WorldWideScience

Sample records for modeling project electronic

  1. Electronic Modeling and Design for Extreme Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with focus on very low temperatures...

  2. Electronic Modeling and Design for Extreme Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...

  3. Project: Modeling Relativistic Electrons from Nuclear Explosions in the Magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Laboratory; Gary, S. Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory

    2012-07-17

    We present a summary of the FY12 activities for DTRA-funded project 'Modeling Relativistic Electrons from Nuclear Explosions in the Magnetosphere'. We briefly review the outstanding scientific questions and discuss the work done in the last year to try to answer these questions. We then discuss the agenda for this Technical Meeting with the DTRA sponsors. In the last year, we have continued our efforts to understand artificial radiation belts from several different perspectives: (1) Continued development of Electron Source Model (ESM) and comparison to HANE test data; (2) Continued studies of relativistic electron scattering by waves in the natural radiation belts; (3) Began study of self-generated waves from the HANE electrons; and (4) Began modeling for the UCLA laser experiment.

  4. Data description and quality assessment of ionospheric electron density profiles for ARPA modeling project. Technical report

    International Nuclear Information System (INIS)

    Conkright, R.O.

    1977-03-01

    This report presents a description of the automated method used to produce electron density (N(h)) profiles from ionograms recorded on 35mm film and an assessment of the resulting data base. A large data base of about 30,000 profiles was required for an ionospheric modeling project. This motivated a search for an automated method of producing profiles. The automated method used is fully described, the resulting data are given a quality grade, and the noon and midnight profiles are presented. Selected portions of this data base are compared with profiles produced by the standard profiling method in use by the Environmental Data Service at Boulder, Colorado

  5. Beginning analog electronics through projects

    CERN Document Server

    Singmin, Andrew

    2001-01-01

    Analog electronics is the simplest way to start a fun, informative, learning program. Beginning Analog Electronics Through Projects, Second Edition was written with the needs of beginning hobbyists and students in mind. This revision of Andrew Singmin's popular Beginning Electronics Through Projects provides practical exercises, building techniques, and ideas for useful electronics projects. Additionally, it features new material on analog and digital electronics, and new projects for troubleshooting test equipment.Published in the tradition of Beginning Electronics Through Projects an

  6. Modelling and Simulation of National Electronic Product Code Network Demonstrator Project

    Science.gov (United States)

    Mo, John P. T.

    The National Electronic Product Code (EPC) Network Demonstrator Project (NDP) was the first large scale consumer goods track and trace investigation in the world using full EPC protocol system for applying RFID technology in supply chains. The NDP demonstrated the methods of sharing information securely using EPC Network, providing authentication to interacting parties, and enhancing the ability to track and trace movement of goods within the entire supply chain involving transactions among multiple enterprise. Due to project constraints, the actual run of the NDP was 3 months only and was unable to consolidate with quantitative results. This paper discusses the modelling and simulation of activities in the NDP in a discrete event simulation environment and provides an estimation of the potential benefits that can be derived from the NDP if it was continued for one whole year.

  7. Fast three-material modeling with triple arch projection for electronic cleansing in CTC.

    Science.gov (United States)

    Lee, Hyunna; Lee, Jeongjin; Kim, Bohyoung; Kim, Se Hyung; Shin, Yeong-Gil

    2014-07-01

    In this paper, we propose a fast three-material modeling for electronic cleansing (EC) in computed tomographic colonography. Using a triple arch projection, our three-material modeling provides a very quick estimate of the three-material fractions to remove ridge-shaped artifacts at the T-junctions where air, soft-tissue (ST), and tagged residues (TRs) meet simultaneously. In our approach, colonic components including air, TR, the layer between air and TR, the layer between ST and TR (L(ST/TR)), and the T-junction are first segmented. Subsequently, the material fraction of ST for each voxel in L(ST/TR) and the T-junction is determined. Two-material fractions of the voxels in L(ST/TR) are derived based on a two-material transition model. On the other hand, three-material fractions of the voxels in the T-junction are estimated based on our fast three-material modeling with triple arch projection. Finally, the CT density value of each voxel is updated based on our fold-preserving reconstruction model. Experimental results using ten clinical datasets demonstrate that the proposed three-material modeling successfully removed the T-junction artifacts and clearly reconstructed the whole colon surface while preserving the submerged folds well. Furthermore, compared with the previous three-material transition model, the proposed three-material modeling resulted in about a five-fold increase in speed with the better preservation of submerged folds and the similar level of cleansing quality in T-junction regions.

  8. Electronics Modeling and Design for Cryogenic and Radiation Hard Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with a focus on very low temperature and...

  9. Getting started with electronic projects

    CERN Document Server

    Pretty, Bill

    2015-01-01

    This book is aimed at hobbyists with basic knowledge of electronics circuits. Whether you are a novice electronics project builder, a ham radio enthusiast, or a BeagleBone tinkerer, you will love this book.

  10. Three-dimensional atomic models from a single projection using Z-contrast imaging: verification by electron tomography and opportunities.

    Science.gov (United States)

    De Backer, A; Jones, L; Lobato, I; Altantzis, T; Goris, B; Nellist, P D; Bals, S; Van Aert, S

    2017-06-29

    In order to fully exploit structure-property relations of nanomaterials, three-dimensional (3D) characterization at the atomic scale is often required. In recent years, the resolution of electron tomography has reached the atomic scale. However, such tomography typically requires several projection images demanding substantial electron dose. A newly developed alternative circumvents this by counting the number of atoms across a single projection. These atom counts can be used to create an initial atomic model with which an energy minimization can be applied to obtain a relaxed 3D reconstruction of the nanoparticle. Here, we compare, at the atomic scale, this single projection reconstruction approach with tomography and find an excellent agreement. This new approach allows for the characterization of beam-sensitive materials or where the acquisition of a tilt series is impossible. As an example, the utility is illustrated by the 3D atomic scale characterization of a nanodumbbell on an in situ heating holder of limited tilt range.

  11. The LXCat project: Electron scattering cross sections and swarm parameters for low temperature plasma modeling

    International Nuclear Information System (INIS)

    Pancheshnyi, S.; Biagi, S.; Bordage, M.C.; Hagelaar, G.J.M.; Morgan, W.L.; Phelps, A.V.; Pitchford, L.C.

    2012-01-01

    Graphical abstract: LXCat is an open-access website containing data needed for low temperature plasma modeling as well as on-line tools useful for their manipulation. Highlights: ► LXCat: an open-access website with data for low temperature plasma modeling. ► Contains compilations of electron scattering cross sections and transport data. ► Data from different contributors for many neutral, ground-state species. ► On-line tools for browsing, plotting, up/downloading data. ► On-line Boltzmann solver for calculating electron swarm parameters. - Abstract: LXCat is a dynamic, open-access, website for collecting, displaying, and downloading ELECtron SCATtering cross sections and swarm parameters (mobility, diffusion coefficient, reaction rates, etc.) required for modeling low temperature, non-equilibrium plasmas. Contributors set up individual databases, and the available databases, indicated by the contributor’s chosen title, include mainly complete sets of electron-neutral scattering cross sections, although the option for introducing partial sets of cross sections exists. A database for measured swarm parameters is also part of LXCat, and this is a growing activity. On-line tools include options for browsing, plotting, and downloading cross section data. The electron energy distribution functions (edfs) in low temperature plasmas are in general non-Maxwellian, and LXCat provides an option for execution of an on-line Boltzmann equation solver to calculate the edf in homogeneous electric fields. Thus, the user can obtain electron transport and rate coefficients (averages over the edfs) in pure gases or gas mixtures over a range of values of the reduced electric fields strength, E/N, the ratio of the electric field strength to the neutral density, using cross sections from the available databases. New contributors are welcome and anyone wishing to create a database and upload data can request a username and password. LXCat is part of a larger, community

  12. Electronics Modernization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current electronic packaging designs used in our most recent spacecraft are comprised of technologies from the 1980’s and 1990’s. The current approach...

  13. Modeling and simulation of longitudinal dynamics for Low Energy Ring–High Energy Ring at the Positron-Electron Project

    Directory of Open Access Journals (Sweden)

    C. Rivetta

    2007-02-01

    Full Text Available A time domain dynamic modeling and simulation tool for beam-cavity interactions in the Low Energy Ring (LER and High Energy Ring (HER at the Positron-Electron Project (PEP-II is presented. Dynamic simulation results for PEP-II are compared to measurements of the actual machine. The motivation for this tool is to explore the stability margins and performance limits of PEP-II radio-frequency (RF systems at future higher currents and upgraded RF configurations. It also serves as a test bed for new control algorithms and can define the ultimate limits of the low-level RF (LLRF architecture. The time domain program captures the dynamic behavior of the beam-cavity-LLRF interaction based on a reduced model. The ring current is represented by macrobunches. Multiple RF stations in the ring are represented via one or two macrocavities. Each macrocavity captures the overall behavior of all the 2 or 4 cavity RF stations. Station models include nonlinear elements in the klystron and signal processing. This enables modeling the principal longitudinal impedance control loops interacting via the longitudinal beam model. The dynamics of the simulation model are validated by comparing the measured growth rates for the LER with simulation results. The simulated behavior of the LER at increased operation currents is presented via low-mode instability growth rates. Different control strategies are compared and the effects of both the imperfections in the LLRF signal processing and the nonlinear drivers and klystrons are explored.

  14. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-11-05

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration is to consolidate all electronic resources into a single and centralized location. This would allow for better information sharing among library staff.

  15. New Project System for Undergraduate Electronic Engineering

    Science.gov (United States)

    Chiu, Dirk M.; Chiu, Shen Y.

    2005-01-01

    A new approach to projects for undergraduate electronic engineering in an Australian university has been applied successfully for over 10 years. This approach has a number of projects running over three year period. Feedback from past graduates and their managers has confirmed that these projects train the students well, giving them the ability…

  16. Stationary Electron Atomic Model

    Science.gov (United States)

    Pressler, David E.

    1998-04-01

    I will present a novel theory concerning the position and nature of the electron inside the atom. This new concept is consistant with present experimental evidence and adheres strictly to the valence-shell electron-pair repulsion (VSEPR) model presently used in chemistry for predicting the shapes of molecules and ions. In addition, I will discuss the atomic model concept as being a true harmonic oscillator, periodic motion at resonant frequency which produces radiation at discrete frequencies or line spectra is possible because the electron is under the action of two restoring forces, electrostatic attraction and superconducting respulsion of the electron's magnetic field by the nucleus.

  17. Teletex Based Electronic Document Delivery (Project HERMES).

    Science.gov (United States)

    Amy, Susan J.

    1985-01-01

    Project HERMES is characterized by participation of publishers, industrial and public libraries, and national government, and by use of Teletex for both document ordering and delivery. Provision of three facilities (electronic document ordering and delivery, automatic document delivery, electronic mail) to pilot group of 60 organizations is…

  18. ELECTRONIC COMPLIANCE AND APPROVAL PROJECT (ECAP)

    Energy Technology Data Exchange (ETDEWEB)

    Hope Morgan; Richard A. Varela; Deborah LaHood; Susan Cisco; Mary Ann Benavides; Donna Burks

    2002-11-01

    The Texas Railroad Commission (RRC), working in partnership with the United States Department of Energy and the oil and gas industry it regulates, is implementing a strategy for improving efficiency in regulations and significantly reducing administrative operating costs through the Electronic Compliance and Approval Process (ECAP). The project will streamline regulatory compliance and reporting by providing the ability to electronically submit, process, and query oil and gas applications and reports through the Internet-based ECAP system. Implementation of an ECAP drilling permit pilot project began September 1999 after funding resources were secured--a $700,000 grant from the U.S. Department of Energy and an appropriation of $1.4 million from the Texas Legislature. The pilot project involves creating the ability to file, review, and approve a well's drilling permit application through a completely electronic process. The pilot project solution will ultimately provide the infrastructure, technology, and electronic modules to enable the filing of all compliance permits and performance reports through the internet from a desktop computer. The pilot project was conducted in three phases. The first phase, implemented May 2000, provided the infrastructure that allows the electronic filing and approval of simple drilling permit applications, associated fees, and attachments. The official ''roll-out'' of ECAP and the first electronically filed drilling permit application occurred on May 11, 2000 in Dallas in conjunction with an Internet Workshop sponsored by the Petroleum Technology Transfer Council. After the completion of Phase I, the ECAP team conducted an extensive review of progress to date and analyzed requirements and opportunities for future steps. The technical team identified core infrastructure modifications that would facilitate and better support future development and expansion of the ECAP system and work began on database structure

  19. Improved Models and Tools for Prediction of Radiation Effects on Space Electronics in Wide Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — All NASA exploration systems operate in the extreme environments of space (Moon, Mars, etc.) and require reliable electronics capable of handling a wide temperature...

  20. Projection Models 2010

    DEFF Research Database (Denmark)

    Illerup, J. B.; Birr-Pedersen, K.; Mikkelsen, M. H

    Models for projection of SO2-, NOx-, NMVOC- and NH3-emissions to the atmosphere have been developed and the Danish emissions have been projected until 2010 from a basis scenario including all implemented and planned measures. The projections of the four pollutants indicate that it may be difficult...... to achieve the emission ceilings given in the Gothenburg Protocol and the EU directive on national emission ceilings in 2010. In addition to the basis scenario, 8 emission reduction scenarios for different sectors have been analysed in order to estimate the emission saving potential and financial and welfare...

  1. Boltzmann-Electron Model in Aleph.

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Thomas Patrick; Hooper, Russell

    2014-11-01

    We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model

  2. Collaborative Computational Project for Electron cryo-Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Chris; Burnley, Tom [Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom); Patwardhan, Ardan [European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Scheres, Sjors [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Topf, Maya [University of London, Malet Street, London WC1E 7HX (United Kingdom); Roseman, Alan [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Winn, Martyn, E-mail: martyn.winn@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom)

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  3. Collaborative Computational Project for Electron cryo-Microscopy

    International Nuclear Information System (INIS)

    Wood, Chris; Burnley, Tom; Patwardhan, Ardan; Scheres, Sjors; Topf, Maya; Roseman, Alan; Winn, Martyn

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed

  4. Knowledge Model: Project Knowledge Management

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter; Grolin, Daniel

    2009-01-01

    The Knowledge model for project management serves several goals:Introducing relevant concepts of project management area for software development (Section 1). Reviewing and understanding the real case requirements from the industrial perspective. (Section 2). Giving some preliminary suggestions...

  5. LDRD project 151362 : low energy electron-photon transport.

    Energy Technology Data Exchange (ETDEWEB)

    Kensek, Ronald Patrick; Hjalmarson, Harold Paul; Magyar, Rudolph J.; Bondi, Robert James; Crawford, Martin James

    2013-09-01

    At sufficiently high energies, the wavelengths of electrons and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve transport at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-transport expert, a solid-state physicist, and two DFT experts.

  6. Beijing Electron Positron Collider (BEPC) project

    International Nuclear Information System (INIS)

    Xie Jialin

    1985-01-01

    BEPC is China's first high energy accelerator project which is being built to serve the dual purposes of carrying out particle physics studies on one hand and conducting synchrotron radiation experiments on the other. This project was formally approved at the end of 1983, and is scheduled to be completed at the end of 1988. Construction is in full swing. A brief account of the design, progress, and management of the project is presented

  7. Electronic Prognostics for Vehicle Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — All electronic systems are prone to wear-out and eventual failure and this has direct implications for Vehicle Health Management for NASA with its long space...

  8. TRISTAN, electron-positron colliding beam project

    International Nuclear Information System (INIS)

    1987-03-01

    In this report e + e - colliding beam program which is now referred to as TRISTAN Project will be described. A brief chronology and outline of TRISTAN Project is given in Chapter 1. Chapter 2 of this article gives a discussion of physics objectives at TRISTAN. Chapter 3 treats the overall description of the accelerators. Chapter 4 describes design of each of the accelerator systems. In Chapter 5, detector facilities are discussed in some detail. A description of accelerator tunnels, experimental areas, and utilities are given in Chapter 6. In the Appendix, the publications on the TRISTAN Project are listed. (author)

  9. Water Stress Projection Modeling

    Science.gov (United States)

    2016-09-01

    www.eia.gov/ forecasts /aeo/tables_ref.cfm U.S. Geological Survey (USGS). 2014. National land cover database (NLCD). Multi - Resolution Land...Engineers Washington, DC 20314-1000 ERDC/CERL TR-16-32 ii Abstract U.S. Army stationing is a constant multi -scale process. Large scale station- ing, which...20 4.6 Model output

  10. Introduction to Financial Projection Models. Business Management Instructional Software.

    Science.gov (United States)

    Pomeroy, Robert W., III

    This guidebook and teacher's guide accompany a personal computer software program and introduce the key elements of financial projection modeling to project the financial statements of an industrial enterprise. The student will then build a model on an electronic spreadsheet. The guidebook teaches the purpose of a financial model and the steps…

  11. Using electronic document management systems to manage highway project files.

    Science.gov (United States)

    2011-12-12

    "WisDOTs Bureau of Technical Services is interested in learning about the practices of other state departments of : transportation in developing and implementing an electronic document management system to manage highway : project files"

  12. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  13. The INTRACOIN model comparison project

    International Nuclear Information System (INIS)

    Lawson, G.

    1982-01-01

    The International Nuclide Transport Code Intercomparison (INTRACOIN) project is investigating the different models and associated computer codes describing the transport of radionuclides in flowing ground-water following the disposal of solid radioactive wastes in geologic formations. Level I of the project has shown good agreement in the numerical accuracy of most of the codes. In Level II the ability of the codes to model field experiments with radioactive tracers will be compared. Level III will show to what extent the adoption of different models and computer codes for the transport of radionuclides with ground water affects the results of repository assessments. (U.K.)

  14. Modeling Incoherent Electron Cloud Effects

    International Nuclear Information System (INIS)

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-01-01

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed

  15. Complete electronics self-teaching guide with projects

    CERN Document Server

    Boysen, Earl

    2012-01-01

    An all-in-one resource on everything electronics-related! For almost 30 years, this book has been a classic text for electronics enthusiasts. Now completely updated for today's technology, this latest version combines concepts, self-tests, and hands-on projects to offer you a completely repackaged and revised resource. This unique self-teaching guide features easy-to-understand explanations that are presented in a user-friendly format to help you learn the essentials you need to work with electronic circuits. All you need is a general understanding of electronics concepts such as Oh

  16. Spiral model pilot project information model

    Science.gov (United States)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  17. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  18. Constrained bayesian inference of project performance models

    OpenAIRE

    Sunmola, Funlade

    2013-01-01

    Project performance models play an important role in the management of project success. When used for monitoring projects, they can offer predictive ability such as indications of possible delivery problems. Approaches for monitoring project performance relies on available project information including restrictions imposed on the project, particularly the constraints of cost, quality, scope and time. We study in this paper a Bayesian inference methodology for project performance modelling in ...

  19. Solid Waste Projection Model: Model user's guide

    International Nuclear Information System (INIS)

    Stiles, D.L.; Crow, V.L.

    1990-08-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford company (WHC) specifically to address solid waste management issues at the Hanford Central Waste Complex (HCWC). This document, one of six documents supporting the SWPM system, contains a description of the system and instructions for preparing to use SWPM and operating Version 1 of the model. 4 figs., 1 tab

  20. A proposal for a precision test of the standard model by neutrino-electron scattering (Large /hacek C/erenkov Detector Project)

    International Nuclear Information System (INIS)

    Allen, R.C.; Lu, X-Q.; Gollwitzer, K.

    1988-04-01

    A precision measurement of neutrino-electron elastic scattering from a beam stop neutrino source at LAMPF is proposed. The total error in sin 2 θ/sub W/ is estimated to be +-0.89/percent/. The experiment also will be sensitive to neutrino oscillations and supernova-neutrino bursts, and should set improved limits on the neutrino-charge radius and magnetic-dipole moment. The detector consists of a 2.5-million-gallon tank of water with approximately 14,000 photomultiplier tubes lining the surfaces of the tank. Neutrino-electron scattering events will be observed from the /hacek C/erenkov radiation emitted by the electrons in the water. 19 refs

  1. A proposal for a precision test of the standard model by neutrino-electron scattering (Large /hacek C/erenkov Detector Project)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.C.; Lu, X-Q.; Gollwitzer, K.; Igo, G.J.; Gulmez, E.; Whitten, C.; VanDalen, G.; Layter, J.; Fung, Sun Yui; Shen, B.C.

    1988-04-01

    A precision measurement of neutrino-electron elastic scattering from a beam stop neutrino source at LAMPF is proposed. The total error in sin/sup 2/theta/sub W/ is estimated to be +-0.89/percent/. The experiment also will be sensitive to neutrino oscillations and supernova-neutrino bursts, and should set improved limits on the neutrino-charge radius and magnetic-dipole moment. The detector consists of a 2.5-million-gallon tank of water with approximately 14,000 photomultiplier tubes lining the surfaces of the tank. Neutrino-electron scattering events will be observed from the /hacek C/erenkov radiation emitted by the electrons in the water. 19 refs.

  2. Exploring different inelastic projection mechanisms for electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Goris, B., E-mail: bart.goris@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bals, S.; Van den Broek, W.; Verbeeck, J.; Van Tendeloo, G. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2011-07-15

    Several different projection mechanisms that all make use of inelastically scattered electrons are used for electron tomography. The advantages and the disadvantages of these methods are compared to HAADF-STEM tomography, which is considered as the standard electron tomography technique in materials science. The different inelastic setups used are energy filtered transmission electron microscopy (EFTEM), thickness mapping based on the log-ratio method and bulk plasmon mapping. We present a comparison that can be used to select the best inelastic signal for tomography, depending on different parameters such as the beam stability and nature of the sample. The appropriate signal will obviously also depend on the exact information which is requested. -- Research highlights: {yields} Different inelastic imaging methods are compared for electron tomography. {yields} Thickness map and plasmon map tomography reconstruct the morphology well.{yields} A roadmap towards the selection of a specific TEM technique for tomography is presented.

  3. XUV free-electron laser-based projection lithography systems

    Energy Technology Data Exchange (ETDEWEB)

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  4. DELSY project: status and development Dubna Electron Synchrotron

    CERN Document Server

    Balalykin, N; Bykovsky, V

    2003-01-01

    The DELSY (Dubna Electron Synchrotron) project is under development at the Joint Institute for Nuclear Research. It is based on an acceleration facility donated to the Joint Institute for Nuclear Research by the Institute for Nuclear and High Energy Physics (NIKHEF, Amsterdam). The NIKHEF accelerator facility consists of the linear electron accelerator MEA, which has an electron energy of 700 MeV, and the electron storage ring AmPS, with a maximum energy of 900 MeV and a beam current of 200 mA. There are three phases to the construction of the DELSY facility. Phase I will be accomplished with the construction of a complex of free-electron lasers covering continuously the spectrum from the far infrared down to the ultraviolet (approx 150 nm). Phase II will be accomplished with the commissioning of the storage ring DELSY. Complete commissioning of the DELSY project will take place after finishing Phase III, the construction of an X-ray free-electron laser. This phase is considered as the ultimate goal of the pr...

  5. Space market model development project

    Science.gov (United States)

    Bishop, Peter C.

    1987-01-01

    The objectives of the research program, Space Market Model Development Project, (Phase 1) were: (1) to study the need for business information in the commercial development of space; and (2) to propose a design for an information system to meet the identified needs. Three simultaneous research strategies were used in proceeding toward this goal: (1) to describe the space business information which currently exists; (2) to survey government and business representatives on the information they would like to have; and (3) to investigate the feasibility of generating new economical information about the space industry.

  6. A deterministic model of electron transport for electron probe microanalysis

    Science.gov (United States)

    Bünger, J.; Richter, S.; Torrilhon, M.

    2018-01-01

    Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.

  7. INDICATIVE MODEL OF DEVIATIONS IN PROJECT

    Directory of Open Access Journals (Sweden)

    Олена Борисівна ДАНЧЕНКО

    2016-02-01

    Full Text Available The article shows the process of constructing the project deviations indicator model. It based on a conceptual model of project deviations integrated management (PDIM. During the project different causes (such as risks, changes, problems, crises, conflicts, stress lead to deviations of integrated project indicators - time, cost, quality, and content. For a more detailed definition of where in the project deviations occur and how they are dangerous for the whole project, it needs to develop an indicative model of project deviations. It allows identifying the most dangerous deviations that require PDIM. As a basis for evaluation of project's success has been taken famous model IPMA Delta. During the evaluation, IPMA Delta estimated project management competence of organization in three modules: I-Module ("Individuals" - a self-assessment personnel, P-module ("Projects" - self-assessment of projects and/or programs, and O-module ("Organization" - used to conduct interviews with selected people during auditing company. In the process of building an indicative model of deviations in the project, the first step is the assessment of project management in the organization by IPMA Delta. In the future, built cognitive map and matrix of system interconnections of the project, which conducted simulations and built a scale of deviations for the selected project. They determined a size and place of deviations. To identify the detailed causes of deviations in the project management has been proposed to use the extended system of indicators, which is based on indicators of project management model Project Excellence. The proposed indicative model of deviations in projects allows to estimate the size of variation and more accurately identify the place of negative deviations in the project and provides the project manager information for operational decision making for the management of deviations in the implementation of the project

  8. Overview of the Livermore electron beam ion trap project

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Behar, E.; Boyce, K.R.; Brown, G.V.; Chen, H.; Gendreau, K.C.; Graf, A.; Gu, M.-F.; Harris, C.L.; Kahn, S.M.; Kelley, R.L.; Lepson, J.K.; May, M.J.; Neill, P.A.; Pinnington, E.H.; Porter, F.S.; Smith, A.J.; Stahle, C.K.; Szymkowiak, A.E.; Tillotson, A.; Thorn, D.B.; Traebert, E.; Wargelin, B.J.

    2003-01-01

    The Livermore electron beam ion trap facility has recently been moved to a new location within LLNL, and new instrumentation was added, including a 32-pixel microcalorimeter. The move was accompanied by a shift of focus toward in situ measurements of highly charged ions, which continue with increased vigor. Overviews of the facility, which includes EBIT-I and SuperEBIT, and the research projects are given, including results from optical spectroscopy, QED, and X-ray line excitation measurements

  9. W-320 Project thermal modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sathyanarayana, K., Fluor Daniel Hanford

    1997-03-18

    This report summarizes the results of thermal analysis performed to provide a technical basis in support of Project W-320 to retrieve by sluicing the sludge in Tank 241-C-106 and to transfer into Tank 241-AY-102. Prior theraml evaluations in support of Project W-320 safety analysis assumed the availability of 2000 to 3000 CFM, as provided by Tank Farm Operations, for tank floor cooling channels from the secondary ventilation system. As this flow availability has no technical basis, a detailed Tank 241-AY-102 secondary ventilation and floor coating channel flow model was developed and analysis was performed. The results of the analysis show that only about 150 cfm flow is in floor cooLing channels. Tank 241-AY-102 thermal evaluation was performed to determine the necessary cooling flow for floor cooling channels using W-030 primary ventilation system for different quantities of Tank 241-C-106 sludge transfer into Tank 241-AY-102. These sludge transfers meet different options for the project along with minimum required modification of the ventilation system. Also the results of analysis for the amount of sludge transfer using the current system is presented. The effect of sludge fluffing factor, heat generation rate and its distribution between supernatant and sludge in Tank 241-AY-102 on the amount of sludge transfer from Tank 241-C-106 were evaluated and the results are discussed. Also transient thermal analysis was performed to estimate the time to reach the steady state. For a 2 feet sludge transfer, about 3 months time will be requirad to reach steady state. Therefore, for the purpose of process control, a detailed transient thermal analysis using GOTH Computer Code will be required to determine transient response of the sludge in Tank 241-AY-102. Process control considerations are also discussed to eliminate the potential for a steam bump during retrieval and storage in Tanks 241-C-106 and 241-AY-102 respectively.

  10. Modeling of power electronic systems with EMTP

    Science.gov (United States)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  11. Analytical local electron-electron interaction model potentials for atoms

    International Nuclear Information System (INIS)

    Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen

    2002-01-01

    Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter

  12. A proposed model for construction project management ...

    African Journals Online (AJOL)

    The lack of a proper communication skills model for project management may contribute to ineffective project communication. This article reports the results of a study done to identify the most important project management communication skills and applications of communication that effective project managers should ...

  13. Lunar Mapping and Modeling Project

    Science.gov (United States)

    Noble, Sarah K.; French, R. A.; Nall, M. E.; Muery, K. G.

    2009-01-01

    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL US Army Cold Regions Research and Engineering Laboratory, and the USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation s data needs. LMMP will provide access to this data through a single intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. Two visualization systems are being developed, a web-based system called Lunar Mapper, and a desktop client, ILIADS, which will be downloadable from the LMMP portal. LMMP will provide such products as local and regional imagery and DEMs, hazard assessment maps, lighting and gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and to ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar

  14. Sharks, Minnows, and Wheelbarrows: Calculus Modeling Projects

    Science.gov (United States)

    Smith, Michael D.

    2011-01-01

    The purpose of this article is to present two very active applied modeling projects that were successfully implemented in a first semester calculus course at Hollins University. The first project uses a logistic equation to model the spread of a new disease such as swine flu. The second project is a human take on the popular article "Do Dogs Know…

  15. Theory, modeling, and integrated studies in the Arase (ERG) project

    Science.gov (United States)

    Seki, Kanako; Miyoshi, Yoshizumi; Ebihara, Yusuke; Katoh, Yuto; Amano, Takanobu; Saito, Shinji; Shoji, Masafumi; Nakamizo, Aoi; Keika, Kunihiro; Hori, Tomoaki; Nakano, Shin'ya; Watanabe, Shigeto; Kamiya, Kei; Takahashi, Naoko; Omura, Yoshiharu; Nose, Masahito; Fok, Mei-Ching; Tanaka, Takashi; Ieda, Akimasa; Yoshikawa, Akimasa

    2018-02-01

    Understanding of underlying mechanisms of drastic variations of the near-Earth space (geospace) is one of the current focuses of the magnetospheric physics. The science target of the geospace research project Exploration of energization and Radiation in Geospace (ERG) is to understand the geospace variations with a focus on the relativistic electron acceleration and loss processes. In order to achieve the goal, the ERG project consists of the three parts: the Arase (ERG) satellite, ground-based observations, and theory/modeling/integrated studies. The role of theory/modeling/integrated studies part is to promote relevant theoretical and simulation studies as well as integrated data analysis to combine different kinds of observations and modeling. Here we provide technical reports on simulation and empirical models related to the ERG project together with their roles in the integrated studies of dynamic geospace variations. The simulation and empirical models covered include the radial diffusion model of the radiation belt electrons, GEMSIS-RB and RBW models, CIMI model with global MHD simulation REPPU, GEMSIS-RC model, plasmasphere thermosphere model, self-consistent wave-particle interaction simulations (electron hybrid code and ion hybrid code), the ionospheric electric potential (GEMSIS-POT) model, and SuperDARN electric field models with data assimilation. ERG (Arase) science center tools to support integrated studies with various kinds of data are also briefly introduced.[Figure not available: see fulltext.

  16. Novel Front-end Electronics for Time Projection Chamber Detectors

    CERN Document Server

    García García, Eduardo José

    This work has been carried out in the European Organization for Nuclear Research (CERN) and it was supported by the European Union as part of the research and development towards the European detector the (EUDET) project, specifically for the International Linear Collider (ILC). In particle physics there are several different categories of particle detectors. The presented design is focused on a particular kind of tracking detector called Time Projection Chamber (TPC). The TPC provides a three dimensional image of electrically charged particles crossing a gaseous volume. The thesis includes a study of the requirements for future TPC detectors summarizing the parameters that the front-end readout electronics must fulfill. In addition, these requirements are compared with respect to the readouts used in existing TPC detectors. It is concluded that none of the existing front-end readout designs fulfill the stringent requirements. The main requirements for future TPC detectors are high integration, an increased n...

  17. Modeling Research Project Risks with Fuzzy Maps

    Science.gov (United States)

    Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana

    2009-01-01

    The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…

  18. VHDL Model of Electronic-Lock System

    Directory of Open Access Journals (Sweden)

    J. Noga

    2000-04-01

    Full Text Available The paper describes the design of an electronic-lock system which wascompleted as part of the Basic VHDL course in the Department of Controland Measurement Faculty of Electrical Engineering and Informatics,Technical University of Ostrava, Czech Republic in co-operation withthe Department if Electronic Engineering, University of Hull, GreatBritain in the frame of TEMPUS project no. S_JEP/09468-95.

  19. The Canvas model in project formulation

    OpenAIRE

    Ferreira-Herrera, Diana Carolina

    2016-01-01

    Purpose: The aim of this article is to determine the relevance of the Canvas methodology in project formulation through model characterization, thus answering the question: Is the Canvas methodology a relevant model for project management in an entrepreneurial context? Description: The Canvas model seeks to manage projects as business units. It is a model intended for emphasizing the entrepreneurial potential in project management. For this, texts and articles that have provided the basis for...

  20. Project Physics Text 5, Models of the Atom.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Basic atomic theories are presented in this fifth unit of the Project Physics text for use by senior high students. Chemical basis of atomic models in the early years of the 18th Century is discussed n connection with Dalton's theory, atomic properties, and periodic tables. The discovery of electrons is described by using cathode rays, Millikan's…

  1. Final Scientific/Technical Report, USDOE Award DE-FG-02ER54684, Recipient: CompX, Project Title: Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX

    International Nuclear Information System (INIS)

    Harvey, R.W.

    2009-01-01

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole

  2. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....

  3. World energy projection system: Model documentation

    International Nuclear Information System (INIS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report

  4. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2012-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....

  5. Problems and Projects Based Approach For Analog Electronic Circuits' Course

    Directory of Open Access Journals (Sweden)

    Mustapha Rafaf

    2009-04-01

    Full Text Available New educational methods and approaches are recently introduced and implemented at several North American and European universities using Problems and Projects Based Approach (PPBA. The PPBA employs a teaching technique based mostly on competences/skills rather than only on knowledge. This method has been implemented and proven by several pedagogical instructors and authors at several educational institutions. This approach is used at different disciplines such as medicine, biology, engineering and many others. It has the advantage to improve the student's skills and the knowledge retention rate, and reflects the 21st century industrial/company needs and demands. Before implementing this approach to a course, a good resources preparation and planning is needed upfront by the responsible or instructor of the course to achieve the course and students related objectives. This paper presents the preparation, the generated documentation and the implementation of a pilot project utilizing PPBA education for a second year undergraduate electronic course over a complete semester, and for two different class groups (morning and evening groups. The outcome of this project (achieved goals, observed difficulties and lessons learned is presented based on different tools such as students 'in class' communication and feedback, different course evaluation forms and the professor/instructor feedback. Resources, challenges, difficulties and recommendations are also assessed and presented. The impact, the effect and the results (during and at the end of the academic fall session of the PPBA on students and instructor are discussed, validated, managed and communicated to help other instructor in taking appropriate approach decisions with respect to this new educational approach compared to the classical one.

  6. K3 projective models in scrolls

    CERN Document Server

    Johnsen, Trygve

    2004-01-01

    The exposition studies projective models of K3 surfaces whose hyperplane sections are non-Clifford general curves. These models are contained in rational normal scrolls. The exposition supplements standard descriptions of models of general K3 surfaces in projective spaces of low dimension, and leads to a classification of K3 surfaces in projective spaces of dimension at most 10. The authors bring further the ideas in Saint-Donat's classical article from 1974, lifting results from canonical curves to K3 surfaces and incorporating much of the Brill-Noether theory of curves and theory of syzygies developed in the mean time.

  7. A Model of Project and Organisational Dynamics

    Directory of Open Access Journals (Sweden)

    Jenny Leonard

    2012-04-01

    Full Text Available The strategic, transformational nature of many information systems projects is now widely understood. Large-scale implementations of systems are known to require significant management of organisational change in order to be successful. Moreover, projects are rarely executed in isolation – most organisations have a large programme of projects being implemented at any one time. However, project and value management methodologies provide ad hoc definitions of the relationship between a project and its environment. This limits the ability of an organisation to manage the larger dynamics between projects and organisations, over time, and between projects. The contribution of this paper, therefore, is to use literature on organisational theory to provide a more systematic understanding of this area. The organisational facilitators required to obtain value from a project are categorised, and the processes required to develop those facilitators are defined. This formalisation facilitates generalisation between projects and highlights any time and path dependencies required in developing organisational facilitators. The model therefore has the potential to contribute to the development of IS project management theory within dynamic organisational contexts. Six cases illustrate how this model could be used.

  8. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is the systematic "building-block" validation of CFD/turbulence models employing a GUI driven CFD code (RPFM) and existing as well as new data sets to...

  9. A proposed model for construction project management ...

    African Journals Online (AJOL)

    Keywords: Communication skills and leadership model, construction project management, leadership, South African .... If the recipients do not read it, it will not affect the project. These methods include intranet sites, ..... emotional intelligence or interpersonal skills and an understanding of crosscultural differences needed to ...

  10. Multidisciplinary Modelling Tools for Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad

    package, e.g. power module, DFR approach meets trade-offs in electrical, thermal and mechanical design of the device. Today, virtual prototyping of power electronic circuits using advanced simulation tools is becoming attractive due to cost/time saving in building potential designs. With simulations......This thesis presents multidisciplinary modelling techniques in a Design For Reliability (DFR) approach for power electronic circuits. With increasing penetration of renewable energy systems, the demand for reliable power conversion systems is becoming critical. Since a large part of electricity...... is processed through power electronics, highly efficient, sustainable, reliable and cost-effective power electronic devices are needed. Reliability of a product is defined as the ability to perform within its predefined functions under given conditions in a specific time. Because power electronic devices...

  11. Causal Models for Safety Assurance Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fulfillment of NASA's System-Wide Safety and Assurance Technology (SSAT) project at NASA requires leveraging vast amounts of data into actionable knowledge. Models...

  12. The Regional Discharge Model development project

    OpenAIRE

    Mäenpää, Tiina; Koivunen, Marita; Lukka, Heli; Wanne, Olli

    2010-01-01

    Purpose/Theory The goal of the Regional Discharge Model (RDM) project was to develop discharge models, avoid unnecessary hospitalization, and improves the transfer of the patient to the right follow-on treatment or care, utilizing the public and private sector, research and training as well as developing technologies like the Regional Health Information Systems (RHIS) in the Satakunta Hospital District area. The RDM project is part of the ‘Whole life at home’ initiative funded and administere...

  13. Custom map projections for regional groundwater models

    Science.gov (United States)

    Kuniansky, Eve L.

    2017-01-01

    For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.

  14. Electron-Ionic Model of Ball Lightening

    OpenAIRE

    Fedosin, Sergey G.; Kim, Anatolii S.

    2001-01-01

    The model of ball lightning is presented where outside electron envelope is kept by inside volume of positive charges. The moving of electron in outside envelope is a reason of strong magnetic field, which controls the state of hot ionized air inside of ball lightning. The conditions of origins of ball lightning are investigated and the values of parameters for ball lightning of maximum power are calculated.

  15. Teaching mathematical modelling through project work

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Kjeldsen, Tinne Hoff

    2006-01-01

    The paper presents and analyses experiences from developing and running an in-service course in project work and mathematical modelling for mathematics teachers in the Danish gymnasium, e.g. upper secondary level, grade 10-12. The course objective is to support the teachers to develop, try out...... in their own classes, evaluate and report a project based problem oriented course in mathematical modelling. The in-service course runs over one semester and includes three seminars of 3, 1 and 2 days. Experiences show that the course objectives in general are fulfilled and that the course projects...

  16. POMP - Pervasive Object Model Project

    DEFF Research Database (Denmark)

    Schougaard, Kari Rye; Schultz, Ulrik Pagh

    The focus on mobile devices is continuously increasing, and improved device connectivity enables the construction of pervasive computing systems composed of heterogeneous collections of devices. Users who employ different devices throughout their daily activities naturally expect their applications...... computing environment. This system, named POM (Pervasive Object Model), supports applications split into coarse-grained, strongly mobile units that communicate using method invocations through proxies. We are currently investigating efficient execution of mobile applications, scalability to suit...

  17. Teaching Chemistry with Electron Density Models

    Science.gov (United States)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  18. Exact diagonalization library for quantum electron models

    Science.gov (United States)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  19. ATLAS 10 GHz electron cyclotron resonance ion source upgrade project

    CERN Document Server

    Moehs, D P; Pardo, R C; Xie, D

    2000-01-01

    A major upgrade of the first ATLAS 10 GHz electron cyclotron resonance (ECR) ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic-field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high-energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm and pole gaps of 2.4 cm, has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel, allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid...

