WorldWideScience

Sample records for modeling optical properties

  1. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  2. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    Science.gov (United States)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  3. Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies

    Science.gov (United States)

    Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.

    2017-12-01

    The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.

  4. Effective-mass model and magneto-optical properties in hybrid perovskites

    OpenAIRE

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be effici...

  5. A novel method of rapidly modeling optical properties of actual photonic crystal fibres

    International Nuclear Information System (INIS)

    Li-Wen, Wang; Shu-Qin, Lou; Wei-Guo, Chen; Hong-Lei, Li

    2010-01-01

    The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment. (rapid communication)

  6. Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Yajie Jiang

    2015-06-01

    Full Text Available The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3−xClx and CH3NH3PbI3 perovskite films are reported at 297 K as determined by detailed analysis of reflectance and transmittance data. The data in this study is related to the research article “Room temperature optical properties of organic–inorganic lead halide perovskites” in Solar Energy Materials & Solar Cells [1].

  7. Effective-mass model and magneto-optical properties in hybrid perovskites

    Science.gov (United States)

    Yu, Z. G.

    2016-06-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  8. Modeling silica aerogel optical performance by determining its radiative properties

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-02-01

    Full Text Available Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM. Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation. To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE. The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel’s microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  9. Modeling silica aerogel optical performance by determining its radiative properties

    Science.gov (United States)

    Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.

    2016-02-01

    Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  10. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films

    Directory of Open Access Journals (Sweden)

    Qian Haoliang

    2015-11-01

    Full Text Available The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

  11. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  12. Human tissue optical properties measurements and light propagation modelling

    CSIR Research Space (South Africa)

    Dam, JS

    2006-07-01

    Full Text Available Biomedical Optics is the study of the optical properties of living biological material, especially its scattering and absorption characteristics, and their significance to light propagation within the material. Determination of tissue optical...

  13. Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance

    Science.gov (United States)

    Douven, Lucien F. A.; Lucassen, Gerald W.

    2000-06-01

    We present results on the retrieval of skin optical properties obtained by fitting of measurements of the diffuse reflectance of human skin. Reflectance spectra are simulated using an analytical model based on the diffusion approximation. This model is implemented in a simplex fit routine. The skin optical model used consists of five layers representing epidermis, capillary blood plexus, dermis, deep blood plexus and hypodermis. The optical properties of each layer are assumed homogeneously distributed. The main optical absorbers included are melanin in epidermis and blood. The experimental setup consists of a HP photospectrometer equipped with a remote fiber head. Total reflectance spectra were measured in the 400 - 820 nm wavelength range on the volar underarm of 19 volunteers under various conditions influencing the blood content and oxygenation degree. Changes in the reflectance spectra were observed. Using the fit routine changes in blood content in the capillary blood plexus and in the deep blood plexus could be quantified. These showed different influences on the total reflectance. The method can be helpful to quantitatively assess changes in skin color appearance such as occurs in the treatment of port wine stains, blanching, skin irritation and tanning.

  14. Observation and analysis of water inherent optical properties

    Science.gov (United States)

    Sun, Deyong; Li, Yunmei; Le, Chengfeng; Huang, Changchun

    2008-03-01

    Inherent optical property is an important part of water optical properties, and is the foundation of water color analytical model establishment. Through quantity filter technology (QFT) and backscattering meter BB9 (WETlabs Inc), absorption coefficients of CDOM, total suspended minerals and backscattering coefficients of total suspended minerals had been observed in Meiliang Bay of Taihu lake at summer and winter respectively. After analyzing the spectral characteristics of absorption and backscattering coefficients, the differences between two seasons had been illustrated adequately, and the reasons for the phenomena, which are related to the changes of water quality coefficient, had also been explained. So water environment states can be reflected by inherent optical properties. In addition, the relationship models between backscattering coefficients and suspended particle concentrations had been established, which can support coefficients for analytical models.

  15. Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Frislev, Martin Thomas; Balling, Peter

    2013-01-01

    Modeling of the interaction between a dielec- tric material and ultrashort laser pulses provides the tem- poral evolution of the electronic excitation and the optical properties of the dielectric. Experimentally determined re- flectances and ablation depths for sapphire are compared...... to the calculations. A decrease in reflectance at high fluences is observed experimentally, which demonstrates the neces- sity of a temperature-dependent electron scattering rate in the model. The comparison thus provides new constraints on the optical parameters of the model....

  16. Optical properties of graphene superlattices.

    Science.gov (United States)

    Le, H Anh; Ho, S Ta; Nguyen, D Chien; Do, V Nam

    2014-10-08

    In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, Ub), where Ub is the potential barrier height. In the higher photon energy range, i.e. Ω > Ub, the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism.

  17. Modeling the influence of LASIK surgery on optical properties of the human eye

    Science.gov (United States)

    Szul-Pietrzak, Elżbieta; Hachoł, Andrzej; Cieślak, Krzysztof; Drożdż, Ryszard; Podbielska, Halina

    2011-11-01

    The aim was to model the influence of LASIK surgery on the optical parameters of the human eye and to ascertain which factors besides the central corneal radius of curvature and central thickness play the major role in postsurgical refractive change. Ten patients were included in the study. Pre- and postsurgical measurements included standard refraction, anterior corneal curvature and pachymetry. The optical model used in the analysis was based on the Le Grand and El Hage schematic eye, modified by the measured individual parameters of corneal geometry. A substantial difference between eye refractive error measured after LASIK and estimated from the eye model was observed. In three patients, full correction of the refractive error was achieved. However, analysis of the visual quality in terms of spot diagrams and optical transfer functions of the eye optical system revealed some differences in these measurements. This suggests that other factors besides corneal geometry may play a major role in postsurgical refraction. In this paper we investigated whether the biomechanical properties of the eyeball and changes in intraocular pressure could account for the observed discrepancies.

  18. Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Sakadžić, Sava; Fischl, Bruce; Boas, David A

    2017-12-01

    Quantification of tissue optical properties with optical coherence tomography (OCT) has proven to be useful in evaluating structural characteristics and pathological changes. Previous studies primarily used an exponential model to analyze low numerical aperture (NA) OCT measurements and obtain the total attenuation coefficient for biological tissue. In this study, we develop a systematic method that includes the confocal parameter for modeling the depth profiles of high NA OCT, when the confocal parameter cannot be ignored. This approach enables us to quantify tissue optical properties with higher lateral resolution. The model parameter predictions for the scattering coefficients were tested with calibrated microsphere phantoms. The application of the model to human brain tissue demonstrates that the scattering and back-scattering coefficients each provide unique information, allowing us to differentially identify laminar structures in primary visual cortex and distinguish various nuclei in the midbrain. The combination of the two optical properties greatly enhances the power of OCT to distinguish intricate structures in the human brain beyond what is achievable with measured OCT intensity information alone, and therefore has the potential to enable objective evaluation of normal brain structure as well as pathological conditions in brain diseases. These results represent a promising step for enabling the quantification of tissue optical properties from high NA OCT.

  19. Optical properties of graphene superlattices

    International Nuclear Information System (INIS)

    Le, H Anh; Do, V Nam; Ho, S Ta; Nguyen, D Chien

    2014-01-01

    In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, U b ), where U b is the potential barrier height. In the higher photon energy range, i.e. Ω > U b , the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism. (paper)

  20. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  1. Optical properties of monodispersive FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [Center for Sustainable Environmental Technologies, Iowa State University, Ames, IA 50011 (United States)

    2004-10-01

    The optical properties of monodispersive FePt nanoparticle films were investigated using spectroscopic ellipsometry in the energy range of 1.5 to 5.5 eV. The monodispersive FePt nanoparticle film was stabilized on a Si substrate by means of an organosilane coupling film, resulting in the formation of a (Si/SiO{sub 2}/APTS/FePt nanoparticles monolayer) structure. Multilayer optical models were employed to study the contribution of the FePt nanoparticles to the measured optical properties of the monodispersive FePt nanoparticle film, and to estimate the optical properties of the FePt nanoparticle layer. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Optical properties on thermally evaporated and heat-treated ...

    Indian Academy of Sciences (India)

    Administrator

    of the intra-molecular bonds between the powder compounds and thin films. The optical ... Keywords. Phthalocyanine; thin films; optical properties; absorption spectra. 1. .... Leica Cambridge scanning electron microscope (model. Stereoscan ...

  3. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  4. First principles and Debye model study of the thermodynamic, electronic and optical properties of MgO under high-temperature and pressure

    Science.gov (United States)

    Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo

    2018-02-01

    First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.

  5. Reference dataset of volcanic ash physicochemical and optical properties for atmospheric measurement retrievals and transport modelling

    Science.gov (United States)

    Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas

    2016-04-01

    Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine the sensitivity to uncertainty in ash particle characteristics.

  6. Designing Optical Properties in DNA-Programmed Nanoparticle Superlattices

    Science.gov (United States)

    Ross, Michael Brendan

    A grand challenge of modern science has been the ability to predict and design the properties of new materials. This approach to the a priori design of materials presents a number of challenges including: predictable properties of the material building blocks, a programmable means for arranging such building blocks into well understood architectures, and robust models that can predict the properties of these new materials. In this dissertation, we present a series of studies that describe how optical properties in DNA-programmed nanoparticle superlattices can be predicted prior to their synthesis. The first chapter provides a history and introduction to the study of metal nanoparticle arrays. Chapter 2 surveys and compares several geometric models and electrodynamics simulations with the measured optical properties of DNA-nanoparticle superlattices. Chapter 3 describes silver nanoparticle superlattices (rather than gold) and identifies their promise as plasmonic metamaterials. In chapter 4, the concept of plasmonic metallurgy is introduced, whereby it is demonstrated that concepts from materials science and metallurgy can be applied to the optical properties of mixed metallic plasmonic materials, unveiling rich and tunable optical properties such as color and asymmetric reflectivity. Chapter 5 presents a comprehensive theoretical exploration of anisotropy (non-spherical) in nanoparticle superlattice architectures. The role of anisotropy is discussed both on the nanoscale, where several desirable metamaterial properties can be tuned from the ultraviolet to near-infrared, and on the mesoscale, where the size and shape of a superlattice is demonstrated to have a pronounced effect on the observed far-field optical properties. Chapter 6 builds upon those theoretical data presented in chapter 5, including the experimental realization of size and shape dependent properties in DNA-programmed superlattices. Specifically, nanoparticle spacing is explored as a parameter that

  7. qF-SSOP: real-time optical property corrected fluorescence imaging

    Science.gov (United States)

    Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain

    2017-01-01

    Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038

  8. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  9. Optical adhesive property study

    Energy Technology Data Exchange (ETDEWEB)

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  10. Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography

    Science.gov (United States)

    Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.

    2017-07-01

    Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization

  11. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    International Nuclear Information System (INIS)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-01-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered

  12. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    Science.gov (United States)

    Wagner, Sasha; Jaffe, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-11-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  13. Inherent optical properties of pollen particles: a case study for the morning glory pollen.

    Science.gov (United States)

    Liu, Chao; Yin, Yan

    2016-01-25

    Biological aerosols, such as bacteria, fungal spores, and pollens, play an important role on various atmospheric processes, whereas their inherent optical property is one of the most uncertainties that limit our ability to assess their effects on weather and climate. A numerical model with core-shell structure, hexagonal grids and barbs is developed to represent one kind of realistic pollen particles, and their inherent optical properties are simulated using a pseudo-spectral time domain method. Both the hexagonal grids and barbs substantially affect the modeled pollen optical properties. Results based on the realistic particle model are compared with two equivalent spherical approximations, and the significant differences indicate the importance of considering pollen geometries for their optical properties.

  14. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  15. Estimation of biomedical optical properties by simultaneous use of diffuse reflectometry and photothermal radiometry: investigation of light propagation models

    Science.gov (United States)

    Fonseca, E. S. R.; de Jesus, M. E. P.

    2007-07-01

    The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to

  16. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    Directory of Open Access Journals (Sweden)

    Sasha eWagner

    2015-11-01

    Full Text Available Optical properties are easy-to-measure proxies for dissolved organic matter (DOM composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows and DOM sources (e.g., terrestrial, microbial and marine. As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX and ultrahigh resolution mass spectrometry (FTICR-MS. Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  17. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  18. Broadband optical characterization of material properties

    DEFF Research Database (Denmark)

    Nielsen, Otto Højager Attermann

    the applicability of optical techniques for this purpose, the fermentation of milk into yogurt has been used as a model system. Studies have been conducted on commercially available products, but also of on-line measurement of the fermentation process. The second process is from the aquaculture industry...... reports on the design and operation of the different measurement techniques together with the necessary theoretical background for the industrial applications. For the purpose of milk fermentation this work has demonstrated that the reduced scattering properties of milk change significantly throughout...... the fermentation process. It has also been shown that the optical inspection methods sense changes to structural properties before any are detected by traditional mechanical rheology. Finally, the developed hyperspectral imaging system was used to quantify the content of astaxanthin in fish feed, and performed...

  19. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  20. Effects of mechanical strain on optical properties of ZnO nanowire

    Science.gov (United States)

    Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana

    2018-02-01

    The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  1. Effects of mechanical strain on optical properties of ZnO nanowire

    Directory of Open Access Journals (Sweden)

    Ali Vazinishayan

    2018-02-01

    Full Text Available The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM software package ABAQUS and three-dimensional (3D finite-difference time-domain (FDTD methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  2. Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations

    Science.gov (United States)

    Mishra, S. K.; Praveen, P. S.; Ramanathan, V.

    2013-12-01

    Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2

  3. Optical properties of carbon nanotubes

    Science.gov (United States)

    Chen, Gugang

    This thesis addresses the optical properties of novel carbon filamentary nanomaterials: single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and SWNTs with interior C60 molecules ("peapods"). Optical reflectance spectra of bundled SWNTs are discussed in terms of their electronic energy band structure. An Effective Medium Model for a composite material was found to provide a reasonable description of the spectra. Furthermore, we have learned from optical absorption studies of DWNTs and C60-peapods that the host tube and the encapsulant interact weakly; small shifts in interband absorption structure were observed. Resonant Raman scattering studies on SWNTs synthesized via the HiPCO process show that the "zone-folding" approximation for phonons and electrons works reasonably well, even for small diameter (d effect, rather than the vdW interaction. Finally, we studied the chemical doping of DWNTs, where the dopant (Br anions) is chemically bound to the outside of the outer tube. The doped DWNT system is a model for a cylindrical molecular capacitor. We found experimentally that 90% of the positive charge resides on the outer tube, so that most of electric field on the inner tube is screened, i.e., we have observed a molecular Faraday cage effect. A self-consistent theoretical model in the tight-binding approximation with a classical electrostatic energy term is in good agreement with our experimental results.

  4. Radiative properties of optical board embedded with optical black holes

    International Nuclear Information System (INIS)

    Qiu, J.; Liu, L.H.; Hsu, P.-F.

    2011-01-01

    Unique radiative properties, such as wavelength-selective transmission or absorption, have been intensively studied. Historically, geometries for wavelength-selective of light absorption were developed based on metallic periodical structures, which were only applied in the case of TM wave incidence due to the excitation of surface plasmons. In this paper, we develop an alternative approach to selective wavelength of light absorption (both TE and TM waves), based on an optical board periodical embedded with optical black holes. Numerical work was carried out to study such structure's radiative properties within the wavelength range of 1-100 μm. The electromagnetic wave transmission through such a structure is predicted by solving Maxwell's equations using the finite-difference time-domain (FDTD) method. Spectral absorptance varies with the period of optical black holes. When the incidence wavelength is much larger than the inner core radius, most of the light energy will be transmitted through the inner core. Otherwise, the energy will be mainly absorbed. Numerical results of the radiative properties of the optical board with different incidence wavelengths are also obtained. The effect of the oblique incidence wave is investigated. This study helps us gain a better understanding of the radiative properties of an optical board embedded with optical black holes and develop an alternative approach to selective light absorption.

  5. Simulation of aerosol optical properties over a tropical urban site in India using a global model and its comparison with ground measurements

    Directory of Open Access Journals (Sweden)

    D. Goto

    2011-05-01

    Full Text Available Aerosols have great impacts on atmospheric environment, human health, and earth's climate. Therefore, information on their spatial and temporal distribution is of paramount importance. Despite numerous studies have examined the variation and trends of BC and AOD over India, only very few have focused on their spatial distribution or even correlating the observations with model simulations. In the present study, a three-dimensional aerosol transport-radiation model coupled with a general circulation model. SPRINTARS, simulated atmospheric aerosol distributions including BC and aerosol optical properties, i.e., aerosol optical thickness (AOT, Ångström Exponent (AE, and single scattering albedo (SSA. The simulated results are compared with both BC measurements by aethalometer and aerosol optical properties measured by ground-based skyradiometer and by satellite sensor, MODIS/Terra over Hyderabad, which is a tropical urban area of India, for the year 2008. The simulated AOT and AE in Hyderabad are found to be comparable to ground-based measured ones. The simulated SSA tends to be higher than the ground-based measurements. Both these comparisons of aerosol optical properties between the simulations with different emission inventories and the measurements indicate that, firstly the model uncertainties derived from aerosol emission inventory cannot explain the gaps between the simulations and the measurements and secondly the vertical transport of BC and the treatment of BC-containing particles can be the main issue in the global model to solve the gap.

  6. Relationships among surface processing at the nanometer scale, nanostructure and optical properties of thin oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria

    2004-05-01

    Spectroscopic ellipsometry is used to study the optical properties of nanostructured semiconductor oxide thin films. Various examples of models for the dielectric function, based on Lorentzian oscillators combined with the Drude model, are given based on the band structure of the analyzed oxide. With this approach, the optical properties of thin films are determined independent of the dielectric functions of the corresponding bulk materials, and correlation between the optical properties and nanostructure of thin films is investigated. In particular, in order to discuss the dependence of optical constants on grain size, CeO{sub 2} nanostructured films are considered and parameterized by two-Lorentzian oscillators or two-Tauc-Lorentz model depending on the nanostructure and oxygen deficiency. The correlation among anisotropy, crystalline fraction and optical properties parameterized by a four-Lorentz oscillator model is discussed for nanocrystalline V{sub 2}O{sub 5} thin films. Indium tin oxide thin films are discussed as an example of the presence of graded optical properties related to interfacial reactivity activated by processing conditions. Finally, the example of ZnO shows the potential of ellipsometry in discerning crystal and epitaxial film polarity through the analysis of spectra and the detection of surface reactivity of the two polar faces, i.e. Zn-polarity and O-polarity.

  7. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  8. THz - ToF Optical Layer Analysis (OLA) to determine optical properties of dielectric materials

    Science.gov (United States)

    Spranger, Holger; Beckmann, Jörg

    2017-02-01

    Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. The knowledge of the base materials shape and optical properties is essential for a proper reconstruction result. To obtain these properties a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric characteristics. The Optical Layer Analysis (OLA) is able to fulfill these requirements. A short description why the optical properties are crucial for meaningful SAFT reconstruction results will be given first. Afterwards the OLA will be derived and applied on representative samples to discuss and evaluate its benefits and limits.

  9. Modifying the electronic and optical properties of carbon nanotubes

    Science.gov (United States)

    Kinder, Jesse M.

    The intrinsic electronic and optical properties of carbon nanotubes make them promising candidates for circuit elements and LEDs in nanoscale devices. However, applied fields and interactions with the environment can modify these intrinsic properties. This dissertation is a theoretical study of perturbations to an ideal carbon nanotube. It illustrates how transport and optical properties of carbon nanotubes can be adversely affected or intentionally modified by the local environment. The dissertation is divided into three parts. Part I analyzes the effect of a transverse electric field on the single-electron energy spectrum of semiconducting carbon nanotubes. Part II analyzes the effect of the local environment on selection rules and decay pathways relevant to dark excitons. Part III is a series of 26 appendices. Two different models for a transverse electric field are introduced in Part I. The first is a uniform field perpendicular to the nanotube axis. This model suggests the field has little effect on the band gap until it exceeds a critical value that can be tuned with strain or a magnetic field. The second model is a transverse field localized to a small region along the nanotube axis. The field creates a pair of exponentially localized bound states but has no effect on the band gap for particle transport. Part II explores the physics of dark excitons in carbon nanotubes. Two model calculations illustrate the effect of the local environment on allowed optical transitions and nonradiative recombination pathways. The first model illustrates the role of inversion symmetry in the optical spectrum. Broken inversion symmetry may explain low-lying peaks in the exciton spectrum of boron nitride nanotubes and localized photoemission around impurities and interfaces in carbon nanotubes. The second model in Part II suggests that free charge carriers can mediate an efficient nonradiative decay process for dark excitons in carbon nanotubes. The appendices in Part III

  10. Raman spectroscopy of optical properties in CdS thin films

    Directory of Open Access Journals (Sweden)

    Trajić J.

    2015-01-01

    Full Text Available Properties of CdS thin films were investigated applying atomic force microscopy (AFM and Raman spectroscopy. CdS thin films were prepared by using thermal evaporation technique under base pressure 2 x 10-5 torr. The quality of these films was investigated by AFM spectroscopy. We apply Raman scattering to investigate optical properties of CdS thin films, and reveal existence of surface optical phonon (SOP mode at 297 cm-1. Effective permittivity of mixture were modeled by Maxwell - Garnet approximation. [Projekat Ministarstva nauke Republike Srbije, br. 45003

  11. Improved theoretical model of InN optical properties

    International Nuclear Information System (INIS)

    Ferreira da Silva, A.; Chubaci, J.F.D.; Matsuoka, M.; Freitas, J.A. Jr.; Tischler, J.G.; Baldissera, G.; Persson, C.

    2014-01-01

    The optical properties of InN are investigated theoretically by employing the projector augmented wave (PAW) method within Green's function and the screened Coulomb interaction approximation (GW o ). The calculated results are compared to previously reported calculations which use local density approximation combined with the scissors-operator approximation. The results of the present calculation are compared with reported values of the InN bandgap and with low temperature near infrared luminescence measurements of InN films deposited by a modified Ion Beam Assisted Deposition technique. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  13. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    Science.gov (United States)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  14. Optical properties of nitride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero, A.; Cros, A.; Garro, N.; Gomez-Gomez, M.I.; Garcia, A.; Lima, M.M. de [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Daudin, B. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPMM, CEA/Grenoble, 17 Rue des Martyrs, 38054 Grenoble (France); Rizzi, A.; Denker, C.; Malindretos, J. [IV. Physikalisches Institut, Georg August Universitaet Goettingen, 37073 Goettingen (Germany)

    2011-01-15

    In this paper we review some recent results on the optical properties of nitride nanostructures, in particular on GaN quantum dots (QDs) and InN nanocolumns (NCs). First, we will give a brief introduction on the particularities of vibrational modes of wurtzite. The GaN QDs, embedded in AlN, were grown by molecular beam epitaxy (MBE) in the Stransky-Krastanov mode on c- and a-plane 6H-SiC. We have studied the optical properties by means of photoluminescence (PL) and performed Raman scattering measurements to analyze the strain relaxation in the dots and the barrier, the effect of the internal electric fields, and the influence of specific growth parameters, like the influence of capping or the spacer on the relaxation of the QDs. A theoretical model, based on continuous elastic theory, were developed to interpret the Raman scattering results. On the other hand, InN NCs have been grown by MBE in the vapor-liquid-solid mode using Au as a catalyst. The nanocolumns have different morphology depending on the growth conditions. The optical properties can be correlated to the morphology of the samples and the best growth conditions can be selected. We observe, from the analysis of the Raman data in InN NCs, the existence of two space regions contributing to the scattering: the surface and the inner region. From the inner region, uncoupled phonon modes are clearly observed, showing the high crystal quality and the complete relaxation of the NCs (no strain). The observation of a LO-phonon-plasmon couple in the same spectra is a fingerprint of the accumulation layer predicted at the surface of the nanocolumns. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids

    International Nuclear Information System (INIS)

    Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V

    2004-01-01

    The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)

  16. Optical Properties of Rotationally Twinned Nanowire Superlattices

    DEFF Research Database (Denmark)

    Bao, Jiming; Bell, David C.; Capasso, Federico

    2008-01-01

    We have developed a technique so that both transmission electron microscopy and microphotoluminescence can be performed on the same semiconductor nanowire over a large range of optical power, thus allowing us to directly correlate structural and optical properties of rotationally twinned zinc...... a heterostructure in a chemically homogeneous nanowire material and alter in a major way its optical properties opens new possibilities for band-structure engineering....

  17. On the optical properties of carbon nanotubes. Part I. A general formula for the dynamical optical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Morten Grud, E-mail: morteng@math.aau.dk [Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, 9220 Aalborg (Denmark); Ricaud, Benjamin, E-mail: benjamin.ricaud@epfl.ch [Laboratoire de Traitement des Signaux 2, École Polytechnique Fédérale de Lausanne, Lausanne, Vaud (Switzerland); Savoie, Baptiste, E-mail: baptiste.savoie@gmail.com [Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Road, Dublin 04 (Ireland)

    2016-02-15

    This paper is the first one in a series of two articles in which we revisit the optical properties of single-walled carbon nanotubes (SWNTs). Produced by rolling up a graphene sheet, SWNTs owe their intriguing properties to their cylindrical quasi-one-dimensional (quasi-1D) structure (the ratio length/radius is experimentally of order of 10{sup 3}). We model SWNT by circular cylinders of small diameters on the surface of which the conduction electron gas is confined by the electric field generated by the fixed carbon ions. The pair-interaction potential considered is the 3D Coulomb potential restricted to the cylinder. To reflect the quasi-1D structure, we introduce a 1D effective many-body Hamiltonian which is the starting-point of our analysis. To investigate the optical properties, we consider a perturbation by a uniform time-dependent electric field modeling an incident light beam along the longitudinal direction. By using Kubo’s method, we derive within the linear response theory an asymptotic expansion in the low-temperature regime for the dynamical optical conductivity at fixed density of particles. The leading term only involves the eigenvalues and associated eigenfunctions of the (unperturbed) 1D effective many-body Hamiltonian and allows us to account for the sharp peaks observed in the optical absorption spectrum of SWNT.

  18. Measurement and modelization of silica opal reflection properties: Optical determination of the silica index

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Frigerio, Jean-Marc; Coolen, Laurent; Schwob, Catherine; Nga, Pham Thu; Gallas, Bruno; Maître, Agnès

    2012-10-01

    Self-assembled artificial opals (in particular silica opals) constitute a model system to study the optical properties of three-dimensional photonic crystals. The silica optical index is a key parameter to correctly describe an opal but is difficult to measure at the submicrometer scale and usually treated as a free parameter. Here, we propose a method to extract the silica index from the opal reflection spectra and we validate it by comparison with two independent methods based on infrared measurements. We show that this index gives a correct description of the opal reflection spectra, either by a band structure or by a Bragg approximation. In particular, we are able to provide explanations in quantitative agreement with the measurements for two features : the observation of a second reflection peak in specular direction, and the quasicollapse of the p-polarized main reflection peak at a typical angle of 54∘.

  19. THEORETICAL MODELLING STUDY ON THE RELATIONSHIP BETWEEN MULTI-FREQUENCY MICROWAVE VEGETATION INDEX AND VEGETATION PROPERTIES (OPTICAL DEPTH AND SINGLE SCATTERING ALBEDO

    Directory of Open Access Journals (Sweden)

    S. Talebi

    2018-04-01

    Full Text Available This paper presents a theoretical study of derivation Microwave Vegetation Indices (MVIs in different pairs of frequencies using two methods. In the first method calculating MVI in different frequencies based on Matrix Doubling Model (to take in to account multi scattering effects has been done and analyzed in various soil properties. The second method was based on MVI theoretical basis and its independency to underlying soil surface signals. Comparing the results from two methods with vegetation properties (single scattering albedo and optical depth indicated partial correlation between MVI from first method and optical depth, and full correlation between MVI from second method and vegetation properties. The second method to derive MVI can be used widely in global microwave vegetation monitoring.

  20. Modelling of Extrinsic Fiber Optic Sagnac Ultrasound Interferometer ...

    African Journals Online (AJOL)

    Ultrasonic waves are used extensively in nondestructive testing both for characterization of material properties, in this paper, we describe a fiber optic sensor suitable for detection of ultrasonic waves. This sensor is based on an extrinsic fiber optic sagnac interferometer. The proposed sensor model can act as a conventional ...

  1. Comparing optical properties of different species of diatoms

    DEFF Research Database (Denmark)

    Maibohm, Christian; Friis, Søren Michael Mørk; Su, Y.

    2015-01-01

    species dependent with huge variety in size, shape, and micro- structure. We have experimentally investigated optical properties of frustules of several species of diatoms to further understand light harvesting properties together with commo n traits, effects and differences between the different...... analysis software. The software uses parameters which are extracted from experimental im ages as basis for simulation and allows us to extract the influence of the different elements of the frustule. The information could be used both for predicting optical properties of diatoms and by changing frustule...... parameters, maybe by altering growth conditions of the diatoms tailor their optical properties....

  2. Optical limiting properties of optically active phthalocyanine derivatives

    Science.gov (United States)

    Wang, Peng; Zhang, Shuang; Wu, Peiji; Ye, Cheng; Liu, Hongwei; Xi, Fu

    2001-06-01

    The optical limiting properties of four optically active phthalocyanine derivatives in chloroform solutions and epoxy resin thin plates were measured at 532 nm with 10 ns pulses. The excited state absorption cross-section σex and refractive-index cross-section σr were determined with the Z-scan technique. These chromophores possess larger σex than the ground state absorption cross-section σ0, indicating that they are the potential materials for reverse saturable absorption (RSA). The negative σr values of these chromophores add to the thermal contribution, producing a larger defocusing effect, which may be helpful in further enhancing their optical limiting performance. The optical limiting responses of the thin plate samples are stronger than those of the chloroform solutions.

  3. Generalized Ocean Color Inversion Model for Retrieving Marine Inherent Optical Properties

    Science.gov (United States)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.; Feldman, Gene C.; Boss, Emmanuel; Brando, Vittorio E.; Dowell, Mark; Hirata, Takafumi; Lavender, Samantha J.; Lee, ZhongPing; hide

    2013-01-01

    Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future ensemble applications.

  4. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China

    International Nuclear Information System (INIS)

    Yuan, Liang; Yin, Yan; Xiao, Hui; Yu, Xingna; Hao, Jian; Chen, Kui

    2016-01-01

    There is a large uncertainty in evaluating the radiative forcing from aerosol–radiation and aerosol–cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core–shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ± 6% and ± 14% for external mixture and ± 9% and ± 31% for core–shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. - Highlights: • A spherical Mie

  5. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liang [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yin, Yan, E-mail: yinyan@nuist.edu.cn [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Xiao, Hui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yu, Xingna [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Hao, Jian; Chen, Kui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); and others

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol–radiation and aerosol–cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core–shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ± 6% and ± 14% for external mixture and ± 9% and ± 31% for core–shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. - Highlights: • A spherical Mie

  6. Dust aerosol and optical properties over North Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    Science.gov (United States)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-02-01

    The seasonal cycle and optical properties of mineral dust aerosols in North Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN coupled to the surface scheme SURFEX. The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account at short timescales and mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in North Africa. The mean monthly Aerosol Optical Thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over North Africa, and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Capo Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over North Africa is 878 Tg year-1. The Bodélé depression appears to be the main area of dust emission in North Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over North Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and Regional Climate Models. Moreover, the three-dimensional distribution of the simulated AOTs also provides information about the

  7. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties.

    Science.gov (United States)

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi

    2011-02-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.

  8. Optical properties of marine waters and the development of bio-optical algorithms

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.

    This paper presents the primary optical variables used in the measurement of the optical properties of marine waters. How can in-situ measurements be used in the optical recognition of coastal and open ocean waters. We then look at bio...

  9. Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part I: methodological review

    NARCIS (Netherlands)

    Yanez Rausell, L.; Schaepman, M.E.; Clevers, J.G.P.W.; Malenovsky, Z.

    2014-01-01

    Optical properties (OPs) of non-flat narrow plant leaves, i.e., coniferous needles, are extensively used by the remote sensing community, in particular for calibration and validation of radiative transfer models at leaf and canopy level. Optical measurements of such small living elements are,

  10. Computational studies of third-order nonlinear optical properties of ...

    Indian Academy of Sciences (India)

    Anuj Kumar

    2017-06-20

    Jun 20, 2017 ... Department of Physics, Jaypee University of Engineering and Technology, Raghogarh,. Guna 473 226, India. ∗ ... properties and other molecular properties of the organic nonlinear optical crystal 2-aminopyridinium p- toluenesulphonate ... nal processing, optical limiting, optical logic gates, laser radiation ...

  11. Spectroscopic properties of rare earths in optical materials

    CERN Document Server

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  12. Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa

    CSIR Research Space (South Africa)

    Matthews, MW

    2013-01-01

    Full Text Available A two-layered sphere model is used to investigate the impact of gas vacuoles on the inherent optical properties (IOPs) of the cyanophyte Microcystis aeruginosa. Enclosing a vacuole-like particle within a chromatoplasm shell layer significantly...

  13. Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication

    Science.gov (United States)

    Yang, Xuan; Gilroy, Kyle D.; Vara, Madeline; Zhao, Ming; Zhou, Shan; Xia, Younan

    2017-09-01

    Because of their unique optical properties, gold nanocages are excellent candidates for biomedical applications. Traditionally, they are prepared using a method that involves the galvanic replacement reaction between Ag nanocubes and HAuCl4. Here we demonstrate a different approach for the facile synthesis of Au icosahedral nanocages containing twin boundaries, as well as a compact size below 15 nm and ultrathin walls of only a few atomic layers thick. Their optical properties could be tuned by simply controlling the etching time, a result that was also validated by computational modeling. We further evaluated the feasibility of fragmenting the nanocages using ultrasonication.

  14. Optical spectroscopic characterization of human meniscus biomechanical properties

    Science.gov (United States)

    Ala-Myllymäki, Juho; Danso, Elvis K.; Honkanen, Juuso T. J.; Korhonen, Rami K.; Töyräs, Juha; Afara, Isaac O.

    2017-12-01

    This study investigates the capacity of optical spectroscopy in the visible (VIS) and near-infrared (NIR) spectral ranges for estimating the biomechanical properties of human meniscus. Seventy-two samples obtained from the anterior, central, and posterior locations of the medial and lateral menisci of 12 human cadaver joints were used. The samples were subjected to mechanical indentation, then traditional biomechanical parameters (equilibrium and dynamic moduli) were calculated. In addition, strain-dependent fibril network modulus and permeability strain-dependency coefficient were determined via finite-element modeling. Subsequently, absorption spectra were acquired from each location in the VIS (400 to 750 nm) and NIR (750 to 1100 nm) spectral ranges. Partial least squares regression, combined with spectral preprocessing and transformation, was then used to investigate the relationship between the biomechanical properties and spectral response. The NIR spectral region was observed to be optimal for model development (83.0%≤R2≤90.8%). The percentage error of the models are: Eeq (7.1%), Edyn (9.6%), Eɛ (8.4%), and Mk (8.9%). Thus, we conclude that optical spectroscopy in the NIR range is a potential method for rapid and nondestructive evaluation of human meniscus functional integrity and health in real time during arthroscopic surgery.

  15. Optical Properties of Nanoparticle Systems Mie and Beyond

    CERN Document Server

    Quinten, Michael

    2011-01-01

    Unlike other books who concentrate on metallic nanoparticles with sizes less than 100 nm, the author discusses optical properties of particles with (a) larger size and (b) of any material. The intention of this book is to fill the gap in the description of the optical properties of small particles with sizes less than 1000 nm and to provide a comprehensive overview on the spectral behavior of nanoparticulate matter. The author concentrates on the linear optical properties elastic light scattering and absorption of single nanoparticles and on reflectance and transmittance of nanoparticle matter

  16. Structural and optical properties of furfurylidenemalononitrile thin films

    Science.gov (United States)

    Ali, H. A. M.

    2013-03-01

    Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.

  17. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  18. Mixing rules for optical and transport properties of warm, dense matter

    International Nuclear Information System (INIS)

    Kress, Joel D.; Horner, Daniel A.; Collins, Lee A.

    2009-01-01

    The warm, dense matter (WDM) regime requires a sophisticated treatment since neither ideal gas laws or fully ionized plasma models apply. Mixtures represent the predominant form of matter throughout the universe and the ability to predict the properties of a mixture, though direct simulation or from convolution of the properties of the constituents is both a challenging prospect and an important goal. Through quantum molecular dynamics (QMD), we accurately simulate WDM and compute equations of state, transport, and optical properties of such materials, including mixtures, in a self-consistent manner from a single simulation. With the ability to directly compute the mixture properties, we are able to validate mixing rules for combining the optical and dynamical properties of Li and H separately to predict the properties of lithium hydride (LiH). We have examined two such mixing rules and extend them to morphologies beyond a simple liquid alloy. We have also studied a mixture of polyethylene and aluminum at T = 1 eV.

  19. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect.

    Science.gov (United States)

    Qiao, Peng-Fei; Mou, Shin; Chuang, Shun Lien

    2012-01-30

    The electronic band structures and optical properties of type-II superlattice (T2SL) photodetectors in the mid-infrared (IR) range are investigated. We formulate a rigorous band structure model using the 8-band k · p method to include the conduction and valence band mixing. After solving the 8 × 8 Hamiltonian and deriving explicitly the new momentum matrix elements in terms of envelope functions, optical transition rates are obtained through the Fermi's golden rule under various doping and injection conditions. Optical measurements on T2SL photodetectors are compared with our model and show good agreement. Our modeling results of quantum structures connect directly to the device-level design and simulation. The predicted doping effect is readily applicable to the optimization of photodetectors. We further include interfacial (IF) layers to study the significance of their effect. Optical properties of T2SLs are expected to have a large tunable range by controlling the thickness and material composition of the IF layers. Our model provides an efficient tool for the designs of novel photodetectors.

  20. Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion

    NARCIS (Netherlands)

    Budhiman, S.; Salama, M.S.; Vekerdy, Z.; Verhoef, W.

    2012-01-01

    The development of an operational water quality monitoring method based on remote sensing data requires information on the apparent and inherent optical properties of water (AOP and IOP respectively). This study was performed to determine the apparent and inherent optical properties of coastal

  1. Optical properties and photoluminescence of tetrahexyl-sexithiophene allotropes

    NARCIS (Netherlands)

    Botta, C; Destri, S; Porzio, W; Bongiovanni, G; Loi, MA; Mura, A; Tubino, R

    2001-01-01

    The optical absorption, Raman scattering and photoluminescence of two phases of tetrahexyl-sexithiophene (4HT6) display properties coherently related to the different molecular conformations imposed by the chain packing. We analyse the temperature dependence of the optical properties of a sample in

  2. Electronic and optical properties of finite carbon nanotubes in an electric field

    International Nuclear Information System (INIS)

    Chen, R B; Lee, C H; Chang, C P; Lin, M F

    2007-01-01

    The effects, caused by the geometric structure and an electric field (E), on the electronic and optical properties of quasi-zero-dimensional finite carbon nanotubes are explored by employing the tight-binding model coupled with curvature effects. Electronic properties (state energies, symmetry of electronic states, energy spacing and state degeneracy) are significantly affected by the magnitude and the direction of the electric field and the geometric structure (radius, length and chirality). The electric field, by lowering the symmetry of finite carbon nanotubes, modifies the electronic properties. Thus, the optical excitation spectra, excited by electric polarization parallel to the nanotube axis, exhibit rich delta-function-like peaks, which reveal the characteristics of the electronic properties. Therefore it follows that geometric structure and E influence the low-energy absorption spectra, i.e. the change of frequency of the first peak, the alternation of the peak height and the production of the new peaks. There are more absorption peaks when E is oriented closer to the cross-section plane. Moreover, the very complicated optical absorption spectra are characteristic for the individual chiral carbon nanotube due to its specific geometric structure. Above all, the predicted absorption spectra and the associated electronic properties could be verified by optical measurements

  3. An assessment of aerosol optical properties from remote-sensing observations and regional chemistry-climate coupled models over Europe

    Science.gov (United States)

    Palacios-Peña, Laura; Baró, Rocío; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; María López-Romero, José; Montávez, Juan Pedro; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2018-04-01

    Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry-climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol-radiation (ARI) or/and aerosol-cloud interactions (ACI) help improve the skills of modelling outputs.Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality-climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data).Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in

  4. Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties

    International Nuclear Information System (INIS)

    Luo, Yongqiang; Zhang, Ling; Wu, Jing; Wang, Xiliang; Liu, Zhongbing; Wu, Zhenghong

    2017-01-01

    A system model that can accurately simulate the instantaneous solar transmittance through multilayer glazing façade (MGF) and shading device can provide a solid foundation for the thermal and daylighting performance calculation of MGF as well as indoor visual comfort evaluation. Traditional optical models for venetian blind and glazing façade meet with their limitations to analyze new prototype of shading blind like photovoltaic (PV) blind which has quite different surface optical properties compared with conventional venetian blind. The present study proposed a new system model for MGF using shading blind with arbitrary geometrical and optical features which is suitable for a wide range of applications. Three major calculation types for modeling of shading blinds cover all the possible situations in application. Guess Integer-Valued Function is adopted for delivering a general description on direct radiation transport. The direct-direct, direct-diffuse and diffuse-diffuse radiation transports are separately considered. A series of experiments were carried out to validate the model under various parameter settings and different weather conditions. Parametric study revealed some new findings in the evaluations of influence of ambient radiation situations, geometrical and optical features of blind space on both solar transmittance and solar absorption by blind layer. - Highlights: • Solar transport through glazing façades with PV blind with arbitrary geometry is simulated. • Ray-tracing and radiosity method are coupled in calculation. • Guess Integer-Valued Function is used in calculation of direct radiation transport. • Experiment and simulated data are compared for model validation. • Parametric study is conducted for evaluating the impact of different factors on the system.

  5. Algorithm of extraction optics properties from the measurement of spatially resolved diffuse reflectance

    International Nuclear Information System (INIS)

    Cunill Rodriguez, Margarita; Delgado Atencio, Jose Alberto; Castro Ramos, Jorge; Vazquez y Montiel, Sergio

    2009-01-01

    There are several methods to obtain the optical parameters of biological tissues from the measurement of spatially resolved diffuse reflectance. One of them is well-known as Video Reflectometry in which a camera CCD is used as detection and recording system of the lateral distribution of diffuse reflectance Rd(r) when an infinitely narrow light beam impinges on the tissue. In this paper, we present an algorithm that we have developed for the calibration and application of an experimental set-up of Video Reflectometry destined to extract the optical properties of models of biological tissues with optical properties similar to the human skin. The results of evaluation of the accuracy of the algorithm for optical parameters extraction is shown for a set of proofs reflectance curves with known values of these parameters. In the generation of these curves the simulation of measurement errors was also considered. The results show that it is possible to extract the optical properties with an accuracy error of less than 1% for all the proofs curves. (Author)

  6. Optical Properties of Hybrid Nanomaterials

    Indian Academy of Sciences (India)

    owner

    K. George Thomas. Photosciences & Photonics Group. National Institute for Interdisciplinary. Science and Technology (NIIST), CSIR,. Trivandrum- 695 019, INDIA. (kgt@vsnl.com). Optical Properties of Hybrid. Nanomaterials ...

  7. Ex vivo investigation of tissue optical properties using an optical fibre sensor

    OpenAIRE

    Warncke, Dennis

    2014-01-01

    peer-reviewed Biomedical research has become a strong growing sector in recent years. Moreover the interdisciplinary background involves novel possibilities and measurement techniques. Light propagation in turbid media like human tissue is a central aspect to many medical and biomedical applications. This is a very complex process and depends on parameters, which are called optical properties. The spatial distribution of light is determined by those optical properties. A maj...

  8. Adaptive optics for reduced threshold energy in femtosecond laser induced optical breakdown in water based eye model

    Science.gov (United States)

    Hansen, Anja; Krueger, Alexander; Ripken, Tammo

    2013-03-01

    In ophthalmic microsurgery tissue dissection is achieved using femtosecond laser pulses to create an optical breakdown. For vitreo-retinal applications the irradiance distribution in the focal volume is distorted by the anterior components of the eye causing a raised threshold energy for breakdown. In this work, an adaptive optics system enables spatial beam shaping for compensation of aberrations and investigation of wave front influence on optical breakdown. An eye model was designed to allow for aberration correction as well as detection of optical breakdown. The eye model consists of an achromatic lens for modeling the eye's refractive power, a water chamber for modeling the tissue properties, and a PTFE sample for modeling the retina's scattering properties. Aberration correction was performed using a deformable mirror in combination with a Hartmann-Shack-sensor. The influence of an adaptive optics aberration correction on the pulse energy required for photodisruption was investigated using transmission measurements for determination of the breakdown threshold and video imaging of the focal region for study of the gas bubble dynamics. The threshold energy is considerably reduced when correcting for the aberrations of the system and the model eye. Also, a raise in irradiance at constant pulse energy was shown for the aberration corrected case. The reduced pulse energy lowers the potential risk of collateral damage which is especially important for retinal safety. This offers new possibilities for vitreo-retinal surgery using femtosecond laser pulses.

  9. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...

  10. Photorefractive optics materials, properties, and applications

    CERN Document Server

    Yu, Francis T S

    1999-01-01

    The advances of photorefractive optics have demonstrated many useful and practical applications, which include the development of photorefractive optic devices for computer communication needs. To name a couple significant applications: the large capacity optical memory, which can greatly improve the accessible high-speed CD-ROM and the dynamic photorefractive gratings, which can be used for all-optic switches for high-speed fiber optic networks. This book is an important reference both for technical and non-technical staffs who are interested in this field. * Covers the recent development in materials, phenomena, and applications * Includes growth, characterization, dynamic gratings, and liquid crystal PR effect * Includes applications to photonic devices such as large capacity optical memory, 3-D interconnections, and dynamic holograms * Provides the recent overall picture of current trends in photorefractive optics * Includes optical and electronic properties of the materials as applied to dynamic photoref...

  11. Quantum optical properties in plasmonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, C. H. Raymond [Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia)

    2015-04-24

    Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.

