature cited in this paper shows that linking an energy analysis tool with a BIM model has helped project design teams to predict and create optimized energy consumption by conducting building energy performance analysis utilizing key performance indicators on average thermal transmitters, resulting heat demand, lighting power, solar heat gains, and ventilation heat losses. An in-depth analysis was conducted on a completed BIM integrated construction project utilizing the Arboleda Project in the Dominican Republic to validate the aforementioned findings. Results show that the BIM-based energy analysis helped the design team attain the world׳s first positive energy building. This study concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results, and deliver energy-efficient buildings. This study further recommends that the adoption of level 2 BIM and BIM integration in energy optimization analysis must be demanded by building regulatory agencies for all projects regardless of procurement method (i.e., government funded or otherwise or size.

  13. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  14. EHN - a new energy model in action

    Energy Technology Data Exchange (ETDEWEB)

    Iturriagagoitia, Nuria [Energia Hidroelectrica de Navarra. S.A. (EHN), Pamplona (Spain)

    2002-06-01

    Early in 2000, the largest wind turbine order ever made, for 1800 machines, was placed by Spanish developer EHN. It was equal to 15% of the installed wind capacity in Europe at that time. Clearly, EHN was taking wind power very seriously. In June 2001, an EHN project received the largest loan ever granted in the field of renewables. The group has now installed 900 MW of wind power in Spain, and is planning to double that amount in Spain in the next two years, as well as transfer its experience to other countries. The author explains the business philosophy behind their work: that sustainable development can be a source of prosperity, a driver for the economy, and a way of creating jobs based on maximum respect for the environment. Their achievement won them first prize in the 'companies' category of this year's 'Energy Globe Award'. (Author)

  15. Dual energy CT. Physical models and applications

    International Nuclear Information System (INIS)

    Sedlmair, Martin Ulrich

    2010-01-01

    Computer tomography (CT) is today a very important non-invasive imaging tool for medical diagnostics. Despite the non-negligible radiation doses of patients and medical personal certain diagnostic questions can only be answered using CT methods. Recent developments adding a second radiation source and a second detector (dual-source CT) allow the imaging the heart beat due to an improved acquisition time. Operation of the X-ray tubes with different voltages (dual-energy) and appropriate data processing methods allow extended information on the tissue composition, pathological structures and improved visualization of lesions. The contribution covers the basic physical background of this technology and is focused on applications, as for instance CT-guided angiography.

  16. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  17. Nonlinear Modeling and Analysis of a Vertical Springless Energy Harvester

    Directory of Open Access Journals (Sweden)

    Abdel-Rahman Eihab

    2012-07-01

    Full Text Available Harvesting energy from ambient sources has attracted the attention of researchers and scientists over the last few decades. While solar, thermal and wind energies have been exploited over the years, a new type of energy that has emerged in recent years, and is the subject of many research projects, is vibration energy harvesting. In this paper we will describe and analyze a recently proposed vibration energy harvester, namely the “Springless” vibration energy harvester. In this study, we will model and analyze the “Springless” vibration energy harvester in the vertical configuration. The vertically-aligned configuration is used when vibrations are predominantly in the vertical direction. Test results of a prototype model as well as results form a mathematical model describing the behavior of the harvester are presented. Test results show that the “Springless” energy vibration harvester behaves as a softening nonlinear oscillator for excitations above 0:2g with its center frequency shifting to the right. Similar results were obtained using a mathematical model of the underlying impact oscillator.

  18. Energy Model of Networks-on-Chip and a Bus

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Kavaldjiev, N.K.; Becker, Jens E.; Becker, Jürgen; Nurmi, J.; Takala, J.; Hamalainen, T.D.