  20. Project Guardian: Optimizing Electronic Warfare Systems for Ground Combat Vehicles

    National Research Council Canada - National Science Library

    Parks, Jack G; Jackson, William; Revello, James; Soltesz, James

    1995-01-01

    .... The study, Project Guardian, represents a new process for determining the optimum set of sensors and countermeasures for a specific vehicle class under the constraints of threat projection, combat...

  1. Uncertainty Quantification in Climate Modeling and Projection

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Jackson, Charles; Giorgi, Filippo; Booth, Ben; Duan, Qingyun; Forest, Chris; Higdon, Dave; Hou, Z. Jason; Huerta, Gabriel

    2016-05-01

    The projection of future climate is one of the most complex problems undertaken by the scientific community. Although scientists have been striving to better understand the physical basis of the climate system and to improve climate models, the overall uncertainty in projections of future climate has not been significantly reduced (e.g., from the IPCC AR4 to AR5). With the rapid increase of complexity in Earth system models, reducing uncertainties in climate projections becomes extremely challenging. Since uncertainties always exist in climate models, interpreting the strengths and limitations of future climate projections is key to evaluating risks, and climate change information for use in Vulnerability, Impact, and Adaptation (VIA) studies should be provided with both well-characterized and well-quantified uncertainty. The workshop aimed at providing participants, many of them from developing countries, information on strategies to quantify the uncertainty in climate model projections and assess the reliability of climate change information for decision-making. The program included a mixture of lectures on fundamental concepts in Bayesian inference and sampling, applications, and hands-on computer laboratory exercises employing software packages for Bayesian inference, Markov Chain Monte Carlo methods, and global sensitivity analyses. The lectures covered a range of scientific issues underlying the evaluation of uncertainties in climate projections, such as the effects of uncertain initial and boundary conditions, uncertain physics, and limitations of observational records. Progress in quantitatively estimating uncertainties in hydrologic, land surface, and atmospheric models at both regional and global scales was also reviewed. The application of Uncertainty Quantification (UQ) concepts to coupled climate system models is still in its infancy. The Coupled Model Intercomparison Project (CMIP) multi-model ensemble currently represents the primary data for

  2. Mathematical model I. Electron and quantum mechanics

    Directory of Open Access Journals (Sweden)

    Nitin Ramchandra Gadre

    2011-03-01

    Full Text Available The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is ‘difficult’ to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  3. Mathematical model I. Electron and quantum mechanics

    Science.gov (United States)

    Gadre, Nitin Ramchandra

    2011-03-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is `difficult' to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  4. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  5. Beyond theory : Towards a probabilistic causation model to support project governance in infrastructure projects

    NARCIS (Netherlands)

    Chivatá Cárdenas, Ibsen; Voordijk, Johannes T.; Dewulf, Geert

    2017-01-01

    A new project governance model for infrastructure projects is described in this paper. This model contains causal mechanisms that relate a number of project governance variables to project performance. Our proposed model includes relevant variables for measuring project governance in construction

  6. Wide Temperature Cycling Tolerant Electronic Packaging Substrates Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary exploration missions require electronics packaging that can withstand extreme temperatures and numerous temperature cycles (-230C to +350C). The present...

  7. Large Scale Cleaning Telescope Mirrors with Electron Beams Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cleaning Lenses and Mirrored Surfaces with Electrons tasks include: Development of Fractal Wand Geometries; Vacuum Chamber testing for Fractal Wand Prototypes;...

  8. Radiation Hard Electronics for Advanced Communication Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced reconfigurable/reprogrammable communication systems will require use of commercial sub 100 nm electronics. Legacy radiation tolerant circuits fail to...

  9. Modular, Fault-Tolerant Electronics Supporting Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AeroAstro's innovative design approach for implementing reconfigurable electronics frees the spacecraft designer to concentrate on the mission at hand with...

  10. PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    S. Munapo

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.

    AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.

  11. Testing Software Development Project Productivity Model

    Science.gov (United States)

    Lipkin, Ilya

    Software development is an increasingly influential factor in today's business environment, and a major issue affecting software development is how an organization estimates projects. If the organization underestimates cost, schedule, and quality requirements, the end results will not meet customer needs. On the other hand, if the organization overestimates these criteria, resources that could have been used more profitably will be wasted. There is no accurate model or measure available that can guide an organization in a quest for software development, with existing estimation models often underestimating software development efforts as much as 500 to 600 percent. To address this issue, existing models usually are calibrated using local data with a small sample size, with resulting estimates not offering improved cost analysis. This study presents a conceptual model for accurately estimating software development, based on an extensive literature review and theoretical analysis based on Sociotechnical Systems (STS) theory. The conceptual model serves as a solution to bridge organizational and technological factors and is validated using an empirical dataset provided by the DoD. Practical implications of this study allow for practitioners to concentrate on specific constructs of interest that provide the best value for the least amount of time. This study outlines key contributing constructs that are unique for Software Size E-SLOC, Man-hours Spent, and Quality of the Product, those constructs having the largest contribution to project productivity. This study discusses customer characteristics and provides a framework for a simplified project analysis for source selection evaluation and audit task reviews for the customers and suppliers. Theoretical contributions of this study provide an initial theory-based hypothesized project productivity model that can be used as a generic overall model across several application domains such as IT, Command and Control

  12. Project outline of high quality electron beam generation at Waseda University

    International Nuclear Information System (INIS)

    Washio, M.; Hama, Y.; Kashiwagi, S.; Kuroda, R.; Kobuki, T.; Hirose, T.

    2000-01-01

    High quality electron beam generation project has been started at Waseda University under the grant of Ministry of Education, named High-Tech Research Center Project. In the project, we will install a laser photo-cathode RF Gun system with 1.6 accelerating structure cells of s-band and a stabilized RF power source. This RF Gun is expected to produce single electron bunch up to 1 or 2nC with around 10ps pulse duration. (author)

  13. Mathematical Modeling Projects: Success for All Students

    Science.gov (United States)

    Shelton, Therese

    2018-01-01

    Mathematical modeling allows flexibility for a project-based experience. We share details of our regular capstone course, successful for virtually 100% of our math majors for almost two decades. Our research-like approach in this course accommodates a variety of student backgrounds and interests, and has produced some award-winning student…

  14. Stabilizing a Bicycle: A Modeling Project

    Science.gov (United States)

    Pennings, Timothy J.; Williams, Blair R.

    2010-01-01

    This article is a project that takes students through the process of forming a mathematical model of bicycle dynamics. Beginning with basic ideas from Newtonian mechanics (forces and torques), students use techniques from calculus and differential equations to develop the equations of rotational motion for a bicycle-rider system as it tips from…

  15. Project-Based Learning in Electronic Technology: A Case Study

    Science.gov (United States)

    Li, Li

    2015-01-01

    A case study of project-based learning (PBL) implemented in Tianjin University of Technology and Education is presented. This multidiscipline project is innovated to meet the novel requirements of industry while keeping its traditional effectiveness in driving students to apply knowledge to practice and problem-solving. The implementation of PBL…

  16. Models of fast-electron penetration

    International Nuclear Information System (INIS)

    Perry, D.J.; Raisis, S.K.

    1994-01-01

    We introduce multiple scattering models of charged-particle penetration which are based on the previous analyses of Yang and Perry. Our development removes the main limitations of the Fermi-Eyges approach while retaining its considerable potential as a theory which is useful for applied work. We illustrate key predictions with sample calculations that are of particular interest in therapeutic applications, 5-20 MeV electrons incident on water. 8 refs., 5 figs

  17. Subglacial Hydrology Model Intercomparison Project (SHMIP)

    Science.gov (United States)

    Werder, Mauro A.; de Fleurian, Basile; Creyts, Timothy T.; Damsgaard, Anders; Delaney, Ian; Dow, Christine F.; Gagliardini, Olivier; Hoffman, Matthew J.; Seguinot, Julien; Sommers, Aleah; Irarrazaval Bustos, Inigo; Downs, Jakob

    2017-04-01

    The SHMIP project is the first intercomparison project of subglacial drainage models (http://shmip.bitbucket.org). Its synthetic test suites and evaluation were designed such that any subglacial hydrology model producing effective pressure can participate. In contrast to ice deformation, the physical processes of subglacial hydrology (which in turn impacts basal sliding of glaciers) are poorly known. A further complication is that different glacial and geological settings can lead to different drainage physics. The aim of the project is therefore to qualitatively compare the outputs of the participating models for a wide range of water forcings and glacier geometries. This will allow to put existing studies, which use different drainage models, into context and will allow new studies to select the most suitable model for the problem at hand. We present the results from the just completed intercomparison exercise. Twelve models participated: eight 2D and four 1D models; nine include both an efficient and inefficient system, the other three one of the systems; all but two models use R-channels as efficient system, and/or a linked-cavity like inefficient system, one exception uses porous layers with different characteristic for each of the systems, the other exception is based on canals. The main variable used for the comparison is effective pressure, as that is a direct proxy for basal sliding of glaciers. The models produce large differences in the effective pressure fields, in particular for higher water input scenarios. This shows that the selection of a subglacial drainage model will likely impact the conclusions of a study significantly.

  18. Large Scale Cleaning Telescope Mirrors with Electron Beams Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cleaning Lenses and Mirrored Surfaces with Electrons tasks include: Development of Fractal Wand Geometries; Vacuum Chamber testing of Fractal Wand...

  19. Cold Electronics for Giant Liquid Argon Time Projection Chambers

    International Nuclear Information System (INIS)

    Radeka, V.; De Geronimo, G.; Chen, H.; Deptuch, G.; Lanni, F.; Li, S.; Nambiar, N.; Rescia, S.; Thorn, C.; Yarema, R.; Yu, B.

    2011-01-01

    The choice between cold and warm electronics (inside or outside the cryostat) in very large LAr TPCs (>5-10 ktons) is not an electronics issue, but it is rather a major cryostat design issue. This is because the location of the signal processing electronics has a direct and far reaching effect on the cryostat design, an indirect effect on the TPC electrode design (sense wire spacing, wire length and drift distance), and a significant effect on the TPC performance. All these factors weigh so overwhelmingly in favor of the cold electronics that it remains an optimal solution for very large TPCs. In this paper signal and noise considerations are summarized, the concept of the readout chain is described, and the guidelines for design of CMOS circuits for operation in liquid argon (at ∼89 K) are discussed.

  20. Outline of FNCA project on application of electron accelerator

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2005-01-01

    FNCA (Forum for Nuclear Cooperation in Asia) activities in the field of electron accelerator applications are reported. The paper mainly reports on the achievement of the 3rd workshop to discuss status of utilization of electron accelerator for thin films/hydrogel in the FNCA participating countries, China, Indonesia, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam, held in August, 2003, at Kuala Lumpur. Cross-linking of thin film from sago starch polymer blend using the Cureton (200 keV, 20 mA) and cross-linking of hydrogel for wound dressing and CMC paste-like sheet using the medium energy (3.0 MeV, 30 mA) electron accelerator of MINT (from Malaysia) were successfully demonstrated. Efforts are being made by Vietnam, Thailand and Philippines having no electron accelerator to acquire the machine for R and D and commercial use in the near future. (S. Ohno)

  1. Second Generation Low Cost Cryocooler Electronics (LCCE-2) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The LCCE-2 Program builds off the successes of the USAF "Low Cost Cryocooler Electronics for Space Missions" Program, extending the performance of the developed LCCE...

  2. Downplaying model power in IT project work

    DEFF Research Database (Denmark)

    Richter, Anne; Buhl, Henrik

    2004-01-01

    Executives and information technology specialists often manage IT projects in project teams. Integrative IT systems provide opportunities to manage and restructure work functions, but the process of change often causes serious problems in implementation and diffusion. A central issue...... possible to put issues such as team functions and quality of work on the agenda. Simultaneously, participation competencies seem to have been enhanced....... in the research, presented in this article, conducted in a Danish manufacturing company, is how an IT system could be configured to support shopfloor teamwork and enhance the quality of work. The approach is based on participatory design and the concept of "model power". This concept facilitates an understanding...

  3. Wide Temperature DC Link Capacitors for Aerospace Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop advanced DC link capacitors using flexible ultrathin glass dielectric materials. The glass capacitor will be able to be operated in a broad...

  4. Projected shell model description for nuclear isomers

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, Popular Republic (China)

    2008-12-15

    The study of nuclear isomer properties is a current research focus. To describe isomers, we present a method based on the Projected Shell Model. Two kinds of isomers, {kappa}-isomers and shape isomers, are discussed. For the {kappa}-isomer treatment, {kappa}-mixing is properly implemented in the model. It is found however that in order to describe the strong {kappa}-violation more efficiently, it may be necessary to further introduce triaxiality into the shell model basis. To treat shape isomers, a scheme is outlined which allows mixing those configurations belonging to different shapes. (Author)

  5. Ontological modeling of electronic health information exchange.

    Science.gov (United States)

    McMurray, J; Zhu, L; McKillop, I; Chen, H

    2015-08-01

    Investments of resources to purposively improve the movement of information between health system providers are currently made with imperfect information. No inventories of system-level electronic health information flows currently exist, nor do measures of inter-organizational electronic information exchange. Using Protégé 4, an open-source OWL Web ontology language editor and knowledge-based framework, we formalized a model that decomposes inter-organizational electronic health information flow into derivative concepts such as diversity, breadth, volume, structure, standardization and connectivity. The ontology was populated with data from a regional health system and the flows were measured. Individual instance's properties were inferred from their class associations as determined by their data and object property rules. It was also possible to visualize interoperability activity for regional analysis and planning purposes. A property called Impact was created from the total number of patients or clients that a health entity in the region served in a year, and the total number of health service providers or organizations with whom it exchanged information in support of clinical decision-making, diagnosis or treatment. Identifying providers with a high Impact but low Interoperability score could assist planners and policy-makers to optimize technology investments intended to electronically share patient information across the continuum of care. Finally, we demonstrated how linked ontologies were used to identify logical inconsistencies in self-reported data for the study. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. SIMULATION MODELING OF IT PROJECTS BASED ON PETRI NETS

    Directory of Open Access Journals (Sweden)

    Александр Михайлович ВОЗНЫЙ

    2015-05-01

    Full Text Available An integrated simulation model of IT project based on a modified Petri net model that combines product and model of project tasks has been proposed. Substantive interpretation of the components of the simulation model has been presented, the process of simulation has been described. The conclusions about the integration of the product model and the model of works project were made.

  7. NASA-DoD Lead-Free Electronics Project

    Science.gov (United States)

    Kessel, Kurt

    2011-01-01

    Original Equipment Manufacturers (OEMs). depots. and support contractors have to be prepared to deal with an electronics supply chain thaI increasingly provides parts with lead-free finishes. some labeled no differently and intenningled with their SnPb counterparts. Allowance oflead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free lenninations, tennination finishes, or circuit boards presents a host of concerns to customers. suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers; 2. Incompatibility oflead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system; and 3. Unknown material properties and incompatibilities that could reduce solder joint re liability.

  8. Data acquisition electronics for NESTOR experiment: project and tests

    International Nuclear Information System (INIS)

    Ameli, Fabrizio; Bonori, Maurizio; Bottai, Sergio; Capone, Antonio; Curti, Franco; Desiati, Paolo; De Marchis, Giancarlo; Massa, Fabrizio; Masullo, Rocco; Piccari, Luigi; Vannucci, Italo

    1999-01-01

    The NESTOR detector, at present under construction, is a telescope for high-energy neutrino astronomy. The apparatus, based on Cherenkov light detection, will be deployed in deep sea (about 4000 m) near the S.W. Greek coast. We briefly describe the NESTOR detector, then we describe with more details the electronics for NESTOR data acquisition and transmission. The detector signals are sampled at 200 MHz and all the resulting information are transmitted to the laboratory on 30 km long electro-optical cable. The estimated Mean Time Between Failure of the full electronics system is greater than 20 years. Tests performed on the first prototypes confirm the main characteristics of these electronics: the dynamic range allowed for the signals is bigger than 1000, the pulse shape is reconstructed with an 8 bit ADC accuracy and the resolution in the measurement of the signal 'threshold crossing time' is better than 200 ps

  9. North American Carbon Project (NACP) Regional Model-Model and Model-Data Intercomparison Project

    Science.gov (United States)

    Huntzinger, D. N.; Post, W. M.; Jacobson, A. R.; Cook, R. B.

    2009-05-01

    questions: 1. Do model results and observations show consistent spatial patterns in response to the 2002 drought? From measurements and model, can we infer what processes were affected by the 2002 drought? 2. What is the spatial pattern and magnitude of interannual variation in carbon sources and sinks? What are the components of carbon fluxes and pools that contribute to this variation? 3. What are the magnitudes and spatial distribution of carbon sources and sinks, and their uncertainties during the period 2000-2005? Examining and comparing results of inverse and forward model simulations with each other and with suitable benchmark spatial measurements help evaluate model strengths/weaknesses and utility, thereby providing multiple views of spatial and temporal patterns of fluxes, leading to better understandings of processes involved, and providing an improved basis for making projections.

  10. The Dismantling Project for the Large Electron Positron (LEP) Collider

    CERN Document Server

    Poole, John

    2002-01-01

    The LEP accelerator was installed in a circular tunnel 27 km in length with nine access points distributed around the circumference in the countryside and villages which surround CERN's sites. The dismantling project involved the removal in less than 15 months of around 29000 tonnes of equipment from the accelerator itself and a further 10000 tonnes from the four experiments - all of which were located at an average depth of 100 m below ground level. There was no contamination risk in the project and less than 3% of the materials removed were classified as radioactive. However, the materials which were classified as radioactive have to be temporarily stored and they consume considerable resources. The major difficulties for the project were in the establishment of the theoretical radiological zoning, implementation of the traceability systems and making appropriate radiation measurements to confirm the zoning. The absence of detailed guidelines from the French authorities, having no threshold levels for relea...

  11. Implementation of the model project: Ghanaian experience

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, E.O.; Yeboah, J.; Asiamah, S.D.

    2003-01-01

    Upgrading of the legal infrastructure has been the most time consuming and frustrating part of the implementation of the Model project due to the unstable system of governance and rule of law coupled with the low priority given to legislation on technical areas such as safe applications of Nuclear Science and Technology in medicine, industry, research and teaching. Dwindling Governmental financial support militated against physical and human resource infrastructure development and operational effectiveness. The trend over the last five years has been to strengthen the revenue generation base of the Radiation Protection Institute through good management practices to ensure a cost effective use of the limited available resources for a self-reliant and sustainable radiation and waste safety programme. The Ghanaian experience regarding the positive and negative aspects of the implementation of the Model Project is highlighted. (author)

  12. Food for thought: Overconfidence in model projections

    DEFF Research Database (Denmark)

    Brander, Keith; Neuheimer, Anna; Andersen, Ken Haste

    2013-01-01

    There is considerable public and political interest in the state of marine ecosystems and fisheries, but the reliability of some recent projections has been called into question. New information about declining fish stocks, loss of biodiversity, climate impacts, and management failure is frequently...... be reliable and uncertainties arising from models and data shortcomings must be presented fully and transparently. Scientific journals play an important role and should require more detailed analysis and presentation of uncertainties....

  13. Analysis of operating model of electronic invoice colombian Colombian electronic billing analysis of the operational model

    Directory of Open Access Journals (Sweden)

    Sérgio Roberto da Silva

    2016-06-01

    Full Text Available Colombia has been one of the first countries to introduce electronic billing process on a voluntary basis, from a traditional to a digital version. In this context, the article analyzes the electronic billing process implemented in Colombia and the advantages. Methodological research is applied, qualitative, descriptive and documentary; where the regulatory framework and the conceptualization of the model is identified; the process of adoption of electronic billing is analyzed, and finally the advantages and disadvantages of its implementation is analyzed. The findings indicate that the model applied in Colombia to issue an electronic billing in sending and receiving process, is not complex, but it requires a small adequate infrastructure and trained personnel to reach all sectors, especially the micro and business which is the largest business network in the country.

  14. Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    Science.gov (United States)

    Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.

    2013-10-01

    a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.

  15. CDIO Projects In DTU’s B.Eng. In Electronics Study Programme

    DEFF Research Database (Denmark)

    Kjærgaard, Claus; Brauer, Peter; Andersen, Jens Christian

    2011-01-01

    This paper describes the four cross disciplinary CDIO semester projects in the B.Eng. in Electronics study at DTU, and – along with similar papers describing the other six B.Eng. programs – provides documentation to accompany an exposition with students demonstrating their projects, furthermore...... semesters. Additionally almost all courses contain projects of various size. The 4 cross disciplinary projects are described with emphasis on the two design build projects, the learning objectives are listed for each of the courses and the results of from the course evaluation (performed at the end every...... the paper is meant as an inspiration to others working on implementing cross disciplinary projects in their curriculum. In the B.Eng. in Electronics programme each of the first 4 semester contains a cross disciplinary project, two of these are CDIO Design Build courses which are placed in the 1st and 4th...

  16. A Low Cost, Electronically Scanned Array (ESA) Antenna Technology for Aviation Hazard Detection and Avoidance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will investigate the feasibility of utilizing ThinKom's low cost electronically scanned array (ESA) antenna concepts to enable affordable...

  17. Final report for the Department of Energy funded cooperative agreement ''Electronic Research Demonstration Project'' [University electronic research administration demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Rodman, John

    1998-07-31

    This is the final report for the Department of Energy (DOE) funded cooperative agreement ''Electronic Research Demonstration Project (DE-FC02-92ER35180)'' for the period August 1994-July 1998. The goal of the project, referred to as NewERA, was to demonstrate the use of open standards for electronic commerce to support research administration, otherwise referred to as Electronic Research Administration (ERA). The NewERA demonstration project provided a means to test interagency standards developed within the Federal Grant Electronic Commerce Committee, a group comprised of federal granting agencies. The NewERA program was initiated by DOE. NewERA was comprised of three separate, but related, ERA activities in preaward administration, postaward administration, and secure Internet commerce. The goal of New ERA was to demonstrate an open standard implementation of ERA using electronic data interchange, e-mail and Internet transaction security between grant applicants and DOE, along with t h e other participating agencies.

  18. Teaching Electronics to Aeronautical Engineering Students by Developing Projects

    OpenAIRE

    Gil Sánchez, Luís; Masot Peris, Rafael; Alcañiz Fillol, Miguel

    2015-01-01

    (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Teaching electronics to an aerospace engineer with a very limited number of credits has been a major challenge for us. This goal has...

  19. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    Science.gov (United States)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  20. The Chancellor's Model School Project (CMSP)

    Science.gov (United States)

    Lopez, Gil

    1999-01-01

    What does it take to create and implement a 7th to 8th grade middle school program where the great majority of students achieve at high academic levels regardless of their previous elementary school backgrounds? This was the major question that guided the research and development of a 7-year long project effort entitled the Chancellor's Model School Project (CMSP) from September 1991 to August 1998. The CMSP effort conducted largely in two New York City public schools was aimed at creating and testing a prototype 7th and 8th grade model program that was organized and test-implemented in two distinct project phases: Phase I of the CMSP effort was conducted from 1991 to 1995 as a 7th to 8th grade extension of an existing K-6 elementary school, and Phase II was conducted from 1995 to 1998 as a 7th to 8th grade middle school program that became an integral part of a newly established 7-12th grade high school. In Phase I, the CMSP demonstrated that with a highly structured curriculum coupled with strong academic support and increased learning time, students participating in the CMSP were able to develop a strong foundation for rigorous high school coursework within the space of 2 years (at the 7th and 8th grades). Mathematics and Reading test score data during Phase I of the project, clearly indicated that significant academic gains were obtained by almost all students -- at both the high and low ends of the spectrum -- regardless of their previous academic performance in the K-6 elementary school experience. The CMSP effort expanded in Phase II to include a fully operating 7-12 high school model. Achievement gains at the 7th and 8th grade levels in Phase II were tempered by the fact that incoming 7th grade students' academic background at the CMSP High School was significantly lower than students participating in Phase 1. Student performance in Phase II was also affected by the broadening of the CMSP effort from a 7-8th grade program to a fully functioning 7-12 high

  1. Modeling ion sensing in molecular electronics

    Science.gov (United States)

    Chen, Caroline J.; Smeu, Manuel; Ratner, Mark A.

    2014-02-01

    We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H+), alkali metal cations (M+), calcium ions (Ca2+), and hydronium ions (H3O+) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C9H7NS2), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M+ + QDT species containing monovalent cations, where M+ = H+, Li+, Na+, or K+. Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from -0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry.

  2. Model based design of electronic throttle control

    Science.gov (United States)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more

  3. Use of mathematical modelling in electron beam processing: A guidebook

    International Nuclear Information System (INIS)

    2010-01-01

    The use of electron beam irradiation for industrial applications, like the sterilization of medical devices or cross-linking of polymers, has a long and successful track record and has proven itself to be a key technology. Emerging fields, including environmental applications of ionizing radiation, the sterilization of complex medical and pharmaceutical products or advanced material treatment, require the design and control of even more complex irradiators and irradiation processes. Mathematical models can aid the design process, for example by calculating absorbed dose distributions in a product, long before any prototype is built. They support process qualification through impact assessment of process variable uncertainties, and can be an indispensable teaching tool for technologists in training in the use of radiation processing. The IAEA, through various mechanisms, including its technical cooperation programme, coordinated research projects, technical meetings, guidelines and training materials, is promoting the use of radiation technologies to minimize the effects of harmful contaminants and develop value added products originating from low cost natural and human made raw materials. The need to publish a guidebook on the use of mathematical modelling for design processes in the electron beam treatment of materials was identified through the increased interest of radiation processing laboratories in Member States and as a result of recommendations from several IAEA expert meetings. In response, the IAEA has prepared this report using the services of an expert in the field. This publication should serve as both a guidebook and introductory tutorial for the use of mathematical modelling (using mostly Monte Carlo methods) in electron beam processing. The emphasis of this guide is on industrial irradiation methodologies with a strong reference to existing literature and applicable standards. Its target audience is readers who have a basic understanding of electron

  4. A Multidisciplinary PBL Robot Control Project in Automation and Electronic Engineering

    Science.gov (United States)

    Hassan, Houcine; Domínguez, Carlos; Martínez, Juan-Miguel; Perles, Angel; Capella, Juan-Vicente; Albaladejo, José

    2015-01-01

    This paper presents a multidisciplinary problem-based learning (PBL) project consisting of the development of a robot arm prototype and the implementation of its control system. The project is carried out as part of Industrial Informatics (II), a compulsory third-year course in the Automation and Electronic Engineering (AEE) degree program at the…

  5. Project-matrix models of marketing organization

    Directory of Open Access Journals (Sweden)

    Gutić Dragutin

    2009-01-01

    Full Text Available Unlike theory and practice of corporation organization, in marketing organization numerous forms and contents at its disposal are not reached until this day. It can be well estimated that marketing organization today in most of our companies and in almost all its parts, noticeably gets behind corporation organization. Marketing managers have always been occupied by basic, narrow marketing activities as: sales growth, market analysis, market growth and market share, marketing research, introduction of new products, modification of products, promotion, distribution etc. They rarely found it necessary to focus a bit more to different aspects of marketing management, for example: marketing planning and marketing control, marketing organization and leading. This paper deals with aspects of project - matrix marketing organization management. Two-dimensional and more-dimensional models are presented. Among two-dimensional, these models are analyzed: Market management/products management model; Products management/management of product lifecycle phases on market model; Customers management/marketing functions management model; Demand management/marketing functions management model; Market positions management/marketing functions management model. .

  6. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  7. A clustering approach to multireference alignment of single-particle projections in electron microscopy

    OpenAIRE

    Sorzano, C.O.S.; Bilbao-Castro, J.R.; Shkolnisky, Y.; Alcorlo, M.; Melero, R.; Caffarena-Fernández, G.; Li, M.; Xu, G.; Marabini, R.; Carazo, J.M.

    2010-01-01

    Two-dimensional analysis of projections of single particles acquired by an electron microscope is a useful tool to help identifying the different kinds of projections present in a dataset and their different projection directions. Such analysis is also useful to distinguish between different kinds of particles or different particle conformations. In this paper we introduce a new algorithm for performing two-dimensional multireference alignment and classification that is based on a Hierarchica...

  8. A search for supersymmetric electrons with the Mark II detector at PEP [Positron Electron Project

    International Nuclear Information System (INIS)

    LeClaire, B.W.

    1987-10-01

    An experimental search for selectrons, the supersymmetric partner of the electron, has been performed at the PEP storage ring at SLAC using the Mark II detector. The experimental search done was based upon hypothetical reaction in e + e - interactions at PEP center of mass energies of 29 GeV. In this reaction the selectrons, e, are assumed produced by the interaction of one of initial state electrons with a photon radiated from the other initial state electron. This latter electron is assumed to continue down the beam pipe undetected. The photon and electron then produce a selectron and a photino, γ, in the supersymmetric analog of Compton scattering. The photino is assumed to be the lightest supersymmetric particle, and as such, does not interact in the detector, thereby escaping detection very much like a neutrino. The selectron is assumed to immediately decay into an electron and photino. This electron is produced with large p perpendicular with respect to the beam pipe, since it must balance the transverse momentum carried off by the photinos. Thus, the experimental signature of the process is a single electron in the detector with a large unbalanced tranverse momentum. No events of this type were observed in the original search of 123 pb -1 of data, resulting in a cross section limit of less than 2.4 x 10 -2 pb (at the 95% CL) within the detector acceptance. This cross section upper limit applies to any process which produces anomalous single electron events with missing transverse momentum. When interpreted as a supersymmetry search it results in a lower selectron mass limit of 22.2 GeV/c 2 for the case of massless photinos. Limits for non-zero mass photinos have been calculated. 87 refs., 67 figs., 17 tabs

  9. A search for supersymmetric electrons with the Mark II detector at PEP (Positron Electron Project)

    Energy Technology Data Exchange (ETDEWEB)

    LeClaire, B.W.

    1987-10-01

    An experimental search for selectrons, the supersymmetric partner of the electron, has been performed at the PEP storage ring at SLAC using the Mark II detector. The experimental search done was based upon hypothetical reaction in e/sup +/e/sup -/ interactions at PEP center of mass energies of 29 GeV. In this reaction the selectrons, e-tilde, are assumed produced by the interaction of one of initial state electrons with a photon radiated from the other initial state electron. This latter electron is assumed to continue down the beam pipe undetected. The photon and electron then produce a selectron and a photino, ..gamma..-tilde, in the supersymmetric analog of Compton scattering. The photino is assumed to be the lightest supersymmetric particle, and as such, does not interact in the detector, thereby escaping detection very much like a neutrino. The selectron is assumed to immediately decay into an electron and photino. This electron is produced with large p perpendicular with respect to the beam pipe, since it must balance the transverse momentum carried off by the photinos. Thus, the experimental signature of the process is a single electron in the detector with a large unbalanced tranverse momentum. No events of this type were observed in the original search of 123 pb/sup -1/ of data, resulting in a cross section limit of less than 2.4 x 10/sup -2/ pb (at the 95% CL) within the detector acceptance. This cross section upper limit applies to any process which produces anomalous single electron events with missing transverse momentum. When interpreted as a supersymmetry search it results in a lower selectron mass limit of 22.2 GeV/c/sup 2/ for the case of massless photinos. Limits for non-zero mass photinos have been calculated. 87 refs., 67 figs., 17 tabs.

  10. The Pocketable Electronic Devices in Radiation Oncology (PEDRO) Project

    DEFF Research Database (Denmark)

    De Bari, Berardino; Franco, P.; Niyazi, Maximilian

    2016-01-01

    (83.5%) of the 462 correctly filled questionnaires were statistically evaluated. Up to 65% of respondents declared to use an electronic device during their clinical activity. Conversely, 72% considered low to moderate impact of smartphones/tables on their daily practice. The daily use significantly......) members of the national radiation or clinical oncology associations of the countries involved in the study. The 15 items investigated diffusion of MEDs (smartphones and/or tablets), their impact on daily clinical activity, and the differences perceived by participants along time. Results: A total of 386...... increased from 2009 to 2012: users reporting a use ≥6 times/d raised from 5% to 39.9%. Professional needs fulfillment was declared by less than 68% of respondents and compliance to apps indications by 66%. Significant differences were seen among the countries, in particular concerning the feeling...

  11. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  12. MODEL RANCANGAN SISTEM INFORMASI PROJECT MONITORING

    Directory of Open Access Journals (Sweden)

    Yanti Yanti

    2009-10-01

    Full Text Available Economic development makes the property industry growing very rapidly. The property development is supported by the development of contractor’s company that conducts property development. Inside the contracting company doing business can not perform their own procurement because of the many items that must be provided. For the purposes of the construction company entered into an agreement with the subcontractor as vendor conduct procurement in accordance with the needs of contracting companies. To simplify the procurement process, generally conducted by a process called a tender / auction. This is done by contracting companies to get quality and price in accordance with the desired budget. The company’s commitment subcontractors as the procurement of goods to be one key to successful contracting company doing business development process. Therefore, the subcontractor companies are required to have a good commitment. Therefore we need a project monitoring system that can monitor business processes running on those sub contractor company. The purpose of this research is to design a project monitoring information system in accordance with company requirements to operational activities more effective and efficient company.Keywords: project monitoring, design model, subcontractor

  13. Final Report for 'Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators'

    International Nuclear Information System (INIS)

    Veitzer, Seth A.

    2009-01-01

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  14. AMMA Land surface Model Intercomparison Project (ALMIP)

    Science.gov (United States)

    Boone, A. A.; Derosnay, P.

    2007-05-01

    Extreme climatic variability has afflicted West Africa over the last half century, which has resulted in significant socio-economic consequences for the people of this region. There is therefore a need to improve seasonal to inter-annual prediction of the West-African monsoon (WAM), however, difficulties modeling the WAM arise from both the paucity of observations at sufficient space-time resolutions, and due to the complex interactions between the biosphere, atmosphere and hydrosphere over this region. In particular, there is evidence that the land surface influences the variability of the WAM over a wide range of spatio-temporal scales. A critical aspect of this coupling is the feedback between the regional atmospheric circulation and the strong meridional surface flux gradients of mass and energy. One of the main goals of the African Monsoon Multi-disciplinary Analysis (AMMA) Project is to obtain a better understanding of the physical processes influencing the West-African Monsoon (WAM) on daily to inter-annual timescales. An improved comprehension of the relevant land surface processes is being addressed through the construction of a multi-scale atmospheric and land surface parameter forcing database using a variety of sources; numerical weather prediction forecast data, remote sensing products and local scale observations. The goal of this database is to drive land surface, vegetation and hydrological models over a range of spatial scales (local to regional) in order to gain better insights into the attendant processes. This goal is being met under the auspices of the AMMA Land surface Model Intercomparison Project (ALMIP). In the recently completed Phase 1 of this project, an ensemble of state-of-the-art land surface schemes have been run in "off-line" mode (i.e. decoupled from an atmospheric model) at a regional scale over western Africa for four annual cycles (2002-5). In this talk, intercomparison results will be presented. In addition, results from a

  15. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  16. Building integral projection models: a user's guide.

    Science.gov (United States)

    Rees, Mark; Childs, Dylan Z; Ellner, Stephen P

    2014-05-01

    In order to understand how changes in individual performance (growth, survival or reproduction) influence population dynamics and evolution, ecologists are increasingly using parameterized mathematical models. For continuously structured populations, where some continuous measure of individual state influences growth, survival or reproduction, integral projection models (IPMs) are commonly used. We provide a detailed description of the steps involved in constructing an IPM, explaining how to: (i) translate your study system into an IPM; (ii) implement your IPM; and (iii) diagnose potential problems with your IPM. We emphasize how the study organism's life cycle, and the timing of censuses, together determine the structure of the IPM kernel and important aspects of the statistical analysis used to parameterize an IPM using data on marked individuals. An IPM based on population studies of Soay sheep is used to illustrate the complete process of constructing, implementing and evaluating an IPM fitted to sample data. We then look at very general approaches to parameterizing an IPM, using a wide range of statistical techniques (e.g. maximum likelihood methods, generalized additive models, nonparametric kernel density estimators). Methods for selecting models for parameterizing IPMs are briefly discussed. We conclude with key recommendations and a brief overview of applications that extend the basic model. The online Supporting Information provides commented R code for all our analyses. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  17. SATURNUS: the UCLA infrared free-electron laser project

    International Nuclear Information System (INIS)

    Dodd, J.W.; Hartman, S.C.; Park, S.; Pellegrini, C.; Rosenzweig, J.B.; Smolin, J.A.; Hairapetian, G.; Kolonko, J.; Barletta, W.A.; Cline, D.B.; Favis, J.G.; Joshi, C.J.; Luhmann, N.C. Jr.; Ivanchenkov, S.N.; Khlebnikov, A.S.; Lachin, Y.Y.; Varfolomeev, A.A.

    1991-01-01

    A compact 20 MeV linac with an RF laser-driven electron gun will be used to drive a high-gain (10cm gain length), 10.6 μm wavelength FEL amplifier, operating in the SASE mode. Saturnus will mainly study FEL physics in the high-gain regime, including start-up from noise, optical guiding, sidebands, saturation, and superradiance, with emphasis on the effects important for future short wavelength operation of FEL's. The hybrid undulator was designed and built at the Kurchatov Inst. of Atomic Energy in the USSR. The primary magnetic flux is provided by C-shaped iron yokes, where between the poles thin blocks of neodymium-iron-boron magnets are placed to provide additional magnetic flux along the undulator axis. The field strength is adjusted by moving the thin Nd-Fe-B blocks on a set screw mount. The initial assembly will have forty periods, each 1.5 cm long. The gap distance between the yoke pole-pieces is fixed at 5 mm. The undulator field has been measured, yielding on an axis peak value of 6.6kGauss, which closely matches computer simulations

  18. Model Order Reduction for Electronic Circuits:

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Shontz, Suzanne

    Electronic circuits are ubiquitous; they are used in numerous industries including: the semiconductor, communication, robotics, auto, and music industries (among many others). As products become more and more complicated, their electronic circuits also grow in size and complexity. This increased...

  19. Modeling Electronic Properties of Complex Oxides

    Science.gov (United States)

    Krishnaswamy, Karthik

    Complex oxides are a class of materials that have recently emerged as potential candidates for electronic applications owing to their interesting electronic properties. The goal of this dissertation is to develop a fundamental understanding of these electronic properties using a combination of first-principles approaches based on density functional theory (DFT), and Schrodinger-Poisson (SP) simulation (Abstract shortened by ProQuest.

  20. The sigma model on complex projective superspaces

    Energy Technology Data Exchange (ETDEWEB)

    Candu, Constantin; Mitev, Vladimir; Schomerus, Volker [DESY, Hamburg (Germany). Theory Group; Quella, Thomas [Amsterdam Univ. (Netherlands). Inst. for Theoretical Physics; Saleur, Hubert [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Physique Theorique; USC, Los Angeles, CA (United States). Physics Dept.

    2009-08-15

    The sigma model on projective superspaces CP{sup S-1} {sup vertical} {sup stroke} {sup S} gives rise to a continuous family of interacting 2D conformal field theories which are parametrized by the curvature radius R and the theta angle {theta}. Our main goal is to determine the spectrum of the model, non-perturbatively as a function of both parameters. We succeed to do so for all open boundary conditions preserving the full global symmetry of the model. In string theory parlor, these correspond to volume filling branes that are equipped with a monopole line bundle and connection. The paper consists of two parts. In the first part, we approach the problem within the continuum formulation. Combining combinatorial arguments with perturbative studies and some simple free field calculations, we determine a closed formula for the partition function of the theory. This is then tested numerically in the second part. There we propose a spin chain regularization of the CP{sup S-1} {sup vertical} {sup stroke} {sup S} model with open boundary conditions and use it to determine the spectrum at the conformal fixed point. The numerical results are in remarkable agreement with the continuum analysis. (orig.)