  12. Thermo-optical Properties of Nanofluids

    International Nuclear Information System (INIS)

    Ortega, Maria Alejandra; Echevarria, Lorenzo; Rodriguez, Luis; Castillo, Jimmy; Fernandez, Alberto

    2008-01-01

    In this work, we report thermo-optical properties of nanofluids. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy in SDS-water solution pumping at 532 nm with a 10 ns pulsed laser-Nd-YAG system. Nanoparticles obtained by laser ablation were stabilized in the time by surfactants (Sodium Dodecyl-Sulfate or SDS) in different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM). The plasmonic resonance bands in gold nanoparticles are responsible of the light optical absorption of this wavelength. The position of the absorption maximum and width band in the UV-Visible spectra is given by the morphological characteristics of these systems. The thermo-optical constant such as thermal diffusion, thermal conductivity and dn/dT are functions of nanoparticles sizes and dielectric constant of the media. The theoretical model existents do not describe completely this relations because is not possible separate the contributions due to nanoparticles size, factor form and dielectric constant. The thermal lens signal obtained is also dependent of nanoparticles sizes. This methodology can be used in order to evaluate nanofluids and characterizing nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors and other technological applications such as cooler system

  13. Characterization of temperature-dependent optical material properties of polymer powders

    Energy Technology Data Exchange (ETDEWEB)

    Laumer, Tobias [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Stichel, Thomas; Bock, Thomas; Amend, Philipp [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Schmidt, Michael [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); University of Erlangen-Nürnberg, Institute of Photonic Technologies, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany)

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  14. Optical properties of the human round window membrane

    Science.gov (United States)

    Höhl, Martin; DeTemple, Daphne; Lyutenski, Stefan; Leuteritz, Georg; Varkentin, Arthur; Schmitt, Heike Andrea; Lenarz, Thomas; Roth, Bernhard; Meinhardt-Wollweber, Merve; Morgner, Uwe

    2017-10-01

    Optical techniques are effective tools for diagnostic applications in medicine and are particularly attractive for the noninvasive analysis of biological tissues and fluids in vivo. Noninvasive examinations of substances via a fiber optic probe need to consider the optical properties of biological tissues obstructing the optical path. This applies to the analysis of the human perilymph, which is located behind the round window membrane. The composition of this inner ear liquid is directly correlated to inner ear hearing loss. In this work, experimental methods for studying the optical properties of the human round window membrane ex vivo are presented. For the first time, a comprehensive investigation of this tissue is performed, including optical transmission, forward scattering, and Raman scattering. The results obtained suggest the application of visible wavelengths (>400 nm) for investigating the perilymph behind the round window membrane in future.

  15. Electrical and optical properties of indium tin oxide/epoxy composite film

    International Nuclear Information System (INIS)

    Guo Xia; Guo Chun-Wei; Chen Yu; Su Zhi-Ping

    2014-01-01

    The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film. (condensed matter: structural, mechanical, and thermal properties)

  16. Optical Fibres in the Modeling of Translucent Concrete Blocks

    OpenAIRE

    M.N.V.Padma Bhushan, D.Johnson, Md. Afzal Basheer Pasha And Ms. K. Prasanthi

    2013-01-01

    Translucent concrete is a concrete based material with light-transmissive properties, obtained due to embedded light optical elements like Optical fibers in it. Light is conducted through the stone from one end to the other. This results into a certain light pattern on the other surface, depending on the fibre structure. Optical fibres transmit light so effectively that there is virtually no loss of light conducted through the fibres. Our paper deals with the modelling of such translucent or ...

  17. The optical, vibrational, structural and elasto-optic properties of Zn_0_._2_5Cd_0_._7_5S_ySe_1_-_y quaternary alloys

    International Nuclear Information System (INIS)

    Paliwal, U.; Swarkar, C. B.; Sharma, M. D.; Joshi, K. B.

    2016-01-01

    The optical, vibrational, structural and elasto-optic properties of quaternary II-VI alloys Zn_0_._2_5Cd_0_._7_5S_0_._2_5Se_0_._7_5, Zn_0_._2_5Cd_0_._7_5S_0_._5_0Se_0_._5_0 and Zn_0_._2_5Cd_0_._7_5S_0_._7_5Se_0_._2_5 are presented. Within the empirical pseudopotential method (EPM) the disorder effects are modeled via modified virtual crystal approximation (MVCA). The computed bandgaps and the refined form factors are utilized to evaluate optical, vibrational, structural and elasto-optic properties. The refractive index (n), static (ε_0) and high frequency dielectric (ε_∞) constants are calculated to reveal optical behavior of alloys. The longitudinal ω_L_O(0) and transverse ω_T_O(0) optical frequencies are obtained to see vibrational characteristics. Moreover, the elastic constants (c_i_j) and bulk moduli (B) are computed by combining the EPM with Harrison bond orbital model. The elasto-optic nature of alloys is examined by computing the photo-elastic constants. These values are significant with regard to the opto-electronic applications especially when no experimental data are available on this system.

  18. 3D printing of optical materials: an investigation of the microscopic properties

    Science.gov (United States)

    Persano, Luana; Cardarelli, Francesco; Arinstein, Arkadii; Uttiya, Sureeporn; Zussman, Eyal; Pisignano, Dario; Camposeo, Andrea

    2018-02-01

    3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.

  19. Structural and optical properties of electro-optic material. Sputtered (Ba,Sr)TiO3

    International Nuclear Information System (INIS)

    Suzuki, Masato; Xu, Zhimou; Tanushi, Yuichiro; Yokoyama, Shin

    2006-01-01

    In order to develop a novel ring resonator optical switch, we have studied the structural and optical properties of the electro-optic material (Ba,Sr)TiO 3 (BST) deposited by RF sputtering on a SiO 2 cladding layer (1.0 μm). The crystallinity of the BST films is evaluated by X-ray diffraction and the optical propagation loss of the waveguides is measured using a He-Ne laser. As a result, it is found that there is a strong relationship between the optical propagation loss and crystallinity of the sputtered film. It is suggested that the propagating light is influenced by the crystal property, for example, the grain size and density of the polycrystalline BST film. (author)

  20. Effect of sample thickness on the extracted near-infrared bulk optical properties of Bacillus subtilis in liquid culture.

    Science.gov (United States)

    Dzhongova, Elitsa; Harwood, Colin R; Thennadil, Suresh N

    2011-11-01

    In order to determine the bulk optical properties of a Bacillus subtilis culture during growth phase we investigated the effect of sample thickness on measurements taken with different measurement configurations, namely total diffuse reflectance and total diffuse transmittance. The bulk optical properties were extracted by inverting the measurements using the radiative transfer theory. While the relationship between reflectance and biomass changes with sample thickness and the intensity (absorbance) levels vary significantly for both reflectance and transmittance measurements, the extracted optical properties show consistent behavior in terms of both the relationship with biomass and magnitude. This observation indicates the potential of bulk optical properties for building models that could be more easily transferable compared to those built using raw measurements.

  1. Optical properties of metals by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Arakawa, E.T.; Inagaki, T.; Williams, M.W.

    1979-01-01

    The use of spectroscopic ellipsometry for the accurate determination of the optical properties of liquid and solid metals is discussed and illustrated with previously published data for Li and Na. New data on liquid Sn and Hg from 0.6 to 3.7 eV are presented. Liquid Sn is Drude-like. The optical properties of Hg deviate from the Drude expressions, but simultaneous measurements of reflectance and ellipsometric parameters yield consistent results with no evidence for vectorial surface effects

  2. [Differences of inherent optical properties of inland lake water body in typical seasons].

    Science.gov (United States)

    Sun, De-Yong; Li, Yun-Mei; Wang, Qiao; Le, Cheng-Fen; Huang, Chang-Chun; Wang, Li-Zhen

    2008-05-01

    Inherent optical property is one of the important properties of water body, which lays the foundation for the establishment of water color analytical models. By using quantity filter technology (QFT) and BB9 backscattering meter, the absorption coefficients of chromophoric dissolved organic matter (CDOM) and total suspended matters (TSM) and the backscattering coefficient of TSM in the water body at Meiliang Bay of Taihu Lake were measured in summer and winter. Based on the spectral comparison of the absorption and backscattering coefficients, their differences between the two seasons were demonstrated, and the reasons that caused these differences were also explored in the context of their relations to the changes in water quality. Consequently, water environment condition could be revealed by using the inherent optical property. The relationship between the backscattering coefficient and the TSM concentration was established, which could provide supporting coefficients to the analytical models to be developed.

  3. Investigation of optical properties of Ag: PMMA nanocomposite structures

    Science.gov (United States)

    Ponelyte, S.; Palevicius, A.; Guobiene, A.; Puiso, J.; Prosycevas, I.

    2010-05-01

    In the recent years fundamental research involving the nanodimensional materials has received enormous momentum for observing and understanding new types of plasmonic materials and their physical phenomena occurring in the nanoscale. Mechanical and optical properties of these polymer based nanocomposite structures depend not only on type, dimensions and concentration of filler material, but also on a kind of polymer matrix used. By proper selection of polymer matrix and nanofillers, it is possible to engineer nanocomposite materials with certain favorable properties. One of the most striking features of nanocomposite materials is that they can expose unique optical properties that are not intrinsic to natural materials. In these researches, nanocomposite structures were formed using polymer (PMMA) as a matrix, and silver nanoparticles as fillers. By hot embossing procedure a diffraction grating was imprinted on formed layers. The effect of UV exposure time on nanocomposite structures morphology, optical (diffraction effectiveness, absorbance) and mechanical properties was investigated. Results were confirmed by UV-VIS spectrometer, Laser Diffractometer, PMT- 3 and AFM. Investigations proposed new nanocomposite structures as plasmonic materials with improved optical and mechanical properties, which may be applied for a number of technological applications: micro-electro-mechanical devices, optical devices, various plasmonic sensors, or even in DNA nanotechnology.

  4. Optical Properties of Small Ice Crystals with Black Carbon Inclusions

    Science.gov (United States)

    Yang, X.; Geier, M.; Arienti, M.

    2013-12-01

    The optical properties of ice crystals play a fundamental role in modeling atmospheric radiation and hydrological cycle, which are critical in monitoring climate change. While Black Carbon (BC) is recognized as the dominant absorber with positive radiative forcing (warming) (Ramanathan & Carmichael, 2008), in-situ observations (Cappa, et al, 2012) indicate that the characterization of the mixing state of BC with ice crystals and other non-BC particles in global climate models (Ghan & Schwartz, 2007) needs further investigation. The limitation in the available mixing models is due to the drastically different absorbing properties of BC compared to other aerosols. We explore the scattering properties of ice crystals (in shapes commonly found in cirrus clouds and contrails - Yang, et al. 2012) with the inclusion of BC particles. The Discrete Dipole Approximation (DDA) (Yurkin & Hoekstra, 2011) is utilized to directly calculate the optical properties of the crystals with multiple BC inclusions, modeled as a distribution of spheres. The results are then compared with the most popular models of internal and external mixing (Liou, et al. 2011). The DDA calculations are carried out over a broad range of BC particle sizes and volume fractions within the crystal at the 532 nm wavelength and for ice crystals smaller than 50 μm. The computationally intensive database generated in this study is critical for understanding the effect of different types of BC inclusions on the atmosphere radiative forcing. Examples will be discussed to illustrate the modification of BC optical properties by encapsulation in ice crystals and how the parameterization of the BC mixing state in global climate models can be improved. Acknowledgements Support by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  5. Optical properties of nanoparticles

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At the NBI I am involved in projects relating to optical properties of metallic nanoparticles in particular with respect to plasmonic heating with direct applications to photothermal cancer therapy. For this purpose we have developed heating assays that can be used to measure the heating of any...... nanoscopic heat source like an irradiated nanoparticle...

  6. Properties of symbiotic stars from studies in the optical region

    International Nuclear Information System (INIS)

    Ciatti, F.

    1982-01-01

    The author uses observations of symbiotic stars in the optical region to discuss the following aspects: definition, photometric and spectroscopic evolution, the three-component model, evidence for the binary nature, spectroscopic properties and anomalies, single-star interpretations, the ''very slow novae'' and BQ// stars and a comparison of symbiotic stars with other classes. (C.F.)

  7. Optical and Magneto-Optical Properties of Gd22Fe78 Thin Films in the Photon Energy Range From 1.5 to 5.5 eV

    Directory of Open Access Journals (Sweden)

    Eva Jesenská

    2016-01-01

    Full Text Available Optical and magneto-optical properties of amorphous Gd22Fe78 (GdFe thin films prepared by direct current (DC sputtering on thermally oxidized substrates were characterized by the combination of spectroscopic ellipsometry and magneto-optical spectroscopy in the photon energy range from 1.5 to 5.5 eV. Thin SiNx and Ru coatings were used to prevent the GdFe surface oxidation and contamination. Using advanced theoretical models spectral dependence of the complete permittivity tensor and spectral dependence of the absorption coefficient were deduced from experimental data. No significant changes in the optical properties upon different coatings were observed, indicating reliability of used analysis.

  8. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  9. Lambert-Beer law in ocean waters: optical properties of water and of dissolved/suspended material, optical energy budgets.

    Science.gov (United States)

    Stavn, R H

    1988-01-15

    The role of the Lambert-Beer law in ocean optics is critically examined. The Lambert-Beer law and the three-parameter model of the submarine light field are used to construct an optical energy budget for any hydrosol. It is further applied to the analytical exponential decay coefficient of the light field and used to estimate the optical properties and effects of the dissolved/suspended component in upper ocean layers. The concepts of the empirical exponential decay coefficient (diffuse attenuation coefficient) of the light field and a constant exponential decay coefficient for molecular water are analyzed quantitatively. A constant exponential decay coefficient for water is rejected. The analytical exponential decay coefficient is used to analyze optical gradients in ocean waters.

  10. Preparation, optical properties and 1 Multiplication-Sign 2 polymeric thermo-optic switch of polyurethane-urea

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Fengxian, E-mail: fxqiuchem@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Cao, Zhijuan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Cao, Guorong; Guan, Yijun; Shen, Qiang [Department of Physics, Jiangsu University, Zhenjiang 212013 (China); Wang, Qing; Yang, Dongya [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2012-08-15

    A polyurethane-urea (PUU) containing azo chromophore, polyether polyol (NJ-220) and isophorone diisocyanate (IPDI) was prepared. The structure, thermal property and mechanical properties of obtained PUU were characterized and measured by the UV-visible spectroscopy, Fourier transform infrared, Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The refractive index (n) of PUU was determined at different temperature and wavelength (532 nm, 650 nm and 850 nm) using attenuated total reflection (ATR) technique, and the thermo-optic coefficients (dn/dT) were -5.3643 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}, -5.2500 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1} and -4.6071 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}, respectively. Using the Charge Coupled Device (CCD) digital imaging devices, transmission loss of PUU was measured and the value was 0.659 dB cm{sup -1}. A 1 Multiplication-Sign 2 polymeric thermo-optic switch based on the thermo-optic effect of PUU film was proposed. With branching angle of 0.143 Degree-Sign and the finite difference beam propagation method (FD-BPM), the polymeric thermo-optic switch was simulated. The result showed that the power consumption of the thermo-optic switch could be only 0.72 mW, and the response time of the switch was about 3.0 ms. The obtained PUU has a significant improvement in reducing the power consumption and response time compared with those of the normal polymeric thermo-optic switches. -- Highlights: Black-Right-Pointing-Pointer Preparation and structural characterization of a novel azo polyurethane-urea (PUU). Black-Right-Pointing-Pointer The mechanical performance and thermal property of PUU film. Black-Right-Pointing-Pointer The thermo-optic property, transmission loss and dispersion property of PUU. Black-Right-Pointing-Pointer Proposed a new 1 Multiplication-Sign 2 polymeric thermo-optic switch.

  11. Coupled nanopillar waveguides: optical properties and applications

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Zhukovsky, Sergei V.; Lavrinenko, Andrei

    2007-01-01

    , while guided modes dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim......In this paper we review basic properties of coupled periodic and aperiodic nanopillar waveguides. A coupled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods (pillars). In such a waveguide, light confinement is due to the total internal reflection...

  12. Maritime Aerosol optical properties measured by ship-borne sky radiometer

    Science.gov (United States)

    Aoki, K.

    2017-12-01

    Maritime aerosols play an important role in the earth climate change. We started the measurements of aerosol optical properties since 1994 by using ship-borne sky radiometer (POM-01 MK-II and III; Prede Co. Ltd., Japan) over the ocean. We report the results of an aerosol optical properties over the ocean by using Research Vessel of the ship-borne sky radiometers. Aerosol optical properties observation were made in MR10-02 to MR16-09 onboard the R/V Mirai, JAMSTEC. The sky radiometer measure the direct and diffuse solar radiance with seven interference filters (0.315, 0.4, 0.5, 0.675, 0.87, 0.94, and 1.02 µm). Observation interval was made every five minutes by once, only in daytime under the clear sky conditions. GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of the sun. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability over the ocean. Aerosol optical thickness found over the near the coast (Asia and Tropical area) was high and variable. The size distribution volume have peaks at small particles at Asian coast and large particles at Tropical coast area. We provide the information, in this presentation, on the aerosol optical properties measurements with temporal and spatial variability in the Maritime Aerosol. This project is validation satellite of GCOM-C/SGLI, JAXA and other. The GCOM-C satellite scheduled to be launched in 2017 JFY.

  13. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...

  14. Optical Properties of Airborne Soil Organic Particles

    Energy Technology Data Exchange (ETDEWEB)

    Veghte, Daniel P. [William; China, Swarup [William; Weis, Johannes [Chemical; Department; Kovarik, Libor [William; Gilles, Mary K. [Chemical; Laskin, Alexander [Department

    2017-09-27

    Recently, airborne soil organic particles (ASOP) were reported as a type of solid organic particles emitted after water droplets impacted wet soils. Chemical constituents of ASOP are macromolecules such as polysaccharides, tannins, and lignin (derived from degradation of plants and biological organisms). Optical properties of ASOP were inferred from the quantitative analysis of the electron energy-loss spectra acquired over individual particles in the transmission electron microscope. The optical constants of ASOP are further compared with those measured for laboratory generated particles composed of Suwanee River Fulvic Acid (SRFA) reference material, which was used as a laboratory surrogate of ASOP. The particle chemical compositions were analyzed using energy dispersive x-ray spectroscopy, electron energy-loss spectroscopy, and synchrotron-based scanning transmission x-ray microscopy with near edge x-ray absorption fine structure spectroscopy. ASOP and SRFA exhibit similar carbon composition, but SRFA has minor contributions of S and Na. When ASOP are heated to 350 °C their absorption increases as a result of their pyrolysis and partial volatilization of semi-volatile organic constituents. The retrieved refractive index (RI) at 532 nm of SRFA particles, ASOP, and heated ASOP were 1.22-62 0.07i, 1.29-0.07i, and 1.90-0.38i, respectively. Compared to RISRFA, RIASOP has a higher real part but similar imaginary part. These measurements of ASOP optical constants suggest that they have properties characteristic of atmospheric brown carbon and therefore their potential effects on the radiative forcing of climate need to be assessed in atmospheric models.

  15. The CLASS blazar survey - II. Optical properties

    NARCIS (Netherlands)

    Caccianiga, A; Marcha, MJ; Anton, S; Mack, KH; Neeser, MJ

    2002-01-01

    This paper presents the optical properties of the objects selected in the CLASS blazar survey. Because an optical spectrum is now available for 70 per cent of the 325 sources present in the sample, a spectral classification, based on the appearance of the emission/absorption lines, is possible. A

  16. Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)

    Science.gov (United States)

    Mannino, Antonio

    2008-01-01

    Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and

  17. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    Science.gov (United States)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  18. A Study of the Optical Properties of Ice Crystals with Black Carbon Inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, Marco [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Yang, Xiaoyuan [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kopacz, Adrian M [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Geier, Manfred [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    The report focu ses on the modification of the optical properties of ice crystals due to atmospheric black car bon (BC) contamination : the objective is to advance the predictive capabilities of climate models through an improved understanding of the radiative properties of compound particles . The shape of the ice crystal (as commonly found in cirrus clouds and cont rails) , the volume fraction of the BC inclusion , and its location inside the crystal are the three factors examined in this study. In the multiscale description of this problem, where a small absorbing inclusion modifies the optical properties of a much la rger non - absorbing particle, state - of - the - art discretization techniques are combined to provide the best compromise of flexibility and accuracy over a broad range of sizes .

  19. Optical properties of amorphous silicon: Some problem areas

    International Nuclear Information System (INIS)

    Ravindra, N.M.; Chelle, F. de; Ance, C.; Ferraton, J.P.; Berger, J.M.; Coulibaly, S.P.

    1983-08-01

    In this presentation we essentially attempt to throw light on some problem areas concerning the various optical properties of amorphous silicon. The problems seem to emerge from the classical methods employed to determine the optical properties like the optical gap, urbach tail parameter and other related characteristics. Additional problems have emerged in recent years by virtue of many attempts to generalize the property-behaviour relationships for amorphous silicon without attributing any importance to the method of preparation of the films. It should be noted here that although many authors believe disorder to be the controlling parameter, we are of the opinion that at least for films containing fairly large concentrations of hydrogen, the hydrogen concentration has an equally important role to play. The present study has been carried out for films prepared by glow-discharge and chemical vapour deposition. (author)

  20. Temperature dependence of PZT film optical properties

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Jastrabík, Lubomír; Suchaneck, G.; Gerlach, G.

    11-12, - (2001), s. 352-354 ISSN 0447-6441 R&D Projects: GA ČR GA202/00/1425; GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : refractive index profile * PZT film * temperature dependence of optical properties Subject RIV: BH - Optics, Masers, Lasers

  1. Handbook of the Properties of Optical Materials

    Science.gov (United States)

    1984-01-01

    EFFECTIVE MASS - - MOBILITY - - A-2 ARSEWIC SELENIOE (As2 Se3 ) OPTICAL PROPERTIES TRANSMISSION RANGE: 9 - 11n Optical Absorption Coefficient = 0.079...of 55 KRS-5 as a function of wavelength. A-2120 ZINC SELENIOE ZnSe 0 STRUCTURE CRYSTALLINE SYMMETRY = Cubic, 43m LATTICE CONSTANTS (A) = a = 5.667

  2. Underwater wireless optical communications: From system-level demonstrations to channel modelling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-09

    In this paper, we discuss about recent experimental advances in underwater wireless optical communications (UWOC) over various underwater channel water types using different modulation schemes as well as modelling and describing the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.

  3. Theoretical Studies of Optical Properties of Silver Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Zhao-Wang, Wu; Li-Hua, Zhang; Jie, Zhang

    2010-01-01

    Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization. (fundamental areas of phenomenology(including applications))

  4. Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Zhibin Yu

    2017-01-01

    Full Text Available Underwater inherent optical properties (IOPs are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.

  5. Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network.

    Science.gov (United States)

    Yu, Zhibin; Wang, Yubo; Zheng, Bing; Zheng, Haiyong; Wang, Nan; Gu, Zhaorui

    2017-01-01

    Underwater inherent optical properties (IOPs) are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA) deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.

  6. Optical spectral properties of active galactic nuclei and quasars

    International Nuclear Information System (INIS)

    Yee, H.K.C.

    1981-01-01

    Four separate investigations dealing with the properties of optical continuum and emission-lines of active galactic nuclei (AGN) and quasars are presented. Multichannel scans of 3CR radio galaxies are decomposed by using a two-component model-an elliptical galaxy and a power-law nonthermal component. It is found that there is a strong correlation between the luminosity of the power-law component and the strength of the Balmer emission-lines. In most cases, by extrapolating to the Lyman continuum, the power-law models derived provide enough ionizing radiation to account for the Balmer line strengths. Extending the study of radio galaxies to include Seyfert galaxies and quasars, it is found that there is a strong continuity between broad-line AGN's and quasars in terms of similarities in the correlations between line luminosities and nonthermal continuum luminosity. Next, a study of the variability of absolute optical energy distribution and emission-lines of the N-galaxies 3C382 and 3C390.3 is made. Lastly, a preliminary study of surface photometry of Markarian Seyfert galaxies are presented. It is found that the properties of the underlying galaxies such as scale-length and surface brightness of the disk, color, and total brightness, do not depart systematically from those of luminous normal spiral galaxies

  7. Inherent optical properties of the coccolithophore: Emiliania huxleyi.

    Science.gov (United States)

    Zhai, Peng-Wang; Hu, Yongxiang; Trepte, Charles R; Winker, David M; Josset, Damien B; Lucker, Patricia L; Kattawar, George W

    2013-07-29

    A realistic nonspherical model for Emiliania huxleyi (EHUX) is built, based on electron micrographs of coccolithophore cells. The Inherent Optical Properties (IOP) of the EHUX are then calculated numerically by using the discrete dipole approximation. The coccolithophore model includes a near-spherical core with the refractive index of 1.04 + m(i)j, and a carbonate shell formed by smaller coccoliths with refractive index of 1.2 + m(i)j, where m(i) = 0 or 0.01 and j(2) = -1. The reported IOP are the Mueller scattering matrix, backscattering probability, and depolarization ratio. Our calculation shows that the Mueller matrices of coccolithophores show different angular dependence from those of coccoliths.

  8. Optical limiting properties of fullerenes and related materials

    Science.gov (United States)

    Riggs, Jason Eric

    Optical limiting properties of fullerene C60 and different C60 derivatives (methano-, pyrrolidino-, and amino-) towards nanosecond laser pulses at 532 nm were studied. The results show that optical limiting responses of the C60 derivatives are similar to those of the parent C60 despite their different linear absorption and emission properties. For C60 and the derivatives in room-temperature solutions of varying concentrations and optical path length, the optical limiting responses are strongly concentration dependent. The concentration dependence is not due to any optical artifacts since the results obtained under the same experimental conditions for reference systems show no such dependence. Similarly, optical limiting results of fullerenes are strongly dependent on the medium viscosity, with responses in viscous media weaker than that in room-temperature solutions. The solution concentration and medium viscosity dependencies are not limited to fullerenes. In fact, the results from a systematic investigation of several classes of nonlinear absorptive organic dyes show that the optical limiting responses are also concentration and medium viscosity dependent. Interestingly, however, such dependencies are uniquely absent in the optical limiting responses of metallophthalocyanines. In classical photophysics, the strong solution concentration and medium viscosity dependencies are indicative of significant contributions from photoexcited-state bimolecular processes. Thus, the experimental results are discussed in terms of a significantly modified five-level reverse saturable absorption mechanism. Optical limiting properties of single-walled and multiple-walled carbon nanotubes toward nanosecond laser pulses at 532 nm were also investigated. When suspended in water, the single-walled and multiple-walled carbon nanotubes exhibit essentially the same optical limiting responses, and the results are also comparable with those of carbon black aqueous suspension. For

  9. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-03-06

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  10. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2014-01-01

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  11. Optical properties of titanium dioxide nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Abdelmoula, Mohamed [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Department of Materials Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Sokoloff, Jeffrey; Lu, Wen-Tao; Menon, Latika [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Close, Thomas; Richter, Christiaan, E-mail: christiaan.richter@rit.edu [Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York, 14623 (United States)

    2014-01-07

    We present experimental measurements and a theoretical analysis of the near UV to NIR optical properties of free standing titania nanotube arrays. An improved understanding of the optical physics of this type of nanostructure is important to several next generation solar energy conversion technologies. We measured the transmission, reflection, and absorption of the electromagnetic spectrum from 300 nm to 1000 nm (UV to NIR) of titania nanotube arrays. We measured the total, specular, and diffuse reflection and transmission using both single point detection and an integrating sphere spectrometer. We find that the transmission, but not the reflection, of light (UV to NIR) through the nanotube array is well-explained by classic geometric optics using an effective medium model taking into account the conical geometry of the nanotubes. For wavelengths shorter than ∼500 nm, we find the surprising result that the reflection coefficient for light incident on the open side of the nanotube array is greater than the reflection coefficient for light incident on the closed “floor” of the nanotube array. We consider theoretical models based on the eikonal approximation, photonic crystal band theory, and a statistical treatment of scattering to explain the observed data. We attribute the fact that light with wavelengths shorter than 500 nm is more highly reflected from the open than the closed tube side as being due to disorder scattering inside the nanotube array.

  12. Temperature-dependent infrared optical properties of 3C-, 4H- and 6H-SiC

    Science.gov (United States)

    Tong, Zhen; Liu, Linhua; Li, Liangsheng; Bao, Hua

    2018-05-01

    The temperature-dependent optical properties of cubic (3C) and hexagonal (4H and 6H) silicon carbide are investigated in the infrared range of 2-16 μm both by experimental measurements and numerical simulations. The temperature in experimental measurement is up to 593 K, while the numerical method can predict the optical properties at elevated temperatures. To investigate the temperature effect, the temperature-dependent damping parameter in the Lorentz model is calculated based on anharmonic lattice dynamics method, in which the harmonic and anharmonic interatomic force constants are determined from first-principles calculations. The infrared phonon modes of silicon carbide are determined from first-principles calculations. Based on first-principles calculations, the Lorentz model is parameterized without any experimental fitting data and the temperature effect is considered. In our investigations, we find that the increasing temperature induces a small reduction of the reflectivity in the range of 10-13 μm. More importantly, it also shows that our first-principles calculations can predict the infrared optical properties at high-temperature effectively which is not easy to be obtained through experimental measurements.

  13. Simultaneous optical and electrical modeling of plasmonic light trapping in thin-film amorphous silicon photovoltaic devices

    Science.gov (United States)

    Gandhi, Keyur K.; Nejim, Ahmed; Beliatis, Michail J.; Mills, Christopher A.; Henley, Simon J.; Silva, S. Ravi P.

    2015-01-01

    Rapid prototyping of photovoltaic (PV) cells requires a method for the simultaneous simulation of the optical and electrical characteristics of the device. The development of nanomaterial-enabled PV cells only increases the complexity of such simulations. Here, we use a commercial technology computer aided design (TCAD) software, Silvaco Atlas, to design and model plasmonic gold nanoparticles integrated in optoelectronic device models of thin-film amorphous silicon (a-Si:H) PV cells. Upon illumination with incident light, we simulate the optical and electrical properties of the cell simultaneously and use the simulation to produce current-voltage (J-V) and external quantum efficiency plots. Light trapping due to light scattering and localized surface plasmon resonance interactions by the nanoparticles has resulted in the enhancement of both the optical and electrical properties due to the reduction in the recombination rates in the photoactive layer. We show that the device performance of the modeled plasmonic a-Si:H PV cells depends significantly on the position and size of the gold nanoparticles, which leads to improvements either in optical properties only, or in both optical and electrical properties. The model provides a route to optimize the device architecture by simultaneously optimizing the optical and electrical characteristics, which leads to a detailed understanding of plasmonic PV cells from a design perspective and offers an advanced tool for rapid device prototyping.

  14. Robustness and accuracy of the calibration model for the determination of the optical properties of chicken skin

    CSIR Research Space (South Africa)

    Singh, A

    2008-10-01

    Full Text Available The optical properties namely the absorption and reduced scattering coefficients of chicken skin taken from the breast was measured using an Integrating Sphere setup at 632.8nm. The properties were extracted using the multiple regression method...

  15. Structural, optical and electrical properties of chemically deposited ...

    Indian Academy of Sciences (India)

    Structural, optical and electrical properties of chemically deposited nonstoichiometric copper ... One of these compounds, CuInSe2, with its optical absorption .... is clear from SEM images that the number of grains goes on increasing with the ...

  16. An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b.

    Science.gov (United States)

    Zhang, Yao; Huang, Jingfeng; Wang, Fumin; Blackburn, George Alan; Zhang, Hankui K; Wang, Xiuzhen; Wei, Chuanwen; Zhang, Kangyu; Wei, Chen

    2017-07-25

    The PROSPECT leaf optical model has, to date, well-separated the effects of total chlorophyll and carotenoids on leaf reflectance and transmittance in the 400-800 nm. Considering variations in chlorophyll a:b ratio with leaf age and physiological stress, a further separation of total plant-based chlorophylls into chlorophyll a and chlorophyll b is necessary for advanced monitoring of plant growth. In this study, we present an extended version of PROSPECT model (hereafter referred to as PROSPECT-MP) that can combine the effects of chlorophyll a, chlorophyll b and carotenoids on leaf directional hemispherical reflectance and transmittance (DHR and DHT) in the 400-800 nm. The LOPEX93 dataset was used to evaluate the capabilities of PROSPECT-MP for spectra modelling and pigment retrieval. The results show that PROSPECT-MP can both simultaneously retrieve leaf chlorophyll a and b, and also performs better than PROSPECT-5 in retrieving carotenoids concentrations. As for the simulation of DHR and DHT, the performances of PROSPECT-MP are similar to that of PROSPECT-5. This study demonstrates the potential of PROSPECT-MP for improving capabilities of remote sensing of leaf photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) and for providing a framework for future refinements in the modelling of leaf optical properties.

  17. Optical and magneto-optical properties of the electron-doped and hole-doped C{sub 82} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Rostampour, E., E-mail: el_rostampour@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Koohi, A. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-01-15

    The optical and magnetic properties of the doped C{sub 82} crystal have been investigated by Su–Schrieffer–Heeger (SSH) model, which is based on the Ewald method. When the C{sub 82} molecule is doped with one electron (or hole), a single electron is remained in the energy level that affects the optical and magnetic properties of the C{sub 82} crystal. The lattice and electronic structures of C{sub 82} changed with doping electron (or hole) in the molecule of C{sub 82}. Therefore, polarons are predicted in doped fullerenes. The obtained results showed that the dielectric tensor of the C{sub 82} crystal increased with doping electron (or hole) in the molecule of C{sub 82}. The spectral shapes of the dielectric tensor, circular dichroism and birefringence coefficient of the C{sub 82} crystal turn out to be determined mainly by the geometrical distributions of the pentagons in the fullerene structures.

  18. Optical properties of GaAs

    International Nuclear Information System (INIS)

    Akinlami, J. O.; Ashamu, A. O.

    2013-01-01

    We have investigated the optical properties of gallium arsenide (GaAs) in the photon energy range 0.6–6.0 eV. We obtained a refractive index which has a maximum value of 5.0 at a photon energy of 3.1 eV; an extinction coefficient which has a maximum value of 4.2 at a photon energy of 5.0 eV; the dielectric constant, the real part of the complex dielectric constant has a maximum value of 24 at a photon energy of 2.8 eV and the imaginary part of the complex dielectric constant has a maximum value of 26.0 at a photon energy of 4.8 eV; the transmittance which has a maximum value of 0.22 at a photon energy of 4.0 eV; the absorption coefficient which has a maximum value of 0.22 × 10 8 m −1 at a photon energy of 4.8 eV, the reflectance which has a maximum value of 0.68 at 5.2eV; the reflection coefficient which has a maximum value of 0.82 at a photon energy of 5.2 eV; the real part of optical conductivity has a maximum value of 14.2 × 10 15 at 4.8 eV and the imaginary part of the optical conductivity has a maximum value of 6.8 × 10 15 at 5.0 eV. The values obtained for the optical properties of GaAs are in good agreement with other results. (semiconductor physics)

  19. Optical properties of cosmic dust analogs: a review

    Science.gov (United States)

    Henning, Thomas; Mutschke, Harald

    2010-04-01

    Nanometer- and micrometer-sized solid particles play an important role in the evolutionary cycle of stars and interstellar matter. The optical properties of cosmic grains determine the interaction of the radiation field with the solids, thereby regulating the temperature structure and spectral appearance of dusty regions. Radiation pressure on dust grains and their collisions with the gas atoms and molecules can drive powerful winds. The analysis of observed spectral features, especially in the infrared wavelength range, provides important information on grain size, composition and structure as well as temperature and spatial distribution of the material. The relevant optical data for interstellar, circumstellar, and protoplanetary grains can be obtained by measurements on cosmic dust analogs in the laboratory or can be calculated from grain models based on optical constants. Both approaches have made progress in the last years, triggered by the need to interpret increasingly detailed high-quality astronomical observations. The statistical theoretical approach, spectroscopic experiments at variable temperature and absorption spectroscopy of aerosol particulates play an important role for the successful application of the data in dust astrophysics.

  20. Peierls instability and optical properties of bilayer polyacene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longlong, E-mail: zhanglonglong@tyut.edu.cn [The College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Shijie [School of Physics, Shandong University, Jinan 250100 (China)

    2017-05-03

    Highlights: • The Peierls instability of bilayer polyacene is discussed. • The external electric field effect on bilayer polyacene is discussed. • The pressure effect on bilayer polyacene is discussed. • The optical properties of bilayer polyacene are discussed. - Abstract: We reveal that bilayer polyacene can be the gapped state due to the intralayer Peierls instability. There are six topologically inequivalent Peierls-distorted structures and they are degenerate in energy. The external electric field can tune the Peierls gap and induce the semiconductor-to-metallic phase transitions. The optical conductivity spectra are calculated in an attempt to categorize the Peierls-distorted structures. The strength of the interlayer coupling essentially affects the electronic properties and the optical selection rules.

  1. Analytical models of optical response in one-dimensional semiconductors

    International Nuclear Information System (INIS)

    Pedersen, Thomas Garm

    2015-01-01

    The quantum mechanical description of the optical properties of crystalline materials typically requires extensive numerical computation. Including excitonic and non-perturbative field effects adds to the complexity. In one dimension, however, the analysis simplifies and optical spectra can be computed exactly. In this paper, we apply the Wannier exciton formalism to derive analytical expressions for the optical response in four cases of increasing complexity. Thus, we start from free carriers and, in turn, switch on electrostatic fields and electron–hole attraction and, finally, analyze the combined influence of these effects. In addition, the optical response of impurity-localized excitons is discussed. - Highlights: • Optical response of one-dimensional semiconductors including excitons. • Analytical model of excitonic Franz–Keldysh effect. • Computation of optical response of impurity-localized excitons

  2. Radiation-optical properties of the glasses for the space application

    International Nuclear Information System (INIS)

    Akishin, A.I.; Tseplyaev, L.I.

    2006-01-01

    The data are presented and generalized on variations of optical properties of glass and light guides under simulative cosmic ionizing radiation. It is shown that changes in optical properties (coloration, bleaching, opacity, luminescence) under ionizing radiation are associated with color centers formation and annealing [ru

  3. Measuring the optical properties of IceCube drill holes

    Directory of Open Access Journals (Sweden)

    Rongen Martin

    2016-01-01

    Full Text Available The IceCube Neutrino Observatory consists of 5160 digital optical modules (DOMs in a cubic kilometer of deep ice below the South Pole. The DOMs record the Cherenkov light from charged particles interacting in the ice. A good understanding of the optical properties of the ice is crucial to the quality of the event reconstruction. While the optical properties of the undisturbed ice are well understood, the properties of the refrozen drill holes still pose a challenge. A new data-acquisition and analysis approach using light originating from LEDs within one DOM detected by the photomultiplier of the same DOM will be described. This method allows us to explore the scattering length in the immediate vicinity of the considered DOMs.

  4. Optical properties of Sulfur doped InP single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  5. Structural, optical and thermal properties of nanoporous aluminum

    International Nuclear Information System (INIS)

    Ghrib, Taher

    2015-01-01

    Highlights: • A simple electrochemical technique is presented and used to manufacture a porous aluminum layer. • Manufactured pores of 40 nm diameter and 200 nm depth are filled by nanocrystal of silicon and graphite. • Dimensions of pores increase with the anodization current which ameliorate the optical and thermal properties. • A new thermal method is presented which permit to determine the pores density and the layer thickness. • All properties show that the manufactured material can be used with success in solar cells. - Abstract: In this work the structural, thermal and optical properties of porous aluminum thin film formed with various intensities of anodization current in sulfuric acid are highlighted. The obtained pores at the surface are filled by sprayed graphite and nanocrystalline silicon (nc-Si) thin films deposited by plasma enhancement chemical vapor deposition (PECVD) which the role is to improve its optical and thermal absorption giving a structure of an assembly of three different media such as deposited thin layer (graphite or silicon)/(porous aluminum layer filled with the deposited layer)/(Al sample). The effect of anodization current on the microstructure of porous aluminum and the effect of the deposited layer were systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectroscopy. The thermal properties such as the thermal conductivity (K) and thermal diffusivity (D) are determined by the photothermal deflection (PTD) technique which is a non destructive technique. Based on this full characterization, it is demonstrated that the thermal and optical characteristics of these films are directly correlated to their micro-structural properties

  6. Smoke inputs to climate models: optical properties and height distribution for nuclear winter studies

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C. Jr.

    1985-04-01

    Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs

  7. Global direct radiative forcing by process-parameterized aerosol optical properties

    Science.gov (United States)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  8. Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates

    International Nuclear Information System (INIS)

    Liu Xiao-Lan; Peng Xiao-Niu; Yang Zhong-Jian; Li Min; Zhou Li

    2011-01-01

    Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process. The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized. These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region. The linear optical properties of gold nanoplates are also investigated by theoretical calculations. We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique. The nonlinear absorption (NLA) coefficient and nonlinear refraction (NLR) index are measured to be 1.18×10 2 cm/GW and −1.04×10 −3 cm 2 /GW, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Computational Approach for Studying Optical Properties of DNA Systems in Solution

    DEFF Research Database (Denmark)

    Nørby, Morten Steen; Svendsen, Casper Steinmann; Olsen, Jógvan Magnus Haugaard

    2016-01-01

    In this paper we present a study of the methodological aspects regarding calculations of optical properties for DNA systems in solution. Our computational approach will be built upon a fully polarizable QM/MM/Continuum model within a damped linear response theory framework. In this approach...... the environment is given a highly advanced description in terms of the electrostatic potential through the polarizable embedding model. Furthermore, bulk solvent effects are included in an efficient manner through a conductor-like screening model. With the aim of reducing the computational cost we develop a set...... of averaged partial charges and distributed isotropic dipole-dipole polarizabilities for DNA suitable for describing the classical region in ground-state and excited-state calculations. Calculations of the UV-spectrum of the 2-aminopurine optical probe embedded in a DNA double helical structure are presented...

  10. Optical properties of cells with melanin

    Science.gov (United States)

    Rohde, Barukh; Coats, Israel; Krueger, James; Gareau, Dan

    2014-02-01

    The optical properties of pigmented lesions have been studied using diffuse reflectance spectroscopy in a noninvasive configuration on optically thick samples such as skin in vivo. However, it is difficult to un-mix the effects of absorption and scattering with diffuse reflectance spectroscopy techniques due to the complex anatomical distributions of absorbing and scattering biomolecules. We present a device and technique that enables absorption and scattering measurements of tissue volumes much smaller than the optical mean-free path. Because these measurements are taken on fresh-frozen sections, they are direct measurements of the optical properties of tissue, albeit in a different hydration state than in vivo tissue. Our results on lesions from 20 patients including melanomas and nevi show the absorption spectrum of melanin in melanocytes and basal keratinocytes. Our samples consisted of fresh frozen sections that were unstained. Fitting the spectrum as an exponential decay between 500 and 1100 nm [mua = A*exp(-B*(lambda-C)) + D], we report on the fit parameters of and their variation due to biological heterogeneity as A = 4.20e4 +/- 1.57e5 [1/cm], B = 4.57e-3 +/- 1.62e-3 [1/nm], C = 210 +/- 510 [nm] , D = 613 +/- 534 [1/cm]. The variability in these results is likely due to highly heterogeneous distributions of eumelanin and pheomelanin.

  11. The effect of oxidation on physical properties of porous silicon layers for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pirasteh, Parasteh [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France); Charrier, Joel [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France)]. E-mail: joel.charrier@univ-rennes1.fr; Soltani, Ali [Institut d' Electronique, de Microemectronique et de Nanotechnologie, CNRS-UMR 8520, Cite Scientifique Avenue Poincare, BP 69, 59652 Villeneuve d' Ascq Cedex (France); Haesaert, Severine [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France); Haji, Lazhar [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France); Godon, Christine [Laboratoire de Physique Crystalline, Institut des Materiaux Jean Rouxel, 44322 Nantes Cedex 3 (France); Errien, Nicolas [Laboratoire de Physique Crystalline, Institut des Materiaux Jean Rouxel, 44322 Nantes Cedex 3 (France)

    2006-12-15

    In order to understand the optical loss mechanisms in porous silicon based waveguides, structural and optical studies have been performed. Scanning and transmission electron microscopic observations of porous silicon layers are obtained before and after an oxidation process at high temperature in wet O{sub 2}. Pore size and shape of heavily p-type doped Si wafers are estimated and correlated to the optical properties of the material before and after oxidation. The refractive index was measured and compared to that determined by the Bruggeman model.

  12. Electronic and optical properties of Y-doped Si{sub 3}N{sub 4} by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhifeng [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Key Laboratory of Advanced Technology for Specially Functional Materials, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China); Su, Rui; Wang, Zhihao; Li, Junyang; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Zhang, Lianmeng [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Key Laboratory of Advanced Technology for Specially Functional Materials, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)

    2015-07-15

    Highlights: • Y-doped α-Si{sub 3}N{sub 4} and β-Si{sub 3}N{sub 4} are systematically investigated by DFT. • Impacts of local structure and bond character on electronic property are studied. • Static dielectric constants and optical absorption properties are investigated. - Abstract: Geometry structures, formation energies, electronic and optical properties of Y-doped α-Si{sub 3}N{sub 4} and β-Si{sub 3}N{sub 4} are investigated based on the density functional theory (DFT). The low values of formation energies indicate both Y-doped Si{sub 3}N{sub 4} models can be easily synthesized. Besides, the negative formation energies of α-Y{sub i}-Si{sub 3}N{sub 4} demonstrate that interstitial Y-doped α-Si{sub 3}N{sub 4} has an excellent stability. The energies of impurity levels are different resulting from the different chemical environment around Y atoms. The impurity levels localized in the band gap reduces the maximum energy gaps, which enhances the optical properties of Si{sub 3}N{sub 4}. The static dielectric constants become larger and the optical absorption spectra show the red-shift phenomena for all Y-doped Si{sub 3}N{sub 4} models.