    2005-01-01

    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon-Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both

  19. Modeling and Optimization in USEF-compliant Hierarchical Energy Markets

    NARCIS (Netherlands)

    Nguyen, Dinh Bao; Scherpen, Jacquelien M.A.; ter Haar, B.; Bliek, Frits

    2016-01-01

    This paper presents a new model and optimization method for balancing in the Universal Smart Energy Framework. We address the problem of minimizing the error between the forecasted and the actual load in the power system that arise from the uncertainties of renewable energy production. The algorithm

  20. Statistical Modeling of Energy Production by Photovoltaic Farms

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Pelikán, Emil; Krč, Pavel; Eben, Kryštof; Musílek, P.

    2011-01-01

    Roč. 5, č. 9 (2011), s. 785-793 ISSN 1934-8975 Grant - others:GA AV ČR(CZ) M100300904 Institutional research plan: CEZ:AV0Z10300504 Keywords : electrical energy * solar energy * numerical weather prediction model * nonparametric regression * beta regression Subject RIV: BB - Applied Statistics, Operational Research

  1. System modeling of waste flow in energy planning | Njoku | Journal ...

    African Journals Online (AJOL)

    The problem of waste flow in energy system planning was investigated by adopting integrated systems enginee-ring approach. The system model was considered at multiple levels of hierarchy. Waste flow in energy plann-ing process was viewed as a system arranged or organized that plans and policies as controlled ...

  2. A model for stored energy in amorphous silica

    International Nuclear Information System (INIS)

    Tinivella, G.

    1980-12-01

    The observed saturation value of stored energy in irradiated amorphous silica is too big to be explained by the energy of recombined non-grouped defects. The hypothesis that it can be due to a structural change has been tested, and a simple model based on the fluctuation of the atomic distances shows a reasonable agreement with the experimental data. (author)

  3. Modeling of an autonomous microgrid for renewable energy sources integration

    DEFF Research Database (Denmark)

    Serban, I.; Teodorescu, Remus; Guerrero, Josep M.

    2009-01-01

    The frequency stability analysis in an autonomous microgrid (MG) with renewable energy sources (RES) is a continuously studied issue. This paper presents an original method for modeling an autonomous MG with a battery energy storage system (BESS) and a wind power plant (WPP), with the purpose...

  4. South African energy model: a system dynamics approach

    CSIR Research Space (South Africa)

    Musango, JK

    2009-07-01

    Full Text Available of electricity, coal, oil, and natural gas in the sector. The model was used to examine a set of policies that the South African government is currently considering, e.g. expansion of nuclear energy production and implementation of more stringent energy...

  5. Perspectives on Global Energy Futures Simulation with the TIME model

    NARCIS (Netherlands)

    de Vries, H.J.M.; Janssen, M.A.; Beusen, A.

    1999-01-01

    Many uncertainties and controversies surround the future of the global energy system. The Targets IMage Energy (TIME) model of which a concise description is given, is used to explore the consequences of divergent assumptions about some uncertain and controversial issues. The IPCC-IS92a Conventional

  6. Supporting Renewable energies in Europe - The German Model

    International Nuclear Information System (INIS)

    Kreuzer, Karin

    2013-01-01

    This document presents some key information and figures about Germany's energy transition (Energiewende), the leading up to the Renewable energy Sources Act (EEG) and its amendments, the Current EEG Act: push to direct marketing and the market premium model, and the future challenges and the planned EEG reform in 2014

  7. Modelling household responses to energy effciency interventions ...

    African Journals Online (AJOL)

    uorescent lamp light bulbs. Our experiences are (a) that a system dynamics approach proved useful in advancing a non-traditional point of view for which, for historical and economic reasons, data were not abundantly available; (b) that, in areas where traditional models are heavily quantitative, some scepticism to a system ...

  8. Modeling primary energy substitution in the Asia Pacific

    International Nuclear Information System (INIS)

    Aguilera, Roberto F.; Ripple, Ronald D.