  1. The sigma model on complex projective superspaces

    International Nuclear Information System (INIS)

    Candu, Constantin; Mitev, Vladimir; Schomerus, Volker; Quella, Thomas; Saleur, Hubert; USC, Los Angeles, CA

    2009-08-01

    The sigma model on projective superspaces CP S-1 vertical stroke S gives rise to a continuous family of interacting 2D conformal field theories which are parametrized by the curvature radius R and the theta angle θ. Our main goal is to determine the spectrum of the model, non-perturbatively as a function of both parameters. We succeed to do so for all open boundary conditions preserving the full global symmetry of the model. In string theory parlor, these correspond to volume filling branes that are equipped with a monopole line bundle and connection. The paper consists of two parts. In the first part, we approach the problem within the continuum formulation. Combining combinatorial arguments with perturbative studies and some simple free field calculations, we determine a closed formula for the partition function of the theory. This is then tested numerically in the second part. There we propose a spin chain regularization of the CP S-1 vertical stroke S model with open boundary conditions and use it to determine the spectrum at the conformal fixed point. The numerical results are in remarkable agreement with the continuum analysis. (orig.)

  2. On the Computation of Secondary Electron Emission Models

    OpenAIRE

    Clerc, Sebastien; Dennison, JR; Hoffmann, Ryan; Abbott, Jonathon

    2006-01-01

    Secondary electron emission is a critical contributor to the charge particle current balance in spacecraft charging. Spacecraft charging simulation codes use a parameterized expression for the secondary electron (SE) yield delta(Eo) as a function of the incident electron energy Eo. Simple three-step physics models of the electron penetration, transport, and emission from a solid are typically expressed in terms of the incident electron penetration depth at normal incidence R(Eo) and the mean ...

  3. A Model for Teaching Electronic Commerce Students

    Directory of Open Access Journals (Sweden)

    Howard C. Woodard

    2002-10-01

    Full Text Available The teaching of information technology in an ever-changing world at universities presents a challenge. Are courses taught as concepts, while ignoring hands-on courses, leaving the hands-on classes to the technical colleges or trade schools? Does this produce the best employees for industry or give students the knowledge and skills necessary to function in a high-tech world? At GeorgiaCollege & StateUniversity (GC&SU a model was developed that combines both concepts and practical hands-on skill to meet this challenge. Using this model, a program was developed that consists of classroom lecture of concepts as well as practical hands-on exercises for mastering the knowledge and developing the skills necessary to succeed in the high-tech world of electronic commerce. The students become productive day one of a new job assignment. This solves the problem of students having the "book knowledge" but not knowing how to apply what has been learned.

  4. A Model of Project and Organisational Dynamics

    OpenAIRE

    Jenny Leonard

    2012-01-01

    The strategic, transformational nature of many information systems projects is now widely understood. Large-scale implementations of systems are known to require significant management of organisational change in order to be successful. Moreover, projects are rarely executed in isolation – most organisations have a large programme of projects being implemented at any one time. However, project and value management methodologies provide ad hoc definitions of the relationship between a project ...

  5. Model of electron capture in low-temperature glasses

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Swiatla, D.; Kroh, J.

    1983-01-01

    The new model of electron capture by a statistical variety of traps in glassy matrices is proposed. The electron capture is interpreted as the radiationless transition (assisted by multiphonon emission) of the mobile electron to the localized state in the trap. The conception of 'unfair' and 'fair' traps is introduced. The 'unfair' trap captures the mobile electron by the shallow excited state. In contrast, the 'fair' trap captures the electron by the ground state. The model calculations of the statistical distributions of the occupied electron traps are presented and discussed with respect to experimental results. (author)

  6. First observation of low energy electron neutrinos in a liquid argon time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Adams, C.; Asaadi, J.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; Fitzpatrick, R. S.; Fleming, B.; Hackenburg, A.; Horton-Smith, G.; James, C.; Lang, K.; Luo, X.; Mehdiyev, R.; Page, B.; Palamara, O.; Rebel, B.; Schukraft, A.; Scanavini, G.; Soderberg, M.; Spitz, J.; Szelc, A. M.; Weber, M.; Yang, T.; Zeller, G. P.

    2017-04-01

    The capabilities of liquid argon time projection chambers (LArTPCs) to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specically those looking to observe electron neutrino (e) appearance. The LArTPC promises excellent background rejection capabilities, especially in this \\golden" channel for both short and long baseline neutrino oscillation experiments. We present the rst experimental observation of electron neutrinos and anti-neutrinos in the ArgoNeut LArTPC, in the energy range relevant to DUNE and the Fermilab Short Baseline Neutrino Program. We have selected 37 electron candidate events and 274 gamma candidate events, and measured an 80% purity of electrons based on a topological selection. Additionally, we present a of separation of electrons from gammas using calorimetric energy deposition, demonstrating further separation of electrons from background gammas.

  7. Solid Waste Projection Model: Database User's Guide

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1993-10-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for using Version 1.4 of the SWPM database: system requirements and preparation, entering and maintaining data, and performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not Provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  8. Heat Pinches in Electron-Heated Tokamak Plasmas: Theoretical Turbulence Models versus Experiments

    Science.gov (United States)

    Mantica, P.; Thyagaraja, A.; Weiland, J.; Hogeweij, G. M. D.; Knight, P. J.

    2005-10-01

    Two fluid turbulence models, the drift wave based quasilinear 1.5D Weiland model and the electromagnetic global 3D nonlinear model cutie, have been used to account for heat pinch evidence in off-axis modulated electron cyclotron heating experiments in the Rijnhuizen Tokamak Project. Both models reproduce the main features indicating inward heat convection in mildly off-axis cases. In far-off-axis cases with hollow electron temperature profiles, the existence of outward convection was reproduced only by cutie. Turbulence mechanisms driving heat convection in the two models are discussed.

  9. Research on lightning stroke model and characteristics of electronic transformer

    Directory of Open Access Journals (Sweden)

    Li Mu

    2018-01-01

    Full Text Available In order to improve the reliability of power supply, a large number of electronic voltage and current transformers are used in digital substations. In this paper, the mathematical model of the electronic transformer is analyzed firstly, and its circuit model is given. According to the difference of working characteristics between voltage transformer and current transformer, the circuit model of voltage type electronic transformer and current type electronic transformer is given respectively. By analyzing their broadband transmission characteristics, the accuracy of the model is verified, and their lightning analysis models are obtained.

  10. Highly Integrated Mixed-Mode Electronics for the readout of Time Projection Chambers

    CERN Document Server

    França Santos, Hugo Miguel; Musa, Luciano

    Time Projection Chambers (TPCs) are one of the most prevalent particle trackers for high-energy physics experiments. Future planed TPCs for the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) entail very high spatial resolution in large gas volumes, but impose low material budget for the end caps of the TPC cylinder. This constraint is not accomplished with the state-of-the-art front-end electronics because of its unsuited relatively large mass and of its associated water cooling system. To reach the required material budget, highly compact and power efficient dedicated TPC front-end electronics should be developed. This project aims at re-designing the different electronic elements with significant improvements in terms of performance, power efficiency and versatility, and developing an integrated circuit that merges all components of the front-end electronics. This chip ambitions a large volume production at low unitary cost and its employment in multiple detectors. The design of ...

  11. The study of the risk management model of construction project

    International Nuclear Information System (INIS)

    Jiang Bo; Feng Yanping; Liu Changbin

    2010-01-01

    The paper first analyzed the development of the risk management of construction project and the risk management processes, and then briefly introduced the risk management experience of foreign project management. From the project management by objectives point of view, the greatest risk came from the lack of clarity of the objectives in the project management, which led to the project's risk emergence. In the analysis of the principles of the project objectives identification and risk allocation, the paper set up a project management model which insurance companies involved in the whole process of the project management, and simply analyzed the roles of insurance company at last. (authors)

  12. Logistics of Mathematical Modeling-Focused Projects

    Science.gov (United States)

    Harwood, R. Corban

    2018-01-01

    This article addresses the logistics of implementing projects in an undergraduate mathematics class and is intended both for new instructors and for instructors who have had negative experiences implementing projects in the past. Project implementation is given for both lower- and upper-division mathematics courses with an emphasis on mathematical…

  13. The Lunar Mapping and Modeling Project

    Science.gov (United States)

    Noble, S. K.; Nall, M. E.; French, R. A.; Muery, K. G.

    2009-12-01

    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL - US Army Cold Regions Research and Engineering Laboratory, and the USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation’s data needs. LMMP will provide access to this data through a single intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. Two visualization systems are being developed, a web-based system called Lunar Mapper, and a desktop client, ILIADS, which will be downloadable from the LMMP portal. LMMP will provide such products as local and regional imagery and DEMs, hazard assessment maps, lighting and gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and to ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar

  14. Cosmic-ray electrons in the closed-galaxy model

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Stephens, S.A.

    1976-01-01

    We have examined the consequences of the ''closed galaxy'' cosmic-ray confinement model of Rasmussen and Peters with regard to the electron component of cosmic rays. It is found that the predictions of this model are inconsistent with the observed intensity and charge composition of electrons. The model is also inconsistent with the galactic radio emission

  15. The electronic-commerce-oriented virtual merchandise model

    Science.gov (United States)

    Fang, Xiaocui; Lu, Dongming

    2004-03-01

    Electronic commerce has been the trend of commerce activities. Providing with Virtual Reality interface, electronic commerce has better expressing capacity and interaction means. But most of the applications of virtual reality technology in EC, 3D model is only the appearance description of merchandises. There is almost no information concerned with commerce information and interaction information. This resulted in disjunction of virtual model and commerce information. So we present Electronic Commerce oriented Virtual Merchandise Model (ECVMM), which combined a model with commerce information, interaction information and figure information of virtual merchandise. ECVMM with abundant information provides better support to information obtainment and communication in electronic commerce.

  16. Lessons on electronic decoherence in molecules from exact modeling

    Science.gov (United States)

    Hu, Wenxiang; Gu, Bing; Franco, Ignacio

    2018-04-01

    Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.

  17. First Detection of Low Energy Electron Neutrinos in Liquid Argon Time Projection Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Corey James [Yale U.

    2016-01-01

    Electron neutrino appearance is the signature channel to address the most pressing questions in neutrino oscillations physics, at both long and short baselines. This includes the search for CP violation in the neutrino sector, which the U.S. flagship neutrino experiment DUNE will address. In addition, the Short Baseline Neutrino Program at Fermilab (MicroBooNE, SBND, ICARUS-T600) searches for new physics, such as sterile neutrinos, through electron neutrino appearance. Liquid argon time projection chambers are the forefront of neutrino detection technology, and the detector of choice for both short and long baseline neutrino oscillation experiments. This work presents the first experimental observation and study of electron neutrinos in the 1-10 GeV range, the essential oscillation energy regime for the above experiments. The systematic uncertainties for an electron neutrino appearance search for the Fermilab Short Baseline Neutrino Program are carefully quantified, and the characterization of separation between electrons and high energy photons is examined.

  18. Convergence of photonics and electronics for Terahertz wireless communications – the ITN CELTA project

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2016-01-01

    Terahertz wireless communications is expected to offer the required high capacity and low latency performance required from short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: convergence of...... of electronics and photonics technologies enabling Terahertz applications...

  19. First observation of low energy electron neutrinos in a liquid argon time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Adams, C.; Asaadi, J.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; Fitzpatrick, R. S.; Fleming, B.; Hackenburg, A.; Horton-Smith, G.; James, C.; Lang, K.; Luo, X.; Mehdiyev, R.; Page, B.; Palamara, O.; Rebel, B.; Schukraft, A.; Scanavini, G.; Soderberg, M.; Spitz, J.; Szelc, A. M.; Weber, M.; Yang, T.; Zeller, G. P.

    2017-04-06

    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($\

  20. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    Science.gov (United States)

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  1. Basic Conditions of Validity of Electronic Contracts in Iran and UNCITRAL Model Law

    Directory of Open Access Journals (Sweden)

    Abbas Karimi

    2017-02-01

    Full Text Available Diverse activities such as electronic exchange of goods and services, instant digital content delivery, electronic funds transfer, electronic stock exchange, electronic bill of lading, commercial projects, common engineering and design, sourcing, government purchase, direct marketing and post-sales services included in e-commerce field.  Due to the increasing spread of the electronic world in all aspects, electronic contracts, in turn, was of great importance and made significant contributions in business contracts. The present study aims to investigate the concept, fundamentals and history of electronic contracts referring to UNCITRAL Model Law on Electronic Commerce and Electronic Commerce Act (1996. The results indicate that in terms of the conclusion and obligations of the parties, contract in cyberspace in general is similar to the contract in the real world and in this respect, there is no major difference between these two contexts. Potential electronic contracts considered as written ones and Electronic signatures recognized as valid as the basis of the validity of the will in electronic trading.

  2. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  3. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  4. FTL Quantum Models of the Photon and the Electron

    International Nuclear Information System (INIS)

    Gauthier, Richard F.

    2007-01-01

    A photon is modeled by an uncharged superluminal quantum moving at 1.414c along an open 45-degree helical trajectory with radius R = λ/2π (where λ is the helical pitch or wavelength). A mostly superluminal spatial model of an electron is composed of a charged pointlike quantum circulating at an extremely high frequency ( 2.5 x 1020 hz) in a closed, double-looped hehcal trajectory whose helical pitch is one Compton wavelength h/mc. The quantum has energy and momentum but not rest mass, so its speed is not limited by c. sThe quantum's speed is superluminal 57% of the time and subluminal 43% of the time, passing through c twice in each trajectory cycle. The quantum's maximum speed in the electron's rest frame is 2.515c and its minimum speed is .707c. The electron model's helical trajectory parameters are selected to produce the electron's spin (ℎ/2π)/2 and approximate (without small QED corrections) magnetic moment e(ℎ/2π)/2m (the Bohr magneton μB) as well as its Dirac equation-related 'jittery motion' angular frequency 2mc2/(ℎ/2π), amplitude (ℎ/2π)/2mc and internal speed c. The two possible helicities of the electron model correspond to the electron and the positron. With these models, an electron is like a closed circulating photon. The electron's inertia is proposed to be related to the electron model's circulating internal Compton momentum mc. The internal superluminalily of the photon model, the internal superluminahty/subluminality of the electron model, and the proposed approach to the electron's inertia as ''momentum at rest'' within the electron, could be relevant to possible mechanisms of superluminal communication and transportation

  5. QUANTUM CHEMICAL MODELING OF SPECTRAL PROPERTIES AND ELECTRON TRANSFER IN EXTENDED SYSTEMS

    Czech Academy of Sciences Publication Activity Database

    Záliš, Stanislav; Kvapilová, Hana; Kratochvílová, Irena; Šebera, Jakub; Vlček, Antonín; Winter, R. F.

    2011-01-01

    Roč. 2011, č. 1 (2011), P1299 ISSN 1708-5284 R&D Projects: GA AV ČR KAN100400702; GA MŠk LD11086 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : quantum chemical modeling * electron transfer Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Modeling mini-orange electron spectrometers

    International Nuclear Information System (INIS)

    Canzian da Silva, Nelson; Dietzsch, Olacio

    1994-01-01

    A method for calculating the transmission of mini-orange electron spectrometers is presented. The method makes use of the analytical solution for the magnetic field of a plane magnet in the calculation of the spectrometer spatial field distribution by superimposing the fields of the several magnets that compose the system. Electron trajectories through the spectrometer are integrated numerically in a Monte Carlo calculation and the transmission of the spectrometer as a function of the electron energy is evaluated. A six-magnet mini-orange spectrometer was built and its transmission functions for several distances from source to detector were measured and compared to the calculations. The overall agreement is found to be good. The method is quite general and can be applied to the design of systems composed of plane magnets, predicting their performance before assembling them. ((orig.))

  7. Molecular modeling and multiscaling issues for electronic material applications

    CERN Document Server

    Iwamoto, Nancy; Yuen, Matthew; Fan, Haibo

    Volume 1 : Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications.  Part I presents  the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue.  Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example ...

  8. Orbital Models and Electronic Structure Theory

    DEFF Research Database (Denmark)

    Linderberg, Jan

    2012-01-01

    This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules w...

  9. A clustering approach to multireference alignment of single-particle projections in electron microscopy.

    Science.gov (United States)

    Sorzano, C O S; Bilbao-Castro, J R; Shkolnisky, Y; Alcorlo, M; Melero, R; Caffarena-Fernández, G; Li, M; Xu, G; Marabini, R; Carazo, J M

    2010-08-01

    Two-dimensional analysis of projections of single-particles acquired by an electron microscope is a useful tool to help identifying the different kinds of projections present in a dataset and their different projection directions. Such analysis is also useful to distinguish between different kinds of particles or different particle conformations. In this paper we introduce a new algorithm for performing two-dimensional multireference alignment and classification that is based on a Hierarchical clustering approach using correntropy (instead of the more traditional correlation) and a modified criterion for the definition of the clusters specially suited for cases in which the Signal-to-Noise Ratio of the differences between classes is low. We show that our algorithm offers an improved sensitivity over current methods in use for distinguishing between different projection orientations and different particle conformations. This algorithm is publicly available through the software package Xmipp. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Virtual Power Electronics: Novel Software Tools for Design, Modeling and Education

    Science.gov (United States)

    Hamar, Janos; Nagy, István; Funato, Hirohito; Ogasawara, Satoshi; Dranga, Octavian; Nishida, Yasuyuki

    The current paper is dedicated to present browser-based multimedia-rich software tools and e-learning curriculum to support the design and modeling process of power electronics circuits and to explain sometimes rather sophisticated phenomena. Two projects will be discussed. The so-called Inetele project is financed by the Leonardo da Vinci program of the European Union (EU). It is a collaborative project between numerous EU universities and institutes to develop state-of-the art curriculum in Electrical Engineering. Another cooperative project with participation of Japanese, European and Australian institutes focuses especially on developing e-learning curriculum, interactive design and modeling tools, furthermore on development of a virtual laboratory. Snapshots from these two projects will be presented.

  11. Low-energy electron point projection microscopy of suspended graphene, the ultimate 'microscope slide'

    International Nuclear Information System (INIS)

    Mutus, J Y; Livadaru, L; Urban, R; Salomons, M H; Cloutier, M; Wolkow, R A; Robinson, J T

    2011-01-01

    Point projection microscopy (PPM) is used to image suspended graphene by using low-energy electrons (100-205 eV). Because of the low energies used, the graphene is neither damaged nor contaminated by the electron beam for doses of the order of 10 7 electrons per nm 2 . The transparency of graphene is measured to be 74%, equivalent to electron transmission through a sheet twice as thick as the covalent radius of sp 2 -bonded carbon. Also observed is rippling in the structure of the suspended graphene, with a wavelength of approximately 26 nm. The interference of the electron beam due to diffraction off the edge of a graphene knife edge is observed and is used to calculate a virtual source size of 4.7±0.6 A for the electron emitter. It is demonstrated that graphene can serve as both the anode and the substrate in PPM, thereby avoiding distortions due to strong field gradients around nanoscale objects. Graphene can be used to image objects suspended on the sheet using PPM and, in the future, electron holography.

  12. VERTICAL PROJECTION EFFICIENCY OF PIVOT POINTS USING ELECTRONIC TACHEOMETER DURING CONSTRUCTION OF BUILDINGS AND STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. S. Nesterenok

    2014-01-01

    Full Text Available The paper shows that functional limitation of zenith devices and introduction of modern high-accuracy electronic tacheometers should lead to substitution of the mentioned devices for tacheometers in geodesic works concerning vertical projection of pivot points of the constructed buildings and structures. However the electronic tacheometer has not been considered in the function of a zenith device in ТКП 45-1.03-26-2006.Special experiemnts and practical works executed by UE “Geokart” has proved that in accordance with its design the electronic tacheometer equipped with a compensator for small inclinations and zenith prism attachment for ocular can be applied as a vertical projection device while setting sighting line of a telescope in a fixed vertical position. Corresponding experiments have been carried out for multi-storied building of business centre located in the M. Tank Street in Minsk in order to obtain comparative characteristics of vertical projection accuracy with the help of tacheometer TOPCON GPT 7501 and zenith device PZL-100. An initial point of the staked grid has been situated at the elevation ±0,0 м, standard graph elevation has been equal to +49,5 м (concrete slab of the 14th floor, projection height referred to the device has been equal to Н = 47,8 м. Both devices have been set on the same stand using a purpose made adaptive device in order to exclude centering errors. Deviation in position of final projection points on the standard graph which were obtained with the help of two devices has been equal to 1.2 mm, that testifies practical equal accuracy of the zenith device and tacheometer for vertical projection function.Additional advantage of the electronic tacheometer in comparison with special vertical projection devi ces lies in the fact that in the case of a certain misalignment of geodesic openings in intermediate floors ta- cheometer deviating from the vertical makes it possible to carry out initial point

  13. Teaching Power Electronics with a Design-Oriented, Project-Based Learning Method at the Technical University of Denmark

    Science.gov (United States)

    Zhang, Zhe; Hansen, Claus Thorp; Andersen, Michael A. E.

    2016-01-01

    Power electronics is a fast-developing technology within the electrical engineering field. This paper presents the results and experiences gained from applying design-oriented project-based learning to switch-mode power supply design in a power electronics course at the Technical University of Denmark (DTU). Project-based learning (PBL) is known…

  14. Electronic Warfare in Army Models - A Survey.

    Science.gov (United States)

    1980-08-01

    CCM) PROVING GROUND TENIAS SAMJAM EIEM SPREAD SPECTRUM US ARMY ELECTRONIC FOREIGN SCIENCE & OFFICE OF MISSILE WARFARE LAB (EWL) TECHNOLOGY CENTER...IPAR MULTIRADAR SPREAD SPECTRUM ECMFUZ IRSS OTOALOC TAC ZINGERS EIEM ITF PATCOM TAM EOCM SIM FAC MGM-H4D RFSS TENIAS GTSF MG(-H4H ROLJAM ZAP I HMSM MSL...USAFAS TRASANA USAPAS TCF ASD WPAFU TENIAS ______ ___ ECAC _________ WAR EAGLE _________CATRADA WARRANT am________ 3DBDM ZAP 1 ____________ MEW EWL ZAP 2

  15. Reliability Modeling of Critical Electronic Devices.

    Science.gov (United States)

    1983-05-01

    Electronics, Vol. QE-15, No. 1, up January 1979, pp. 11-13. 15. Newman, D.H. and Ritchie, S., Degradation Pnenomena in Gallium Aluminium Arsenide Stripe...8217RESERVOIR COLD CATHODE TRAP FIGURE 7.2-1: HELIUM-CADMIUM LASER TUBE Principle design considerations relating to the lifetime of the device include (Ref 1): o...available in two basic design types. The contact design is either screw machined or stamped and formed. The screw machined contacts are close entry

  16. Mathematical model I. Electron and quantum mechanics

    OpenAIRE

    Nitin Ramchandra Gadre

    2011-01-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like...

  17. Financial and organizational models of NPP construction projects

    International Nuclear Information System (INIS)

    Ivanov, Timur

    2010-01-01

    The recent evolution of financial and organizational models of NPP projects can be truly reputed to open a new page of the world market of NPP construction. The definition of the concrete model is based mostly on specific cooperation backgrounds and current terms and conditions under which the particular NPP project is being evolved. In this article the most commonly known strategies and schemes of financing structuring for export NPP construction projects are scrutinized. Special attention is paid to the analysis of BOO/BOT models which are based on the public-private partnership. Most BOO/BOT projects in the power sector has Power Purchase Agreements (PPA) as an integral part of them. The PPA key principles are studied here as well. The flexibility and adaptability of the public-private partnership models for financing and organization of the NPP projects contributes substantially to the competitiveness of the NPP projects especially under current economic conditions. (orig.)

  18. Multi-Agent Modeling in Managing Six Sigma Projects

    Directory of Open Access Journals (Sweden)

    K. Y. Chau

    2009-10-01

    Full Text Available In this paper, a multi-agent model is proposed for considering the human resources factor in decision making in relation to the six sigma project. The proposed multi-agent system is expected to increase the acccuracy of project prioritization and to stabilize the human resources service level. A simulation of the proposed multiagent model is conducted. The results show that a multi-agent model which takes into consideration human resources when making decisions about project selection and project team formation is important in enabling efficient and effective project management. The multi-agent modeling approach provides an alternative approach for improving communication and the autonomy of six sigma projects in business organizations.

  19. Electronic learning and constructivism: a model for nursing education.

    Science.gov (United States)

    Kala, Sasikarn; Isaramalai, Sang-Arun; Pohthong, Amnart

    2010-01-01

    Nurse educators are challenged to teach nursing students to become competent professionals, who have both in-depth knowledge and decision-making skills. The use of electronic learning methods has been found to facilitate the teaching-learning process in nursing education. Although learning theories are acknowledged as useful guides to design strategies and activities of learning, integration of these theories into technology-based courses appears limited. Constructivism is a theoretical paradigm that could prove to be effective in guiding the design of electronic learning experiences for the purpose of providing positive outcomes, such as the acquisition of knowledge and decision-making skills. Therefore, the purposes of this paper are to: describe electronic learning, present a brief overview of what is known about the outcomes of electronic learning, discuss constructivism theory, present a model for electronic learning using constructivism, and describe educators' roles emphasizing the utilization of the model in developing electronic learning experiences in nursing education.

  20. Power Electronic Packaging Design, Assembly Process, Reliability and Modeling

    CERN Document Server

    Liu, Yong

    2012-01-01

    Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can d...

  1. Embedded Cluster Models for Reactivity of the Hydrated Electron

    Czech Academy of Sciences Publication Activity Database

    Uhlig, Frank; Jungwirth, Pavel

    2013-01-01

    Roč. 227, č. 11 (2013), s. 1583-1593 ISSN 0942-9352 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : hydrated electron * clusters * reactivity * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.178, year: 2013

  2. Radiation exposure modeling and project schedule visualization

    International Nuclear Information System (INIS)

    Jaquish, W.R.; Enderlin, V.R.

    1995-10-01

    This paper discusses two applications using IGRIP (Interactive Graphical Robot Instruction Program) to assist environmental remediation efforts at the Department of Energy (DOE) Hanford Site. In the first application, IGRIP is used to calculate the estimated radiation exposure to workers conducting tasks in radiation environments. In the second, IGRIP is used as a configuration management tool to detect interferences between equipment and personnel work areas for multiple projects occurring simultaneously in one area. Both of these applications have the capability to reduce environmental remediation costs by reducing personnel radiation exposure and by providing a method to effectively manage multiple projects in a single facility

  3. A Team Building Model for Software Engineering Courses Term Projects

    Science.gov (United States)

    Sahin, Yasar Guneri

    2011-01-01

    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  4. Uncertain soil moisture feedbacks in model projections of Sahel precipitation

    Science.gov (United States)

    Berg, A. M.; Lintner, B. R.; Findell, K. L.; Giannini, A.

    2017-12-01

    Given the uncertainties in climate model projections of Sahel precipitation, at the northern edge of the West African Monsoon, understanding the factors governing projected precipitation changes in this semiarid region is crucial. This study investigates how long-term soil moisture changes projected under climate change may feedback on projected changes of Sahel rainfall, using simulations with and without soil moisture change from five climate models participating in the Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison Project phase 5 experiment. In four out of five models analyzed, soil moisture feedbacks significantly influence the projected West African precipitation response to warming; however, the sign of these feedbacks differs across the models. In other words, we show, over a subset of climate models, how land-atmosphere interactions may be a cause of uncertainty in model projections of precipitation. These results demonstrate that reducing uncertainties across model projections of the West African Monsoon requires, among other factors, improved mechanistic understanding and constraint of simulated land-atmosphere feedbacks, even at the large spatial scales considered here.

  5. Projective Modeling and System Change: Reservoir Management Examples

    NARCIS (Netherlands)

    Keesman, K.J.

    2006-01-01

    In this paper a projective modeling approach for ecological/ environmental systems is introduced. The basic idea behind projective modeling is to define (possible) future output behavior and to use identifiable timevarying system parameters, representing underlying sub-processes, as an (additional)

  6. Replication/Implementation Model Field Test: Project SHAL.

    Science.gov (United States)

    Achilles, C. M.; Young, Rufus, Jr.

    This document reports findings of a study that evaluated the implementation model developed for Project SHAL, an "effective schools" reform model. Implemented in 1980 in Area I of the St. Louis Public School District (Missouri), Project SHAL is an acronym for the four original participating schools--Stowe, Hempstead, Arlington, and…

  7. Creation and usage of component model in projecting information systems

    OpenAIRE

    Urbonas, Paulius

    2004-01-01

    The purpose of this project was to create the information system, using component model. Making new information systems, often the same models are building. Realizing system with component model in creating new system it‘s possible to use the old components. To describe advantages of component model information system was created for company “Vilseda”. If the created components used in future, they have been projected according to theirs types(grafical user interface, data and function reques...

  8. Rapid Energy Modeling Workflow Demonstration Project

    Science.gov (United States)

    2014-01-01

    Conditioning Engineers BIM Building Information Model BLCC building life cycle costs BPA Building Performance Analysis CAD computer assisted...utilizes information on operations, geometry, orientation, weather, and materials, generating Three-Dimensional (3D) Building Information Models ( BIM ...executed a demonstration of Rapid Energy Modeling (REM) workflows that employed building information modeling ( BIM ) approaches and conceptual energy

  9. The TAPin electronic libraries project and the experience at the University of Birmingham

    Directory of Open Access Journals (Sweden)

    Tracy K. Mulvaney

    1997-01-01

    Full Text Available The TAPin Project and its implementation at the University of Birmingham is described. Local issues and key features of a hybrid approach to Networked Learner Support are addressed. The methods of NLS adopted included electronic mail and the Internet. The key role in NLS played by subject librarians is stressed. Transfer of skills to learners by means of targeted individual training and a web guide is discussed.

  10. A new platform for research and applications with electrons: the PRAE project

    Directory of Open Access Journals (Sweden)

    Marchand Dominique

    2017-01-01

    Full Text Available The future PRAE multi-disciplinary platform to be built in the campus of the Paris-Sud University (Orsay, France is based on a high-quality pulsed electron beam in the energy range between 50 to 140 MeV. The beam will be delivered to three experimental beam lines, each of them being dedicated to specific research and applications projects related to instrumentation, radiobiology and nuclear physics.

  11. Electronic Business Development as a Sustainable Competitive Advantage Model

    Directory of Open Access Journals (Sweden)

    Narimantas Kazimieras Paliulis

    2012-07-01

    Full Text Available The paper examines the practical usefulness of information technologies in business reviewing electronic business concepts provided in science literature and also the newest tendencies of electronic business development. The paper offers a review of various authors works on e-strategies and IT influence on companies’ functionality. An analysis of disadvantages in various electronic business development models is provided. On the basis of analyses done on the theory of electronic business development and on disadvantages of e-business models, the main aspects of e-business development as sustainable competitive advantage are identified. A fully – formed model of electronic business development as sustainable competitive advantage is presented. Conclusions are provided.Article in Lithuanian

  12. A Model of and for Virtual Projects

    NARCIS (Netherlands)

    Garud, R.; Kumaraswamy, A.; Tuertscher, P.R.; Cattani, G.; Ferriani, S.; Frederiksen, L.; Täube, F.

    2011-01-01

    We examine how digital technologies enable distributed actors to collaborate asynchronously on virtual projects. We use Wikipedia and associated wiki digital technology as the research site for our exploration. Our probe of the emergence of Wikipedia articles highlights a distinctive property of

  13. The PASS Model Project: Administrative Handbook.

    Science.gov (United States)

    George Peabody Coll. for Teachers, Nashville, TN.

    Described is the PASS (Psychoeducational Agency-School System) Project, a collaborative effort between the Metropolitan Nashville Public Schools and the Child Study Center of George Peabody College for Teachers to demonstrate how agency and school system resources may be combined in an integrated service delivery system for learning disabled (LD)…

  14. Modeling skin collimation using the electron pencil beam redefinition algorithm.

    Science.gov (United States)

    Chi, Pai-Chun M; Hogstrom, Kenneth R; Starkschall, George; Antolak, John A; Boyd, Robert A

    2005-11-01

    Skin collimation is an important tool for electron beam therapy that is used to minimize the penumbra when treating near critical structures, at extended treatment distances, with bolus, or using arc therapy. It is usually made of lead or lead alloy material that conforms to and is placed on patient surface. Presently, commercially available treatment-planning systems lack the ability to model skin collimation and to accurately calculate dose in its presence. The purpose of the present work was to evaluate the use of the pencil beam redefinition algorithm (PBRA) in calculating dose in the presence of skin collimation. Skin collimation was incorporated into the PBRA by terminating the transport of electrons once they enter the skin collimator. Both fixed- and arced-beam dose calculations for arced-beam geometries were evaluated by comparing them with measured dose distributions for 10- and 15-MeV beams. Fixed-beam dose distributions were measured in water at 88-cm source-to-surface distance with an air gap of 32 cm. The 6 x 20-cm2 field (dimensions projected to isocenter) had a 10-mm thick lead collimator placed on the surface of the water with its edge 5 cm inside the field's edge located at +10 cm. Arced-beam dose distributions were measured in a 13.5-cm radius polystyrene circular phantom. The beam was arced 90 degrees (-45 degrees to +45 degrees), and 10-mm thick lead collimation was placed at +/- 30 degrees. For the fixed beam at 10 MeV, the PBRA- calculated dose agreed with measured dose to within 2.0-mm distance to agreement (DTA) in the regions of high-dose gradient and 2.0% in regions of low dose gradient. At 15 MeV, the PBRA agreed to within a 2.0-mm DTA in the regions of high-dose gradient; however, the PBRA underestimated the dose by as much as 5.3% over small regions at depths less than 2 cm because it did not model electrons scattered from the edge of the skin collimation. For arced beams at 10 MeV, the agreement was 1-mm DTA in the high-dose gradient

  15. A Unified Model of Secondary Electron Cascades in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Ziaja, B; London, R A; Hajdu, J

    2004-10-13

    In this paper we present a detailed and unified theoretical treatment of secondary electron cascades that follow the absorption of an X-ray photon. A Monte Carlo model has been constructed that treats in detail the evolution of electron cascades induced by photoelectrons and by Auger electrons following inner shell ionizations. Detailed calculations are presented for cascades initiated by electron energies between 0.1-10 keV. The present paper expands our earlier work by extending the primary energy range, by improving the treatment of secondary electrons, especially at low electron energies, by including ionization by holes, and by taking into account their coupling to the crystal lattice. The calculations describe the three-dimensional evolution of the electron cloud, and monitor the equivalent instantaneous temperature of the free-electron gas as the system cools. The dissipation of the impact energy proceeds predominantly through the production of secondary electrons whose energies are comparable to the binding energies of the valence (40-50 eV) and of the core electrons (300 eV). The electron cloud generated by a 10 keV electron is strongly anisotropic in the early phases of the cascade (t {le} 1 fs). At later times, the sample is dominated by low energy electrons, and these are scattered more isotropically by atoms in the sample. Our results for the total late time number of secondary electrons agree with available experimental data, and show that the emission of secondary electrons approaches saturation within about 100 fs, following the primary impact.

  16. New two-fluid (localized + band electron) model for manganites

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. New two-fluid (localized + band electron) model for manganites. ( With HR Krishnamurthy,GV Pai,SR Hassan,V Shenoy,. Key ideas: T Gupta ….) Two types of eg electronic states arise in doped manganites (due to strong JT coupling, strong U, filling conditions, …):.

  17. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    Science.gov (United States)

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…

  18. Problem Resolution through Electronic Mail: A Five-Step Model.

    Science.gov (United States)

    Grandgenett, Neal; Grandgenett, Don

    2001-01-01

    Discusses the use of electronic mail within the general resolution and management of administrative problems and emphasizes the need for careful attention to problem definition and clarity of language. Presents a research-based five-step model for the effective use of electronic mail based on experiences at the University of Nebraska at Omaha.…

  19. Validation of HEDR models. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Simpson, J.C.; Eslinger, P.W.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1994-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid.

  20. QMU in Integrated Spacecraft System Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ACTA and Sandia National Laboratories propose to quantify and propagate substructure modeling uncertainty for reduced-order substructure models to higher levels of...

  1. Electronic field emission models beyond the Fowler-Nordheim one

    Science.gov (United States)

    Lepetit, Bruno

    2017-12-01

    We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.

  2. Wake models developed during the Wind Shadow project

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Ott, S.; Pena, A.; Berg, J.; Nielsen, M.; Rathmann, O.; Joergensen, H.

    2011-11-15

    The Wind Shadow project has developed and validated improved models for determining the wakes losses, and thereby the array efficiency of very large, closely packed wind farms. The rationale behind the project has been that the existing software has been covering these types of wind farms poorly, both with respect to the densely packed turbines and the large fetches needed to describe the collective shadow effects of one farm to the next. Further the project has developed the necessary software for the use of the models. Guidelines with recommendations for the use of the models are included in the model deliverables. The project has been carried out as a collaborative project between Risoe DTU, DONG, Vattenfall, DNV and VESTAS, and it has been financed by energinet.dk grant no. 10086. (Author)

  3. Final Project Report Load Modeling Transmission Research

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, Bernard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bravo, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yinger, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chassin, Dave [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Huang, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Ning [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hiskens, Ian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Venkataramanan, Giri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-03-31

    The research presented in this report primarily focuses on improving power system load models to better represent their impact on system behavior. The previous standard load model fails to capture the delayed voltage recovery events that are observed in the Southwest and elsewhere. These events are attributed to stalled air conditioner units after a fault. To gain a better understanding of their role in these events and to guide modeling efforts, typical air conditioner units were testing in laboratories. Using data obtained from these extensive tests, new load models were developed to match air conditioner behavior. An air conditioner model is incorporated in the new WECC composite load model. These models are used in dynamic studies of the West and can impact power transfer limits for California. Unit-level and systemlevel solutions are proposed as potential solutions to the delayed voltage recovery problem.

  4. Modelling and implementing electronic health records in Denmark

    DEFF Research Database (Denmark)

    Bernstein, Knut; Rasmussen, Morten Bruun; Vingtoft, Søren

    2003-01-01

    The Danish Health IT strategy points out that integration between electronic health records (EHR) systems has a high priority. This paper reporst reports new tendencies in modelling and integration platforms globally and how this is reflected in the natinal development.......The Danish Health IT strategy points out that integration between electronic health records (EHR) systems has a high priority. This paper reporst reports new tendencies in modelling and integration platforms globally and how this is reflected in the natinal development....

  5. Uncertain soil moisture feedbacks in model projections of Sahel precipitation

    Science.gov (United States)

    Berg, Alexis; Lintner, Benjamin R.; Findell, Kirsten; Giannini, Alessandra

    2017-06-01

    Given the uncertainties in climate model projections of Sahel precipitation, at the northern edge of the West African Monsoon, understanding the factors governing projected precipitation changes in this semiarid region is crucial. This study investigates how long-term soil moisture changes projected under climate change may feedback on projected changes of Sahel rainfall, using simulations with and without soil moisture change from five climate models participating in the Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison Project phase 5 experiment. In four out of five models analyzed, soil moisture feedbacks significantly influence the projected West African precipitation response to warming; however, the sign of these feedbacks differs across the models. These results demonstrate that reducing uncertainties across model projections of the West African Monsoon requires, among other factors, improved mechanistic understanding and constraint of simulated land-atmosphere feedbacks, even at the large spatial scales considered here.Plain Language SummaryClimate model projections of Sahel rainfall remain notoriously uncertain; understanding the physical processes responsible for this uncertainty is thus crucial. Our study focuses on analyzing the feedbacks of soil moisture changes on model projections of the West African Monsoon under global warming. Soil moisture-atmosphere interactions have been shown in prior studies to play an important role in this region, but the potential feedbacks of long-term soil moisture changes on projected precipitation changes have not been investigated specifically. To isolate these feedbacks, we use targeted simulations from five climate models, with and without soil moisture change. Importantly, we find that climate models exhibit soil moisture-precipitation feedbacks of different sign in this region: in some models soil moisture changes amplify precipitation changes (positive feedback), in others they dampen them

  6. A Regional Climate Model Evaluation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a packaged data management infrastructure for the comparison of generated climate model output to existing observational datasets that includes capabilities...

  7. Model Updating Nonlinear System Identification Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...

  8. Occupant Protection Data Mining and Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current National Aeronautics and Space Administration (NASA) occupant protection standards and requirements are based on extrapolations of biodynamic models, which...