  13. Determination of optical properties in heterogeneous turbid media using a cylindrical diffusing fiber

    International Nuclear Information System (INIS)

    Dimofte, Andreea; Finlay, Jarod C; Liang Xing; Zhu, Timothy C

    2012-01-01

    For interstitial photodynamic therapy (PDT), cylindrical diffusing fibers (CDFs) are often used to deliver light. This study examines the feasibility and accuracy of using CDFs to characterize the absorption (μ a ) and reduced scattering (μ′ s ) coefficients of heterogeneous turbid media. Measurements were performed in tissue-simulating phantoms with μ a between 0.1 and 1 cm −1 and μ′ s between 3 and 10 cm −1 with CDFs 2 to 4 cm in length. Optical properties were determined by fitting the measured light fluence rate profiles at a fixed distance from the CDF axis using a heterogeneous kernel model in which the cylindrical diffusing fiber is treated as a series of point sources. The resulting optical properties were compared with independent measurement using a point source method. In a homogenous medium, we are able to determine the absorption coefficient μ a using a value of μ′ s determined a priori (uniform fit) or μ′ s obtained by fitting (variable fit) with standard (maximum) deviations of 6% (18%) and 18% (44%), respectively. However, the CDF method is found to be insensitive to variations in μ′ s , thus requiring a complementary method such as using a point source for determination of μ′ s . The error for determining μ a decreases in very heterogeneous turbid media because of the local absorption extremes. The data acquisition time for obtaining the one-dimensional optical properties distribution is less than 8 s. This method can result in dramatically improved accuracy of light fluence rate calculation for CDFs for prostate PDT in vivo when the same model and geometry is used for forward calculations using the extrapolated tissue optical properties. (paper)

  14. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  15. Gold nanorods-silicone hybrid material films and their optical limiting property

    Science.gov (United States)

    Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang

    2015-10-01

    As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.

  16. Optical properties of metallic Fibonacci quasi-superlattice

    International Nuclear Information System (INIS)

    Feng Weiguo; Liu Nianhua; Wu Xiang

    1990-06-01

    Within the approximation of hydrodynamic model, the optical properties of the metallic Fibonacci quasi-superlattice have been studied for the region of s-polarized soft x-rays and extreme ultraviolet. By using the transfer-matrix method and taking account of damping effects, we have discussed the electromagnetic normal modes for the quasisuperlattice in the rational approximation. The related dispersion curves explain the reflection spectra well, and we found that similar to the reflectivities, both real part and imagine part of the dispersion relation pattern has a rich structure of self-similarity. With the increasing of the generation number, the electromagnetic modes all become critical. (author). 13 refs, 3 figs

  17. Structural and Optical Properties of Nanocrystalline 3,4,9,10-Perylene-Tetracarboxylic-Diimide Thin Film

    Directory of Open Access Journals (Sweden)

    M. M. El-Nahhas

    2012-01-01

    Full Text Available Thin films of nanocrystalline 3,4,9,10-perylene-tetracarboxylic-diimide (PTCDI were prepared on quartz substrates by thermal evaporation technique. The structural properties were identified by transmission electron microscopy (TEM and the X-ray diffraction (XRD. The optical properties for the films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The optical constants (refractive index n and absorption index k were calculated and found to be independent on the film thickness in the measured film thickness range 117–163 nm. The dispersion energy (Ed, the oscillator energy (Eo, and the high-frequency dielectric constant ε∞ were obtained. The energy band model was applied, and the types of the optical transitions responsible for optical absorption were found to be indirect allowed transition. The onset and optical energy gaps were calculated, and the obtained results were also discussed.

  18. Optical modelling of photoluminescence emitted by thin doped films

    International Nuclear Information System (INIS)

    Pigeat, P.; Easwarakhanthan, T.; Briancon, J.L.; Rinnert, H.

    2011-01-01

    Photoluminescence (PL) spectra emitted by doped films are deformed owing to film thickness-dependent wave interference. This hampers knowing well their PL generating mechanisms as well as designing photonic devices with suitable geometries that improve their PL efficiency. We develop in this paper an energy model for PL emitted by doped films considering the interaction between the wavelength-differing incident standing and emitted waves, their energy transfer in-between, and the interferences undergone by both. The film optical constants are estimated fitting the model to the measured PL. This simple model has thus allowed us to interpret the evolution of PL emitted by Er-doped AlN films prepared on Si substrates by reactive magnetron sputtering. The shapes, the amplitudes, and the illusive sub-spectral features of the PL spectra depend essentially on the film thickness. The model further predicts high sensitivity for PL emitted by non-homogenously doped stacked-films to incident light wavelengths and film-thickness variations. This property has potential applications in tracking wavelength variations and in measuring physical quantities producing thickness variations. This model may be used to optimise PL efficiency of photonic devices through different film geometries and optical properties.

  19. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...

  20. Defect enhanced optic and electro-optic properties of lead zirconate titanate thin films

    Directory of Open Access Journals (Sweden)

    M. M. Zhu

    2011-12-01

    Full Text Available Pb(Zr1-xTixO3 (PZT thin films near phase morphotropic phase boundary were deposited on (Pb0.86La0.14TiO3-coated glass by radio frequency sputtering. A retrieved analysis shows that the lattice parameters of the as-grown PZT thin films were similar to that of monoclinic PZT structure. Moreover, the PZT thin films possessed refractive index as high as 2.504 in TE model and 2.431 in TM model. The as-grown PZT thin film had one strong absorption peak at 632.6 nm, which attributed to lead deficiency by quantitative XPS analysis. From the attractive properties achieved, electro-optic and photovoltaic characteristic of the films were carried out.

  1. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    Science.gov (United States)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  2. Dispersion properties of plasma cladded annular optical fiber

    Science.gov (United States)

    KianiMajd, M.; Hasanbeigi, A.; Mehdian, H.; Hajisharifi, K.

    2018-05-01

    One of the considerable problems in a conventional image transferring fiber optic system is the two-fold coupling of propagating hybrid modes. In this paper, using a simple and practical analytical approach based on exact modal vectorial analysis together with Maxwell's equations, we show that applying plasma as a cladding medium of an annular optical fiber can remove this defect of conventional fiber optic automatically without any external instrument as the polarization beam splitter. Moreover, the analysis indicates that the presence of plasma in the proposed optical fiber could extend the possibilities for controlling the propagation property. The proposed structure presents itself as a promising route to advanced optical processing and opens new avenues in applied optics and photonics.

  3. Frictional and Optical Properties of Diamond-Like-Carbon Coatings on Polycarbonate

    International Nuclear Information System (INIS)

    Lin Zeng; Gao Ding; Ba Dechun; Wang Feng; Liu Chunming

    2013-01-01

    In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced chemical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp 2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp 3 content of the coatings

  4. Extended Hubbard models for ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Juergensen, Ole

    2015-01-01

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  5. Extended Hubbard models for ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Ole

    2015-06-05

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  6. Simplifying BRDF input data for optical signature modeling

    Science.gov (United States)

    Hallberg, Tomas; Pohl, Anna; Fagerström, Jan

    2017-05-01

    Scene simulations of optical signature properties using signature codes normally requires input of various parameterized measurement data of surfaces and coatings in order to achieve realistic scene object features. Some of the most important parameters are used in the model of the Bidirectional Reflectance Distribution Function (BRDF) and are normally determined by surface reflectance and scattering measurements. Reflectance measurements of the spectral Directional Hemispherical Reflectance (DHR) at various incident angles can normally be performed in most spectroscopy labs, while measuring the BRDF is more complicated or may not be available at all in many optical labs. We will present a method in order to achieve the necessary BRDF data directly from DHR measurements for modeling software using the Sandford-Robertson BRDF model. The accuracy of the method is tested by modeling a test surface by comparing results from using estimated and measured BRDF data as input to the model. These results show that using this method gives no significant loss in modeling accuracy.

  7. In situ aerosol characterization at Cape Verde. Part 2: Parametrization of relative humidity- and wavelength-dependent aerosol optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Schladitz, Alexander; Muller, Thomas; Nordmann, Stephan; Tesche, Matthias; Wiedensohler, Alfred (Leibniz Institute for Tropospheric Research (IfT), Leipzig (Germany)), e-mail: alexander.schladitz@tropos.de; Gross, Silke; Freudenthaler, Volker; Gasteiger, Josef (Meteorological Institute, Ludwig-Maximilians-Universitaet, Munich (Germany))

    2011-09-15

    An observation-based numerical study of humidity-dependent aerosol optical properties of mixed marine and Saharan mineral dust aerosol is presented. An aerosol model was developed based on measured optical and microphysical properties to describe the marine and Saharan dust aerosol at Cape Verde. A wavelength-dependent optical equivalent imaginary part of the refractive index and a scattering non-sphericity factor for Saharan dust were derived. Simulations of humidity effects on optical properties by the aerosol model were validated with relative measurements of the extinction coefficient at ambient conditions. Parametrizations were derived to describe the humidity dependence of the extinction, scattering, and absorption coefficients as well as the asymmetry parameter and single scattering albedo. For wavelengths (300-950 nm) and dry dust volume fractions (0-1), aerosol optical properties as a function of relative humidity (RH = 0-90%) can be calculated from tabulated parameters. For instance, at a wavelength of 550 nm, a volume fraction of 0.5 of dust on the total particle volume (dry conditions) and a RH of 90%, the enhancements for the scattering, extinction and absorption coefficients are 2.55, 2.46 and 1.04, respectively, while the enhancements for the asymmetry parameter and single scattering albedo are 1.11 and 1.04

  8. Linear and nonlinear optical properties of borate crystals as ...

    Indian Academy of Sciences (India)

    Unknown

    crystal series, with an accuracy acceptable for materials development/design, and answer the questions often ... Optical property; nonlinear optical crystals; first principles calculation. 1. ..... system, and is not in concept suitable to excitation pro-.

  9. Optical properties of humic substances and CDOM: effects of borohydride reduction.

    Science.gov (United States)

    Ma, Jiahai; Del Vecchio, Rossana; Golanoski, Kelli S; Boyle, Erin S; Blough, Neil V

    2010-07-15

    Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors. Unlike most of the model hydroquinones, the changes in optical properties of the natural samples following NaBH(4) reduction were largely irreversible in the presence of air and following addition of a Cu(2+) catalyst, providing tentative evidence that aromatic ketones (or other similar carbonyl-containing structures) may play a more important role than quinones in the optical properties of these materials.

  10. Optical Properties of Nanoparticles and Nanocomposites

    CSIR Research Space (South Africa)

    Kumbhakar, P

    2014-01-01

    Full Text Available of ceria nanoparticles and degradation of Congo red (CR) dye under the visible light irradiation. We are very much happy to note the research progress on the techniques of synthesis, characterization, and optical properties of nanostructured materials. Also...

  11. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.

    Science.gov (United States)

    Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are

  12. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Stefan G H Simis

    Full Text Available Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM, properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession and physical (thermal stratification processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90 no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively, characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing

  13. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea

    Science.gov (United States)

    Ylöstalo, Pasi; Kallio, Kari Y.; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0–3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms

  14. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  15. Geometrical-optics code for computing the optical properties of large dielectric spheres.

    Science.gov (United States)

    Zhou, Xiaobing; Li, Shusun; Stamnes, Knut

    2003-07-20

    Absorption of electromagnetic radiation by absorptive dielectric spheres such as snow grains in the near-infrared part of the solar spectrum cannot be neglected when radiative properties of snow are computed. Thus a new, to our knowledge, geometrical-optics code is developed to compute scattering and absorption cross sections of large dielectric particles of arbitrary complex refractive index. The number of internal reflections and transmissions are truncated on the basis of the ratio of the irradiance incident at the nth interface to the irradiance incident at the first interface for a specific optical ray. Thus the truncation number is a function of the angle of incidence. Phase functions for both near- and far-field absorption and scattering of electromagnetic radiation are calculated directly at any desired scattering angle by using a hybrid algorithm based on the bisection and Newton-Raphson methods. With these methods a large sphere's absorption and scattering properties of light can be calculated for any wavelength from the ultraviolet to the microwave regions. Assuming that large snow meltclusters (1-cm order), observed ubiquitously in the snow cover during summer, can be characterized as spheres, one may compute absorption and scattering efficiencies and the scattering phase function on the basis of this geometrical-optics method. A geometrical-optics method for sphere (GOMsphere) code is developed and tested against Wiscombe's Mie scattering code (MIE0) and a Monte Carlo code for a range of size parameters. GOMsphere can be combined with MIE0 to calculate the single-scattering properties of dielectric spheres of any size.

  16. Optical properties of stabilized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohindroo, Jeevan Jyoti, E-mail: jjmdav@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Department of Chemistry, DAV College, Amritsar, Punjab India (India); Garg, Umesh Kumar, E-mail: Umeshkgarg@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Guru Teg Bahadur Khalsa College of IT, Malout, Punjab (India); Sharma, Anshul Kumar [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-05-06

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550 nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution was adjusted to alkaline using 5% solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570 nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv){sup 2} and hv vs. (αhv){sup 1/2}. The value of Band gap came out to be around 1.98–2.02 eV which is in close agreement with the earlier reported values.

  17. Electronic, Optical, and Thermal Properties of Reduced-Dimensional Semiconductors

    Science.gov (United States)

    Huang, Shouting

    Reduced-dimensional materials have attracted tremendous attention because of their new physics and exotic properties, which are of great interests for fundamental science. More importantly, the manipulation and engineering of matter on an atomic scale yield promising applications for many fields including nanoelectronics, nanobiotechnology, environments, and renewable energy. Because of the unusual quantum confinement and enhanced surface effect of reduced-dimensional materials, traditional empirical models suffer from necessary but unreliable parameters extracted from previously-studied bulk materials. In this sense, quantitative, parameter-free approaches are highly useful for understanding properties of reduced-dimensional materials and, furthermore, predicting their novel applications. The first-principles density functional theory (DFT) is proven to be a reliable and convenient tool. In particular, recent progress in many-body perturbation theory (MBPT) makes it possible to calculate excited-state properties, e.g., quasiparticle (QP) band gap and optical excitations, by the first-principles approach based on DFT. Therefore, during my PhD study, I employed first-principles calculations based on DFT and MBPT to systematically study fundamental properties of typical reduced-dimensional semiconductors, i.e., the electronic structure, phonons, and optical excitations of core-shell nanowires (NWs) and graphene-like two-dimensional (2D) structures of current interests. First, I present first-principles studies on how to engineer band alignments of nano-sized radial heterojunctions, Si/Ge core-shell NWs. Our calculation reveals that band offsets in these one-dimensional (1D) nanostructures can be tailored by applying axial strain or varying core-shell sizes. In particular, the valence band offset can be efficiently tuned across a wide range and even be diminished via applied strain. Two mechanisms contribute to this tuning of band offsets. Furthermore, varying the

  18. Thermophysical and Optical Properties of Semiconducting Ga2Te3 Melt

    Science.gov (United States)

    Li, Chao; Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.; Ban, Heng

    2005-01-01

    The majority of bulk semiconductor single crystals are presently grown from their melts. The thermophysical and optical properties of the melts provide a fundamental understanding of the melt structure and can be used to optimize the growth conditions to obtain higher quality crystals. In this paper, we report several thermophysical and optical properties for Ga2Te3 melts, such as electrical conductivity, viscosity, and optical transmission for temperatures ranging from the melting point up to approximately 990 C. The conductivity and viscosity of the melts are determined using the transient torque technique. The optical transmission of the melts is measured between the wavelengths of 300 and 2000 nm by an dual beam reversed-optics spectrophotometer. The measured properties are in good agreement with the published data. The conductivities indicate that the Ga2Te3 melt is semiconductor-like. The anomalous behavior in the measured properties are used as an indication of a structural transformation in the Ga2Te3 melt and discussed in terms of Eyring's and Bachinskii's predicted behaviors for homogeneous melts.

  19. Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires

    International Nuclear Information System (INIS)

    Anufriev, Roman; Bru-Chevallier, Catherine; Chauvin, Nicolas; Barakat, Jean-Baptiste; Letartre, Xavier; Gendry, Michel; Patriarche, Gilles; Harmand, Jean-Christophe

    2015-01-01

    The emission polarization of single InAs/InP quantum dot (QD) and quantum rod (QR) nanowires is investigated at room temperature. Whereas the emission of the QRs is mainly polarized parallel to the nanowire axis, the opposite behavior is observed for the QDs. These optical properties can be explained by a combination of dielectric effects related to the nanowire geometry and to the configuration of the valence band in the nanostructure. A theoretical model and finite difference in time domain calculations are presented to describe the impact of the nanowire and the surroundings on the optical properties of the emitter. Using this model, the intrinsic degree of linear polarization of the two types of emitters is extracted. The strong polarization anisotropies indicate a valence band mixing in the QRs but not in the QDs. (paper)

  20. X-ray, optical, and radio properties of quasars

    International Nuclear Information System (INIS)

    Blumenthal, G.R.; Keel, W.C.; Miller, J.S.

    1982-01-01

    We have examined a sample of 26 low-redshift quasars for the relationships between X-ray luminosity and optical spectroscopic features. All quasars were observed with the Einstein Observatory and with the IDS on the Lick 3 meter telescope. We find evidence for correlations between quasar X-ray luminosity and both optical continuum luminosity and Hβ luminosity. In the latter case, there is a smooth relationship connecting quasars, Seyfert 1, and Seyfert 2 galaxies. For the quasars in this sample, there is also a strong correlation between optical continuum luminosity and both the Hβ luminosity and equivalent width. Unlike the case for Seyfert 1 nuclei, there is no evidence for a correlation between X-ray luminosity and either the Hβ/[O III] ratio or the width at zero intensity of the Hβ line. However, we do find some evidence for a weak correlation between α'/sub o/x, the mean continuum spectral index between 5000 A and 2 keV, and Fe II equivalent width, Hβ equivalent width, Hβ line width at zero intensity, and the ratio of Hβ equivalent width to its line width at zero intensity. Overall, we found few strong correlations between optical spectroscopic quanitites and X-ray properties of quasars. Some of the implications of these results for models of quasars and quasar emission line regions are discussed

  1. Anomalous optical and electronic properties of dense sodium

    International Nuclear Information System (INIS)

    Li Dafang; Liu Hanyu; Wang Baotian; Shi Hongliang; Zhu Shaoping; Yan Jun; Zhang Ping

    2010-01-01

    Based on the density functional theory, we systematically study the optical and electronic properties of the insulating dense sodium phase (Na-hp4) reported recently (Ma et al., 2009). The structure is found optically anisotropic. Through Bader analysis, we conclude that ionicity exists in the structure and becomes stronger with increasing pressure.

  2. Electronic band structure and optical properties of antimony selenide under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit, B.K.; Jayaraman, Aditya; Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, 515 134 (India)

    2016-05-23

    In this work we present the optical properties of Antimony Selenide (Sb{sub 2}Se{sub 3}) under ambient conditions and under pressure of 9.2 GPa obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Optical properties like refractive index, absorption coefficient and optical conductivity are calculated using the WIEN2k code.

  3. Optical properties of gold island films-a spectroscopic ellipsometry study

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, Martin, E-mail: mloncaric@irb.hr; Sancho-Parramon, Jordi; Zorc, Hrvoje

    2011-02-28

    Metal island films of noble metals are obtained by deposition on glass substrates during the first stage of evaporation process when supported metal nanoparticles are formed. These films show unique optical properties, owing to the localized surface plasmon resonance of free electrons in metal nanoparticles. In the present work we study the optical properties of gold metal island films deposited on glass substrates with different mass thicknesses at different substrate temperatures. The optical characterization is performed by spectroscopic ellipsometry at different angles of incidence and transmittance measurements at normal incidence in the same point of the sample. Fitting of the ellipsometric data allows determining the effective optical constants and thickness of the island film. A multiple oscillator approach was used to successfully represent the dispersion of the effective optical constants of the films.

  4. Structural, electronic and optical properties of carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M L [California Univ., Berkeley (United States). Dept. of Physics

    1996-05-01

    Carbon nitride was proposed as a superhard material and a structural prototype, {beta}-C{sub 3}N{sub 4}, was examined using several theoretical models. Some reports claiming experimental verifications have been made recently. The current status of the theory and experiment is reviewed, and a detailed discussion is presented of calculations of the electronic and optical properties of this material. These calculations predict that {beta}-C{sub 3}N{sub 4} will have a minimum gap which is indirect at 6.4{+-}0.5 eV. A discussion of the possibility of carbon nitride nanotubes is also presented. (orig.)

  5. Structural, optical and dielectric properties of graphene oxide

    Science.gov (United States)

    Bhargava, Richa; Khan, Shakeel

    2018-05-01

    The Modified Hummers method has been used to synthesize Graphene oxide nanoparticles. Microstructural analyses were carried out by X-ray diffraction and Fourier transform infrared spectroscopy. Optical properties were studied by UV-visible spectroscopy in the range of 200-700 nm. The energy band gap was calculated with the help of Tauc relation. The frequency dependence of dielectric constant and dielectric loss were studied over a range of the frequency 75Hz to 5MHz at room temperature. The dispersion in dielectric constant can be explained with the help of Maxwell-Wagner model in studied nanoparticles.

  6. The bio-optical properties of CDOM as descriptor of lake stratification.

    Science.gov (United States)

    Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Martini, Silvia; Rossi, Claudio; Santinelli, Chiara; Seritti, Alfredo

    2006-11-01

    Multivariate statistical techniques are used to demonstrate the fundamental role of CDOM optical properties in the description of water masses during the summer stratification of a deep lake. PC1 was linked with dissolved species and PC2 with suspended particles. In the first principal component that the role of CDOM bio-optical properties give a better description of the stratification of the Salto Lake with respect to temperature. The proposed multivariate approach can be used for the analysis of different stratified aquatic ecosystems in relation to interaction between bio-optical properties and stratification of the water body.

  7. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model

    Directory of Open Access Journals (Sweden)

    B. V. Scarnato

    2013-05-01

    Full Text Available According to recent studies, internal mixing of black carbon (BC with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT. DDSCAT is flexible in simulating the geometry and refractive index of particle aggregates. DDSCAT predicts a higher mass absorption coefficient (MAC, lower single scattering albedo (SSA, and higher absorption Angstrom exponent (AAE for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.16 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. The MAC of BC (averaged over the 200–1000 nm range is amplified when internally mixed with NaCl (100–300 nm in radius by factors ranging from 1.0 for lacy BC aggregates partially immersed in NaCl to 2.2 for compact BC aggregates fully immersed in NaCl. The SSA of BC internally mixed with NaCl is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle size and morphology. This study shows that DDSCAT predicts complex morphology and mixing state dependent aerosol optical properties that have

  8. Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides

    Science.gov (United States)

    Khan, M. A.; Erementchouk, Mikhail; Hendrickson, Joshua; Leuenberger, Michael N.

    2017-06-01

    A detailed first-principles study has been performed to evaluate the electronic and optical properties of single-layer (SL) transition metal dichalcogenides (TMDCs) (M X 2 ; M = transition metal such as Mo, W, and X = S, Se, Te), in the presence of vacancy defects (VDs). Defects usually play an important role in tailoring electronic, optical, and magnetic properties of semiconductors. We consider three types of VDs in SL TMDCs: (i) X vacancy, (ii) X2 vacancy, and (iii) M vacancy. We show that VDs lead to localized defect states (LDS) in the band structure, which in turn gives rise to sharp transitions in in-plane and out-of-plane optical susceptibilities, χ∥ and χ⊥. The effects of spin-orbit coupling (SOC) are also considered. We find that SOC splitting in LDS is directly related to the atomic number of the transition metal atoms. Apart from electronic and optical properties we also find magnetic signatures (local magnetic moment of ˜μB ) in MoSe2 in the presence of the Mo vacancy, which breaks the time-reversal symmetry and therefore lifts the Kramers degeneracy. We show that a simple qualitative tight-binding model (TBM), involving only the hopping between atoms surrounding the vacancy with an on-site SOC term, is sufficient to capture the essential features of LDS. In addition, the existence of the LDS can be understood from the solution of the two-dimensional Dirac Hamiltonian by employing infinite mass boundary conditions. In order to provide a clear description of the optical absorption spectra, we use group theory to derive the optical selection rules between LDS for both χ∥ and χ⊥.

  9. Optical properties of P3HT:tributylphosphine oxide-capped CdSe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Benchaabane, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Universite Arabe des Sciences, Ecole Superieure d' Ingenieurs et des Etudes Technologiques, Tunis (Tunisia); Ben Hamed, Z.; Kouki, F.; Bouchriha, H. [Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Lahmar, A.; Zellama, K.; Zeinert, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Sanhoury, M.A. [Laboratoire de Chimie Organique Structurale, Synthese et Etudes Physicochimiques, Tunis (Tunisia)

    2016-08-15

    The optical properties of nanocomposite layers prepared by incorporation of tributylphosphine oxide (TBPO)-capped CdSe nanocrystals (NCs) in a P3HT polymer matrix are studied using different nanocrystal concentrations. Reflection spectra analyzed through Kim oscillator model lead to the determination of optical constants such as refractive index n, extinction coefficient k, dielectric permittivity ε and absorption coefficient α. Using the common Cauchy, Drude-Lorentz, Tauc and single-effective-oscillator theoretical models, we have determined the values of static refractive index n{sub s} and permittivity ε{sub s}, plasma frequency ω{sub p}, carrier density N, optical band gap E{sub g} and oscillator and dispersion energies E{sub 0} and E{sub d}, respectively. It is found that TBPO-capped CdSe NCs concentration affects the optoelectronic parameters of the nanocomposite thin films. Moreover, the disorder of this hybrid system is also studied by the determination of Urbach energy, which increases with TBPO-capped CdSe concentration. (orig.)

  10. Quasiparticle and optical properties of strained stanene and stanane.

    Science.gov (United States)

    Lu, Pengfei; Wu, Liyuan; Yang, Chuanghua; Liang, Dan; Quhe, Ruge; Guan, Pengfei; Wang, Shumin

    2017-06-20

    Quasiparticle band structures and optical properties of two dimensional stanene and stanane (fully hydrogenated stanene) are studied by the GW and GW plus Bethe-Salpeter equation (GW-BSE) approaches, with inclusion of the spin-orbit coupling (SOC). The SOC effect is significant for the electronic and optical properties in both stanene and stanane, compared with their group IV-enes and IV-anes counterparts. Stanene is a semiconductor with a quasiparticle band gap of 0.10 eV. Stanane has a sizable band gap of 1.63 eV and strongly binding exciton with binding energy of 0.10 eV. Under strain, the quasiparticle band gap and optical spectrum of both stanene and stanane are tunable.

  11. Complex yet translucent: the optical properties of sea ice

    International Nuclear Information System (INIS)

    Perovich, Donald K.

    2003-01-01

    Sea ice is a naturally occurring material with an intricate and highly variable structure consisting of ice platelets, brine pockets, air bubbles, and precipitated salt crystals. The optical properties of sea ice are directly dependent on this ice structure. Because sea ice is a material that exists at its salinity determined freezing point, its structure and optical properties are significantly affected by small changes in temperature. Understanding the interaction of sunlight with sea ice is important to a diverse array of scientific problems, including those in polar climatology. A key optical parameter for climatological studies is the albedo, the fraction of the incident sunlight that is reflected. The albedo of sea ice is quite sensitive to surface conditions. The presence of a snow cover enhances the albedo, while surface meltwater reduces the albedo. Radiative transfer in sea ice is a combination of absorption and scattering. Differences in the magnitude of sea ice optical properties are ascribable primarily to differences in scattering, while spectral variations are mainly a result of absorption. Physical changes that enhance scattering, such as the formation of air bubbles due to brine drainage, result in more light reflection and less transmission

  12. Synthesis, characterization and optical properties of gelatin doped with silver nanoparticles

    Science.gov (United States)

    Mahmoud, K. H.; Abbo, M.

    2013-12-01

    In this study, silver nanoparticles were synthesized by chemical reduction of silver salt (AgNO3) solution. Formation of nanoparticles was confirmed by UV-visible spectrometry. The surface plasmon resonance peak is located at 430 nm. Doping of silver nanoparticles (Ag NPs) with gelatin biopolymer was studied. The silver content in the polymer matrix was in the range of 0.4-1 wt%. The formation of nanoparticles disappeared for silver content higher than 1 wt%. The morphology and interaction of gelatin doped with Ag NPs was examined by transmission electron microscopy and FTIR spectroscopy. The content of Ag NPs has a pronounced effect on optical and structural properties of gelatin. Optical parameters such as refractive index, complex dielectric constant were calculated. The dispersion of the refractive index was discussed in terms of the single - oscillator Wemple-DiDomenico model. Color properties of the prepared samples were discussed in the framework of CIE L*u*v* color space.

  13. Optical properties of quasiperiodically arranged semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Werchner, Marco

    2009-12-18

    This work consists of two parts which are entitled ''One-Dimensional Resonant Fibonacci Quasicrystals'' and ''Resonant Tunneling of Light in Silicon Nanostructures''. A microscopic theory has been applied to investigate the optical properties of the respective semiconductor nanostructures. The studied one-dimensional resonant Fibonacci quasicrystals consist of GaAs quantum wells (QW) that are separated by either a large spacer L or a small one S. These spacers are arranged according to the Fibonacci sequence LSLLSLSL.. The average spacing satisfies a generalized Bragg condition with respect to the 1s-exciton resonance of the QWs. A theory, that makes use of the transfer-matrix method and that allows for the microscopic description of many-body effects such as excitation-induced dephasing caused by the Coulomb scattering of carriers, has been applied to compute the optical spectra of such structures. A pronounced sharp reflectivity minimum is found in the vicinity of the heavy-hole resonance both in the measured as well as in the calculated linear 54-QW spectra. Specifically, the influence of the carrier density, of the QW arrangement, of a detuning away from the exact Bragg condition, of the average spacing as well as of the ratio of the optical path lengths of the large and small spacers L and S, respectively, and of the QW number on the optical properties of the samples have been studied. Additionally, self-similarity among reflection spectra corresponding to different QW numbers that exceed a Fibonacci number by one is observed, which identifies certain spectral features as true fingerprints of the Fibonacci spacing. In the second part, resonant tunneling of light in stacked structures consisting of alternating parallel layers of silicon and air have been studied theoretically.Light may tunnel through the air barrier due to the existence of evanescent waves inside the air layers if the neighboring silicon layer is close

  14. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model

    Science.gov (United States)

    Dutkiewicz, S.; Hickman, A. E.; Jahn, O.; Gregg, W. W.; Mouw, C. B.; Follows, M. J.

    2015-07-01

    We present a numerical model of the ocean that couples a three-stream radiative transfer component with a marine biogeochemical-ecosystem component in a dynamic three-dimensional physical framework. The radiative transfer component resolves the penetration of spectral irradiance as it is absorbed and scattered within the water column. We explicitly include the effect of several optically important water constituents (different phytoplankton functional types; detrital particles; and coloured dissolved organic matter, CDOM). The model is evaluated against in situ-observed and satellite-derived products. In particular we compare to concurrently measured biogeochemical, ecosystem, and optical data along a meridional transect of the Atlantic Ocean. The simulation captures the patterns and magnitudes of these data, and estimates surface upwelling irradiance analogous to that observed by ocean colour satellite instruments. We find that incorporating the different optically important constituents explicitly and including spectral irradiance was crucial to capture the variability in the depth of the subsurface chlorophyll a (Chl a) maximum. We conduct a series of sensitivity experiments to demonstrate, globally, the relative importance of each of the water constituents, as well as the crucial feedbacks between the light field, the relative fitness of phytoplankton types, and the biogeochemistry of the ocean. CDOM has proportionally more importance at attenuating light at short wavelengths and in more productive waters, phytoplankton absorption is relatively more important at the subsurface Chl a maximum, and water molecules have the greatest contribution when concentrations of other constituents are low, such as in the oligotrophic gyres. Scattering had less effect on attenuation, but since it is important for the amount and type of upwelling irradiance, it is crucial for setting sea surface reflectance. Strikingly, sensitivity experiments in which absorption by any of the

  15. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  16. Optical, electrical and sensing properties of β-ketoimine calix[4]arene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Echabaane, M., E-mail: mosaab.echabaane@yahoo.fr [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Rouis, A. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Bonnamour, I. [Institut de Chimie and Biochimie Moléculaires and Supramoléculaires (ICBMS), UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, Université Claude Bernard Lyon 1, 69100 Villeurbanne (France); Ben Ouada, H. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia)

    2013-09-16

    Optical, electrical and ion sensing properties of β-ketoimine calix[4]arene thin films have been investigated. These calix[4]arene derivative films exhibit absorption spectra with a resolved electronic structure in the UV–vis and the energy gap was found to be 3.65 eV. Electrical properties of ITO/β-ketoimine calix[4]arene/Al devices have been investigated by I–V characteristics and impedance spectroscopy measurements. The conduction is governed by space-charge-limited current (SCLC) mechanism. The impedance spectroscopy study showed a hopping transport process, a typical behavior of disordered materials. The device was modeled by a single parallel resistor and capacitor network in series with a resistance. The β-ketoimine calix[4]arene was used for the conception of the novel optical chemical sensor and the detection of Cu{sup 2+} ions was monitored by UV–visible spectroscopy. The linear dynamic range for the determination of Cu{sup 2+} has been 10{sup −5}–10{sup −3.7} M with a detection limit of 10{sup −5} M. The characteristics of this optode such as regeneration, repeatability, reproducibility, short-term stability, life time and ion selectivity have been discussed. - Highlights: • We examine optical properties of β-ketoimine calix[4]arene ligand. • We investigate the electric properties of ITO/β-ketoimine calix[4]arene/Al device. • We study the sensing properties of optode films for the detection of copper (II)

  17. Electronic and optical properties of diamond/organic semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gajewski, Wojciech; Garrido, Jose; Niedermeier, Martin; Stutzmann, Martin [Walter Schottky Institute, TU Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Williams, Oliver; Haenen, Ken [Institute for Materials Research, University of Hasselt, Wetenschapspark 1, BE-3590 Diepenbeek (Belgium)

    2007-07-01

    Different diamond substrates (single crystalline: SCD, poly-crystalline: PCD and nano-crystalline: NCD) were used to investigate the electronic and optical properties of the diamond/organic semiconductor heterostructures. Layers of a poly[ethynyl-(2-decyloxy-5methoxy)benzene] - PEB, pentacene and 4-nitro-biphenyl-4-diazonium cations - Ph-Ph-NO{sub 2} were prepared by spin coating, thermal evaporation and grafting, respectively. The measurements of the electronic transport along the organic layer were performed using a Hg probe as well as Hall effect measurements in the temperature range 70-400 K. The I-V characteristics of the B-doped diamond/organic semiconductor heterostructures were measured at room temperature by means of the Hg probe. Undoped IIa and undoped PCD films were used for a study of the optical and optoelectronic properties of prepared heterostructures. The influence of the organic layer homogeneity and layer thickness on the optical properties will be discussed. Furthermore, preliminary data on perpendicular and parallel transport in the heterostructures layer will be reported.

  18. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    International Nuclear Information System (INIS)

    Zhu, S.; Zhou, W.

    2010-01-01

    Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA) method, and finite-difference time domain (FDTD) method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL) and focused ion beam (FIB) are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs)-potential Alzheimer's disease (AD) biomarkers, and staphylococcal enterotoxin B (SEB) in nano-Moore per liter (nM) concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  19. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shaoli Zhu

    2010-01-01

    Full Text Available Noble metal, especially gold (Au and silver (Ag nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR. In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA method, and finite-difference time domain (FDTD method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL and focused ion beam (FIB are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs-potential Alzheimer's disease (AD biomarkers, and staphylococcal enterotixn B (SEB in nano-Moore per liter (nM concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  20. Some properties of point processes in statistical optics

    International Nuclear Information System (INIS)

    Picinbono, B.; Bendjaballah, C.

    2010-01-01

    The analysis of the statistical properties of the point process (PP) of photon detection times can be used to determine whether or not an optical field is classical, in the sense that its statistical description does not require the methods of quantum optics. This determination is, however, more difficult than ordinarily admitted and the first aim of this paper is to illustrate this point by using some results of the PP theory. For example, it is well known that the analysis of the photodetection of classical fields exhibits the so-called bunching effect. But this property alone cannot be used to decide the nature of a given optical field. Indeed, we have presented examples of point processes for which a bunching effect appears and yet they cannot be obtained from a classical field. These examples are illustrated by computer simulations. Similarly, it is often admitted that for fields with very low light intensity the bunching or antibunching can be described by using the statistical properties of the distance between successive events of the point process, which simplifies the experimental procedure. We have shown that, while this property is valid for classical PPs, it has no reason to be true for nonclassical PPs, and we have presented some examples of this situation also illustrated by computer simulations.

  1. Optical properties of Nb and Mo calculated from augmented-plane-wave band structures

    International Nuclear Information System (INIS)

    Pickett, W.E.; Allen, P.B.

    1975-01-01

    Nonrelativistic band calculations of Mattheiss for Nb and Petroff and Viswanathan for Mo are used to calculate the imaginary part epsilon 2 of the dielectric function for these metals. The structure resulting from interband transitions in the frequency range 0.1--0.5 Ry is found to give fairly good agreement with experiment. The calculation indicates that structure in epsilon 2 can arise from transitions away from symmetry points and lines in the Brillouin zone. The difficulty in distinguishing between the direct and indirect transition models for epsilon 2 is shown to arise from a lack of strong optical critical points. Predictions of the rigid-band model for the optical properties of Nb-Mo alloys are presented

  2. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  3. Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE

    Science.gov (United States)

    Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.

    2003-10-01

    Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.

  4. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  5. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  6. Electronic Structure and Optical Properties Of EuIn2P2

    KAUST Repository

    Singh, Nirpendra

    2011-10-25

    The electronic structures and, optical and magneto‐optical properties of a newly found Zintl compound EuIn2P2 have been investigated within the density‐functional theory using the highly precise full‐potential linear‐augmented‐plane‐wave method. Results of detailed investigation of the electronic structure and related properties are reported.

  7. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  8. Unraveling the size-dependent optical properties of dissolved organic matter

    DEFF Research Database (Denmark)

    Wünsch, Urban; Stedmon, Colin; Tranvik, Lars

    2018-01-01

    The size-dependent optical properties of dissolved organic matter (DOM) from four Swedish lakes were investigated using High Performance Size Exclusion Chromatography (HPSEC) in conjunction with online characterization of absorbance (240–600 nm) and fluorescence (excitation: 275 nm, emission: 300....... This study demonstrates the potential for HPSEC and novel mathematical approaches to provide unprecedented insights into the relationship between optical and chemical properties of DOM in aquatic systems...

  9. Optical properties of melting first-year Arctic sea ice

    Science.gov (United States)

    Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica

    2015-11-01

    The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

  10. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    Energy Technology Data Exchange (ETDEWEB)

    Zongo, S., E-mail: sidiki@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Kerasidou, A.P. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Sone, B.T.; Diallo, A. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research, P O Box 395, Pretoria 0001 (South Africa); Iliopoulos, K. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras (Greece); Nkosi, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); and others

    2015-06-15

    Highlights: • We studied the linear and nonlinear optical properties of hybrid Bixa Orellana dye doped PMMA thin film. • We investigated the linear optical properties by means of UV/Vis, FTIR and Fluorescence. • We used Tauc - Lorentz model to evaluate linear optical parameters (n &k) with relative maximum of 1.456 at 508.5, 523.79 and 511.9 nm for n is observed while the maximum of k varies from 0.070 to 0.080. • We evaluated nonlinear third order susceptibility which was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. - Abstract: Natural dyes with highly delocalized π-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended π-electron delocalization is one of the most attractive dyes. Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films. The optical constants n and k were evaluated by ellipsometric spectroscopy. The refractive index had a maximum of about 1.456 at 508.5, 523.79 and 511.9 nm, while the maximum of k varies from 0.070 to 0.080 with the thickness. The third order nonlinear optical properties of the hybrid Bixa Orellana dye-PMMA polymer were investigated under 30 ps laser irradiation at 1064 nm with a repetition rate of 10 Hz. In particular the third-order nonlinear susceptibility has been determined by means of the Maker Fringes technique. The nonlinear third order susceptibility was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. Our studies provide concrete evidence that the hybrid-PMMA composites of Bixa dye are prospective candidates for nonlinear material applications.

  11. Measurement and modelization of silica opal optical properties

    OpenAIRE

    Avoine , Amaury; Ngoc Hong , Phan; Frederich , Hugo; Aregahegn , Kifle; Bénalloul , Paul; Coolen , Laurent; Schwob , Catherine; Thu Nga , Pham; Gallas , Bruno; Maître , Agnès

    2014-01-01

    International audience; We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflect...

  12. Optical and Electrical Properties of Ar+ Implanted PET

    Science.gov (United States)

    Kumar, Rajiv; Shekhawat, Nidhi; Sharma, Annu; Aggarwal, Sanjeev; Kumar, Praveen; Kanjilal, D.

    2011-07-01

    In the present work, the effect of 100 keV argon ion implantation on the optical and electrical properties of PET has been studied. A continuous reduction in optical band gap (from 3.63 to 1.93 eV) with increasing implantation dose has been observed as analyzed using UV-Visible absorption spectroscopy. Current-Voltage (I-V) characteristics have been studied which clearly indicate the enhancement in the conductivity of PET specimens as an effect of implantation. This increase in conductivity has been correlated with the decrease in optical band gap.

  13. Optical properties of thin Cu films as a function of substrate temperature

    CERN Document Server

    Savaloni, H

    2003-01-01

    Copper films (250 nm) deposited on glass substrates, at different substrate temperatures. Their optical properties were measured by ellipsometry (single wavelength of 589.3 nm) and spectrophotometry in the spectral range of 200-2600 nm. Kramers Kronig method was used for the analysis of the reflectivity curves of Cu films to obtain the optical constants of the films, while ellipsometry measurement was carried out as an independent method. The influence of substrate temperature on the microstructure of thin metallic films [Structure Zone Model ] is well established. The Effective Medium Approximation analysis was used to establish the relationship between the Structure Zone Model and Effective Medium Approximation predictions. Good agreements between Structure Zone Model as a function of substrate temperature and the values of volume fraction of voids obtained from Effective Medium Temperature analysis, are obtained; by increasing the substrate temperature the separation of the metallic grains decrease hence t...

  14. Far-infrared properties of optically selected quasars

    International Nuclear Information System (INIS)

    Edelson, R.A.

    1986-01-01

    The far-infrared properties of 10, optically selected quasars were studied on the basis of pointed IRAS observations and ground-based near-infrared and radio measurements. Nine of these quasars were detected in at least three IRAS bands. The flat spectral energy distributions characterizing these optically selected quasars together with large 60-100-micron luminosities suggest that the infrared emission is dominated by nonthermal radiation. Seven of the nine quasars with far-infrared detections were found to have low-frequency turnovers. 12 references

  15. Integrating sphere-based setup as an accurate system for optical properties measurements

    CSIR Research Space (South Africa)

    Abdalmonem, S

    2010-09-01

    Full Text Available Determination of the optical properties of solid and liquid samples has great importance. Since the integrating sphere-based setup is used to measure the amount of reflected and transmitted light by the examined samples, optical properties could...

  16. Optical models of the human eye.

    Science.gov (United States)

    Atchison, David A; Thibos, Larry N

    2016-03-01

    Optical models of the human eye have been used in visual science for purposes such as providing a framework for explaining optical phenomena in vision, for predicting how refraction and aberrations are affected by change in ocular biometry and as computational tools for exploring the limitations imposed on vision by the optical system of the eye. We address the issue of what is understood by optical model eyes, discussing the 'encyclopaedia' and 'toy train' approaches to modelling. An extensive list of purposes of models is provided. We discuss many of the theoretical types of optical models (also schematic eyes) of varying anatomical accuracy, including single, three and four refracting surface variants. We cover the models with lens structure in the form of nested shells and gradient index. Many optical eye models give accurate predictions only for small angles and small fields of view. If aberrations and image quality are important to consider, such 'paraxial' model eyes must be replaced by 'finite model' eyes incorporating features such as aspheric surfaces, tilts and decentrations, wavelength-dependent media and curved retinas. Many optical model eyes are population averages and must become adaptable to account for age, gender, ethnicity, refractive error and accommodation. They can also be customised for the individual when extensive ocular biometry and optical performance data are available. We consider which optical model should be used for a particular purpose, adhering to the principle that the best model is the simplest fit for the task. We provide a glimpse into the future of optical models of the human eye. This review is interwoven with historical developments, highlighting the important people who have contributed so richly to our understanding of visual optics. © 2016 The Authors. Clinical and Experimental Optometry © 2016 Optometry Australia.

  17. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots

    Science.gov (United States)

    Basak, Tista; Basak, Tushima

    2018-02-01

    In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.