    2013-01-01

    Highlights: • We model the market shares (i.e. energy mix) of gases, liquids and solids in the Asia Pacific. • The model matches the historical energy mix and projects three scenarios of the future mix to 2030. • We then model the past and future hydrogen to carbon ratio (a proxy for environmental quality). • Importance of natural gas in the region could increase significantly, depending on policy and tech progress. - Abstract: A Global Energy Market model (GEM) is used to analyze the market shares (i.e. the primary energy mix) of gases, liquids and solids in the Asia Pacific. The model is successful in matching the historical energy mix from 1850 to 2009. The model also provides a good match of the hydrogen to carbon ratio, which is a proxy for environmental quality. Given these validations, the GEM is then used to present scenarios of the Asia Pacific energy mix and hydrogen to carbon ratio until the year 2030. Three energy mix scenarios are presented – reference case; alternative case 1; alternative case 2. The reference case assumes limited divergence from current policies and technologies. It indicates that Asia Pacific energy needs will be met by approximately 46% solids, 34% liquids, and 20% gases by 2030. Alternative cases 1 and 2 represent policies and technologies that either encourage or discourage the use of gases. The good matches observed for historical data suggest the GEM can be used cautiously for evaluating outcomes and opportunities in the region. Although the model can be used for projecting far into the future, it is currently calibrated to what we consider a reasonable time horizon – until the year 2030. Given appropriate energy policies and sufficient technological advancement, the importance of natural gas in the region could increase significantly

  9. Strategic energy planning: Modelling and simulating energy market behaviours using system thinking and systems dynamics principles

    International Nuclear Information System (INIS)

    Papageorgiou, George Nathaniel

    2005-01-01

    In the face of limited energy reserves and the global warming phenomenon, Europe is undergoing a transition from rapidly depleting fossil fuels to renewable unconventional energy sources. During this transition period, energy shortfalls will occur and energy prices will be increasing in an oscillating manner. As a result of the turbulence and dynamicity that will accompany the transition period, energy analysts need new appropriate methods, techniques and tools in order to develop forecasts for the behaviour of energy markets, which would assist in the long term strategic energy planning and policy analysis. This paper reviews energy market behaviour as related to policy formation, and from a dynamic point of view through the use of ''systems thinking'' and ''system dynamics'' principles, provides a framework for modelling the energy production and consumption process in relation to their environment. Thereby, effective energy planning can be developed via computerised simulation using policy experimentation. In a demonstration model depicted in this paper, it is shown that disasters due to attractive policies can be avoided by using simple computer simulation. (Author)

  10. A CAD model for energy efficient offshore structures for desalination and energy generation

    Directory of Open Access Journals (Sweden)

    R. Rahul Dev,

    2016-09-01

    Full Text Available This paper presents a ‘Computer Aided Design (CAD’ model for energy efficient design of offshore structures. In the CAD model preliminary dimensions and geometric details of an offshore structure (i.e. semi-submersible are optimized to achieve a favorable range of motion to reduce the energy consumed by the ‘Dynamic Position System (DPS’. The presented model allows the designer to select the configuration satisfying the user requirements and integration of Computer Aided Design (CAD and Computational Fluid Dynamics (CFD. The integration of CAD with CFD computes a hydrodynamically and energy efficient hull form. Our results show that the implementation of the present model results into an design that can serve the user specified requirements with less cost and energy consumption.

  11. Robustness of Component Models in Energy System Simulators

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2003-01-01

    ). Others have to do with the interaction between models of the nature of the substances in an energy system (e.g., fuels, air, flue gas), models of the components in a system (e.g., heat exchangers, turbines, pumps), and the solver for the system of equations. This paper proposes that the interaction...... evaluated where it is defined. Outside this region an algorithm is introduced, so the model iterates back to the feasible region. It is shown how this can be done for four different model of energy system component models: turbine constant, gasifier, heat exchanger effectiveness, and heat exchanger heat......During the development of the component-based energy system simulator DNA (Dynamic Network Analysis), several obstacles to easy use of the program have been observed. Some of these have to do with the nature of the program being based on a modelling language, not a graphical user interface (GUI...