  9. Forecasting project schedule performance using probabilistic and deterministic models

    Directory of Open Access Journals (Sweden)

    S.A. Abdel Azeem

    2014-04-01

    Full Text Available Earned value management (EVM was originally developed for cost management and has not widely been used for forecasting project duration. In addition, EVM based formulas for cost or schedule forecasting are still deterministic and do not provide any information about the range of possible outcomes and the probability of meeting the project objectives. The objective of this paper is to develop three models to forecast the estimated duration at completion. Two of these models are deterministic; earned value (EV and earned schedule (ES models. The third model is a probabilistic model and developed based on Kalman filter algorithm and earned schedule management. Hence, the accuracies of the EV, ES and Kalman Filter Forecasting Model (KFFM through the different project periods will be assessed and compared with the other forecasting methods such as the Critical Path Method (CPM, which makes the time forecast at activity level by revising the actual reporting data for each activity at a certain data date. A case study project is used to validate the results of the three models. Hence, the best model is selected based on the lowest average percentage of error. The results showed that the KFFM developed in this study provides probabilistic prediction bounds of project duration at completion and can be applied through the different project periods with smaller errors than those observed in EV and ES forecasting models.

  10. High throughput ab initio modeling of charge transport for bio-molecular-electronics

    Science.gov (United States)

    Bruque, Nicolas Alexander

    2009-12-01

    Self-assembled nanostructures, composed of inorganic and organic materials, have multiple applications in the fields of engineering and nanotechnology. Experimental research using nanoscaled materials, such as semiconductor/metallic nanocrystals, nanowires (NW), and carbon nanotube (CNT)-molecular systems have potential applications in next generation nano electronic devices. Many of these molecular systems exhibit electronic device functionality. However, experimental analytical techniques to determine how the chemistry and geometry affects electron transport through these devices does not yet exist. Using theory and modeling, one can approximate the chemistry and geometry at the atomic level and also determine how the chemistry and geometry governs electron current. Nanoelectronic devices however, contain several thousand atoms which makes quantum modeling difficult. Popular atomistic modeling approaches are capable of handling small molecular systems, which are of scientific interest, but have little engineering value. The lack of large scale modeling tools has left the scientific and engineering community with a limited ability to understand, explore, and design complex systems of engineering interest. To address these issues, I have developed a high performance general quantum charge transport model based on the non-equilibrium Green function (NEGF) formalism using density functional theory (DFT) as implemented in the FIREBALL software. FIREBALL is a quantum molecular dynamics code which has demonstrated the ability to model large molecular systems. This dissertation project of integrating NEGF into FIREBALL provides researchers with a modeling tool capable of simulating charge current in large inorganic/organic systems. To provide theoretical support for experimental efforts, this project focused on CNT-molecular systems, which includes the discovery of a CNT-molecular resonant tunneling diode (RTD) for electronic circuit applications. This research also

  11. Bonding and Molecular Geometry without Orbitals- The Electron Domain Model

    Science.gov (United States)

    Gillespie, Ronald J.; Spencer, James N.; Moog, Richard S.

    1996-07-01

    An alternative to the conventional valence bond approach to bonding and geometry-the electron domain model-is presented. This approach avoids some of the problems with the standard approach and presents fewer difficulties for the student, while still providing a physical basis for the VSEPR model and a link to the valence bond model. The electron domain model also emphasizes the importance of the Pauli principle in understanding the chemical bond and molecular geometry. A letter from Derek W. Smith in our April 2000 issue addresses the above.

  12. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  13. Leading Undergraduate Research Projects in Mathematical Modeling

    Science.gov (United States)

    Seshaiyer, Padmanabhan

    2017-01-01

    In this article, we provide some useful perspectives and experiences in mentoring students in undergraduate research (UR) in mathematical modeling using differential equations. To engage students in this topic, we present a systematic approach to the creation of rich problems from real-world phenomena; present mathematical models that are derived…

  14. Accounting of inter-electron correlations in the model of mobile electron shells

    International Nuclear Information System (INIS)

    Panov, Yu.D.; Moskvin, A.S.

    2000-01-01

    One studied the basic peculiar features of the model for mobile electron shells for multielectron atom or cluster. One offered a variation technique to take account of the electron correlations where the coordinates of the centre of single-particle atomic orbital served as variation parameters. It enables to interpret dramatically variation of electron density distribution under anisotropic external effect in terms of the limited initial basis. One studied specific correlated states that might make correlation contribution into the orbital current. Paper presents generalization of the typical MO-LCAO pattern with the limited set of single particle functions enabling to take account of additional multipole-multipole interactions in the cluster [ru

  15. Developing a model for application of electronic banking based on electronic trust

    Directory of Open Access Journals (Sweden)

    Amir Hooshang Nazarpoori

    2014-05-01

    Full Text Available This study develops a model for application of electronic banking based on electronic trust among costumers of Day bank in KhoramAbad city. A sample of 150 people was selected based on stratified random sampling. Questionnaires were used for the investigation. Results indicate that technology-based factors, user-based factors, and trust had negative relationships with perceived risk types including financial, functional, personal, and private. Moreover, trust including trust in system and trust in bank had a positive relationship with tendency to use and real application of electronic banking.

  16. A model for electron/ion recombination in ionization chambers

    International Nuclear Information System (INIS)

    Sailor, W.C.

    1988-05-01

    The recombination of free electrons and positive ions along charged particle tracks in gases has been modeled using electron tranport equations, which assume homogeneous distribution in the vicinity of the tracks. The equations include space charge terms, which have been negelected in previous models. A formula for the electron yield as a function of detector applied potential is obtained from a perturbation solution valid when the ratio of the Debye length to the charge column radius is larger then unity. When this ratio is very large, the formula reduces to that of previous models. Pulse height measurements in a 3 He ionization chamber indicate 2% to 30% losses to recombination which vary with applied field, particle type, and energy. Using reasonable values for the electron transport coefficients, the calculated loss of signal to recommendation is generally in agreement with experiment, but the variation with applied bias is stronger in the experiment

  17. Task Flow Modeling in Electronic Business Environments

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available In recent years, internet based commerce has developed as a new paradigm. Many factors such as "at home delivery", easy ordering, and usually lower prices contributed to the success of the e-commerce. However, more recently, companies realized that one of the major factors in having a successful internet based business is the design of a user interface that is in concordance with the users' expectations, which includes both functionality and user friendly features. The func-tionality feature of an e-business interface is one of the most important elements when discussing about a specific internet based business. In our paper, we present methods to model task flows for e-business interfaces. We strengthen our study with the design modeling of a practical scenario that may appear in an on-line commercial environment.

  18. A Model for an Electronic Information Marketplace

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2005-11-01

    Full Text Available As the information content on the Internet increases, the task of locating desired information and assessing its quality becomes increasingly difficult. This development causes users to be more willing to pay for information that is focused on specific issues, verifiable, and available upon request. Thus, the nature of the Internet opens up the opportunity for information trading. In this context, the Internet cannot only be used to close the transaction, but also to deliver the product - desired information - to the user. Early attempts to implement such business models have fallen short of expectations. In this paper, we discuss the limitations of such practices and present a modified business model for information trading, which uses a reverse auction approach together with a multiple-buyer price discovery process

  19. Model Updating Nonlinear System Identification Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...

  20. Multiscale Modeling of Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New multiscale modeling capability for analyzing advanced Hall thrusters is proposed. This technology offers NASA the ability to reduce development effort of new...

  1. Generalized Reduced Order Model Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M4 Engineering proposes to develop a generalized reduced order model generation method. This method will allow for creation of reduced order aeroservoelastic state...

  2. Educating the Community: A Watershed Model Project.

    Science.gov (United States)

    Perryess, C. S.

    2001-01-01

    Focuses on the construction and use of a schoolyard model of the Morrow Bay watershed in California. Describes the design and use of materials that include styrofoam insulation, crushed granite, cement, and stucco. (DDR)

  3. Service Oriented Spacecraft Modeling Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The I-Logix team proposes development of the Service Oriented Spacecraft Modeling Environment (SOSME) to allow faster and more effective spacecraft system design...

  4. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  5. Global soil carbon projections are improved by modelling microbial processes

    Science.gov (United States)

    Wieder, William R.; Bonan, Gordon B.; Allison, Steven D.

    2013-10-01

    Society relies on Earth system models (ESMs) to project future climate and carbon (C) cycle feedbacks. However, the soil C response to climate change is highly uncertain in these models and they omit key biogeochemical mechanisms. Specifically, the traditional approach in ESMs lacks direct microbial control over soil C dynamics. Thus, we tested a new model that explicitly represents microbial mechanisms of soil C cycling on the global scale. Compared with traditional models, the microbial model simulates soil C pools that more closely match contemporary observations. It also projects a much wider range of soil C responses to climate change over the twenty-first century. Global soils accumulate C if microbial growth efficiency declines with warming in the microbial model. If growth efficiency adapts to warming, the microbial model projects large soil C losses. By comparison, traditional models project modest soil C losses with global warming. Microbes also change the soil response to increased C inputs, as might occur with CO2 or nutrient fertilization. In the microbial model, microbes consume these additional inputs; whereas in traditional models, additional inputs lead to C storage. Our results indicate that ESMs should simulate microbial physiology to more accurately project climate change feedbacks.

  6. Model for setting priority construction project objectives aligned with ...

    African Journals Online (AJOL)

    A comprehensive model based on priority project objectives aligned with monetary incentives, and agreed upon by built environment stakeholders was developed. A web survey was adopted to send out a questionnaire to nationwide participants, including contractors, quantity surveyors, project managers, architects, and ...

  7. A whole stand basal area projection model for Appalachian hardwoods

    Science.gov (United States)

    John R. Brooks; Lichun Jiang; Matthew Perkowski; Benktesh Sharma

    2008-01-01

    Two whole-stand basal area projection models were developed for Appalachian hardwood stands. The proposed equations are an algebraic difference projection form based on existing basal area and the change in age, trees per acre, and/or dominant height. Average equation error was less than 10 square feet per acre and residuals exhibited no irregular trends.

  8. Improving Project Management Using Formal Models and Architectures

    Science.gov (United States)

    Kahn, Theodore; Sturken, Ian

    2011-01-01

    This talk discusses the advantages formal modeling and architecture brings to project management. These emerging technologies have both great potential and challenges for improving information available for decision-making. The presentation covers standards, tools and cultural issues needing consideration, and includes lessons learned from projects the presenters have worked on.

  9. Building Context with Tumor Growth Modeling Projects in Differential Equations

    Science.gov (United States)

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  10. Wake models developed during the Wind Shadow Project

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ott, Søren; Pena Diaz, Alfredo

    The Wind Shadow project has developed and validated improved models for determining the wakes losses, and thereby the array efficiency of very large, closely packed wind farms. The rationale behind the project has been that the existing software has been covering these types of wind farms poorly...

  11. Classical Antiferromagnetism in Kinetically Frustrated Electronic Models

    Science.gov (United States)

    Sposetti, C. N.; Bravo, B.; Trumper, A. E.; Gazza, C. J.; Manuel, L. O.

    2014-05-01

    We study, by means of the density matrix renormalization group, the infinite U Hubbard model—with one hole doped away from half filling—in triangular and square lattices with frustrated hoppings, which invalidate Nagaoka's theorem. We find that these kinetically frustrated models have antiferromagnetic ground states with classical local magnetization in the thermodynamic limit. We identify the mechanism of this kinetic antiferromagnetism with the release of the kinetic energy frustration, as the hole moves in the established antiferromagnetic background. This release can occur in two different ways: by a nontrivial spin Berry phase acquired by the hole, or by the effective vanishing of the hopping amplitude along the frustrating loops.

  12. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  13. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The high-resolution Radarsat Antarctic Mapping Project (RAMP) Digital Elevation Model (DEM) combines topographic data from a variety of sources to provide consistent...

  14. Automation of Safety Analysis with SysML Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project was a small proof-of-concept case study, generating SysML model information as a side effect of safety analysis. A prototype FMEA Assistant was...

  15. Procedures and models for estimating preconstruction costs of highway projects.

    Science.gov (United States)

    2012-07-01

    This study presents data driven and component based PE cost prediction models by utilizing critical factors retrieved from ten years of historical project data obtained from ODOT roadway division. The study used factor analysis of covariance and corr...

  16. Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices

    International Nuclear Information System (INIS)

    Chen Duan; Wei Guowei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano-scale. By optimization of the energy functional, we derive consistently coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano-transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano-electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  17. Kinetic modelling of runaway electron avalanches in tokamak plasmas.

    Czech Academy of Sciences Publication Activity Database

    Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R.S.; Saint-Laurent, F.; Vlainic, Milos

    2015-01-01

    Roč. 57, č. 9 (2015), č. článku 095006. ISSN 0741-3335 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : plasma physics * runaway electrons * knock-on collisions * tokamak * Fokker-Planck * runaway avalanches Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015

  18. Theoretical model of fast electron emission from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, C.; Burgdoerfer, J. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Laboratory, TN (United States)

    1993-05-01

    Electron emission in glancing-angle ion-surface collisions has become a focus of ion-surface interactions. Electron spectra can provide detailed information on the above surface neutralization dynamics of multiply charged ions, the electronic structure of the surface (surface density of states), and the long-ranged image interactions near the surface. Recent experiments have found that the convoy peak, well known from ion-atom and ion-solid collisions, is dramatically altered. The peak is broadened and shifted in energy which has been attributed to dynamical image interactions. We present a microscopic model for the emission of fast electrons in glancing-angle surface collisions. A classical trajectory Monte Carlo approach is utilized to calculate the evolution of electrons in the presence of their self image, the projectile Coulomb field and the image potential induced by the projectile. The excitation of collective surface modes is also incorporated.

  19. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    Science.gov (United States)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  20. Radiation and temperature effects on electronic components investigated under the CSTI High Capacity Power Project

    International Nuclear Information System (INIS)

    Shwarze, G.E.; Wieserman, W.R.

    1994-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare earth permanent magnets

  1. Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project

    DEFF Research Database (Denmark)

    Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano

    2011-01-01

    Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....

  2. DEVELOPMENT MODEL OF PATISSERIE PROJECT-BASED LEARNING

    OpenAIRE

    Ana Ana; Lutfhiyah Nurlaela

    2013-01-01

    The study aims to find a model of patisserie project-based learning with production approach that can improve effectiveness of patisserie learning. Delphi Technique, Cohen's Kappa and percentages of agreements were used to assess model of patisserie project based learning. Data collection techniques employed in the study were questionnaire, check list worksheet, observation, and interview sheets. Subjects were 13 lectures of expertise food and nutrition and 91 students of Food and Nutrition ...

  3. Modeling the customer in electronic commerce.

    Science.gov (United States)

    Helander, M G; Khalid, H M

    2000-12-01

    This paper reviews interface design of web pages for e-commerce. Different tasks in e-commerce are contrasted. A systems model is used to illustrate the information flow between three subsystems in e-commerce: store environment, customer, and web technology. A customer makes several decisions: to enter the store, to navigate, to purchase, to pay, and to keep the merchandize. This artificial environment must be designed so that it can support customer decision-making. To retain customers it must be pleasing and fun, and create a task with natural flow. Customers have different needs, competence and motivation, which affect decision-making. It may therefore be important to customize the design of the e-store environment. Future ergonomics research will have to investigate perceptual aspects, such as presentation of merchandize, and cognitive issues, such as product search and navigation, as well as decision making while considering various economic parameters. Five theories on e-commerce research are presented.

  4. Modeling Change in Project Duration and Completion

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Butner, Jonathan E.; Pirtle, Zachary

    2017-01-01

    In complex work domains and organizations, understanding scheduleing dynamics can ensure objectives are reached and delays are mitigated. In the current paper, we examine the scheduling dynamics for NASA’s Exploration Flight Test 1 (EFT-1) activities. For this examination, we specifically modeled...

  5. A New Perspective for Modeling Power Electronics Converters : Complementarity Framework

    NARCIS (Netherlands)

    Vasca, Francesco; Iannelli, Luigi; Camlibel, M. Kanat; Frasca, Roberto

    2009-01-01

    The switching behavior of power converters with "ideal" electronic devices (EDs) makes it difficult to define a switched model that describes the dynamics of the converter in all possible operating conditions, i.e., a "complete" model. Indeed, simplifying assumptions on the sequences of modes are

  6. Test of theoretical models for ultrafast heterogeneous electron ...

    Indian Academy of Sciences (India)

    Administrator

    with the predictions of different theoretical models for light-induced ultrafast heterogeneous electron transfer (HET). ... theory model based on molecular dynamics simulations for the vibrational modes were also considered. Based on the known vibrational .... Pseudo 3D map of a 2PPE measurement with. Pe' achored via the ...

  7. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  8. Spin delocalization phase transition in a correlated electrons model

    International Nuclear Information System (INIS)

    Huerta, L.

    1990-11-01

    In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs

  9. A Systematic Approach to Modelling Change Processes in Construction Projects

    Directory of Open Access Journals (Sweden)

    Ibrahim Motawa

    2012-11-01

    Full Text Available Modelling change processes within construction projects isessential to implement changes efficiently. Incomplete informationon the project variables at the early stages of projects leads toinadequate knowledge of future states and imprecision arisingfrom ambiguity in project parameters. This lack of knowledge isconsidered among the main source of changes in construction.Change identification and evaluation, in addition to predictingits impacts on project parameters, can help in minimising thedisruptive effects of changes. This paper presents a systematicapproach to modelling change process within construction projectsthat helps improve change identification and evaluation. Theapproach represents the key decisions required to implementchanges. The requirements of an effective change processare presented first. The variables defined for efficient changeassessment and diagnosis are then presented. Assessmentof construction changes requires an analysis for the projectcharacteristics that lead to change and also analysis of therelationship between the change causes and effects. The paperconcludes that, at the early stages of a project, projects with a highlikelihood of change occurrence should have a control mechanismover the project characteristics that have high influence on theproject. It also concludes, for the relationship between changecauses and effects, the multiple causes of change should bemodelled in a way to enable evaluating the change effects moreaccurately. The proposed approach is the framework for tacklingsuch conclusions and can be used for evaluating change casesdepending on the available information at the early stages ofconstruction projects.

  10. 5 MeV 300 kW electron accelerator project

    International Nuclear Information System (INIS)

    Auslender, V.L.; Cheskidov, V.G.; Gornakov, I.V.

    2004-01-01

    The paper presents a project of a high power linear accelerator for industrial applications. The accelerator has a modular structure and consists of the chain of accelerating cavities connected by the axis-located coupling cavities with coupling slots in the common walls. Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The required RF pulse power can be supplied by the TH628 diacrode

  11. MODEL OF ELECTRON CLOUD INSTABILITY IN FERMILAB RECYCLER

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A. [Chicago U.; Burov, A. [Fermilab; Nagaitsev, S. [Fermilab

    2016-10-04

    An electron cloud instability might limit the intensity in the Fermilab Recycler after the PIP-II upgrade. A multibunch instability typically develops in the horizontal plane within a hundred turns and, in certain conditions, leads to beam loss. Recent studies have indicated that the instability is caused by an electron cloud, trapped in the Recycler index dipole magnets. We developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function dipoles. The resulting instability growth rate of about 30 revolutions is consistent with experimental observations and qualitatively agrees with the simulation in the PEI code. The model allows an estimation of the instability rate for the future intensity upgrades.

  12. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  13. METHODS OF SELECTING THE EFFECTIVE MODELS OF BUILDINGS REPROFILING PROJECTS

    Directory of Open Access Journals (Sweden)

    Александр Иванович МЕНЕЙЛЮК

    2016-02-01

    Full Text Available The article highlights the important task of project management in reprofiling of buildings. It is expedient to pay attention to selecting effective engineering solutions to reduce the duration and cost reduction at the project management in the construction industry. This article presents a methodology for the selection of efficient organizational and technical solutions for the reconstruction of buildings reprofiling. The method is based on a compilation of project variants in the program Microsoft Project and experimental statistical analysis using the program COMPEX. The introduction of this technique in the realigning of buildings allows choosing efficient models of projects, depending on the given constraints. Also, this technique can be used for various construction projects.

  14. Process simulation and parametric modeling for strategic project management

    CERN Document Server

    Morales, Peter J

    2013-01-01

    Process Simulation and Parametric Modeling for Strategic Project Management will offer CIOs, CTOs and Software Development Managers, IT Graduate Students an introduction to a set of technologies that will help them understand how to better plan software development projects, manage risk and have better insight into the complexities of the software development process.A novel methodology will be introduced that allows a software development manager to better plan and access risks in the early planning of a project.  By providing a better model for early software development estimation and softw

  15. Application of Projection Pursuit Model in Soilevaluation of Conservation Tillage

    Science.gov (United States)

    Yuan, Junjing; Li, Hongwen

    This paper established a conservation tillage evaluation model based on projection pursuit to evaluate the soil composite achievement of conservation tillage. After optimizing the project direction, the multi-dimension data of the seven evaluation indices are synthesized to one dimension, and the author could evaluate each item with the projection data easily, which avoided the jamming of weight matrix. The results of the evaluation mode in Linfen, Shouyang and Linghai are accordant with the production, which indicated that the model was available and provided a new method or thought to evaluate the composite achievement of conservation tillage.

  16. Transformer Model in Wide Frequency Bandwidth for Power Electronics Systems

    OpenAIRE

    Gonzalez-Garcia, Carlos; Pleite, Jorge

    2013-01-01

    The development of the smart grids leads to new challenges on the power electronics equipment and power transformers. The use of power electronic transformer presents several advantages, but new problems related with the application of high frequency voltage and current components come across. Thus, an accurate knowledge of the transformer behavior in a wide frequency range is mandatory. A novel modeling procedure to relate the transformer physical behavior and its frequency response by means...

  17. Modeling electron fractionalization with unconventional Fock spaces

    Science.gov (United States)

    Cobanera, Emilio

    2017-08-01

    It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality D=1,2,3,\\ldots of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.

  18. Application of seamless vertical profiles for use in the topside electron density modeling

    Czech Academy of Sciences Publication Activity Database

    Třísková, Ludmila; Galkin, I.; Truhlík, Vladimír; Reinisch, B. W.

    2007-01-01

    Roč. 39, č. 5 (2007), s. 774-778 ISSN 0273-1177 R&D Projects: GA AV ČR IAA300420603; GA MŠk ME 651 Grant - others:US National Science Foundation(US) 0245457 Institutional research plan: CEZ:AV0Z30420517 Keywords : Topside ionosphere * Electron density * Ionospheric model * Altitude profile Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.774, year: 2007

  19. Cash flow forecasting model for nuclear power projects

    International Nuclear Information System (INIS)

    Liu Wei; Guo Jilin

    2002-01-01

    Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective

  20. Ionospheric topside models compared with experimental electron density profiles

    Directory of Open Access Journals (Sweden)

    S. M. Radicella

    2005-06-01

    Full Text Available Recently an increasing number of topside electron density profiles has been made available to the scientific community on the Internet. These data are important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work compares NeQuick and IRI models with the topside electron density profiles available in the databases of the ISIS2, IK19 and Cosmos 1809 satellites. Experimental electron content from the F2 peak up to satellite height and electron densities at fixed heights above the peak have been compared under a wide range of different conditions. The analysis performed points out the behavior of the models and the improvements needed to be assessed to have a better reproduction of the experimental results. NeQuick topside is a modified Epstein layer, with thickness parameter determined by an empirical relation. It appears that its performance is strongly affected by this parameter, indicating the need for improvements of its formulation. IRI topside is based on Booker's approach to consider two parts with constant height gradients. It appears that this formulation leads to an overestimation of the electron density in the upper part of the profiles, and overestimation of TEC.

  1. A ballistic transport model for electronic excitation following particle impact

    Science.gov (United States)

    Hanke, S.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2018-01-01

    We present a ballistic model for the transport of electronic excitation energy induced by keV particle bombardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is employed to follow the evolution of the temporal and spatial distribution function f (r → , k → , t) describing the occupation probability of an electronic state k → at position r → and time t. Three different initializations of the distribution function are considered: i) a thermal distribution function with a locally and temporally elevated electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport direction. While the first initialization resembles a distribution function which may, for instance, result from electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE, we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space resolved excitation energy distribution function, which is then analyzed in view of general transport characteristics of the chosen model system.

  2. ePORT, NASA's Computer Database Program for System Safety Risk Management Oversight (Electronic Project Online Risk Tool)

    Science.gov (United States)

    Johnson, Paul W.

    2008-01-01

    ePORT (electronic Project Online Risk Tool) provides a systematic approach to using an electronic database program to manage a program/project risk management processes. This presentation will briefly cover the standard risk management procedures, then thoroughly cover NASA's Risk Management tool called ePORT. This electronic Project Online Risk Tool (ePORT) is a web-based risk management program that provides a common framework to capture and manage risks, independent of a programs/projects size and budget. It is used to thoroughly cover the risk management paradigm providing standardized evaluation criterion for common management reporting, ePORT improves Product Line, Center and Corporate Management insight, simplifies program/project manager reporting, and maintains an archive of data for historical reference.

  3. Projected Dipole Model for Quantum Plasmonics

    DEFF Research Database (Denmark)

    Yan, Wei; Wubs, Martijn; Mortensen, N. Asger

    2015-01-01

    as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects...... of nonlocal response and a finite work function with TDDFT-level accuracy. Applying the theory to dimers, we find quantum corrections to the hybridization even in mesoscopic dimers, as long as the gap itself is subnanometric....

  4. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    Science.gov (United States)

    Bainbridge, A. R.; Barlow Myers, C. W.; Bryan, W. A.

    2016-01-01

    Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM) in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs) combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics. PMID:27158637

  5. The Electronic Documentation Project in the NASA mission control center environment

    Science.gov (United States)

    Wang, Lui; Leigh, Albert

    1994-01-01

    NASA's space programs like many other technical programs of its magnitude is supported by a large volume of technical documents. These documents are not only diverse but also abundant. Management, maintenance, and retrieval of these documents is a challenging problem by itself; but, relating and cross-referencing this wealth of information when it is all on a medium of paper is an even greater challenge. The Electronic Documentation Project (EDP) is to provide an electronic system capable of developing, distributing and controlling changes for crew/ground controller procedures and related documents. There are two primary motives for the solution. The first motive is to reduce the cost of maintaining the current paper based method of operations by replacing paper documents with electronic information storage and retrieval. And, the other is to improve the efficiency and provide enhanced flexibility in document usage. Initially, the current paper based system will be faithfully reproduced in an electronic format to be used in the document viewing system. In addition, this metaphor will have hypertext extensions. Hypertext features support basic functions such as full text searches, key word searches, data retrieval, and traversal between nodes of information as well as speeding up the data access rate. They enable related but separate documents to have relationships, and allow the user to explore information naturally through non-linear link traversals. The basic operational requirements of the document viewing system are to: provide an electronic corollary to the current method of paper based document usage; supplement and ultimately replace paper-based documents; maintain focused toward control center operations such as Flight Data File, Flight Rules and Console Handbook viewing; and be available NASA wide.

  6. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    Directory of Open Access Journals (Sweden)

    A. R. Bainbridge

    2016-03-01

    Full Text Available Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics.

  7. Challenges of 4D(ata Model for Electronic Government

    Directory of Open Access Journals (Sweden)

    Bogdan GHILIC-MICU

    2015-01-01

    Full Text Available Social evolution pyramid, built on the foundation of the ‘90s capitalist society, lead to the emergence of the informational society – years 1990 to 2005 – and knowledge society – years 2005 to 2020. The literature starts using a new concept, a new form of association – artificial intelligence society – foreseen to be established in the next time frame. All these developments of human society and translations or leaps (most of the times apparently timeless were, are and will be possible only due to the advancing information and communications technologies. The leap to Democracy 3.0, based on information and communication technologies prompts to a radical change in the majority of the classical concepts targeting society structure and the way it is guided and controlled. Thus, concepts become electronic concepts (or e-concepts through the use of new technologies. E-concepts keep the essence of the classical principles of liberty and democracy, adding a major aspect of the new way of communication and spreading ideas between people. The main problem is to quantify, analyze and foresee the way technological changes will influence not only the economic system, but also the daily life of the individual and the society. Unfortunately (or maybe fortunately, depending on the point of view, all these evolutions and technological and social developments are as many challenges for the governments of the world. In this paper we will highlight only four of the challenges facing the governments, grouped in a structured model with the following specific concepts: Big Data, Social Data, Linked Data and Mobile Data. This is an emerging paradigm of the information and communication technology supporting national and global eGovernment projects.

  8. Project based education as motivation factor in undergraduate program in Electronics at Copenhagen University College of Engineering

    DEFF Research Database (Denmark)

    Friesel, Anna

    2012-01-01

    This paper summarizes the contents of our experience with project based courses and team work in the undergraduate program in Electronics. The main points of our program are described in this paper, where the leading idea is to combine theory with practical engineering projects. Our students work...

  9. Regional 4-D modeling of the ionospheric electron density

    Science.gov (United States)

    Schmidt, M.; Bilitza, D.; Shum, C. K.; Zeilhofer, C.

    2008-08-01

    The knowledge of the electron density is the key point in correcting ionospheric delays of electromagnetic measurements and in studying the ionosphere. During the last decade GNSS, in particular GPS, has become a promising tool for monitoring the total electron content (TEC), i.e., the integral of the electron density along the ray-path between the transmitting satellite and the receiver. Hence, geometry-free GNSS measurements provide informations on the electron density, which is basically a four-dimensional function depending on spatial position and time. In addition, these GNSS measurements can be combined with other available data including nadir, over-ocean TEC observations from dual-frequency radar altimetry (T/P, JASON, ENVISAT), and TECs from GPS-LEO occultation systems (e.g., FORMOSAT-3/COSMIC, CHAMP) with heterogeneous sampling and accuracy. In this paper, we present different multi-dimensional approaches for modeling spatio-temporal variations of the ionospheric electron density. To be more specific, we split the target function into a reference part, computed from the International Reference Ionosphere (IRI), and an unknown correction term. Due to the localizing feature of B-spline functions we apply tensor-product spline expansions to model the correction term in a certain multi-dimensional region either completely or partly. Furthermore, the multi-resolution representation derived from wavelet analysis allows monitoring the ionosphere at different resolutions levels. For demonstration we apply three approaches to electron density data over South America.

  10. Preliminary Study for an RF photocathode based electron injector for awake project

    CERN Document Server

    Mete, Oznur; Burt, Graeme; Chattopadhyay, Swapan

    2014-01-01

    AWAKE project, a proton driven plasma wakefield acceleration (PDPWA) experiment is approved by CERN. The PDPWA scheme consists of a seeding laser, a drive beam to establish the accelerating wakefields within the plasma cell; and a witness beam to be accelerated. The drive beam protons will be provided by the CERN's Super Proton Synchrotron (SPS). The plasma ionisation will be performed by a seeding laser and the drive beam protons to produce the accelerating wakefields. After establishing the wakefields, witness beam, namely, electron beam from a dedicated source should be injected into the plasma cell. The primary goal of this experiment is to demonstrate acceleration of a 5-15$\\,$MeV single bunch electron beam up to 1$\\,$GeV in a 10$\\,$m of plasma. This paper explores the possibility of an RF photocathode as the electron source for this PDPWA scheme based on the existing PHIN photo-injector at CERN. The modifications to the existing design, preliminary beam dynamics simulations in order to provide the requi...

  11. Ensemble of regional climate model projections for Ireland

    Science.gov (United States)

    Nolan, Paul; McGrath, Ray

    2016-04-01

    The method of Regional Climate Modelling (RCM) was employed to assess the impacts of a warming climate on the mid-21st-century climate of Ireland. The RCM simulations were run at high spatial resolution, up to 4 km, thus allowing a better evaluation of the local effects of climate change. Simulations were run for a reference period 1981-2000 and future period 2041-2060. Differences between the two periods provide a measure of climate change. To address the issue of uncertainty, a multi-model ensemble approach was employed. Specifically, the future climate of Ireland was simulated using three different RCMs, driven by four Global Climate Models (GCMs). To account for the uncertainty in future emissions, a number of SRES (B1, A1B, A2) and RCP (4.5, 8.5) emission scenarios were used to simulate the future climate. Through the ensemble approach, the uncertainty in the RCM projections can be partially quantified, thus providing a measure of confidence in the predictions. In addition, likelihood values can be assigned to the projections. The RCMs used in this work are the COnsortium for Small-scale MOdeling-Climate Limited-area Modelling (COSMO-CLM, versions 3 and 4) model and the Weather Research and Forecasting (WRF) model. The GCMs used are the Max Planck Institute's ECHAM5, the UK Met Office's HadGEM2-ES, the CGCM3.1 model from the Canadian Centre for Climate Modelling and the EC-Earth consortium GCM. The projections for mid-century indicate an increase of 1-1.6°C in mean annual temperatures, with the largest increases seen in the east of the country. Warming is enhanced for the extremes (i.e. hot or cold days), with the warmest 5% of daily maximum summer temperatures projected to increase by 0.7-2.6°C. The coldest 5% of night-time temperatures in winter are projected to rise by 1.1-3.1°C. Averaged over the whole country, the number of frost days is projected to decrease by over 50%. The projections indicate an average increase in the length of the growing season

  12. The Geoengineering Model Intercomparison Project (GeoMIP)

    KAUST Repository

    Kravitz, Ben

    2011-01-31

    To evaluate the effects of stratospheric geoengineering with sulphate aerosols, we propose standard forcing scenarios to be applied to multiple climate models to compare their results and determine the robustness of their responses. Thus far, different modeling groups have used different forcing scenarios for both global warming and geoengineering, complicating the comparison of results. We recommend four experiments to explore the extent to which geoengineering might offset climate change projected in some of the Climate Model Intercomparison Project 5 experiments. These experiments focus on stratospheric aerosols, but future experiments under this framework may focus on different means of geoengineering. © 2011 Royal Meteorological Society.

  13. Managing wildland fires: integrating weather models into fire projections

    Science.gov (United States)

    Anne M. Rosenthal; Francis Fujioka

    2004-01-01

    Flames from the Old Fire sweep through lands north of San Bernardino during late fall of 2003. Like many Southern California fires, the Old Fire consumed susceptible forests at the urban-wildland interface and spread to nearby city neighborhoods. By incorporating weather models into fire perimeter projections, scientist Francis Fujioka is improving fire modeling as a...

  14. Development and application of new quality model for software projects.

    Science.gov (United States)

    Karnavel, K; Dillibabu, R

    2014-01-01

    The IT industry tries to employ a number of models to identify the defects in the construction of software projects. In this paper, we present COQUALMO and its limitations and aim to increase the quality without increasing the cost and time. The computation time, cost, and effort to predict the residual defects are very high; this was overcome by developing an appropriate new quality model named the software testing defect corrective model (STDCM). The STDCM was used to estimate the number of remaining residual defects in the software product; a few assumptions and the detailed steps of the STDCM are highlighted. The application of the STDCM is explored in software projects. The implementation of the model is validated using statistical inference, which shows there is a significant improvement in the quality of the software projects.

  15. Applying a Hybrid MCDM Model for Six Sigma Project Selection

    Directory of Open Access Journals (Sweden)

    Fu-Kwun Wang

    2014-01-01

    Full Text Available Six Sigma is a project-driven methodology; the projects that provide the maximum financial benefits and other impacts to the organization must be prioritized. Project selection (PS is a type of multiple criteria decision making (MCDM problem. In this study, we present a hybrid MCDM model combining the decision-making trial and evaluation laboratory (DEMATEL technique, analytic network process (ANP, and the VIKOR method to evaluate and improve Six Sigma projects for reducing performance gaps in each criterion and dimension. We consider the film printing industry of Taiwan as an empirical case. The results show that our study not only can use the best project selection, but can also be used to analyze the gaps between existing performance values and aspiration levels for improving the gaps in each dimension and criterion based on the influential network relation map.

  16. Status of the Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). 10-minute averages of these data formed an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and 2002. These data were then averaged to provide a differential flux spectrum at 0.174, 0.304, 0.527, 1.5, 2.0, 11.0, and 31 MeV in the jovian equatorial plane as a function of radial distance. This omni-directional, equatorial model was combined with the original Divine model of jovian electron radiation to yield estimates of the out-of-plane radiation environment. That model, referred to here as the Galileo Interim Radiation Electron (or GIRE) model, was then used to calculate the Europa mission dose for an average and a 1-sigma worst-case situation. The prediction of the GIRE model is about a factor of 2 lower than the Divine model estimate over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeds the Divine model by about 50% for thicker shielding. The model, the steps leading to its creation, and relevant issues and concerns are discussed. While work remains to be done, the GIRE model clearly represents a significant step forward in the study of the jovian radiation environment, and it is a useful and valuable tool for estimating that environment for future space missions.

  17. Partitioning uncertainty in streamflow projections under nonstationary model conditions

    Science.gov (United States)

    Chawla, Ila; Mujumdar, P. P.

    2018-02-01

    Assessing the impacts of Land Use (LU) and climate change on future streamflow projections is necessary for efficient management of water resources. However, model projections are burdened with significant uncertainty arising from various sources. Most of the previous studies have considered climate models and scenarios as major sources of uncertainty, but uncertainties introduced by land use change and hydrologic model assumptions are rarely investigated. In this paper an attempt is made to segregate the contribution from (i) general circulation models (GCMs), (ii) emission scenarios, (iii) land use scenarios, (iv) stationarity assumption of the hydrologic model, and (v) internal variability of the processes, to overall uncertainty in streamflow projections using analysis of variance (ANOVA) approach. Generally, most of the impact assessment studies are carried out with unchanging hydrologic model parameters in future. It is, however, necessary to address the nonstationarity in model parameters with changing land use and climate. In this paper, a regression based methodology is presented to obtain the hydrologic model parameters with changing land use and climate scenarios in future. The Upper Ganga Basin (UGB) in India is used as a case study to demonstrate the methodology. The semi-distributed Variable Infiltration Capacity (VIC) model is set-up over the basin, under nonstationary conditions. Results indicate that model parameters vary with time, thereby invalidating the often-used assumption of model stationarity. The streamflow in UGB under the nonstationary model condition is found to reduce in future. The flows are also found to be sensitive to changes in land use. Segregation results suggest that model stationarity assumption and GCMs along with their interactions with emission scenarios, act as dominant sources of uncertainty. This paper provides a generalized framework for hydrologists to examine stationarity assumption of models before considering them

  18. Evolution of MEMS scanning mirrors for laser projection in compact consumer electronics

    Science.gov (United States)

    Tauscher, Jason; Davis, Wyatt O.; Brown, Dean; Ellis, Matt; Ma, Yunfei; Sherwood, Michael E.; Bowman, David; Helsel, Mark P.; Lee, Sung; Coy, John Wyatt

    2010-02-01

    The applicability of MOEMS scanning mirrors towards the creation of "flying spot" scanned laser displays is well established. The extension of this concept towards compact embedded pico-projectors has required an evolution of scanners and packaging to accommodate the needs of the consumer electronics space. This paper describes the progression of the biaxial MOEMS scanning mirrors developed by Microvision over recent years. Various aspects of the individual designs are compared. Early devices used a combination of magnetic quasistatic actuation and resonant electrostatic operation in an evacuated atmosphere to create a projection engine for retinal scanned displays. Subsequent designs realized the elimination of both the high voltage electrostatic drive and the vacuum package, and a simplification of the actuation scheme through proprietary technical advances. Additional advances have doubled the scan angle capability and greatly miniaturized the MOEMS component while not incurring significant increase in power consumption, making it an excellent fit for the consumer pico-projector application. The simplicity of the scanned laser-based pico-projector optical design enables high resolution and a large effective image size in a thin projection engine, all of which become critical both to the viability of the technology and adoption by consumers. Microvision's first scanned laser pico-projector is built around a MOEMS scanning mirror capable of projecting 16:9 aspect ratio, WVGA display within a 6.6 mm high package. Further evolution on this path promises continued improvement in resolution, size, and power.

  19. Solid Waste Projection Model: Database (Version 1.4)

    International Nuclear Information System (INIS)

    Blackburn, C.; Cillan, T.

    1993-09-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User's Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193)

  20. Adoption of Building Information Modelling in project planning risk management

    Science.gov (United States)

    Mering, M. M.; Aminudin, E.; Chai, C. S.; Zakaria, R.; Tan, C. S.; Lee, Y. Y.; Redzuan, A. A.