  18. Relevant optical properties for direct restorative materials.

    Science.gov (United States)

    Pecho, Oscar E; Ghinea, Razvan; do Amaral, Erika A Navarro; Cardona, Juan C; Della Bona, Alvaro; Pérez, María M

    2016-05-01

    To evaluate relevant optical properties of esthetic direct restorative materials focusing on whitened and translucent shades. Enamel (E), body (B), dentin (D), translucent (T) and whitened (Wh) shades for E (WhE) and B (WhB) from a restorative system (Filtek Supreme XTE, 3M ESPE) were evaluated. Samples (1 mm thick) were prepared. Spectral reflectance (R%) and color coordinates (L*, a*, b*, C* and h°) were measured against black and white backgrounds, using a spectroradiometer, in a viewing booth, with CIE D65 illuminant and d/0° geometry. Scattering (S) and absorption (K) coefficients and transmittance (T%) were calculated using Kubelka-Munk's equations. Translucency (TP) and opalescence (OP) parameters and whiteness index (W*) were obtained from differences of CIELAB color coordinates. R%, S, K and T% curves from all shades were compared using VAF (Variance Accounting For) coefficient with Cauchy-Schwarz inequality. Color coordinates and optical parameters were statistically analyzed using one-way ANOVA, Tukey's test with Bonferroni correction (α=0.0007). Spectral behavior of R% and S were different for T shades. In addition, T shades showed the lowest R%, S and K values, as well as the highest T%, TP an OP values. In most cases, WhB shades showed different color and optical properties (including TP and W*) than their corresponding B shades. WhE shades showed similar mean W* values and higher mean T% and TP values than E shades. When using whitened or translucent composites, the final color is influenced not only by the intraoral background but also by the color and optical properties of multilayers used in the esthetic restoration. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Optical properties of a multibarrier structure under intense laser fields

    Science.gov (United States)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  20. Improved ice particle optical property simulations in the ultraviolet to far-infrared regime

    International Nuclear Information System (INIS)

    Bi, Lei; Yang, Ping

    2017-01-01

    To derive the bulk radiative properties of ice clouds, aircraft contrails and snow grains, which are fundamental to atmospheric radiative transfer calculations in downstream applications, it is necessary to accurately simulate the scattering of light by individual ice particles. An ice particle optical property database reported in 2013 (hereafter, TAMUice2013) is updated (hereafter, TAMUice2016) to incorporate recent advances in computation of the optical properties of nonspherical particles. Specifically, we employ the invariant imbedding T-matrix (II-TM) method to compute the optical properties of particles with small to moderate size parameters. Both versions use the Improved Geometric Optics Method (IGOM) to compute the optical properties of large ice crystals, but TAMUice2016 improves the treatment of inhomogeneous waves inside the scattering particles in the case where ice is absorptive such as at infrared wavelengths. To bridge the gap between the extinction efficiencies computed from the II-TM and the IGOM, TAMUice2016 includes spectrally dependent higher order terms of the edge effect in addition to the first order counterpart considered in TAMUice2013. Furthermore, the differences between TAMUice2013 and TAMUice2016 are quantified with respect to the computation of the bulk optical properties of ice clouds. - Highlights: • A previous database of the single-scattering properties of ice crystals is improved. • A combination of the invariant imbedding T-matrix and improved geometric optics methods is used. • The treatment of inhomogeneous waves in an absorptive ice crystal is improved. • Higher order terms of the edge effect are considered in the updated database.

  1. Noble-metal nanoparticles produced with colloidal lithography: fabrication, optical properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bocchio, Noelia Laura

    2008-08-15

    In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this

  2. Effect of capping agents on optical and antibacterial properties of ...

    Indian Academy of Sciences (India)

    Administrator

    unique optical properties resulting from quantum con- finement ... them suitable in application such as biomedical label- ling,4 solar ... All optical measurements were carried out at ..... QDs with biomolecules and to use them as biosensors,.

  3. Optical properties of silver composite metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Orbons, S.M. [School of Physics, University of Melbourne, Victoria 3010 (Australia)]. E-mail: sorbons@ph.unimelb.edu.au; Freeman, D. [Centre for Ultrahigh-bandwidth Devices for Optical Systems, Laser Physics Centre, Australian National University, ACT 0200 (Australia); Luther-Davies, B. [Centre for Ultrahigh-bandwidth Devices for Optical Systems, Laser Physics Centre, Australian National University, ACT 0200 (Australia); Gibson, B.C. [Quantum Communications Victoria, School of Physics, University of Melbourne, Victoria 3010 (Australia); Huntington, S.T. [Quantum Communications Victoria, School of Physics, University of Melbourne, Victoria 3010 (Australia); Jamieson, D.N. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Roberts, A. [School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2007-05-15

    We present a computational and experimental study investigating the optical properties of nanoscale silver composite metamaterials fabricated by ion beam lithography. Both simulations and experimental results demonstrate high transmission efficiencies in the near infra-red through these devices. Implications for experimentally verifying the calculated near-field distributions of these materials are also discussed.

  4. A bio-optical model suitable for use in forward and inverse coupled atmosphere-ocean radiative transfer models

    International Nuclear Information System (INIS)

    Zhang Kexin; Li Wei; Eide, Hans; Stamnes, Knut

    2007-01-01

    A simple, yet complete bio-optical model for the inherent optical properties (IOPs) of oceanic waters is developed. This bio-optical model is specifically designed for use in comprehensive, multiple scattering radiative transfer models for the coupled atmosphere-ocean system. Such models can be used to construct next-generation algorithms for simultaneous retrieval of aerosol and marine parameters. The computed remote sensing reflectance R rs (λ) is validated against field measurements of R rs (λ) compiled in the SeaBASS data base together with simultaneous chlorophyll concentrations (C) ranging from 0.03 to 100mgm -3 . This connection between R rs and C is used to construct a chlorophyll concentration retrieval algorithm that yields reliable results for a large range of chlorophyll concentrations. The overall performance of a MODIS/VIIRS chlorophyll concentration retrieval algorithm is found to be less satisfactory

  5. Accurate Measurement of the Optical Constants n and k for a Series of 57 Inorganic and Organic Liquids for Optical Modeling and Detection.

    Science.gov (United States)

    Myers, Tanya L; Tonkyn, Russell G; Danby, Tyler O; Taubman, Matthew S; Bernacki, Bruce E; Birnbaum, Jerome C; Sharpe, Steven W; Johnson, Timothy J

    2018-04-01

    For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties that include chemical structure, optical band strength, volatility, and viscosity. By obtaining the optical constants, one can model most optical phenomena in media and at interfaces including reflection, refraction, and dispersion. Based on the works of others, we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organic, and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for dimethyl methylphosphonate (DMMP) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.

  6. Parameterization of the inherent optical properties of Murchison Bay, Lake Victoria

    Science.gov (United States)

    Okullo, Willy; Ssenyonga, Taddeo; Hamre, Børge; Frette, Øyvind; Sørensen, K.; Stamnes, Jakob J.; Steigen, Andreas; Stamnes, Knut

    2007-12-01

    Lake Victoria, Africa's largest freshwater lake, suffers greatly from negative changes in biomass of species of fish and also from severe eutrophication. The continuing deterioration of Lake Victoria's ecological functions has great long-term consequences for the ecosystem benefits it provides to the countries bordering its shores. However, knowledge about temporal and spatial variations of optical properties and how they relate to lake constituents is important for a number of reasons such as remote sensing, modeling of underwater light fields, and long-term monitoring of lake waters. Based on statistical analysis of data from optical measurements taken during half a year of weekly cruises in Murchison Bay, Lake Victoria, we present a three-component model for the absorption and a two-component model for the scattering of light in the UV and the visible regions of the solar spectrum along with tests of their ranges of validity. The three-component input to the model for absorption is the chlorophyll-a (Chl-a), total suspended materials concentrations, and yellow substance absorption, while the two-component input to the model for scattering is the Chl-a concentration and total suspended materials.

  7. Optical properties of uniformly sized silicon nanocrystals within a single silicon oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    En Naciri, A., E-mail: aotmane.en-naciri@univ-lorraine.fr [Universite de Lorraine, LCP-A2MC, Institut Jean Barriol (France); Miska, P. [Universite de Lorraine, Institut Jean Lamour CNRS UMR 7198 (France); Keita, A.-S. [Max Planck Institute for Intelligent Systems (Germany); Battie, Y. [Universite de Lorraine, LCP-A2MC, Institut Jean Barriol (France); Rinnert, H.; Vergnat, M. [Universite de Lorraine, Institut Jean Lamour CNRS UMR 7198 (France)

    2013-04-15

    Silicon nanocrystals (Si-NC) with different sizes (2-6 nm) are synthesized by evaporation. The system is composed of a single Si-NC layer that is well controlled in size. The numerical modeling of such system, without a large size distribution, is suitable to perform easily the optical calculations. The nanocrystal size and confinement effects on the optical properties are determined by photoluminescence (PL) measurements, absorption in the UV visible range, and spectroscopic ellipsometry (SE). The optical constants and the bandgap energies are then extracted and analyzed. The dependence of the optical responses with the decrease of the size of the Si-NC occurs not only with a drastic reduction of the amplitudes of dielectric function but also by a significant expansion of the optical gap. This study supports the idea of a presence of a critical size of Si-NC for which the confinement effect becomes weak. The evolution of those bandgap energies are discussed in comparison with values reported in literature.

  8. Using optical remote sensing model to estimate oil slick thickness based on satellite image

    International Nuclear Information System (INIS)

    Lu, Y C; Tian, Q J; Lyu, C G; Fu, W X; Han, W C

    2014-01-01

    An optical remote sensing model has been established based on two-beam interference theory to estimate marine oil slick thickness. Extinction coefficient and normalized reflectance of oil are two important parts in this model. Extinction coefficient is an important inherent optical property and will not vary with the background reflectance changed. Normalized reflectance can be used to eliminate the background differences between in situ measured spectra and remotely sensing image. Therefore, marine oil slick thickness and area can be estimated and mapped based on optical remotely sensing image and extinction coefficient

  9. Magneto-optic properties and optical parameter of thin MnCo films

    Directory of Open Access Journals (Sweden)

    E Attaran Kakhki

    2009-09-01

    Full Text Available Having precise hysterics loop of thin ferroelectric and ferromagnetic layers for optical switching and optical storages are important. A hysterieses loop can be achieved from a phenomenon call the magneto-optic effect. The magneto-optic effect is the rotation of a linear polarized electromagnetic wave propagated through a ferromagnetic medium. When light is transmitted through a layer of magnetic material the result is called the Faraday effects and in the reflection mode Kerr effect. In the present work we prepared a thin layer of MnxCo3-xO4 (0≤ x ≤ 1 and a binary form of MnO/Co3O4 by the spray pyrolysis method. The films have been characterized by a special set up of magneto-optic hysterics loop plotter containing a polarized He- Ne laser beam and a special electronic circuit. Faraday rotation were measured for these films by hysterics loop plotter and their optical properties were also obtained by spatial software designed for this purpose according to Swane Poel theoretical method. The measurements show that the samples at diluted Mn study has are ferromagnetic and the magneto-optic rotation show a good enhance respect to the single Co layers. Also, the study has shown that the MnCo oxide layer have two different energy gaps and by increasing of Mn this energy decreases and fall to 0.13 eV.

  10. Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model.

    Science.gov (United States)

    Petelczyc, K; Bará, S; Lopez, A Ciro; Jaroszewicz, Z; Kakarenko, K; Kolodziejczyk, A; Sypek, M

    2011-12-05

    The paper analyzes the imaging properties of the light sword optical element (LSOE) applied as a contact lens to the presbyopic human eye. We performed our studies with a human eye model based on the Gullstrand parameterization. In order to quantify the discussion concerning imaging with extended depth of focus, we introduced quantitative parameters characterizing output images of optotypes obtained in numerical simulations. The quality of the images formed by the LSOE were compared with those created by a presbyopic human eye, reading glasses and a quartic inverse axicon. Then we complemented the numerical results by an experiment where a 3D scene was imaged by means of the refractive LSOE correcting an artificial eye based on the Gullstrand model. According to performed simulations and experiments the LSOE exhibits abilities for presbyopia correction in a wide range of functional vision distances.

  11. Optical properties of humic substances and CDOM: relation to structure.

    Science.gov (United States)

    Boyle, Erin S; Guerriero, Nicolas; Thiallet, Anthony; Del Vecchio, Rossana; Blough, Neil V

    2009-04-01

    The spectral dependencies of absorption and fluorescence emission (emission maxima (lamdamax), quantum yields (phi), and mean lifetimes (taum)) were acquired for a commercial lignin, Suwannee River humic (SRHA) and fulvic (SRFA) acids, and a series solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts). These parameters were compared with the relative average size and total lignin phenol content (TLP). TLP was strongly correlated with absorption at 280 and 355 nm for the MAB extracts, SRHA, and SRFA. The spectral dependence of lamdamax, phi), and taum was very similar for all samples, suggesting a common photophysical and thus structural basis. A strong decrease of phi and taum with increasing average size indicates that intramolecular interactions must be important. When combined with previous work, the results lead us to conclude that the optical properties commonly associated with terrestrial humic substances and chromophoric dissolved organic matter arise primarily from an ensemble of partially oxidized lignins derived from vascular plant sources. Theyfurther provide additional support for an electronic interaction model in which intramolecular energy transfer, excited-state electron transfer, as well as charge transfer likely play important roles in producing the observed optical and photochemical properties of these materials.

  12. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    Science.gov (United States)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  13. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    Science.gov (United States)

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  14. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  15. Optical properties of zinc titanate perovskite prepared by reactive RF sputtering

    Science.gov (United States)

    Müllerová, Jarmila; Šutta, Pavol; Medlín, Rostislav; Netrvalová, Marie; Novák, Petr

    2017-12-01

    In this paper we report results from optical transmittance spectroscopy complemented with data on structure from XRD measurements to determine optical properties of a series of ZnTiO3 perovskite thin films deposited on glass by reactive magnetron co-sputtering. The members of the series differ by the titanium content that was revealed as an origin of the changes not only in structure but also in dispersive optical properties. Low porosity has been discovered and calculated using the Bruggeman effective medium approximation. An apparent blue-shift of the optical band gap energies with increasing titanium content was observed. The observed band gap engineering is a good prospective for eg optoelectronic and photocatalytic applications of ZnTiO3.

  16. Optical Properties of Complex Plasmonic Materials Studied with Extended Effective Medium Theories Combined with Rigorous Coupled Wave Analysis

    Directory of Open Access Journals (Sweden)

    Elie Nadal

    2018-02-01

    Full Text Available In this study we fabricate gold nanocomposites and model their optical properties. The nanocomposites are either homogeneous films or gratings containing gold nanoparticles embedded in a polymer matrix. The samples are fabricated using a recently developed technique making use of laser interferometry. The gratings present original plasmon-enhanced diffraction properties. In this work, we develop a new approach to model the optical properties of our composites. We combine the extended Maxwell–Garnett model of effective media with the Rigorous Coupled Wave Analysis (RCWA method and compute both the absorption spectra and the diffraction efficiency spectra of the gratings. We show that such a semi-analytical approach allows us to reproduce the original plasmonic features of the composites and can provide us with details about their inner structure. Such an approach, considering reasonably high particle concentrations, could be a simple and efficient tool to study complex micro-structured system based on plasmonic components, such as metamaterials.

  17. Evaluation of aerosol optical properties of GEOS-Chem over East Asia during the DRAGON-Asia 2012 campaign

    Science.gov (United States)

    Jo, D. S.; Park, R.; Kim, J.

    2015-12-01

    A nested version of 3-D chemical transport model (GEOS-Chem v9-01-02) is evaluated over East Asia during the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia 2012 campaign period, focusing on fine-mode aerosol optical depth (fAOD) and single scattering albedo (SSA). Both are important to assess the effect of anthropogenic aerosols on climate. We compare the daily mean simulated optical properties of aerosols with the observations from DRAGON-Asia campaign for March-May, 2012 (provided in level 2.0: cloud screened and quality assured). We find that the model reproduces the observed daily variability of fAOD (R=0.67), but overestimates the magnitude by 30%, which is in general consistent with other global model comparisons from ACCMIP. However, a significant high bias in the model is found compared to the observed SSA at 440 nm, which is important for determining the sign of aerosol radiative forcing. In order to understand causes for this gap we conduct several sensitivity tests by changing source magnitudes and input parameters of aerosols, affecting the aerosol optical properties under various atmospheric conditions, which allows us to reduce the gap and to find the optimal values in the model.

  18. Strain induced optical properties of BaReO3

    Science.gov (United States)

    Kumavat, Sandip R.; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-05-01

    Here, we have performed strain induce optical properties of BaReO3 by using density functional theory (DFT). We noticed that after applying intrinsic and extrinsic strain to the BaReO3, it shows the metallic behavior. We also studied optical properties, which show good activity in the ultraviolet region. The results show that after applying intrinsic and extrinsic strain to BaReO3 the absorption peaks are shifted towards the high UV region of the spectrum. Thus, we concluded that, BaReO3 material with extrinsic strain can be useful for high frequency UV device and optoelectronic devices.

  19. Optical and transport properties of polyaniline films

    International Nuclear Information System (INIS)

    Tzamalis, Georgios

    2002-01-01

    This thesis presents the results of a comprehensive study on the transport and optical properties of polyaniline (PANI) films. The films are derived by protonation (doping) of the emeraldine base form of polyaniline, as synthesized in Durham, with either 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or 10-camphorsulfonic acid. Thus, two distinct PANI systems are obtained: PANI-CSA and PANI-AMPSA. The variation of the doping level can affect the metallic properties of the final system, so that samples close to the boundary as well as samples at either side of a disorder induced metal-insulator can be obtained. The relation between the doping level and the degree of disorder, along with the existence of an inherently metallic behaviour in PANI, are investigated through a series of experiments. Temperature dependent dc conductivity measurements ranging from 10-295 K are performed using a closed loop helium cryostat under dynamic vacuum (∼10 -5 mbar). From the conductivity data curves, typical fingerprints of the metallic behaviour are detected for certain samples and an initial estimate of the degree of disorder is implicitly attained. More specific information regarding the microscopic contributions to the transport mechanisms is obtained via low temperature (down to 1.5 K) magnetoconductance measurements on selected samples. The magnetic field dependence of conductivity for fields up to 14 T is measured and the suitability of the localization-interaction model for the understanding of the transport mechanism in PANI is examined. Infrared reflectivity (20-9000 cm -1 ) measurements on samples of both PANI systems are performed. The experimental configuration permits the determination of the sample's absolute reflectivity. The optical constants are deduced from Kramers-Kronig analysis of the reflectivity data. Typical features of metallic behaviour are examined and analysed in the context of the localization modified Drude model. The results are shown to be

  20. Study of the optical properties of solid tissue phantoms using single and double integrating sphere systems

    CSIR Research Space (South Africa)

    Monem, S

    2015-12-01

    Full Text Available light propagation mechanisms inside the tissues. In this work, two calibration models based on measurements adopting integrating sphere systems have been used to determine the optical properties of the studied solid phantoms. Integrating sphere...

  1. Effect of thickness on optical properties of thermally evaporated SnS films

    International Nuclear Information System (INIS)

    Selim, M.S.; Gouda, M.E.; El-Shaarawy, M.G.; Salem, A.M.; Abd El-Ghany, W.A.

    2013-01-01

    The effect of film thickness on the structure and optical properties of thermally evaporated SnS film has been studied. SnS films with different thicknesses in the range 152–585 nm were deposited onto clean glass substrates at room temperature. X-ray diffraction study revealed that SnS films of thickness ≥ 283 nm are crystalline, whereas films of lower thickness exhibit poor crystalline with more amorphous background. The crystalline nature of the lower film thickness has been confirmed using transmission electron microscope and the corresponding electron diffraction pattern. The thicker film samples showed nearly stoichiometric chemical composition; however, thinner samples are deficient in S and rich in Sn. The optical property of the deposited films has been investigated in the wavelength range 350–2500 nm. The refractive index increases notably with increasing film thickness. The refractive index for the investigated film thicknesses are adequately described by the effective-single-oscillator model. The static refractive index and the static dielectric constant have been calculated. Analysis of the optical absorption coefficient revealed the presence of direct optical transition and the corresponding band gap values were found to decrease as the film thickness increases. - Highlights: ► X-ray diffraction was used to study the structure of SnS films. ► Transmission electron microscope confirms the crystalline state of SnS films. ► The refractive index increases notably with increasing the film thickness. ► The optical band gap of SnS films decreases with increasing film thickness

  2. Fast neutrons and the optical model: some observations

    International Nuclear Information System (INIS)

    Smith, A.B.; Lawson, R.D.; Guenther, P.T.

    1985-01-01

    The optical model of fast-neutron-induced phenomena is considered from the observational viewpoint. Experimental characteristics governing the reliability of the modeling are outlined with attention to implications on model parameters and their uncertainties. The physical characteristics of experimentally-deduced ''regional'' and ''specific'' model parameters are examined including: parameter trends with mass and energy, implications of collective effects, and fundamental relations between real and imaginary potentials. These physical properties are illustrated by studies in the A=60 and 90 regions. General trends are identified and outstanding issues cited. Throughout, the approach is that of observational interpretation for basic and applied purposes. 20 refs., 11 figs., 2 tabs

  3. Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics

    Directory of Open Access Journals (Sweden)

    V. S. Gorelik

    2017-12-01

    Full Text Available At present, it is very important to create new types of mirrors, nonlinear light frequency transformers and optical filters with controlled optical properties. In this connection, it is of great interest to study photonic crystals. Their dielectric permittivity varies periodically in space with a period permitting Bragg diffraction of light. In this paper, we have investigated the optical properties of mesoporous three-dimensional (3D opal-type and one-dimensional (1D anodic alumina photonic crystals, filled with different dielectrics, ferroelectrics and piezoelectrics. We have compared the optical properties of initial mesoporous photonic crystals and filled with different substances. The possibility of mesoporous photonic crystals using selective narrow-band light filters in Raman scattering experiments and nonlinear mirrors has been analyzed. The electromagnetic field enhancing in the case of exciting light frequency close to the stop band edges has been established. The optical harmonics and subharmonics generation in mesoporous crystals, filled with ferroelectrics and piezoelectrics was proposed.

  4. Optical and luminescence properties of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Rusli

    1996-03-01

    In this thesis, the optical and luminescence properties of hydrogenated amorphous carbon(a - C:H) thin films deposited using a Plasma Enhanced Chemical Vapour Deposition (PECVD) system are studied. A photoluminescence (PL) measuring system with a wavelength range of 300nm to 900nm, used for the above study, has been set up as a main part of the research. Firstly, a simple yet powerful method developed to solve for the optical constants and thickness of a - C : H deposited on Si is presented. This is followed by an investigation into the optical properties of band gap modulated a - C : H thin films superlattice structures. a - C : H films, obtained from a wide range of deposition conditions, are then characterised in terms of their optical absorption, infrared absorption, Raman scattering, fraction of sp 2 to sp 3 bondings and unpaired electron spin density. Their PL characteristics, such as the peak emission energy, spectral bandwidth, quantum efficiency, fatigue and polarisation memory are investigated in relation to their microstructure. The results, taken together with those obtained from photoconductivity study and electric field quenching of PL, are used to understand the origin of the strong PL in a - C : H. Preliminary work on a - C : H electroluminescent celbis also presented. (author)

  5. Electronic and Optical Properties of Aluminum Oxide Before and After Surface Reduction by Ar+ Bombardment

    Directory of Open Access Journals (Sweden)

    D. Tahir

    2014-08-01

    Full Text Available The electronic and optical properties of a-Al2O3 after induced by 3-keV Ar+ sputtering have been studied quantitatively by use of reflection electron energy loss spectroscopy (REELS spectra. The band gap values of a-Al2O3 was determined from the onset values of the energy loss spectrum to the background level of REELS spectra as a function of time Ar+ bombardment. The bandgap changes from 8.4 eV before sputtering to 6.2 eV after 4 minutes of sputtering.The optical properties of α-Al2O3 thin films have been determined by comparing the experimental cross section obtained from reflection electron energy loss spectroscopy with the theoretical inelastic scattering cross section, deduced from the simulated energy loss function (ELF by using QUEELS-ε(k-REELS software. The peak assignments are based on ELF and compared with reported data on the electronic structure of α-Al2O3 obtained using different techniques. The results demonstrate that the electronic and optical properties before and after surface reduction will provide further understanding in the fundamental properties of α-Al2O3 which will be useful in the design, modeling and analysis of devices applications performance.

  6. Measuring Mechanical Properties Of Optical Glasses

    Science.gov (United States)

    Tucker, Dennis S.; Nichols, Ronald L.

    1989-01-01

    Report discusses mechanical tests measuring parameters of strength and fracture mechanics of optical glasses. To obtain required tables of mechanical properties of each glass of interest, both initial-strength and delayed-fracture techniques used. Modulus of rupture measured by well-known four-point bending method. Initial bending strength measured by lesser-known double-ring method, in which disk of glass supported on one face near edge by larger ring and pressed on its other face by smaller concentric ring. Method maximizes stress near center, making it more likely specimen fractures there, and thereby suppresses edge effects. Data from tests used to predict reliabilities and lifetimes of glass optical components of several proposed spaceborne instruments.

  7. Electronic properties and optical absorption of a phosphorene quantum dot

    Science.gov (United States)

    Liang, F. X.; Ren, Y. H.; Zhang, X. D.; Jiang, Z. T.

    2018-03-01

    Using the tight-binding Hamiltonian approach, we theoretically study the electronic and optical properties of a triangular phosphorene quantum dot (PQD) including one normal zigzag edge and two skewed armchair edges (ZAA-PQD). It is shown that the energy spectrum can be classified into the filled band (FB), the zero-energy band (ZB), and the unfilled band (UB). Numerical calculations of the FB, ZB, and UB probability distributions show that the FB and the UB correspond to the bulk states, while the ZB corresponds to the edge states, which appear on all of the three edges of the ZAA-PQD sharply different from the other PQDs. We also find that the strains and the electric fields can affect the energy levels inhomogeneously. Then the optical properties of the ZAA-PQD are investigated. There appear some strong low-energy optical absorption peaks indicating its sensitive low-energy optical response that is absent in other PQDs. Moreover, the strains and the electric fields can make inhomogeneous influences on the optical spectrum of the ZAA-PQD. This work may provide a useful reference for designing the electrical, mechanical, and optical PQD devices.

  8. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores: OPTICAL AND CHEMICAL PROPERTIES OF BROWN CARBON AEROSOLS

    Energy Technology Data Exchange (ETDEWEB)

    Bluvshtein, Nir [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Lin, Peng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Flores, J. Michel [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Segev, Lior [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Mazar, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Tas, Eran [The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot Israel; Snider, Graydon [Department of Physics and Atmospheric Science, Dalhousie University, Halifax Nova Scotia Canada; Weagle, Crystal [Department of Chemistry, Dalhousie University, Halifax Nova Scotia Canada; Brown, Steven S. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Laskin, Alexander [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Rudich, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel

    2017-05-23

    The radiative effects of biomass burning aerosols on regional and global scale is substantial. Accurate modeling of the radiative effects of smoke aerosols require wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols between 300 and 650 nm wavelength during a regional bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders of magnitude, changing the size-weighted single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and aged biomass burning aerosols. In addition, PM2.5 filter samples were collected for detailed off-line chemical analysis of the water soluble organics that contribute to light absorption. Nitrophenols were identified as the main organic species responsible for the increased absorption at 400-500 nm. These include species such as 4- nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosol from biomass burning in absorption of solar radiation and in effective radiative forcing.

  9. Model of optical phantoms thermal response upon irradiation with 975 nm dermatological laser

    Science.gov (United States)

    Wróbel, M. S.; Bashkatov, A. N.; Yakunin, A. N.; Avetisyan, Yu. A.; Genina, E. A.; Galla, S.; Sekowska, A.; Truchanowicz, D.; Cenian, A.; Jedrzejewska-Szczerska, M.; Tuchin, V. V.

    2018-04-01

    We have developed a numerical model describing the optical and thermal behavior of optical tissue phantoms upon laser irradiation. According to our previous studies, the phantoms can be used as substitute of real skin from the optical, as well as thermal point of view. However, the thermal parameters are not entirely similar to those of real tissues thus there is a need to develop mathematical model, describing the thermal and optical response of such materials. This will facilitate the correction factors, which would be invaluable in translation between measurements on skin phantom to real tissues, and gave a good representation of a real case application. Here, we present the model dependent on the data of our optical phantoms fabricated and measured in our previous preliminary study. The ambiguity between the modeling and the thermal measurements depend on lack of accurate knowledge of material's thermal properties and some exact parameters of the laser beam. Those parameters were varied in the simulation, to provide an overview of possible parameters' ranges and the magnitude of thermal response.

  10. Shift in optical properties of Mn doped CdS (A DFT+U study)

    Science.gov (United States)

    khan, M. Junaid Iqbal; Kanwal, Zarfishan; Nauman Usmani, M.

    2018-01-01

    Current study is based on PBE-GGA and GGA+U computational approach for calculating optical properties of Mn doped CdS. Cd atom in host CdS lattice (rocksalt structure) are substituted with Mn at various lattice positions and shift in optical properties is observed by increasing supercell size by employing PBE-GGA and Hubbard term. Optical properties vary with changing supercell size and show significant change for GGA+U. Blue shift in absorption spectrum and plots for PDOS, TDOS are in accordance with existing reported work. Moreover strong p-d hybridization is observed due to Mn and S orbital interactions and localization of d-states are scrutinized in vicinity of Fermi level or conduction band minima. GGA+U absorption curve shows redshift and a tremendous change in optical properties is observed due to different bonding. Doping Mn into CdS host lattice illustrates enhancement in Opto-electrical properties which maximizes CdS:Mn system scope in optoelectronic devices.

  11. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  12. Electronic structure and optical properties of prominent phases of T i ...

    Indian Academy of Sciences (India)

    2017-06-19

    Jun 19, 2017 ... ... in excellent agreement with experimental results. Our calculation of optical properties reveals that maximum value of the transmittance in anatase phase of ( T i O 2 ) may be achieved by considering the anisotropic behaviour of the optical spectra in the optical region for transparent conducting application.

  13. Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Sergeeva, E A; Agrba, P D; Krainov, A D; Ezhov, A A; Shuleiko, D V; Kashkarov, P K; Zabotnov, S V

    2015-01-01

    Due to their biocompatibility silicon nanoparticles have high potential in biomedical applications, especially in optical diagnostics. In this paper we analyze properties of the silicon nanoparticles formed via laser ablation in water and study the possibility of their application as contrasting agents in optical coherence tomography (OCT). The nanoparticles suspension was produced by picosecond laser irradiation of monocrystalline silicon wafers in water. According to transmission electron microcopy analysis the silicon nanoparticles in the obtained suspension vary in size from 2 to 200 nm while concentration of the particles is estimated as 10 13 cm −3 . The optical properties of the suspension in the range from 400 to 1000 nm were studied by spectrophotometry measurements revealing a scattering coefficient of about 0.1 mm −1 and a scattering anisotropy factor in the range of 0.2–0.4. In OCT study a system with a central wavelength of 910 nm was employed. Potential of the silicon nanoparticles as a contrasting agent for OCT is studied in experiments with agarose gel phantoms. Topical application of the nanoparticles suspension allowed the obtaining of the contrast of structural features of phantom up to 14 dB in the OCT image. (paper)

  14. Density functional theory study of the conformation and optical properties of hybrid Au(n)-dithienylethene systems (n = 3, 19, 25).

    Science.gov (United States)

    Fihey, Arnaud; Kloss, Benedikt; Perrier, Aurélie; Maurel, François

    2014-07-03

    We present a theoretical study of Aun-dithienylethene hybrid systems (n = 3, 19, 25), where the organic molecule is covalently linked to a nanometer-scaled gold nanoparticle (NP). We aim at gaining insights on the optical properties of such photochromic devices and proposing a size-limited gold aggregate model able to recover the optical properties of the experimental system. We thus present a DFT-based calculation scheme to model the ground-state (conformation, energetic parameters) and excited-state properties (UV-visible absorption spectra) of this type of hybrid systems. Within this framework, the structural parameters (adsorption site, orientation, and internal structure of the photochrome) are found to be slightly dependent on the size/shape of the gold aggregate. The influence of the gold fragment on the optical properties of the resulting hybrid system is then discussed with the help of TD-DFT combined with an analysis of the virtual orbitals involved in the photochromic transitions. We show that, for the open hybrid isomer, the number of gold atoms is the key parameter to recover the photoactive properties that are experimentally observed. On the contrary, for hybrid closed systems, the three-dimensional structure of the metallic aggregate is of high impact. We thus conclude that Au25 corresponds to the most appropriate fragment to model nanometer-sized NP-DTE hybrid device.

  15. Structural and optical properties of Na-doped ZnO films

    Science.gov (United States)

    Akcan, D.; Gungor, A.; Arda, L.

    2018-06-01

    Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.

  16. Studies on optical properties of antimony doped SnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Gürakar, Sibel, E-mail: sgurakar@eng.ankara.edu.tr; Serin, Tülay, E-mail: serin@eng.ankara.edu.tr; Serin, Necmi, E-mail: nserin@eng.ankara.edu.tr

    2015-10-15

    Highlights: • Antimony doped tin oxide thin films were grown by spray method on glass substrates. • The antimony doping was varied from 0 to 4 at%. • The structural properties of the films were investigated by X-ray diffraction method. • A simple analysis according to Swanepoel's method was applied to derive the real and imaginary parts of the complex index of refraction plus film thickness. • The dispersion of refractive index was investigated in terms of the single-oscillator Wemple and DiDomenico model to determine the optical parameters. - Abstract: Antimony doped tin oxide thin films were grown by spray method on microscope glass substrates. The antimony doping was varied from 0 to 4 at%. The structural properties of the films were investigated by X-ray diffraction method. The optical transmittances of thin films were measured with UV-Vis-NIR spectrometer in the 300–2000 nm wavelength range. A simple analysis according to Swanepoel's method was applied to derive the real and imaginary parts of the complex index of refraction plus film thickness. The dispersion of refractive index was investigated in terms of the single-oscillator Wemple and DiDomenico model and the important oscillating parameters such as the dispersion energy E{sub d}, the oscillation energy E{sub o}, the high frequency dielectric constant ε{sub ∞} were determined. The analysis of the refractive index has been carried out to calculate the lattice dielectric constant ε{sub L} and the ratio of carrier concentration to the effective mass N/m*. The real and imaginary parts of the electronic dielectric constant and optical conductivity were analyzed. The optical band gap, E{sub g} values of the films were obtained from the spectral dependence of the absorption coefficient, using the Tauc relation.

  17. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models

    Science.gov (United States)

    Baran, Anthony J.; Ishimoto, Hiroshi; Sourdeval, Odran; Hesse, Evelyn; Harlow, Chawn

    2018-02-01

    The bulk single-scattering properties of various randomly oriented aggregate ice crystal models are compared and contrasted at a number of frequencies between 89 and 874 GHz. The model ice particles consist of the ten-branched plate aggregate, five-branched plate aggregate, eight-branched hexagonal aggregate, Voronoi ice aggregate, six-branched hollow bullet rosette, hexagonal column of aspect ratio unity, and the ten-branched hexagonal aggregate. The bulk single-scattering properties of the latter two ice particle models have been calculated using the light scattering methods described in Part I, which represent the two most extreme members of an ensemble model of cirrus ice crystals. In Part I, it was shown that the method of physical optics could be combined with the T-matrix at a size parameter of about 18 to compute the bulk integral ice optical properties and the phase function in the microwave to sufficient accuracy to be of practical value. Here, the bulk single-scattering properties predicted by the two ensemble model members and the Voronoi model are shown to generally bound those of all other models at frequencies between 89 and 874 GHz, thus representing a three-component model of ice cloud that can be generally applied to the microwave, rather than using many differing ice particle models. Moreover, the Voronoi model and hollow bullet rosette scatter similarly to each other in the microwave. Furthermore, from the various comparisons, the importance of assumed shapes of the particle size distribution as well as cm-sized ice aggregates is demonstrated.

  18. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films

    International Nuclear Information System (INIS)

    Sakr, G.B.; Yahia, I.S.; Fadel, M.; Fouad, S.S.; Romcevic, N.

    2010-01-01

    Research highlights: → The structural, optical dispersion parameters and the Raman spectroscopy have been studied for CuSe thin films. → X-ray diffraction results indicate the amorphous nature of the thermally evaporated CuSe thin films. → The refractive index shows an anomalous dispersion at the lower wavelength (absorption region) and a normal dispersion at the higher wavelengths (transparent region). → The refractive index dispersion obeys the single oscillator model proposed by Wemple and DiDomenico WDD model and the single oscillator parameters were determined. → The band gap of CuSe thin films was determined by three novel methods i.e. (relaxation time, real and imaginary dielectric constant and real and imaginary optical conductivity) which in a good agreement with the Tauc band gap value. - Abstract: The paper describes the structural and optical properties of CuSe thin films. X-ray diffraction pattern indicates that CuSe thin film has an amorphous structure. Transmittance T(λ) and reflectance R(λ) measurements in the wavelength range (300-1700 nm) were used to calculate the refractive index n(λ), the absorption index and the optical dispersion parameters according to Wemple and Didomenico WDD model. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. The optical bandgap has been estimated and confirmed by four different methods. The value for the direct bandgap for the as-deposited CuSe thin film approximately equals 2.7 eV. The Raman spectroscopy was used to identify and quantify the individual phases presented in the CuSe films.

  19. Optical properties of wet paper and simulation of the effect of autoprofiling on gas-fired IR drying

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, K T; Lampinen, M J

    1991-01-01

    We have developed new models to determine the radiative heat transfer of gas-fired infrared dryers. A computer program based on the mathematical models is developed further. This program is used for studying the autoprofiling effect in gas-fired infrared drying. Optical properties of paper samples of different moisture contents as a function of wavelength are systematically measured by using FT-lR specrometer and integraing sphere techniques. These measurements covered the moisture content range of 6- 150 %. A new wavelength range (1.2- 1.9 mm), not properly covered by our earlier measurements, is measured by using a liquid nitrogen cooled detector. The total measured wavelength range is 1.0-20.0 mm. The moisture dependence of the optical properties of coating are calculated by using a theoretical model developed in State Research Centre of Finland, Laboratory of Optoelectronics. The radiation properties of component surfaces of the IR dryer were either measured or taken from literature. The mathematical models are based on the calculation of radiation energy balance between the main surfaces and layers in the dryer section. The energy efficiency can be calculated, when the temperatures of the radiator and the optical properties of all parts of the dryer are known. A computer program based on the models is developed further. The dryer efficiency as a function of the moisture content of paper is calculated. The extent of the autoprofiling effect in gas-fired IR drying is hereby achieved for light weight coated paper web. If the variation in moisture contents is high, the autoprofiling effect takes place and reduces the moisture variation. However, if the moisture variation is low, it is not a very significant phenomenon. The simulation results are compared to a pilot coater trial made in Cenre Technique du Papier, Grenoble.

  20. Density functional study of : Electronic and optical properties

    Indian Academy of Sciences (India)

    K C Bhamu

    3Department of Physics, Swami Keshvanand Insitute of Technology, Management and Gramothan, ... Published online 20 June 2017. Abstract. This paper focusses on the electronic and optical properties of scandium-based silver delafossite.

  1. Novel optical properties of CdS:Zn rocksalt system (a theoretical study)

    Science.gov (United States)

    Khan, M. Junaid Iqbal; Nauman Usmani, M.; Kanwal, Zarfishan

    2017-11-01

    In present computational study, we focus on optical properties of Zn doped CdS for 1  ×  1  ×  2 and 2  ×  2  ×  2 supercell configurations. Cd atoms are substituted with Zn atoms and results for optical properties demonstrate different trends due to interaction of Zn with S atoms. The study has been performed by PBE-GGA approach using Wien2K within framework of DFT. TDOS and PDOS represent that S-3p states are responsible for conduction. For large supercell configuration, a tremendous change in optical properties has been observed due to different bonding. Optical absorption tends to increase in visible range which supports candidacy of Zn doped CdS for enhanced optoelectronic and nanotechnology applications.

  2. Fabrication of CdSe nanocrystals using porous anodic alumina and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Laatar, Fakher, E-mail: fakher8laatar@gmail.com [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Science faculty of Bizerte–Carthage University (Tunisia); Hassen, Mohamed [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Amri, Chohdi [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Laatar, Fekri [Laboratory of Physical Chemistry of Minerals and Materials Applications, National Research Center for Materials Science, Technopole Borj Cedria (Tunisia); Smida, Alia; Ezzaouia, Hatem [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-10-15

    In this paper, Porous anodic alumina (PAA) template with highly ordered nanopores structure was synthesized on aluminum foils by two step anodization process. PAA template has hexagonal pores with average size between 30 and 180 nm. L-cysteine (L-Cys) functionalized cadmium selenide nanocrystals (CdSe NCs) were successfully embedded inside PAA layers by simple immersion in aqueous solution. The effect of pore diameter enlargement on the microstructure of CdSe NCs/PAA films was systematically studied by FE-SEM, XRD, EDX, Raman, UV–VIS absorbance and PL analysis. FE-SEM microscopy was used to investigate the surface morphology of PAA templates before and after CdSe NCs deposition. XRD investigation demonstrates that CdSe NCs into PAA templates were cubic in nature with zinc-blende structure. Raman measurements exhibit the characteristic modes of CdSe on the PAA layers as well as the films crystallinity as function of widening pores diameter. Optical properties of deposited CdSe NCs on PAA templates have been investigated using optical absorption and PL techniques. Photoluminescence spectroscopy has been used to determine the bandgap energy and the average size of CdSe NCs deposited on PAA layer. This method involves fitting the experimental spectra, using a model based on quantum confinement of electrons in CdSe nanocrystals having spherical and cylindrical forms (Quantum Dots (QDs) and Quantum Wires (QWs)). This model allows correlation between the PL spectra and the microstructure of the CdSe/PAA. Both photoluminescence and optical absorption show that the PL peak energy and the optical absorption edge of CdSe NCs/PAA exhibit similar behavior with changes in nanostructure size. The spectral behaviors of optical absorption and PL are consistent with a quantum confinement model throughout the sizes and shapes of the CdSe nanocrystals of the luminescent films. The effective bandgap energies determined from the PL peaks position are in good agreement with those

  3. Fabrication of CdSe nanocrystals using porous anodic alumina and their optical properties

    International Nuclear Information System (INIS)

    Laatar, Fakher; Hassen, Mohamed; Amri, Chohdi; Laatar, Fekri; Smida, Alia; Ezzaouia, Hatem

    2016-01-01

    In this paper, Porous anodic alumina (PAA) template with highly ordered nanopores structure was synthesized on aluminum foils by two step anodization process. PAA template has hexagonal pores with average size between 30 and 180 nm. L-cysteine (L-Cys) functionalized cadmium selenide nanocrystals (CdSe NCs) were successfully embedded inside PAA layers by simple immersion in aqueous solution. The effect of pore diameter enlargement on the microstructure of CdSe NCs/PAA films was systematically studied by FE-SEM, XRD, EDX, Raman, UV–VIS absorbance and PL analysis. FE-SEM microscopy was used to investigate the surface morphology of PAA templates before and after CdSe NCs deposition. XRD investigation demonstrates that CdSe NCs into PAA templates were cubic in nature with zinc-blende structure. Raman measurements exhibit the characteristic modes of CdSe on the PAA layers as well as the films crystallinity as function of widening pores diameter. Optical properties of deposited CdSe NCs on PAA templates have been investigated using optical absorption and PL techniques. Photoluminescence spectroscopy has been used to determine the bandgap energy and the average size of CdSe NCs deposited on PAA layer. This method involves fitting the experimental spectra, using a model based on quantum confinement of electrons in CdSe nanocrystals having spherical and cylindrical forms (Quantum Dots (QDs) and Quantum Wires (QWs)). This model allows correlation between the PL spectra and the microstructure of the CdSe/PAA. Both photoluminescence and optical absorption show that the PL peak energy and the optical absorption edge of CdSe NCs/PAA exhibit similar behavior with changes in nanostructure size. The spectral behaviors of optical absorption and PL are consistent with a quantum confinement model throughout the sizes and shapes of the CdSe nanocrystals of the luminescent films. The effective bandgap energies determined from the PL peaks position are in good agreement with those

  4. Optical Properties of ZnO Nanoparticles Capped with Polymers

    Directory of Open Access Journals (Sweden)

    Atsushi Noguchi

    2011-06-01

    Full Text Available Optical properties of ZnO nanoparticles capped with polymers were investigated. Polyethylene glycol (PEG and polyvinyl pyrrolidone (PVP were used as capping reagents. ZnO nanoparticles were synthesized by the sol-gel method. Fluorescence and absorption spectra were measured. When we varied the timing of the addition of the polymer to the ZnO nanoparticle solution, the optical properties were drastically changed. When PEG was added to the solution before the synthesis of ZnO nanoparticles, the fluorescence intensity increased. At the same time, the total particle size increased, which indicated that PEG molecules had capped the ZnO nanoparticles. The capping led to surface passivation, which increased fluorescence intensity. However, when PEG was added to the solution after the synthesis of ZnO nanoparticles, the fluorescence and particle size did not change. When PVP was added to the solution before the synthesis of ZnO nanoparticles, aggregation of nanoparticles occurred. When PVP was added to the solution after the synthesis of ZnO nanoparticles, fluorescence and particle size increased. This improvement of optical properties is advantageous to the practical usage of ZnO nanoparticles, such as bioimaging

  5. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  6. Characterization of optical properties of the site of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Yepes-Ramírez, H.

    2013-01-01

    ANTARES is a neutrino detector based on a three-dimensional grid of photomultipliers tubes (PMT's) arranged in several detection lines anchored to the seabed at depth of 2.5 km in the Mediterranean Sea (40 km off the Toulon coast in France), its main physics goal is the reconstruction and identification of high energy neutrinos of extra-terrestrial origin. The PMT's register the Cherenkov light induced by relativistic charged leptons produced by the interaction of neutrinos with material in the detector surroundings. The propagation of Cherenkov light strongly depends on the optical properties of the sea water, the understanding of which is crucial in order to achieve the expected detector performance. To reach the ANTARES physics goals, good time and positioning calibration systems are required. The ANTARES optical beacon system consists of a set of pulsed light sources strategically located throughout the detector. The system is mainly used for time calibration but can also be used as a tool to study the water optical properties and their stability. In this contribution we will present the current status of our measurements of the group velocity and transmission length of light carried out between 2008 and 2011. A set of water models strategically defined will be discussed as well as some preliminary results concerning track reconstruction parameters

  7. Measurement and modelization of silica opal optical properties

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès

    2014-03-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.

  8. Measurement and modelization of silica opal optical properties

    International Nuclear Information System (INIS)

    Avoine, Amaury; Ngoc Hong, Phan; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Gallas, Bruno; Maître, Agnès; Thu Nga, Pham

    2014-01-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter. (paper)

  9. Optical properties of tetrapod nanostructured zinc oxide by chemical ...

    African Journals Online (AJOL)

    ... deposited onto indium tin oxide (ITO) coated glass substrate by thermal chemical vapor deposition (TCVD) technique. This work studies the effects of annealing temperature ranging from 100–500 ºC towards its physical and optical properties. FESEM images showed that the structural properties of tetrapod nanostructured ...