  12. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1996-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  13. Numerical modelling of the HAB Energy Buoy: Stage 1

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    This report presents the results of the first stage of the project "Numerical modelling of the HAB Energy Buoy". The objectives of this stage are to develop a numerical model of the HAB Energy Buoy, a self-reacting wave energy device consisting of two heaving bodies, and to investigate a number...... and a summary of the main findings is presented. A numerical model of the HAB Energy Buoy has been developed in the frequency domain using two alternative formulations of the equations of motion. The model is capable of predicting the power capture, motion response, and power take-off loads of the device...... configuration are imposed to give a more realistic prediction of the power capture and help ensure a fair comparison. Recommendations with regard to the HAB design are finally suggested....

  14. Cosmological viability conditions for f(T) dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

  15. Integration of agricultural and energy system models for biofuel assessment

    Science.gov (United States)

    This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. The framework incorpor...

  16. Bag-model quantum chromodynamics for hyperons at low energy

    International Nuclear Information System (INIS)

    Weber, H.J.; Maslow, J.N.

    1980-01-01

    In a non-perturbative bag model framework, gluon exchange which mediates quark exchange scattering in conjunction with quark interchange is shown to be the basis of the OBE interactions of hyperons at low energy. (orig.)

  17. Heat Pump Water Heater Modeling in EnergyPlus (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E.; Christensen, C.

    2012-03-01

    This presentation summarizes NREL's development of a HPWH model for use in hourly building energy simulation programs, such as BEopt; this presentation was given at the Building America Stakeholder meeting on March 1, 2012, in Austin, Texas.

  18. Heat Pump Water Heating Modeling in EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-03-01

    This presentation summarizes NREL's development of a HPWH model for use in hourly building energy simulation programs, such as BEopt; this presentation was given at the Building America Stakeholder meeting on March 1, 2012, in Austin, Texas.

  19. Hydraulic Hybrid Excavator—Mathematical Model Validation and Energy Analysis

    Directory of Open Access Journals (Sweden)

    Paolo Casoli

    2016-11-01

    Full Text Available Recent demands to reduce pollutant emissions and improve energy efficiency have driven the implementation of hybrid solutions in mobile machinery. This paper presents the results of a numerical and experimental analysis conducted on a hydraulic hybrid excavator (HHE. The machinery under study is a middle size excavator, whose standard version was modified with the introduction of an energy recovery system (ERS. The proposed ERS layout was designed to recover the potential energy of the boom, using a hydraulic accumulator as a storage device. The recovered energy is utilized through the pilot pump of the machinery which operates as a motor, thus reducing the torque required from the internal combustion engine (ICE. The analysis reported in this paper validates the HHE model by comparing numerical and experimental data in terms of hydraulic and mechanical variables and fuel consumption. The mathematical model shows its capability to reproduce the realistic operating conditions of the realized prototype, tested on the field. A detailed energy analysis comparison between the standard and the hybrid excavator models was carried out to evaluate the energy flows along the system, showing advantages, weaknesses and possibilities to further improve the machinery efficiency. Finally, the fuel consumption estimated by the model and that measured during the experiments are presented to highlight the fuel saving percentages. The HHE model is an important starting point for the development of other energy saving solutions.

  20. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model.