    2017-11-01

    An efficient and effective risk management required a systematic and proper methodology besides knowledge and experience. However, if the risk management is not discussed from the starting of the project, this duty is notably complicated and no longer efficient. This paper presents the adoption of Building Information Modelling (BIM) in project planning risk management. The objectives is to identify the traditional risk management practices and its function, besides, determine the best function of BIM in risk management and investigating the efficiency of adopting BIM-based risk management during the project planning phase. In order to obtain data, a quantitative approach is adopted in this research. Based on data analysis, the lack of compliance with project requirements and failure to recognise risk and develop responses to opportunity are the risks occurred when traditional risk management is implemented. When using BIM in project planning, it works as the tracking of cost control and cash flow give impact on the project cycle to be completed on time. 5D cost estimation or cash flow modeling benefit risk management in planning, controlling and managing budget and cost reasonably. There were two factors that mostly benefit a BIM-based technology which were formwork plan with integrated fall plan and design for safety model check. By adopting risk management, potential risks linked with a project and acknowledging to those risks can be identified to reduce them to an acceptable extent. This means recognizing potential risks and avoiding threat by reducing their negative effects. The BIM-based risk management can enhance the planning process of construction projects. It benefits the construction players in various aspects. It is important to know the application of BIM-based risk management as it can be a lesson learnt to others to implement BIM and increase the quality of the project.

  1. NASA-DoD Lead-Free Electronics Project. DRAFT Joint Test Report

    Science.gov (United States)

    Kessel, Kurt

    2011-01-01

    . The longer the transition period, the greater the likelihood of Pb-free parts inadvertently being mixed with Pb parts and ending up on what are supposed to be Pb systems. As a result, OEMs, depots, and support contractors need to take action now to either abate the influx of Pb-free parts, or accept it and deal with the likely interim consequences of reduced reliability due to a wide variety of matters, such as Pb contamination, high temperature incompatibility, and tin whiskering. Allowance of Pb-free components produces one of the greatest risks to the reliability of a weapon system. This is due to new and poorly understood failure mechanisms, as well as unknown long-term reliability. If the decision is made to consciously allow Pb-free solder and component finishes into SnPb electronics, additional effort (and cost) will be required to make the significant number of changes to drawings and task order procedures. This project is a follow-on effort to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Pb-free Solder Project which was the first group to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community.

  2. Semi-structured data extraction and modelling: the WIA Project

    Directory of Open Access Journals (Sweden)

    Alessandro Mosca

    2013-09-01

    Full Text Available Over the last decades, the amount of data of all kinds available electronically has increased dramatically. Data are accessible through a range of interfaces including Web browsers, database query languages, application-specific interfaces, built on top of a number of different data exchange formats. All these data span from un-structured to highly structured data. Very often, some of them have structure even if the structure is implicit, and not as rigid or regular as that found in standard database systems. Spreadsheet documents are prototypical in this respect. Spreadsheets are the lightweight technology able to supply companies with easy to build business management and business intelligence applications, and business people largely adopt spreadsheets as smart vehicles for data files generation and sharing. Actually, the more spreadsheets grow in complexity (e.g., their use in product development plans and quoting, the more their arrangement, maintenance, and analysis appear as a knowledge-driven activity. The algorithmic approach to the problem of automatic data structure extraction from spreadsheet documents (i.e., grid-structured and free topological-related data emerges from the WIA project: Worksheets Intelligent Analyser. The WIA-algorithm shows how to provide a description of spreadsheet contents in terms of higher level of abstractions or conceptualisations. In particular, the WIA-algorithm target is about the extraction of i the calculus work-flow implemented in the spreadsheets formulas and ii the logical role played by the data which take part into the calculus. The aim of the resulting conceptualisations is to provide spreadsheets with abstract representations useful for further model refinements and optimizations through evolutionary algorithms computations.

  3. A CBA model of a hydro project in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Risako; Hope, C. [Cambridge Univ. (United Kingdom). Judge Inst. of Management

    2004-07-01

    This study demonstrates an empirical application of a cost benefit analysis for hydro projects, which includes social and environmental as well as economic aspects. The model treats uncertain inputs by specifying them as probability distributions. A proposed hydro project in Sri Lanka is used as a case study. The study uses time variable discount rates related to economic growth and investigates the sensitivity of the net present value to the choice of a discount rate. (author)

  4. Cacao Intensification in Sulawesi: A Green Prosperity Model Project

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

    2014-09-01

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates techniques to improve cacao farming in Sulawesi Indonesia with an emphasis on Farmer Field Schools and Cocoa Development Centers to educate farmers and for train the trainer programs. The study estimates the economic viability of cacao farming if smallholder implement techniques to increase yield as well as social and environmental impacts of the project.

  5. Modelling and simulation of beam formation in electron guns

    International Nuclear Information System (INIS)

    Sabchevski, S.; Barbarich, I.

    1996-01-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.)

  6. Modelling and simulation of beam formation in electron guns

    Energy Technology Data Exchange (ETDEWEB)

    Sabchevski, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Mladenov, G. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Titov, A. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation); Barbarich, I. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation)

    1996-11-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.).

  7. Modeling Manpower and Equipment Productivity in Tall Building Construction Projects

    Science.gov (United States)

    Mudumbai Krishnaswamy, Parthasarathy; Rajiah, Murugasan; Vasan, Ramya

    2017-12-01

    Tall building construction projects involve two critical resources of manpower and equipment. Their usage, however, widely varies due to several factors affecting their productivity. Currently, no systematic study for estimating and increasing their productivity is available. What is prevalent is the use of empirical data, experience of similar projects and assumptions. As tall building projects are here to stay and increase, to meet the emerging demands in ever shrinking urban spaces, it is imperative to explore ways and means of scientific productivity models for basic construction activities: concrete, reinforcement, formwork, block work and plastering for the input of specific resources in a mixed environment of manpower and equipment usage. Data pertaining to 72 tall building projects in India were collected and analyzed. Then, suitable productivity estimation models were developed using multiple linear regression analysis and validated using independent field data. It is hoped that the models developed in the study will be useful for quantity surveyors, cost engineers and project managers to estimate productivity of resources in tall building projects.

  8. On reducibility and ergodicity of population projection matrix models

    DEFF Research Database (Denmark)

    Stott, Iain; Townley, Stuart; Carslake, David

    2010-01-01

    1. Population projection matrices (PPMs) are probably the most commonly used empirical population models. To be useful for predictive or prospective analyses, PPM models should generally be irreducible (the associated life cycle graph contains the necessary transition rates to facilitate pathways...... structure used in the population projection). In our sample of published PPMs, 15·6% are non-ergodic. 3. This presents a problem: reducible–ergodic models often defy biological rationale in their description of the life cycle but may or may not prove problematic for analysis as they often behave similarly...... to irreducible models. Reducible–non-ergodic models will usually defy biological rationale in their description of the both the life cycle and population dynamics, hence contravening most analytical methods. 4. We provide simple methods to evaluate reducibility and ergodicity of PPM models, present illustrative...

  9. A model of the environmental impacts of hydropower projects

    International Nuclear Information System (INIS)

    Kemppainen, T.; Haemaelaeinen, I.

    1992-01-01

    The aim was to create a model of the effects of hydropower modernization and extension projects in Finland. To illustrate the effects of hydropower projects a checklist in the form of matrice was constructed. In this matrice all issues that could be significant in future hydropower projects were collected. Stable physical environmental changes are the starting-point for this matrice. The temporary change of hydropower constructions have also been under consideration. These are mainly environmental changes during construction. In chapter two the effects of hydropower modernization and extension projects physical environmental changes were examined. In chapter three the matrice was applied to some example cases. The cases were chosen to represent future hydropower projects. In addition these example cases represent urban areas, rural areas and uninhabited areas. The example cases were the extension of Tainionkoski hydropower plant at Vuoksi river, the modernization of Aeetsae power plant at Kokemaeenjoki river, the modernization of Stadsfors power plant at Lapuanjoki river in the centre of Uusikaarlepyy town and the construction of Kaitfors power plant at Perhonjoki river. Conclusions from usability of the model can be drawn on the ground of the example cases. The purpose of the model is to produce a checklist of estimated environmental effects in hydropower project of various kinds. Examination of issues within the model depends on local circumstances. Endangered animal and plant species, for example, can be studied and estimated only if endangered animal and plant species exist in the area of hydropower plant. Furthermore, the direction and extent of environmental effects depend on the local circumstances. The model is mainly a checklist of environmental effects caused by hydropower plant projects

  10. Toward a generic model of trust for electronic commerce

    NARCIS (Netherlands)

    Tan, YH; Thoen, W

    2000-01-01

    The authors present a generic model of trust for electronic commerce consisting of two basic components, party trust and control trust, based on the concept that trust in a transaction with another party combines trust in the other parry and trust in the control mechanisms that ensure the successful

  11. Technical Communicator: A New Model for the Electronic Resources Librarian?

    Science.gov (United States)

    Hulseberg, Anna

    2016-01-01

    This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…

  12. Fuse Modeling for Reliability Study of Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large v...

  13. Classical model of the Dirac electron in curved space

    International Nuclear Information System (INIS)

    Barut, A.O.; Pavsic, M.

    1987-01-01

    The action for the classical model of the electron exhibiting Zitterbewegung is generalized to curved space by introducing a spin connection. The dynamical equations and the symplectic structure are given for several different choices of the variables. In particular, we obtain the equation of motion for spin and compare it with the Papapetrou equation. (author)

  14. Modelling of Airship Flight Mechanics by the Projection Equivalent Method

    OpenAIRE

    Frantisek Jelenciak; Michael Gerke; Ulrich Borgolte

    2015-01-01

    This article describes the projection equivalent method (PEM) as a specific and relatively simple approach for the modelling of aircraft dynamics. By the PEM it is possible to obtain a mathematic al model of the aerodynamic forces and momentums acting on different kinds of aircraft during flight. For the PEM, it is a characteristic of it that - in principle - it provides an acceptable regression model of aerodynamic forces and momentums which exhibits reasonable and plausible behaviour from a...

  15. Modeling of magnetic components for power electronic converters

    Science.gov (United States)

    Hranov, Tsveti; Hinov, Nikolay

    2017-12-01

    The paper presents the modelling of magnetic components, used in the power electronic devices. Non-linear inductor and transformer are presented. During the design stage are taken into account that the converters are operated with non-sinusoidal currents and voltages. The models are realized in the MATLAB environment and their verification is done using computer simulations. The advantages of these models against the existing models are that relations between the parameters are formalized and this way the computational procedure is significantly faster. This is important in the cases when the quasi-steady-state regime in devices comes significantly slower and the investigations are requiring long simulation times.

  16. The performance indicators of model projects. A special evaluation

    International Nuclear Information System (INIS)

    1995-11-01

    As a result of the acknowledgment of the key role of the Model Project concept in the Agency's Technical Co-operation Programme, the present review of the objectives of the model projects which are now in operation, was undertaken, as recommended by the Board of Governors, to determine at an early stage: the extent to which the present objectives have been defined in a measurable way; whether objectively verifiable performance indicators and success criteria had been identified for each project; whether mechanisms to obtain feedback on the achievements had been foreseen. The overall budget for the 23 model projects, as approved from 1994 to 1998, amounts to $32,557,560, of which 45% is funded by Technical Co-operation Fund. This represents an average investment of about $8 million per year, that is over 15% of the annual TC budget. The conceptual importance of the Model Project initiative, as well as the significant funds allocated to them, led the Secretariat to plan the methods to be used to determine their socio-economic impact. 1 tab

  17. A CONCEPTUAL MODEL FOR IMPROVED PROJECT SELECTION AND PRIORITISATION

    Directory of Open Access Journals (Sweden)

    P. J. Viljoen

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Project portfolio management processes are often designed and operated as a series of stages (or project phases and gates. However, the flow of such a process is often slow, characterised by queues waiting for a gate decision and by repeated work from previous stages waiting for additional information or for re-processing. In this paper the authors propose a conceptual model that applies supply chain and constraint management principles to the project portfolio management process. An advantage of the proposed model is that it provides the ability to select and prioritise projects without undue changes to project schedules. This should result in faster flow through the system.

    AFRIKAANSE OPSOMMING: Prosesse om portefeuljes van projekte te bestuur word normaalweg ontwerp en bedryf as ’n reeks fases en hekke. Die vloei deur so ’n proses is dikwels stadig en word gekenmerk deur toue wat wag vir besluite by die hekke en ook deur herwerk van vorige fases wat wag vir verdere inligting of vir herprosessering. In hierdie artikel word ‘n konseptuele model voorgestel. Die model berus op die beginsels van voorsieningskettings sowel as van beperkingsbestuur, en bied die voordeel dat projekte geselekteer en geprioritiseer kan word sonder onnodige veranderinge aan projekskedules. Dit behoort te lei tot versnelde vloei deur die stelsel.

  18. Heart Modeling, Computational Physiology and the IUPS Physiome Project

    Science.gov (United States)

    Hunter, Peter J.

    The Physiome Project of the International Union of Physiological Sciences (IUPS) is attempting to provide a comprehensive framework for modelling the human body using computational methods which can incorporate the biochemistry, biophysics and anatomy of cells, tissues and organs. A major goal of the project is to use computational modelling to analyse integrative biological function in terms of underlying structure and molecular mechanisms. To support that goal the project is developing XML markup languages (CellML & FieldML) for encoding models, and software tools for creating, visualizing and executing these models. It is also establishing web-accessible physiological databases dealing with model-related data at the cell, tissue, organ and organ system levels. Two major developments in current medicine are, on the one hand, the much publicised genomics (and soon proteomics) revolution and, on the other, the revolution in medical imaging in which the physiological function of the human body can be studied with a plethora of imaging devices such as MRI, CT, PET, ultrasound, electrical mapping, etc. The challenge for the Physiome Project is to link these two developments for an individual - to use complementary genomic and medical imaging data, together with computational modelling tailored to the anatomy, physiology and genetics of that individual, for patient-specific diagnosis and treatment.

  19. Electron flux models for different energies at geostationary orbit

    Science.gov (United States)

    Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.

    2016-10-01

    Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.

  20. Band electron spectrum and thermodynamic properties of the pseudospin-electron model with tunneling splitting of levels

    Directory of Open Access Journals (Sweden)

    O.Ya.Farenyuk

    2006-01-01

    Full Text Available The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic mean-field method for systems with correlated hopping was applied to the investigation of the model. Electron spectra, electron concentrations, average values of pseudospins and grand canonical potential were calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron concentrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the model possesses the first order phase transition to ferromagnetic state with the change of chemical potential and the second order phase transition with the change of temperature.

  1. Advancing population ecology with integral projection models: a practical guide

    DEFF Research Database (Denmark)

    Merow, Cory; Dahlgren, Johan; Metcall, C. Jessica E.

    2014-01-01

    Integral Projection Models (IPMs) use information on how an individual's state influences its vital rates - survival, growth and reproduction - to make population projections. IPMs are constructed from regression models predicting vital rates from state variables (e.g., size or age) and covariates...... a comprehensive guide, with extensive R code, for their construction. IPMs can be applied to any stage-structured population; here we illustrate IPMs for a series of plant life histories of increasing complexity and biological realism, highlighting the utility of various regression methods for capturing...

  2. Thermodynamically consistent description of criticality in models of correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Kauch, Anna; Pokorný, Vladislav

    2017-01-01

    Roč. 95, č. 4 (2017), s. 1-14, č. článku 045108. ISSN 2469-9950 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : conserving approximations * Anderson model * Hubbard model * parquet equations Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  3. Modeling and Control of a teletruck using electronic load sensing

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Iversen, Asger Malte; Jensen, Mads Schmidt

    2010-01-01

    components and the potential of increased dynamic performance and efficiency, this paper investigates how HLS can be replaced with electronic control, i.e. Electronic Load Sensing (ELS). The investigation is performed by taking a specific application, a teletruck, and replace the HLS control with ELS. To aid...... the controller design for the ELS system, a complete model of the teletruck’s articulated arm and fluid power system is developed. To show the feasibility, a preliminary control structure for the ELS system is developed. The controller is tested on the machine, validating that features such as pump pressure...

  4. Transformer Model in Wide Frequency Bandwidth for Power Electronics Systems

    Directory of Open Access Journals (Sweden)

    Carlos Gonzalez-Garcia

    2013-01-01

    Full Text Available The development of the smart grids leads to new challenges on the power electronics equipment and power transformers. The use of power electronic transformer presents several advantages, but new problems related with the application of high frequency voltage and current components come across. Thus, an accurate knowledge of the transformer behavior in a wide frequency range is mandatory. A novel modeling procedure to relate the transformer physical behavior and its frequency response by means of electrical parameters is presented. Its usability is demonstrated by an example where a power transformer is used as filter and voltage reducer in an AC-DC-AC converter.

  5. ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, E J

    2007-02-21

    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  6. Multi-model-based Access Control in Construction Projects

    Directory of Open Access Journals (Sweden)

    Frank Hilbert

    2012-04-01

    Full Text Available During the execution of large scale construction projects performed by Virtual Organizations (VO, relatively complex technical models have to be exchanged between the VO members. For linking the trade and transfer of these models, a so-called multi-model container format was developed. Considering the different skills and tasks of the involved partners, it is not necessary for them to know all the models in every technical detailing. Furthermore, the model size can lead to a delay in communication. In this paper an approach is presented for defining model cut-outs according to the current project context. Dynamic dependencies to the project context as well as static dependencies on the organizational structure are mapped in a context-sensitive rule. As a result, an approach for dynamic filtering of multi-models is obtained which ensures, together with a filtering service, that the involved VO members get a simplified view of complex multi-models as well as sufficient permissions depending on their tasks.

  7. Positron--electron storage ring project: Stanford Linear Accelerator Center, Stanford, California. Final environmental statement

    International Nuclear Information System (INIS)

    1976-08-01

    A final environmental statement is given which was prepared in compliance with the National Environmental Policy Act to support the Energy Research and Development Administration project to design and construct the positron-electron colliding beam storage ring (PEP) facilities at the Stanford Linear Accelerator Center (SLAC). The PEP storage ring will be constructed underground adjacent to the existing two-mile long SLAC particle accelerator to utilize its beam. The ring will be about 700 meters in diameter, buried at depths of 20 to 100 feet, and located at the eastern extremity of the SLAC site. Positron and electron beams will collide in the storage ring to provide higher energies and hence higher particle velocities than have been heretofore achieved. Some of the energy from the collisions is transformed back into matter and produces a variety of particles of immense interest to physicists. The environmental impacts during the estimated two and one-half years construction period will consist of movement of an estimated 320,000 cubic yards of earth and the creation of some rubble, refuse, and dust and noise which will be kept to a practical minimum through planned construction procedures. The terrain will be restored to very nearly its original conditions. Normal operation of the storage ring facility will not produce significant adverse environmental effects different from operation of the existing facilities and the addition of one water cooling tower. No overall increase in SLAC staff is anticipated for operation of the facility. Alternatives to the proposed project that were considered include: termination, postponement, other locations and construction of a conventional high energy accelerator

  8. Magnetic Electron Filtering by Fluid Models for the PEGASES Thruster

    Science.gov (United States)

    Leray, Gary; Chabert, Pascal; Lichtenberg, Allan; Lieberman, Michael

    2009-10-01

    The PEGASES thruster produces thrust by creating positive and negative ions, which are then accelerated. To accelerate both type of ions, electrons need to be filtered, which is achieved by applying a static magnetic field strong enough to magnetize the electrons but not the ions. A 1D fluid model with three species (electrons, positive and negative ions) and an analytical model are proposed to understand this process for an oxygen plasma with p = 10 mTorr and B0 = 300 G [1]. The resulting ion-ion plasma formation in the transverse direction (perpendicular to the magnetic field) is demonstrated. It is shown that an additional electron/positive ion loss term is required. The solutions are evaluated for two main parameters: the ionizing fraction at the plasma center (x = 0), ne0/ng, and the electronegativity ratio at the center, α0=nn0/ne0. The effect of geometry and magnetic field amplitude are also discussed. [4pt] [1] Leray G, Chabert P, Lichtenberg A J and Lieberman M A, J. Phys. D: Appl. Phys., Plasma Modelling Cluster issue, to appear (2009)

  9. The Timber Resource Inventory Model (TRIM): a projection model for timber supply and policy analysis.

    Science.gov (United States)

    P.L. Tedder; R.N. La Mont; J.C. Kincaid

    1987-01-01

    TRIM (Timber Resource Inventory Model) is a yield table projection system developed for timber supply projections and policy analysis. TRIM simulates timber growth, inventories, management and area changes, and removals over the projection period. Programs in the TRIM system, card-by-card descriptions of required inputs, table formats, and sample results are presented...

  10. The Development Model Electronic Commerce of Regional Agriculture

    Science.gov (United States)

    Kang, Jun; Cai, Lecai; Li, Hongchan

    With the developing of the agricultural information, it is inevitable trend of the development of agricultural electronic commercial affairs. On the basis of existing study on the development application model of e-commerce, combined with the character of the agricultural information, compared with the developing model from the theory and reality, a new development model electronic commerce of regional agriculture base on the government is put up, and such key issues as problems of the security applications, payment mode, sharing mechanisms, and legal protection are analyzed, etc. The among coordination mechanism of the region is discussed on, it is significance for regulating the development of agricultural e-commerce and promoting the regional economical development.

  11. Model-Trained Neural Networks and Electronic Holography Demonstrated to Detect Damage in Blades

    Science.gov (United States)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    Detect Damage in Blades Electronic holography can show damaged regions in fan blades at 30 frames/sec. The electronic holograms are transformed by finite-element-model-trained artificial neural networks to visualize the damage. The trained neural networks are linked with video and graphics to visualize the bending-induced strain distribution, which is very sensitive to damage. By contrast, it is very difficult to detect damage by viewing the raw, speckled, characteristic fringe patterns. For neural-network visualization of damage, 2 frames or 2 fields are used, rather than the 12 frames normally used to compute the displacement distribution from electronic holograms. At the NASA Lewis Research Center, finite element models are used to compute displacement and strain distributions for the vibration modes of undamaged and cracked blades. A model of electronic time-averaged holography is used to transform the displacement distributions into finite-element-resolution characteristic fringe patterns. Then, a feedforward neural network is trained with the fringe-pattern/strain-pattern pairs, and the neural network, electronic holography, and video are implemented on a workstation. Now that the neural networks have been tested successfully at 30 frames/sec on undamaged and cracked cantilevers, the electronic holography and neural-network processing are being adapted for onsite damage inspection of twisted fan blades and rotormounted blades. Our conclusion is that model-trained neural nets are effective when they are trained with good models whose application is well understood. This work supports the aeromechanical testing portion of the Advanced Subsonic Technology Project.

  12. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; /Fermilab; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  13. REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography

    Science.gov (United States)

    McCord, Mark A.; Petric, Paul; Ummethala, Upendra; Carroll, Allen; Kojima, Shinichi; Grella, Luca; Shriyan, Sameet; Rettner, Charles T.; Bevis, Chris F.

    2012-03-01

    REBL (Reflective Electron Beam Lithography) is a novel concept for high speed maskless projection electron beam lithography. Originally targeting 45 nm HP (half pitch) under a DARPA funded contract, we are now working on optimizing the optics and architecture for the commercial silicon integrated circuit fabrication market at the equivalent of 16 nm HP. The shift to smaller features requires innovation in most major subsystems of the tool, including optics, stage, and metrology. We also require better simulation and understanding of the exposure process. In order to meet blur requirements for 16 nm lithography, we are both shrinking the pixel size and reducing the beam current. Throughput will be maintained by increasing the number of columns as well as other design optimizations. In consequence, the maximum stage speed required to meet wafer throughput targets at 16 nm will be much less than originally planned for at 45 nm. As a result, we are changing the stage architecture from a rotary design to a linear design that can still meet the throughput requirements but with more conventional technology that entails less technical risk. The linear concept also allows for simplifications in the datapath, primarily from being able to reuse pattern data across dies and columns. Finally, we are now able to demonstrate working dynamic pattern generator (DPG) chips, CMOS chips with microfabricated lenslets on top to prevent crosstalk between pixels.

  14. The study on stage financing model of IT project investment.

    Science.gov (United States)

    Chen, Si-hua; Xu, Sheng-hua; Lee, Changhoon; Xiong, Neal N; He, Wei

    2014-01-01

    Stage financing is the basic operation of venture capital investment. In investment, usually venture capitalists use different strategies to obtain the maximum returns. Due to its advantages to reduce the information asymmetry and agency cost, stage financing is widely used by venture capitalists. Although considerable attentions are devoted to stage financing, very little is known about the risk aversion strategies of IT projects. This paper mainly addresses the problem of risk aversion of venture capital investment in IT projects. Based on the analysis of characteristics of venture capital investment of IT projects, this paper introduces a real option pricing model to measure the value brought by the stage financing strategy and design a risk aversion model for IT projects. Because real option pricing method regards investment activity as contingent decision, it helps to make judgment on the management flexibility of IT projects and then make a more reasonable evaluation about the IT programs. Lastly by being applied to a real case, it further illustrates the effectiveness and feasibility of the model.

  15. ELECTRONIC COLLABORATION ACROSS CULTURES IN A WEB-BASED PROJECT FOR ENGLISH WRITING INSTRUCTION

    Directory of Open Access Journals (Sweden)

    George C.K. Jor

    2000-01-01

    Full Text Available The paper highlights the importance of experimentation and an innovative approach to English language writing instruction with the help of information communication technology (ICT or IT. First, it describes the local situation of English language teaching at The Chinese University of Hong Kong (CUHK. Then, it summarizes the development of IT proficiency and student-led collaborative learning groups at CUHK. Third, it reports on an international Web-based writing project involving six collaborating schools in different parts of the world including China, the United States, Indonesia, and Hong Kong in the year 1999-2000. In the report, the author-presenter will share with the audience a new ELT course development titled "English Online: Writing on the Web." He will explain the course objectives, the background of participating classes, the Web Course Tools (WebCT, the design of the project, the evaluation of course effectiveness and the outcome of the new curricular initiative. Finally, the paper presents a summary of a practical guide to electronic collaboration and some of the lessons the writer has learnt in five years' experience of participant-observation in English teaching practice using the Web.

  16. Quantum Monte Carlo algorithms for electronic structure at the petascale; the endstation project.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Ceperley, D M; Purwanto, W; Walter, E J; Krakauer, H; Zhang, S W; Kent, P.R. C; Hennig, R G; Umrigar, C; Bajdich, M; Kolorenc, J; Mitas, L

    2008-10-01

    Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrodinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size. This accuracy and scalability has enabled scientific discovery across a broad spectrum of disciplines. The current methods perform very efficiently at the terascale. The quantum Monte Carlo Endstation project is a collaborative effort among researchers in the field to develop a new generation of algorithms, and their efficient implementations, which will take advantage of the upcoming petaflop architectures. Some aspects of these developments are discussed here. These tools will expand the accuracy, efficiency and range of QMC applicability and enable us to tackle challenges which are currently out of reach. The methods will be applied to several important problems including electronic and structural properties of water, transition metal oxides, nanosystems and ultracold atoms.

  17. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  18. Incentive Model Based on Cooperative Relationship in Sustainable Construction Projects

    Directory of Open Access Journals (Sweden)

    Guangdong Wu

    2017-07-01

    Full Text Available Considering the cooperative relationship between owners and contractors in sustainable construction projects, as well as the synergistic effects created by cooperative behaviors, a cooperative incentive model was developed using game theory. The model was formulated and analyzed under both non-moral hazard and moral hazard situations. Then, a numerical simulation and example were proposed to verify the conclusions derived from the model. The results showed that the synergistic effect increases the input intensity of one party’s resource transfer into the increase of marginal utility of the other party, thus the owner and contractor are willing to enhance their levels of effort. One party’s optimal benefit allocation coefficient is positively affected by its own output efficiency, and negatively affected by the other party’s output efficiency. The effort level and expected benefits of the owner and contractor can be improved by enhancing the cooperative relationship between the two parties, as well as enhancing the net benefits of a sustainable construction project. The synergistic effect cannot lower the negative effect of moral hazard behaviors during the implementation of sustainable construction projects. Conversely, the higher levels of the cooperative relationship, the wider the gaps amongst the optimal values under both non-moral hazard and moral hazard situations for the levels of effort, expected benefits and net project benefits. Since few studies to date have emphasized the effects of cooperative relationship on sustainable construction projects, this study constructed a game-based incentive model to bridge the gaps. This study contributes significant theoretical and practical insights into the management of cooperation amongst stakeholders, and into the enhancement of the overall benefits of sustainable construction projects.

  19. Project W-320 thermal hydraulic model benchmarking and baselining

    International Nuclear Information System (INIS)

    Sathyanarayana, K.

    1998-01-01

    Project W-320 will be retrieving waste from Tank 241-C-106 and transferring the waste to Tank 241-AY-102. Waste in both tanks must be maintained below applicable thermal limits during and following the waste transfer. Thermal hydraulic process control models will be used for process control of the thermal limits. This report documents the process control models and presents a benchmarking of the models with data from Tanks 241-C-106 and 241-AY-102. Revision 1 of this report will provide a baselining of the models in preparation for the initiation of sluicing

  20. Geospatial application of the Water Erosion Prediction Project (WEPP) Model

    Science.gov (United States)

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2011-01-01

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...

  1. Application of Markovian model to school enrolment projection ...

    African Journals Online (AJOL)

    Application of Markovian model to school enrolment projection process. VU Ekhosuehi, AA Osagiede. Abstract. No Abstract. Global Journal of Mathematical Sciences Vol. 5(1) 2006: 9-16. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  2. Accessing Curriculum Through Technology Tools (ACTTT): A Model Development Project

    Science.gov (United States)

    Daytner, Katrina M.; Johanson, Joyce; Clark, Letha; Robinson, Linda

    2012-01-01

    Accessing Curriculum Through Technology Tools (ACTTT), a project funded by the U.S. Office of Special Education Programs (OSEP), developed and tested a model designed to allow children in early elementary school, including those "at risk" and with disabilities, to better access, participate in, and benefit from the general curriculum.…

  3. МULTI-STAKEHOLDER MODEL OF EDUCATION PROJECT QUALITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Юлия Юрьевна ГУСЕВА

    2015-05-01

    Full Text Available The analysis of approaches to the definition of higher education projects’ stakeholders is conducted. A model of education project quality management with the influence of stakeholders is formed. A mechanism of recognition of new groups of project’s stakeholders on the basis of set theory is offered.

  4. Identification of linear error-models with projected dynamical systems

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Kuhnen, K.

    2004-01-01

    Roč. 10, č. 1 (2004), s. 59-91 ISSN 1387-3954 Keywords : identification * error models * projected dynamical systems Subject RIV: BA - General Mathematics Impact factor: 0.292, year: 2004 http://www.informaworld.com/smpp/content~db=all~content=a713682517

  5. Student Success in College Composition through the Puente Project Model.

    Science.gov (United States)

    Jaffe, Barbara

    Much can be learned from California's Puente Project Model that would help students' success in classrooms as well as in college in general, and in their daily lives. Puente, which means "bridge" in Spanish, began in 1982 at Chabot College in northern California and is now in 38 colleges and 19 high schools statewide. Originally designed…

  6. Predicting Flu Season Requirements: An Undergraduate Modeling Project

    Science.gov (United States)

    Kramlich, Gary R., II; Braunstein Fierson, Janet L.; Wright, J. Adam

    2010-01-01

    This project was designed to be used in a freshman calculus class whose students had already been introduced to logistic functions and basic data modeling techniques. It need not be limited to such an audience, however; it has also been implemented in a topics in mathematics class for college upperclassmen. Originally intended to be presented in…

  7. Energy Exascale Earth System Model (E3SM) Project Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bader, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-18

    The E3SM project will assert and maintain an international scientific leadership position in the development of Earth system and climate models at the leading edge of scientific knowledge and computational capabilities. With its collaborators, it will demonstrate its leadership by using these models to achieve the goal of designing, executing, and analyzing climate and Earth system simulations that address the most critical scientific questions for the nation and DOE.

  8. Power electronic converters modeling and control with case studies

    CERN Document Server

    Bacha, Seddik; Bratcu, Antoneta Iuliana

    2014-01-01

    Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: ·        switched and averaged models; ·        small/large-signal models; and ·        time/frequency models. The second focuses on three groups of control methods: ·        linear control approaches normally associated with power converters; ·        resonant controllers b...

  9. Modeling and multidimensional optimization of a tapered free electron laser

    Directory of Open Access Journals (Sweden)

    Y. Jiao

    2012-05-01

    Full Text Available Energy extraction efficiency of a free electron laser (FEL can be greatly increased using a tapered undulator and self-seeding. However, the extraction rate is limited by various effects that eventually lead to saturation of the peak intensity and power. To better understand these effects, we develop a model extending the Kroll-Morton-Rosenbluth, one-dimensional theory to include the physics of diffraction, optical guiding, and radially resolved particle trapping. The predictions of the model agree well with that of the GENESIS single-frequency numerical simulations. In particular, we discuss the evolution of the electron-radiation interaction along the tapered undulator and show that the decreasing of refractive guiding is the major cause of the efficiency reduction, particle detrapping, and then saturation of the radiation power. With this understanding, we develop a multidimensional optimization scheme based on GENESIS simulations to increase the energy extraction efficiency via an improved taper profile and variation in electron beam radius. We present optimization results for hard x-ray tapered FELs, and the dependence of the maximum extractable radiation power on various parameters of the initial electron beam, radiation field, and the undulator system. We also study the effect of the sideband growth in a tapered FEL. Such growth induces increased particle detrapping and thus decreased refractive guiding that together strongly limit the overall energy extraction efficiency.

  10. Advanced electron crystallography through model-based imaging

    Science.gov (United States)

    Van Aert, Sandra; De Backer, Annick; Martinez, Gerardo T.; den Dekker, Arnold J.; Van Dyck, Dirk; Bals, Sara; Van Tendeloo, Gustaaf

    2016-01-01

    The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy. PMID:26870383

  11. Advanced electron crystallography through model-based imaging

    Directory of Open Access Journals (Sweden)

    Sandra Van Aert

    2016-01-01

    Full Text Available The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.

  12. Modelling of project cash flow on construction projects in Malang city

    Science.gov (United States)

    Djatmiko, Bambang

    2017-09-01

    Contractors usually prepare a project cash flow (PCF) on construction projects. The flow of cash in and cash out within a construction project may vary depending on the owner, contract documents, and construction service providers who have their own authority. Other factors affecting the PCF are down payment, termyn, progress schedule, material schedule, equipment schedule, manpower schedules, and wages of workers and subcontractors. This study aims to describe the cash inflow and cash outflow based on the empirical data obtained from contractors, develop a PCF model based on Halpen & Woodhead's PCF model, and investigate whether or not there is a significant difference between the Halpen & Woodhead's PCF model and the empirical PCF model. Based on the researcher's observation, the PCF management has never been implemented by the contractors in Malang in serving their clients (owners). The research setting is in Malang City because physical development in all field and there are many new construction service providers. The findings in this current study are summarised as follows: 1) Cash in included current assets (20%), owner's down payment (20%), termyin I (5%-25%), termyin II (20%), termyin III (25%), termyin IV (25%) and retention (5%). Cash out included direct cost (65%), indirect cost (20%), and profit + informal cost(15%), 2)the construction work involving the empirical PCF model in this study was started with the funds obtained from DP or current assets and 3) The two models bear several similarities in the upward trends of direct cost, indirect cost, Pro Ic, progress billing, and S-curve. The difference between the two models is the occurrence of overdraft in the Halpen and Woodhead's PCF model only.

  13. Electronic Model of a Ferroelectric Field Effect Transistor

    Science.gov (United States)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  14. Project Finance Model for Small Contractors in USA

    Directory of Open Access Journals (Sweden)

    Jawahar Nesan

    2012-11-01

    Full Text Available Construction projects do not require a large capital outlay but a large working capital to start up the project. Unfortunately, for small contractors there are very limited options available from the banks or other lending institutions to cover this large working capital requirement in the absence of sufficient collateral. The “Project Finance” method presented in this paper is recommended as the most effective method for small contractors in the United States. The problems of small and start up contractors in funding their projects have been little addressed in the literature. The current financing practices were observed through both the literature review and interviews with contractors and bankers in the western Michigan area and subsequently a system has been proposed which could help a small start-up company seeking higher growth. The growth rates that can be achieved using the project finance system in contrast to the traditional “line of credit” arrangements as illustrated in this paper show that the project finance model is beneficial.

  15. Quantum entanglement in two-electron atomic models

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, D; Plastino, A R; Dehesa, J S [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, Granada E-18071 (Spain); Koga, T, E-mail: arplastino@ugr.e [Applied Chemistry Research Unit, Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan)

    2010-07-09

    We explore the main entanglement properties exhibited by the eigenfunctions of two exactly soluble two-electron models, the Crandall atom and the Hooke atom, and compare them with the entanglement features of helium-like systems. We compute the amount of entanglement associated with the wavefunctions corresponding to the fundamental and first few excited states of these models. We investigate the dependence of the entanglement on the parameters of the models and on the quantum numbers of the eigenstates. It is found that the amount of entanglement of the system tends to increase with energy in both models. In addition, we study the entanglement of a few states of helium-like systems, which we compute using high-quality Kinoshita-like eigenfunctions. The dependence of the entanglement of helium-like atoms on the nuclear charge and on energy is found to be consistent with the trends observed in the previous two model systems.

  16. Putting structure into context: fitting of atomic models into electron microscopic and electron tomographic reconstructions.

    Science.gov (United States)

    Volkmann, Niels

    2012-02-01

    A complete understanding of complex dynamic cellular processes such as cell migration or cell adhesion requires the integration of atomic level structural information into the larger cellular context. While direct atomic-level information at the cellular level remains inaccessible, electron microscopy, electron tomography and their associated computational image processing approaches have now matured to a point where sub-cellular structures can be imaged in three dimensions at the nanometer scale. Atomic-resolution information obtained by other means can be combined with this data to obtain three-dimensional models of large macromolecular assemblies in their cellular context. This article summarizes some recent advances in this field. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Transverse Momentum Distributions of Electron in Simulated QED Model

    Science.gov (United States)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  18. Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach

    DEFF Research Database (Denmark)

    Nørby, Morten S; Olsen, Jógvan Magnus Haugaard; Steinmann, Casper

    2017-01-01

    We present a systematic investigation of the key components needed to model single chromophore electronic circular dichroism (ECD) within the polarizable embedding (PE) approach. By relying on accurate forms of the embedding potential, where especially the inclusion of local field effects...... are in focus, we show that qualitative agreement between rotatory strength parameters calculated by full quantum mechanical calculations and the more efficient embedding calculations can be obtained. An important aspect in the computation of reliable absorption parameters is the need for conformational...

  19. Twisted sigma-model solitons on the quantum projective line

    Science.gov (United States)

    Landi, Giovanni

    2018-04-01

    On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.

  20. Models for project management in 2016 Olympic Games

    OpenAIRE

    Sousa, M. J.; Lima, F.; Martins, J. R.

    2016-01-01

    The Olympic Games are the major sports event on the planet gathering people for all over the world and integrating several kind of resources that need to be managed in order to achieve efficiency and the sustainability of the event. The research question of this paper is “Which project management business model best fit a mega event like the 2016 Olympic Games?” The organizations which participate in the Olympic Games project management in Rio are under the pressure of external scenarios of u...

  1. Modeling of the atomic and electronic structures of interfaces

    International Nuclear Information System (INIS)

    Sutton, A.P.

    1988-01-01

    Recent tight binding and Car-Parrinello simulations of grain boundaries in semiconductors are reviewed. A critique is given of some models of embrittlement that are based on electronic structure considerations. The structural unit model of grain boundary structure is critically assessed using some results for mixed tilt and twist grain boundaries. A new method of characterizing interfacial structure in terms of bond angle distribution functions is described. A new formulation of thermodynamic properties of interfaces is presented which focusses on the local atomic environment. Effective, temperature dependent N-body atomic interactions are derived for studying grain boundary structure at elevated temperature

  2. Computational electronics semiclassical and quantum device modeling and simulation

    CERN Document Server

    Vasileska, Dragica; Klimeck, Gerhard

    2010-01-01

    Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of

  3. The Empowerment of Plasma Modeling by Fundamental Electron Scattering Data

    Science.gov (United States)

    Kushner, Mark J.