  10. Non-linear optical techniques and optical properties of condensed molecular systems

    Science.gov (United States)

    Citroni, Margherita

    2013-06-01

    Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.

  11. Can disorder act as a chemical pressure? An optical study of the Hubbard model

    Science.gov (United States)

    Barman, H.; Laad, M. S.; Hassan, S. R.

    2018-05-01

    The optical properties have been studied using the dynamical mean-field theory on a disordered Hubbard model. Despite the fact that disorder turns a metal to an insulator in high dimensional correlated materials, we notice that it can enhance certain metallic behavior as if a chemical pressure is applied to the system resulting in an increase of the effective lattice bandwidth (BW). We study optical properties in such a scenario and compare results with experiments where the BW is changed through isovalent chemical substitution (keeping electron filling unaltered) and obtain remarkable similarities vindicating our claim. We also make the point that these similarities differ from some other forms of BW tuned optical effects.

  12. Controlling steady-state and dynamical properties of atomic optical bistability

    CERN Document Server

    Joshi, Amitabh

    2012-01-01

    This book provides a comprehensive introduction to the theoretical and experimental studies of atomic optical bistability and multistability, and their dynamical properties in systems with two- and three-level inhomogeneously-broadened atoms inside an optical cavity. By making use of the modified linear absorption and dispersion, as well as the greatly enhanced nonlinearity in the three-level electromagnetically induced transparency system, the optical bistablity and efficient all-optical switching can be achieved at relatively low laser powers, which can be well controlled and manipulated. Un

  13. Correlation between the structural and optical properties of ion-assisted hafnia thin films

    Science.gov (United States)

    Scaglione, Salvatore; Sarto, Francesca; Alvisi, Marco; Rizzo, Antonella; Perrone, Maria R.; Protopapa, Maria L.

    2000-03-01

    The ion beam assistance during the film growth is one of the most useful method to obtain dense film along with improved optical and structural properties. Afnia material is widely used in optical coating operating in the UV region of the spectrum and its optical properties depend on the production method and the physical parameters of the species involved in the deposition process. In this work afnia thin films were evaporated by an e-gun and assisted during the growth process. The deposition parameters, ion beam energy, density of ions impinging on the growing film and the number of arrival atoms from the crucible, have been related to the optical and structural properties of the film itself. The absorption coefficient and the refractive index were measured by spectrophotometric technique while the microstructure has been studied by means of x-ray diffraction. A strictly correlation between the grain size, the optical properties and the laser damage threshold measurements at 248 nm was found for the samples deposited at different deposition parameters.

  14. The structural heterogeneity and optical properties in chalcogenide glass films

    International Nuclear Information System (INIS)

    Shurgalin, Max; Fuflyigin, Vladimir N; Anderson, Emilia G

    2005-01-01

    The microscopic structure and optical properties of glassy films prepared by vapour phase deposition process from the germanium-arsenic-selenium family of chalcogenide glasses have been studied. A number of different molecular clusters or domains that can exist in the glass structure are found to play a significant role in determining the absorption characteristics and refractive index of the glass films. Modifications of the glass structure can be described by a variation of relative concentrations of the clusters and can be effected by modifications of film chemical composition and deposition conditions. Changes in absorption spectra are directly correlated with variation in relative concentrations of the structural fragments with different electronic bandgap properties. Experimental results suggest structural heterogeneity and support validity of the cluster structural model for the chalcogenide glasses

  15. Influence Al doped ZnO nanostructure on structural and optical properties

    International Nuclear Information System (INIS)

    Ramelan, Ari Handono; Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-01-01

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  16. Optical and transport properties of single crystal rubrene: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lipeng [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Lu, Jing [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Faculty of Chemistry, Northeast Normal University, Changchun (China); Long, Guankui; Zheng, Fulu [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Zhang, Jingping [Faculty of Chemistry, Northeast Normal University, Changchun (China); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-12-20

    Optical and charge transport properties of single crystal rubrene are investigated using the multi-mode Brownian oscillator (MBO) model, the charge hopping model with quantum nuclear tunneling, and the Munn–Silbey approach. The MBO model is adopted to calculate absorption and photoluminescence spectra, yielding results in excellent agreement with measurements. In addition, temperature dependence of zero phonon lines (ZPL) and phonon sidebands (PSBs) of absorption spectra is also examined using the MBO model, revealing a nearly linear dependence of line widths of the ZPL and the PSBs on temperature. Model parameters obtained from MBO fitting and TD-DFT computation are then utilized for hole mobility calculations. It is found that temperature dependence of the calculated mobility is in general agreement with measurements, exhibiting “band-like” transport behavior.

  17. Magnetic ordering induced giant optical property change in tetragonal BiFeO3

    Science.gov (United States)

    Tong, Wen-Yi; Ding, Hang-Chen; Gong, Shi Jing; Wan, Xiangang; Duan, Chun-Gang

    2015-12-01

    Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.

  18. Effect of gamma radiation on the optical properties of intraocular lenses

    International Nuclear Information System (INIS)

    Naguib, N.I.

    2006-01-01

    The effect of gamma rays in the range of doses up to 150 gray on optical and thermal properties of the intraocular lenses (IOL) made of polymethyl methacrylate (PMMA) was studied. Thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC) have been performed to study the effect of gamma irradiation on the IOL. The results indicate that irradiation up to 150 Gy did not affect greatly the optical and thermal properties of the investigated IOL

  19. Local geological dust in the area of Rome (Italy): linking mineral composition, size distribution and optical properties to radiative transfer modelling

    Science.gov (United States)

    Pietrodangelo, Adriana; Salzano, Roberto; Bassani, Cristiana; Pareti, Salvatore; Perrino, Cinzia

    2015-04-01

    Airborne mineral dust plays a key role in the energy balance of the Earth - atmosphere coupled system. The microphysical and optical properties of dust drive the direct radiative effects and are in turn influenced by the dust mineralogical composition. The latter varies largely, depending on the geology of the source region. Knowledge gaps still exist about relationships between the scattering and absorption of solar and terrestrial radiation by mineral dust and its mineralogical, size distribution and particle morphology features; this also affects the reliability of radiative transfer (RT) modelling estimates (Hansell et al., 2011). In this study, these relationships were investigated focusing on the crustal suspended PM10 dust, sourced from outcropping rocks of the local geological domains around Rome (Latium, Italy). The mineral composition variability of the Latium rocks ranges from the silicate-dominated (volcanics domain) to the calcite-dominated (travertine), through lithological materials composed in different proportions by silicates, silica and calcite, mainly (limestone series, siliciclastic series) (Cosentino et al., 2009). This peculiarity of the Latium region was thus exploited to investigate the behavior of the size distribution, optical properties and radiative transfer at BOA (Bottom Of Atmosphere) of the suspended dust PM10 fraction with the variability of mineral composition. Elemental source profiles of the same dust samples were previously determined (Pietrodangelo et al., 2013). A multi-faceted analysis was performed, and outcomes from the following approaches were merged: individual-particle scanning electron microscopy combined with X-ray energy-dispersive microanalysis (SEM XEDS), bulk mineralogical analysis by X-ray diffraction (XRD), size distribution fit of the individual-particle data set and modelling of the dust optical and radiative properties. To this aim, the 6SV atmospheric radiative transfer code (Kotchenova et al., 2008

  20. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  1. Optical properties of high-Tc superconductors

    International Nuclear Information System (INIS)

    Aspnes, D.E.; Kelly, M.K.

    1989-01-01

    The authors summarize the present status of optical spectroscopy of high-T c superconductors. The optical properties of these materials resemble those of the more common transition metal oxides except for being highly anisotropic in the infrared (IR). This large IR anisotrophy and a need to rely solely on reflectance techniques has hindered progress in obtaining accurate IR data and interpreting these data in terms of microscopic mechanisms. However, experimental consistency is now being approached with single-crystal samples, although interpretations of these data remain controversial and an unequivocal demonstration of a superconducting gap structure has not yet been achieved. The mid IR exhibits an absorption band whose systematics are neither well established nor understood. The situation in the visible-near-ultraviolet (V-NUV) is better, partly because of greatly reduced optical anisotropy and the availability of alternative measurement techniques that are not strongly affected by the lower optical quality of sintered material. As polycrystalline, sintered samples can be prepared relatively easily over wide ranges of composition, doping, and chemical substitution, most work on studying the chemical systematics of these materials has been done in this spectral range and some of the structure that appears here has been positively identified

  2. Working sketch of an anatomically and optically equivalent physical model eye

    Science.gov (United States)

    Bakaraju, Ravi Chandra; Ehrmann, Klaus; Falk, Darrin; Papas, Eric B.; Ho, Arthur

    2009-02-01

    Our aim was to fabricate a bench-top physical model eye that closely replicates anatomical and optical properties of the average human eye, and to calibrate and standardize this model to suit normal viewing conditions and subsequently utilize it to understand the optical performance of corrective lens designs; especially multifocal soft contact lenses. Using available normative data on ocular biometrics and Zemax ray-tracing software as a tool, we modeled 25, 45 and 55 year-old average adult human eyes with discrete accommodation levels and pupil sizes. Specifications for the components were established following manufacturing tolerance analyses. The cornea was lathed from an optical material with refractive index of 1.376 @ 589 nm and the crystalline lenses were made of Boston RGP polymers with refractive indices of 1.423 (45 & 55yr) and 1.429 (25yr) @ 589 nm. These two materials served to model the equivalent crystalline lens of the different age-groups. A camera, the acting retina, was hosted on the motor-base having translatory and rotary functions to facilitate the simulation of different states of ametropia and peripheral refraction respectively. We report on the implementation of the first prototype and present some simulations of the optical performance of certain contact lenses with specific levels of ametropia, to demonstrate the potential use of such a physical model eye. On completion of development, calibration and standardization, optical quality assessment and performance predictions of different ophthalmic lenses can be studied in great detail. Optical performance with corrective lenses may be reliably simulated and predicted by customized combined computational and physical models giving insight into the merits and pitfalls of their designs

  3. Optical properties of nasal septum cartilage

    Science.gov (United States)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  4. Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas

    International Nuclear Information System (INIS)

    Grosenick, Dirk; Wabnitz, Heidrun; Moesta, K Thomas; Mucke, Joerg; Schlag, Peter M; Rinneberg, Herbert

    2005-01-01

    Within a clinical trial on scanning time-domain optical mammography reported on in a companion publication (part I), craniocaudal and mediolateral projection optical mammograms were recorded from 154 patients, suspected of having breast cancer. Here we report on in vivo optical properties of the subset of 87 histologically validated carcinomas which were visible in optical mammograms recorded at two or three near-infrared wavelengths. Tumour absorption and reduced scattering coefficients were derived from distributions of times of flight of photons recorded at the tumour site employing the model of diffraction of photon density waves by a spherical inhomogeneity, located in an otherwise homogeneous tissue slab. Effective tumour radii, taken from pathology, and tumour location along the compression direction, deduced from off-axis optical scans of the tumour region, were included in the analysis as prior knowledge, if available. On average, tumour absorption coefficients exceeded those of surrounding healthy breast tissue by a factor of about 2.5 (670 nm), whereas tumour reduced scattering coefficients were larger by about 20% (670 nm). From absorption coefficients at 670 nm and 785 nm total haemoglobin concentration and blood oxygen saturation were deduced for tumours and surrounding healthy breast tissue. Apart from a few outliers total haemoglobin concentration was observed to be systematically larger in tumours compared to healthy breast tissue. In contrast, blood oxygen saturation was found to be a poor discriminator for tumours and healthy breast tissue; both median values of blood oxygen saturation are the same within their statistical uncertainties. However, the ratio of total haemoglobin concentration over blood oxygen saturation further improves discrimination between tumours and healthy breast tissue. For 29 tumours detected in optical mammograms recorded at three wavelengths (670 nm, 785 nm, 843 nm or 884 nm), scatter power was derived from transport

  5. Structural, morphological and optical properties of thermal annealed TiO thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 deg. C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO 2 phase for the annealing temperature above 400 deg. C

  6. Lanthanides-clay nanocomposites: Synthesis, characterization and optical properties

    International Nuclear Information System (INIS)

    Celedon, Salvador; Quiroz, Carolina; Gonzalez, Guillermo; Sotomayor Torres, Clivia M.; Benavente, Eglantina

    2009-01-01

    Complexes of Europium(III) and Terbium(III) with 2,2-bipyridine and 1,10-phenanthroline were inserted into Na-bentonite by ion exchange reactions at room temperature. The products display interlaminar distances and stoichiometries in agreement with the ion exchange capacity and the interlayer space available in the clay. The optical properties of the intercalates, being qualitatively similar to those of the free complexes, are additionally improved with respect to exchange processes with the medium, especially in a moist environment. The protection again hydrolysis, together with the intensity of the optical transition 5 D 0 - 5 F 2 observed in the nanocomposite, makes these products promising for the development of novel optical materials

  7. PROPERTIES AND OPTICAL APPLICATION OF POLYCRYSTALLINE ZINC SELENIDE OBTAINED BY PHYSICAL VAPOR DEPOSITION

    Directory of Open Access Journals (Sweden)

    A. A. Dunaev

    2015-05-01

    Full Text Available Findings on production technology, mechanical and optical properties of polycrystalline zinc selenide are presented. The combination of its physicochemical properties provides wide application of ZnSe in IR optics. Production technology is based on the method of physical vapor deposition on a heated substrate (Physical Vapor Deposition - PVD. The structural features and heterogeneity of elemental composition for the growth surfaces of ZnSe polycrystalline blanks were investigated using CAMEBAX X-ray micro-analyzer. Characteristic pyramid-shaped crystallites were recorded for all growth surfaces. The measurements of the ratio for major elements concentrations show their compliance with the stoichiometry of the ZnSe compounds. Birefringence, optical homogeneity, thermal conductivity, mechanical and optical properties were measured. It is established that regardless of polycrystalline condensate columnar and texturing, the optical material is photomechanically isotropic and homogeneous. The actual performance of parts made of polycrystalline optical zinc selenide in the thermal spectral ranges from 3 to 5 μm and from 8 to 14 μm and in the CO2 laser processing plants with a power density of 500 W/cm2 is shown. The developed technology gives the possibility to produce polycrystalline optical material on an industrial scale.

  8. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Guowen, E-mail: gding@intermolecular.com; Clavero, César; Schweigert, Daniel; Le, Minh [Intermolecular, Inc., 3011 North First Street, San Jose, CA 95134 (United States)

    2015-11-15

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  9. Correlation between optical and structural properties of copper oxide electrodeposited on ITO glass

    Energy Technology Data Exchange (ETDEWEB)

    Messaoudi, O., E-mail: olfamassaoudi@gmail.com [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia); Makhlouf, H.; Souissi, A.; Ben assaker, I.; Karyaoui, M. [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia); Bardaoui, A. [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia); Physics department, Taif University (Saudi Arabia); Oueslati, M. [Unité de nano matériaux et photoniques, Faculté des Sciences de Tunis, ElManar1, 2092 Tunis (Tunisia); Chtourou, R. [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia)

    2014-10-25

    Highlights: • Copper oxide films were grown by electrodeposition method with different applied potential. • Forouhi and Bloomer ellipsometric model were used. • Correlation between structural and optical proprieties was done. - Abstract: In this paper we study the growth of copper oxide (Cu{sub 2}O) thin films on indium tin oxide (ITO)-coated glass substrate by electrochemical deposition. We vary the applied potential from −0.50 to −0.60 V vs. Ag/AgCl in order to have a pure Cu{sub 2}O. The copper oxide thin films properties are obtained using Spectroscopic Ellipsometry (SE) in the frame of the Forouhi and Bloomer model. This model demonstrates that depending on the applied cathodic potential pure or mixed phases of CuO and Cu{sub 2}O can be obtained. Structural, morphological and optical properties are performed in order to confirm the SE results. X-ray diffraction analysis of the films reveals a mixed phase for a potential lower than −0.60V vs. Ag/AgCl while a high purity is obtained for this last potential. The optical band gap energy (E{sub g}) is evaluated using the tauc relation. Pure Cu{sub 2}O having a band gap of E{sub g} = 2.5 eV and a thickness around 900 nm are therefore successfully obtained with an applied potential of −0.60 V. Raman measurements show the characteristic modes of Cu{sub 2}O with a contribution of CuO modes at 618 cm{sup −1}. The intensity of the CuO modes decreases as the applied cathodic potential increases, leading to pure copper oxide layers.

  10. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    Science.gov (United States)

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-08

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  11. Optical properties of implanted Xe color centers in diamond

    Science.gov (United States)

    Sandstrom, Russell; Ke, Li; Martin, Aiden; Wang, Ziyu; Kianinia, Mehran; Green, Ben; Gao, Wei-bo; Aharonovich, Igor

    2018-03-01

    Optical properties of color centers in diamond have been the subject of intense research due to their promising applications in quantum photonics. In this work we study the optical properties of Xe related color centers implanted into nitrogen rich (type IIA) and an ultrapure, electronic grade diamond. The Xe defect has two zero phonon lines at ∼794 nm and 811 nm, which can be effectively excited using both green and red excitation, however, its emission in the nitrogen rich diamond is brighter. Near resonant excitation is performed at cryogenic temperatures and luminescence is probed under strong magnetic field. Our results are important towards the understanding of the Xe related defect and other near infrared color centers in diamond.

  12. Optical properties of silicene, Si/Ag(111), and Si/Ag(110)

    Science.gov (United States)

    Hogan, C.; Pulci, O.; Gori, P.; Bechstedt, F.; Martin, D. S.; Barritt, E. E.; Curcella, A.; Prevot, G.; Borensztein, Y.

    2018-05-01

    We present a state-of-the-art study of the optical properties of free-standing silicene and of single-layer Si one- and two-dimensional (1D and 2D) nanostructures supported on Ag(110) and Ag(111) substrates. Ab initio simulations of reflectance anisotropy spectroscopy (RAS) and surface differential reflectivity spectroscopy (SDRS) applied to the clean Ag surface and Si/Ag interfaces are compared with new measurements. For Si/Ag(110), we confirm a pentagonal nanoribbon geometry, strongly bonded to the substrate, and rule out competing zigzag chain and silicenelike models. For Si/Ag(111), we reproduce the main experimental features and isolate the optical signal of the epitaxial silicene overlayer. The absorption spectrum of a silicene sheet computed including excitonic and local field effects is found to be quite similar to that calculated within an independent particle approximation and shows strong modifications when adsorbed on a Ag substrate. Important details of the computational approach are examined and the origins of the RAS and SDRS signals are explained in terms of the interface and substrate response functions. Our study does not find any evidence for Si adlayers that retain the properties of freestanding silicene.

  13. Structural and optical properties of solid-state synthesized Au dendritic structures

    International Nuclear Information System (INIS)

    Gentile, A.; Ruffino, F.; Romano, L.; Boninelli, S.; Reitano, R.; Piccitto, G.; Grimaldi, M.G.

    2014-01-01

    Graphical abstract: - Highlights: • Au dendritic structures were produced on surfaces. • The chemical and structural properties of the dendritic structures are presented. • The optical properties of the dendritic structures are presented. • The ability of the dendritic structures to serve as light scattering centers is presented. - Abstract: Au dendrites (Au Ds) are synthesized, on various substrates, by a simple physical methodology involving the deposition of a thin Au film on a Si surface followed by thermal processes at high temperatures (>1273 K) in an inert ambient (N 2 ), using fast heating and cooling rates (1273 K/min). Microscopic analyses reveal the evolution, thanks to the thermal processes, of the Au film from a continuous coating to dendritic structures covering the entire sample surface. In particular, transmission electron microscopy analyses indicate that, below the Au surface, the dendritic structures consist of Si atoms originating from the substrate. Furthermore, optical characterizations reveal the ability of the Au Ds to serve as scattering centers in the infrared region. Finally, on the basis of the experimental observations, a phenomenological model for the growth of the Au Ds is proposed

  14. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  15. Anatomically accurate, finite model eye for optical modeling.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1997-08-01

    There is a need for a schematic eye that models vision accurately under various conditions such as refractive surgical procedures, contact lens and spectacle wear, and near vision. Here we propose a new model eye close to anatomical, biometric, and optical realities. This is a finite model with four aspheric refracting surfaces and a gradient-index lens. It has an equivalent power of 60.35 D and an axial length of 23.95 mm. The new model eye provides spherical aberration values within the limits of empirical results and predicts chromatic aberration for wavelengths between 380 and 750 nm. It provides a model for calculating optical transfer functions and predicting optical performance of the eye.

  16. The structural, electronic and optical properties of Nd doped ZnO using first-principles calculations

    Science.gov (United States)

    Wen, Jun-Qing; Zhang, Jian-Min; Chen, Guo-Xiang; Wu, Hua; Yang, Xu

    2018-04-01

    The density functional theory calculations using general gradient approximation (GGA) applying Perdew-Burke-Ernzerhof (PBE) as correlation functional have been systematically performed to research the formation energy, the electronic structures, band structures, total and partial DOS, and optical properties of Nd doping ZnO with the content from 6.25% to 12.5%. The formation energies are negative for both models, which show that two structures are energetically stable. Nd doping ZnO crystal is found to be a direct band gap semiconductor and Fermi level shifts upward into conduction band, which show the properties of n-type semiconductor. Band structures are more compact after Nd doping ZnO, implying that Nd doping induces the strong interaction between different atoms. Nd doping ZnO crystal presents occupied states at near Fermi level, which mainly comes from the Nd 4f orbital. The calculated optical properties imply that Nd doping causes a red-shift of absorption peaks, and enhances the absorption of the visible light.

  17. Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, Christopher D [Univ. of California, Davis, CA (United States); Atkinson, Dean B [Portland State Univ., Portland, OR (United States)

    2017-12-17

    The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements is facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?

  18. Electronic Structure and Optical Properties Of EuIn2P2

    KAUST Repository

    Singh, Nirpendra; Schwingenschlö gl, Udo; Rhee, J. Y.

    2011-01-01

    The electronic structures and, optical and magneto‐optical properties of a newly found Zintl compound EuIn2P2 have been investigated within the density‐functional theory using the highly precise full‐potential linear‐augmented‐plane‐wave method

  19. Optical properties of mixed phase boundary layer clouds observed from a tethered balloon platform in the Arctic

    International Nuclear Information System (INIS)

    Sikand, M.; Koskulics, J.; Stamnes, K.; Hamre, B.; Stamnes, J.J.; Lawson, R.P.

    2010-01-01

    A tethered balloon system was used to collect data on radiometric and cloud microphysical properties for mixed phase boundary layer clouds, consisting of ice crystals and liquid water droplets during a May-June 2008 experimental campaign in Ny-Alesund, Norway, located high in the Arctic at 78.9 o N, 11.9 o E. The balloon instrumentation was controlled and powered from the ground making it possible to fly for long durations and to profile clouds vertically in a systematic manner. We use a radiative transfer model to analyze the radiometric measurements and estimate the optical properties of mixed-phase clouds. The results demonstrate the ability of instruments deployed on a tethered balloon to provide information about optical properties of mixed-phase clouds in the Arctic. Our radiative transfer simulations show that cloud layering has little impact on the total downward irradiance measured at the ground as long as the total optical depth remains unchanged. In contrast, the mean intensity measured by an instrument deployed on a balloon depends on the vertical cloud structure and is thus sensitive to the altitude of the balloon. We use the total downward irradiance measured by a ground-based radiometer to estimate the total optical depth and the mean intensity measured at the balloon to estimate the vertical structure of the cloud optical depth.

  20. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Atanasov, P.A.; Nikov, Ru.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Fukata, N. [International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Ns-laser (266, 355, 532 and 1064 nm) processing of medical grade PDMS is performed. • Investigation of the optical transmittance as a function of the laser beam parameters. • Analyses of laser treated area by optical & laser microscope and μ-Raman spectrometry. • Application as (MEAs) neural interface for monitor and stimulation of neural activity. - Abstract: This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm{sup −2} for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm{sup −2} and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm{sup −2}. The threshold laser fluence needed to induce incubation process after certain

  1. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment

    International Nuclear Information System (INIS)

    Pustovalov, V; Astafyeva, L; Jean, B

    2009-01-01

    Recently, several groups of investigators (Anderson, Halas, Zharov, El-Sayed and their co-workers (Pitsillides et al 2003 Biophys. J. 84 4023-31, Zharov et al 2003 Appl. Phys. Lett. 83 4897-9, Zharov et al 2004 Proc. SPIE 5319 291-9, Loo et al 2005 Nano Lett. 5 709-11, Gobin et al 2007 Nano Lett. 7 1929-34, Fu et al 2008 Nanotechnology 19 045103, Huang et al 2006 J. Am. Chem. Soc. 128 2115-20, Jain et al 2006 J. Phys. Chem. B 110 7238-48, Jain et al 2007 Nano Today 2 18-29)) demonstrated, through pioneering results, the great potential of laser thermal therapy of cells and tissues conjugated with gold nanoparticles. It was also proposed to use combined diagnostics and therapy on the basis of nanoparticle selection for achievement of efficient contrast for laser imaging applications, as well as for photothermal therapy. However, the current understanding of the relationship between optical properties (absorption, backscattering) of nanoparticles, the efficiency of nanoparticle heating and the possibility to use them for combined imaging and therapy is limited. Here, we report the results of computer modeling of optical absorption and backscattering properties and laser heating of gold and silica-gold spherical nanoparticles for laser combined imaging and photothermal treatment of cells and tissues conjugated with nanoparticles. The efficiencies of nanoparticle heating and backscattering by nanoparticles, depending upon their radii, structure and optical properties of the metal, were investigated. This paper focuses on the analysis and determination of appropriate ranges of nanoparticle sizes for the purposes of laser combined imaging and photothermal treatment. The possibility to use spherical gold and silica-gold nanoparticles in determined ranges of radii for these purposes for laser wavelengths 532 and 800 nm is investigated.

  2. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  3. Dependences of optical properties of spherical two-layered nanoparticles on parameters of gold core and material shell

    International Nuclear Information System (INIS)

    Pustovalov, V.K.; Astafyeva, L.G.; Zharov, V.P.

    2013-01-01

    Modeling of nonlinear dependences of optical properties of spherical two-layered gold core and some material shell nanoparticles (NPs) placed in water on parameters of core and shell was carried out on the basis of the extended Mie theory. Efficiency cross-sections of absorption, scattering and extinction of radiation with wavelength 532 nm by core–shell NPs in the ranges of core radii r 00 =5–40 nm and of relative NP radii r 1 /r 00 =1–8 were calculated (r 1 —radius of two-layered nanoparticle). Shell materials were used with optical indexes in the ranges of refraction n 1 =0.2–1.5 and absorption k 1 =0–3.5 for the presentation of optical properties of wide classes of shell materials (including dielectrics, metals, polymers, vapor shell around gold core). Results show nonlinear dependences of optical properties of two-layered NPs on optical indexes of shell material, core r 00 and relative NP r 1 /r 00 radii. Regions with sharp decrease and increase of absorption, scattering and extinction efficiency cross-sections with changing of core and shell parameters were investigated. These dependences should be taken into account for applications of two-layered NPs in laser nanomedicine and optical diagnostics of tissues. The results can be used for experimental investigation of shell formation on NP core and optical determination of geometrical parameters of core and shell of two-layered NPs. -- Highlights: • Absorption, scattering and extinction of two-layered nanoparticles are studied. • Shell materials change in wide regions of materials (metals, dielectrics, vapor). • Effect of sharp decrease and increase of optical characteristics is established. • Explanation of sharp decreasing and increasing optical characteristics is presented

  4. Optical properties of Cd Se thin films obtained by pyrolytic dew

    International Nuclear Information System (INIS)

    Perez G, A.M.; Tepantlan, C.S.; Renero C, F.

    2006-01-01

    In this paper the optical properties of Cd Se thin films obtained by spray pyrolysis are presented. The films are prepared by Sodium Seleno sulphate (Na 2 SSeO 3 ) and Cadmium Chloride (CdC 12 ) mixing in aqueous environment. Optical parameters of the films (refractive index, absorption coefficient and optical ban gap) were calculated from transmittance spectra. The obtained values of the optical ban gap are compared with the result obtained by other deposition method. (Author)

  5. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    International Nuclear Information System (INIS)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-01-01

    Three different internal mixing methods (Core–Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20–70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20–50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core–Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC–sulfate aerosol is about –3.18 W/m 2 for the external method and –6.91 W/m 2 for the internal methods at the surface, and –3.03/–1.56/–1.85 W/m 2 for the external/Core–Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause. - Highlights: • The aerosol optical properties with different mixing

  6. Absorptive and dispersive optical profiles in fluctuating environments: A stochastic model

    International Nuclear Information System (INIS)

    Paz, J.L.; Mendoza-Garcia, A.; Mastrodomenico, A.

    2011-01-01

    In this study, we determined the absorptive and dispersive optical profiles of a molecular system coupled with a thermal bath. Solvent effects were explicitly considered by modelling the non-radiative interaction with the solute as a random variable. The optical stochastical Bloch equations (OSBE) were solved using a time-ordered cumulant expansion with white noise as a correlation function. We found a solution for the Fourier component of coherence at the third order of perturbation for the nonlinear Four-wave mixing signal and produced analytical expressions for the optical responses of the system. Finally, we examined the behaviour of these properties with respect to the noise parameter, frequency detuning of the dynamic perturbation, and relaxation times.

  7. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-10-16

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  8. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.; Mukhopadhyay, Sukrit; Shiring, Stephen B.; Risko, Chad; Bredas, Jean-Luc

    2014-01-01

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  9. Optical properties of an elliptic quantum ring: Eccentricity and electric field effects

    Science.gov (United States)

    Bejan, Doina; Stan, Cristina; Niculescu, Ecaterina C.

    2018-04-01

    We have theoretically studied the electronic and optical properties of a GaAs/AlGaAs elliptic quantum ring under in-plane electric field. The effects of an eccentric internal barrier -placed along the electric field direction, chosen as x-axis- and incident light polarization are particularly taken into account. The one-electron energy spectrum and wave functions are found using the adiabatic approximation and the finite element method within the effective-mass model. We show that it is possible to repair the structural distortion by applying an appropriate in-plane electric field, and the compensation is almost complete for all electronic states under study. For both concentric and eccentric quantum ring the intraband optical properties are very sensitive to the electric field and probe laser polarization. As expected, in the systems with eccentricity distortions the energy spectrum, as well as the optical response, strongly depends on the direction of the externally applied electric field, an effect that can be used as a signature of ring eccentricity. We demonstrated the possibility of generating second harmonic response at double resonance condition for incident light polarized along the x-axis if the electric field or/and eccentric barrier break the inversion symmetry. Also, strong third harmonic signal can be generated at triple resonance condition for a specific interval of electric field values when using y-polarized light.

  10. Synthesis, field emission properties and optical properties of ZnSe nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xue, S.L., E-mail: slxue@dhu.edu.cn [Department of Applied Physics, College of Science, Donghua University, Shanghai 201620 (China); Wu, S.X.; Zeng, Q.Z.; Xie, P.; Gan, K.X.; Wei, J.; Bu, S.Y.; Ye, X.N.; Xie, L. [Department of Applied Physics, College of Science, Donghua University, Shanghai 201620 (China); Zou, R.J. [State Key Laboratory for Modification and Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Zhang, C.M.; Zhu, P.F. [Department of Physics, School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2016-03-01

    Graphical abstract: Unique ZnSe nanoflowers have been successfully synthesized by reaction of Se powder with Zn substrates. They are characterized by XRD, SEM, TEM, XPS, EDS and Raman spectroscopy and were single crystals with cubic zinc blende (ZB) structure. They also have excellent field emission properties and optical properties. - Highlights: • Novel ZnSe nanoflowers are grown on Zn foils. • ZnSe nanoflowers are characterized by XRD, SEM, TEM, XPS and Raman spectra. • ZnSe nanoflowers on Zn foils as cathodes possess good FE properties. - Abstract: ZnSe nanoflowers have been synthesized by reaction of Se powder with Zn substrates at low temperature. The as-prepared ZnSe nanoflowers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray energy dispersive spectroscope (EDS) and Raman spectroscopy measurements. It was found that the morphologies of the as-prepared samples highly depended on reaction time. ZnSe nanoclusters and nanoflowers formed at 573 K when the reaction time was 20 and 60 min, respectively. The as-prepared ZnSe nanoflowers were composed of radically aligned ZnSe nanorods with smooth surfaces. The results of XRD, XPS, EDS, TEM and Raman showed that the as-prepared ZnSe nanocrystals were single crystals with cubic zinc blende (ZB) structure. The formation mechanism of the as-prepared ZnSe nanoflowers was also discussed. In addition, the as-prepared ZnSe nanoflowers had excellent electron emission properties. The turn-on field of the as-prepared ZnSe nanoflowers was 3.5 V/μm and the enhancement factor was 3499. The optical properties of the as-prepared ZnSe nanoflowers were also investigated. The results demonstrated that the as-prepared ZnSe nanoflowers were potential candidates for optoelectronic devices.

  11. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    Science.gov (United States)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  12. Nonlinear Quantum Optical Springs and Their Nonclassical Properties

    International Nuclear Information System (INIS)

    Faghihi, M.J.; Tavassoly, M.K.

    2011-01-01

    The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states of another system. Recently, it is realized that by the assumption of frequency modulation of ω to ω√1+μa † a the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence of frequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized Hamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Employing the effective medium approximation to model the optical properties of crystallized a-Si:H obtained by MIC

    NARCIS (Netherlands)

    Muller, T.F.G.; Knoesen, D.|info:eu-repo/dai/nl/304845841; Arendse, C.J.; Halindintwali, S.; Malgas, G.F.; Houweling, Z.S.|info:eu-repo/dai/nl/251874486; Schropp, R.E.I.|info:eu-repo/dai/nl/072502584

    2010-01-01

    Metal induced crystallization of hydrogenated amorphous silicon has been the subject of intense scrutiny in recent years. In this contribution we report on the metal-mediated-thermally induced changes of the structural and optical properties of hydrogenated amorphous silicon deposited by hot-wire

  14. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. J., E-mail: yadav.pooja75@yahoo.in [Department of Electronics, RTM Nagpur University, Nagpur (India); Joshi, C. P. [Physics Department, RCOEM, Nagpur (India); Moharil, S. V., E-mail: svmoharil@yahoo.com [Physics Department, RTM Nagpur University, Nagpur (India)

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  15. Investigation of the electronic, magnetic and optical properties of newest carbon allotrope

    Science.gov (United States)

    Kazemi, Samira; Moradian, Rostam

    2018-05-01

    We investigate triple properties of monolayer pentagon graphene that include electronic, magnetic and optical properties based on density functional theory (DFT). Our results show that in the electronic and magnetic properties this structure with a direct energy gap of about 2.2 eV along Γ - Γ direction and total magnetic moment of 0.0013 μB per unit cell is almost a non-magnetic semiconductor. Also, its optical properties show that if this allotrope used in solar cell technology, its efficiency in the low energy will be better, because, in the range of energy, its loss energy function and reflectivity will be minimum.

  16. Proton disorder in cubic ice: Effect on the electronic and optical properties

    International Nuclear Information System (INIS)

    Garbuio, Viviana; Pulci, Olivia; Cascella, Michele; Kupchak, Igor; Seitsonen, Ari Paavo

    2015-01-01

    The proton disorder in ice has a key role in several properties such as the growth mode, thermodynamical properties, and ferroelectricity. While structural phase transitions from proton disordered to proton ordered ices have been extensively studied, much less is known about their electronic and optical properties. Here, we present ab initio many body perturbation theory-based calculations of the electronic and optical properties of cubic ice at different levels of proton disorder. We compare our results with those from liquid water, that acts as an example of a fully (proton- and oxygen-)disordered system. We find that by increasing the proton disorder, a shrinking of the electronic gap occurs in ice, and it is smallest in the liquid water. Simultaneously, the excitonic binding energy decreases, so that the final optical gaps result to be almost independent on the degree of proton disorder. We explain these findings as an interplay between the local dipolar disorder and the electronic correlation

  17. Ultrathin and Nanostructured Au Films with Gradient of Effective Thickness. Optical and Plasmonic Properties

    International Nuclear Information System (INIS)

    Tomilin, S V; Berzhansky, V N; Shaposhnikov, A N; Prokopov, A R; Milyukova, E T; Karavaynikov, A V; Tomilina, O A

    2016-01-01

    In present work the results of investigation of optical (transmission spectra) and plasmonic (surface plasmon-polariton resonance) properties of ultrathin and nanostructured Au films are presents. Methods and techniques for the syntheses of samples of ultrathin and nanostructured metallic films, and for the experimental studies of optical and plasmonic properties are representative. Au films on SiO 2 (optic glass) substrates were investigated. (paper)

  18. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties.

    Science.gov (United States)

    Pan, Gencai; Bai, Xue; Yang, Dongwen; Chen, Xu; Jing, Pengtao; Qu, Songnan; Zhang, Lijun; Zhou, Donglei; Zhu, Jinyang; Xu, Wen; Dong, Biao; Song, Hongwei

    2017-12-13

    Cesium lead halide (CsPbX 3 ) perovskite nanocrystals (NCs) have demonstrated extremely excellent optical properties and great application potentials in various optoelectronic devices. However, because of the anion exchange, it is difficult to achieve white-light and multicolor emission for practical applications. Herein, we present the successful doping of various lanthanide ions (Ce 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Dy 3+ , Er 3+ , and Yb 3+ ) into the lattices of CsPbCl 3 perovskite NCs through a modified hot-injection method. For the lanthanide ions doped perovskite NCs, high photoluminescence quantum yield (QY) and stable and widely tunable multicolor emissions spanning from visible to near-infrared (NIR) regions are successfully obtained. This work indicates that the doped perovskite NCs will inherit most of the unique optical properties of lanthanide ions and deliver them to the perovskite NC host, thus endowing the family of perovskite materials with excellent optical, electric, or magnetic properties.

  19. Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets.

    Science.gov (United States)

    Zhang, Jun; Jiang, Tian; Zheng, Xin; Shen, Chao; Cheng, Xiang'ai

    2017-09-01

    Halide perovskite has attracted significant attention because of excellent optical properties. Here, we study the optical properties of CsPbBr 3 perovskite nanosheets and observe that the nonlinear optical properties can be tuned by the thickness. The photoluminescence (PL) properties and nonlinear absorption effects induced by saturation absorption (SA) and two-photon absorption (TPA) in CsPbBr 3 nanosheets with different thicknesses (from 104.6 to 195.4 nm) have been studied. The PL intensity increases nearly three times with changing from the thinnest one to the thinnest under the same excitation condition. Moreover, the same phenomenon takes place no matter when SA or TPA effects happen. The PL lifetime (τ) varies inversely with the thickness. When SA happens, τ decreases from 11.54 to 9.43 ns while when TPA happens new decay channels emerge with the increase of the thickness. Besides, both saturation intensity (I sat ) and the modulation depth are proportional to the thickness (I sat rises from 3.12 to 4.79  GW/cm 2 , the modulation depth increases from 18.6% to 32.3%), while the TPA coefficient (β) is inversely proportional with the thickness (decreases from 10.94 to 4.73  cm/GW). In addition, quantum yields and thicknesses are in the direct ratio. This Letter advocates great promise for nonlinear optical property related photonics devices.

  20. Climatological aspects of aerosol optical properties in Northern Greece

    Directory of Open Access Journals (Sweden)

    E. Gerasopoulos

    2003-01-01

    Full Text Available Measurements of aerosol optical properties (aerosol optical depth, scattering and backscattering coefficients have been conducted at two ground-based sites in Northern Greece, Ouranoupolis (40° 23' N, 23° 57' E, 170 m a.s.l. and Thessaloniki (40° 38' N, 22° 57' E, 80 m a.s.l., between 1999 and 2002. The frequency distributions of the observed parameters have revealed the presence of individual modes of high and low values, indicating the influence from different sources. At both sites, the mean aerosol optical depth at 500 nm was 0.23. Values increase considerably during summer when they remain persistently between 0.3 and 0.5, going up to 0.7-0.8 during specific cases. The mean value of 65±40 Mm-1 of the particle scattering coefficient at 550 nm reflects the impact of continental pollution in the regional boundary layer. Trajectory analysis has shown that higher values of aerosol optical depth and the scattering coefficient are found in the east sector (former Soviet Union countries, eastern Balkan countries, whereas cleaner conditions are found for the NW direction. The influence of Sahara dust events is clearly reflected in the Ångström exponents. About 45-60% of the observed diurnal variation of the optical properties was attributed to the growth of aerosols with humidity, while the rest of the variability is in phase with the evolution of the sea-breeze cell. The contribution of local pollution is estimated to contribute 35±10% to the average aerosol optical depth at the Thessaloniki site during summer. Finally, the aerosol scale height (aerosol optical depth divided by scattering coefficient was found to be related to the height of the boundary layer with values between 0.5-1 km during winter and up to 2.5-3 km during summer.

  1. Synthesis and optical properties studies

    Directory of Open Access Journals (Sweden)

    N.A. El-Ghamaz

    2017-01-01

    Full Text Available 4-(4-Amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino-phenol (L1 and 4-(4-Amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino-benzoic acid (L2 have been synthesized by the condensation reaction of 4-aminoantipyrine (4-AAP and 4-aminophenol or 4-aminobenzoic acid in ethanolic solution and are characterized by various physico-chemical techniques. Thin films of L1 and L2 have been prepared by the conventional spin coating technique. X-ray diffraction patterns (XRD show an amorphous nature for both powder and thin films for L1 and L2 ligands. The optical absorption and refraction properties of L1 and L2 are investigated by spectrophotometric techniques at normal incidence of light in the wavelength range of 200–2500 nm. The absorption spectra show two peaks in the UV region which correspond to π → π∗ transition and a peak in UV–Vis region which may correspond to n → π∗ transition. The values of dispersion parameters Eo, Ed, εL, ε∞ and N/m* are calculated according to the single oscillator model. The presence of the OH group increases the value of ε∞ from 3.21 to 3.32 and the value of N/m* from 7.38 × 1053 to 2.08 × 1054 m−3Kg−1. The optical band transition is found to be indirect allowing fundamental energy gap values of 3.4 and 3.9 eV and onset energy gap values of 2.1 and 2.6 eV for L1 and L2, respectively.

  2. On the impact of non-sphericity and small-scale surface roughness on the optical properties of hematite aerosols

    International Nuclear Information System (INIS)

    Kahnert, Michael; Nousiainen, Timo; Mauno, Paeivi

    2011-01-01

    We perform a comparative modelling study to investigate how different morphological features influence the optical properties of hematite aerosols. We consider high-order Chebyshev particles as a proxy for aerosol with a small-scale surface roughness, and spheroids as a model for nonspherical aerosols with a smooth boundary surface. The modelling results are compared to those obtained for homogeneous spherical particles. It is found that for hematite particles with an absorption efficiency of order unity the difference in optical properties between spheres and spheroids disappears. For optically softer particles, such as ice particles at far-infrared wavelengths, this effect can be observed for absorption efficiencies lower than unity. The convergence of the optical properties of spheres and spheroids is caused by absorption and quenching of internal resonances inside the particles, which depend both on the imaginary part of the refractive index and on the size parameter, and to some extent on the real part of the refractive index. By contrast, small-scale surface roughness becomes the dominant morphological feature for large particles. This effect is likely to depend on the amplitude of the surface roughness, the relative significance of internal resonances, and possibly on the real part of the refractive index. The extinction cross section is rather insensitive to surface roughness, while the single-scattering albedo, asymmetry parameter, and the Mueller matrix are strongly influenced. Small-scale surface roughness reduces the backscattering cross section by up to a factor of 2-3 as compared to size-equivalent particles with a smooth boundary surface. This can have important implications for the interpretation of lidar backscattering observations.

  3. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    Science.gov (United States)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  4. Correlated structure-optical properties studies of plasmonic nanoparticles

    International Nuclear Information System (INIS)

    Ringe, Emilie; Duyne, Richard P Van; Marks, Laurence D

    2014-01-01

    Interest in nanotechnology is driven by unprecedented means to tailor the physical behaviour via structure and composition. Unlike bulk materials, minute changes in size and shape can affect the optical properties of nanoparticles. Characterization, understanding, and prediction of such structure-function relationships is crucial to the development of novel applications such as plasmonic sensors, devices, and drug delivery systems. Such knowledge has been recently vastly expanded through systematic, high throughput correlated measurements, where the localized surface plasmon resonance (LSPR) is probed optically and the particle shape investigated with electron microscopy. This paper will address some of the recent experimental advances in single particle studies that provide new insight not only on the effects of size, composition, and shape on plasmonic properties but also their interrelation. Plasmon resonance frequency and decay, substrate effects, size, shape, and composition will be explored for a variety of plasmonic systems

  5. OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT

    International Nuclear Information System (INIS)

    Grise, F.; Kaaret, P.; Pakull, M. W.; Motch, C.

    2011-01-01

    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V ∼ 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age ∼ sun . The counterpart is more luminous than the other stars of the association, suggesting a non-negligible optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II λ4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be ∼> 10 M sun , even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, ∼> 25 M sun , with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.

  6. Intensity-dependent nonlinear optical properties in a modulation-doped single quantum well

    International Nuclear Information System (INIS)

    Ungan, F.

    2011-01-01

    In the present work, the changes in the intersubband optical absorption coefficients and the refractive index in a modulation-doped quantum well have been investigated theoretically. Within the envelope function approach and the effective mass approximation, the electronic structure of the quantum well is calculated from the self-consistent numerical solution of the coupled Schroedinger-Poisson equations. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results GaAs/Al x Ga 1-x As are presented for typical modulation-doped quantum well system. The linear, third-order nonlinear and total absorption and refractive index changes depending on the doping concentration are investigated as a function of the incident optical intensity and structure parameters, such as quantum well width and stoichiometric ratio. The results show that the doping concentration, the structure parameters and the incident optical intensity have a great effect on the optical characteristics of these structures. - Highlights: → The doping concentration has a great effect on the optical characteristics of these structures. → The structure parameters have a great effect on the optical properties of these structures. → The total absorption coefficients reduced as the incident optical intensity increases. → The RICs reduced as the incident optical intensity increases.

  7. Side Effect of Good's Buffers on Optical Properties of Gold Nanoparticle Solutions

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Wagner, Michal; Undall-Behrend Christiansen, Mikkel

    2016-01-01

    spectroscopy. Distinct absorption features at ca. 290 and 360 nm and fluorescence emission in the 408-484 nm range are observed in filtered AuNP-free solutions. Electrochemical oxidation of these buffers generates similar optical properties, suggesting that the degradation products of the buffers contribute...... to the optical properties of AuNP solutions. This work indicates deeper evaluation of fluorescence signals based on metal NPs or NCs is needed....

  8. Structural and optical properties of Si-doped GaN

    OpenAIRE

    Cremades Rodríguez, Ana Isabel; Gorgens, L.; Ambacher, O.; Stutzmann, M.; Scholz, F.

    2000-01-01

    Structural and optical properties of Si-doped GaN thin films grown by metal-organic chemical vapor deposition have been studied by means of high resolution x-ray diffraction (XRD), atomic force microscopy, photoluminescence, photothermal deflection spectroscopy, and optical transmission measurements. The incorporation of silicon in the GaN films leads to pronounced tensile stress. The energy position of the neutral donor bound excitonic emission correlates with the measured stress. The stress...

  9. Synthesis and Optical Properties of Trioxatriangulenium Dyes with One and Two Peripheral Amino Substituents

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Laursen, Bo Wegge

    2010-01-01

    -substituted triphenylmethylium (TPM) compounds by aromatic nucleophilic substitution with secondary amines and subsequent intramolecular ring closure. The optical properties of the new triangulenium dyes and their TPM precursors were investigated and compared to those of known TPM and xanthenium dyes. The optical properties...

  10. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    Science.gov (United States)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within

  11. Optical properties of amyloid stained by Congo red: history and mechanisms.

    Science.gov (United States)

    Howie, Alexander J; Brewer, Douglas B

    2009-04-01

    Amyloid stained by Congo red has striking optical properties that generally have been poorly described and inadequately explained, although they can be understood from principles of physical optics. Molecules of Congo red are orientated on amyloid fibrils, and so the dye becomes dichroic and birefringent. The birefringence varies with wavelength in accordance with a fundamental property of all light-transmitting materials called anomalous dispersion of the refractive index around an absorption peak. The combination of this and absorption of light, with modification by any additional birefringence in the optical system, explains the various colours that can be seen in Congo red-stained amyloid between crossed polariser and analyser, and also when the polariser and analyser are progressively uncrossed. These are called anomalous colours.

  12. Nonlinear optical properties of a three-electron quantum dot with account of the Rashba spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hassanabadi, Hassan, E-mail: h.hasanabadi@shahroodut.ac.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood (Iran, Islamic Republic of); Rahimov, Hamed [Physics Department, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood (Iran, Islamic Republic of); Lu Liangliang [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)

    2012-05-15

    In this study, a detailed investigation of the nonlinear optical properties such as optical absorption and refractive index change associated with intersubband transitions in a three-electron quantum dot in two dimensions in the presence of the Rashba spin-orbit interaction has been carried out. We present the exact wave functions and energy levels of the system. Numerical results on typical GaAs/AlGaAs materials show that the decrease of the quantum dot radius blueshifts and amplifies the absorption coefficients as well as the refractive index changes, as expected. Additionally, an increase of the optical intensity and relaxation time considerably changes the absorption coefficients and the refractive index changes. - Highlights: Black-Right-Pointing-Pointer We consider a three-electron quantum dot in 2D in the presence of the Rashba spin-orbit interaction. Black-Right-Pointing-Pointer We present the exact wave functions and energy levels of the system. Black-Right-Pointing-Pointer We apply this model for GaAs/AlGaAs materials. Black-Right-Pointing-Pointer The detailed nonlinear optical properties have been investigated.

  13. Orientation-averaged optical properties of natural aerosol aggregates

    International Nuclear Information System (INIS)

    Zhang Xiaolin; Huang Yinbo; Rao Ruizhong

    2012-01-01

    Orientation-averaged optical properties of natural aerosol aggregates were analyzed by using discrete dipole approximation (DDA) for the effective radius in the range of 0.01 to 2 μm with the corresponding size parameter from 0.1 to 23 for the wavelength of 0.55 μm. Effects of the composition and morphology on the optical properties were also investigated. The composition show small influence on the extinction-efficiency factor in Mie scattering region, scattering- and backscattering-efficiency factors. The extinction-efficiency factor with the size parameter from 9 to 23 and asymmetry factor with the size parameter below 2.3 are almost independent of the natural aerosol composition. The extinction-, absorption, scattering-, and backscattering-efficiency factors with the size parameter below 0.7 are irrespective of the aggregate morphology. The intrinsic symmetry and discontinuity of the normal direction of the particle surface have obvious effects on the scattering properties for the size parameter above 4.6. Furthermore, the scattering phase functions of natural aerosol aggregates are enhanced at the backscattering direction (opposition effect) for large size parameters in the range of Mie scattering. (authors)

  14. Theoretical and Experimental Study of Optical Coherence Tomography (OCT) Signals Using an Analytical Transport Model

    International Nuclear Information System (INIS)

    Vazquez Villa, A.; Delgado Atencio, J. A.; Vazquez y Montiel, S.; Cunill Rodriguez, M.; Martinez Rodriguez, A. E.; Ramos, J. Castro; Villanueva, A.

    2010-01-01

    Optical coherence tomography (OCT) is a non-invasive low coherent interferometric technique that provides cross-sectional images of turbid media. OCT is based on the classical Michelson interferometer where the mirror of the reference arm is oscillating and the signal arm contains a biological sample. In this work, we analyzed theoretically the heterodyne optical signal adopting the so called extended Huygens-Fresnel principle (EHFP). We use simulated OCT images with known optical properties to test an algorithm developed by ourselves to recover the scattering coefficient and we recovered the scattering coefficient with a relative error less than 5% for noisy signals. In addition, we applied this algorithm to OCT images from phantoms of known optical properties; in this case curves were indistinguishable. A revision of the validity of the analytical model applied to our system should be done.

  15. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  16. Far- and near-field optical properties of gold nanoparticle ensembles

    International Nuclear Information System (INIS)

    Nedyalkov, N N; Dikovska, A O; Dimitrov, I; Nikov, Ru; Atanasov, P A; Toshkova, R A; Gardeva, E G; Yossifova, L S; Alexandrov, M T

    2012-01-01

    The optical properties of gold nanoparticle clusters are presented from the point of view of their applications in biophotonics, where the absorption and scattering spectra are crucial. Generalised multiparticle Mie theory and finite difference time domain (FDTD) technique are used for theoretical description of the far- and nearfield optical properties of two dimensional nanoparticle ensembles. The system under consideration consists of spherical gold nanoparticles from 20 to 200 nm in diameter, forming 2D clusters in water. The properties of the far-field absorption and scattering spectra as a function of the cluster size, particle dimensions, and interparticle distance are investigated for ordered hexagonal structure of the particle arrays. It is found that the absorption efficiency can be shifted to the IR spectral range by increasing array size and decreasing interparticle distance. The increase in the array size also results in enhancement of the scattering efficiency while the absorption is reduced. The near-field intensity distribution is inhomogeneous over the array, as formation of zones with intensity enhancement of about two orders of magnitude is observed in specific areas. The optical properties of an ensemble whose configuration is reproduced from real experiments of gold nanoparticle deposition onto cancer cells are also presented. The results obtained can be used in designing of nanoparticle arrays with applications in biophotonics, bioimaging and photothermal therapy. (nanosystems)

  17. Far- and near-field optical properties of gold nanoparticle ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N N; Dikovska, A O; Dimitrov, I; Nikov, Ru; Atanasov, P A; Toshkova, R A; Gardeva, E G; Yossifova, L S; Alexandrov, M T

    2012-12-31

    The optical properties of gold nanoparticle clusters are presented from the point of view of their applications in biophotonics, where the absorption and scattering spectra are crucial. Generalised multiparticle Mie theory and finite difference time domain (FDTD) technique are used for theoretical description of the far- and nearfield optical properties of two dimensional nanoparticle ensembles. The system under consideration consists of spherical gold nanoparticles from 20 to 200 nm in diameter, forming 2D clusters in water. The properties of the far-field absorption and scattering spectra as a function of the cluster size, particle dimensions, and interparticle distance are investigated for ordered hexagonal structure of the particle arrays. It is found that the absorption efficiency can be shifted to the IR spectral range by increasing array size and decreasing interparticle distance. The increase in the array size also results in enhancement of the scattering efficiency while the absorption is reduced. The near-field intensity distribution is inhomogeneous over the array, as formation of zones with intensity enhancement of about two orders of magnitude is observed in specific areas. The optical properties of an ensemble whose configuration is reproduced from real experiments of gold nanoparticle deposition onto cancer cells are also presented. The results obtained can be used in designing of nanoparticle arrays with applications in biophotonics, bioimaging and photothermal therapy. (nanosystems)

  18. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    Directory of Open Access Journals (Sweden)

    Guowen Ding

    2015-11-01

    Full Text Available The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C, with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  19. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  20. Optical modeling and electrical properties of cadmium oxide nanofilms: Developing a meta–heuristic calculation process model

    Energy Technology Data Exchange (ETDEWEB)

    Abdolahzadeh Ziabari, Ali, E-mail: ali.abd.ziabari@gmail.com [Nano Research Lab, Lahijan Branch, Islamic Azad University, P.O. Box 1616, Lahijan (Iran, Islamic Republic of); Refahi Sheikhani, A. H. [Department of Applied Mathematics, Lahijan Branch, Islamic Azad University, Lahijan (Iran, Islamic Republic of); Nezafat, Reza Vatani [Department of Civil Engineering, Faculty of Technology, University of Guilan, Rasht (Iran, Islamic Republic of); Haghighidoust, Kasra Monsef [Department of Mechanical Engineering, Faculty of Technology, University of Guilan, Rasht (Iran, Islamic Republic of)

    2015-04-07

    Cadmium oxide thin films were deposited onto glass substrates by sol–gel dip-coating method and annealed in air. The normal incidence transmittance of the films was measured by a spectrophotometer. D.C electrical parameters such as carrier concentration and mobility were analyzed by Hall Effect measurements. A combination of Forouhi–Bloomer and standard Drude model was used to simulate the optical constants and thicknesses of the films from transmittance data. The transmittance spectra of the films in the visible domain of wavelengths were successfully fitted by using the result of a hybrid particle swarm optimization method and genetic algorithm. The simulated transmittance is in good accordance with the measured spectrum in the whole measurement wavelength range. The electrical parameters obtained from the optical simulation are well consistent with those measured electrically by Hall Effect measurements.

  1. Electronic and optical properties of 2D graphene-like ZnS: DFT calculations

    International Nuclear Information System (INIS)

    Lashgari, Hamed; Boochani, Arash; Shekaari, Ashkan; Solaymani, Shahram; Sartipi, Elmira; Mendi, Rohollah Taghavi

    2016-01-01

    Graphical abstract: - Highlights: • DFT has been applied to investigate the optical properties of 2D-ZnS and 3D-ZnS. • The electronic and the optical properties of 3D-ZnS and 2D-ZnS are compared. • At visible range of energies the transparency of 2D-ZnS is more than the 3D. - Abstract: Density-functional theory has been applied to investigate the electronic and optical properties of graphene-like two-dimensional ZnS in the (0001) direction of its Wurtzite phase. A comparison with 3D-ZnS has been carried out within the PBE- and EV-GGA. The electronic properties of 2D- and 3D-ZnS have been derived by the examination of the electronic band structures and density of states. The optical properties have been determined through the study of the dielectric function, reflectivity, electron loss function, refractive and extinction indices, the absorption index and optical conductivity. It is found that the transparency of 2D-ZnS is greater than the 3D over the visible range. A thorough study of the dielectric function has been performed so that the peaks and the transition bands have been specified. The electron loss function demonstrates that the plasmonic frequency for 2D- and 3D-ZnS is accrued at 11.22 and 19.93 eV within the PBE-GGA, respectively.

  2. Experimental and numerical study on the optical properties and agglomeration of nanoparticle suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Otanicar, Todd, E-mail: todd-otanicar@utulsa.edu; Hoyt, Jordan; Fahar, Maryam [University of Tulsa, Department of Mechanical Engineering (United States); Jiang, Xuchuan [University of New South Wales, School of Materials Science and Engineering (Australia); Taylor, Robert A. [University of New South Wales, School of Mechanical and Manufacturing Engineering (Australia)

    2013-11-15

    Nanoparticles have garnered significant interest because of their ability to enhance greatly the optical properties of the base fluid in which they are suspended. The optical properties of nanoparticles are sensitive to the materials used, as well as to the host medium. Most fluids exhibit refractive indices that are highly temperature-dependent, resulting in nanoparticle suspensions which also exhibit temperature-dependent optical properties. Previous work has shown that temperature increases result in decreased absorption in nanoparticle suspensions. Here, we expand previous work to include core–shell particles due to the potential spectral shifts in optical properties that will arise from the base fluid with temperature changes and the role of agglomeration under temperature cycling through both experimental and numerical efforts. Thermal cycling tests for silica and gold, the constituents of the core–shell nanoparticles used in this study, were tested to determine the extent of particle agglomeration resulting from up to 200 accelerated heating cycles. Optical properties were recorded after heating two base fluids (water and ethylene glycol) with multiple surfactants for silver nanospheres and silica–gold core–shell nanoparticles. It was found that the temperature results in a small increase in the transmittance for both particle types and a blue shift in the spectral transmittance for core–shell nanoparticles. Further, the coupling effect of temperature and agglomeration played a significant role in determining both the spectral properties—particularly the resulting transmittance—of the silver nanoparticle suspensions.

  3. Advanced optical modeling of TiN metal hard mask for scatterometric critical dimension metrology

    Science.gov (United States)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten

    2017-03-01

    The majority of scatterometric production control models assume constant optical properties of the materials and only dimensional parameters are allowed to vary. However, this assumption, especially in case of thin-metal films, negatively impacts model precision and accuracy. In this work we focus on optical modeling of the TiN metal hardmask for scatterometry applications. Since the dielectric function of TiN exhibits thickness dependence, we had to take this fact into account. Moreover, presence of the highly absorbing films influences extracted thicknesses of dielectric layers underneath the metal films. The later phenomenon is often not reflected by goodness of fit. We show that accurate optical modeling of metal is essential to achieve desired scatterometric model quality for automatic process control in microelectronic production. Presented modeling methodology can be applied to other TiN applications such as diffusion barriers and metal gates as well as for other metals used in microelectronic manufacturing for all technology nodes.

  4. Optical properties and aging of light-absorbing secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    J. Liu

    2016-10-01

    Full Text Available The light-absorbing organic aerosol (OA commonly referred to as “brown carbon” (BrC has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC precursors, NOx concentrations, photolysis time, and relative humidity (RH on the light absorption of selected secondary organic aerosols (SOA. Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis and ultraviolet (UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  5. Glancing angle deposited Al-doped ZnO nanostructures with different structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, A., E-mail: yildizab@gmail.com [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Energy Systems Engineering, Faculty of Engineering and Natural Sciences, Yıldırım Beyazıt University, Ankara (Turkey); Cansizoglu, H. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Turkoz, M. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Electrical-Electronic Engineering, Faculty of Engineering, University of Karabuk, Karabuk (Turkey); Abdulrahman, R.; Al-Hilo, Alaa; Cansizoglu, M.F.; Demirkan, T.M.; Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2015-08-31

    Al-doped ZnO (AZO) nanostructure arrays with different shapes (tilted rods, vertical rods, spirals, and zigzags) were fabricated by utilizing glancing angle deposition (GLAD) technique in a DC sputter growth unit at room temperature. During GLAD, all the samples were tilted at an oblique angle of about 90° with respect to incoming flux direction. In order to vary the shapes of nanostructures, each sample was rotated at different speeds around the substrate normal axis. Rotation speed did not only affect the shape but also changed the microstructural and optical properties of GLAD AZO nanostructures. The experimental results reveal that GLAD AZO nanostructures of different shapes each have unique morphological, crystal structure, mechanical, and optical properties determined by scanning electron microscopy, X-ray diffraction, transmission, and reflectance measurements. Vertical nanorods display the largest grain size, minimum strain, lowest defect density, and highest optical transmittance compared to the other shapes. Growth dynamics of GLAD has been discussed to explain the dependence of structural and optical properties of nanostructures on the substrate rotation speed. - Highlights: • Al-doped ZnO (AZO) nanostructures with different shapes were fabricated. • They have unique morphological, crystal structure, and optical properties. • Vertical AZO nanorods show an enhanced optical transmittance.

  6. Influence of sputtering power on the optical properties of ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    K, Aijo John; M, Deepak, E-mail: manju.thankamoni@gmail.com; T, Manju, E-mail: manju.thankamoni@gmail.com [Department of Physics, Sree Sankara College, Kalady P. O., Ernakulam Dist., Kerala (India); Kumar, Vineetha V. [Dept. of Physics, K. E. College, Mannanam, Kottayam Dist., Kerala (India)

    2014-10-15

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  7. Structural and optical properties of CdSe nanosheets

    Science.gov (United States)

    Solanki, Rekha Garg; Rajaram, P.; Arora, Aman

    2018-04-01

    Nanosheets of CdSe have been synthesized using a solvothermal route using citric acid as an additive. It is found that the citric acid effectively controls the structural and optical properties of CdSe nanostructures. XRD studies confirm the formation of hexagonal wurtzite phase of CdSe. The FESEM micrographs show that the obtained CdSe nanocrystals are in the form of very thin sheets (nanosheets). Optical absorption studies as well as Photoluminescence spectra show that the optical gap is around 1.76 eV which is close to the reported bulk value of 1.74 eV. The prepared CdSe nanosheets because of large surface area may be useful for catalytic activities in medicine, biotechnology and environmental chemistry and in biomedical imaging for in vitro detection of a breast cancer cells.

  8. OPTICAL PROPERTIES OF CARBAMIDE AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    E. V. Avramenko

    2016-03-01

    Full Text Available Subject of Research. The paper presents the results of measurements of refractometric properties (refractive index n, its temperature factor dn/dt and the ultraviolet spectral absorption in carbonic acid diamide aqueous solutions (carbamide depending on solid residue mass fraction md = 0-50 % and on temperaturet = 10-70 °C.Method of Research. Laboratory methods ofliquid-phase medium refractometry and ultraviolet spectrophotometry were applied for the research. We carried out computational modeling of electronic states spectrum for the carbonic acid diamide molecule and theoretical calculation of the fundamental electronic absorption of the molecule in the ultraviolet wavelenght region.Main Results. We have established that the solution concentration md has a nonlinear character and may be represented by the quadratic polynomial with the error Δn= ± 0,0005. We have shown the refractive indexdependence on temperature n(t changes in linear fashion att = 10-70 °C.At that, the inclination of lines n(t increases at the increase of md; so, the temperature factor dn/dt may be approximated by the quadratic polynomial. Transmission spectra of solutions in the spectral region λ= 225-760 nm have no special features except for the sharp edge in the short-wavelength region; the fundamental electronic absorptionis responsible for it. We have established that dispersion dependences of the refraction index n(λ;md in aqueous solutions of carbamide at λ= 360-760 nm and at md = 0-50 % may be calculated with the satisfactory error without additional adjustable parameters from the ultraviolet absorption data in terms of the one-dimentional oscillator Lorentz model.PracticalRelevance. Representedmeasurements of carbonic acid diamide aqueous solutions optical properties may be applied for the adjustment and calibration of commercial refractometers at processing lines of the AdBlue reagent manufacture for the selective catalytic reduction (SCR of motor transport

  9. Tl4CdI6 – Wide band gap semiconductor: First principles modelling of the structural, electronic, optical and elastic properties

    International Nuclear Information System (INIS)

    Piasecki, M.; Brik, M.G.; Kityk, I.V.

    2015-01-01

    A novel infrared optoelectronic material Tl 4 CdI 6 was studied using the density functional theory (DFT)-based techniques. Its structural, electronic, optical and elastic properties were all calculated in the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) with the Ceperley-Alder–Perdew-Zunger (CA–PZ) functionals. The studied material is a direct band gap semiconductor with the calculated band gaps of 2.043 eV (GGA) and 1.627 eV (LDA). The wavelength dependence of the refractive index was fitted to the Sellmeier equation in the spectral range from 400 to 2000 nm. Good agreement between the GGA-calculated values of refractive index and experimental data was achieved. To the best of our knowledge, this is the first consistent theoretical description of the title compound, which includes calculations and analysis of the structural, electronic, optical and elastic properties. - Graphical abstract: Display Omitted - Highlights: • Infrared optoelectronic material Tl 4 CdI 6 was studied using ab initio methods. • Structural, electronic, optical and elastic properties were calculated. • Independent components of the elastic constants tensor were calculated. • Good agreement with available experimental results was achieved

  10. Semiconductor nanoparticles with spatial separation of charge carriers: synthesis and optical properties

    International Nuclear Information System (INIS)

    Vasiliev, Roman B; Dirin, Dmitry N; Gaskov, Alexander M

    2011-01-01

    The results of studies on core/shell semiconductor nanoparticles with spatial separation of photoexcited charge carriers are analyzed and generalized. Peculiarities of the electronic properties of semiconductor/semiconductor heterojunctions formed inside such particles are considered. Data on the effect of spatial separation of charge carriers on the optical properties of nanoparticles including spectral shifts of the exciton bands, absorption coefficients and electron–hole pair recombination times are presented. Methods of synthesis of core/shell semiconductor nanoparticles in solutions are discussed. Specific features of the optical properties of anisotropic semiconductor nanoparticles with the semiconductor/semiconductor junctions are noted. The bibliography includes 165 references.

  11. Nonclassical properties of a contradirectional nonlinear optical coupler

    Energy Technology Data Exchange (ETDEWEB)

    Thapliyal, Kishore [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); Pathak, Anirban, E-mail: anirban.pathak@gmail.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Sen, Biswajit [Department of Physics, Vidyasagar Teachers' Training College, Midnapore 721101 (India); Perřina, Jan [RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Department of Optics, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic)

    2014-10-24

    We investigate the nonclassical properties of output fields propagated through a contradirectional asymmetric nonlinear optical coupler consisting of a linear waveguide and a nonlinear (quadratic) waveguide operated by second harmonic generation. In contrast to the earlier results, all the initial fields are considered weak and a completely quantum-mechanical model is used here to describe the system. Perturbative solutions of Heisenberg's equations of motion for various field modes are obtained using Sen–Mandal technique. Obtained solutions are subsequently used to show the existence of single-mode and intermodal squeezing, single-mode and intermodal antibunching, two-mode and multi-mode entanglement in the output of contradirectional asymmetric nonlinear optical coupler. Further, existence of higher order nonclassicality is also established by showing the existence of higher order antibunching, higher order squeezing and higher order entanglement. Variation of observed nonclassical characters with different coupling constants and phase mismatch is discussed. - Highlights: • Nonclassicalities in fields propagating through a directional coupler is studied. • Completely quantum-mechanical description of the coupler is provided. • Analytic solutions of Heisenberg equations of motion for various modes are obtained. • Existence of lower order and higher order entanglement is shown. • Variation of nonclassicalities with phase-mismatch and coupling constants is studied.

  12. Electronic structure and optical properties of thorium monopnictides

    Indian Academy of Sciences (India)

    Unknown

    Indian Academy of Sciences. 165. Electronic structure and optical properties of thorium monopnictides. S KUMAR* and S AULUCK†. Physics Department, Institute of Engineering and Technology, M.J.P. Rohilkhand University, Bareilly 243 006,. India. †Department of Physics, Indian Institute of Technology, Roorkee 247 667, ...

  13. Structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba)

    Science.gov (United States)

    Benahmed, A.; Bouhemadou, A.; Alqarni, B.; Guechi, N.; Al-Douri, Y.; Khenata, R.; Bin-Omran, S.

    2018-05-01

    First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.

  14. Modifications of optical properties with ceramic coatings

    International Nuclear Information System (INIS)

    Besmann, T.M.; Abdel-Latif, A.I.

    1990-01-01

    Coatings of ceramic materials that exhibited high thermal absorptivities and emissivities were chemical vapor deposited on graphite and refractory metals. In this paper the coatings prepared were SiC and B 4 C, and the substrates used were graphite, molybdenum, titanium, and Nb-1Zr. The coatings are characterized with regard to adherence, optical properties, and response to potential harsh environments

  15. Ion-optical properties of Wien's filters with inhomogeneous fields

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Matyshev, A.A.; Solov'ev, K.V.

    1991-01-01

    Common conditions of beam stigmatic focusing in the Wien filters with direct axial trajectory in arbitrary two-dimensional inhomogeneous crossed electrical magnetic fields are obtained. Coefficients for geometrical aberrations of the second order of the crossed field system, characterized by stigmatic focusing properties, are found. Possibility of synthesis on the basis of the developed field system theory with required ion-optical properties is shown

  16. Thermotropic and optical properties of chiral nematic polymers

    International Nuclear Information System (INIS)

    Tsai, M.L.; Chen, S.H.; Marshall, K.L.; Jacobs, S.D.

    1988-09-01

    The thermotropic and optical properties of methacrylate copolymers and chemically modified poly(γ-benzyl L-glutamate) were investigated as part of our effort to explore the optical applications of these materials. It was found that besides the commonly cited comonomer ratio, physical blending and annealing followed by quenching represent a new and more flexible means to tune the selective reflection wavelength. In the poly (γ-benzyl L-glutamate) systems, it appears that the relatively high melt viscosity is capable of sustaining the cholesteric mesophase, generated by annealing and quenching, up to 100/degree/C. 22 refs., 8 figs

  17. Electro-optical and physic-mechanical properties of colored alicyclic polyimide

    Science.gov (United States)

    Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.

    2016-09-01

    Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.

  18. Systematic evaluation of a time-domain Monte Carlo fitting routine to estimate the adult brain optical properties

    Science.gov (United States)

    Selb, Juliette; Ogden, Tyler M.; Dubb, Jay; Fang, Qianqian; Boas, David A.

    2013-03-01

    Time-domain near-infrared spectroscopy (TD-NIRS) offers the ability to measure the absolute baseline optical properties of a tissue. Specifically, for brain imaging, the robust assessment of cerebral blood volume and oxygenation based on measurement of cerebral hemoglobin concentrations is essential for reliable cross-sectional and longitudinal studies. In adult heads, these baseline measurements are complicated by the presence of thick extra-cerebral tissue (scalp, skull, CSF). A simple semi-infinite homogeneous model of the head has proven to have limited use because of the large errors it introduces in the recovered brain absorption. Analytical solutions for layered media have shown improved performance on Monte-Carlo simulated data and layered phantom experiments, but their validity on real adult head data has never been demonstrated. With the advance of fast Monte Carlo approaches based on GPU computation, numerical methods to solve the radiative transfer equation become viable alternatives to analytical solutions of the diffusion equation. Monte Carlo approaches provide the additional advantage to be adaptable to any geometry, in particular more realistic head models. The goals of the present study were twofold: (1) to implement a fast and flexible Monte Carlo-based fitting routine to retrieve the brain optical properties; (2) to characterize the performances of this fitting method on realistic adult head data. We generated time-resolved data at various locations over the head, and fitted them with different models of light propagation: the homogeneous analytical model, and Monte Carlo simulations for three head models: a two-layer slab, the true subject's anatomy, and that of a generic atlas head. We found that the homogeneous model introduced a median 20 to 25% error on the recovered brain absorption, with large variations over the range of true optical properties. The two-layer slab model only improved moderately the results over the homogeneous one. On

  19. Microstructural, optical and electrical transport properties of Cd-doped SnO2 nanoparticles

    Science.gov (United States)

    Ahmad, Naseem; Khan, Shakeel; Mohsin Nizam Ansari, Mohd

    2018-03-01

    We have successfully investigated the structural, optical and dielectric properties of Cd assimilated SnO2 nanoparticles synthesized via very convenient precipitation route. The structural properties were studied by x-ray diffraction method (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. As-synthesized samples in the form of powder were examined for its morphology and average particle size by Transmission electron microscopy (TEM). The optical properties were studied by diffuse reflectance spectroscopy. Dielectric properties such that complex dielectric constant and ac conductivity were investigated by LCR meter. Average crystallite size calculated by XRD and average particle size obtained from TEM were found to be consistent and below 50 nm for all samples. The optical band gap of as-synthesized powder samples from absorption study was found in the range of 3.76 to 3.97 eV. The grain boundary parameters such that Rgb, Cgb and τ were evaluated using impedance spectroscopy.

  20. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model

    Energy Technology Data Exchange (ETDEWEB)

    Salomatina, E; Yaroslavsky, A N [Wellman Center for Photomedicine, 40 Blossom Street, Boston, MA 02114 (United States)], E-mail: Yaroslav@helix.mgh.harvard.edu

    2008-06-07

    Determination of in vivo optical properties is a challenging problem. Absorption and scattering measured ex vivo are often used for in vivo applications. To investigate the validity of this approach, we have obtained and compared the optical properties of mouse ears in vivo and ex vivo in the spectral range from 370 to 1650 nm. Integrating sphere spectrophotometry in combination with the inverse Monte Carlo technique was employed to determine absorption coefficients, {mu}{sub a}, scattering coefficients, {mu}{sub s}, and anisotropy factors, g. Two groups of mice were used for the study. The first group was measured in vivo and ex vivo within 5-10 min post mortem. The second group was measured in vivo and ex vivo every 24 h for up to 72 h after sacrifice. Between the measurements the tissues were kept at 4 deg. C wrapped in a gauze moistened with saline solution. Then the specimens were frozen at -25 deg. C for 40 min, thawed and measured again. The results indicate that the absorption coefficients determined in vivo and ex vivo within 5-10 min post mortem differed considerably only in the spectral range dominated by hemoglobin. These changes can be attributed to rapid deoxygenation of tissue and blood post mortem. Absorption coefficients determined ex vivo up to 72 h post mortem decreased gradually with time in the spectral regions dominated by hemoglobin and water, which can be explained by the continuing loss of blood. Absorption properties of the frozen-thawed ex vivo tissues showed increase in oxygenation, which is likely caused by the release of hemoglobin from hemolyzed erythrocytes. Scattering of the ex vivo tissues decreased gradually with time in the entire spectral range due to the continuing loss of blood and partial cell damage. Anisotropy factors did not change considerably.

  1. Variability in leaf optical properties among 26 species from a broad range of habitats

    International Nuclear Information System (INIS)

    Knapp, A.K.; Carter, G.A.

    1998-01-01

    Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r2 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases

  2. Structural, optical, and thermal properties of MAX-phase Cr2AlB2

    Science.gov (United States)

    Li, Xiao-Hong; Cui, Hong-Ling; Zhang, Rui-Zhou

    2018-04-01

    First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr2AlB2 are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 Å3 at T = 300 K, P = 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index n 0 is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.

  3. Polarization properties of a photorefractive Bi12SiO20 crystal and their application in an optical correlator

    DEFF Research Database (Denmark)

    Edvold, Bent; Andersen, Peter E.; Buchhave, Preben

    1994-01-01

    is based on an extension of the optical beam-propagation (OBP) method to include all the significant optical properties of the BSO crystal when used in a two-wave mixing configuration, i.e., optical activity, field-induced birefringence, and anisotropic diffraction. The model is able to handle multiple...... gratings where the input beams do not have to be symmetric about the axis of propagation. Using the numerical model the polarization properties of the BSO crystal are analyzed and the operation of the correlator is explained. The model is able to take into account self-diffraction effects, and it is shown...... conditions and of the polarization state of the input beams...

  4. The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties.

    Science.gov (United States)

    Sharpless, Charles M; Blough, Neil V

    2014-04-01

    Absorption of sunlight by chromophoric dissolved natural organic matter (CDOM) is environmentally significant because it controls photic zone depth and causes photochemistry that affects elemental cycling and contaminant fate. Both the optics (absorbance and fluorescence) and photochemistry of CDOM display unusual properties that cannot easily be ascribed to a superposition of individual chromophores. These include (i) broad, unstructured absorbance that decreases monotonically well into the visible and near IR, (ii) fluorescence emission spectra that all fall into a single envelope regardless of the excitation wavelength, and (iii) photobleaching and photochemical quantum yields that decrease monotonically with increasing wavelength. In contrast to a simple superposition model, these phenomena and others can be reasonably well explained by a physical model in which charge-transfer interactions between electron donating and accepting chromophores within the CDOM control the optical and photophysical properties. This review summarizes current understanding of the processes underlying CDOM photophysics and photochemistry as well as their physical basis.

  5. Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation

    Science.gov (United States)

    Jayalakshmi, G.; Saravanan, K.; Panigrahi, B. K.; Sundaravel, B.; Gupta, Mukul

    2018-05-01

    The tunable electronic, electrical and optical properties of graphene oxide (GO) sheets were investigated using a controlled reduction by 500 keV Ar+-ion irradiation. The carbon to oxygen ratio of the GO sheets upon the ion beam reduction has been estimated using resonant Rutherford backscattering spectrometry analyses and its effect on the electrical and optical properties of GO sheets has been studied using sheet resistance measurements and photoluminescence (PL) measurements. The restoration of sp 2-hybridized carbon atoms within the sp 3 matrix is found to be increases with increasing the Ar+-ion fluences as evident from Fourier transform infrared, and x-ray absorption near-edge structure measurements. The decrease in the number of disorder-induced local density of states (LDOSs) within the π-π* gap upon the reduction causes the shifting of PL emission from near infra-red to blue region and decreases the sheet resistance. The improved electrical and optical properties of GO sheets were correlated to the decrease in the number of LDOSs within the π-π* gap. Our experimental investigations suggest ion beam irradiation is one of an effective approaches to reduce GO to RGO and to tailor its electronic, electrical and optical properties.

  6. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  7. Magneto-Optical Properties of Paramagnetic Superrotors

    Science.gov (United States)

    Milner, A. A.; Korobenko, A.; Floß, J.; Averbukh, I. Sh.; Milner, V.

    2015-07-01

    We study the dynamics of paramagnetic molecular superrotors in an external magnetic field. An optical centrifuge is used to create dense ensembles of oxygen molecules in ultrahigh rotational states. In is shown, for the first time, that the gas of rotating molecules becomes optically birefringent in the presence of a magnetic field. The discovered effect of "magneto-rotational birefringence" indicates the preferential alignment of molecular axes along the field direction. We provide an intuitive qualitative model, in which the influence of the applied magnetic field on the molecular orientation is mediated by the spin-rotation coupling. This model is supported by the direct imaging of the distribution of molecular axes, the demonstration of the magnetic reversal of the rotational Raman signal, and by numerical calculations.

  8. Piezoelectric photothermal study of the optical properties of microcrystalline silicon near the bandgap

    International Nuclear Information System (INIS)

    Fukuyama, A.; Sakamoto, S.; Sonoda, S.; Wang, P.; Sakai, K.; Ikari, T.

    2006-01-01

    The optical absorption spectra of hydrogenated microcrystalline silicon (μc-Si:H) films deposited on glass and transparent conductive oxide (TCO) covered glass substrates were measured by using the piezoelectric photothermal (PPT) technique. The effects of the deposition rate on the optical absorption of μc-Si:H thin films were investigated from the nonradiative transition point of view. It was found that increasing the deposition rate resulted in a decrease of optical absorption and a shift of effective energy gap to the higher photon energy side. These changes in the optical properties of μc-Si:H cause the decrease of the number of carriers optically generated by absorbing sunlight, and results in a reduction in the photovoltaic conversion efficiency of the solar cells for high deposition rate samples. The usefulness of the PPT method for investigating the optical properties of thin and transparent μc-Si:H films was also demonstrated

  9. Comparison of stellar population model predictions using optical and infrared spectroscopy

    Science.gov (United States)

    Baldwin, C.; McDermid, R. M.; Kuntschner, H.; Maraston, C.; Conroy, C.

    2018-02-01

    We present Gemini/GNIRS cross-dispersed near-infrared spectra of 12 nearby early-type galaxies, with the aim of testing commonly used stellar population synthesis models. We select a subset of galaxies from the ATLAS3D sample which span a wide range of ages (single stellar population equivalent ages of 1-15 Gyr) at approximately solar metallicity. We derive star formation histories using four different stellar population synthesis models, namely those of Bruzual & Charlot, Conroy, Gunn & White, Maraston & Strömbäck and Vazdekis et al. We compare star formation histories derived from near-infrared spectra with those derived from optical spectra using the same models. We find that while all models agree in the optical, the derived star formation histories vary dramatically from model to model in the near-infrared. We find that this variation is largely driven by the choice of stellar spectral library, such that models including high-quality spectral libraries provide the best fits to the data, and are the most self-consistent when comparing optically derived properties with near-infrared ones. We also find the impact of age variation in the near-infrared to be subtle, and largely encoded in the shape of the continuum, meaning that the common approach of removing continuum information with a high-order polynomial greatly reduces our ability to constrain ages in the near-infrared.

  10. Optical properties of armchair (7, 7) single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Gharbavi, K.; Badehian, H.

    2015-01-01

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations

  11. The electronic and optical properties of warm dense nitrous oxide using quantum molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zhang Yujuan; Wang Cong; Zhang Ping

    2012-01-01

    First-principles molecular-dynamics simulations based on density-functional theory have been used to study the electronic and optical properties of fluid nitrous oxide under extreme conditions. Systematic descriptions of pair-correlation function, atomic structure, and the charge density distribution are used to investigate the dissociation of fluid nitrous oxide. The electrical and optical properties are derived from the Kubo-Greenwood formula. It is found that the nonmetal-metal transition for fluid nitrous oxide can be directly associated to the dissociation and has significant influence on the optical properties of the fluid.

  12. Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Jongbum Kim

    2013-12-01

    Full Text Available Searching for better materials for plasmonic and metamaterial applications is an inverse design problem where theoretical studies are necessary. Using basic models of impurity doping in semiconductors, transparent conducting oxides (TCOs are identified as low-loss plasmonic materials in the near-infrared wavelength range. A more sophisticated theoretical study would help not only to improve the properties of TCOs but also to design further lower-loss materials. In this study, optical functions of one such TCO, gallium-doped zinc oxide (GZO, are studied both experimentally and by first-principles density-functional calculations. Pulsed-laser-deposited GZO films are studied by the x-ray diffraction and generalized spectroscopic ellipsometry. Theoretical studies are performed by the total-energy-minimization method for the equilibrium atomic structure of GZO and random phase approximation with the quasiparticle gap correction. Plasma excitation effects are also included for optical functions. This study identifies mechanisms other than doping, such as alloying effects, that significantly influence the optical properties of GZO films. It also indicates that ultraheavy Ga doping of ZnO results in a new alloy material, rather than just degenerately doped ZnO. This work is the first step to achieve a fundamental understanding of the connection between material, structural, and optical properties of highly doped TCOs to tailor those materials for various plasmonic applications.

  13. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells

    International Nuclear Information System (INIS)

    Chang Yiren; Hsu Long; Chi Sien

    2006-01-01

    Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system

  14. Some optical properties of the spiral inflector

    International Nuclear Information System (INIS)

    Toprek, Dragan; Subotic, Krunoslav

    1999-01-01

    This paper compares some optical properties of different spiral inflectors using the program CASINO. The electric field distribution in the inflectors has been numerically calculated from an electric potential map produced by the program RELAX3D. The magnetic field is assumed to be constant. We have also made an effort to minimize the inflector fringe field using the RELAX3D program. (author)

  15. Electronic and Optical Properties of Two-Dimensional GaN from First-Principles.

    Science.gov (United States)

    Sanders, Nocona; Bayerl, Dylan; Shi, Guangsha; Mengle, Kelsey A; Kioupakis, Emmanouil

    2017-12-13

    Gallium nitride (GaN) is an important commercial semiconductor for solid-state lighting applications. Atomically thin GaN, a recently synthesized two-dimensional material, is of particular interest because the extreme quantum confinement enables additional control of its light-emitting properties. We performed first-principles calculations based on density functional and many-body perturbation theory to investigate the electronic, optical, and excitonic properties of monolayer and bilayer two-dimensional (2D) GaN as a function of strain. Our results demonstrate that light emission from monolayer 2D GaN is blueshifted into the deep ultraviolet range, which is promising for sterilization and water-purification applications. Light emission from bilayer 2D GaN occurs at a similar wavelength to its bulk counterpart due to the cancellation of the effect of quantum confinement on the optical gap by the quantum-confined Stark shift. Polarized light emission at room temperature is possible via uniaxial in-plane strain, which is desirable for energy-efficient display applications. We compare the electronic and optical properties of freestanding two-dimensional GaN to atomically thin GaN wells embedded within AlN barriers in order to understand how the functional properties are influenced by the presence of barriers. Our results provide microscopic understanding of the electronic and optical characteristics of GaN at the few-layer regime.

  16. Correlation of optical properties with the fractal microstructure of black molybdenum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Enrique; Gonzalez, Federico [Area de Energia, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico); Rodriguez, Eduardo [Area de Computacion y Sistemas, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico); Alvarez-Ramirez, Jose, E-mail: jjar@xanum.uam.mx [Area de Energia, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico)

    2010-01-01

    Coating is commonly used for improving the optical properties of surfaces for solar collector applications. The coating morphology depends on the deposition conditions, and this determines the final optical characteristics. Coating morphologies are irregular and of fractal nature, so a suitable approach for its characterization should use methods borrowed from fractal analysis. The aim of this work is to study the fractal characteristics of black molybdenum coatings on copper and to relate the fractal parameters to the optical properties. To this end, coating surfaces were prepared via immersion in a solution of ammonium paramolybdate for different deposition periods. The fractal analysis was carried out for SEM and AFM images of the coating surface and the fractal properties were obtained with a recently developed high-dimensional extension of the well-known detrended fluctuation analysis (DFA). The most salient parameter drawn from the application of the DFA is the Hurst index, a parameter related to the roughness of the coating surface, and the multifractality index, which is related to the non-linearity features of the coating morphology. The results showed that optical properties, including absorptance and emittance, are decreasing functions of the Hurst and multifractality indices. This suggests that coating surfaces with high absorptance and emittance values are related to complex coating morphologies conformed within a non-linear structure.

  17. Thermo-optical properties of residential coals and combustion aerosols

    Science.gov (United States)

    Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán

    2018-04-01

    In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.

  18. Analysis of nonlinear optical properties in donor–acceptor materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States); Pachter, Ruth [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Nguyen, Kiet A. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States)

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  19. Electronic and optical properties of defect CdIn_2Te_4 chalcopyrite semiconductor: A first principle approach

    International Nuclear Information System (INIS)

    Mishra, S.; Ganguli, B.

    2016-01-01

    We present detailed study of structural, electronic and optical properties of CdIn_2Te_4 compound. The calculations are carried out using Density Functional theory based Tight Binding Linear Muffin Tin Orbital method. The compound is found to be direct band gap semiconductor with a band gap of 1.03 eV. The band gap is within the limit of LDA underestimation. The calculated structural parameters agree well with the available experimental values. We find a decrements of 9.6% in band gap and significant effects on overall electronic and optical properties due to structural distortions. These effects on optical properties come mainly from the change in transition probability. An-isotropic nature of optical properties get enhanced due to structural distortion. The Calculated real & imaginary parts of dielectric constant and static dielectric constant agree well with the available experimental result. - Highlights: • We present ab-initio calculations of electronic & optical properties of CdIn_2Te_4. • Band gap get reduced by 9.6% due to structural distortion. • Structural distortion has significant effects on optical properties. • Anisotropic nature of optical response functions get enhanced by structural distortion. • Calculated dielectric constant agrees with experimental value.

  20. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  1. Mechanical and electrical properties of red blood cells using optical tweezers

    International Nuclear Information System (INIS)

    Fontes, A; Castro, M L Barjas; Brandão, M M; Fernandes, H P; Huruta, R R; Costa, F F; Saad, S T O; Thomaz, A A; Pozzo, L Y; Barbosa, L C; Cesar, C L

    2011-01-01

    Optical tweezers are a very sensitive tool, based on photon momentum transfer, for individual, cell by cell, manipulation and measurements, which can be applied to obtain important properties of erythrocytes for clinical and research purposes. Mechanical and electrical properties of erythrocytes are critical parameters for stored cells in transfusion centers, immunohematological tests performed in transfusional routines and in blood diseases. In this work, we showed methods, based on optical tweezers, to study red blood cells and applied them to measure apparent overall elasticity, apparent membrane viscosity, zeta potential, thickness of the double layer of electrical charges and adhesion in red blood cells

  2. The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene

    Science.gov (United States)

    Zhu, Ziqing; Chen, Changpeng; Liu, Jiayi; Han, Lu

    2018-01-01

    The electronic properties and optical properties of single and double Au-doped phosphorene have been comparatively investigated using the first-principles plane-wave pseudopotential method based on density functional theory. The decrease from direct band gap 0.78 eV to indirect band gap 0.22 and 0.11 eV are observed in the single and double Au-doped phosphorene, respectively. The red shifts of absorbing edge occur in both doped systems, which consequently enhance the absorbing of infrared light in phosphorene. Band gap engineering can, therefore, be used to directly tune the optical absorption of phosphorene system by substitutional Au doping.

  3. Effective optical constants and effective optical properties of ultrathin trilayer structures

    International Nuclear Information System (INIS)

    Haija, A.J.; Larry Freeman, W.; Umbel, Rachel

    2011-01-01

    This work presents an extension of the characteristic effective medium approximation (CEMA) to ultrathin trilayer systems. The extension has been carried out analytically and is supported by corresponding calculations of the effective optical constants of Cu-Au-Cu and Ag-SiO-Ag trilayer systems using the CEMA approximation. This work is in essence a generalization of the characteristic effective medium approximation introduced earlier for ultrathin bilayer structures. This method is used to derive the effective optical constants of a trilayer system, consisting of three thin layers with each constituent layer of thickness much less than the wavelength of the incident radiation. Within this regime a trilayer system is viewed as one effective layer referred to as an effective stack (ES) with well defined effective optical constants, which can be used to calculate the optical properties of the trilayer stack within a specified wavelength range. The CEMA based calculations of the effective optical constants are applied to two trilayer systems with a total of five stacks. Three are Cu-Au-Cu and two are Ag-SiO-Ag stacks. The thicknesses of the parent layers in the Cu-Au-Cu stack range from 3 to 30 nm for Cu and 4 to 40 nm for Au; in the Ag-SiO-Ag stack the constituent layers are 6 nm for Ag, but range from 5 to 10 nm for SiO. This study is for normal or near normal incidence spectroscopy in a wavelength range that extends from visible to near infrared. The agreement between CEMA based ES stack results and those of the standard CMT technique is very satisfactory.

  4. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    Science.gov (United States)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  5. Measurement of inherent optical properties in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Kurian, J.; Mascarenhas, A.A.M.Q.

    Inherent optical properties, absorption and began attenuation were measured in situ using a reflective tube absorption meter at nint wavelength, 412, 440, 488, 510, 555, 630, 650, 676 and 715 nm, in the Arabian Sea during March. Since inherent...

  6. Excitations and optical properties of phenylene-based conjugated polymers and oligomers

    Science.gov (United States)

    Brazovskii, S.; Kirova, N.; Bishop, A. R.; Klimov, V.; McBranch, D.; Barashkov, N. N.; Ferraris, J. P.

    1998-01-01

    We present a combined experimental and theoretical study of the ground and photoexcited optical properties of a model oligomer of PPV, MEH-DSB. Our theoretical picture is based upon a band description of electronic states of PPV oligomers, while invoking corrections from Coulomb interactions. The necessary discrete energy levels at low and intermediate energies appear naturally, in addition to the lower energy delocalized states. On this basis we identify the most important features in direct optical absorption for both high (4-6 eV) and low (2-4 eV) photon energies as well as in photoinduced absorption (PA) and stimulated photoemissions (SE) in MEH-DSB solutions, which represent the limit of noninteracting oligomers. While in agreement with previous interpretations for three absorption peaks (2.74, 4.46 and 6.2 eV), we give a new assignment for the most disputed 3.62 eV one as well as for the two PA peaks.

  7. Calculation of Brown Carbon Optical Properties in the Fifth version Community Atmospheric Model (CAM5) and Validation with a Case Study in Kanpur, India

    Science.gov (United States)

    Xu, L.; Peng, Y.; Ram, K.

    2017-12-01

    The presence of absorbing component of organic carbon in atmospheric aerosols (Brown Carbon, BrC) has recently received much attention to the scientific community because of its absorbing nature, especially in the UV and Visible region. Attempts to account for BrC in radiative forcing calculations in climate model are rather scarce, primarily due to observational constrain as well as its incorporation in the model-based studies. Due to non-treatment of BrC in the off-line models, there exists a large discrepancy between model- and observational- based estimate of direct radiative effect of carbonaceous aerosols. In this study, we have included BrC absorption and optical characteristics in the fifth version of Community Atmospheric Model (CAM5) for the better understanding of radiative impact of BrC over northern India, also for improving the performance of aerosol radiative calculation in climate model. We have used the inputs of aerosol chemical composition measurements conducted at an urban site, Kanpur, in the Indo-Gangetic Plain (IGP) during 2007-2008 to construct the optical properties of BrC in CAM5 model. Model radiative simulations of sensitive tests showed good agreement with observations. Effects of varying imaginary part of BrC refractive index, relative mass ratio of BrC to organic aerosol in combination with core-shell mixing style of BrC with other anthropogenic aerosols are also analyzed for understanding BrC impact on simulated aerosol absorption in model.

  8. The optical properties of equatorial cirrus in the pilot radiation observation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Platt, C.M.R.; Young, S.A.; Manson, P.; Patterson, G.R. [CSIRO, Victoria (Australia)] [and others

    1996-04-01

    The development of a sensitive filter radiometer for the Atmospheric Radiation Measurement (ARM) Program has been reported. The aim was to develop a reliable and fast instrument that could be used alongside a lidar to obtain near realtime optical properties of clouds, particularly high ice clouds, as they drifted over an ARM Cloud and Radiation Testbed (CART) site allowing calculation of the radiation divergence in the atmosphere over the site. Obtaining cloud optical properties by the lidar/radiometer, or LIRAD, method was described by Platt et al.; the latter paper also describes a year`s data on mid-latitude cirrus. The optical properties of equatorial cirrus (i.e., cirrus within a few degrees of the equator) have hardly been studied at all. The same is true of tropical cirrus, although a few observations have been reported by Davis and Platt et al.This paper describes obersvations performed on cirrus clouds, analysis methods used, and results.

  9. Optical properties of new 5-(4-phenylethynyl)-substituted-1,10-phenanthroline derivatives

    International Nuclear Information System (INIS)

    Guerin, Juliette; Aronica, Christophe; Boeuf, Gaelle; Chauvin, Jerome; Moreau, Juliette; Lemercier, Gilles

    2011-01-01

    The synthesis and optical properties of a novel family of 5-substituted-1,10-phenanthroline derivatives are reported herein. One carbon-carbon triple-bond function was introduced using a Sonogashira cross-coupling reaction. The effects on optical properties, of the substitution with electro-withdrawing or -donating substituents in the 5th position of the 1,10-phenanthroline are investigated. Experimental chemical structure-polarisability relationship is analyzed according to the Lippert-Mataga correlation and compared to a theoretical study carried out with DFT calculations. These compounds are promising candidates for a fine-tuning of the internal charge-transfers but also as potential nonlinear chromophores and ligands within multifunctional coordination complexes. - Highlights: → Synthesis and optical properties of new 5-substituted-1,10-phenanthroline derivatives. → Sonogashira reaction was used for the substitution. → Structure-polarisability relationship analyzed according to Lippert-Mataga correlation. → Theoretical study was carried out with DFT calculations. → Fine-tuning of the internal charge-transfers within nonlinear compounds.

  10. Optical properties of pH-sensitive carbon-dots with different modifications

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Weiguang, E-mail: 11236095@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Wu, Huizhen, E-mail: hzwu@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Ye, Zhenyu, E-mail: yzheny@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Ruifeng, E-mail: hbrook@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Xu, Tianning, E-mail: xtn9886@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Zhang, Bingpo, E-mail: 11006080@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-04-15

    Carbon dots with unique characters of chemical inertness, low cytotoxicity and good biocompatibility, demonstrate important applications in biology and optoelectronics. In this paper we report the optical properties of pH-sensitive carbon dots with different surface modifications. The as-prepared carbon dots can be well dispersed in water by modifying with acid, alkali or metal ions though they tend to form a suspension when being directly dispersed in water. We find that the carbon dots dispersed in water show a new emission and absorption character which is tunable due to the pH-sensitive nature. It is firstly proved that the addition of bivalent copper ions offers a high color contrast for visual colorimetric assays for pH measurement. The effect of surface defects with different modification on the performances of the carbon dots is also explored with a core–shell model. The hydro-dispersed carbon dots can be potentially utilized for cellular imaging or metal ion probes in biochemistry. -- Highlights: • The dispersibility in water of as-prepared carbon dots is effectively improved by the addition of acid, alkali or metal ions. • The effect of hydrolysis on the optical properties of the carbon dots is studied. • The luminescent carbon dots show a pH-sensitive fluorescence and absorption property. • The addition of bivalent copper ions in the post-treated carbon dots offers a high color contrast for visual colorimetric assays for pH measurement. • The effect of surface defects and ligands on the performances of the carbon dots is also explored.

  11. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study

    International Nuclear Information System (INIS)

    Han, Zhaolong; Li, Jiasong; Singh, Manmohan; Wu, Chen; Liu, Chih-hao; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Sudheendran, Narendran; Larin, Kirill V; Aglyamov, Salavat R; Twa, Michael D

    2015-01-01

    We present a systematic analysis of the accuracy of five different methods for extracting the biomechanical properties of soft samples using optical coherence elastography (OCE). OCE is an emerging noninvasive technique, which allows assessment of biomechanical properties of tissues with micrometer spatial resolution. However, in order to accurately extract biomechanical properties from OCE measurements, application of a proper mechanical model is required. In this study, we utilize tissue-mimicking phantoms with controlled elastic properties and investigate the feasibilities of four available methods for reconstructing elasticity (Young’s modulus) based on OCE measurements of an air-pulse induced elastic wave. The approaches are based on the shear wave equation (SWE), the surface wave equation (SuWE), Rayleigh-Lamb frequency equation (RLFE), and finite element method (FEM), Elasticity values were compared with uniaxial mechanical testing. The results show that the RLFE and the FEM are more robust in quantitatively assessing elasticity than the other simplified models. This study provides a foundation and reference for reconstructing the biomechanical properties of tissues from OCE data, which is important for the further development of noninvasive elastography methods. (paper)

  12. Electrical and Optical Properties of Nanosized Perovskite-type La ...

    African Journals Online (AJOL)

    Electrical and Optical Properties of Nanosized Perovskite-type La 0.5 Ca 0.5 MO 3 (M=Co,Ni) ... In addition, the TEM images show that the average particle size of ... of both compounds decreases exponentially by increasing the temperature.

  13. Optical properties, ethylene production and softening in mango fruits

    NARCIS (Netherlands)

    Eccher Zerbini, P.C.; Vanoli, M.; Rizzolo, A.; Grassi, M.; Meirelles de Azevedo Pementel, A.; Spinelli, L.; Torricelli, A.

    2015-01-01

    Firmness decay, chlorophyll breakdown and carotenoid accumulation, controlled by ethylene, are major ripening events in mango fruit. Pigment content and tissue structure affect the optical properties of the mesocarp, which can be measured nondestructively in the intact fruit by time-resolved

  14. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.

    Science.gov (United States)

    Linares-García, Gabriel; Meza-Montes, Lilia; Stinaff, Eric; Alsolamy, S M; Ware, M E; Mazur, Y I; Wang, Z M; Lee, Jihoon; Salamo, G J

    2016-12-01

    Electronic and optical properties of InAs/GaAs nanostructures grown by the droplet epitaxy method are studied. Carrier states were determined by k · p theory including effects of strain and In gradient concentration for a model geometry. Wavefunctions are highly localized in the dots. Coulomb and exchange interactions are studied and we found the system is in the strong confinement regime. Microphotoluminescence spectra and lifetimes were calculated and compared with measurements performed on a set of quantum rings in a single sample. Some features of spectra are in good agreement.

  15. Optical properties of infrared FELs from the FELI Facility II

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  16. Optical properties of Sb(Se,Te)I and photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Tablero, C., E-mail: ctablero@etsit.upm.es

    2016-09-05

    SbXI (X = Se, Te) are ferroelectric semiconductors that allow a variety of applications including optoelectronic and photovoltaic applications. An analysis of the optical properties is carried out starting from first-principles density-functional theory with orbital-dependent one-electron potentials. To go into the contributions to the optical properties more deeply, the absorption coefficients have been split into inter- and intra-species contributions and into atomic angular momentum contributions. The optical results are used to evaluate the efficiencies when this material is used to absorb sunlight at several sunlight concentrations and the usual radiative and the ferroelectric photovoltaic mechanisms. The results indicate their applicability in photovoltaic devices as absorbent of the solar spectrum with high conversion efficiency. - Highlights: • The SbXI (X = Se, Te) are ferroelectric semiconductors with a high optical absorption. • The absorption coefficients have been split into different contributions to understand the cause of the high absorption. • Using the first-principles results the maximum efficiency of this photovoltaic absorber material has been estimated. • The efficiency of this compound is near the maximum efficiency for single-gap solar cells even using small-width devices. • The coexistence of the R-PV and R-PV effects has been evaluated.

  17. Electrical and optical transport properties of single layer WSe2

    Science.gov (United States)

    Tahir, M.

    2018-03-01

    The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.

  18. Optical Properties of the Fresnoite Ba2TiSi2O8 Single Crystal

    Directory of Open Access Journals (Sweden)

    Chuanying Shen

    2017-02-01

    Full Text Available In this work, using large-sized single crystals of high optical quality, the optical properties of Ba2TiSi2O8 were systematically investigated, including transmission spectra, refractive indices and nonlinear absorption properties. The crystal exhibits a high transmittance (>84% over a wide wavelength range from 340 to 2500 nm. The refractive indices in the range from 0.31256 to 1.01398 μm were measured, and Sellmeier’s equations were fitted by the least squares method. The nonlinear absorption properties were studied by using the open-aperture Z-scan technique, with a nonlinear absorption coefficient measured to be on the order of 0.257 cm/GW at the peak power density of 16.4 GW/cm2. Such high transmittance and wide transparency indicate that optical devices using the Ba2TiSi2O8crystal can be applied over a wide wavelength range. Furthermore, the small nonlinear absorption observed in Ba2TiSi2O8 will effectively increase the optical conversion efficiency, decreasing the generation of laser damage of the optical device.

  19. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    Science.gov (United States)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  20. Linear and nonlinear optical properties of Sb-doped GeSe2 thin films

    Science.gov (United States)

    Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua

    2015-06-01

    Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.

  1. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    Science.gov (United States)

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  2. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model.

    Science.gov (United States)

    Tabassum, Syeda; Zhao, Yanyu; Istfan, Raeef; Wu, Junjie; Waxman, David J; Roblyer, Darren

    2016-10-01

    Determination of chemotherapy efficacy early during treatment would provide more opportunities for physicians to alter and adapt treatment plans. Diffuse optical technologies may be ideally suited to track early biological events following chemotherapy administration due to low cost and high information content. We evaluated the use of spatial frequency domain imaging (SFDI) to characterize a small animal tumor model in order to move towards the goal of endogenous optical monitoring of cancer therapy in a controlled preclinical setting. The effects of key measurement parameters including the choice of imaging spatial frequency and the repeatability of measurements were evaluated. The precision of SFDI optical property extractions over repeat mouse measurements was determined to be within 3.52% for move and replace experiments. Baseline optical properties and chromophore values as well as intratumor heterogeneity were evaluated over 25 tumors. Additionally, tumor growth and chemotherapy response were monitored over a 45 day longitudinal study in a small number of mice to demonstrate the ability of SFDI to track treatment effects. Optical scattering and oxygen saturation increased as much as 70% and 25% respectively in treated tumors, suggesting SFDI may be useful for preclinical tracking of cancer therapies.

  3. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Science.gov (United States)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  4. Simulated optical properties of noble metallic nanopolyhedra with different shapes and structures

    Science.gov (United States)

    Zhang, An-Qi; Qian, Dong-Jin; Chen, Meng

    2013-11-01

    The optical properties of nanostructured architectures are highly sensitive to their compositions, structures, dimensions, geometries and embedding mediums. Nanopolyhedra, including homogeneous metal nanoparticles and core-shell structures, have unique optical properties. In the beginning of this study, Discrete Dipole Approximation (DDA) method has been introduced. Then the simulated extinction spectra of single-component metal nanoparticles and Au@Ag polyhedra were calculated using both Mie and DDA methods. The influence of morphology and components on the optical response is discussed and well-supported by previously published experimental results. It is observed that the Localized Surface Plasmon Resonance peaks are mainly decided by sharp vertexes and symmetry of noble metallic polyhedra, as well as the structure of the Au@Ag core-shell nanoparticles.

  5. The structural and optical properties of metal ion-implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Macková, A.; Malinský, P. [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Řež (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, České Mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Sofer, Z.; Šimek, P.; Sedmidubský, D. [Department of Inorganic Chemistry, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Veselý, M. [Dept. of Organic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Böttger, R. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden – Rossendorf, 01328 Dresden (Germany)

    2016-03-15

    The practical development of novel optoelectronic materials with appropriate optical properties is strongly connected to the structural properties of the prepared doped structures. We present GaN layers oriented along the (0 0 0 1) crystallographic direction that have been grown by low-pressure metal–organic vapour-phase epitaxy (MOVPE) on sapphire substrates implanted with 200 keV Co{sup +}, Fe{sup +} and Ni{sup +} ions. The structural properties of the ion-implanted layers have been characterised by RBS-channelling and Raman spectroscopy to obtain a comprehensive insight into the structural modification of implanted GaN layers and to study the subsequent influence of annealing on crystalline-matrix recovery. Photoluminescence was measured to control the desired optical properties. The post-implantation annealing induced the structural recovery of the modified GaN layer depending on the introduced disorder level, e.g. depending on the ion implantation fluence, which was followed by structural characterisation and by the study of the surface morphology by AFM.

  6. Optical and optoelectronic properties of nanostructures based on wide-bandgap semiconductors

    International Nuclear Information System (INIS)

    Kalden, Joachim

    2010-01-01

    Recently, more and more research is done on nitride nanostructures in order to control the electrical and optical properties in a more sophisticated manner for optimized light-matter-interaction and extraction efficiency. In this context, the work presented in this thesis has been carried out, concentrating on two main topics. One aspect is the characterization of InGaN quantum dots (QDs). QDs possess a unique atom-like density of states for electrons, allowing for generation and manipulation of discrete electronic states. This thesis contains the analysis of QDs embedded in optoelectronic devices such as LEDs. Measurements of the electroluminescence (EL) of QD ensembles as well as single QDs are presented. Especially QD EL obtained at higher temperatures up to 150 K is a main achievement of this work. Furthermore, the photoluminescence (PL) of QD multilayer structures has been examined and discussed in detail. Experiments on the optical amplification in these multilayers have been carried out for the first time, yielding a maximum optical gain of g(max)/(mod)=50/cm. Another main aspect of solid state lighting is the efficient light extraction from light sources. For this purpose, pillar microcavities based on nitrides have been investigated. This type of optical resonator possesses a discrete optical mode structure due to the three-dimensional optical confinement in these structures. For optimal light-matter coupling conditions, this leads to an enhanced extraction efficiency. In this context, studies on QD pillar microcavities (MCs) processed by focused ion beam milling from planar MC structures are presented. After a detailed analysis of the photonic properties of these pillar MCs, a temperature-variation method to tune the cavity in resonance with QD emission is demonstrated, yielding a five-fold enhancement of the extraction efficiency. These experiments were carried out on selenide-based structures which possess a very high structural quality. An alternative

  7. Press forging and optical properties of lithium fluoride

    Science.gov (United States)

    Ready, J. F.; Vora, H.

    1980-07-01

    Lithium fluoride is an important candidate material for windows on high power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals were press forged in one step over the temperature range 300 to 600 C to obtain fine grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40 percent at 400 C to 65 percent at 600 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 C, to total deformations of 69 to 76 percent, with intermediate annealing at 700 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one step forging. The results of characterization of various optical and mechanical properties of single crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described.

  8. Press forging and optical properties of lithium fluoride

    International Nuclear Information System (INIS)

    Ready, J.F.; Vora, H.

    1979-01-01

    Lithium fluoride is an important candidate material for windows on high-power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals have been press forged in one step over the temperature range 300 to 600 0 c to obtain fine-grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40% at 400 0 C to 65% at 600 0 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 0 C, to total deformations of 69-76%, with intermediate annealing at 700 0 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one-step forging. The results of characterization of various optical and mechanical properties of single-crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described

  9. Optical and electrical properties of nickel xanthate thin films

    Indian Academy of Sciences (India)

    Administrator

    metal-xanthate thin films' production, nor their optical, electrical properties and .... vibration of –CH3 at 894 cm–1, (vii) the symmetric bend- ing vibration of C–O–C at 458 .... vity values are the two most important factors, affecting band width.

  10. Optical properties of multicomponent antimony-silver nanoclusters formed in silica by sequential ion implantation

    International Nuclear Information System (INIS)

    Zuhr, R.A.

    1995-11-01

    The linear and nonlinear optical properties of nanometer dimension metal colloids embedded in a dielectric depend explicitly on the electronic structure of the metal nanoclusters. The ability to control the electronic structure of the nanoclusters may make it possible to tailor the optical properties for enhanced performance. By sequential implantation of different metal ion species multi-component nanoclusters can be formed with significantly different optical properties than single element metal nanoclusters. The authors report the formation of multi-component Sb/Ag nanoclusters in silica by sequential implantation of Sb and Ag. Samples were implanted with relative ratios of Sb to Ag of 1:1 and 3:1. A second set of samples was made by single element implantations of Ag and Sb at the same energies and doses used to make the sequentially implanted samples. All samples were characterized using RBS and both linear and nonlinear optical measurements. The presence of both ions significantly modifies the optical properties of the composites compared to the single element nanocluster glass composites. In the sequentially implanted samples the optical density is lower, and the strong surface plasmon resonance absorption observed in the Ag implanted samples is not present. At the same time the nonlinear response of the these samples is larger than for the samples implanted with Sb alone, suggesting that the addition of Ag can increase the nonlinear response of the Sb particles formed. The results are consistent with the formation of multi-component Sb/Ag colloids

  11. Non-equilibrium carrier efect in the optical properties of semiconductors

    International Nuclear Information System (INIS)

    Teschke, O.

    1980-01-01

    The time-resolved reflectivity of picosecond pulses from optically excited carrier distributions can provide important information about the energy relaxation rates of hot electrons and holes in semiconductors. the basic optical properties of non-equilibrium carrier distributions of GaAs are discussed. A semi-empirical analysis of the reflectivity spectrum is presented and the contributions of different effects are estimated. The results are in qualitative agreement with recent experiments employing dye lasers. (Author) [pt

  12. Theoretical study on the electronic and optical properties of bulk and surface (001) InxGa1-xAs

    Science.gov (United States)

    Liu, XueFei; Ding, Zhao; Luo, ZiJiang; Zhou, Xun; Wei, JieMin; Wang, Yi; Guo, Xiang; Lang, QiZhi

    2018-05-01

    The optical properties of surface and bulk InxGa1-xAs materials are compared systematically first time in this paper. The band structures, density of states and optical properties including dielectric function, reflectivity, absorption coefficient, loss function and refractive index of bulk and surface InxGa1-xAs materials are investigated by first-principles based on plane-wave pseudo-potentials method within the LDA approximation. The results agree well with the available theoretical and experimental studies and indicate that the electronic and optical properties of bulk and surface InxGa1-xAs materials are much different, and the results show that the considered optical properties of the both materials vary with increasing indium composition in an opposite way. The calculations show that the optical properties of surface In0.75Ga0.25As material are unexpected to be far from the other two indium compositions of surface InxGa1-xAs materials while the optical properties of bulk InxGa1-xAs materials vary with increasing indium composition in an expected regular way.

  13. Optical properties of ITO nanocoatings for photovoltaic and energy building applications

    Science.gov (United States)

    Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.

    2014-10-01

    Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.

  14. Assessment of the aerosol optics component of the coupled WRF-CMAQ model using CARES field campaign data and a single column model

    Science.gov (United States)

    Gan, Chuen Meei; Binkowski, Francis; Pleim, Jonathan; Xing, Jia; Wong, David; Mathur, Rohit; Gilliam, Robert

    2015-08-01

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) - Community Multiscale Air Quality (CMAQ) model. This campaign included comprehensive measurements of aerosol composition and optical properties at two ground sites and aloft from instrumentation on-board two aircraft. A single column model (SCM) was developed to evaluate the accuracy and consistency of the coupled model using both observation and model information. Two cases (June 14 and 24, 2010) are examined in this study. The results show that though the coupled WRF-CMAQ estimates of aerosol extinction were underestimated relative to these measurements, when measured concentrations and characteristics of ambient aerosols were used as input to constrain the SCM calculations, the estimated extinction profiles agreed well with aircraft observations. One of the possible causes of the WRF-CMAQ extinction errors is that the simulated sea-salt (SS) in the accumulation mode in WRF-CMAQ is very low in both cases while the observations indicate a considerable amount of SS. Also, a significant amount of organic carbon (OC) is present in the measurement. However, in the current WRF-CMAQ model all OC is considered to be insoluble whereas most secondary organic aerosol is water soluble. In addition, the model does not consider external mixing and hygroscopic effects of water soluble OC which can impact the extinction calculations. In conclusion, the constrained SCM results indicate that the scattering portion of the aerosol optics calculations is working well, although the absorption calculation could not be effectively evaluated. However, a few factors such as greatly underestimated accumulation mode SS, misrepresentation of water soluble OC, and incomplete mixing state representation in the full coupled model

  15. Impact of calcification state on the inherent optical properties of Emiliania huxleyi coccoliths and coccolithophores

    International Nuclear Information System (INIS)

    Bi, Lei; Yang, Ping

    2015-01-01

    Understanding the inherent optical properties (IOPs) of coccoliths and coccolithophores is important in oceanic radiative transfer simulations and remote sensing implementations. In this study, the invariant imbedding T-matrix method (II-TM) is employed to investigate the IOPs of coccoliths and coccolithophores. The Emiliania huxleyi (Ehux) coccolith and coccolithophore models are built based on observed biometric parameters including the eccentricity, the number of slits, and the rim width of detached coccoliths. The calcification state that specifies the amount of calcium of a single coccolith is critical in the determination of the size–volume/mass relationship (note, the volume/mass of coccoltihs at different calcification states are different although the diameters are the same). The present results show that the calcification state, namely, under-calcification, normal-calcification, or over-calcification, significantly influences the backscattering cross section and the phase matrix. Furthermore, the linear depolarization ratio of the light scattered by coccoliths is sensitive to the degree of calcification, and provides a potentially valuable parameter for interpreting oceanic remote sensing data. The phase function of an ensemble of randomly oriented coccolithophores has a similar pattern to that of individual coccoliths, but the forward scattering is dominant in the coccolithophores due to the large geometric cross sections. The linear depolarization ratio associated with coccolithophores is found to be larger than that for coccoliths as polarization is more sensitive to multiple scattering than the phase function. The simulated coccolithophore phase matrix numerical results are compared with laboratory measurements. For scattering angles larger than 100°, an increase of the phase function with respect to the scattering angle is confirmed based on the present coccolithophore model while the spherical approximation fails. - Highlights: • Realistic

  16. Observations of regional and local variability in the optical properties of maritime clouds

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B. [Univ. of Colorado at Boulder/National Oceanic and Atmospheric Administration, Boulder, CO (United States); Fairall, C.W. [Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  17. Prediction of meat spectral patterns based on optical properties and concentrations of the major constituents.

    Science.gov (United States)

    ElMasry, Gamal; Nakauchi, Shigeki

    2016-03-01

    A simulation method for approximating spectral signatures of minced meat samples was developed depending on concentrations and optical properties of the major chemical constituents. Minced beef samples of different compositions scanned on a near-infrared spectroscopy and on a hyperspectral imaging system were examined. Chemical composition determined heuristically and optical properties collected from authenticated references were simulated to approximate samples' spectral signatures. In short-wave infrared range, the resulting spectrum equals the sum of the absorption of three individual absorbers, that is, water, protein, and fat. By assuming homogeneous distributions of the main chromophores in the mince samples, the obtained absorption spectra are found to be a linear combination of the absorption spectra of the major chromophores present in the sample. Results revealed that developed models were good enough to derive spectral signatures of minced meat samples with a reasonable level of robustness of a high agreement index value more than 0.90 and ratio of performance to deviation more than 1.4.

  18. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques.

    Science.gov (United States)

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-04-05

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS 2 ) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS 2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics.

  19. Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications

    Science.gov (United States)

    Ali, H. M.; Abd El-Raheem, M. M.; Megahed, N. M.; Mohamed, H. A.

    2006-08-01

    Aluminum-doped zinc oxide (AZO) thin films have been deposited by electron beam evaporation technique on glass substrates. The structural, electrical and optical properties of AZO films have been investigated as a function of annealing temperature. It was observed that the optical properties such as transmittance, reflectance, optical band gap and refractive index of AZO films were strongly affected by annealing temperature. The transmittance values of 84% in the visible region and 97% in the NIR region were obtained for AZO film annealed at 475 °C. The room temperature electrical resistivity of 4.6×10-3 Ω cm has been obtained at the same temperature of annealing. It was found that the calculated refractive index has been affected by the packing density of the thin films, whereas, the high annealing temperature gave rise to improve the homogeneity of the films. The single-oscillator model was used to analyze the optical parameters such as the oscillator and dispersion energies.

  20. Applicability of Effective Medium Approximations to Modelling of Mesocrystal Optical Properties

    Directory of Open Access Journals (Sweden)

    Oleksandr Zhuromskyy

    2016-12-01

    Full Text Available Rigorous superposition T-matrix method is used to compute light interaction with mesocrystalline structures. The results are used to validate the applicability of effective medium theories for computing the effective optical constants of mesocrystal structures composed of optically isotropic materials. It is demonstrated that the Maxwell-Garnett theory can fit the rigorous simulation results with an average accuracy of 2%. The thus obtained refractive indexes can be used with any electromagnetic simulation software to represent the response of mesocrystals composed of optically small primary particles arranged into a cubic type lattice structures.

  1. Investigation on surface, electrical and optical properties of ITO-Ag-ITO coated glass

    International Nuclear Information System (INIS)

    Aslan Necdet; Sen, Tuba; Coruhlu Turgay; Senturk Kenan; Keskin Sinan; Seker Sedat; Dobrovolskiy Andrey

    2015-01-01

    The aim of this work was to study the optical and electrical properties of thick ITO-Ag-ITO multilayer coating onto glass. ITO-Ag-ITO coatings with thickness of ITO layers 110 nm, 185 nm and intermediate Ag layer thickness 40 nm were prepared by magnetron sputtering. The optical, electrical and atomic properties of the coating were examined by scanning electron microscope, atomic force microscope, X-ray diffraction analysis and ultraviolet-visible spectroscopy

  2. Optical properties of organic semiconductor thin films. Static spectra and real-time growth studies

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, Ute

    2009-07-20

    The aim of this work was to establish the anisotropic dielectric function of organic thin films on silicon covered with native oxide and to study their optical properties during film growth. While the work focuses mainly on the optical properties of Diindenoperylene (DIP) films, also the optical response of Pentacene (PEN) films during growth is studied for comparison. Spectroscopic ellipsometry and differential reflectance spectroscopy are used to determine the dielectric function of the films ex-situ and in-situ, i.e. in air and in ultrahigh vacuum. Additionally, Raman- and fluorescence spectroscopy is utilized to characterize the DIP films serving also as a basis for spatially resolved optical measurements beyond the diffraction limit. Furthermore, X-ray reflectometry and atomic force microscopy are used to determine important structural and morphological film properties. The absorption spectrum of DIP in solution serves as a monomer reference. The observed vibronic progression of the HOMO-LUMO transition allows the determination of the Huang-Rhys parameter experimentally, which is a measure of the electronic vibrational coupling. The corresponding breathing modes are measured by Raman spectroscopy. The optical properties of DIP films on native oxide show significant differences compared to the monomer spectrum due to intermolecular interactions. First of all, the thin film spectra are highly anisotropic due to the structural order of the films. Furthermore the Frenkel exciton transfer is studied and the energy difference between Frenkel and charge transfer excitons is determined. Real-time measurements reveal optical differences between interfacial or surface molecules and bulk molecules that play an important role for device applications. They are not only performed for DIP films but also for PEN films. While for DIP films on glass the appearance of a new mode is visible, the spectra of PEN show a pronounced energy red-shift during growth. It is shown how the

  3. Optical properties of opal photonic crystals

    Science.gov (United States)

    Eradat-Oskouei, Nayer

    2001-10-01

    Photonic crystals (PC) are a class of artificial structures with a periodic dielectric function in one, two, or three dimensions, in which the propagation of electromagnetic waves within a certain frequency band is forbidden. This forbidden frequency band has been dubbed photonic band gap (PBG). The position, width, depth, and shape of the PBG strongly depend on the periodicity, symmetry properties, dielectric constant contrast, and internal lattice structure of the unit cell. There is a common belief that PCs will perform many functions with light that ordinary crystals do with electrons. At the same time, PCs are of great promise to become a laboratory for testing fundamental processes involving interactions of radiation with matter in novel conditions. We have studied the optical properties of opal PCs that are infiltrated with metals, laser dyes, π-conjugated polymers, and J-aggregates. Opals are self-assembled structures of silica (SiO2) spheres mostly packed in a face centered cubic (fcc) lattice. Our research is summarized in the following six chapters. Chapter 1 is a review on the concepts related to PBG and PC, eigenvalue problem of electromagnetism, material systems that exhibit PBG. Chapter 2 covers all the fabrication and measurement techniques including angle resolved reflectivity, transmission, photoluminescence, photo-induced absorption, and coherent backscattering. Chapter 3 focuses on the relationship between a polaritonic gap and a photonic stop-band when they resonantly coexist in the same structure. Infiltration of opal with polarizable molecules combines the polaritonic and Bragg diffractive effects. The experimental results on reflectivity and its dependence on the impinging angle and concentration of the polarizable medium are in agreement with the theoretical calculations. In Chapter 4, the optical studies of three-dimensional metallic mesh composites are reported. Photonic and electronic properties of these PCs strongly depend on their

  4. Optical and electrical properties of some electron and proton irradiated polymers

    International Nuclear Information System (INIS)

    Mishra, R.; Tripathy, S.P.; Sinha, D.; Dwivedi, K.K.; Ghosh, S.; Khathing, D.T.; Mueller, M.; Fink, D.; Chung, W.H.

    2000-01-01

    Ion beam treatment studies have been carried out to investigate the potential for improvements in conductivity properties of the polymers Polytetrafluroethylene (PTFE), Polyimide (PI), Polyethyleneterepthalate (PET) and Polypropylene (PP), after 2 MeV electron and 62 MeV proton irradiation. The shift in optical absorption edges as observed by UV-VIS spectra of the irradiated polymers has been correlated to the optical band-gap using Tauc's expression. A decrease in the optical band-gap has been observed in irradiated PP and PTFE, but no considerable change was found for the optical band-gaps of PET and PI. Further AC conductivity measurements confirmed an increase in conductivity in electron irradiated PP

  5. Scaling properties of optical reflectance from quasi-periodic superlattices

    International Nuclear Information System (INIS)

    Wu Xiang; Yao Hesheng; Feng Weiguo

    1991-08-01

    The scaling properties of the optical reflectance from two types of quasi-periodic metal-insulator superlattices, one with the structure of Cantor bars and the other with the structure of Cantorian-Fibonaccian train, have been studied for the region of s-polarized soft x-rays and extreme ultraviolet. By using the hydrodynamic model of electron dynamics and transfer-matrix method, and be taking into account retardation effects, we have presented the formalism of the reflectivity for the superlattices. From our numerical results, we found that the reflection spectra of the quasi-superlattices have a rich structure of self-similarity. The interesting scaling indices, which are related to the fractal dimensions, of the spectra are also discussed for the two kinds of the quasi-superlattices. (author). 10 refs, 7 figs

  6. Preparation and optical properties of gold-dispersed BaTiO3 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kineri, T; Mori, M [TDK Corp., Tokyo (Japan). R and D Center; Kadono, K; Sakaguchi, T; Miya, M; Wakabayashi, H [Osaka National Research Inst., Osaka (Japan); Tsuchiya, T [Science Univ. of Tokyo, Tokyo (Japan). Faculty of Industrial Science and Technology

    1993-12-01

    Recently, metal or semiconductor-doped glasses were widely studied because of their large resonant third-order nonlinearity. These glasses are utilized in an optical information field as all optical logic devices in the future. The gold-doped glass films or thin layers have a large third-order nonlinear susceptibility [chi] and are prepared by r.f. sputtering method, etc. The optical properties, particularly the refractive index or dielectric constant of the matrix, are very important for the optical nonlinearity of these materials. In this study, gold-dispersed BaTiO3 thin films and gold-dispersed SiO2 thin films are prepared using r.f. magnetron sputtering method, and the optical properties of the films are compared. The [chi] of the films are measured and the effect of the matrix of the films on [chi] is investigated. The headings in the paper are: Introduction, Experimental procedure, Results, Discussion, and Conclusion. 13 refs., 9 figs.

  7. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study

    Science.gov (United States)

    Zhou, Yuan; Tang, Eric; Luo, Jianwen; Yao, Junjie

    2018-01-01

    Temperature mapping during thermotherapy can help precisely control the heating process, both temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage. Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity, based on the linear correlation between the tissue's Grüneisen parameter and temperature. However, limited by the tissue's unknown optical properties and thus the optical fluence at depths beyond the optical diffusion limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures has to assume that the tissue's optical properties do not change with temperatures, which is usually not valid due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the technical foundation for better temperature control in deep tissue in thermotherapy.

  8. Nanostructures produced by co-sputtering to study the optical properties of artistic middle-age nano-cermets: The lustres

    Energy Technology Data Exchange (ETDEWEB)

    Reillon, Vincent [Universite Pierre et Marie Curie-Paris 6, UMR 75 88, INSP, 140 rue de Lourmel, F 75015 Paris (France) and CNRS, UMR 75 88, INSP, 140 rue de Lourmel, F 75015 Paris (France)]. E-mail: vincent.reillon@insp.jussieu.fr; Berthier, Serge [Universite Denis Diderot-Paris 7, UMR 75 88, INSP, 140 rue de Lourmel, F 75015 Paris (France); CNRS, UMR 75 88, INSP, 140 rue de Lourmel, F 75015 Paris (France); Chenot, Stephane [Universite Denis Diderot-Paris 7, UMR 75 88, INSP, 140 rue de Lourmel, F 75015 Paris (France); CNRS, UMR 75 88, INSP, 140 rue de Lourmel, F 75015 Paris (France)

    2007-05-15

    Nano-structures are not an invention of the 20th century. In Middle Age already, craftsmen were able to produce multi-layer structures of nano-particles at the surface of potteries creating lustres, this means potteries with shining effects. In order to study the optical properties of these objects and because, as a part of our patrimony, they cannot be destroyed, we decided to reproduce the structures observed by co-sputtering. Developing a model, we were able to predict the reflection spectrum of the created samples with a good accuracy, validating it. However, this work is a first experimental step and improvements are needed from both theoretical and experimental sides in order to understand fully the optical properties of the lustres.

  9. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    Science.gov (United States)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-08-01

    Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.

  10. Optical properties and sensing applications of stellated and bimetallic nanoparticles

    Science.gov (United States)

    Smith, Alison F.

    This dissertation focuses on developing guidelines to aid in the design of new bimetallic platforms for sensing applications. Stellated metal nanostructures are a class of plasmonic colloids in which large electric field enhancements can occur at sharp features, making them excellent candidates for surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared spectroscopy (SE-IRS) platforms. Shape-dependent rules for convex polyhedra such as cubes or octahedra exist, which describe far-field scattering and near-field enhancements. However, such rules are lacking for their concave (stellated) counterparts. This dissertation presents the optical response of stellated Au nanocrystals with Oh, D4h, D3h, C2v, and T d symmetry, which were modeled to systematically investigate the role of symmetry, branching, and particle orientation with respect to excitation source using finite difference time domain (FDTD) calculations. Expanding on stellated nanostructures, bimetallic compositions introduce an interplay between overall architecture and composition to provide tunable optical properties and the potential of new functionality. However, decoupling the complex compositional and structural contributions to the localized surface plasmon resonance (LSPR) remains a challenge, especially when the monometallic counterparts are not synthetically accessible for comparison and the theoretical tools for capturing gradient compositions are lacking. This dissertation explores a stellated Au-Pd nanocrystal model system with Oh symmetry to decouple structural and complex compositional effects on LSPR. (Abstract shortened by ProQuest.).

  11. An analytical method for predicting the geometrical and optical properties of the human lens under accommodation.

    Science.gov (United States)

    Sheil, Conor J; Bahrami, Mehdi; Goncharov, Alexander V

    2014-05-01

    We present an analytical method to describe the accommodative changes in the human crystalline lens. The method is based on the geometry-invariant lens model, in which the gradient-index (GRIN) iso-indicial contours are coupled to the external shape. This feature ensures that any given number of iso-indicial contours does not change with accommodation, which preserves the optical integrity of the GRIN structure. The coupling also enables us to define the GRIN structure if the radii and asphericities of the external lens surfaces are known. As an example, the accommodative changes in lenticular radii and central thickness were taken from the literature, while the asphericities of the external surfaces were derived analytically by adhering to the basic physical conditions of constant lens volume and its axial position. The resulting changes in lens geometry are consistent with experimental data, and the optical properties are in line with expected values for optical power and spherical aberration. The aim of the paper is to provide an anatomically and optically accurate lens model that is valid for 3 mm pupils and can be used as a new tool for better understanding of accommodation.

  12. Optical properties (bidirectional reflectance distribution function) of shot fabric

    NARCIS (Netherlands)

    Lu, Rong; Koenderink, Jan J.; Kappers, Astrid M L

    2000-01-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical

  13. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  14. Characterization of optical and micro-physical properties of cirrus clouds using a wideband thermal infrared spectrometer

    Science.gov (United States)

    Palchetti, Luca; Di Natale, Gianluca; Bianchini, Giovanni

    2014-05-01

    High-altitude ice clouds such as cirrus clouds play a key role in the Earth's radiation budget since they cover permanently about 20-30% of the surface of the planet, reaching even to 60-70% in the tropics. The modulation of the incoming solar radiation and the outgoing Earth's thermal emission due to cirrus can contribute to heat or to cool the atmosphere, according to their optical properties, which must be characterised with great accuracy and over the whole spectral range involved in the scattering and emission processes. Here we present the infrared measurements over the wide spectral range from 9 to 50 micron performed by the Fourier transform spectrometer REFIR-PAD (Radiation Explorer in Far InfraRed - Prototype for Application and Development) during many field campaigns that have taken place since 2007 from different high-altitude ground-based stations: Testa Grigia Station, Cervinia-Italy, (3480 m asl), Cerro Toco, Atacama-Chile, (5380 m asl), Concordia Base, Dome C-Antarctica (3230 m asl). These measurements show for the first time the spectral effect of cirrus clouds in the long-wave part of the emission spectrum above 15 micron of wavelength. To characterise these measurements over the wide spectral range as a function of the optical properties of ice particles, a model of the radiative transfer, that integrates the well known numerical code LBLRTM, which simulates the radiative transfer in the atmosphere, with a specific code which simulates the propagation of the radiation through the cloud, was developed. The optical properties of clouds have been modelled using the δ-scaled Eddington approximation for a single layer and the Ping Yang's database for the single-scattering properties of ice crystals. The preliminary results of the fit procedure used for the determination of the micro-physical parameters of ice crystals, such as the effective diameter, ice water path, effective temperature and optical thickness will be shown in the presentation. The

  15. Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy

    Science.gov (United States)

    De Luca, Marta; Polimeni, Antonio

    2017-12-01

    Thanks to their peculiar shape and dimensions, semiconductor nanowires (NWs) are emerging as building components of novel devices. The presence of wurtzite (WZ) phase in the lattice structure of non-nitride III-V NWs is one of the most surprising findings in these nanostructures: this phase, indeed, cannot be found in the same materials in the bulk form, where the zincblende (ZB) structure is ubiquitous, and therefore the WZ properties are poorly known. This review focuses on WZ InP NWs, because growth techniques have reached a high degree of control on the structural properties of this material, and optical studies performed on high-quality samples have allowed determining the most useful electronic properties, which are reviewed here. After an introduction summarizing the reasons for the interest in WZ InP nanowires (Sec. I), we give an overview on growth process and structural and optical properties of WZ InP NWs (Sec. II). In Sec. III, a complete picture of the energy and symmetry of the lowest-energy conduction and valence bands, as assessed by polarization-resolved photoluminescence (PL) and photoluminescence-excitation (PLE) studies is drawn and compared to all the available theoretical information. The elastic properties of WZ InP (determined by PL under hydrostatic pressure) and the radiative recombination dynamics of spatially direct and indirect (namely, occurring across the WZ/ZB interfaces) transitions are also discussed. Section IV, focuses on the magneto-optical studies of WZ InP NWs. The diagram of the energy levels of excitons in WZ materials—with and without magnetic field—is first provided. Then, all theoretical and experimental information available about the changes in the transport properties (i.e., carrier effective mass) caused by the ZB→WZ phase variation are reviewed. Different NW/magnetic field geometrical configurations, sensitive to polarization selection rules, highlight anisotropies in the diamagnetic shifts, Zeeman splitting

  16. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    Science.gov (United States)

    Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL; Saveliev, Alexei V [Chicago, IL

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  17. Generalized optomechanics and its applications quantum optical properties of generalized optomechanical system

    CERN Document Server

    Li, Jin Jin

    2013-01-01

    A mechanical oscillator coupled to the optical field in a cavity is a typical cavity optomechanical system. In our textbook, we prepare to introduce the quantum optical properties of optomechanical system, i.e. linear and nonlinear effects. Some quantum optical devices based on optomechanical system are also presented in the monograph, such as the Kerr modulator, quantum optical transistor, optomechanical mass sensor, and so on. But most importantly, we extend the idea of typical optomechanical system to coupled mechanical resonator system and demonstrate that the combined two-level structure

  18. Influence of interface layer on optical properties of sub-20 nm-thick TiO2 films

    Science.gov (United States)

    Shi, Yue-Jie; Zhang, Rong-Jun; Li, Da-Hai; Zhan, Yi-Qiang; Lu, Hong-Liang; Jiang, An-Quan; Chen, Xin; Liu, Juan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao

    2018-02-01

    The sub-20 nm ultrathin titanium dioxide (TiO2) films with tunable thickness were deposited on Si substrates by atomic layer deposition (ALD). The structural and optical properties were acquired by transmission electron microscopy, atomic force microscopy and spectroscopic ellipsometry. Afterwards, a constructive and effective method of analyzing interfaces by applying two different optical models consisting of air/TiO2/Ti x Si y O2/Si and air/effective TiO2 layer/Si, respectively, was proposed to investigate the influence of interface layer (IL) on the analysis of optical constants and the determination of band gap of TiO2 ultrathin films. It was found that two factors including optical constants and changing components of the nonstoichiometric IL could contribute to the extent of the influence. Furthermore, the investigated TiO2 ultrathin films of 600 ALD cycles were selected and then annealed at the temperature range of 400-900 °C by rapid thermal annealing. Thicker IL and phase transition cause the variation of optical properties of TiO2 films after annealing and a shorter electron relaxation time reveals the strengthened electron-electron and electron-phonon interactions in the TiO2 ultrathin films at high temperature. The as-obtained results in this paper will play a role in other studies of high dielectric constants materials grown on Si substrates and in the applications of next generation metal-oxide-semiconductor devices.

  19. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model

    Science.gov (United States)

    Sutherland, Richard L.

    2002-12-01

    Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author's knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

  20. Comparison of spatially and temporally resolved diffuse transillumination measurement systems for extraction of optical properties of scattering media.

    Science.gov (United States)

    Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E

    2017-11-20

    This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.

  1. Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell

    Science.gov (United States)

    Zaki, A. A.; El-Amin, A. A.

    2017-12-01

    In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.

  2. Cobalt nanoparticles deposited and embedded in AlN: Magnetic, magneto-optical, and morphological properties

    International Nuclear Information System (INIS)

    Huttel, Y.; Gomez, H.; Clavero, C.; Cebollada, A.; Armelles, G.; Navarro, E.; Ciria, M.; Benito, L.; Arnaudas, J.I.; Kellock, A.J.

    2004-01-01

    We present a structural, morphological, magnetic, and magneto-optical study of cobalt nanoparticles deposited on 50 A ring AlN/c-sapphire substrates and embedded in an AlN matrix. The dependence of the properties of Co nanoclusters deposited on AlN with growth temperature and amount of deposited Co are studied and discussed. Also we directly compare the properties of as grown and AlN embedded Co nanoclusters and show that the AlN matrix has a strong impact on their magnetic and magneto-optical properties

  3. Structure, Electronic and Nonlinear Optical Properties of Furyloxazoles and Thienyloxazoles

    International Nuclear Information System (INIS)

    Dagli, Ozlem; Gok, Rabia; Bahat, Mehmet; Ozbay, Akif

    2016-01-01

    Geometry optimization, electronic and nonlinear optical properties of isomers of furyloxazole and thienyloxazole molecules are carried out at the B3LYP/6-311++G(2d,p) level. The conformational analysis of 12 compounds have been studied as a function of torsional angle between rings. Electronic and NLO properties such as dipole moment, energy gap, polarizability and first hyperpolarizability were also calculated. (paper)

  4. Numerical model for the deformation of nucleated cells by optical stretchers

    KAUST Repository

    Sraj, Ihab

    2015-07-01

    In this paper, we seek to numerically study the deformation of nucleated cells by single diode-laser bar optical stretchers. We employ a recently developed computational model, the dynamic ray-tracing method, to determine the force distribution induced by optical stretchers on a cell encapsulating a nucleus of different optical properties. These optical forces are shape dependent and can deform real non-rigid objects; thus resulting in dynamically changing distributions with cell and nucleus deformation. A Chinese hamster ovary (CHO) cell is a common biological cell that is of interest to the biomedical community because of its use in recombinant protein therapeutics and is an example of a nucleated cell. To this end, we model CHO cells as two concentric three-dimensional elastic capsules immersed in a fluid where the hydrodynamic forces are calculated using the immersed boundary method. We vary the inner capsule size to simulate different nucleus sizes. Our results show that the presence of a nucleus has a major effect on the force distribution on the cell surface and consequently on its net deformation. Scattering and gradient forces are reported for different nucleus sizes and the effect of nucleus size on the cell deformation is discussed quantitatively. © 2015 IOP Publishing Ltd.

  5. First-principles investigation of the optical properties for rocksalt mixed metal oxide Mg{sub x}Zn{sub 1−x}O

    Energy Technology Data Exchange (ETDEWEB)

    Hadjab, Moufdi [Applied Materials Laboratory, Research Center, University Djillali Liabes, 22000, Sidi Bel Abbes (Algeria); Thin Films Development and Applications Unit UDCMA, Setif – Research Center in Industrial Technologies CRTI, P. O. Box 64, Cheraga, 16014, Algiers (Algeria); Berrah, Smail [Mastery Renewable Energies Laboratory (LMER), University of A. Mira, Bejaia (Algeria); Abid, Hamza; Ziane, Mohamed Issam; Bennacer, Hamza [Applied Materials Laboratory, Research Center, University Djillali Liabes, 22000, Sidi Bel Abbes (Algeria); Reshak, Ali H., E-mail: maalidph@yahoo.co.uk [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 30614, Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007, Kangar, Perlis (Malaysia)

    2016-10-01

    In this paper, we have presented a theoretical study of the optical properties for the cubic Mg{sub x}Zn{sub 1−x}O (x = 0.0, 0.125, 0.375, 0.625, 0.875 and 1.0) alloys using the full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The local density approximation (LDA) was applied to calculate the structural properties. In order to explore the desired properties, the Mg{sub x}Zn{sub 1−x}O alloys were modeled at various x compositions from 0.0 to 1.0 by step of 0.125. The recently modified semi-local Becke-Johnson potential with LDA correlation in the form of mBJ-LDA was used to predict the energy band gap, optical dielectric function, refractive index, absorption coefficient, reflectivity, optical conductivity and the electron energy loss of Mg{sub x}Zn{sub 1−x}O alloys. The obtained results show good agreement with the experimental data, which indicate that the investigated ternary alloys are among promising material for the fabrication of electronic, optoelectronic devices and their applications. - Highlights: • Theoretical study of optical properties of the cubic alloy Mg{sub x}Zn{sub 1−x}O. • The lattice constants, the bulk modulus B and it’s pressure derivative B′ were obtained. • The calculated energy gaps within mBJ show good agreement with the experimental data. • The optical properties were calculated and discussed in details.

  6. Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.

    1997-02-01

    Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.

  7. New method to evaluate optical properties of core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Renteria-Tapia, V. [Universidad de Guadalajara, Ameca, Departamento de Ciencias Naturales y Exactas, Centro Universitario de Los Valles (Mexico); Franco, A., E-mail: alfredofranco@fisica.unam.mx; Garcia-Macedo, J. [Universidad Nacional Autonoma de Mexico, Departamento de Estado Solido, Instituto de Fisica (Mexico)

    2012-06-15

    A new method is presented to calculate, for metallic core-dielectric shell nanostructures, the local refractive index, resonance condition, maximum spectral shift, plasma wavelength, and the sensitivity of the wavelength maximum to variations in the refractive index of the environment. The equations that describe these properties are directly related to the surface plasmon peak position, refractive index of the shell, and to the surrounding medium. The method is based on the approach that a layered core dispersed in a dielectric environment (core-shell model) can be figured out as an uncoated sphere dispersed in a medium with a local refractive index (local refractive index model). Thus, in the Mie theory, the same spectral position of the surface plasmon resonance peak can be obtained by varying the volume fraction of the shell or by varying the local refractive index. The assumed equivalence between plasmon resonance wavelengths enable us to show that the local refractive index depends geometrically on the shell volume fraction. Hence, simple relationships between optical and geometrical properties of these core-shell nanostructures are obtained. Furthermore, good agreement is observed between the new relationships and experimental data corresponding to gold nanoparticles (radius = 7.5 nm) covered with silica shells (with thicknesses up to 29.19 nm), which insured that the equivalence hypothesis is correct.

  8. New method to evaluate optical properties of core–shell nanostructures

    International Nuclear Information System (INIS)

    Rentería-Tapia, V.; Franco, A.; García-Macedo, J.

    2012-01-01

    A new method is presented to calculate, for metallic core–dielectric shell nanostructures, the local refractive index, resonance condition, maximum spectral shift, plasma wavelength, and the sensitivity of the wavelength maximum to variations in the refractive index of the environment. The equations that describe these properties are directly related to the surface plasmon peak position, refractive index of the shell, and to the surrounding medium. The method is based on the approach that a layered core dispersed in a dielectric environment (core–shell model) can be figured out as an uncoated sphere dispersed in a medium with a local refractive index (local refractive index model). Thus, in the Mie theory, the same spectral position of the surface plasmon resonance peak can be obtained by varying the volume fraction of the shell or by varying the local refractive index. The assumed equivalence between plasmon resonance wavelengths enable us to show that the local refractive index depends geometrically on the shell volume fraction. Hence, simple relationships between optical and geometrical properties of these core–shell nanostructures are obtained. Furthermore, good agreement is observed between the new relationships and experimental data corresponding to gold nanoparticles (radius = 7.5 nm) covered with silica shells (with thicknesses up to 29.19 nm), which insured that the equivalence hypothesis is correct.

  9. Optical model analysis of intermediate energy p-4He scattering

    International Nuclear Information System (INIS)

    Greben, J.M.; Gourishankar, R.

    1983-03-01

    Recent Wolfenstein R-parameter data are used to explain and resolve previous problems with optical model descriptions of p- 4 He elastic scattering at 500 MeV. An essential component in this optical model analysis is a qualitative interpretation of different features of the elastic data in terms of the Born approximation. First we show that the R-data require the real spin-orbit potential to have certain geometrical properties which were missing in previous analyses. We can then show that the fast fall-off of the cross-section for small angles, together with the rapid increase and subsequent decrease of the polarization, establishes the need for an attractive tail in the real central potentials can also be inferred from this qualitative analysis, in particular a strong reduction of the spin-orbit potential. Our final potential gives a reduction of the X 2 /datapoint by about 20 in comparison to previous potentials, and underlines the usefulness of the qualitative Born analysis

  10. Optical properties of metallic multi-layer films

    International Nuclear Information System (INIS)

    Dimmich, R.

    1991-09-01

    Optical properties of multi-layer films consisting of alternating layers of two different metals are studied on the basis of the Maxwell equations and the Boltzmann transport theory. The influence of free-electron scattering at the film external surface and at the interfaces is taken into account and considered as a function of the electromagnetic field frequency and the structure modulation wavelength. Derived formulas for optical coefficients are valid at low frequencies, where the skin effect is nearly classical, as well as in the near-infrared, visible and ultraviolet spectral ranges, where the skin effect has the anomalous nature. It is shown that the obtained results are apparently dependent on the values of the scattering parameters. What is more, the oscillatory nature of analyzed spectra is observed, where the two oscillation periods may appear on certain conditions. The oscillations result from the electron surface and interface scattering and their amplitudes and periods depend on the boundary conditions for free-electron scattering. Finally, the application of the interference phenomenon in dielectric layers is proposed to obtain the enhancement of the non distinct details which can appear in optical spectra of metallic films. (author). 31 refs, 6 figs

  11. Electronic, structural, and optical properties of host materials for inorganic phosphors

    International Nuclear Information System (INIS)

    Alemany, Pere; Moreira, Ibério de P.R.; Castillo, Rodrigo; Llanos, Jaime

    2012-01-01

    Highlights: ► We performed a first-principles DFT study of the electronic structures of several wide band gap insulators (La 2 O 3 , La 2 O 2 S, Y 2 O 3 Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) used as host materials for inorganic phosphors. ► The electronic, structural, and optical properties calculated for these compounds are in good agreement with the available experimental data. ► The electronic structure of the M 2 TeO 6 phases exhibits distinct features that could allow a fine tuning of the optical properties of luminescent materials obtained by doping with rare earth metals. - Abstract: A family of large gap insulators used as host materials for inorganic phosphors (La 2 O 3 , La 2 O 2 S, Y 2 O 3 , Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) have been studied by first-principles DFT based calculations. We have determined electronic, structural, and optical properties for all these compounds both at the LDA and GGA levels obtaining, in general, a good agreement with available experimental data and previous theoretical studies. The electronic structure for the M 2 TeO 6 phases, addressed in this work for the first time, reveals some significant differences with respect to the other compounds, especially in the region of the lower conduction band, where the appearance of a group of four isolated oxygen/tellurium based bands below the main part of the La (Y) centered conduction band is predicted to lead to significant changes in the optical properties of the two tellurium containing compounds with respect to the rest of compounds in the series.

  12. Structural and optical properties of Gd implanted GaN with various crystallographic orientations

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Jagerová, Adéla; Sofer, Z.; Klímová, K.; Sedmidubský, D.; Pristovsek, M.; Mikulics, M.; Lorinčík, Jan; Bottger, R.; Akhmadaliev, S.

    2017-01-01

    Roč. 638, SEP (2017), s. 63-72 ISSN 0040-6090 R&D Projects: GA ČR GA13-20507S; GA ČR GA15-01602S; GA MŠk LM2015056 Institutional support: RVO:67985882 ; RVO:61389005 Keywords : GaN implantation * RBS channelling * optical properties of Gd implanted GaN Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BH - Optics, Masers, Lasers (URE-Y) OBOR OECD: 1.3 Physical sciences; Optics (including laser optics and quantum optics) (URE-Y) Impact factor: 1.879, year: 2016

  13. Deuteron microscopic optical model potential

    International Nuclear Information System (INIS)

    Guo Hairui; Han Yinlu; Shen Qingbiao; Xu Yongli

    2010-01-01

    A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular distributions for some target nuclei in the mass range 6≤A≤208 with incident deuteron energies up to 200 MeV. The calculated results are compared with the experimental data.

  14. Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology

    Science.gov (United States)

    Magnozzi, M.; Terreni, S.; Anghinolfi, L.; Uttiya, S.; Carnasciali, M. M.; Gemme, G.; Neri, M.; Principe, M.; Pinto, I.; Kuo, L.-C.; Chao, S.; Canepa, M.

    2018-01-01

    The use of amorphous, SiO2-TiO2 nanolayered coatings has been proposed recently for the mirrors of 3rd-generation interferometric detectors of gravitational waves, to be operated at low temperature. Coatings with a high number of low-high index sub-units pairs with nanoscale thickness were found to preserve the amorphous structure for high annealing temperatures, a key factor to improve the mechanical quality of the mirrors. The optimization of mirror designs based on such coatings requires a detailed knowledge of the optical properties of sub-units at the nm-thick scale. To this aim we have performed a Spectroscopic Ellipsometry (SE) study of amorphous SiO2-TiO2 nanolayered films deposited on Si wafers by Ion Beam Sputtering (IBS). We have analyzed films that are composed of 5 and 19 nanolayers (NL5 and NL19 samples) and have total optical thickness nominally equivalent to a quarter of wavelength at 1064 nm. A set of reference optical properties for the constituent materials was obtained by the analysis of thicker SiO2 and TiO2 homogeneous films (∼ 120 nm) deposited by the same IBS facility. By flanking SE with ancillary techniques, such as TEM and AFM, we built optical models that allowed us to retrieve the broad-band (250-1700 nm) optical properties of the nanolayers in the NL5 and NL19 composite films. In the models which provided the best agreement between simulation and data, the thickness of each sub-unit was fitted within rather narrow bounds determined by the analysis of TEM measurements on witness samples. Regarding the NL5 sample, with thickness of 19.9 nm and 27.1 nm for SiO2 and TiO2 sub-units, respectively, the optical properties presented limited variations with respect to the thin film counterparts. For the NL19 sample, which is composed of ultrathin sub-units (4.4 nm and 8.4 nm for SiO2 and TiO2, respectively) we observed a significant decrease of the IR refraction index for both types of sub-units; this points to a lesser mass density with

  15. The effect of Sm-doping on optical properties of LaB6 nanoparticles

    International Nuclear Information System (INIS)

    Chao, Luomeng; Bao, Lihong; Shi, Junjie; Wei, Wei; Tegus, O.; Zhang, Zhidong

    2015-01-01

    Highlights: • Nanoparticles of Sm-doped LaB 6 have been prepared by solid state reaction. • All samples exhibit high absorbance in NIR range and UV range. • The increase of Sm-doping amount shifts the position of minimum absorptance value. • The optical properties of Sm-doped LaB 6 were interpreted by DFT theory. - Abstract: Nanocrystalline particles of LaB 6 , SmB 6 and Sm-doped LaB 6 have been prepared by a solid-state reaction in order to investigate the optical properties of ternary rare-earth hexaborides. The sizes of prepared nanoparticles range from dozens to more than 200 nm, as confirmed by XRD, SEM and TEM examinations. The optical property concerning the absorption spectra was tested with ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectrum. All samples exhibit high absorbance in NIR range and UV range. The increase of Sm-doping amount shifts the position of minimum absorptance value of LaB 6 to the long-wave direction. Density functional theory (DFT) is employed to interpret the optical properties of Sm-doped LaB 6 , and results indicate that Sm 4f states change the DOS at near Fermi surface of LaB 6 after Sm doping and the reduced number of conduction electrons results into the change of absorption spectra

  16. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    International Nuclear Information System (INIS)

    Johansson, Malin B; Niklasson, Gunnar A; Österlund, Lars; Baldissera, Gustavo; Persson, Clas; Valyukh, Iryna; Arwin, Hans

    2013-01-01

    The optical and electronic properties of nanocrystalline WO 3 thin films prepared by reactive dc magnetron sputtering at different total pressures (P tot ) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low P tot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies E g ≈ 3.1 eV, which increase with increasing P tot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO 3 , and monoclinic γ- and ε-WO 3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO 3 and γ-WO 3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that E g in ε-WO 3 is higher than in the δ-WO 3 and γ-WO 3 phases, which provides an explanation for the P tot dependence of the optical data. (paper)

  17. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    Science.gov (United States)

    Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars

    2013-05-01

    The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.

  18. In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model

    International Nuclear Information System (INIS)

    Kienle, A.; Glanzmann, T.

    1999-01-01

    We have investigated the possibility of determining the optical coefficients of muscle in the extremities with in vivo time-resolved reflectance measurements using a layered model. A solution of the diffusion equation for two layers was fitted to three-layered Monte Carlo calculations simulating the skin, the subcutaneous fat and the muscle. Relative time-resolved reflectance data at two distances were used to derive the optical coefficients of the layers. We found for skin and subcutaneous fat layer thicknesses (l 2 ) of up to 10 mm that the estimated absorption coefficients of the second layer of the diffusion model have differences of less than 20% compared with those of the muscle layer of the Monte Carlo simulations if the thickness of the first layer of the diffusion model is also fitted. If l 2 is known, the differences are less than 5%, whereas the use of a semi-infinite model delivers differences of up to 55%. Even if l 2 is only approximately known the absorption coefficient of the muscle can be determined accurately. Experimentally, the time-resolved reflectance was measured on the forearms of volunteers at two distances from the incident beam by means of a streak camera. The thicknesses of the tissues involved were determined by ultrasound. The optical coefficients were derived from these measurements by applying the two-layered diffusion model, and results in accordance with the theoretical studies were observed. (author)

  19. Electronic structure and optical properties of solid C60

    International Nuclear Information System (INIS)

    Mattesini, M.; Ahuja, R.; Sa, L.; Hugosson, H.W.; Johansson, B.; Eriksson, O.

    2009-01-01

    The electronic structure and the optical properties of face-centered-cubic C 60 have been investigated by using an all-electron full-potential method. Our ab initio results show that the imaginary dielectric function for high-energy values looks very similar to that of graphite, revealing close electronic structure similarities between the two systems. We have also identified the origin of different peaks in the dielectric function of fullerene by means of the calculated electronic density of states. The computed optical spectrum compares fairly well with the available experimental data for the Vis-UV absorption spectrum of solid C 60 .

  20. Electronic structure and optical properties of (BeTen/(ZnSem superlattices

    Directory of Open Access Journals (Sweden)

    Caid M.

    2016-03-01

    Full Text Available The structural, electronic and optical properties of (BeTen/(ZnSem superlattices have been computationally evaluated for different configurations with m = n and m≠n using the full-potential linear muffin-tin method. The exchange and correlation potentials are treated by the local density approximation (LDA. The ground state properties of (BeTen/(ZnSem binary compounds are determined and compared with the available data. It is found that the superlattice band gaps vary depending on the layers used. The optical constants, including the dielectric function ε(ω, the refractive index n(ω and the refractivity R(ω, are calculated for radiation energies up to 35 eV.

  1. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Agata Siarkowska

    2017-12-01

    Full Text Available Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs, 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic–isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  2. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles.

    Science.gov (United States)

    Siarkowska, Agata; Chychłowski, Miłosz; Budaszewski, Daniel; Jankiewicz, Bartłomiej; Bartosewicz, Bartosz; Woliński, Tomasz R

    2017-01-01

    Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic-isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  3. Effects of hydrogen and helium irradiation on optical property of tungsten

    International Nuclear Information System (INIS)

    Kazutoshi Tokunaga; Tadashi Fujiwara; Naoaki Yoahida; Koichiro Ezato; Satoshi Suzuki; Masato Akiba

    2006-01-01

    Plasma-wall interactions cause surface modification, compositional and structural change on material surface due to sputtering, impurity deposition and radiation damage, etc. As a result, optical property (response of electron and lattice on material for electromagnetic wave) on surface of the plasma facing components would be changed. In particular, diagnostic components, such as metallic mirrors, mounted close to the plasma will be subjected by plasma particles such as hydrogen isotope and helium in the fusion devices. It is well recognized that decrease of optical reflectivity of the metallic mirrors due to the plasma-material interaction will be critical issues for the plasma diagnosis. In the present work, tungsten has been irradiated by hydrogen and helium beam. After that, optical reflectivity and surface modification have been measured to investigate fundamental process of optical property change due to hydrogen and helium beam irradiation. Samples used in the present experiment are powder metallurgy tungsten. Hydrogen and helium irradiations are performed in an ion beam facility at JAEA, the Particle Beam Engineering Facility (PBEF). The energy of hydrogen and helium is 19.0 and 18.7 keV, respectively. Beam duration is 1.3 - 3.5 s. The samples are irradiated up to a fluence of the orders between 10 22 and 10 24 He/m 2 by the repeated pulse irradiations of 14-450 cycles. The surface temperature is measured with an optical pyrometer. After the repeated irradiation experiments, surface modification and composition are examined with a scanning electron microscope (SEM) and a scanning probe microscope (SPM), etc. In addition, the optical reflectivity is measured in the wavelength range of 190 - 2400 nm using an ultraviolet-visible and near-infrared spectrophotometer. The reflectivity after the irradiation decreases depending on fluence and a peak temperature of the samples during the irradiation. In addition, their reflectivity spectra also change. This means

  4. Optical characterizations of silver nanoprisms embedded in polymer thin film layers

    Science.gov (United States)

    Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic

    2017-10-01

    The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.

  5. Parametric uncertainty in optical image modeling

    Science.gov (United States)

    Potzick, James; Marx, Egon; Davidson, Mark

    2006-10-01

    Optical photomask feature metrology and wafer exposure process simulation both rely on optical image modeling for accurate results. While it is fair to question the accuracies of the available models, model results also depend on several input parameters describing the object and imaging system. Errors in these parameter values can lead to significant errors in the modeled image. These parameters include wavelength, illumination and objective NA's, magnification, focus, etc. for the optical system, and topography, complex index of refraction n and k, etc. for the object. In this paper each input parameter is varied over a range about its nominal value and the corresponding images simulated. Second order parameter interactions are not explored. Using the scenario of the optical measurement of photomask features, these parametric sensitivities are quantified by calculating the apparent change of the measured linewidth for a small change in the relevant parameter. Then, using reasonable values for the estimated uncertainties of these parameters, the parametric linewidth uncertainties can be calculated and combined to give a lower limit to the linewidth measurement uncertainty for those parameter uncertainties.

  6. Electrical and optical properties of silicon-doped gallium nitride

    Indian Academy of Sciences (India)

    Si-doped GaN films in polycrystalline form were deposited on quartz substrates at deposition temperatures ranging from 300–623 K using r.f. sputtering technique. Electrical, optical and microstructural properties were studied for these films. It was observed that films deposited at room temperature contained mainly ...

  7. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    Science.gov (United States)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  8. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A [INSTM RU at the Department of Chemistry of the University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Mattei, G; Mazzoldi, P [Department of Physics, CNISM and University of Padova, via Marzolo 8, 35131 Padova (Italy); Paz, E; Palomares, F J [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Cavigli, L, E-mail: cesar.dejulian@unifi.it [Department of Physics-LENS, University of Florence, via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO{sub 2} matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  9. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    International Nuclear Information System (INIS)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A; Mattei, G; Mazzoldi, P; Paz, E; Palomares, F J; Cavigli, L

    2010-01-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO 2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  10. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Science.gov (United States)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  11. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    Science.gov (United States)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  12. Electro–optical properties of poly(vinyl acetate)/polyindole composite film

    International Nuclear Information System (INIS)

    Bhagat, D. J.; Dhokane, G. R.; Bajaj, N. S.

    2016-01-01

    In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DC plot.

  13. Electro–optical properties of poly(vinyl acetate)/polyindole composite film

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, D. J., E-mail: bhagatd@rediffmail.com; Dhokane, G. R. [Arts, Science and Commerce College, Chikhaldara, 444807, Maharashtra (India); Bajaj, N. S. [Toshniwal Arts, Science and Commerce College, Sengaon, Maharashtra (India)

    2016-05-06

    In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DC plot.

  14. Systematic and material independent variation of electrical, optical, and chemical properties of Ln-materials over the Ln-series (Ln=La,Ce,Pr,..,Lu)

    NARCIS (Netherlands)

    Van der Kolk, E.; Dorenbos, P.

    2007-01-01

    A model is presented that successfully predicts electro-optical properties of Lanthanide materials, irrespective whether these materials are inorganic or organic, diluted or concentrated, metallic, semi-conducting or insulating. The model is firmly based on recent experimental data revealing that

  15. Physical properties of asteroids derived from a novel approach to modeling of optical lightcurves and WISE thermalinfrared data

    Science.gov (United States)

    Durech, Josef; Hanus, Josef; Delbo, Marco; Ali-Lagoa, Victor; Carry, Benoit

    2014-11-01

    Convex shape models and spin vectors of asteroids are now routinely derived from their disk-integrated lightcurves by the lightcurve inversion method of Kaasalainen et al. (2001, Icarus 153, 37). These shape models can be then used in combination with thermal infrared data and a thermophysical model to derive other physical parameters - size, albedo, macroscopic roughness and thermal inertia of the surface. In this classical two-step approach, the shape and spin parameters are kept fixed during the thermophysical modeling when the emitted thermal flux is computed from the surface temperature, which is computed by solving a 1-D heat diffusion equation in sub-surface layers. A novel method of simultaneous inversion of optical and infrared data was presented by Durech et al. (2012, LPI Contribution No. 1667, id.6118). The new algorithm uses the same convex shape representation as the lightcurve inversion but optimizes all relevant physical parameters simultaneously (including the shape, size, rotation vector, thermal inertia, albedo, surface roughness, etc.), which leads to a better fit to the thermal data and a reliable estimation of model uncertainties. We applied this method to selected asteroids using their optical lightcurves from archives and thermal infrared data observed by the Wide-field Infrared Survey Explorer (WISE) satellite. We will (i) show several examples of how well our model fits both optical and infrared data, (ii) discuss the uncertainty of derived parameters (namely the thermal inertia), (iii) compare results obtained with the two-step approach with those obtained by our method, (iv) discuss the advantages of this simultaneous approach with respect to the classical two-step approach, and (v) advertise the possibility to use this approach to tens of thousands asteroids for which enough WISE and optical data exist.

  16. First-principles Study of the Electronic Structure and Optical Properties of MgH2

    Science.gov (United States)

    Alford, Ashley; Chou, Mei-Yin

    2003-03-01

    It has been noticed that magnesium might play an interesting role in recently discovered switchable-mirror systems. For example, the films of rare earth and magnesium alloys are found to be superior to the pure rare-earth samples in maximum transparency and mirror-state reflectivity [1]. Moreover, the magnesium-rich Ni-Mg alloy films turned out to be a switchable-mirror system without rare earths [2]. In both cases, pure transparent MgH2 is reversibly formed when these alloys take up hydrogen. In order to model the optical properties of these films, we need to know the electronic and optical properties of MgH2. In this work, we investigate its bonding characteristics, band structure, and dielectric properties with first-principles theoretical methods. The stability of the crystal and the bonding are studied using density functional theory and pseudopotential methods. The excited state properties (the quasiparticle spectra) are studied by many-body perturbation theory within the so-called GW approximation in which the electronic self-energy is approximated by the full Green's function (G) times the screened Coulomb interaction (W). We will report the results for both the rutile-structured alpha-MgH2 and the low-symmetry gamma-MgH2. [1] P. van der Sluis, M. Ouwerkerk, and P. A. Duine, Appl. Phys. Lett. 70, 3356 (1997). [2] T. J. Richardson, J. L. Slack, R. D. armitage, R. Kostecki, B. Farangis, and M. D. Rubin, Appl. Phys. Lett. 78, 3047 (2001).

  17. Theoretical study on optical model potential

    International Nuclear Information System (INIS)

    Lim Hung Gi.

    1984-08-01

    The optical model potential of non-local effect on the rounded edge of the potential is derived. On the basis of this potential the functional form of the optical model potential, the energy dependence and relationship of its parameters, and the dependency of the values of the parameters on energy change are shown in this paper. (author)

  18. Manipulating the optical properties of dual implanted Au and Zn nanoparticles in sapphire

    Science.gov (United States)

    Epie, E. N.; Scott, D.; Chu, W. K.

    2017-11-01

    We have synthesized and manipulated the optical properties of metallic nanoparticles (NPs) by using a combination of low-energy high-fluence dual implantation and thermal annealing. We demonstrated that by implanting Zn before Au, the resulting absorption peak is enormously blue-shifted by 120 nm with respect to that of Au-only implanted samples. This magnitude of optical shift is not characteristic of unalloyed Au and to the best of our knowledge cannot be attributed to NP size change alone. On the other hand, the absorption peak for samples implanted with Au followed by Zn is blue-shifted about 20 nm. Additionally, by carefully annealing all implanted samples, both NP size distribution and corresponding optical properties can be further modified in a controlled manner. We attribute these behaviours to nanoalloy formation. This work provides a direct method for synthesizing and manipulating both the plasmonic and structural properties of metallic alloy NP in various transparent dielectrics for diverse applications.

  19. Electronic and optical properties of bilayer PbI2: a first-principles study

    Science.gov (United States)

    Shen, Chenhai; Wang, Guangtao

    2018-01-01

    By employing first-principles methods, we investigate the effects of stacking patterns and interlayer coupling on the electronic structures and optical properties of bilayer (BL) PbI2. For optical properties, excitonic effects are considered. The results show that crystal-type BL PbI2 stacking pattern is the most stable bilayer structures with the equilibrium interlayer distance of 3.27 Å and a direct band structure. Moreover, for all considered patterns, the interlayer coupling can induce the band structures to transform from indirect to direct and also the band gap values to vary from 2.56 eV to 2.62 eV. In addition, our calculations show that the exciton binding energy of the most stable pattern is 0.81 eV, and excitonic effects have obvious influences on optical responses of BL PbI2. These results may be useful to future experimental studies on optoelectronic properties of two-dimensional BL PbI2 nanosheets.

  20. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Directory of Open Access Journals (Sweden)

    R. Udaiyakumar

    2018-06-01

    Full Text Available With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor. Keywords: Nanoparticles, Nano-composite, Dispersion, Birefringence, Beat length

  1. Aerosol optical properties of Western Mediterranean basin from multi-year AERONET data

    Science.gov (United States)

    Benkhalifa, Jamel; Léon, Jean François; Chaabane, Mabrouk

    2017-11-01

    Aerosol optical properties including the total and coarse mode aerosol extinction optical depth (AODt and AODc respectively), Angstrom exponent (AE), size distribution, single scattering albedo (SSA) were examined using long-term ground-based radiometric measurements at 9 sites in the Western Mediterranean: Oujda, Malaga, Barcelona, Carpentras, Rome Tor Vergata, Ersa, Ispra, Venice and Evora, during the 4-year study period (2010-2013). The South-North gradient in the fraction of AODc represents the signature of the increasing influence of coarse particles on the optical properties at southern stations. This fraction has a daily mean ranging from 48 ± 18% at the southern site Oujda and to 8 ± 8% at Ispra. The low average AE444-870 value (<0.7) at Oujda confirms the major influence of large dust particles. Conversely, the AOD at urban stations are dominated by fine mode particles. The Angstrom Exponent (AE444-870) above 1.5 in Ispra and Venice indicates an atmospheric situation corresponding to the urban pollution controlled by small particles. We have analyzed the intrinsic dust optical properties by selecting the dusty days corresponding to a total optical depth above 0.3 and a fraction of the coarse mode optical depth above 30%. For these cases, the mean AODt during dusty days was shown to be close to 0.4. During dusty days, the coarse mode fraction represents 88% of the total volume at Oudja and above 83% for all other sites. There is a weak variability in the mean coarse mode volume median radius, showing an average of 1.98 ± 0.1. A maximum in the AODc was observed in the summer of 2012, with particular high events on June 27. The forward trajectory starting at Evora on June 27 clearly indicates that all the sites were affected by such dust events in the following days.

  2. Effect of 200 keV Ar+ implantation on optical & electrical properties of polyethyleneterepthalate (PET)

    Science.gov (United States)

    Kumar, Rajiv; Goyal, Meetika; Sharma, Ambika; Aggarwal, Sanjeev; Sharma, Annu; Kanjilal, D.

    2015-05-01

    In the present paper we have discussed the effect of 200 keV Ar+ ions on the electrical and optical properties of PET samples. PET samples were implanted with 200 keV Ar+ ions to various doses ranging from 1×1015 to 1×1017 Ar+ cm2. The changes in the electrical and optical properties of pristine and implanted PET specimens have been studied by using Keithley electrometer and UV-Visible absorption spectroscopy. The electrical conductivity has found to be increased with increasing ion dose. The optical studies have revealed the drastic alterations in optical band gap from 3.63 eV to 1.48 eV and also increase in number of carbon atoms per cluster from 215 to 537. Further, the change in the electrical conductivity and optical band gap has also been correlated with the formation of conductive islands in the implanted layers of PET.

  3. Synthesis, microstructural, optical and mechanical properties of yttria stabilized zirconia thin films

    International Nuclear Information System (INIS)

    Amézaga-Madrid, P.; Hurtado-Macías, A.; Antúnez-Flores, W.; Estrada-Ortiz, F.; Pizá-Ruiz, P.; Miki-Yoshida, M.

    2012-01-01

    Highlights: ► Thin films of YSZ obtained by AACVD have high quality. ► They are uniform, very transparent, and have high hardness. ► Optical characterization were performed in detail, optical constants and band gap energy were determined as a function of dopant content. - Abstract: Thin films of yttria-stabilized zirconia (YSZ) exhibit exceptional properties, such as high thermal, chemical and mechanical stability. Here, we report the synthesis of YSZ thin films by aerosol assisted chemical vapour deposition onto borosilicate glass and fused silica substrates. Optimum deposition temperature was 673 ± 5 K. In addition, different Y content was tried to analyse its influence in the microstructure and properties of the films. The films were uniform, transparent and non-light scattering. Surface morphology and cross sectional microstructure were studied by field emission scanning electron microscopy. The microstructure of the films was characterized by grazing incidence X-ray diffraction. Crystallite size and lattice parameter were obtained. Optical properties were analysed from reflectance and transmittance spectra; from these measurements, optical constants and band gap were obtained. Quantum confinement effect, due to the small grain size of the films, was evident in the high band gap energy obtained. Nanoindentation tests were realized at room temperature employing the continuous stiffness measurement method, to determine the hardness and elastic modulus as a function of Y content.

  4. The effects of thermal annealing in structural and optical properties of RF sputtered amorphous silicon

    International Nuclear Information System (INIS)

    Abdul Fatah Awang Mat

    1988-01-01

    The effect of thermal annealing on structural and optical properties of amorphous silicon are studied on samples prepared by radio-frequency sputtering. The fundamental absorption edge of these films are investigated at room temperature and their respective parameters estimated. Annealing effect on optical properties is interpreted in terms of the removal of voids and a decrease of disorder. (author)

  5. An evaluation of uncertainty in the aerosol optical properties as represented by satellites and an ensemble of chemistry-climate coupled models over Europe

    Science.gov (United States)

    Palacios-Peña, Laura; Baró, Rocío; Jiménez-Guerrero, Pedro

    2016-04-01

    The changes in Earth's climate are produced by forcing agents such as greenhouse gases, clouds and atmospheric aerosols. The latter modify the Earth's radiative budget due to their optical, microphysical and chemical properties, and are considered to be the most uncertain forcing agent. There are two main approaches to the study of aerosols: (1) ground-based and remote sensing observations and (2) atmospheric modelling. With the aim of characterizing the uncertainties associated with these approaches, and estimating the radiative forcing caused by aerosols, the main objective of this work is to assess the representation of aerosol optical properties by different remote sensing sensors and online-coupled chemistry-climate models and to determine whether the inclusion of aerosol radiative feedbacks in this type of models improves the modelling outputs over Europe. Two case studies have been selected under the framework of the EuMetChem COST Action ES1004, when important aerosol episodes during 2010 over Europe took place: a Russian wildfires episode and a Saharan desert dust outbreak covering most of Europe. Model data comes from an ensemble of regional air quality-climate simulations performed by the working group 2 of EuMetChem, that investigates the importance of different processes and feedbacks in on-line coupled chemistry-climate models. These simulations are run for three different configurations for each model, differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The remote sensing data comes from three different sensors, MODIS (Moderate Resolution Imaging Spectroradiometer), OMI (Ozone Monitoring Instrument) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor). The evaluation has been performed by using classical statistical metrics, comparing modelled and remotely sensed data versus a ground-based instrument network (AERONET). The evaluated variables are aerosol optical depth (AOD) and the Angström exponent (AE) at

  6. Structural and optical properties of electron beam evaporated CdSe ...

    Indian Academy of Sciences (India)

    electronic applications such as photo detection or solar energy conversion, due to its optical and electrical properties, as well as its good chemical and mechanical stability. In order to explore the possibility of using this in optoelectronics, ...

  7. Relationships between Molecular Composition and Optical Properties of Dissolved Organic Matter

    Science.gov (United States)

    Cooper, W. T.; Tfaily, M.; Osborne, D.; Paul, A.; Podgorski, D. C.; Corbett, J.; Chanton, J.

    2009-12-01

    Our focus is on the relationships between the optical properties of dissolved organic matter (DOM) and its molecular composition. For example, we demonstrated that changes in the absorption and fluorescence characteristics of DOM in outwelling from Brazilian mangrove forests correlated with decreases in highly unsaturated organic compounds as DOM was transported from mangrove porewaters to the continental shelf. In that work we combined ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) that provided detailed compositional information with absorption and Excitation/Emission Matrix (EEM) spectroscopy This presentation will highlight new results utilizing the combination of optical spectroscopy and FT-ICR mass spectrometry to illuminate the processes which control DOM cycling. Our focus will be on the contributions of the heteroatom components of DOM (i.e. organic sulfur and organic nitrogen) to its optical properties and how changes in optical properties correlate with important environmental processes like humification and bioavailability. Figure 1 below includes a narrow 0.20 Dalton window from a mass spectrum which demonstrates the ability of ultrahigh resolution mass spectrometry to resolve and identify nitrogen heteroatom compounds in DOM. Our study sites include the Glacial Lake Agassiz Peatlands (GLAP) in northern Minnesota and wetlands in the Caloosahatchee River basin in South Florida. Figure 1. Isolated 0.20 Da window of an ESI-FT-ICR mass spectrum of DOM from a GLAP bog. Labels identify N1 (d,e,f) and N3 classes of nitrogen heteroatoms. The 0.0031 Da mass spacing is used to confirm the N3 class.

  8. Effect of Ar bombardment on the electrical and optical properties of ...

    Indian Academy of Sciences (India)

    The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to 1 × 10 15 cm − 2 . Electrical properties of LDPE films were measured and the effect of ion ...

  9. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  10. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture. 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  11. Enhancement of nonlinear optical properties of compounds of silica ...

    Indian Academy of Sciences (India)

    Enhancement of nonlinear optical properties of compounds of silica glass and metallic nanoparticle. A GHARAATI1,∗ and A KAMALDAR1,2. 1Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran. 2Department of Education 1, Shiraz, Iran. ∗. Corresponding author. E-mail: agharaati@pnu.ac.

  12. Synthesis, structural and optical properties of nanoparticles (Al, V ...

    Indian Academy of Sciences (India)

    The synthesis by the sol–gel method, structural and optical properties of ZnO, Zn0.99Al0.01O (AlZ),. Zn0.9V0.1O (VZ) ... drops of the resulting suspension containing the synthesized .... ZnO films on silicon substrate, they thought that this emis-.

  13. Optical properties of Amorphous Semiconductors Part- II: Theory and analysis of optical properties

    International Nuclear Information System (INIS)

    Hogarth, C. A.

    1997-01-01

    The atomic and band structural properties of solids have been studied. Reflectance is concerned in spectroscopic measurement of transmission and absorption, since the incident light intensity must be corrected for the loss of light by reflection and which does not penetrate beyond the surface of the material studied.The procedure for estimating E opt and n from the absorption edge of an amorphous semiconductor has been discussed. In high refractive index glasses there is a general correlation between n and the density of the glasses and in designing a particular glass for an optical purpose this can provide a useful guide to composition. The Gladstone-Dale refractivity and the Newton-Drude refractivity have been calculated for different value of b and these relations have been tested for telluride semiconducting glasses and give reasonable agreement in estimations of n directly from the density ρ. 33 refs., 10 figs

  14. Application of Tietz potential to study optical properties of spherical ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 85, No. 4. — journal of. October 2015 ... The physical properties of semiconductors such as optical, electronic, and thermodynamic .... can be used to reproduce the interaction potential energy curve of the A1.

  15. Optical properties of CeO 2 thin films

    Indian Academy of Sciences (India)

    Cerium oxide (CeO2) thin films have been prepared by electron beam evaporation technique onto glass substrate at a pressure of about 6 × 10-6 Torr. The thickness of CeO2 films ranges from 140–180 nm. The optical properties of cerium oxide films are studied in the wavelength range of 200–850 nm. The film is highly ...

  16. Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements

    Science.gov (United States)

    Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.

    2017-12-01

    The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.

  17. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Fourty, T. [INRA, Avignon (France); Baret, F.; Jacquemoud, S.; Schmuck, G.; Verdebout, J.

    1996-05-15

    This study presents a methodology to estimate the leaf biochemical compounds specific absorption coefficients and to use them to predict leaf biochemistry. A wide range of leaves was collected including variations in species and leaf status. All the leaves were dried out. The biochemical composition was measured using classical wet chemistry techniques to determine lignin, cellulose, hemicellulose, starch, and protein contents. Concurrently, leaf reflectance and transmittance were measured with a high spectral resolution spectrophotometer in the 800–2500 nm range with approximately 1 nm spectral resolution and sampling interval. In addition, infinite reflectance achieved by stacking leaves was also measured. The PROSPECT leaf optical properties model was first inverted over a selection of wavebands in the 800–2400 nm domain to provide estimates of the scattering characteristics using leaf reflectance, transmittance, and infinite reflectance data. Then, the model was inverted again over all the wavelengths to estimate the global absorption coefficient, using the previously estimated scattering properties. The global absorption coefficient was eventually explained using the measured biochemical composition by fitting the corresponding specific absorption coefficients after substraction of the measured contribution of the residual structural water absorption. Results show that the derived specific absorption coefficients are quite robustly estimated. Further, they are in good agreement with known absorption features of each biochemical compound. The average contribution of each biochemical compound to leaf absorption feature is also evaluated. Sugar, cellulose, and hemicellulose are the main compounds that contribute to absorption. Results demonstrate the possibility of modeling leaf optical properties of dry leaves with explicit description of leaf biochemistry. Estimates of the detailed biochemical composition obtained by model inversion over the 1300–2400 nm

  18. Synthesis, Characterization, and Nonlinear Optical Properties of P-Substituted Poly Gamma-Benzyl

    Science.gov (United States)

    Choi, Dong-Hoon

    Poly gamma-benzyl-L-glutamate (PBLG), poly gamma-p-fluorobenzyl -L-glutamate (PGLU(pFB)), poly gamma -p-nitrobenzyl-L-glutamate (PGLU(pNB)), and poly gamma-p-trifluoromethylbenzyl-L-glutamate (PGLU(pTFMB)) have been synthesized. These PBLG polymers show variations in the side chain conformations in the solid state and solution state. In the solid state, the side chain orientation was assigned to a longitudinal or transverse direction by virtue of the polarized infrared spectrum of each PBLG analogue. The characteristics of the lyotropic liquid crystalline behavior could be observed. The optical waveguiding property of these polymers facilitated measurement of the refractive index and the thickness of each polymer film. Poling the polymer films and using the simple reflection technique, the electro -optic coefficients of the PBLG analogues could be determined. The effect of the para substitution on benzyl ester as it effected the electro-optic coefficient and the relation between the dielectric properties and the electro-optic effect of each polymer were investigated. These studies were able to demonstrate which conformation of the side chain in para substituted poly gamma-benzyl -L-glutamates is a more favorable conformation for enhancing the electro-optic behavior of these polymers.

  19. Compact All Solid State Oceanic Inherent Optical Property Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Light propagation in the sea and the consequent remote sensing signals seen by aircraft and spacecraft is fundamentally governed by the inherent optical properties...

  20. Hybrid Perovskite Phase Transition and Its Ionic, Electrical and Optical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md Nadim Ferdous; Islam, Nazifah; Zhu, Kai; Fan, Zhaoyang

    2017-01-01

    Hybrid perovskite solar cells (PSCs) under normal operation will reach a temperature above ~ 60 °C, across the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). Whether the structural phase transition could result in dramatic changes of ionic, electrical and optical properties that may further impact the PSC performances should be studied. Herein, we report a structural phase transition temperature of MAPbI3thin film at ~ 55 °C, but a striking contrast occurred at ~ 45 °C in the ionic and electrical properties of MAPbI3due to a change of the ion activation energy from 0.7 eV to 0.5 eV. The optical properties exhibited no sharp transition except for the steady increase of the bandgap with temperature. It was also observed that the activation energy for ionic migration steadily increased with increased grain sizes, and reduction of the grain boundary density reduced the ionic migration.