    Science.gov (United States)

    Andreu, Ana; Kustas, William. P.; Anderson, Martha C.; Carrara, Arnaud; Patrocinio Gonzalez-Dugo, Maria

    2013-04-01

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is recognized as an example of sustainable land use and for his importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). The ecosystem is influenced by a Mediterranean climate, with recurrent and severe droughts. Over the last decades the Dehesa has faced multiple environmental threats, derived from intensive agricultural use and socio-economic changes, which have caused environmental degradation of the area, namely reduction in tree density and stocking rates, changes in soil properties and hydrological processes and an increase of soil erosion (Coelho et al. 2004; Schnabel and Ferreira, 2004; Montoya 1998; Pulido and Díaz, 2005). Understanding the hydrological, atmospheric and physiological processes that affect the functioning of the ecosystem will improve the management and conservation of the Dehesa. One of the key metrics in assessing ecosystem health, particularly in this water-limited environment, is the capability of monitoring evaporation (ET). To make large area assessments requires the use of remote sensing. Thermal-based energy balance techniques that distinguish soil/substrate and vegetation contributions to the radiative temperature and radiation/turbulent fluxes have proven to be reliable in such semi-arid sparse canopy-cover landscapes. In particular, the two-source energy balance (TSEB) model of Norman et al. (1995) and Kustas and Norman (1999) has shown to be robust for a wide range of partially-vegetated landscapes. The TSEB formulation is evaluated at a flux tower site located in center Spain (Majadas del Tietar, Caceres). Its application in this environment is

  1. Sustainable business models for wind and solar energy in Romania

    Directory of Open Access Journals (Sweden)

    Nichifor Maria Alexandra

    2015-06-01

    Full Text Available Renewable energy has become a crucial element for the business environment as the need for new energy resources and the degree of climate change are increasing. As developed economies strive towards greater progress, sustainable business models are of the essence in order to maintain a balance between the triple bottom line: people, planet and profit. In recent years, European Union countries have installed important capacities of renewable energy, especially wind and solar energy to achieve this purpose. The objective of this article is to make a comparative study between the current sustainable business models implemented in companies that are active in the wind and solar energy sector in Romania. Both sectors underwent tremendous changes in the last two years due to changing support schemes which have had a significant influence on the mechanism of the renewable energy market, as well as on its development. Using the classical Delphi method, based on questionnaires and interviews with experts in the fields of wind and solar energy, this paper offers an overview of the sustainable business models of wind and solar energy companies, both sectors opting for the alternative of selling electricity to trading companies as a main source of revenue until 2013 and as the main future trend until 2020. Furthermore, the participating wind energy companies noted a pessimistic outlook of future investments due to legal instability that made them to reduce their projects in comparison to PV investments, which are expected to continue. The subject of the article is of interest to scientific literature because sustainable business models in wind and photovoltaic energy have been scarcely researched in previous articles and are essential in understanding the activity of the companies in these two fields of renewable energy.

  2. World Energy Scenarios 2050: Impact of the Energy Governance Models to the Future of the European Energy Sector

    International Nuclear Information System (INIS)

    Kisel, E.

    2014-01-01

    World Energy Council has explored the impact of two extreme governance models of energy sector to the global economic and climate developments. Scenario 'Jazz' describes the world, where investments in the energy markets are made by the companies on the purely economic basis. Scenario 'Symphony' describes the world, where decisions about the energy investments are made by the governments. It appears that in case of Scenario 'Jazz' we would reach lower energy prices, but it would also bring along higher and wider consumption of energy, and much higher environmental impact. In case of Scenario 'Symphony' energy prices would be somewhat higher, but environmental and energy efficiency would deliver better results, and there will be more energy-poor people around the world. It can also be observed, that resulting energy mixes of these two scenarios are very different. When Scenario 'Jazz' would leave the share of fossil fuels nearly to the current levels, then Scenario 'Symphony' supports strongly development of Solar and Carbon Capture, Utilisation and Sequestration Technologies. The modelling was also made separately for different regions of the world, the results for Europe can be observed from the report as well. This provides a fruit for thought about the role of the governments in the implementation of the EU 2030 Energy and Climate Strategy. The presentation would describe shortly the methodology of the study, clarifies the assumptions of the scenarios and highlights the main outcomes of the study in for the world and for European energy sector. (author).

  3. Effect of instruction, light curing unit, and location in the mouth on the energy delivered to simulated restorations.