    2015-09-01

    Modeling of low temperature plasmas addresses at least 3 goals - investigation of fundamental processes, analysis and optimization of current technologies, and prediction of performance of as yet unbuilt systems for new applications. The former modeling may be performed on somewhat idealized systems in simple gases, while the latter will likely address geometrically and electromagnetically intricate systems with complex gas mixtures, and now gases in contact with liquids. The variety of fundamental electron and ion scattering data (FSD) required for these activities increases from the former to the latter, while the accuracy required of that data probably decreases. In each case, the fidelity, depth and impact of the modeling depends on the availability of FSD. Modeling is, in fact, empowered by the availability and robustness of FSD. In this talk, examples of the impact of and requirements for FSD in plasma modeling will be discussed from each of these three perspectives using results from multidimensional and global models. The fundamental studies will focus on modeling of inductively coupled plasmas sustained in Ar/Cl2 where the electron scattering from feed gases and their fragments ultimately determine gas temperatures. Examples of the optimization of current technologies will focus on modeling of remote plasma etching of Si and Si3N4 in Ar/NF3/N2/O2 mixtures. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids Work was supported by the US Dept. of Energy (DE-SC0001939), National Science Foundation (CHE-124752), and the Semiconductor Research Corp.

  4. Development of magnets for infra-red-free electron laser project at RRCAT

    International Nuclear Information System (INIS)

    Ruwali, Kailash; Thakur, Vanshree; Das, S.; Biswas, Bhaskar; Singh, Kushraj; Amalraj, William; Sreeramulu, K.; Mishra, Anil Kumar; Shinde, R.S.

    2015-01-01

    This paper describes the design and development of the magnets for the beam transport line of Infra- red- Free Electron Laser (IR-FEL) project at RRCAT. All the magnets have been developed and fiducialized after magnetic characterization for installation in the tunnel. These magnets include three dipole magnets, twelve quadrupole magnets and twenty two steering magnets for bending, focussing and steering of 15 to 35 MeV electron beam through a dog-leg type beam line. The dipole magnet is designed as H type for a maximum magnetic field of 0.25 tesla with pole gap and bending angle of 42 mm and 22.5° respectively. The dipole magnet is quite thin (effective length ∼200 mm) therefore entry-exit ends were chamfered to achieve the integrated field uniformity of < 1 x 10 -3 within the good field zone. The quadrupole magnet is designed for maximum integrated strength of 2.5 T/m. The poles are wider than the coil to enhance the good field region and made detachable type. The pole profile is chosen as pure hyperbola with extension. Quadrupole magnets with two different sizes of apertures (aperture diameters of 60 mm and 40 mm) were developed. The steering magnet is designed for kick strength of 12 mrad at 25 MeV. Out of 22 steering magnets, 8 are vertical steering, 6 are horizontal steering and 8 combined function steering magnets. Magnetic measurements of dipole magnets were carried out in 3 axes Hall probe bench. Quadrupole and steering magnets were characterized in a rotating coil based harmonic measurement bench. The details of the design and magnetic measurements of these magnets with results will be discussed in this paper. (author)

  5. Projected Commutator DIIS Method for Accelerating Hybrid Functional Electronic Structure Calculations.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Yang, Chao

    2017-11-14

    The commutator direct inversion of the iterative subspace (commutator DIIS or C-DIIS) method developed by Pulay is an efficient and the most widely used scheme in quantum chemistry to accelerate the convergence of self-consistent field (SCF) iterations in Hartree-Fock theory and Kohn-Sham density functional theory. The C-DIIS method requires the explicit storage of the density matrix, the Fock matrix, and the commutator matrix. Hence, the method can only be used for systems with a relatively small basis set, such as the Gaussian basis set. We develop a new method that enables the C-DIIS method to be efficiently employed in electronic structure calculations with a large basis set such as planewaves for the first time. The key ingredient is the projection of both the density matrix and the commutator matrix to an auxiliary matrix called the gauge-fixing matrix. The resulting projected commutator-DIIS method (PC-DIIS) only operates on matrices of the same dimension as that consists of Kohn-Sham orbitals. The cost of the method is comparable to that of standard charge mixing schemes used in large basis set calculations. The PC-DIIS method is gauge-invariant, which guarantees that its performance is invariant with respect to any unitary transformation of the Kohn-Sham orbitals. We demonstrate that the PC-DIIS method can be viewed as an extension of an iterative eigensolver for nonlinear problems. We use the PC-DIIS method for accelerating Kohn-Sham density functional theory calculations with hybrid exchange-correlation functionals, and demonstrate its superior performance compared to the commonly used nested two-level SCF iteration procedure. Furthermore, we demonstrate that in the context of ab initio molecular dynamics (MD) simulation with hybrid functionals one can extrapolate the gauge-fixing matrix to achieve the goal of extrapolating the entire density matrix implicitly along the MD trajectory. Numerical results indicate that the new method significantly reduces

  6. City of Austin: Green habitat learning project. A green builder model home project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The purpose of the Year 14 UCETF project was to design and construct a residential structure that could serve as a demonstration facility, training site, and testing and monitoring laboratory for issues related to the implementation of sustainable building practices and materials. The Model Home Project builds on the previous and existing efforts, partially funded by the UCETF, of the City of Austin Green Builder Program to incorporate sustainable building practices into mainstream building activities. The Green Builder Program uses the term {open_quotes}green{close_quotes} as a synonym for sustainability. In the research and analysis that was completed for our earlier reports in Years 12 and 13, we characterized specific elements that we associate with sustainability and, thus, green building. In general, we refer to a modified life cycle assessment to ascertain if {open_quotes}green{close_quotes} building options reflect similar positive cyclical patterns found in nature (i.e. recyclability, recycled content, renewable resources, etc.). We additionally consider economic, human health and synergistic ecological impacts associated with our building choices and characterize the best choices as {open_quotes}green.{close_quotes} Our ultimate goal is to identify and use those {open_quotes}green{close_quotes} materials and processes that provide well for us now and do not compromise similar benefits for future generations. The original partnership developed for this project shifted during the year from a project stressing advanced (many prototypical) {open_quotes}green{close_quotes} building materials and techniques in a research and demonstration context, to off-the-shelf but underutilized {open_quotes}green{close_quotes} materials in the practical social context of using {open_quotes}green{close_quotes} technologies for low income housing. That project, discussed in this report, is called the Green Habitat Learning Project.

  7. How much does it cost? The LIFE Project - Costing Models for Digital Curation and Preservation

    Directory of Open Access Journals (Sweden)

    Richard Davies

    2007-11-01

    Full Text Available Digital preservation is concerned with the long-term safekeeping of electronic resources. How can we be confident of their permanence, if we do not know the cost of preservation? The LIFE (Lifecycle Information for E-Literature Project has made a major step forward in understanding the long-term costs in this complex area. The LIFE Project has developed a methodology to model the digital lifecycle and to calculate the costs of preserving digital information for the next 5, 10 or 100 years. National and higher education (HE libraries can now apply this process and plan effectively for the preservation of their digital collections. Based on previous work undertaken on the lifecycles of paper-based materials, the LIFE Project created a lifecycle model and applied it to real-life digital collections across a diverse subject range. Three case studies examined the everyday operations, processes and costs involved in their respective activities. The results were then used to calculate the direct costs for each element of the digital lifecycle. The Project has made major advances in costing preservation activities, as well as making detailed costs of real digital preservation activities available. The second phase of LIFE (LIFE2, which recently started, aims to refine the lifecycle methodology and to add a greater range and breadth to the project with additional exemplar case studies.

  8. Calculation of the electron spin relaxation time in a quantum limit using a state-independent projection reduction method

    Science.gov (United States)

    Kang, Nam Lyong

    2018-02-01

    A new formula for determining the electron spin relaxation time in a system of electrons interacting with acoustic deformation phonons through phonon-modulated spin–orbit coupling is derived using the state-independent projection reduction method. The spin flip and conserving processes are explained in an organized manner because the obtained results properly contain the distribution functions for electrons and phonons. The electron spin relaxation time is calculated directly from the lineshape function without calculating the magnetic susceptibility. The temperature (T) and magnetic field (B) dependences of the electron spin relaxation time (T 1) in Si are shown by T 1 ≈ T ‑1.55 and T 1 ≈ B ‑1.96 in the quantum limit, respectively.

  9. The Sasagawa project: a model for deinstitutionalisation in Japan.

    Science.gov (United States)

    Mizuno, Masafumi; Sakuma, Kei; Ryu, Yonosuke; Munakata, Shunichi; Takebayashi, Toru; Murakami, Masaaki; Falloon, Ian R H; Kashima, Haruo

    2005-06-01

    Japanese psychiatric services are still typically hospital-based. The Sasagawa Project is the first systematized deinstitutionalization project in Japan that aims to make the transition from hospital to residential living while ensuring both the quality and continuity of care for the patients. Seventy-eight (51 males) patients (mean age 54.6) with chronic schizophrenia, who were considered appropriate for discharge received continuous cognitive behavioural therapies based on the Optimal Treatment Project manualised protocol, both before and after the hospital closure. During the first 12 months after the deinstitutionalisation was initiated on April 1st, 2002, ten people had incidents that interrupted their stay in the residential Sasagawa Village. A common criticism of many treatment outcome trials is that evaluation is focused on changes in clinical severity. In the Sasagawa project the transition appeared to have been smooth and relatively few incidents occurred could be related to the transition to a less intensive residential care. This project might be a useful model for effecting and monitoring transition from hospital to community care in Japan and other countries where such changes have been proposed.

  10. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    Science.gov (United States)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  11. A Model Suggestion to Predict Leverage Ratio for Construction Projects

    Directory of Open Access Journals (Sweden)

    Özlem Tüz

    2013-12-01

    Full Text Available Due to the nature, construction is an industry with high uncertainty and risk. Construction industry carries high leverage ratios. Firms with low equities work in big projects through progress payment system, but in this case, even a small negative in the planned cash flows constitute a major risk for the company.The use of leverage, with a small investment to achieve profit targets large-scale, high-profit, but also brings a high risk with it. Investors may lose all or the portion of the money. In this study, monitoring and measuring of the leverage ratio because of the displacement in cash inflows of construction projects which uses high leverage and low cash to do business in the sector is targeted. Cash need because of drifting the cash inflows may be seen due to the model. Work should be done in the early stages of the project with little capital but in the later stages, rapidly growing capital need arises.The values obtained from the model may be used to supply the capital held in the right time by anticipating the risks because of the delay in cashflow of construction projects which uses high leverage ratio.

  12. Modeling Radiation Belt Electron Dynamics with the DREAM3D Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Weichao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cunningham, Gregory S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Michael G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morley, Steven K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blake, Bernard J. [The Aerospace Corporation, El Segundo, CA (United States); Baker, Daniel N. [Lab. for Atmospheric and Space Physics, Boulder, CO (United States); Spence, Harlan [Univ. of New Hampshire, Durham, NH (United States)

    2014-02-14

    The simulation results from our 3D diffusion model on the CRRES era suggest; our model captures the general variations of radiation belt electrons, including the dropouts and the enhancements; the overestimations inside the plasmapause can be improved by increasing the PA diffusion from hiss waves; and that better DLL and wave models are required.

  13. Determination of electron density and temperature in a capacitively coupled RF discharge in neon by OES complemented with a CR model

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Z.; Dvořák, P.; Brzobohatý, Oto; Trunec, D.

    2010-01-01

    Roč. 43, Nov 3 (2010), 505203:1-11 ISSN 0022-3727 R&D Projects: GA ČR GA202/07/1669 Institutional research plan: CEZ:AV0Z20650511 Keywords : electron temperature * electron density * optical emission spectroscopy * collisional–radiative model Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.105, year: 2010

  14. Electronic Commerce Success Model: A Search for Multiple Criteria

    Directory of Open Access Journals (Sweden)

    Didi Achjari

    2004-01-01

    Full Text Available The current study attempts to develop and examine framework of e-commerce success. In order to obtain comprehensive and robust measures, the framework accomodates key factors that are identified in the literature concerning the success of electronic commerce. The structural model comprises of four exogenous variables (Internal Driver, Internal Impediment, External Driver and Exgternal Impediment and one endogenous variable (Electornic Commerce Success eith 24 observed variables. The study that was administered within large Australian companies using questionaire survey concluded that benefits for both internal organization and external parties from the use of e-commerce were the main factor tro predict perceived and/or expected success of electronic commerce.

  15. Project Management Life Cycle Models to Improve Management in High-rise Construction

    Science.gov (United States)

    Burmistrov, Andrey; Siniavina, Maria; Iliashenko, Oksana

    2018-03-01

    The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models) based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  16. Project Management Life Cycle Models to Improve Management in High-rise Construction

    Directory of Open Access Journals (Sweden)

    Burmistrov Andrey

    2018-01-01

    Full Text Available The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  17. Model projections of atmospheric steering of Sandy-like superstorms.

    Science.gov (United States)

    Barnes, Elizabeth A; Polvani, Lorenzo M; Sobel, Adam H

    2013-09-17

    Superstorm Sandy ravaged the eastern seaboard of the United States, costing a great number of lives and billions of dollars in damage. Whether events like Sandy will become more frequent as anthropogenic greenhouse gases continue to increase remains an open and complex question. Here we consider whether the persistent large-scale atmospheric patterns that steered Sandy onto the coast will become more frequent in the coming decades. Using the Coupled Model Intercomparison Project, phase 5 multimodel ensemble, we demonstrate that climate models consistently project a decrease in the frequency and persistence of the westward flow that led to Sandy's unprecedented track, implying that future atmospheric conditions are less likely than at present to propel storms westward into the coast.

  18. Model projections of atmospheric steering of Sandy-like superstorms

    Science.gov (United States)

    Barnes, Elizabeth A.; Polvani, Lorenzo M.; Sobel, Adam H.

    2013-01-01

    Superstorm Sandy ravaged the eastern seaboard of the United States, costing a great number of lives and billions of dollars in damage. Whether events like Sandy will become more frequent as anthropogenic greenhouse gases continue to increase remains an open and complex question. Here we consider whether the persistent large-scale atmospheric patterns that steered Sandy onto the coast will become more frequent in the coming decades. Using the Coupled Model Intercomparison Project, phase 5 multimodel ensemble, we demonstrate that climate models consistently project a decrease in the frequency and persistence of the westward flow that led to Sandy’s unprecedented track, implying that future atmospheric conditions are less likely than at present to propel storms westward into the coast. PMID:24003129

  19. Project Management in Public Administration. TPM – Total Project Management Maturity Model. The Case of Slovenian Public Administration

    Directory of Open Access Journals (Sweden)

    Gordana ŽURGA

    2018-02-01

    Full Text Available The purpose of the article is to present the importance of project management for the functioning of public administration, and its contribution to the realization of the developmental goals of the government. For this, integration of strategic management and project management is of vital importance. The methodology used is a combination of literature review, a case study of project management in public administration of the Republic of Slovenia, and development of a maturity model of project management in public administration, with its verifi cation on the case of Slovenia. The main contribution of the study is development of TPM – Total Project Management maturity model for public administration. Upon the TPM maturity model, project management in Slovene public administration is assessed and discussed. Out of fi ve maturity levels, the results for project management in Slovene public administration are: management of projects – level 2 (initiated, management of programs of projects – level 2 (initiated, management of portfolios of projects – level 3 (implemented, organizational support for project management – level 3 (implemented, HRM for project management – level 2 (initiated, and integration of project management and strategic management – level 3 (implemented. General fi ndings and recommendations in this respect are drawn, together with indicated areas for possible further research and investigation.

  20. Radioactive waste management. International projects on biosphere modelling

    International Nuclear Information System (INIS)

    Carboneras, P.; Cancio, D.

    1993-01-01

    The paper presents a general overview and discussion on the state of art concerning the biospheric transfer and accumulation of contaminants. A special emphasis is given to the progress achieved in the field of radioactive contaminants and particularly to those implied in radioactive waste disposal. The objectives and advances of the international projects BIOMOVS and VAMP on validation of model predictions are also described. (Author)

  1. Atomic Data and Modelling for Fusion: the ADAS Project

    International Nuclear Information System (INIS)

    Summers, H. P.; O'Mullane, M. G.

    2011-01-01

    The paper is an update on the Atomic Data and Analysis Structure, ADAS, since ICAM-DATA06 and a forward look to its evolution in the next five years. ADAS is an international project supporting principally magnetic confinement fusion research. It has participant laboratories throughout the world, including ITER and all its partner countries. In parallel with ADAS, the ADAS-EU Project provides enhanced support for fusion research at Associated Laboratories and Universities in Europe and ITER. OPEN-ADAS, sponsored jointly by the ADAS Project and IAEA, is the mechanism for open access to principal ADAS atomic data classes and facilitating software for their use. EXTENDED-ADAS comprises a variety of special, integrated application software, beyond the purely atomic bounds of ADAS, tuned closely to specific diagnostic analyses and plasma models.The current scientific content and scope of these various ADAS and ADAS related activities are briefly reviewed. These span a number of themes including heavy element spectroscopy and models, charge exchange spectroscopy, beam emission spectroscopy and special features which provide a broad baseline of atomic modelling and support. Emphasis will be placed on 'lifting the fundamental data baseline'--a principal ADAS task for the next few years. This will include discussion of ADAS and ADAS-EU coordinated and shared activities and some of the methods being exploited.

  2. Electron reactions in model liquids and biological systems

    International Nuclear Information System (INIS)

    Bakale, G.; Gregg, E.C.

    1982-01-01

    Progress is reported in the following studies: (1) Field-dependent electron attachment; (2) Dependence of electron attachment rate on electron-acceptor dipole moment; (3) Electron attachment in i-octane/TMS mixtures; (4) Electron attachment/detachment equilibria; (5) Electron attachment to reversed micelles; (6) Electron attachment to chemical carcinogens; (7) Radiation-induced bacterial mutagenesis; and (8) Bacterial mutagenicity of nitrobenzene derivatives. 14 references

  3. Modelling of electron transport and of sawtooth activity in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Angioni, C

    2001-10-01

    Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code

  4. Solid Waste Projection Model: Database (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement

  5. A River Model Intercomparison Project in Preparation for SWOT

    Science.gov (United States)

    David, C. H.; Andreadis, K.; Famiglietti, J. S.; Beighley, E.; Boone, A. A.; Yamazaki, D.; Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Fisher, C. K.; Kim, H.; Biancamaria, S.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) mission is currently scheduled to launch at the beginning of next decade. SWOT is expected to retrieve unprecedented measurements of water extent, elevation, and slope in the largest terrestrial water bodies. Such potential transformative information motivates the investigation of our ability to ingest the associated data into continental-scale models of terrestrial hydrology. In preparation for the expected SWOT observations, an inter-comparison of continental-scale river models is being performed. This comparison experiment focuses on four of the world's largest river basins: the Amazon, the Mississippi, the Niger, and the Saint-Lawrence. This ongoing project focuses on two main research questions: 1) How can we best prepare for the expected SWOT continental to global measurements before SWOT even flies?, and 2) What is the added value of including SWOT terrestrial measurements into global hydro models for enhancing our understanding of the terrestrial water cycle and the climate system? We present here the results of the second year of this project which now includes simulations from six numerical models of rivers over the Mississippi and sheds light on the implications of various modeling choices on simulation quality as well as on the potential impact of SWOT observations.

  6. Electronic Reverse Auctions: Integrating an E-Sourcing Tool into a Sales and Purchasing Cross-Course Negotiation Project

    Science.gov (United States)

    Williams, Jacqueline A.; Dobie, Kathryn

    2011-01-01

    Electronic reverse auctions are increasingly being used by firms to improve firm financial and operational performance. The described teaching innovation serves as a model for introducing electronic reverse auctions as a central element in a comprehensive negotiation exercise involving sales management and purchasing management students. Results…

  7. Electron/muon specific two Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Kajiyama, Yuji, E-mail: kajiyama-yuuji@akita-pref.ed.jp [Akita Highschool, Tegata-Nakadai 1, Akita, 010-0851 (Japan); Okada, Hiroshi, E-mail: hokada@kias.re.kr [School of Physics, KIAS, Seoul 130-722 (Korea, Republic of); Yagyu, Kei, E-mail: keiyagyu@ncu.edu.tw [Department of Physics, National Central University, Chungli, 32001, Taiwan, ROC (China)

    2014-10-15

    We discuss two Higgs doublet models with a softly-broken discrete S{sub 3} symmetry, where the mass matrix for charged-leptons is predicted as the diagonal form in the weak eigenbasis of lepton fields. Similarly to an introduction of Z{sub 2} symmetry, the tree level flavor changing neutral current can be forbidden by imposing the S{sub 3} symmetry to the model. Under the S{sub 3} symmetry, there are four types of Yukawa interactions depending on the S{sub 3} charge assignment to right-handed fermions. We find that extra Higgs bosons can be muon and electron specific in one of four types of the Yukawa interaction. This property does not appear in any other two Higgs doublet models with a softly-broken Z{sub 2} symmetry. We discuss the phenomenology of the muon and electron specific Higgs bosons at the Large Hadron Collider; namely we evaluate allowed parameter regions from the current Higgs boson search data and discovery potential of such a Higgs boson at the 14 TeV run.

  8. Assessing Australian Rainfall Projections in Two Model Resolutions

    Science.gov (United States)

    Taschetto, A.; Haarsma, R. D.; Sen Gupta, A.

    2016-02-01

    Australian climate is projected to change with increases in greenhouse gases. The IPCC reports an increase in extreme daily rainfall across the country. At the same time, mean rainfall over southeast Australia is projected to reduce during austral winter, but to increase during austral summer, mainly associated with changes in the surrounding oceans. Climate models agree better on the future reduction of average rainfall over the southern regions of Australia compared to the increase in extreme rainfall events. One of the reasons for this disagreement may be related to climate model limitations in simulating the observed mechanisms associated with the mid-latitude weather systems, in particular due to coarse model resolutions. In this study we investigate how changes in sea surface temperature (SST) affect Australian mean and extreme rainfall under global warming, using a suite of numerical experiments at two model resolutions: about 126km (T159) and 25km (T799). The numerical experiments are performed with the earth system model EC-EARTH. Two 6-member ensembles are produced for the present day conditions and a future scenario. The present day ensemble is forced with the observed daily SST from the NOAA National Climatic Data Center from 2002 to 2006. The future scenario simulation is integrated from 2094 to 2098 using the present day SST field added onto the future SST change created from a 17-member ensemble based on the RCP4.5 scenario. Preliminary results show an increase in extreme rainfall events over Tasmania associated with enhanced convection driven by the Tasman Sea warming. We will further discuss how the projected changes in SST will impact the southern mid-latitude weather systems that ultimately affect Australian rainfall.

  9. The Radio Language Arts Project: adapting the radio mathematics model.

    Science.gov (United States)

    Christensen, P R

    1985-01-01

    Kenya's Radio Language Arts Project, directed by the Academy for Educational Development in cooperation with the Kenya Institute of Education in 1980-85, sought to teach English to rural school children in grades 1-3 through use of an intensive, radio-based instructional system. Daily 1/2 hour lessons are broadcast throughout the school year and supported by teachers and print materials. The project further was aimed at testing the feasibility of adaptation of the successful Nicaraguan Radio Math Project to a new subject area. Difficulties were encountered in articulating a language curriculum with the precision required for a media-based instructional system. Also a challenge was defining the acceptable regional standard for pronunciation and grammar; British English was finally selected. An important modification of the Radio Math model concerned the role of the teacher. While Radio Math sought to reduce the teacher's responsibilities during the broadcast, Radio Language Arts teachers played an important instructional role during the English lesson broadcasts by providing translation and checks on work. Evaluations of the Radio language Arts Project suggest significant gains in speaking, listening, and reading skills as well as high levels of satisfaction on the part of parents and teachers.

  10. The electronic disability record: purpose, parameters, and model use case.

    Science.gov (United States)

    Tulu, Bengisu; Horan, Thomas A

    2009-01-01

    The active engagement of consumers is an important factor in achieving widespread success of health information systems. The disability community represents a major segment of the healthcare arena, with more than 50 million Americans experiencing some form of disability. In keeping with the "consumer-driven" approach to e-health systems, this paper considers the distinctive aspects of electronic and personal health record use by this segment of society. Drawing upon the information shared during two national policy forums on this topic, the authors present the concept of Electronic Disability Records (EDR). The authors outline the purpose and parameters of such records, with specific attention to its ability to organize health and financial data in a manner that can be used to expedite the disability determination process. In doing so, the authors discuss its interaction with Electronic Health Records (EHR) and Personal Health Records (PHR). The authors then draw upon these general parameters to outline a model use case for disability determination and discuss related implications for disability health management. The paper further reports on the subsequent considerations of these and related deliberations by the American Health Information Community (AHIC).

  11. Hot-Electron Nanobolometers Based on Disordered GaN Heterostructures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research is to develop hot electron THz nanobolometers (nanoHEB) with unprecedented low electron heat capacity (~10-19 J/K) for use in advanced...

  12. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices †

    KAUST Repository

    Beljonne, David

    2011-02-08

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational techniques used to assess the morphology of organic: organic heterojunctions; we highlight the compromises that are necessary to handle large systems and multiple time scales while preserving the atomistic details required for subsequent computations of the electronic and optical properties. We then review some recent theoretical advances in describing the ground-state electronic structure at heterojunctions between donor and acceptor materials and highlight the role played by charge-transfer and long-range polarization effects. Finally, we discuss the modeling of the excited-state electronic structure at organic:organic interfaces, which is a key aspect in the understanding of the dynamics of photoinduced electron-transfer processes. © 2010 American Chemical Society.

  13. Projective limits of state spaces III. Toy-models

    Science.gov (United States)

    Lanéry, Suzanne; Thiemann, Thomas

    2018-01-01

    In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013) [1,2], which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). A strategy to implement the dynamics in this formalism was presented in our first paper Lanéry and Thiemann (2017) (see also Lanéry, 2016, section 4), which we now test in two simple toy-models. The first one is a very basic linear model, meant as an illustration of the general procedure, and we will only discuss it at the classical level. In the second one, we reformulate the Schrödinger equation, treated as a classical field theory, within this projective framework, and proceed to its (non-relativistic) second quantization. We are then able to reproduce the physical content of the usual Fock quantization.

  14. Revenue Risk Modelling and Assessment on BOT Highway Project

    Science.gov (United States)

    Novianti, T.; Setyawan, H. Y.

    2018-01-01

    The infrastructure project which is considered as a public-private partnership approach under BOT (Build-Operate-Transfer) arrangement, such as a highway, is risky. Therefore, assessment on risk factors is essential as the project have a concession period and is influenced by macroeconomic factors and consensus period. In this study, pre-construction risks of a highway were examined by using a Delphi method to create a space for offline expert discussions; a fault tree analysis to map intuition of experts and to create a model from the underlying risk events; a fuzzy logic to interpret the linguistic data of risk models. The loss of revenue for risk tariff, traffic volume, force majeure, and income were then measured. The results showed that the loss of revenue caused by the risk tariff was 10.5% of the normal total revenue. The loss of revenue caused by the risk of traffic volume was 21.0% of total revenue. The loss of revenue caused by the force majeure was 12.2% of the normal income. The loss of income caused by the non-revenue events was 6.9% of the normal revenue. It was also found that the volume of traffic was the major risk of a highway project because it related to customer preferences.

  15. Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Wahlen-Strothman, J. M. [Rice Univ., Houston, TX (United States); Henderson, T. H. [Rice Univ., Houston, TX (United States); Hermes, M. R. [Rice Univ., Houston, TX (United States); Degroote, M. [Rice Univ., Houston, TX (United States); Qiu, Y. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)

    2018-01-03

    Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.

  16. Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian.

    Science.gov (United States)

    Wahlen-Strothman, Jacob M; Henderson, Thomas M; Hermes, Matthew R; Degroote, Matthias; Qiu, Yiheng; Zhao, Jinmo; Dukelsky, Jorge; Scuseria, Gustavo E

    2017-02-07

    Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.

  17. Innovations in projecting emissions for air quality modeling ...

    Science.gov (United States)

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo

  18. Projective symmetry of partons in Kitaev's honeycomb model

    Science.gov (United States)

    Mellado, Paula

    2015-03-01

    Low-energy states of quantum spin liquids are thought to involve partons living in a gauge-field background. We study the spectrum of Majorana fermions of Kitaev's honeycomb model on spherical clusters. The gauge field endows the partons with half-integer orbital angular momenta. As a consequence, the multiplicities reflect not the point-group symmetries of the cluster, but rather its projective symmetries, operations combining physical and gauge transformations. The projective symmetry group of the ground state is the double cover of the point group. We acknowledge Fondecyt under Grant No. 11121397, Conicyt under Grant No. 79112004, and the Simons Foundation (P.M.); the Max Planck Society and the Alexander von Humboldt Foundation (O.P.); and the US DOE Grant No. DE-FG02-08ER46544 (O.T.).

  19. Projection methods for the numerical solution of Markov chain models

    Science.gov (United States)

    Saad, Youcef

    1989-01-01

    Projection methods for computing stationary probability distributions for Markov chain models are presented. A general projection method is a method which seeks an approximation from a subspace of small dimension to the original problem. Thus, the original matrix problem of size N is approximated by one of dimension m, typically much smaller than N. A particularly successful class of methods based on this principle is that of Krylov subspace methods which utilize subspaces of the form span(v,av,...,A(exp m-1)v). These methods are effective in solving linear systems and eigenvalue problems (Lanczos, Arnoldi,...) as well as nonlinear equations. They can be combined with more traditional iterative methods such as successive overrelaxation, symmetric successive overrelaxation, or with incomplete factorization methods to enhance convergence.

  20. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    Science.gov (United States)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  1. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    International Nuclear Information System (INIS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-01-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections

  2. Reliable modeling of the electronic spectra of realistic uranium complexes

    Science.gov (United States)

    Tecmer, Paweł; Govind, Niranjan; Kowalski, Karol; de Jong, Wibe A.; Visscher, Lucas

    2013-07-01

    We present an EOMCCSD (equation of motion coupled cluster with singles and doubles) study of excited states of the small [UO2]2+ and [UO2]+ model systems as well as the larger UVIO2(saldien) complex. In addition, the triples contribution within the EOMCCSDT and CR-EOMCCSD(T) (completely renormalized EOMCCSD with non-iterative triples) approaches for the [UO2]2+ and [UO2]+ systems as well as the active-space variant of the CR-EOMCCSD(T) method—CR-EOMCCSd(t)—for the UVIO2(saldien) molecule are investigated. The coupled cluster data were employed as benchmark to choose the "best" appropriate exchange-correlation functional for subsequent time-dependent density functional (TD-DFT) studies on the transition energies for closed-shell species. Furthermore, the influence of the saldien ligands on the electronic structure and excitation energies of the [UO2]+ molecule is discussed. The electronic excitations as well as their oscillator dipole strengths modeled with TD-DFT approach using the CAM-B3LYP exchange-correlation functional for the [UVO2(saldien)]- with explicit inclusion of two dimethyl sulfoxide molecules are in good agreement with the experimental data of Takao et al. [Inorg. Chem. 49, 2349 (2010), 10.1021/ic902225f].

  3. Modeling Blazar Spectra by Solving an Electron Transport Equation

    Science.gov (United States)

    Lewis, Tiffany; Finke, Justin; Becker, Peter A.

    2018-01-01

    Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.

  4. A Landau fluid model for dissipative trapped electron modes

    International Nuclear Information System (INIS)

    Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.

    1995-09-01

    A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths

  5. Developing a Project Scorecard to Measure the Performance of Project Management in Relation to EFQM Excellence Model

    Directory of Open Access Journals (Sweden)

    Mathias Scheiblich

    2017-11-01

    Full Text Available Strategic company plans are more frequently realised in the form of strategic projects. Project portfolio management is new territory for a lot of companies, especially regarding the evaluation of strategic projects and the final financial and social results. The paper focuses on a pattern methodology for the measurement of project management performance and for projects prioritisation process. For this purpose, we analyse relevant pieces of literature in the field of project management, as well as other connected fields, like maturity and excellence models, balanced and project scorecard and performance measurement. As research methodology we develop a Project Scorecard that is derived from the Balanced Scorecard and the EFQM model. This is used to connect the strategic decision making process to the operational level of a project in terms of objectives and expectations, by determining a proper set of parameters that can measure each element’s impact on the project overall success. Our research focuses on two main parameters, staff and project maturity. Testing this tool is done by reviewing a sum of human resources documents and various employee surveys. The results offer an overall interpretation and key of the Project Scorecard.

  6. Multimode model for projective photon-counting measurements

    International Nuclear Information System (INIS)

    Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Dantan, Aurelien; Grangier, Philippe; Wubs, Martijn; Soerensen, Anders S.

    2009-01-01

    We present a general model to account for the multimode nature of the quantum electromagnetic field in projective photon-counting measurements. We focus on photon-subtraction experiments, where non-Gaussian states are produced conditionally. These are useful states for continuous-variable quantum-information processing. We present a general method called mode reduction that reduces the multimode model to an effective two-mode problem. We apply this method to a multimode model describing broadband parametric down-conversion, thereby improving the analysis of existing experimental results. The main improvement is that spatial and frequency filters before the photon detector are taken into account explicitly. We find excellent agreement with previously published experimental results, using fewer free parameters than before, and discuss the implications of our analysis for the optimized production of states with negative Wigner functions.

  7. Progress report for project modeling Arctic barrier island-lagoon system response to projected Arctic warming

    Science.gov (United States)

    Erikson, Li H.; Gibbs, Ann E.; Richmond, Bruce M.; Storlazzi, Curt; B.M. Jones,

    2012-01-01

    Changes in Arctic coastal ecosystems in response to global warming may be some of the most severe on the planet. A better understanding and analysis of the rates at which these changes are expected to occur over the coming decades is crucial in order to delineate high-priority areas that are likely to be affected by climate changes. In this study we investigate the likelihood of changes to habitat-supporting barrier island – lagoon systems in response to projected changes in atmospheric and oceanographic forcing associated with Arctic warming. To better understand the relative importance of processes responsible for the current and future coastal landscape, key parameters related to increasing arctic temperatures are investigated and used to establish boundary conditions for models that simulate barrier island migration and inundation of deltaic deposits and low-lying tundra. The modeling effort investigates the dominance and relative importance of physical processes shaping the modern Arctic coastline as well as decadal responses due to projected conditions out to the year 2100.

  8. Supporting Current Energy Conversion Projects through Numerical Modeling

    Science.gov (United States)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  9. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Townley, L.R.; Trefry, M.G.; Barr, A.D. [CSIRO Div of Water Resources, PO Wembley, WA (Australia); Braumiller, S. [Univ of Arizona, Tucson, AZ (United States). Dept of Hydrology and Water Resources; Kawanishi, M. [Central Research Institute of Electric Power Industry, Abiko-Shi, Chiba-Ken (Japan)] [and others

    1992-12-31

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  10. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    International Nuclear Information System (INIS)

    Townley, L.R.; Trefry, M.G.; Barr, A.D.; Braumiller, S.

    1992-01-01

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  11. Eradicating the tsetse fly on Zanzibar Island: A model project

    International Nuclear Information System (INIS)

    2003-01-01

    Tsetse flies infest vast areas of Africa and transmit a parasitic disease which devastates livestock herds and spreads debilitating 'sleeping sickness' amongst people. Past efforts to control the disease - Trypanosomosis - and the carrier insects have met with only limited success. But now an environmentally friendly technology called the Sterile Insect Technique (SIT) may provide a lasting solution to this scourge. Working with the Tanzanian Government and Zanzibar authorities, the Department of Technical Co-operation has sponsored a 'Model Project', with technical support from the Joint FAO/IAEA Division, to eradicate the tsetse fly completely from Zanzibar Island by applying SIT. (IAEA)

  12. Nucleon form factors in the projected linear chiral soliton model

    International Nuclear Information System (INIS)

    Alberto, P.; Coimbra Univ.; Coimbra Univ.; Ruiz Arriola, E.; Gruemmer, F.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Bochum Univ.

    1988-01-01

    Electromagnetic and axial form factors of the nucleon are evaluated using the lagrangian of the linear chiral soliton model. To this end angular momentum and isospin projected mean field solutions are determined variationally assuming valence quarks and pions in generalized hedgehog configurations. With the proper pion decay constant and after fitting the quark-meson coupling constant to the nucleon energy both proton and neutron charge form factors are reproduced as well as the slope of the magnetic ones. The axial form factor agrees less well with experiment. The pion form factor can be approximated by a monopole with a cut-off mass of 690 MeV. (orig.)

  13. The SPARC project: a high-brightness electron beam source at LNF to drive a SASE-FEL experiment

    International Nuclear Information System (INIS)

    Alesini, D.; Bertolucci, S.; Biagini, M.E.; Biscari, C.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Di Pirro, G.; Drago, A.; Esposito, A.; Ferrario, M.; Fusco, V.; Gallo, A.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Laurelli, P.; Ligi, C.; Marcellini, F.; Migliorati, M.; Milardi, C.; Palumbo, L.; Pellegrino, L.; Preger, M.; Raimondi, P.; Ricci, R.; Sanelli, C.; Sgamma, F.; Spataro, B.; Serio, M.; Stecchi, A.; Stella, A.; Tazzioli, F.; Vaccarezza, C.; Vescovi, M.; Vicario, C.; Zobov, M.; Acerbi, E.; Alessandria, F.; Barni, D.; Bellomo, G.; Boscolo, I.; Broggi, F.; Cialdi, S.; DeMartinis, C.; Giove, D.; Maroli, C.; Petrillo, V.; Rome', M.; Serafini, L.; Chiadroni, E.; Felici, G.; Levi, D.; Mastrucci, M.; Mattioli, M.; Medici, G.; Petrarca, G.S.; Catani, L.; Cianchi, A.; D'Angelo, A.; Di Salvo, R.; Fantini, A.; Moricciani, D.; Schaerf, C.; Bartolini, R.; Ciocci, F.; Dattoli, G.; Doria, A.; Flora, F.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Mezi, L.; Ottaviani, P.L.; Picardi, L.; Quattromini, M.; Renieri, A.; Ronsivalle, C.; Avaldi, L.; Carbone, C.; Cricenti, A.; Pifferi, A.; Perfetti, P.; Prosperi, T.; Albertini, V. Rossi; Quaresima, C.; Zema, N.

    2003-01-01

    The Project Sorgente Pulsata e Amplificata di Radiazione Coerente (SPARC), proposed by a collaboration among ENEA-INFN-CNR-Universita' di Tor Vergata-INFM-ST, was recently approved by the Italian Government and will be built at LNF. The aim of the project is to promote an R and D activity oriented to the development of a coherent ultra-brilliant X-ray source in Italy. This collaboration has identified a program founded on two main issues: the generation of ultra-high peak brightness electron beams and of resonant higher harmonics in the SASE-FEL process, as presented in this paper

  14. Factors influencing the development of primary care data collection projects from electronic health records: a systematic review of the literature.

    Science.gov (United States)

    Gentil, Marie-Line; Cuggia, Marc; Fiquet, Laure; Hagenbourger, Camille; Le Berre, Thomas; Banâtre, Agnès; Renault, Eric; Bouzille, Guillaume; Chapron, Anthony

    2017-09-25

    Primary care data gathered from Electronic Health Records are of the utmost interest considering the essential role of general practitioners (GPs) as coordinators of patient care. These data represent the synthesis of the patient history and also give a comprehensive picture of the population health status. Nevertheless, discrepancies between countries exist concerning routine data collection projects. Therefore, we wanted to identify elements that influence the development and durability of such projects. A systematic review was conducted using the PubMed database to identify worldwide current primary care data collection projects. The gray literature was also searched via official project websites and their contact person was emailed to obtain information on the project managers. Data were retrieved from the included studies using a standardized form, screening four aspects: projects features, technological infrastructure, GPs' roles, data collection network organization. The literature search allowed identifying 36 routine data collection networks, mostly in English-speaking countries: CPRD and THIN in the United Kingdom, the Veterans Health Administration project in the United States, EMRALD and CPCSSN in Canada. These projects had in common the use of technical facilities that range from extraction tools to comprehensive computing platforms. Moreover, GPs initiated the extraction process and benefited from incentives for their participation. Finally, analysis of the literature data highlighted that governmental services, academic institutions, including departments of general practice, and software companies, are pivotal for the promotion and durability of primary care data collection projects. Solid technical facilities and strong academic and governmental support are required for promoting and supporting long-term and wide-range primary care data collection projects.

  15. LXCat: A web-based, community-wide project on data for modeling low temperature plasmas

    Science.gov (United States)

    Pitchford, L. C.

    2014-10-01

    LXCat is an open-access website (www.lxcat.net) for exchanging data related to ion and electron transport and scattering cross sections in cold, neutral gases. At present 30 people from 12 countries have contributed to the LXCat project. This presentation will focus on the status of the data available for electrons on LXCat. These data are primarily in the form of ``complete'' sets of cross sections, compiled or calculated by different contributors, covering a range of energies from thermal up to about 1 keV. The cross section data can be used directly in Monte Carlo simulations and can also be used as input to Boltzmann equation solvers. Solution of the homogeneous, steady-state Boltzmann equation yields electron energy distribution functions (edf) as a function of reduced electric field strength, E/N, integrals over which yield electron transport and rate coefficients. The transport and rate coefficient data are required input for fluid models of low temperature plasmas. Evaluation of the cross section data sets available on LXCat is a key issue. To this end, the LXCat team has been making systematic intercomparisons of cross section data and comparisons of calculated and measured transport and rate coefficients. Our evaluations have been reported previously for noble gases and for common atmospheric gases. The LXCat team is now evaluating data for more complex molecules.

  16. Modeling of the response under radiation of electronic dosemeters

    International Nuclear Information System (INIS)

    Menard, S.

    2003-01-01

    The simulation with with calculation codes the interactions and the transport of primary and secondary radiations in the detectors allows to reduce the number of developed prototypes and the number of experiments under radiation. The simulation makes possible the determination of the response of the instrument for exposure configurations more extended that these ones of references radiations produced in laboratories. The M.C.N.P.X. allows to transport, over the photons, electrons and neutrons, the charged particles heavier than the electrons and to simulate the radiation - matter interactions for a certain number of particles. The present paper aims to present the interest of the use of the M.C.N.P.X. code in the study, research and evaluation phases of the instrumentation necessary to the dosimetry monitoring. To do that the presentation gives the results of the modeling of a prototype of a equivalent tissue proportional counter (C.P.E.T.) and of the C.R.A.M.A.L. ( radiation protection apparatus marketed by the Eurisys Mesures society). (N.C.)

  17. A Model of Electron-Positron Pair Formation

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2008-01-01

    Full Text Available The elementary electron-positron pair formation process is consideredin terms of a revised quantum electrodynamic theory, with specialattention to the conservation of energy, spin, and electric charge.The theory leads to a wave-packet photon model of narrow line widthand needle-radiation properties, not being available from conventionalquantum electrodynamics which is based on Maxwell's equations. Themodel appears to be consistent with the observed pair productionprocess, in which the created electron and positron form two raysthat start within a very small region and have original directionsalong the path of the incoming photon. Conservation of angular momentum requires the photon to possess a spin, as given by the present theory but not by the conventional one. The nonzero electric field divergence further gives rise to a local intrinsic electric charge density within the photon body, whereas there is a vanishing total charge of the latter. This may explain the observed fact that the photon decays on account of the impact from an external electric field. Such a behaviour should not become possible for a photon having zero local electric charge density.

  18. A proposed model of e-trust for electronic banking

    Directory of Open Access Journals (Sweden)

    Neda Yousefi

    2015-11-01

    Full Text Available Customer’s trust is the most important and one of the key factors of success in e-commerce. However, trust is the essential aspects of e-banking adoption and the main element for building long-term relationships with the bank's customers. So the purpose of this research is to investigate the factors influencing on customer′s trust in e-banking services and prioritize them. Therefore, designed questionnaire was distributed among 177 electronic service customers in number of banks in the city of Karaj, Iran. Likert quintuplet scales were used to measure the variables. After collecting the questionnaires, the data were analyzed by structural equation modeling (by using LISREL 8.5. The results revealed that quality of electronic services such as ease of use, privacy and security, individual characteristics of customers such as disposition to trust and features of bank such as reputation, size and dependence on government, have had the greatest effect on customer′s trust in e-banking services.

  19. Systemic Modeling of Biological Functions in Consideration of Physiome Project

    Science.gov (United States)

    Minamitani, Haruyuki

    Emerging of the physiome project provides various influences on the medical, biological and pharmaceutical development. In this paper, as an example of physiome research, neural network model analysis providing the conduction mechanisms of pain and tactile sensations was presented, and the functional relations between neural activities of the network cells and stimulus intensity applied on the peripheral receptive fields were described. The modeling presented here is based on the various assumptions made by the results of physiological and anatomical studies reported in the literature. The functional activities of spinothalamic and thalamocortical cells show a good agreement with the physiological and psychophysical functions of somatosensory system that are very instructive for covering the gap between physiologically and psychophysically aspects of pain and tactile sensation.

  20. Two-stage Bayesian models-application to ZEDB project

    International Nuclear Information System (INIS)

    Bunea, C.; Charitos, T.; Cooke, R.M.; Becker, G.

    2005-01-01

    A well-known mathematical tool to analyze plant specific reliability data for nuclear power facilities is the two-stage Bayesian model. Such two-stage Bayesian models are standard practice nowadays, for example in the German ZEDB project or in the Swedish T-Book, although they may differ in their mathematical models and software implementation. In this paper, we review the mathematical model, its underlying assumptions and supporting arguments. Reasonable conditional assumptions are made to yield tractable and mathematically valid form for the failure rate at plant of interest, given failures and operational times at other plants in the population. The posterior probability of failure rate at plant of interest is sensitive to the choice of hyperprior parameters since the effect of hyperprior distribution will never be dominated by the effect of observation. The methods of Poern and Jeffrey for choosing distributions over hyperparameters are discussed. Furthermore, we will perform verification tasks associated with the theoretical model presented in this paper. The present software implementation produces good agreement with ZEDB results for various prior distributions. The difference between our results and those of ZEDB reflect differences that may arise from numerical implementation, as that would use different step size and truncation bounds

  1. Modelling of Airship Flight Mechanics by the Projection Equivalent Method

    Directory of Open Access Journals (Sweden)

    Frantisek Jelenciak

    2015-12-01

    Full Text Available This article describes the projection equivalent method (PEM as a specific and relatively simple approach for the modelling of aircraft dynamics. By the PEM it is possible to obtain a mathematic al model of the aerodynamic forces and momentums acting on different kinds of aircraft during flight. For the PEM, it is a characteristic of it that -in principle - it provides an acceptable regression model of aerodynamic forces and momentums which exhibits reasonable and plausible behaviour from a dynamics viewpoint. The principle of this method is based on applying Newton's mechanics, which are then combined with a specific form of the finite element method to cover additional effects. The main advantage of the PEM is that it is not necessary to carry out measurements in a wind tunnel for the identification of the model's parameters. The plausible dynamical behaviour of the model can be achieved by specific correction parameters, which can be determined on the basis of experimental data obtained during the flight of the aircraft. In this article, we present the PEM as applied to an airship as well as a comparison of the data calculated by the PEM and experimental flight data.

  2. Can fire atlas data improve species distribution model projections?

    Science.gov (United States)

    Crimmins, Shawn M; Dobrowski, Solomon Z; Mynsberge, Alison R; Safford, Hugh D

    2014-07-01

    Correlative species distribution models (SDMs) are widely used in studies of climate change impacts, yet are often criticized for failing to incorporate disturbance processes that can influence species distributions. Here we use two temporally independent data sets of vascular plant distributions, climate data, and fire atlas data to examine the influence of disturbance history on SDM projection accuracy through time in the mountain ranges of California, USA. We used hierarchical partitioning to examine the influence of fire occurrence on the distribution of 144 vascular plant species and built a suite of SDMs to examine how the inclusion of fire-related predictors (fire occurrence and departure from historical fire return intervals) affects SDM projection accuracy. Fire occurrence provided the least explanatory power among predictor variables for predicting species' distributions, but provided improved explanatory power for species whose regeneration is tied closely to fire. A measure of the departure from historic fire return interval had greater explanatory power for calibrating modern SDMs than fire occurrence. This variable did not improve internal model accuracy for most species, although it did provide marginal improvement to models for species adapted to high-frequency fire regimes. Fire occurrence and fire return interval departure were strongly related to the climatic covariates used in SDM development, suggesting that improvements in model accuracy may not be expected due to limited additional explanatory power. Our results suggest that the inclusion of coarse-scale measures of disturbance in SDMs may not be necessary to predict species distributions under climate change, particularly for disturbance processes that are largely mediated by climate.

  3. The Dismantling of the Japanese Model in Consumer Electronics

    DEFF Research Database (Denmark)

    Frøslev Christensen, Jens; Holm Olesen, Michael; Kjær, Jonas

    -based innovation, the current transformation ofsound amplification from conventional to digital amplifiers. We study the early formation of thisnew technology as especially reflected in the particularly dynamic cluster of innovation inDenmark and extend the analysis to the global strategizing around this new......This paper addresses an issue of great importance for the future organization of the consumerelectronics industry: the "battle" of control over component-based digitization. We are now witnessing the dismantling of the Japanese Model that has prevailed in consumer electronicsover the past 30 years....... Specialized and large-scale component suppliers have taken the lead inmost component-based innovations and have obtained increasingly powerful positions in thevalue chain of consumer electronics. This paper provides an in-depth study of the strategic andstructural ramifications of one such component...

  4. Nonlinear electromagnetic gyrokinetic particle simulations with the electron hybrid model

    Science.gov (United States)

    Nishimura, Y.; Lin, Z.; Chen, L.; Hahm, T.; Wang, W.; Lee, W.

    2006-10-01

    The electromagnetic model with fluid electrons is successfully implemented into the global gyrokinetic code GTC. In the ideal MHD limit, shear Alfven wave oscillation and continuum damping is demonstrated. Nonlinear electromagnetic simulation is further pursued in the presence of finite ηi. Turbulence transport in the AITG unstable β regime is studied. This work is supported by Department of Energy (DOE) Grant DE-FG02-03ER54724, Cooperative Agreement No. DE-FC02-04ER54796 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. Z. Lin, et al., Science 281, 1835 (1998). F. Zonca and L. Chen, Plasma Phys. Controlled Fusion 30, 2240 (1998); G. Zhao and L. Chen, Phys. Plasmas 9, 861 (2002).

  5. Comprehensive Power Losses Model for Electronic Power Transformer

    DEFF Research Database (Denmark)

    Yue, Quanyou; Li, Canbing; Cao, Yijia

    2018-01-01

    and considering the impact of the non-unity power factor and the three-phase unbalanced current, the overall power losses in the distribution network when using the EPT to replace the conventional transformer is analyzed, and the conditions in which the application of the EPT can cause less power losses...... reduced power losses in the distribution network require a comprehensive consideration when comparing the power losses of theEPT and conventional transformer. In this paper, a comprehensive power losses analysis model for the EPT in distribution networks is proposed. By analyzing the EPT self-losses......The electronic power transformer (EPT) has highe rpower losses than the conventional transformer. However, the EPT can correct the power factor, compensate the unbalanced current and reduce the line power losses in the distribution network.Therefore, the higher losses of the EPT and the consequent...

  6. Comprehensive Power Losses Model for Electronic Power Transformer

    DEFF Research Database (Denmark)

    Yue, Quanyou; Li, Canbing; Cao, Yijia

    2018-01-01

    The electronic power transformer (EPT) has highe rpower losses than the conventional transformer. However, the EPT can correct the power factor, compensate the unbalanced current and reduce the line power losses in the distribution network.Therefore, the higher losses of the EPT and the consequent......-losses and considering the impact of the non-unity power factor and the three-phase unbalanced current, the overall power losses in the distribution network when using the EPT to replace the conventional transformer is analyzed, and the conditions in which the application of the EPT can cause less power losses...... reduced power losses in the distribution network require a comprehensive consideration when comparing the power losses of theEPT and conventional transformer. In this paper, a comprehensive power losses analysis model for the EPT in distribution networks is proposed. By analyzing the EPT self...

  7. Addressing Electronic Communications System Learning through a Radar-Based Active Learning Project

    Science.gov (United States)

    Hernandez-Jayo, Unai; López-Garde, Juan-Manuel; Rodríguez-Seco, J. Emilio

    2015-01-01

    In the Master's of Telecommunication Engineering program at the University of Deusto, Spain, courses in communication circuit design, electronic instrumentation, advanced systems for signal processing and radiocommunication systems allow students to acquire concepts crucial to the fields of electronics and communication. During the educational…

  8. Information Technology in project-organized electronic and computer technology engineering education

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1999-01-01

    This paper describes the integration of IT in the education of electronic and computer technology engineers at Institute of Electronic Systems, Aalborg Uni-versity, Denmark. At the Institute Information Technology is an important tool in the aspects of the education as well as for communication...

  9. Computational modelling of the Li effects on the electronic structure of porous silicon

    Science.gov (United States)

    Gomez-Herrera, María Lucero; Miranda Durán, Álvaro; Trejo Baños, Alejandro; Cruz Irisson, Miguel

    This work analyses the effects of Li impurities on the electronic structure of pSi by means of the density functional theory with the generalized gradient approximation and the supercell scheme. The porous structures were modeled by removing atoms in the [001] direction of an otherwise perfect Si crystal. All surface dangling bonds were saturated with H atoms. To model the Li impurities some H atoms are replaced with Li atoms at the surface. Results show additional bands around the Fermi level with the insertion of a single Li atom on the pore surface, which suggests a trap-like state of localized charge. With increasing concentration of surface Li the band gap gradually decreases approaching to a metallic behavior. This results could be important to the application of pSi in Li-ion batteries This work was partially supported by CONACYT infrastructure project 252749.

  10. Evaluation model of project complexity for large-scale construction projects in Iran - A Fuzzy ANP approach

    Directory of Open Access Journals (Sweden)

    Aliyeh Kazemi

    2016-09-01

    Full Text Available Construction projects have always been complex. By growing trend of this complexity, implementations of large-scale constructions become harder. Hence, evaluating and understanding these complexities are critical. Correct evaluation of a project complication can provide executives and managers with good source to use. Fuzzy analytic network process (ANP is a logical and systematic approach toward defining, evaluation, and grading. This method allows for analyzing complex systems, and determining complexity of them. In this study, by taking advantage of fuzzy ANP, effective indexes for development of complications in large-scale construction projects in Iran have been determined and prioritized. The results show socio-political, project system interdependencies, and technological complexity indexes ranked top to three. Furthermore, in comparison of three main huge projects: commercial-administrative, hospital, and skyscrapers, the hospital project had been evaluated as the most complicated. This model is beneficial for professionals in managing large-scale projects.

  11. Finite Element Models for Electron Beam Freeform Fabrication Process

    Science.gov (United States)

    Chandra, Umesh

    2012-01-01

    Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the

  12. Modeling Electronic Skin Response to Normal Distributed Force

    Directory of Open Access Journals (Sweden)

    Lucia Seminara

    2018-02-01

    Full Text Available The reference electronic skin is a sensor array based on PVDF (Polyvinylidene fluoride piezoelectric polymers, coupled to a rigid substrate and covered by an elastomer layer. It is first evaluated how a distributed normal force (Hertzian distribution is transmitted to an extended PVDF sensor through the elastomer layer. A simplified approach based on Boussinesq’s half-space assumption is used to get a qualitative picture and extensive FEM simulations allow determination of the quantitative response for the actual finite elastomer layer. The ultimate use of the present model is to estimate the electrical sensor output from a measure of a basic mechanical action at the skin surface. However this requires that the PVDF piezoelectric coefficient be known a-priori. This was not the case in the present investigation. However, the numerical model has been used to fit experimental data from a real skin prototype and to estimate the sensor piezoelectric coefficient. It turned out that this value depends on the preload and decreases as a result of PVDF aging and fatigue. This framework contains all the fundamental ingredients of a fully predictive model, suggesting a number of future developments potentially useful for skin design and validation of the fabrication technology.

  13. Thermal expansion model for multiphase electronic packaging materials

    International Nuclear Information System (INIS)

    Allred, B.E.; Warren, W.E.

    1991-01-01

    Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients

  14. Models for the transport of low energy electrons in water and the yield of hydrated electrons at early times

    International Nuclear Information System (INIS)

    Brenner, D.J.; Miller, J.H.; Ritchie, R.H.; Bichsel, H.

    1985-01-01

    An insulator model with four experimental energy bands was used to fit the optical properties of liquid water and to extend these data to non-zero momentum transfer. Inelastic mean free paths derived from this dielectric response function provided the basic information necessary to degrade high energy electrons to the subexcitation energy domain. Two approaches for the transport of subexcitation electrons were investigated. (i) Gas phase cross sections were used to degrade subexcitation electrons to thermal energy and the thermalization lengths were scaled to unit density. (ii) Thermalization lengths were estimated by age-diffusion theory with a stopping power deduced from the data on liquid water and transport cross sections derived from elastic scattering in water vapor. Theoretical ranges were compared to recent experimental results. A stochastic model was used to calculate the rapid diffusion and reaction of hydrated electrons with other radiolysis products. The sensitivity of the calculated yields to the model assumptions and comparison with experimental data are discussed

  15. PROBLEMS OF VALUE-ORIENTED FORMATION OF PROJECT PRODUCT’S MODEL

    Directory of Open Access Journals (Sweden)

    Тигран Георгиевич ГРИГОРЯН

    2015-06-01

    Full Text Available Problems of formation of the project output model related to the complexity of information transmission in the communication between the project participants and stakeholders are considered. The concept of forming a project output model based on allocation of stages of model developing and specification and efficiency of the formation of a model that takes into account the need to plan the project output value creation and transferring to the sponsor and consumers is proposed.

  16. Impact of SciDAC on accelerator projects across the office of science through electromagnetic modeling

    International Nuclear Information System (INIS)

    Ko, K; Folwell, N; Ge, L; Guetz, A; Ivanov, V; Kabel, A; Kowalski, M; Lee, L; Li, Z; Ng, C; Prudencio, E; Schussman, G; Uplenchwar, R; Xiao, L

    2005-01-01

    Electromagnetic Modelling led by SLAC is a principal component of the 'Advanced Computing for 21st Century Accelerator Science and Technology' SciDAC project funded through the Office of High Energy Physics. This large team effort comprises three other national laboratories (LBNL, LLNL, SNL) and six universities (CMU, Columbia, RPI, Stanford, UC Davis and U of Wisconsin) with the goal to develop a set of parallel electromagnetic codes based on unstructured grids to target challenging problems in accelerators, and solve them to unprecedented realism and accuracy. Essential to the code development are the collaborations with the ISICs/SAPP in eigensolvers, meshing, adaptive refinement, shape optimization and visualization (see 'Achievements in ISICs/SAPP Collaborations for Electromagnetic Modelling of Accelerators'). Supported by these advances in computational science, we have successfully performed the large-scale simulations that have impacted important accelerator projects across the Office of Science (SC) including the Positron Electron Project (PEP) -II, Next Linear Collider (NLC) and the International Linear Collider (ILC) in High Energy Physics (HEP), the Rare Isotope Accelerator (RIA) in Nuclear Physics (NP) and the Linac Coherent Light Source (LCLS) in Basic Energy Science (BES)

  17. Conceptualising a multidimensional model of information communication and technology project complexity

    Directory of Open Access Journals (Sweden)

    Nazeer Joseph

    2017-11-01

    Full Text Available Background: Information communication and technology (ICT projects are different from other projects, such as construction, and require a new perspective to determine their true nature. The lacklustre state of ICT projects has plagued researchers and practitioners for decades as they are yet to understand why ICT projects do not perform. Literature places significant emphasis on success criteria and success factors for determining project success, but this is a unilateral view as the level of complexity involved is underestimated. ICT projects, however, are multifaceted as there are a number of dimensions that influence the management and outcome of a project. Objectives: This article aimed to illuminate how the dimensions are interdependent and interconnected through the construction of a conceptual model of ICT project complexity. Methods: Content analysis was used to identify and understand the various dimensions and facilitated construction of the model. Results: The article identified five dimensions that affect ICT projects, viz. project success, project lifecycle, project complexity, project types and project methods. Each dimension was analysed to understand the key constructs and elements that need to be considered. The dimensions were mapped in a multidimensional model. Conclusion: The multidimensional model of ICT project complexity can be used by ICT project managers to more effectively manage projects as they are provided with a greater understanding of ICT project influences.

  18. Hydrogeological model of the territory of Kowsar hydraulic project

    Directory of Open Access Journals (Sweden)

    Orekhov Vyacheslav Valentinovich

    2015-03-01

    Full Text Available Mathematical hydrogeology model of the territory of Kowsar Project was created with account for the results of the engineering surveys and hydro geological monitoring, which was conducted in the process of Kowsar Project construction. In order to create the model in the present work a universal computer system Ansys was used, which implements the finite element method and solid modeling technology, allowing to solve the filtration problem with the use of thermal analogy. The three-dimensional geometric model was built with use of the principle “hard body” modeling, which displays the main line of the territory relief, including the created water reservoir, geological structure (anticline Duk and the main lithological complexes developed within the territory. In the limestone mass As here is a zone characterized by water permeability on territory of Kowsar Project, and a layer characterized by seepage feeding, which occurs outside the considered territory. The water reservoir is a source of the change of hydro geological situation. The results of field observations witness, that the levels of underground waters within the area of the main structures reacts almost instantly on the water level change in the water reservoir; the delay period of levels change is not more than 1,5…2,0 weeks at maximum distance from the water reservoir. These particularities of the hydro geological regime allow using the steady-state scheme of the decision of forecast problems. The mass of limestone As, containing the structures of the Kowsar Project, is not homogeneous and anisotropy in its seepage characteristics. The heterogeneity is conditioned by exogenous influence on the mass up to the depth of 100…150 m. The seepage anisotropy of the mass is expressed by the difference of water permeability of the mass along and across the layers for almost one order. The structures of Kowsar Project is presented by a dam, grouting curtain on axis of the dam and

  19. Flyover Modeling of Planetary Pits - Undergraduate Student Instrument Project

    Science.gov (United States)

    Bhasin, N.; Whittaker, W.

    2015-12-01

    On the surface of the moon and Mars there are hundreds of skylights, which are collapsed holes that are believed to lead to underground caves. This research uses Vision, Inertial, and LIDAR sensors to build a high resolution model of a skylight as a landing vehicle flies overhead. We design and fabricate a pit modeling instrument to accomplish this task, implement software, and demonstrate sensing and modeling capability on a suborbital reusable launch vehicle flying over a simulated pit. Future missions on other planets and moons will explore pits and caves, led by the technology developed by this research. Sensor software utilizes modern graph-based optimization techniques to build 3D models using camera, LIDAR, and inertial data. The modeling performance was validated with a test flyover of a planetary skylight analog structure on the Masten Xombie sRLV. The trajectory profile closely follows that of autonomous planetary powered descent, including translational and rotational dynamics as well as shock and vibration. A hexagonal structure made of shipping containers provides a terrain feature that serves as an appropriate analog for the rim and upper walls of a cylindrical planetary skylight. The skylight analog floor, walls, and rim are modeled in elevation with a 96% coverage rate at 0.25m2 resolution. The inner skylight walls have 5.9cm2 color image resolution and the rims are 6.7cm2 with measurement precision superior to 1m. The multidisciplinary student team included students of all experience levels, with backgrounds in robotics, physics, computer science, systems, mechanical and electrical engineering. The team was commited to authentic scientific experimentation, and defined specific instrument requirements and measurable experiment objectives to verify successful completion.This work was made possible by the NASA Undergraduate Student Instrument Project Educational Flight Opportunity 2013 program. Additional support was provided by the sponsorship of an

  20. Project-oriented teaching model about specialized courses in the information age

    Science.gov (United States)

    Chen, Xiaodong; Wang, Jinjiang; Tian, Qingguo; Wang, Yi; Cai, Huaiyu

    2017-08-01

    Specialized courses play a significant role in the usage of basic knowledge in the practical application for engineering college students. The engineering data available has sharply increased since the beginning of the information age in the 20th century, providing much more approaches to study and practice. Therefore, how to guide students to make full use of resources for active engineering practice learning has become one of the key problems for specialized courses. This paper took the digital image processing course for opto-electronic information science and technology major as an example, discussed the teaching model of specialized course in the information age, put forward the "engineering resource oriented model", and fostered the ability of engineering students to use the basic knowledge to innovate and deal with specific project objectives. The fusion of engineering examples into practical training and teaching encourages students to practice independent engineering thinking.

  1. Electronic pairing mechanism due to band modification in a two-band model: Tc evaluation

    International Nuclear Information System (INIS)

    Mizia, J.; Gorski, G.; Traa, M.R.M.J.

    1997-01-01

    Following the electronic model developed by us previously (Mizia and Romanowski, Mizia) we estimate the superconducting transition temperature in a simple electronic two-band model for materials characterized by a broad superconducting band and a narrow level within the same energy range. A large electron deformation coupling constant and large electron correlation effects are assumed. It is shown that high-temperature superconductivity is entirely possible within a range of reasonable electronic parameters. This model does not assume any artificial interactions to obtain a negative pairing potential. Instead, the negative part of the electronic interaction potential comes from the modification of the electron dispersion relation with growing number of superconducting pairs. Such a modification is possible in soft electronic systems, i.e. in systems partial to band modification due to large internal stresses, strong electronic correlation effects and broad band narrow level charge transfer during the superconducting transition. (orig.)

  2. Improving high-altitude emp modeling capabilities by using a non-equilibrium electron swarm model to monitor conduction electron evolution

    Science.gov (United States)

    Pusateri, Elise Noel

    An Electromagnetic Pulse (EMP) can severely disrupt the use of electronic devices in its path causing a significant amount of infrastructural damage. EMP can also cause breakdown of the surrounding atmosphere during lightning discharges. This makes modeling EMP phenomenon an important research effort in many military and atmospheric physics applications. EMP events include high-energy Compton electrons or photoelectrons that ionize air and produce low energy conduction electrons. A sufficient number of conduction electrons will damp or alter the EMP through conduction current. Therefore, it is important to understand how conduction electrons interact with air in order to accurately predict the EMP evolution and propagation in the air. It is common for EMP simulation codes to use an equilibrium ohmic model for computing the conduction current. Equilibrium ohmic models assume the conduction electrons are always in equilibrium with the local instantaneous electric field, i.e. for a specific EMP electric field, the conduction electrons instantaneously reach steady state without a transient process. An equilibrium model will work well if the electrons have time to reach their equilibrium distribution with respect to the rise time or duration of the EMP. If the time to reach equilibrium is comparable or longer than the rise time or duration of the EMP then the equilibrium model would not accurately predict the conduction current necessary for the EMP simulation. This is because transport coefficients used in the conduction current calculation will be found based on equilibrium reactions rates which may differ significantly from their non-equilibrium values. We see this deficiency in Los Alamos National Laboratory's EMP code, CHAP-LA (Compton High Altitude Pulse-Los Alamos), when modeling certain EMP scenarios at high altitudes, such as upward EMP, where the ionization rate by secondary electrons is over predicted by the equilibrium model, causing the EMP to short

  3. Project Investment and Project Financing: A study on Business Case and Financing Models

    OpenAIRE

    Wang, Simiao

    2012-01-01

    Uncertainty is a very significant factor that must be taken into consideration in project front-end phase management. By taking into uncertainty, the planners can to a great extent make sure that the business case could be accurate between specific intervals, hence business case can be based on to make decision. In a highly uncertain environment; the project sponsors should prefer other means to finance the project rather than using debt. Risk management is extremely important in project fina...

  4. A simple model of hose instabilities in rotating electron beams

    International Nuclear Information System (INIS)

    Brandenburg, J.E.

    1983-01-01

    A simple foilless diode with a properly designed transmission line feed can generate an intense, wellcollimated annular electron beam. As part of the AID project at Los Alamos, a 3-MeV annular beam is routinely generated with a radius of 1 cm, a thickness of about 100 μ, a current density of about 1 MA/cm 2 , and a scattering angle of about 30 mrad. The particle-in-cell code CEMIT has been used previously to investigate the properties of foilless diodes. It is found that the beam quality can vary significantly during this transition. The best quality beam is achieved by a configuration that is not foilless or foil, but a combination. Microwave generation within the diode and zero-frequency cyclotron wave growth appear to be the major source of energy spread and angular scatter on the beam. Changes in the cathode shape that do not alter the current density profile greatly can change change the energy spread significantly due to microwave generation. Simulations have typically been carried out using a short rise time on the voltage pulse and then holding the voltage constant to obtain a steady state result. When driven by a real source, however, the voltage is continually changing on a time scale that is slow compared with the transit time of the speed of light across the diode. Simulations in which the voltage changes continually have been carried out for both inner and outer conductor foilless diodes. It is found that energy spread dominates the beam at low voltage while angular scatter dominates at higher voltage. Based upon these simulations, a more complete time history of this class of diode is possible

  5. Ionic Polymer-Based Removable and Charge-Dissipative Coatings for Space Electronic Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Protection of critical electronic systems in spacecraft and satellites is imperative for NASA's future missions to high-energy, outer-planet environments. The...

  6. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  7. A Massless-Point-Charge Model for the Electron

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2010-04-01

    Full Text Available "It is rather remarkable that the modern concept of electrodynamics is not quite 100 years old and yet still does not rest firmly upon uniformly accepted theoretical foundations. Maxwell's theory of the electromagnetic field is firmly ensconced in modern physics, to be sure, but the details of how charged particles are to be coupled to this field remain somewhat uncertain, despite the enormous advances in quantum electrodynamics over the past 45 years. Our theories remain mathematically ill-posed and mired in conceptual ambiguities which quantum mechanics has only moved to another arena rather than resolve. Fundamentally, we still do not understand just what is a charged particle" (Grandy W.T. Jr. Relativistic quantum mechanics of leptons and fields. Kluwer Academic Publishers, Dordrecht-London, 1991, p.367. As a partial answer to the preceeding quote, this paper presents a new model for the electron that combines the seminal work of Puthoff with the theory of the Planck vacuum (PV, the basic idea for the model following from Puthoff with the PV theory adding some important details.

  8. Electron percolation in realistic models of carbon nanotube networks

    Science.gov (United States)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  9. Electron beam lithographic modeling assisted by artificial intelligence technology

    Science.gov (United States)

    Nakayamada, Noriaki; Nishimura, Rieko; Miura, Satoru; Nomura, Haruyuki; Kamikubo, Takashi

    2017-07-01

    We propose a new concept of tuning a point-spread function (a "kernel" function) in the modeling of electron beam lithography using the machine learning scheme. Normally in the work of artificial intelligence, the researchers focus on the output results from a neural network, such as success ratio in image recognition or improved production yield, etc. In this work, we put more focus on the weights connecting the nodes in a convolutional neural network, which are naturally the fractions of a point-spread function, and take out those weighted fractions after learning to be utilized as a tuned kernel. Proof-of-concept of the kernel tuning has been demonstrated using the examples of proximity effect correction with 2-layer network, and charging effect correction with 3-layer network. This type of new tuning method can be beneficial to give researchers more insights to come up with a better model, yet it might be too early to be deployed to production to give better critical dimension (CD) and positional accuracy almost instantly.

  10. Python framework for kinetic modeling of electronically excited reaction pathways

    Science.gov (United States)

    Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew

    2012-10-01

    The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.

  11. REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    CERN Document Server

    Wenander, F; Liljeby, L; Nyman, G H

    1998-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decr...

  12. Reducing Health Care Costs and Improving Clinical Outcomes Using an Improved Asheville Project Model

    Directory of Open Access Journals (Sweden)

    Barry A. Bunting

    2015-01-01

    Full Text Available This study was designed to add to the body of knowledge gained through the original Asheville Project studies, and to address some of the limitations of the earlier studies. Scalability. Since the original Asheville Project publications there have been some successful replications, however, there is a need to broaden the geographic scope and increase the size of the study population. Study Design. Previous studies were limited to pre-post, self-as-control design. We added a control group. Model improvement. We were able to incorporate an electronic record of care. This allows incorporation of medical and prescription claims, ease of documentation, improved data capture, reporting, standardization of care, identification of deficiencies in care, and communication with other health care providers. This enhancement may be worthy of more comment than we devoted to it , however, we didn’t want to detract from the main goal of the study, and we wanted to avoid any hint of commercialization on the part of the organization that provided the electronic record. Relevance to profession. We sincerely hope the relevance goes beyond the profession of pharmacy and that it reinforces the message that the profession of pharmacy offers real solutions to rising health care costs in the U.S.   Type: Original Research

  13. Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks

    Czech Academy of Sciences Publication Activity Database

    Rymzhanov, R.A.; Medvedev, Nikita; Volkov, A.E.

    2016-01-01

    Roč. 388, Dec (2016), s. 41-52 ISSN 0168-583X R&D Projects: GA MŠk LG15013 Institutional support: RVO:68378271 Keywords : swift heavy ion * electronic stopping * TREKIS * Monte Carlo * electronic kinetics * photon transport Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  14. Modeling of problems of projection: A non-countercyclic approach

    Directory of Open Access Journals (Sweden)

    Jason Ginsburg

    2016-06-01

    Full Text Available This paper describes a computational implementation of the recent Problems of Projection (POP approach to the study of language (Chomsky 2013; 2015. While adopting the basic proposals of POP, notably with respect to how labeling occurs, we a attempt to formalize the basic proposals of POP, and b develop new proposals that overcome some problems with POP that arise with respect to cyclicity, labeling, and wh-movement operations. We show how this approach accounts for simple declarative sentences, ECM constructions, and constructions that involve long-distance movement of a wh-phrase (including the that-trace effect. We implemented these proposals with a computer model that automatically constructs step-by-step derivations of target sentences, thus making it possible to verify that these proposals work.

  15. Electronics Miniaturization with a System-on-a-Chip for Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The first year objective of this multi-year project is to develop a plan to assemble the common, essential monitoring and control functions required by spacecraft...

  16. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I of this project, APEI, Inc. proved the feasibility of creating ultra-lightweight power converters (utilizing now emerging silicon carbide [SiC] power...

  17. A Low Cost, Electronically Scanned Array (ESA) Antenna Technology for Aviation Hazard Detection and Avoidance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase II project includes the design, fabrication, and testing of a fully-functional 320 element X-band antenna which will serve dual-roles as both the...

  18. Modeling High Altitude EMP using a Non-Equilibrium Electron Swarm Model to Monitor Conduction Electron Evolution (LA-UR-15-26151)

    Science.gov (United States)

    Pusateri, E. N.; Morris, H. E.; Nelson, E.; Ji, W.

    2015-12-01

    Electromagnetic pulse (EMP) events in the atmosphere are important physical phenomena that occur through both man-made and natural processes, such as lightning, and can be disruptive to surrounding electrical systems. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. In EMP, low-energy conduction electrons are produced from Compton electron or photoelectron ionizations with air. These conduction electrons continue to interact with the surrounding air and alter the EMP waveform. Many EMP simulation codes use an equilibrium ohmic model for computing the conduction current. The equilibrium model works well when the equilibration time is short compared to the rise time or duration of the EMP. However, at high altitude, the conduction electron equilibration time can be comparable to or longer than the rise time or duration of the EMP. This matters, for example, when calculating the EMP propagating upward toward a satellite. In these scenarios, the equilibrium ionization rate becomes very large for even a modest electric field. The ohmic model produces an unphysically large number of conduction electrons that prematurely and abruptly short the EMP in the simulation code. An electron swarm model, which simulates the time evolution of conduction electrons, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model in an environment characterized by electric field and pressure previously in Pusateri et al. (2015). This swarm model has been integrated into CHAP-LA, a state-of-the-art EMP code developed by researchers at Los Alamos National Laboratory, which previously calculated conduction current using an ohmic model. We demonstrate the EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high altitude EMP modeling obtained by employing the swarm model.

  19. Towards robust evolutionary inference with integral projection models.

    Science.gov (United States)

    Janeiro, M J; Coltman, D W; Festa-Bianchet, M; Pelletier, F; Morrissey, M B

    2017-02-01

    Integral projection models (IPMs) are extremely flexible tools for ecological and evolutionary inference. IPMs track the distribution of phenotype in populations through time, using functions describing phenotype-dependent development, inheritance, survival and fecundity. For evolutionary inference, two important features of any model are the ability to (i) characterize relationships among traits (including values of the same traits across ages) within individuals, and (ii) characterize similarity between individuals and their descendants. In IPM analyses, the former depends on regressions of observed trait values at each age on values at the previous age (development functions), and the latter on regressions of offspring values at birth on parent values as adults (inheritance functions). We show analytically that development functions, characterized this way, will typically underestimate covariances of trait values across ages, due to compounding of regression to the mean across projection steps. Similarly, we show that inheritance, characterized this way, is inconsistent with a modern understanding of inheritance, and underestimates the degree to which relatives are phenotypically similar. Additionally, we show that the use of a constant biometric inheritance function, particularly with a constant intercept, is incompatible with evolution. Consequently, current implementations of IPMs will predict little or no phenotypic evolution, purely as artefacts of their construction. We present alternative approaches to constructing development and inheritance functions, based on a quantitative genetic approach, and show analytically and through an empirical example on a population of bighorn sheep how they can potentially recover patterns that are critical to evolutionary inference. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  20. Integrated Medical Model Project - Overview and Summary of Historical Application

    Science.gov (United States)

    Myers, J.; Boley, L.; Butler, D.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; hide

    2015-01-01

    Introduction: The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project. Methods: Figure 1 [see document] illustrates the IMM modeling system and scenario process. As illustrated, the IMM computational architecture is based on Probabilistic Risk Assessment techniques. Nineteen assumptions and limitations define the IMM application domain. Scenario definitions include crew medical attributes and mission specific details. The IMM forecasts probabilities of loss of crew life (LOCL), evacuation (EVAC), quality time lost during the mission, number of medical resources utilized and the number and type of medical events by combining scenario information with in-flight, analog, and terrestrial medical information stored in the iMED. In addition, the metrics provide the integrated information necessary to estimate optimized in-flight medical kit contents under constraints of mass and volume or acceptable level of mission risk. Results and Conclusions

  1. Software development infrastructure for the HYBRID modeling and simulation project

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, Aaron S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenwood, M. Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers

  2. First principles based multiparadigm modeling of electronic structures and dynamics

    Science.gov (United States)

    Xiao, Hai

    enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly. A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions. Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with

  3. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  4. Electron acceleration through wave-particle interactions in the Van Allen belts: results of the MAARBLE project

    Science.gov (United States)

    Daglis, Ioannis A.; Turner, Drew; Balasis, Georgios; Papadimitriou, Constantinos; Georgiou, Marina; Katsavrias, Christos

    Wave-particle interactions in the inner magnetosphere play a critical role in the acceleration of electrons to high energies characteristic of the Van Allen belts. In the MAARBLE project we have been investigating the properties of ultra-low-frequency electromagnetic waves in the magnetosphere and the particular ways in which these waves can influence electron acceleration. For a number of selected intense magnetic storms, we studied the variations of energetic electron fluxes in the outer Van Allen belt along with variations of the power of Pc 4-5 waves and their earthward penetration, using multi-point observations both from a number of spacecraft and from ground-based magnetometer arrays. We present and discuss the results of this study. The work leading to this paper has received funding from the European Union’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project. This paper reflects only the authors’ views and the Union is not liable for any use that may be made of the information contained therein.

  5. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    International Nuclear Information System (INIS)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Fermilab

    2005-01-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section

  6. Megacity project: Liwa, climate and water balance modeling

    Science.gov (United States)

    Chamorro, Alejandro; Bardossy, Andras

    2010-05-01

    Megacity project: Liwa, climate and water balance modeling Peru uses to face different natural phenomena such as El Nino and La Nina phenomena and, like many cities around the word, the climate change effects. Its capital Lima, located in a region where annual precipitation is about 9 mm, has a high hydrological cycle vulnerability which is demonstrated in periods of drought and extreme drought. Accurate and reliable methodology is requiring studying the impact of all these problems in the water supply of Lima. A statistical downscaling scheme (Bardossy, 2002) will be used to generate time series of different local climate scenarios in order to be applied in hydrological models. The conceptual model HBV (Bergström, 1995) is used to simulate water discharges at certain points of the catchments under study, water balance groundwater and for the estimation of storage volume in different reservoirs. As already mentioned, El Nino and La Nina currents influence the hydrological cycle. Previous studies have shown that these phenomena have serious impacts in Peru. In order to quantify these impacts in the area of interest we have analyzed the magnitude of the precipitation in several stations in years in which El Nino occurred, and in years where El Nino did not occurred. The next step is to increase the temporal resolution by incorporating new data. Due to the high vulnerability of the water supply system in Lima, potential new water sources are required. In particular, the catchment of Mantaro (including existing lakes) on the other side of Los Andes Mountains provides potential new alternatives for adding water to the current system. Alternatives for water transportation include using existing long tunnels which connect Mantaro with Rimac, where the majority of the lakes are located. Finally, the global climate models simulations for the coming years, considering different scenarios, will be used as an indicator and to estimate water availability for human use (city

  7. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry.