    Science.gov (United States)

    Samaha, Sara; Bhatt, Sapan; Finkelman, Matthew; Papathanasiou, Aikaterini; Perry, Ronald; Strassler, Howard; Kugel, Gerard; Garcia-Godoy, Franklin; Price, Richard

    2017-12-01

    To determine the amount of energy (Joules/cm²) delivered by students to simulated restorations in a patient simulator based on the restoration location, the curing light unit used, and before vs. after instruction on how to improve their light curing technique. 30 dental students "light cured" two simulated restorations (that were 1-mm deep anterior and 4-mm deep posterior) using three light-curing units (LCUs) : VALO, Bluephase G2, and Optilux 401. A MARC Patient Simulator was used to measure the irradiance (mW/cm²) received by the restorations in real-time to calculate the radiant exposure (J/cm²) delivered during a 20-second exposure. At first, students were asked to use the light curing technique that they had been previously taught. They were then given 5 minutes of additional verbal instructions and a practical demonstration on proper curing technique using the patient simulator. They then light cured the restorations again. Based on a literature review, 16 J/cm² was considered the minimum acceptable radiant exposure. Before receiving instruction using the simulator, some students delivered as little as 4 J/cm² to the restoration. A mixed model test determined that the radiant exposure delivered to the anterior restoration was significantly greater than that delivered to the posterior restoration (Plt; 0.001). Additionally, when the locations were compared for each LCU individually, a paired t-test determined that before the students received the additional instruction, the anterior restoration received a significantly greater radiant exposure than the posterior restoration, for all three LCUs. Further paired t-tests and Wilcoxon signed-rank tests determined that after instruction, the radiant exposure improved significantly at both the anterior and posterior locations, for all three LCUs. The Bluephase G2 and the VALO each individually delivered 45% more radiant exposure than the Optilux 401 (Plights delivered similar mean radiant exposures (25.4 J

  4. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    Science.gov (United States)

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower

  5. Technoeconomic Modeling of Battery Energy Storage in SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  6. Dynamics of holographic vacuum energy in the DGP model

    International Nuclear Information System (INIS)

    Wu Xing; Zhu Zonghong; Cai Ronggen

    2008-01-01

    We consider the evolution of the vacuum energy in the Dvali-Gabadadze-Porrati (DGP) model according to the holographic principle under the assumption that the relation linking the IR and UV cutoffs still holds in this scenario. The model is studied when the IR cutoff is chosen to be the Hubble scale H -1 , the particle horizon R ph , and the future event horizon R eh , respectively. The two branches of the DGP model are also taken into account. Through numerical analysis, we find that in the cases of H -1 in the (+) branch and R eh in both branches, the vacuum energy can play the role of dark energy. Moreover, when considering the combination of the vacuum energy and the 5D gravity effect in both branches, the equation of state of the effective dark energy may cross -1, which may lead to the big rip singularity. Besides, we constrain the model with the Type Ia supernovae and baryon oscillation data and find that our model is consistent with current data within 1σ, and that the observations prefer either a pure holographic dark energy or a pure DGP model

  7. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    Science.gov (United States)

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  8. Renewable Energy Resources With Smart Microgrid Model In India

    Directory of Open Access Journals (Sweden)

    Manikant Kumar

    2015-08-01

    Full Text Available Along with the development of civilization is increasing energy consumption. Due to which India is facing an energy crisis. It is estimated that global energy demand will double in 2030. India Trhurga other developing countries will face a crisis. Returning to the problem Fall growth of renewable energy resources will increase. Even for electricity generation from renewable sources. Naturally replenished renewable energy such as sunlight wind rain tides and geothermal heat as will have to depend on natural resources. High energy demand and environmental concerns in the papers smart microgrid is forced to change the existing power grid. This paper dynamic demand response and smart microgrid for residential and industrial consumption in the context of renewable energy production including the proposed management approach. The objectives of this research renewable energy resources with a smart microgrid has played an important role. Power system in rural areas in India to meet growing energy demand. The model deployed PLC networks data management system sensors Switchgears Transformers and other utility tools to integrate Smart Grid Smart homes are used together. Analytical results Residential renewable energy generation and smart meters show the effectiveness of the proposed system to optimize control of the electrical grid and is designed to improve energy conservation.

  9. Modelling energy demand in the Norwegian building stock

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor

    2008-07-15

    Energy demand in the building stock in Norway represents about 40% of the final energy consumption, of which 22% goes to the residential sector and 18% to the service sector. In Norway there is a strong dependency on electricity for heating purposes, with electricity covering about 80% of the energy demand in buildings. The building sector can play an important role in the achievement of a more sustainable energy system. The work performed in the articles presented in this thesis investigates various aspects related to the energy demand in the building sector, both in singular cases and in the stock as a whole. The work performed in the first part of this thesis on development and survey of case studies provided background knowledge that was then used in the second part, on modelling the entire stock. In the first part, a literature survey of case studies showed that, in a life cycle perspective, the energy used in the operating phase of buildings is the single most important factor. Design of low-energy buildings is then beneficial and should be pursued, even though it implies a somewhat higher embodied energy. A case study was performed on a school building. First, a methodology using a Monte Carlo method in the calibration process was explored. Then, the calibrated model of the school was used to investigate measures for the achievement of high energy efficiency standard through renovation work. In the second part, a model was developed to study the energy demand in a scenario analysis. The results showed the robustness of policies that included conservation measures against the conflicting effects of the other policies. Adopting conservation measures on a large scale showed the potential to reduce both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlighted the inertia to change of the building stock, due to low activity levels compared to the stock size. It also became clear that a deeper

  10. Progress in integrated energy-economy-environment model system development

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Tadokoro, Yoshihiro; Nakano, Yasuyuki; Nagano, Takao

    1987-11-01

    The Integrated Energy-Economy-Environment Model System has been developed for providing analytical tools for the system analysis and technology assessments in the field of nuclear research and development. This model system consists of the following four model groups. The first model block installs 5 models and can serve to analyze and generate long-term scenarios on economy-energy-environment evolution. The second model block installs 2 models and can serve to analyze the structural transition phenomena in energy-economy-environment interactions. The third model block installs 2 models and can handle power reactor installation strategy problem and long-term fuel cycle analysis. The fourth model block installs 5 models and codes and can treats cost-benefit-risk analysis and assessments. This report describes mainly the progress and the outlines of application of the model system in these years after the first report on the research and development of the model system (JAERI-M 84 - 139). (author)

  11. Power-based electric vehicle energy consumption model: Model development and validation

    International Nuclear Information System (INIS)

    Fiori, Chiara; Ahn, Kyoungho; Rakha, Hesham A.

    2016-01-01

    Highlights: • The study developed an instantaneous energy consumption model (VT-CPEM) for EVs. • The model captures instantaneous braking energy regeneration. • The model can be used for transportation modeling and vehicle applications (e.g. eco-routing). • The proposed model can be easily calibrated using publically available EV data. • Usages of air conditioning and heating systems reduce EV energy consumption by up to 10% and 24%, respectively. - Abstract: The limited drive range (The maximum distance that an EV can travel.) of Electric Vehicles (EVs) is one of the major challenges that EV manufacturers are attempting to overcome. To this end, a simple, accurate, and efficient energy consumption model is needed to develop real-time eco-driving and eco-routing systems that can enhance the energy efficiency of EVs and thus extend their travel range. Although numerous publications have focused on the modeling of EV energy consumption levels, these studies are limited to measuring energy consumption of an EV’s control algorithm, macro-project evaluations, or simplified well-to-wheels analyses. Consequently, this paper addresses this need by developing a simple EV energy model that computes an EV’s instantaneous energy consumption using second-by-second vehicle speed, acceleration and roadway grade data as input variables. In doing so, the model estimates the instantaneous braking energy regeneration. The proposed model can be easily implemented in the following applications: in-vehicle, Smartphone eco-driving, eco-routing and transportation simulation software to quantify the network-wide energy consumption levels for a fleet of EVs. One of the main advantages of EVs is their ability to recover energy while braking using a regenerative braking system. State-of-the-art vehicle energy consumption models consider an average constant regenerative braking energy efficiency or regenerative braking factors that are mainly dependent on the vehicle’s average