    Science.gov (United States)

    Nakata, Maho; Shimazaki, Tomomi

    2017-06-26

    Large-scale molecular databases play an essential role in the investigation of various subjects such as the development of organic materials, in silico drug design, and data-driven studies with machine learning. We have developed a large-scale quantum chemistry database based on first-principles methods. Our database currently contains the ground-state electronic structures of 3 million molecules based on density functional theory (DFT) at the B3LYP/6-31G* level, and we successively calculated 10 low-lying excited states of over 2 million molecules via time-dependent DFT with the B3LYP functional and the 6-31+G* basis set. To select the molecules calculated in our project, we referred to the PubChem Project, which was used as the source of the molecular structures in short strings using the InChI and SMILES representations. Accordingly, we have named our quantum chemistry database project "PubChemQC" ( http://pubchemqc.riken.jp/ ) and placed it in the public domain. In this paper, we show the fundamental features of the PubChemQC database and discuss the techniques used to construct the data set for large-scale quantum chemistry calculations. We also present a machine learning approach to predict the electronic structure of molecules as an example to demonstrate the suitability of the large-scale quantum chemistry database.

  8. Modelling the main ionospheric trough using the Electron Density Assimilative Model (EDAM) with assimilated GPS TEC

    Science.gov (United States)

    Parker, James A. D.; Eleri Pryse, S.; Jackson-Booth, Natasha; Buckland, Rachel A.

    2018-01-01

    The main ionospheric trough is a large-scale spatial depletion in the electron density distribution at the interface between the high- and mid-latitude ionosphere. In western Europe it appears in early evening, progresses equatorward during the night, and retreats rapidly poleward at dawn. It exhibits substantial day-to-day variability and under conditions of increased geomagnetic activity it moves progressively to lower latitudes. Steep gradients on the trough-walls on either side of the trough minimum, and their variability, can cause problems for radio applications. Numerous studies have sought to characterize and quantify the trough behaviour. The Electron Density Assimilative Model (EDAM) models the ionosphere on a global scale. It assimilates observations into a background ionosphere, the International Reference Ionosphere 2007 (IRI2007), to provide a full 3-D representation of the ionospheric plasma distribution at specified times and days. This current investigation studied the capability of EDAM to model the ionosphere in the region of the main trough. Total electron content (TEC) measurements from 46 GPS stations in western Europe from September to December 2002 were assimilated into EDAM to provide a model of the ionosphere in the trough region. Vertical electron content profiles through the model revealed the trough and the detail of its structure. Statistical results are presented of the latitude of the trough minimum, TEC at the minimum and of other defined parameters that characterize the trough structure. The results are compared with previous observations made with the Navy Ionospheric Monitoring System (NIMS), and reveal the potential of EDAM to model the large-scale structure of the ionosphere.

  9. Philips high tension generator (x-ray machine) testing for baby ebm (electron beam machine) project

    International Nuclear Information System (INIS)

    Norman Awalludin; Leo Kwee Wah; Abu Bakar Mhd Ghazali

    2005-01-01

    This paper describes the test of the HT system (from X-ray machine) for usage of the mini EBM (Electron Beam Machine). It consists the procedures of the installation, the safety procedures when deals with HT, modification of the system for testing purpose and the technique/method for testing the HT system. As a result, the voltage for the HT system and the electron gun (filament) current can be measured. Based on the results, suitability of the machine for baby EBM could be confirmed. (Author)

  10. Modeling of Electronic Properties in Organic Semiconductor Device Structures

    Science.gov (United States)

    Chang, Hsiu-Chuang

    Organic semiconductors (OSCs) have recently become viable for a wide range of electronic devices, some of which have already been commercialized. With the mechanical flexibility of organic materials and promising performance of organic field effect transistors (OFETs) and organic bulk heterojunction devices, OSCs have been demonstrated in applications such as radio frequency identification tags, flexible displays, and photovoltaic cells. Transient phenomena play decisive roles in the performance of electronic devices and OFETs in particular. The dynamics of the establishment and depletion of the conducting channel in OFETs are investigated theoretically. The device structures explored resemble typical organic thin-film transistors with one of the channel contacts removed. By calculating the displacement current associated with charging and discharging of the channel in these capacitors, transient effects on the carrier transport in OSCs may be studied. In terms of the relevant models it is shown that the non-linearity of the process plays a key role. The non-linearity arises in the simplest case from the fact that channel resistance varies during the charging and discharging phases. Traps can be introduced into the models and their effects examined in some detail. When carriers are injected into the device, a conducting channel is established with traps that are initially empty. Gradual filling of the traps then modifies the transport characteristics of the injected charge carriers. In contrast, dc measurements as they are typically performed to characterize the transport properties of organic semiconductor channels investigate a steady state with traps partially filled. Numerical and approximate analytical models of the formation of the conducting channel and the resulting displacement currents are presented. For the process of transient carrier extraction, it is shown that if the channel capacitance is partially or completely discharged through the channel

  11. Model of nanodegradation processes in electronic equipment of NPP Kozloduy

    International Nuclear Information System (INIS)

    J. Boucher Blvd, 1164 Sofia, BG (Bulgaria))" data-affiliation=" (Sofia University, Faculty of Physics, 5 J. Boucher Blvd, 1164 Sofia, BG (Bulgaria))" >Popov, A

    2014-01-01

    From the complex studies it was proof that the main degradation processes in the three groups of elements for the extended period of time are slow; do not lead to a hopping change in basic parameters and to catastrophic failures. This gives grounds to suggest a common diffusion model, which is limited to the following: -in electronic components containing a p-n junction, is performed diffusion of residual cooper atoms, that are accumulated in the area of a spatial charge under the influence of the electric field and the local temperature, creating micro-shunt regions; -in the contactor systems whose contact surfaces are made of metal alloys under the influence of increased temperature starts decomposition of a homogeneous alloy. Conditions are created for diffusion of individual atoms to the surface, micro-phases of homogeneous atoms are formed and modify the contact resistances; -in the course of time in the insulating materials are changed the mechanisms of polarization, double bonds and dipoles are disrupting, leading to the release of carbon atoms. The latter diffuse at elevated temperatures and form conductive cords, which amend the dielectric losses and the specific resistance of the materials

  12. Model of nanodegradation processes in electronic equipment of NPP Kozloduy

    Science.gov (United States)

    Popov, A.

    2014-12-01

    From the complex studies it was proof that the main degradation processes in the three groups of elements for the extended period of time are slow; do not lead to a hopping change in basic parameters and to catastrophic failures. This gives grounds to suggest a common diffusion model, which is limited to the following: -in electronic components containing a p-n junction, is performed diffusion of residual cooper atoms, that are accumulated in the area of a spatial charge under the influence of the electric field and the local temperature, creating micro-shunt regions; -in the contactor systems whose contact surfaces are made of metal alloys under the influence of increased temperature starts decomposition of a homogeneous alloy. Conditions are created for diffusion of individual atoms to the surface, micro-phases of homogeneous atoms are formed and modify the contact resistances; -in the course of time in the insulating materials are changed the mechanisms of polarization, double bonds and dipoles are disrupting, leading to the release of carbon atoms. The latter diffuse at elevated temperatures and form conductive cords, which amend the dielectric losses and the specific resistance of the materials.

  13. The CTQ flowdown as a conceptual model of project objectives

    NARCIS (Netherlands)

    de Koning, H.; de Mast, J.

    2007-01-01

    The purpose of this article is to describe and clarify a tool that is at the core of the definition phase of most quality improvement projects. This tool is called the critical to quality (CTQ) flowdown. It relates high-level strategic focal points to project objectives. In their turn project

  14. Building an Experiential Learning Model for a Project Management Course

    Science.gov (United States)

    Chen, Kuan C.; Chuang, Keh-Wen

    2009-01-01

    Teaching students to become project management professionals requires a real world experience. Incorporating live clients into student projects, instead of using case studies or mock companies, adds a dimension that exposes students to the realities of project management. This paper will describe a structured methodology used in a project…

  15. Galerkin v. discrete-optimal projection in nonlinear model reduction

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Kevin Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antil, Harbir [George Mason Univ., Fairfax, VA (United States)

    2015-04-01

    Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes. We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.

  16. Model of charge-state distributions for electron cyclotron resonance ion source plasmas

    Directory of Open Access Journals (Sweden)

    D. H. Edgell

    1999-12-01

    Full Text Available A computer model for the ion charge-state distribution (CSD in an electron cyclotron resonance ion source (ECRIS plasma is presented that incorporates non-Maxwellian distribution functions, multiple atomic species, and ion confinement due to the ambipolar potential well that arises from confinement of the electron cyclotron resonance (ECR heated electrons. Atomic processes incorporated into the model include multiple ionization and multiple charge exchange with rate coefficients calculated for non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS. Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic potential profiles, further eliminating arbitrary user input to the model.

  17. Evaluation strategy for the I-95 CC electronic credentialing program

    Science.gov (United States)

    1999-03-01

    The electronic credentialing field operational test will undertake the model deployment of electronic credentialing for commercial vehicles. The project will involve the development of state-specific electronic credentialing systems.

  18. The SHARPn project on secondary use of Electronic Medical Record data: progress, plans, and possibilities.

    Science.gov (United States)

    Chute, Christopher G; Pathak, Jyotishman; Savova, Guergana K; Bailey, Kent R; Schor, Marshall I; Hart, Lacey A; Beebe, Calvin E; Huff, Stanley M

    2011-01-01

    SHARPn is a collaboration among 16 academic and industry partners committed to the production and distribution of high-quality software artifacts that support the secondary use of EMR data. Areas of emphasis are data normalization, natural language processing, high-throughput phenotyping, and data quality metrics. Our work avails the industrial scalability afforded by the Unstructured Information Management Architecture (UIMA) from IBM Watson Research labs, the same framework which underpins the Watson Jeopardy demonstration. This descriptive paper outlines our present work and achievements, and presages our trajectory for the remainder of the funding period. The project is one of the four Strategic Health IT Advanced Research Projects (SHARP) projects funded by the Office of the National Coordinator in 2010.

  19. Study on the maturity model of nuclear power project management in China

    International Nuclear Information System (INIS)

    Chen Changbing; Li Huiqiang; Zheng Yanguo

    2009-01-01

    Based on the general project management maturity model, this paper discussed the establishment of nuclear power engineering project management maturity model in China, and proposed a basic framework in order to provide a way for improving and evaluating the ability of nuclear power project management in China. (authors)

  20. Design and Implement Custom Electronic Performance Support Systems (EPSS) for Training in Project Based Classes.

    Science.gov (United States)

    Hoyt, Brian R.; Stockman, Mark; Thalmann, Jerry

    Electronic Performance Support Systems (EPSS) use computers to capture, store, and distribute knowledge in both an interactive and non-linear delivery. Using technology sources such as the Internet, Microsoft's Net Meeting, Connectix's color camera, and business software, it is possible to provide multiple site delivery and bring business…

  1. Test of theoretical models for ultrafast heterogeneous electron ...

    Indian Academy of Sciences (India)

    Administrator

    (UHV) chambers, each equipped with a load-lock port, were employed for preparing and characteriz- ing the samples. A mobile UHV chamber served as the shuttle ..... there is no automatic transition to adiabatic electron transfer for high electronic coupling strength and the excitation of high energy vibrational modes can not.

  2. Developing Argumentation Strategies in Electronic Dialogs: Is Modeling Effective?

    Science.gov (United States)

    Mayweg-Paus, Elisabeth; Macagno, Fabrizio; Kuhn, Deanna

    2016-01-01

    The study presented here examines how interacting with a more capable interlocutor influences use of argumentation strategies in electronic discourse. To address this question, 54 young adolescents participating in an intervention centered on electronic peer dialogs were randomly assigned to either an experimental or control condition. In both…

  3. Regional climate models reduce biases of global models and project smaller European summer warming

    Science.gov (United States)

    Soerland, S.; Schar, C.; Lüthi, D.; Kjellstrom, E.

    2017-12-01

    The assessment of regional climate change and the associated planning of adaptation and response strategies are often based on complex model chains. Typically, these model chains employ global and regional climate models (GCMs and RCMs), as well as one or several impact models. It is a common belief that the errors in such model chains behave approximately additive, thus the uncertainty should increase with each modeling step. If this hypothesis were true, the application of RCMs would not lead to any intrinsic improvement (beyond higher-resolution detail) of the GCM results. Here, we investigate the bias patterns (offset during the historical period against observations) and climate change signals of two RCMs that have downscaled a comprehensive set of GCMs following the EURO-CORDEX framework. The two RCMs reduce the biases of the driving GCMs, reduce the spread and modify the amplitude of the GCM projected climate change signal. The GCM projected summer warming at the end of the century is substantially reduced by both RCMs. These results are important, as the projected summer warming and its likely impact on the water cycle are among the most serious concerns regarding European climate change.

  4. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 30: The electronic transfer of information and aerospace knowledge diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a major role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  5. Electron kinetics modeling in a weakly ionized gas

    International Nuclear Information System (INIS)

    Boeuf, Jean-Pierre

    1985-01-01

    This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr

  6. The improved DGR analytical model of electron density height profile and total electron content in the ionosphere

    OpenAIRE

    Radicella, S. M.; Zhang, M. L.

    1995-01-01

    Tests of the analytical model of the electron density profile originally proposed by G, Di Giovanni and S.M. Radicella (DGR model) have shown the need to introduce improvements in order to obtain a model able to reproduce the ionosphere in a larger spectrum of geophysical and time conditions. The present paper reviews the steps toward such progress and presents the final formulation of the model. It gives also a brief re- view of tests of the improved model done by different authors.

  7. The desktop muon detector: A simple, physics-motivated machine- and electronics-shop project for university students

    Science.gov (United States)

    Axani, S. N.; Conrad, J. M.; Kirby, C.

    2017-12-01

    This paper describes the construction of a desktop muon detector, an undergraduate-level physics project that develops machine-shop and electronics-shop technical skills. The desktop muon detector is a self-contained apparatus that employs a plastic scintillator as the detection medium and a silicon photomultiplier for light collection. This detector can be battery powered and is used in conjunction with the provided software. The total cost per detector is approximately 100. We describe physics experiments we have performed, and then suggest several other interesting measurements that are possible, with one or more desktop muon detectors.

  8. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    Science.gov (United States)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  9. Susceptibility and Phase Transitions in the Pseudospin-Electron Model at Weak Coupling

    International Nuclear Information System (INIS)

    Stasyuk, I.V.; Mysakovych, T.S.

    2003-01-01

    The pseudospin-electron model (PEM) is considered in the case of the weak pseudospin-electron coupling. It is shown that the transition to uniform and chess-board phases occurs when the chemical potential is situated near the electron band edges and near the band centre, respectively. The incommensurate phase is realized at the intermediate values of the chemical potential. (author)

  10. Slow electron energy balance for hybrid models of direct-current glow discharges

    Science.gov (United States)

    Eliseev, S. I.; Bogdanov, E. A.; Kudryavtsev, A. A.

    2017-09-01

    In this paper, we present the formulation of slow electron energy balance for hybrid models of direct current (DC) glow discharge. Electrons originating from non-local ionization (secondary) contribute significantly to the energy balance of slow electrons. An approach towards calculating effective energy brought by a secondary electron to the group of slow electrons by means of Coulomb collisions is suggested. The value of effective energy shows a considerable dependence on external parameters of a discharge, such as gas pressure, type, and geometric parameters. The slow electron energy balance was implemented into a simple hybrid model that uses analytical formulation for the description of non-local ionization by fast electrons. Simulations of short (without positive column) DC glow discharge in argon are carried out for a range of gas pressures. Comparison with experimental data showed generally good agreement in terms of current-voltage characteristics, electron density, and electron temperature. Simulations also capture the trend of increasing electron density with decreasing pressure observed in the experiment. Analysis shows that for considered conditions, the product of maximum electron density ne and electron temperature Te in negative glow is independent of gas pressure and depends on the gas type, cathode material, and discharge current. Decreasing gas pressure reduces the heating rate of slow electrons during Coulomb collisions with secondary electrons, which leads to lower values of Te and, in turn, higher maximum ne.

  11. The Comparative Study of Collaborative Learning and SDLC Model to develop IT Group Projects

    Directory of Open Access Journals (Sweden)

    Sorapak Pukdesree

    2017-11-01

    Full Text Available The main objectives of this research were to compare the attitudes of learners between applying SDLC model with collaborative learning and typical SDLC model and to develop electronic courseware as group projects. The research was a quasi-experimental research. The populations of the research were students who took Computer Organization and Architecture course in the academic year 2015. There were 38 students who participated to the research. The participants were divided voluntary into two groups including an experimental group with 28 students using SDLC model with collaborative learning and a control group with 10 students using typical SDLC model. The research instruments were attitude questionnaire, semi-structured interview and self-assessment questionnaire. The collected data was analysed by arithmetic mean, standard deviation, and independent sample t-test. The results of the questionnaire revealed that the attitudes of the learners using collaborative learning and SDLC model were statistically significant difference between the mean score for experimental group and control group at a significance level of 0.05. The independent statistical analyses were significantly different between the two groups at a significance level of 0.05. The results of the interviewing revealed that most of the learners had the corresponding opinions that collaborative learning was very useful with highest level of their attitudes comparing with the previous methodology. Learners had left some feedbacks that collaborative learning should be applied to other courses.

  12. Electron cooling system in the booster synchrotron of the HIAF project

    Energy Technology Data Exchange (ETDEWEB)

    Mao, L.J., E-mail: maolijun@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yang, J.C.; Xia, J.W.; Yang, X.D.; Yuan, Y.J.; Li, J.; Ma, X.M.; Yan, T.L.; Yin, D.Y.; Chai, W.P.; Sheng, L.N. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shen, G.D.; Zhao, H.; Tang, M.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-21

    The High Intensity heavy ion Accelerator Facility (HIAF) is a new accelerator complex under design at the Institute of Modern Physics (IMP). The facility is aiming at the production of high intensity heavy ion beams for a wide range of experiments in high energy density physics, nuclear physics, atomic physics and other applications. It consists of a superconducting electron-cyclotron-resonance ion source and an intense proton ion source, a linear accelerator, a 34 Tm booster synchrotron ring, a 43 Tm multifunction compression synchrotron ring, a 13 Tm high precision spectrometer ring and several experimental terminals. A magnetized electron cooling device is supposed to be used in the booster ring for decreasing the transverse emittance of injected beams. The conceptual design and main parameters of this cooler are presented in this paper.

  13. Awareness, Trial, and Current Use of Electronic Cigarettes in 10 Countries: Findings from the ITC Project

    OpenAIRE

    Gravely, Shannon; Fong, Geoffrey T.; Cummings, K. Michael; Yan, Mi; Quah, Anne C. K.; Borland, Ron; Yong, Hua-Hie; Hitchman, Sara C.; McNeill, Ann; Hammond, David; Thrasher, James F.; Willemsen, Marc C.; Seo, Hong Gwan; Jiang, Yuan; Cavalcante, Tania

    2014-01-01

    Background: In recent years, electronic cigarettes (e-cigarettes) have generated considerable interest and debate on the implications for tobacco control and public health. Although the rapid growth of e-cigarettes is global, at present, little is known about awareness and use. This paper presents self-reported awareness, trial and current use of e-cigarettes in 10 countries surveyed between 2009 and 2013; for six of these countries, we present the first data on e-cigarettes from probabilit...

  14. Cloud radiative effects and changes simulated by the Coupled Model Intercomparison Project Phase 5 models

    Science.gov (United States)

    Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In

    2017-07-01

    Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.

  15. A new theoretical model for scattering of electrons by molecules. 1

    International Nuclear Information System (INIS)

    Peixoto, E.M.A.; Mu-tao, L.; Nogueira, J.C.

    1975-01-01

    A new theoretical model for electron-molecule scattering is suggested. The e-H 2 scattering is studied and the superiority of the new model over the commonly used Independent Atom Model (IAM) is demonstrated. Comparing theoretical and experimental data for 40keV electrons scattered by H 2 utilizing the new model, its validity is proved, while Partial Wave and First Born calculations, employing the Independent Atom Model, strongly deviated from the experiment [pt

  16. Long-term durum wheat monoculture: modelling and future projection

    Directory of Open Access Journals (Sweden)

    Ettore Bernardoni

    2012-03-01

    Full Text Available The potential effects of future climate change on grain production of a winter durum wheat cropping system were investigated. Based on future climate change projections, derived from a statistical downscaling process applied to the HadCM3 general circulation model and referred to two IPCC scenarios (A2 and B1, the response on yield and aboveground biomass (AGB and the variation in total organic carbon (TOC were explored. The software used in this work is an hybrid dynamic simulation model able to simulate, under different pedoclimatic conditions, the processes involved in cropping system such as crop growth and development, water and nitrogen balance. It implements different approaches in order to ensure accurate simulation of the mainprocess related to soil-crop-atmosphere continuum.The model was calibrated using soil data, crop yield, AGB and phenology coming from a long-term experiment, located in Apulia region. The calibration was performed using data collected in the period 1978–1990; validation was carried out on the 1991–2009 data. Phenology simulation was sufficiently accurate, showing some limitation only in predicting the physiological maturity. Yields and AGBs were predicted with an acceptable accuracy during both calibration and validation. CRM resulted always close to optimum value, EF in every case scored positive value, the value of index r2 was good, although in some cases values lower than 0.6 were calculated. Slope of the linear regression equation between measured and simulated values was always close to 1, indicating an overall good performance of the model. Both future climate scenarios led to a general increase in yields but a slightly decrease in AGB values. Data showed variations in the total production and yield among the different periods due to the climate variation. TOC evolution suggests that the combination of temperature and precipitation is the main factor affecting TOC variation under future scenarios

  17. EDUCATIONAL COMPLEX ON ELECTRICAL ENGINEERING AND ELECTRONICS BASED ON MODELING IN PROGRAM TINA

    Directory of Open Access Journals (Sweden)

    Vladimir A. Alekhin

    2014-01-01

    Full Text Available The educational complex on the electrical engineering and electronics has been developed. It contains a course of lectures and lecture notes in the electronic form, a new computer laboratory practical work and practical training. All electronic manuals are based on modeling of electric and electronic circuits in the new effective program TINA. The educational complex is being successfully used in educational process on internal and distant learning. 

  18. Form factors in the projected linear chiral sigma model

    International Nuclear Information System (INIS)

    Alberto, P.; Coimbra Univ.; Bochum Univ.; Ruiz Arriola, E.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Gruemmer, F.; Bochum Univ.

    1990-01-01

    Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass of Λ=690 MeV. Electromagnetic form factors for the vertex γNΔ and the nucleon spin distribution are also evaluated and discussed. (orig.)

  19. Research on evaluation of enterprise project culture based on Denison model

    Directory of Open Access Journals (Sweden)

    Yucheng Zeng

    2015-05-01

    Full Text Available Purpose: The purpose of this paper is to build enterprise project culture evaluation model and search for the best evaluation method for Chinese enterprise project culture on the basis of studying and drawing lessons from enterprise culture evaluation theory and method at home and abroad. Design/methodology/approach: Referring to the Denison enterprise culture evaluation model, this paper optimizes it according to the difference of enterprise project culture, designs the enterprise project culture evaluation model and proves the practicability of the model through empirical. Finding: This paper finds that it`s more applicable to use the Denison model for enterprise project culture evaluation through the comparative analysis of domestic and foreign enterprise culture evaluation theory and method, the systematic project culture management framework of Chinese enterprises has not yet formed through empirical research, and four factors in enterprise project culture have important influence on project operation performance improvement. Research limitations/implications: The research on evaluation of enterprise project culture based on Denison model is a preliminary attempt, the design of evaluation index system, evaluation model and scale structure also need to be improved, but the thinking of this paper in this field provides a valuable reference for future research. Practical Implications: This paper provides the support of theory and practice for evaluating the present situation of enterprise project culture construction and analyzing the advantages and disadvantages of project culture, which contributes to the "dialectical therapy" of enterprise project management, enterprise management and enterprise project culture construction. Originality/value: The main contribution of this paper is the introduction of Denison enterprise culture model. Combining with the actual situation of enterprises, this paper also builds the evaluation model for

  20. Electron Kinetics in Hypersonic Plasmas, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to advance the state-of-the-art in computations of hypersonic plasmas by adding high-fidelity kinetic models for electrons. Electron...

  1. BOT schemes as financial model of hydro power projects

    International Nuclear Information System (INIS)

    Grausam, A.

    1997-01-01

    Build-operate-transfer (BOT) schemes are the latest methods adopted in the developing infrastructure projects. This paper outlines the project financing through BOT schemes and briefly focuses on the factors particularly relevant to hydro power projects. Hydro power development provides not only the best way to produce electricity, it can also solve problems in different fields, such as navigation problems in case of run-of-the river plants, ground water management systems and flood control etc. This makes HPP projects not cheaper, but hydro energy is a clean and renewable energy and the hydro potential worldwide will play a major role to meet the increased demand in future. 5 figs

  2. Electronic Modeling and Design for Extreme Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...

  3. New two-fluid (localized + band electron) model for manganites

    Indian Academy of Sciences (India)

    Two types of eg electronic states arise in doped manganites (due to strong JT coupling, strong U, filling conditions, …): Localized, with JT distortion, do not hop; Without distortion, hop and form a band ...

  4. A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha

    2018-01-01

    It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

  5. Electron injector for high-voltage model of collective accelerator

    International Nuclear Information System (INIS)

    Belikov, V.V.; Zvyagintsev, A.V.; Lymar', A.G.; Martynenko, P.A.; Khizhnyak, N.A.

    1987-01-01

    The design and test results of an electron gun with the beam compression and axial hole aimed at collective acceleration are presented. The electron gun is tested at 150 kV, the pulse duration being 12 ms. The hallow beam has 10 mm in diameter, with 1 mm thick wall, that corresponds to the compression degree of 200. The beam microperveance is 4.5 mA/V 3/2

  6. Parametric Anatomical Modeling: A method for modeling the anatomical layout of neurons and their projections

    Directory of Open Access Journals (Sweden)

    Martin ePyka

    2014-09-01

    Full Text Available Computational models of neural networks can be based on a variety of different parameters. These parameters include, for example, the 3d shape of neuron layers, the neurons' spatial projection patterns, spiking dynamics and neurotransmitter systems. While many well-developed approaches are available to model, for example, the spiking dynamics, there is a lack of approaches for modeling the anatomical layout of neurons and their projections. We present a new method, called Parametric Anatomical Modeling (PAM, to fill this gap. PAM can be used to derive network connectivities and conduction delays from anatomical data, such as the position and shape of the neuronal layers and the dendritic and axonal projection patterns. Within the PAM framework, several mapping techniques between layers can account for a large variety of connection properties between pre- and post-synaptic neuron layers. PAM is implemented as a Python tool and integrated in the 3d modeling software Blender. We demonstrate on a 3d model of the hippocampal formation how PAM can help reveal complex properties of the synaptic connectivity and conduction delays, properties that might be relevant to uncover the function of the hippocampus. Based on these analyses, two experimentally testable predictions arose: i the number of neurons and the spread of connections is heterogeneously distributed across the main anatomical axes, ii the distribution of connection lengths in CA3-CA1 differ qualitatively from those between DG-CA3 and CA3-CA3. Models created by PAM can also serve as an educational tool to visualize the 3d connectivity of brain regions. The low-dimensional, but yet biologically plausible, parameter space renders PAM suitable to analyse allometric and evolutionary factors in networks and to model the complexity of real networks with comparatively little effort.

  7. Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections.

    Science.gov (United States)

    Pyka, Martin; Klatt, Sebastian; Cheng, Sen

    2014-01-01

    Computational models of neural networks can be based on a variety of different parameters. These parameters include, for example, the 3d shape of neuron layers, the neurons' spatial projection patterns, spiking dynamics and neurotransmitter systems. While many well-developed approaches are available to model, for example, the spiking dynamics, there is a lack of approaches for modeling the anatomical layout of neurons and their projections. We present a new method, called Parametric Anatomical Modeling (PAM), to fill this gap. PAM can be used to derive network connectivities and conduction delays from anatomical data, such as the position and shape of the neuronal layers and the dendritic and axonal projection patterns. Within the PAM framework, several mapping techniques between layers can account for a large variety of connection properties between pre- and post-synaptic neuron layers. PAM is implemented as a Python tool and integrated in the 3d modeling software Blender. We demonstrate on a 3d model of the hippocampal formation how PAM can help reveal complex properties of the synaptic connectivity and conduction delays, properties that might be relevant to uncover the function of the hippocampus. Based on these analyses, two experimentally testable predictions arose: (i) the number of neurons and the spread of connections is heterogeneously distributed across the main anatomical axes, (ii) the distribution of connection lengths in CA3-CA1 differ qualitatively from those between DG-CA3 and CA3-CA3. Models created by PAM can also serve as an educational tool to visualize the 3d connectivity of brain regions. The low-dimensional, but yet biologically plausible, parameter space renders PAM suitable to analyse allometric and evolutionary factors in networks and to model the complexity of real networks with comparatively little effort.

  8. Project and construction of energy degrading and scattering plates for electron beam radiotherapy for skin diseases

    International Nuclear Information System (INIS)

    Fonseca, Gabriel Paiva

    2010-01-01

    There are many radiosensitive epidermotropics diseases such as mycosis fungo-ids and the syndrome of Sezary, coetaneous neoplasics originated from type T lymphocytes. Several studies indicate the eradication of the disease when treated with linear accelerators emitting electron beams with energies between 4 to 10 MeV. However, this treatment technique presents innumerable technical challenges since the disease in general reaches all patient's body, becoming necessary not only a very large field size radiation beam, but also deliver superficial doses limited to the skin depth. To reach the uniformity in the dose distribution, many techniques had already been developed. Based on these previous studies and guided by the report no. 23 of the American Association of Physicists in Medi-cine (AAPM), the present study developed an energy scattering and degrading plates and made dosimetry (computational and experimental), supplying subsidies for a future installation of Total Skin Electron Therapy (TSET) at the Servico de Radioterapia do Hospital das Clinicas de Sao Paulo. As part of the plates design, first of all, the energy spectrum of the 6 MeV electron beam of the VARIAN 2100C accelerator was reconstructed through Monte Carlo simulations using the MCNP4C code and based on experimental data. Once the spectrum is built, several materials were analyzed for the plates design based on radial and axial dose distribution, production of rays-x and dose attenuation. The simulation results were validated by experimental measurements in order to obtain a large field of radiation with 200 cm x 80 cm that meets the specifications of the AAPM protocol. (author)

  9. Advanced algorithms for ionosphere modelling in GNSS applications within AUDITOR project

    Science.gov (United States)

    Goss, Andreas; Erdogan, Eren; Schmidt, Michael; Garcia-Rigo, Alberto; Hernandez-Pajares, Manuel; Lyu, Haixia; Nohutcu, Metin

    2017-04-01

    The H2020 project AUDITOR of the European Union started on January 1st 2016, with the participation of several European institutions and universities. The goal of the project is the implementation of a novel precise positioning technique, based on augmentation data in a customized GNSS receiver. Therefore more sophisticated ionospheric models have to be developed and implemented to increase the accuracy in real-time at the user side. Since the service should be available for the public, we use public data from GNSS networks (e.g. IGS, EUREF). The contributions of DGFI-TUM and UPC are focusing on the development of high accuracy GNSS algorithms to provide enhanced ionospheric corrections. This includes two major issues: 1. The existing mapping function to convert the slant total electron content (STEC) measurable by GNSS into the vertical total electron content (VTEC) is based on a so called single layer model (SLM), where all electrons are concentrated on an infinitesimal thin layer with fixed height (between 350 and 450 kilometers). This quantity is called the effective ionospheric height (EIH). An improvement of the mapping function shall be achieved by estimating more realistic numerical values for the EIH by means of a voxel-based tomographic model (TOMION). 2. The ionospheric observations are distributed rather unevenly over the globe and within specific regions. This inhomogeneous distribution is handled by data adaptive B-Spline approaches, with polynomial and trigonometric functions used for the latitude and longitude representations to provide high resolution VTEC maps for global and regional purposes. A Kalman filter is used as sequential estimator. The unknown parameters of the filter state vector are composed of the B-spline coefficients as well as the satellite and receiver DCBs. The resulting high accuracy ionosphere products will be disseminated to the users via downlink from a dedicated server to a receiver site. In this context, an appropriate

  10. [Eco-value level classification model of forest ecosystem based on modified projection pursuit technique].

    Science.gov (United States)

    Wu, Chengzhen; Hong, Wei; Hong, Tao

    2006-03-01

    To optimize the projection function and direction of projection pursuit technique, predigest its realization process, and overcome the shortcomings in long time calculation and in the difficulty of optimizing projection direction and computer programming, this paper presented a modified simplex method (MSM), and based on it, brought forward the eco-value level classification model (EVLCM) of forest ecosystem, which could integrate the multidimensional classification index into one-dimensional projection value, with high projection value denoting high ecosystem services value. Examples of forest ecosystem could be reasonably classified by the new model according to their projection value, suggesting that EVLCM driven directly by samples data of forest ecosystem was simple and feasible, applicable, and maneuverable. The calculating time and value of projection function were 34% and 143% of those with the traditional projection pursuit technique, respectively. This model could be applied extensively to classify and estimate all kinds of non-linear and multidimensional data in ecology, biology, and regional sustainable development.

  11. Solar Car, Solar Boat: Model Classroom Projects. Seattle Tech Prep.

    Science.gov (United States)

    Seattle Community Coll. District, Washington.

    This booklet shows how teachers at Ingraham High School and Madison Middle School in Seattle (Washington) challenged their students to tackle demanding technical projects. It also shows how well the students responded to that challenge. The booklet begins with the background of the project, the framework for which would be a university-sponsored…

  12. Chapter 9 - Vegetation succession modeling for the LANDFIRE Prototype Project

    Science.gov (United States)

    Donald Long; B. John (Jack) Losensky; Donald Bedunah

    2006-01-01

    One of the main objectives of the Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, was to determine departure of current vegetation conditions from the range and variation of conditions that existed during the historical era identified in the LANDFIRE guidelines as 1600-1900 A.D. (Keane and Rollins, Ch. 3). In...

  13. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  14. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  15. Using a matter wave model to study the structure of the electron inside an atom

    Science.gov (United States)

    Chang, Donald

    In Bohr's atomic model, the atom was conceptually modeled as a miniature solar system. With the development of the Schrödinger equation, the wave function of the electron inside an atom becomes much better known. But the electron is still regarded as a pointed object; according to the Copenhagen Interpretation, the wave function is thought to describe only the probability of finding the electron. Such an interpretation, however, has raised some conceptual questions. For example, how can a point-like electron form a chemical bond between neighboring atoms? In an attempt to overcome this difficulty, we use a matter wave theory to model the structure of an electron inside the atom. This model is inspired by noticing the similarity between a free electron and a photon; both particles behave like a corpuscular object as well as a physical wave. Thus, we hypothesize that, like the photon, an electron is an excitation wave of a real physical field. Based on this hypothesis, we have derived a basic wave equation for the free electron. We show that, in the presence of an electrical potential, this basic wave equation can lead to the Schrödinger equation. This work implies that the solution of the Schrödinger equation actually represents the physical waves of the electron. Thus, the electron inside the atom should behave more like a topologically distributive wave than a pointed object. In this presentation, we will discuss the advantages and limitations of this model.

  16. Using electronic health records for clinical research: the case of the EHR4CR project.

    Science.gov (United States)

    De Moor, Georges; Sundgren, Mats; Kalra, Dipak; Schmidt, Andreas; Dugas, Martin; Claerhout, Brecht; Karakoyun, Töresin; Ohmann, Christian; Lastic, Pierre-Yves; Ammour, Nadir; Kush, Rebecca; Dupont, Danielle; Cuggia, Marc; Daniel, Christel; Thienpont, Geert; Coorevits, Pascal

    2015-02-01

    To describe the IMI EHR4CR project which is designing and developing, and aims to demonstrate, a scalable, widely acceptable and efficient approach to interoperability between EHR systems and clinical research systems. The IMI EHR4CR project is combining and extending several previously isolated state-of-the-art technical components through a new approach to develop a platform for reusing EHR data to support medical research. This will be achieved through multiple but unified initiatives across different major disease areas (e.g. cardiovascular, cancer) and clinical research use cases (protocol feasibility, patient identification and recruitment, clinical trial execution and serious adverse event reporting), with various local and national stakeholders across several countries and therefore under various legal frameworks. An initial instance of the platform has been built, providing communication, security and terminology services to the eleven participating hospitals and ten pharmaceutical companies located in seven European countries. Proof-of-concept demonstrators have been built and evaluated for the protocol feasibility and patient recruitment scenarios. The specifications of the clinical trial execution and the adverse event reporting scenarios have been documented and reviewed. Through a combination of a consortium that brings collectively many years of experience from previous relevant EU projects and of the global conduct of clinical trials, of an approach to ethics that engages many important stakeholders across Europe to ensure acceptability, of a robust iterative design methodology for the platform services that is anchored on requirements of an underlying Service Oriented Architecture that has been designed to be scalable and adaptable, EHR4CR could be well placed to deliver a sound, useful and well accepted pan-European solution for the reuse of hospital EHR data to support clinical research studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Housing Value Projection Model Related to Educational Planning: The Feasibility of a New Methodology. Final Report.

    Science.gov (United States)

    Helbock, Richard W.; Marker, Gordon

    This study concerns the feasibility of a Markov chain model for projecting housing values and racial mixes. Such projections could be used in planning the layout of school districts to achieve desired levels of socioeconomic heterogeneity. Based upon the concepts and assumptions underlying a Markov chain model, it is concluded that such a model is…

  18. Probing Sea Quarks and Gluons: The Electron-Ion Collider Project

    Directory of Open Access Journals (Sweden)

    Horn Tanja

    2014-03-01

    Full Text Available The 21st century holds great promise for reaching a new era for unlocking the mysteries of the structure of the atomic nucleus and the nucleons inside it governed by the theory of strong interactions (QCD. In particular, much remains to be learned about the dynamical basis of the structure of hadrons and nuclei in terms of the fundamental quarks and gluons. One of the main goals of existing and nearly completed facilities is to map out the spin flavor structure of the nucleons in the valence region. A future Electron-Ion Collider (EIC would be the world’s first polarized electron-proton collider, and the world’s first e-A collider, and would seek the QCD foundation of nucleons and nuclei in terms of the sea quarks and gluons, matching to these valence quark studies. The EIC will provide a versatile range of kinematics and beam polarization, as well as beam species, to allow for mapping the spin and spatial structure of the quark sea and gluons, to discover the collective effects of gluons in atomic nuclei, and to understand the emergence of hadronic matter from color charge.

  19. Probing Sea Quarks and Gluons: The Electron-Ion Collider Project

    Science.gov (United States)

    Horn, Tanja

    2014-03-01

    The 21st century holds great promise for reaching a new era for unlocking the mysteries of the structure of the atomic nucleus and the nucleons inside it governed by the theory of strong interactions (QCD). In particular, much remains to be learned about the dynamical basis of the structure of hadrons and nuclei in terms of the fundamental quarks and gluons. One of the main goals of existing and nearly completed facilities is to map out the spin flavor structure of the nucleons in the valence region. A future Electron-Ion Collider (EIC) would be the world's first polarized electron-proton collider, and the world's first e-A collider, and would seek the QCD foundation of nucleons and nuclei in terms of the sea quarks and gluons, matching to these valence quark studies. The EIC will provide a versatile range of kinematics and beam polarization, as well as beam species, to allow for mapping the spin and spatial structure of the quark sea and gluons, to discover the collective effects of gluons in atomic nuclei, and to understand the emergence of hadronic matter from color charge.

  20. Real-Time Robust Adaptive Modeling and Scheduling for an Electronic Commerce Server

    Science.gov (United States)

    Du, Bing; Ruan, Chun

    With the increasing importance and pervasiveness of Internet services, it is becoming a challenge for the proliferation of electronic commerce services to provide performance guarantees under extreme overload. This paper describes a real-time optimization modeling and scheduling approach for performance guarantee of electronic commerce servers. We show that an electronic commerce server may be simulated as a multi-tank system. A robust adaptive server model is subject to unknown additive load disturbances and uncertain model matching. Overload control techniques are based on adaptive admission control to achieve timing guarantees. We evaluate the performance of the model using a complex simulation that is subjected to varying model parameters and massive overload.