  12. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A

  13. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  14. Modeling of dimensionally graded magnetoelectric energy harvester

    Science.gov (United States)

    Petrov, R. V.; Petrov, V. M.; Bichurin, M. I.; Zhou, Y.; Priya, S.

    2015-06-01

    The magnetoelectric behavior of a dual-phase dimensionally graded magnetostrictive-piezoelectric composite is modeled in this article. The cantilever is formed by piezoelectric macro-fiber composite bonded to a Ni cantilever. Theoretical estimates show a large magnetoelectric voltage coefficient of 100 V/(cm Oe) at electromechanical resonance frequency. An additive effect was realized when an acceleration and magnetic field was applied to the structure simultaneously. Applied magnetic field of 10 Oe and shaker acceleration of 0.02 g induce the approximately equal output voltage of 20-35 V.

  15. Chiral models of low energy QCD

    International Nuclear Information System (INIS)

    Ripka, G.

    1993-01-01

    Two processes may be distinguished when a hadron propagates in a dense baryonic medium. The polarization of the medium and the change in the quark structure of the hadron. The polarization of the medium is better described in terms of colorless mesons and nucleons while the intrinsic change of the hadron is better described by quark models. It is shown how to couple the two processes. The scaling of effective Lagrangians, is related to changes in the quark constituent masses, based on the QCD scale anomaly. (author) 62 refs

  16. Quark model and high energy collisions

    CERN Document Server

    Anisovich, V V; Nyíri, J; Shabelski, Yu M

    2004-01-01

    This is an updated version of the book published in 1985. QCD-motivated, it gives a detailed description of hadron structure and soft interactions in the additive quark model, where hadrons are regarded as composite systems of dressed quarks. In the past decade it has become clear that nonperturbative QCD, responsible for soft hadronic processes, may differ rather drastically from perturbative QCD. The understanding of nonperturbative QCD requires a detailed investigation of the experiments and the theoretical approaches. Bearing this in mind, the book has been rewritten paying special attenti

  17. Energy spectra of odd nuclei in the generalized model

    Directory of Open Access Journals (Sweden)

    I. O. Korzh

    2015-04-01

    Full Text Available Based on the generalized nuclear model, energy spectra of the odd nuclei of such elements as 25Mg, 41K, and 65Cu are determined, and the structure of wave functions of these nuclei in the excited and normal states is studied. High quality in determining the energy spectra is possible due to the accurate calculations of all elements of the energy matrix. It is demonstrated that the structure of the wave functions so determined provides the possibility to more accurately select the nuclear model and the method for calculating the nucleon cross-sections of the inelastic scattering of nucleons by odd nuclei.

  18. Energy deposition model for I-125 photon radiation in water

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C.; Garcia, G. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Caparica (Portugal); Williart, A.; Garcia, G. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Madrid (Spain)

    2010-10-15

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  19. Energy deposition model for I-125 photon radiation in water

    International Nuclear Information System (INIS)

    Fuss, M.C.; Garcia, G.; Munoz, A.; Oller, J.C.; Blanco, F.; Limao-Vieira, P.; Williart, A.; Garcia, G.; Huerga, C.; Tellez, M.

    2010-01-01

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  20. Testing simulation and structural models with applications to energy demand

    Science.gov (United States)

    Wolff, Hendrik

    2007-12-01

    This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality