WorldWideScience

Sample records for modeling objective met

  1. The performance of FLake in the Met Office Unified Model

    Directory of Open Access Journals (Sweden)

    Gabriel Gerard Rooney

    2013-12-01

    Full Text Available We present results from the coupling of FLake to the Met Office Unified Model (MetUM. The coupling and initialisation are first described, and the results of testing the coupled model in local and global model configurations are presented. These show that FLake has a small statistical impact on screen temperature, but has the potential to modify the weather in the vicinity of areas of significant inland water. Examination of FLake lake ice has revealed that the behaviour of lakes in the coupled model is unrealistic in some areas of significant sub-grid orography. Tests of various modifications to ameliorate this behaviour are presented. The results indicate which of the possible model changes best improve the annual cycle of lake ice. As FLake has been developed and tuned entirely outside the Unified Model system, these results can be interpreted as a useful objective measure of the performance of the Unified Model in terms of its near-surface characteristics.

  2. Objective physical activity measurement in the osteoarthritis initiative: Are guidelines being met?

    Science.gov (United States)

    Dunlop, Dorothy D; Song, Jing; Semanik, Pamela A; Chang, Rowland W; Sharma, Leena; Bathon, Joan M; Eaton, Charles B; Hochberg, Marc C; Jackson, Rebecca D; Kwoh, C Kent; Mysiw, W Jerry; Nevitt, Michael C; Hootman, Jennifer M

    2011-11-01

    Osteoarthritis (OA) clinical practice guidelines identify a substantial therapeutic role for physical activity, but objective information about the physical activity of this population is lacking. The aim of this study was to objectively measure levels of physical activity in adults with knee OA and report the prevalence of meeting public health physical activity guidelines. Cross-sectional accelerometry data from 1,111 adults with radiographic knee OA (49-84 years old) participating in the Osteoarthritis Initiative accelerometry monitoring ancillary study were assessed for meeting the aerobic component of the 2008 Physical Activity Guidelines for Americans (≥150 minutes/week moderate-to-vigorous-intensity activity lasting ≥10 minutes). Quantile regression was used to test median sex differences in physical activity levels. Aerobic physical activity guidelines were met by 12.9% of men and 7.7% of women with knee OA. A substantial proportion of men and women (40.1% and 56.5%, respectively) were inactive, having done no moderate-to-vigorous activity that lasted 10 minutes or more during the 7 days. Although men engaged in significantly more moderate-to-vigorous activity (average daily minutes 20.7 versus 12.3), they also spent more time in no or very-low-intensity activity than women (average daily minutes 608.2 versus 585.8). Despite substantial health benefits from physical activity, adults with knee OA were particularly inactive based on objective accelerometry monitoring. The proportions of men and women who met public health physical activity guidelines were substantially less than those previously reported based on self-reported activity in arthritis populations. These findings support intensified public health efforts to increase physical activity levels among people with knee OA. Copyright © 2011 by the American College of Rheumatology.

  3. A Meteorological Distribution System for High Resolution Terrestrial Modeling (MicroMet)

    Science.gov (United States)

    Liston, G. E.; Elder, K.

    2004-12-01

    Spatially distributed terrestrial models generally require atmospheric forcing data on horizontal grids that are of higher resolution than available meteorological data. Furthermore, the meteorological data collected may not necessarily represent the area of interest's meteorological variability. To address these deficiencies, computationally efficient and physically realistic methods must be developed to take available meteorological data sets (e.g., meteorological tower observations) and generate high-resolution atmospheric-forcing distributions. This poster describes MicroMet, a quasi-physically-based, but simple meteorological distribution model designed to produce high-resolution (e.g., 5-m to 1-km horizontal grid increments) meteorological data distributions required to run spatially distributed terrestrial models over a wide variety of landscapes. The model produces distributions of the seven fundamental atmospheric forcing variables required to run most terrestrial models: air temperature, relative humidity, wind speed, wind direction, incoming solar radiation, incoming longwave radiation, and precipitation. MicroMet includes a preprocessor that analyzes meteorological station data and identifies and repairs potential data deficiencies. The model uses known relationships between meteorological variables and the surrounding area (primarily topography) to distribute those variables over any given landscape. MicroMet performs two kinds of adjustments to available meteorological data: 1) when there are data at more than one location, at a given time, the data are spatially interpolated over the domain using a Barnes objective analysis scheme, and 2) physical sub-models are applied to each MicroMet variable to improve its realism at a given point in space and time with respect to the terrain. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) will be used as example MicroMet

  4. 'Epistemology models ontology'− In gesprek met John Polkinghorne

    African Journals Online (AJOL)

    Test

    7 Jun 2011 ... maar met die aard daarvan. Polkinghorne wil met sy boek One World (1996) presies sê wat die titel suggereer. Hiervoor kry hy die oplossing by sy mentor en latere kollega, Paul Dirac. Vir meer as 30 jaar het Dirac dieselfde leerstoel in Fisika aan Cambridge beklee as Isaac Newton (Polkinghorne 2005:34).

  5. Exoplanet modelling with the Met Office Unified Model

    Science.gov (United States)

    Boutle, Ian; Lines, Stefan; Mayne, Nathan; Lee, Graham; Helling, Christiane; Drummond, Ben; Manners, James; Goyal, Jayesh; Lambert, Hugo; Acreman, David; Earnshaw, Paul; Amundsen, David; Baraffe, Isabelle

    2017-04-01

    This talk will present an overview of work being done to adapt the Unified Model, one of the most sophisticated weather and climate models of this planet, into a flexible planet simulator for use in the study of any exoplanet. We will focus on two current projects: Clouds in hot Jupiter atmospheres - recent HST observations have revealed a continuum in atmospheric composition from cloudy to clear skies. The presence of clouds is inferred from a grey opacity in the near-IR that mutes key absorption features in the transmission spectra. Unlike the L-T Brown Dwarf sequence, this transition does not correlate well with equilibrium temperature, suggesting that a cloud formation scheme more comprehensive than simply considering the condensation temperature needed for homogenous cloud growth, is required. In our work, we conduct 3D simulations of cloud nucleation, growth, advection, evaporation and gravitational settling in the atmospheres of HD209458b and HD189733 using the kinetic and mixed-grain cloud formation code DIHRT, coupled to the Unified Model. We explore cloud composition, vertical structure and particle sizes, as well as highlighting the importance of the strong atmospheric dynamics seen in tidally locked hot Jupiters on the evolution and distribution of the cloud. Climate of Proxima B - we present results of simulations of the climate of the newly discovered planet Proxima Centauri B, examining the responses of both an `Earth-like' atmosphere and simplified nitrogen and trace carbon dioxide atmosphere to the radiation likely received. Overall, our results are in agreement with previous studies in suggesting Proxima Centauri B may well have surface temperatures conducive to the presence of liquid water. Moreover, we have expanded the parameter regime over which the planet may support liquid water to higher values of eccentricity and lower incident fluxes, guided by observational constraints. This increased parameter space arises because of the low sensitivity

  6. A Model for Concurrent Objects

    DEFF Research Database (Denmark)

    Sørensen, Morten U.

    1996-01-01

    We present a model for concurrent objects where obejcts interact by taking part in common events that are closely matched to form call-response pairs, resulting in resulting in rendez-vous like communications. Objects are built from primitive objects by parallel composition, encapsulation...

  7. Experimental Object-Oriented Modelling

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    through, e.g., technical prototyping and active user involvement. We introduce and examine “experimental object-oriented modelling” as the intersection of these practices. The contributions of this thesis are expected to be within three perspectives on models and modelling in experimental system...... development: Grounding We develop an empirically based conceptualization of modelling and use of models in system development projects characterized by a high degree of uncertainty in requirements and point to implications for tools and techniques for modelling in such a setting. Techniques We introduce......This thesis examines object-oriented modelling in experimental system development. Object-oriented modelling aims at representing concepts and phenomena of a problem domain in terms of classes and objects. Experimental system development seeks active experimentation in a system development project...

  8. Intuitive modeling of vaporish objects

    International Nuclear Information System (INIS)

    Sokolov, Dmitry; Gentil, Christian

    2015-01-01

    Attempts to model gases in computer graphics started in the late 1970s. Since that time, there have been many approaches developed. In this paper we present a non-physical method allowing to create vaporish objects like clouds or smoky characters. The idea is to create a few sketches describing the rough shape of the final vaporish object. These sketches will be used as condensation sets of Iterated Function Systems, providing intuitive control over the object. The advantages of the new method are: simplicity, good control of resulting shapes and ease of eventual object animation.

  9. Concurrent Models for Object Execution

    OpenAIRE

    Diertens, Bob

    2012-01-01

    In previous work we developed a framework of computational models for the concurrent execution of functions on different levels of abstraction. It shows that the traditional sequential execution of function is just a possible implementation of an abstract computational model that allows for the concurrent execution of functions. We use this framework as base for the development of abstract computational models that allow for the concurrent execution of objects.

  10. In vivo detection of c-Met expression in a rat C6 glioma model.

    Science.gov (United States)

    Towner, R A; Smith, N; Doblas, S; Tesiram, Y; Garteiser, P; Saunders, D; Cranford, R; Silasi-Mansat, R; Herlea, O; Ivanciu, L; Wu, D; Lupu, F

    2008-01-01

    The tyrosine kinase receptor, c-Met, and its substrate, the hepatocyte growth factor (HGF), are implicated in the malignant progression of glioblastomas. In vivo detection of c-Met expression may be helpful in the diagnosis of malignant tumours. The C6 rat glioma model is a widely used intracranial brain tumour model used to study gliomas experimentally. We used a magnetic resonance imaging (MRI) molecular targeting agent to specifically tag the cell surface receptor, c-Met, with an anti-c-Met antibody (Ab) linked to biotinylated Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-albumin in rat gliomas to detect overexpression of this antigen in vivo. The anti-c-Met probe (anti-c-Met-Gd-DTPA-albumin) was administered intravenously, and as determined by an increase in MRI signal intensity and a corresponding decrease in regional T(1) relaxation values, this probe was found to detect increased expression of c-Met protein levels in C6 gliomas. In addition, specificity for the binding of the anti-c-Met contrast agent was determined by using fluorescence microscopic imaging of the biotinylated portion of the targeting agent within neoplastic and 'normal'brain tissues following in vivo administration of the anti-c-Met probe. Controls with no Ab or with a normal rat IgG attached to the contrast agent component indicated no non-specific binding to glioma tissue. This is the first successful visualization of in vivo overexpression of c-Met in gliomas.

  11. POMP - Pervasive Object Model Project

    DEFF Research Database (Denmark)

    Schougaard, Kari Rye; Schultz, Ulrik Pagh

    The focus on mobile devices is continuously increasing, and improved device connectivity enables the construction of pervasive computing systems composed of heterogeneous collections of devices. Users who employ different devices throughout their daily activities naturally expect their applications...... computing environment. This system, named POM (Pervasive Object Model), supports applications split into coarse-grained, strongly mobile units that communicate using method invocations through proxies. We are currently investigating efficient execution of mobile applications, scalability to suit...

  12. 'Epistemology models ontology'− In gesprek met John Polkinghorne ...

    African Journals Online (AJOL)

    The famous premise of John Polkinghorne, 'epistemology models ontology', has been assessed in this article. It is interpreted that its logic is based on a linear trajectory of knowledge → being. Polkinghorne places much emphasis on the fact that he pursues a 'bottom-up' approach, that is, an inductive way of going about ...

  13. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)

    Science.gov (United States)

    Glen E. Liston; Kelly Elder

    2006-01-01

    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...

  14. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Friedhelm, E-mail: Friedhelm.Bladt@merckgroup.com; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree [EMD Serono, and Merck Serono Research and Development, Merck KGaA, Darmstadt 64293 (Germany)

    2014-08-19

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling.

  15. CoMET: A Mesquite package for comparing models of continuous character evolution on phylogenies

    Directory of Open Access Journals (Sweden)

    Chunghau Lee

    2006-01-01

    Full Text Available Continuously varying traits such as body size or gene expression level evolve during the history of species or gene lineages. To test hypotheses about the evolution of such traits, the maximum likelihood (ML method is often used. Here we introduce CoMET (Continuous-character Model Evaluation and Testing, which is module for Mesquite that automates likelihood computations for nine different models of trait evolution. Due to its few restrictions on input data, CoMET is applicable to testing a wide range of character evolution hypotheses. The CoMET homepage, which links to freely available software and more detailed usage instructions, is located at http://www.lifesci.ucsb.edu/eemb/labs/oakley/software/comet.htm.

  16. The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model

    Science.gov (United States)

    Rodríguez, José M.; Milton, Sean F.; Marzin, Charline

    2017-10-01

    In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.

  17. Object feature extraction and recognition model

    International Nuclear Information System (INIS)

    Wan Min; Xiang Rujian; Wan Yongxing

    2001-01-01

    The characteristics of objects, especially flying objects, are analyzed, which include characteristics of spectrum, image and motion. Feature extraction is also achieved. To improve the speed of object recognition, a feature database is used to simplify the data in the source database. The feature vs. object relationship maps are stored in the feature database. An object recognition model based on the feature database is presented, and the way to achieve object recognition is also explained

  18. Creation of 'Ukrytie' objects computer model

    International Nuclear Information System (INIS)

    Mazur, A.B.; Kotlyarov, V.T.; Ermolenko, A.I.; Podbereznyj, S.S.; Postil, S.D.; Shaptala, D.V.

    1999-01-01

    A partial computer model of the 'Ukrytie' object was created with the use of geoinformation technologies. The computer model makes it possible to carry out information support of the works related to the 'Ukrytie' object stabilization and its conversion into ecologically safe system for analyzing, forecasting and controlling the processes occurring in the 'Ukrytie' object. Elements and structures of the 'Ukryttia' object were designed and input into the model

  19. Semi-implicit semi-Lagrangian modelling of the atmosphere: a Met Office perspective

    Directory of Open Access Journals (Sweden)

    Benacchio Tommaso

    2016-09-01

    Full Text Available The semi-Lagrangian numerical method, in conjunction with semi-implicit time integration, provides numerical weather prediction models with numerical stability for large time steps, accurate modes of interest, and good representation of hydrostatic and geostrophic balance. Drawing on the legacy of dynamical cores at the Met Office, the use of the semi-implicit semi-Lagrangian method in an operational numerical weather prediction context is surveyed, together with details of the solution approach and associated issues and challenges. The numerical properties and performance of the current operational version of the Met Office’s numerical model are then investigated in a simplified setting along with the impact of different modelling choices.

  20. MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases

    Directory of Open Access Journals (Sweden)

    Kumar Akhil

    2012-01-01

    Full Text Available Abstract Background Increasingly, metabolite and reaction information is organized in the form of genome-scale metabolic reconstructions that describe the reaction stoichiometry, directionality, and gene to protein to reaction associations. A key bottleneck in the pace of reconstruction of new, high-quality metabolic models is the inability to directly make use of metabolite/reaction information from biological databases or other models due to incompatibilities in content representation (i.e., metabolites with multiple names across databases and models, stoichiometric errors such as elemental or charge imbalances, and incomplete atomistic detail (e.g., use of generic R-group or non-explicit specification of stereo-specificity. Description MetRxn is a knowledgebase that includes standardized metabolite and reaction descriptions by integrating information from BRENDA, KEGG, MetaCyc, Reactome.org and 44 metabolic models into a single unified data set. All metabolite entries have matched synonyms, resolved protonation states, and are linked to unique structures. All reaction entries are elementally and charge balanced. This is accomplished through the use of a workflow of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of standardized versions of existing genome-scale metabolic models and the use of metabolic information for the rapid reconstruction of new ones. Conclusions The standardization in description allows for the direct comparison of the metabolite and reaction content between metabolic models and databases and the exhaustive prospecting of pathways for biotechnological production. This ever-growing dataset currently consists of over 76,000 metabolites participating in more than 72,000 reactions (including unresolved entries. MetRxn is hosted on a web-based platform that uses relational database models (MySQL.

  1. Probabilistic object and viewpoint models for active object recognition

    CSIR Research Space (South Africa)

    Govender, N

    2013-09-01

    Full Text Available ,θ′(f occ). V. EXPERIMENTS A. Dataset For our experiments, we use the active recognition dataset introduced by [12]. The training data consists of everyday objects such as cereal boxes, ornaments, spice bottle, etc. Images were captured every 20 degrees... are to be verified TABLE I CONFUSION MATRIX FOR BINARY A MODEL Obscured Obscured Obscured Obscured Obscured Obscured Obscured Obscured Obscured Obscured Cereal Battery Curry box Elephant Handbag MrMin Salad Bottle Spice Bottle Spray Can Spray Can 1 Cereal 0.9800 0...

  2. The Composite OLAP-Object Data Model

    Energy Technology Data Exchange (ETDEWEB)

    Pourabbas, Elaheh; Shoshani, Arie

    2005-12-07

    In this paper, we define an OLAP-Object model that combines the main characteristics of OLAP and Object data models in order to achieve their functionalities in a common framework. We classify three different object classes: primitive, regular and composite. Then, we define a query language which uses the path concept in order to facilitate data navigation and data manipulation. The main feature of the proposed language is an anchor. It allows us to fix dynamically an object class (primitive, regular or composite) along the paths over the OLAP-Object data model for expressing queries. The queries can be formulated on objects, composite objects and combination of both. The power of the proposed query language is investigated through multiple query examples. The semantic of different clauses and syntax of the proposed language are investigated.

  3. Object tracking using active appearance models

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2001-01-01

    This paper demonstrates that (near) real-time object tracking can be accomplished by the deformable template model; the Active Appearance Model (AAM) using only low-cost consumer electronics such as a PC and a web-camera. Successful object tracking of perspective, rotational and translational...

  4. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were t...

  5. The HadGEM2 family of Met Office Unified Model climate configurations

    Directory of Open Access Journals (Sweden)

    The HadGEM2 Development Team: G. M. Martin

    2011-09-01

    Full Text Available We describe the HadGEM2 family of climate configurations of the Met Office Unified Model, MetUM. The concept of a model "family" comprises a range of specific model configurations incorporating different levels of complexity but with a common physical framework. The HadGEM2 family of configurations includes atmosphere and ocean components, with and without a vertical extension to include a well-resolved stratosphere, and an Earth-System (ES component which includes dynamic vegetation, ocean biology and atmospheric chemistry. The HadGEM2 physical model includes improvements designed to address specific systematic errors encountered in the previous climate configuration, HadGEM1, namely Northern Hemisphere continental temperature biases and tropical sea surface temperature biases and poor variability. Targeting these biases was crucial in order that the ES configuration could represent important biogeochemical climate feedbacks. Detailed descriptions and evaluations of particular HadGEM2 family members are included in a number of other publications, and the discussion here is limited to a summary of the overall performance using a set of model metrics which compare the way in which the various configurations simulate present-day climate and its variability.

  6. Using Machine Learning as a fast emulator of physical processes within the Met Office's Unified Model

    Science.gov (United States)

    Prudden, R.; Arribas, A.; Tomlinson, J.; Robinson, N.

    2017-12-01

    The Unified Model is a numerical model of the atmosphere used at the UK Met Office (and numerous partner organisations including Korean Meteorological Agency, Australian Bureau of Meteorology and US Air Force) for both weather and climate applications.Especifically, dynamical models such as the Unified Model are now a central part of weather forecasting. Starting from basic physical laws, these models make it possible to predict events such as storms before they have even begun to form. The Unified Model can be simply described as having two components: one component solves the navier-stokes equations (usually referred to as the "dynamics"); the other solves relevant sub-grid physical processes (usually referred to as the "physics"). Running weather forecasts requires substantial computing resources - for example, the UK Met Office operates the largest operational High Performance Computer in Europe - and the cost of a typical simulation is spent roughly 50% in the "dynamics" and 50% in the "physics". Therefore there is a high incentive to reduce cost of weather forecasts and Machine Learning is a possible option because, once a machine learning model has been trained, it is often much faster to run than a full simulation. This is the motivation for a technique called model emulation, the idea being to build a fast statistical model which closely approximates a far more expensive simulation. In this paper we discuss the use of Machine Learning as an emulator to replace the "physics" component of the Unified Model. Various approaches and options will be presented and the implications for further model development, operational running of forecasting systems, development of data assimilation schemes, and development of ensemble prediction techniques will be discussed.

  7. Cleaning and electrochemistry restoration of archaeological metalic objects | Limpieza y restauración electroquímica de objetos arqueológicos metálicos

    OpenAIRE

    Tomás España Guisolphe; Vicente Montiel Leguey; Marcelo López Segura; Antonio Aldaz Riera

    1985-01-01

    This paper shows how electrochemical methods can be applied to the cleaning and restoration of coins and metallic objects proceeding from archaeological finds. A description is given of the electrochemical methods used and a comparison with the usual cleaning methods is also made. | El presente estudio pone de manifiesto la aplicabilidad de los métodos electroquímicos a la limpieza y restauración de monedas y piezas metálicas que proceden de yacimientos arqueológicos. Se hace una descripción ...

  8. Ionospheric Tomography from a Reference GPS/MET Experiment Through the IRI Model

    Directory of Open Access Journals (Sweden)

    Lung-Chih Tsai

    2006-01-01

    Full Text Available In earlier studies, we implemented the Multiplicative Algebraic Reconstruction Technique (MART to reconstruct two-dimensional ionospheric structures from measured TECs through the receptions of the GPS-to-LEO signals and/or the NNSS-to-ground beacon signals. To examine the accuracy of the reconstructed image we need ground-based validation systems which are difficult to obtain. However, such comparative investigation is needed if one aims to improve tomography inverse techniques and algorithms. In this study, we propose a simulation scheme to carry out this task. We first simulate the GPS-to-LEO TEC measurements through the IRI model by integrating electron densities along the ¡§straight¡¨ ray occultation paths between the GPS and LEO satellite obtained from the real GPS/MET experiment. Contiguous tomographic images are then derived by the MART algorithm within the ¡§reference¡¨ GPS/MET experiment. They are verified by comparison with the ¡§true¡¨ IRI-modelled ionosphere. We show that simulation/reference results can be used to find the optimal reconstruction strategy in space-based ionospheric tomography.

  9. Moving objects management models, techniques and applications

    CERN Document Server

    Meng, Xiaofeng; Xu, Jiajie

    2014-01-01

    This book describes the topics of moving objects modeling and location tracking, indexing and querying, clustering, location uncertainty, traffic aware navigation and privacy issues as well as the application to intelligent transportation systems.

  10. Achtergronden bij de berekening van vermesting van bodem en grondwater voor de 5e Milieuverkenning met het model STONE

    NARCIS (Netherlands)

    Overbeek GBJ; Grinsven JJM; Roelsma J; Groenendijk P; Egmond PM van; Beusen AHW; LBG; LAE; CIM

    2001-01-01

    Ten behoeve van de vijfde milieuverkenning is de voorgenomen Integrale Aanpak van de Mestproblematiek van de Nederlandse regering doorgerekend met het model STONE naar landsdekkende milieueffecten op bodem, bovenste grondwater en belasting van het regionale oppervlaktewater voor de periode

  11. In vivo detection of c-MET expression in a rat hepatocarcinogenesis model using molecularly targeted magnetic resonance imaging.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Tesiram, Yasvir A; Abbott, Andrew; Saunders, Debbie; Blindauer, Rebecca; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2007-01-01

    The multifunctional growth factor scatter factor/hepatocyte growth factor and its tyrosine kinase receptor, c-MET, have been implicated in the genesis and malignant progression of numerous human malignancies, including hepatocellular carcinomas. The incidence of hepatocellular carcinomas in the United States has increased noticeably over the past two decades and is listed as the fifth major cancer in men worldwide. In this study, we used a choline-deficient l-amino acid (CDAA)-defined rat hepatocarcinogenesis model to visualize increased in vivo expression of the c-MET antigen in neoplastic lesion formation with the use of a super paramagnetic iron oxide (SPIO)-anti-c-MET molecularly targeted magnetic resonance imaging (MRI) contrast agent. SPIO-anti-c-MET was used for the first time to detect overexpression of c-MET in neoplastic nodules and tumors within the livers of CDAA-treated rats, as determined by a decrease in MRI signal intensity and a decrease in regional T(2) values. Specificity for the binding of the molecularly targeted anti-c-MET contrast agent was determined using rat hepatoma (H4-II-E-C3) cell cultures and immunofluorescence microscopic imaging of the targeting agents within neoplastic liver tissue 1 to 2 hours following intravenous administration of SPIO-anti-c-MET and MRI investigation. This method has the ability to visualize in vivo the overexpression of c-MET at early developmental stages of tumor formation.

  12. In Vivo Detection of c-MET Expression in a Rat Hepatocarcinogenesis Model Using Molecularly Targeted Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Rheal A. Towner

    2007-01-01

    Full Text Available The multifunctional growth factor scatter factor/hepatocyte growth factor and its tyrosine kinase receptor, c-MET, have been implicated in the genesis and malignant progression of numerous human malignancies, including hepatocellular carcinomas. The incidence of hepatocellular carcinomas in the United States has increased noticeably over the past two decades and is listed as the fifth major cancer in men worldwide. In this study, we used a choline-deficient l-amino acid (CDAA-defined rat hepatocarcinogenesis model to visualize increased in vivo expression of the c-MET antigen in neoplastic lesion formation with the use of a super paramagnetic iron oxide (SPIO–anti-c-MET molecularly targeted magnetic resonance imaging (MRI contrast agent. SPIO–anti-c-MET was used for the first time to detect overexpression of c-MET in neoplastic nodules and tumors within the livers of CDAA-treated rats, as determined by a decrease in MRI signal intensity and a decrease in regional T2 values. Specificity for the binding of the molecularly targeted anti-c-MET contrast agent was determined using rat hepatoma (H4-II-E-C3 cell cultures and immunofluorescence microscopic imaging of the targeting agents within neoplastic liver tissue 1 to 2 hours following intravenous administration of SPIO–anti-c-MET and MRI investigation. This method has the ability to visualize in vivo the overexpression of c-MET at early developmental stages of tumor formation.

  13. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Jun, H J; Acquaviva, J; Chi, D; Lessard, J; Zhu, H; Woolfenden, S; Bronson, R T; Pfannl, R; White, F; Housman, D E; Iyer, L; Whittaker, C A; Boskovitz, A; Raval, A; Charest, A

    2012-06-21

    Glioblastoma multiforme (GBM) is an aggressive brain tumor for which there is no cure. Overexpression of wild-type epidermal growth factor receptor (EGFR) and loss of the tumor suppressor genes Ink4a/Arf and PTEN are salient features of this deadly cancer. Surprisingly, targeted inhibition of EGFR has been clinically disappointing, demonstrating an innate ability for GBM to develop resistance. Efforts at modeling GBM in mice using wild-type EGFR have proven unsuccessful to date, hampering endeavors at understanding molecular mechanisms of therapeutic resistance. Here, we describe a unique genetically engineered mouse model of EGFR-driven gliomagenesis that uses a somatic conditional overexpression and chronic activation of wild-type EGFR in cooperation with deletions in the Ink4a/Arf and PTEN genes in adult brains. Using this model, we establish that chronic activation of wild-type EGFR with a ligand is necessary for generating tumors with histopathological and molecular characteristics of GBMs. We show that these GBMs are resistant to EGFR kinase inhibition and we define this resistance molecularly. Inhibition of EGFR kinase activity using tyrosine kinase inhibitors in GBM tumor cells generates a cytostatic response characterized by a cell cycle arrest, which is accompanied by a substantial change in global gene expression levels. We demonstrate that an important component of this pattern is the transcriptional activation of the MET receptor tyrosine kinase and that pharmacological inhibition of MET overcomes the resistance to EGFR inhibition in these cells. These findings provide important new insights into mechanisms of resistance to EGFR inhibition and suggest that inhibition of multiple targets will be necessary to provide therapeutic benefit for GBM patients.

  14. Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions

    Science.gov (United States)

    Acero, Juan A.; Arrizabalaga, Jon

    2018-01-01

    Urban areas are known to modify meteorological variables producing important differences in small spatial scales (i.e. microscale). These affect human thermal comfort conditions and the dispersion of pollutants, especially those emitted inside the urban area, which finally influence quality of life and the use of public open spaces. In this study, the diurnal evolution of meteorological variables measured in four urban spaces is compared with the results provided by ENVI-met (v 4.0). Measurements were carried out during 3 days with different meteorological conditions in Bilbao in the north of the Iberian Peninsula. The evaluation of the model accuracy (i.e. the degree to which modelled values approach measured values) was carried out with several quantitative difference metrics. The results for air temperature and humidity show a good agreement of measured and modelled values independently of the regional meteorological conditions. However, in the case of mean radiant temperature and wind speed, relevant differences are encountered highlighting the limitation of the model to estimate these meteorological variables precisely during diurnal cycles, in the considered evaluation conditions (sites and weather).

  15. Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    S. J. Abel

    2010-11-01

    Full Text Available Observations in the subtropical southeast Pacific obtained during the VOCALS-REx field experiment are used to evaluate the representation of stratocumulus cloud in the Met Office forecast model and to identify key areas where model biases exist. Marked variations in the large scale structure of the cloud field were observed during the experiment on both day-to-day and on diurnal timescales. In the remote maritime region the model is shown to have a good representation of synoptically induced variability in both cloud cover and marine boundary layer depth. Satellite observations show a strong diurnal cycle in cloud fraction and liquid water path in the stratocumulus with enhanced clearances of the cloud deck along the Chilean and Peruvian coasts on certain days. The model accurately simulates the phase of the diurnal cycle but is unable to capture the coastal clearing of cloud. Observations along the 20° S latitude line show a gradual increase in the depth of the boundary layer away from the coast. This trend is well captured by the model (typical low bias of 200 m although significant errors exist at the coast where the model marine boundary layer is too shallow and moist. Drizzle in the model responds to changes in liquid water path in a manner that is consistent with previous ship-borne observations in the region although the intensity of this drizzle is likely to be too high, particularly in the more polluted coastal region where higher cloud droplet number concentrations are typical. Another mode of variability in the cloud field that the model is unable to capture are regions of pockets of open cellular convection embedded in the overcast stratocumulus deck and an example of such a feature that was sampled during VOCALS-REx is shown.

  16. Cleaning and electrochemistry restoration of archaeological metalic objects | Limpieza y restauración electroquímica de objetos arqueológicos metálicos

    Directory of Open Access Journals (Sweden)

    Tomás España Guisolphe

    1985-12-01

    Full Text Available This paper shows how electrochemical methods can be applied to the cleaning and restoration of coins and metallic objects proceeding from archaeological finds. A description is given of the electrochemical methods used and a comparison with the usual cleaning methods is also made. | El presente estudio pone de manifiesto la aplicabilidad de los métodos electroquímicos a la limpieza y restauración de monedas y piezas metálicas que proceden de yacimientos arqueológicos. Se hace una descripción de los métodos electroquímicos utilizados y una comparación con los métodos habituales de limpieza.

  17. Real time natural object modeling framework

    International Nuclear Information System (INIS)

    Rana, H.A.; Shamsuddin, S.M.; Sunar, M.H.

    2008-01-01

    CG (Computer Graphics) is a key technology for producing visual contents. Currently computer generated imagery techniques are being developed and applied, particularly in the field of virtual reality applications, film production, training and flight simulators, to provide total composition of realistic computer graphic images. Natural objects like clouds are an integral feature of the sky without them synthetic outdoor scenes seem unrealistic. Modeling and animating such objects is a difficult task. Most systems are difficult to use, as they require adjustment of numerous, complex parameters and are non-interactive. This paper presents an intuitive, interactive system to artistically model, animate, and render visually convincing clouds using modern graphics hardware. A high-level interface models clouds through the visual use of cubes. Clouds are rendered by making use of hardware accelerated API -OpenGL. The resulting interactive design and rendering system produces perceptually convincing cloud models that can be used in any interactive system. (author)

  18. The IRMIS object model and services API

    International Nuclear Information System (INIS)

    Saunders, C.; Dohan, D.A.; Arnold, N.D.

    2005-01-01

    The relational model developed for the Integrated Relational Model of Installed Systems (IRMIS) toolkit has been successfully used to capture the Advanced Photon Source (APS) control system software (EPICS process variables and their definitions). The relational tables are populated by a crawler script that parses each Input/Output Controller (IOC) start-up file when an IOC reboot is detected. User interaction is provided by a Java Swing application that acts as a desktop for viewing the process variable information. Mapping between the display objects and the relational tables was carried out with the Hibernate Object Relational Modeling (ORM) framework. Work is well underway at the APS to extend the relational modeling to include control system hardware. For this work, due in part to the complex user interaction required, the primary application development environment has shifted from the relational database view to the object oriented (Java) perspective. With this approach, the business logic is executed in Java rather than in SQL stored procedures. This paper describes the object model used to represent control system software, hardware, and interconnects in IRMIS. We also describe the services API used to encapsulate the required behaviors for creating and maintaining the complex data. In addition to the core schema and object model, many important concepts in IRMIS are captured by the services API. IRMIS is an ambitious collaborative effort for defining and developing a relational database and associated applications to comprehensively document the large and complex EPICS-based control systems of today's accelerators. The documentation effort includes process variables, control system hardware, and interconnections. The approach could also be used to document all components of the accelerator, including mechanical, vacuum, power supplies, etc. One key aspect of IRMIS is that it is a documentation framework, not a design and development tool. We do not

  19. Met UM Upper-tropospheric summer jet teleconnections: A model assessment

    Science.gov (United States)

    Joao Carvalho, Maria; Rodriguez, Jose; Milton, Sean

    2017-04-01

    The upper tropospheric jet stream has been documented to act as a waveguide (Hoskins and Ambrizzi, 1993) and supporting quasi-stationary Rossby waves (Schubert et al. 2011). These have been associated with remote effects in surface level weather such as rainfall anomalies in the East Asian Summer Monsoon as well as extreme temperature events. The goal of this work was to analyse the intraseasonal to interannual upper level boreal summer jet variability and its coupling with low level atmospheric dynamics within the Met Office Unified Model using climate runs. Using the Wallace and Gutzler (1981) proposed approach to find teleconnection patterns on the 200 hPa level wind, lead-lag correlation and Empirical Orthogonal Function analysis on the upper-level jet and relating the results with surface weather variables as well as dynamical variables, it was found that the model presents too strong jet variability, particularly in the tropical region and. In addition, the model presents high teleconnectivity hotspots with higher importance in areas such as the Mediterranean and Caspian Sea which are important source areas for Rossby Waves. Further to this, the model was found to produce an area of teleconnectivity between the tropical Atlantic and western Africa which is not observed in the reanalysis but coexists with long lasting precipitation biases. As comparison for the model results, ERA-Interim circulation and wind data and the TRMM precipitation dataset were used. In order to assess the relative importance of relevant model parameters in the biases and process errors, work is currently underway using perturbed model parameter ensembles.

  20. Critically Important Object Security System Element Model

    Directory of Open Access Journals (Sweden)

    I. V. Khomyackov

    2012-03-01

    Full Text Available A stochastic model of critically important object security system element has been developed. The model includes mathematical description of the security system element properties and external influences. The state evolution of the security system element is described by the semi-Markov process with finite states number, the semi-Markov matrix and the initial semi-Markov process states probabilities distribution. External influences are set with the intensity of the Poisson thread.

  1. Object Oriented Modelling and Dynamical Simulation

    DEFF Research Database (Denmark)

    Wagner, Falko Jens; Poulsen, Mikael Zebbelin

    1998-01-01

    This report with appendix describes the work done in master project at DTU.The goal of the project was to develop a concept for simulation of dynamical systems based on object oriented methods.The result was a library of C++-classes, for use when both building componentbased models and when...

  2. An object model for beamline descriptions

    International Nuclear Information System (INIS)

    Hill, B.W.; Martono, H.; Gillespie, J.S.

    1997-01-01

    Translation of beamline model descriptions between different accelerator codes presents a unique challenge due to the different representations used for various elements and subsystems. These differences range from simple units conversions to more complex translations involving multiple beamline components. A representation of basic accelerator components is being developed in order to define a meta-structure from which beamline models, in different codes, can be described and to facilitate the translation of models between these codes. Sublines of basic components will be used to represent more complex beamline descriptions and bridge the gap between codes which may represent a beamline element as a single entity, and those which use multiple elements to describe the same physical device. A C++ object model for supporting this beamline description and a grammar for describing beamlines in terms of these components is being developed. The object model will support a common graphic user interface and translation filters for representing native beamline descriptions for a variety of accelerator codes. An overview of our work on the object model for beamline descriptions is presented here. copyright 1997 American Institute of Physics

  3. Modeling business objects with XML schema

    CERN Document Server

    Daum, Berthold

    2003-01-01

    XML Schema is the new language standard from the W3C and the new foundation for defining data in Web-based systems. There is a wealth of information available about Schemas but very little understanding of how to use this highly formal specification for creating documents. Grasping the power of Schemas means going back to the basics of documents themselves, and the semantic rules, or grammars, that define them. Written for schema designers, system architects, programmers, and document authors, Modeling Business Objects with XML Schema guides you through understanding Schemas from the basic concepts, type systems, type derivation, inheritance, namespace handling, through advanced concepts in schema design.*Reviews basic XML syntax and the Schema recommendation in detail.*Builds a knowledge base model step by step (about jazz music) that is used throughout the book.*Discusses Schema design in large environments, best practice design patterns, and Schema''s relation to object-oriented concepts.

  4. Information model of the 'Ukryttya' object

    International Nuclear Information System (INIS)

    Batij, E.V.; Ermolenko, A.A.; Kotlyarov, V.T.

    2008-01-01

    There were described the building principles and content of the 'Ukryttya' object information model that has been developed at the Institute for Safety Problems of NPP. Using the client/server architecture in this system (the simultaneous access of the many users), Autodesk Map Guide and ASP.NET technologies allowed avoiding the typical defects of the 'stand-alone desktop' information systems (that aimed for a single user)

  5. Achtergronden bij de berekening van vermesting van bodem en grondwater voor de 5e milieuverkenning met het model STONE

    NARCIS (Netherlands)

    Overbeek, G.B.J.; Grinsven, van J.J.M.; Roelsma, J.; Groenendijk, P.; Egmond, van P.M.; Beusen, A.H.W.

    2001-01-01

    Ten behoeve van de vijfde milieuverkenning is de voorgenoomen Integrale Aanpak van de mestproblematiek van de Nederlandse regering doorgerekend met het model STONE. Er is gekeken naar landsdekkende milieueffecten op bodemm, bovenste grondwater en belasting van het regionale oppervlaktewater vor de

  6. The BDNF Val66Met Polymorphism Interacts with Maternal Parenting Influencing Adolescent Depressive Symptoms: Evidence of Differential Susceptibility Model.

    Science.gov (United States)

    Zhang, Leilei; Li, Zhi; Chen, Jie; Li, Xinying; Zhang, Jianxin; Belsky, Jay

    2016-03-01

    Although depressive symptoms are common during adolescence, little research has examined gene-environment interaction on youth depression. This study chose the brain-derived neurotrophic factor (BDNF) gene, tested the interaction between a functional polymorphism resulting amino acid substitution of valine (Val) to methionine (Met) in the proBDNF protein at codon 66 (Val66Met), and maternal parenting on youth depressive symptoms in a sample of 780 community adolescents of Chinese Han ethnicity (aged 11-17, M = 13.6, 51.3 % females). Participants reported their depressive symptoms and perceived maternal parenting. Results indicated the BDNF Val66Met polymorphism significantly moderated the influence of maternal warmth-reasoning, but not harshness-hostility, on youth depressive symptoms. Confirmatory model evaluation indicated that the interaction effect involving warmth-reasoning conformed to the differential-susceptibility rather than diathesis-stress model of person-X-environment interaction. Thus, Val carriers experienced less depressive symptoms than Met homozygotes when mothering was more positive but more symptoms when mothering was less positive. The findings provided evidence in support of the differential susceptibility hypothesis of youth depressive symptoms and shed light on the importance of examining the gene-environment interaction from a developmental perspective.

  7. Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area

    Directory of Open Access Journals (Sweden)

    Zhixin Liu

    2018-05-01

    Full Text Available Urban trees can significantly improve the outdoor thermal environment, especially in subtropical zones. However, due to the lack of fundamental evaluations of numerical simulation models, design and modification strategies for optimizing the thermal environment in subtropical hot-humid climate zones cannot be proposed accurately. To resolve this issue, this study investigated the physiological parameters (leaf surface temperature and vapor flux and thermal effects (solar radiation, air temperature, and humidity of four common tree species (Michelia alba, Mangifera indica, Ficus microcarpa, and Bauhinia blakeana in both spring and summer in Guangzhou, China. A comprehensive comparison of the observed and modeled data from ENVI-met (v4.2 Science, a three-dimensional microclimate model was performed. The results show that the most fundamental weakness of ENVI-met is the limitation of input solar radiation, which cannot be input hourly in the current version and may impact the thermal environment in simulation. For the tree model, the discrepancy between modeled and observed microclimate parameters was acceptable. However, for the physiological parameters, ENVI-met tended to overestimate the leaf surface temperature and underestimate the vapor flux, especially at midday in summer. The simplified calculation of the tree model may be one of the main reasons. Furthermore, the thermal effect of trees, meaning the differences between nearby treeless sites and shaded areas, were all underestimated in ENVI-met for each microclimate variable. This study shows that the tree model is suitable in subtropical hot-humid climates, but also needs some improvement.

  8. Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system

    Directory of Open Access Journals (Sweden)

    H. T. Hewitt

    2011-04-01

    Full Text Available This paper describes the development of a technically robust climate modelling system, HadGEM3, which couples the Met Office Unified Model atmosphere component, the NEMO ocean model and the Los Alamos sea ice model (CICE using the OASIS coupler. Details of the coupling and technical solutions of the physical model (HadGEM3-AO are documented, in addition to a description of the configurations of the individual submodels. The paper demonstrates that the implementation of the model has resulted in accurate conservation of heat and freshwater across the model components. The model performance in early versions of this climate model is briefly described to demonstrate that the results are scientifically credible. HadGEM3-AO is the basis for a number of modelling efforts outside of the Met Office, both within the UK and internationally. This documentation of the HadGEM3-AO system provides a detailed reference for developers of HadGEM3-based climate configurations.

  9. Met kerse op met -konstruksies 1 : 'n Verwysingspuntperspektief ...

    African Journals Online (AJOL)

    Met kerse op met-konstruksies1: 'n Verwysingspuntperspektief. Johanna Messerschmidt, Luna Bergh. Abstract. This article analyses the usage of the Afrikaans preposition met ('with'). The analysis is done within the framework of Cognitive Linguistics and more specifically within the model proposed by Langacker (1993) ...

  10. Olive phenolics as c-Met inhibitors: (--Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Mohamed R Akl

    Full Text Available Dysregulation of the Hepatocyte growth factor (HGF/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT, angiogenesis, invasion, and metastasis. (--Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (--oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (--oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (--oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (--oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (--oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (--oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.

  11. Object-oriented biomedical system modelling--the language.

    Science.gov (United States)

    Hakman, M; Groth, T

    1999-11-01

    The paper describes a new object-oriented biomedical continuous system modelling language (OOBSML). It is fully object-oriented and supports model inheritance, encapsulation, and model component instantiation and behaviour polymorphism. Besides the traditional differential and algebraic equation expressions the language includes also formal expressions for documenting models and defining model quantity types and quantity units. It supports explicit definition of model input-, output- and state quantities, model components and component connections. The OOBSML model compiler produces self-contained, independent, executable model components that can be instantiated and used within other OOBSML models and/or stored within model and model component libraries. In this way complex models can be structured as multilevel, multi-component model hierarchies. Technically the model components produced by the OOBSML compiler are executable computer code objects based on distributed object and object request broker technology. This paper includes both the language tutorial and the formal language syntax and semantic description.

  12. Modelling object typicality in description logics

    CSIR Research Space (South Africa)

    Britz, K

    2009-12-01

    Full Text Available in the context under consideration, than those lower down. For any given class C, we assume that all objects in the appli- cation domain that are in (the interpretation of) C are more typical of C than those not in C. This is a technical construction which... to be modular partial orders, i.e. reflexive, transitive, anti- symmetric relations such that, for all a, b, c in ∆I , if a and b are incomparable and a is strictly below c, then b is also strictly below c. Modular partial orders have the effect...

  13. Using Model to Plan of Strategic Objectives

    OpenAIRE

    Terezie Bartusková; Jitka Baňařová; Zuzana Kusněřová

    2012-01-01

    Importance of strategic planning is unquestionable. However, the practical implementation of a strategic plan faces too many obstacles. The aim of the article is explained the importance of strategic planning and to find how companies in Moravian-Silesian Region deal with strategic planning, and to introduce the model, which helps to set strategic goals in financial indicators area. This model should be part of the whole process of strategic planning and can be use to predict the future value...

  14. A model of objective weighting for EIA.

    Science.gov (United States)

    Ying, L G; Liu, Y C

    1995-06-01

    In spite of progress achieved in the research of environmental impact assessment (EIA), the problem of weight distribution for a set of parameters has not as yet, been properly solved. This paper presents an approach of objective weighting by using a procedure of P ij principal component-factor analysis (P ij PCFA), which suits specifically those parameters measured directly by physical scales. The P ij PCFA weighting procedure reforms the conventional weighting practice in two aspects: first, the expert subjective judgment is replaced by the standardized measure P ij as the original input of weight processing and, secondly, the principal component-factor analysis is introduced to approach the environmental parameters for their respective contributions to the totality of the regional ecosystem. Not only is the P ij PCFA weighting logical in theoretical reasoning, it also suits practically all levels of professional routines in natural environmental assessment and impact analysis. Having been assured of objectivity and accuracy in the EIA case study of the Chuansha County in Shanghai, China, the P ij PCFA weighting procedure has the potential to be applied in other geographical fields that need assigning weights to parameters that are measured by physical scales.

  15. Annihilation model of quasi-stellar objects

    International Nuclear Information System (INIS)

    Alfven, H.

    1979-01-01

    The possibility that annihilation is a major source of energy in cosmic physics is discussed. Since Klein suggested that the Universe might be matter-antimatter symmetric over two decades ago, there have been a significant number of papers developing the consequences of this view. These, however, have been largely ignored in the general literature. There have also been a number of papers claiming to prove that there cannot be antimatter anywhere in the observable Universe. In the first part of this paper an assessment of the differing views is given, and it is shown that none of the arguments against antimatter is convincing. The existence of antimatter is not in conflict with any observational fact. The reason for the negative attitude towards the existence of antimatter seems to be that this view is in conflict with a number of speculative but 'generally accepted' theories. However, recent magnetospheric and heliospheric research, including in situ measurements of cosmic plasmas, is now drastically changing cosmic plasma physics in a way that leads to growing scepticism about quite a few of the speculative theories. An attempt is made to develop a simple phenomenological model of QSOs based on star-antistar collisions. This model can account for such basic observational properties as the acceleration to very large (non-cosmological) velocities, the existence of broad emission lines, and at the same time narrow absorption lines with different redshifts. The absence of blueshifts is also explained. The model predicts that relatively young QSOs should be at cosmological distances whereas the old ones may very well be much closer to us than indicated by their redshift. (Auth.)

  16. Object interaction competence model v. 2.0

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Schulte, C.

    2013-01-01

    Teaching and learning object oriented programming has to take into account the specific object oriented characteristics of program execution, namely the interaction of objects during runtime. Prior to the research reported in this article, we have developed a competence model for object interaction...

  17. CASTOR detector. Model, objectives and simulated performance

    International Nuclear Information System (INIS)

    Angelis, A. L. S.; Mavromanolakis, G.; Panagiotou, A. D.; Aslanoglou, X.; Nicolis, N.; Lobanov, M.; Erine, S.; Kharlov, Y. V.; Bogolyubsky, M. Y.; Kurepin, A. B.; Chileev, K.; Wlodarczyk, Z.

    2001-01-01

    It is presented a phenomenological model describing the formation and evolution of a Centauro fireball in the baryon-rich region in nucleus-nucleus interactions in the upper atmosphere and at the LHC. The small particle multiplicity and imbalance of electromagnetic and hadronic content characterizing a Centauro event and also the strongly penetrating particles (assumed to be strangelets) frequently accompanying them can be naturally explained. It is described the CASTOR calorimeter, a sub detector of the ALICE experiment dedicated to the search for Centauro in the very forward, baryon-rich region of central Pb+Pb collisions at the LHC. The basic characteristics and simulated performance of the calorimeter are presented

  18. Technical Note: Harmonizing met-ocean model data via standard web services within small research groups

    Science.gov (United States)

    Signell, Richard; Camossi, E.

    2016-01-01

    Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.

  19. More with thermal energy storage. Report 5. Modelling systems. Effects of thermal energy storage systems on the environment. Modelling individual projects. Final report; Meer met bodemenergie. Rapport 5. Modellering systemen. Effecten van bodemenergiesystemen op hun omgeving. Modellering individuele projecten. Eindrapport

    Energy Technology Data Exchange (ETDEWEB)

    Drijver, B.; De Jonge, H. [IF Technology, Arnhem (Netherlands)

    2012-03-30

    The project More With Thermal Energy Storage (MMB, abbreviated in Dutch) focuses on knowledge gaps and potential opportunities regarding open systems. The main questions to be answered are: (1) What effects (hydrological, thermal, microbiological and chemical) occur in the soil system by application of thermal energy storage; (2) Which technical options are available for a sustainable integration of thermal energy storage in the water and energy chain?; (3) Is it possible to achieve multiple objectives by using smart combinations? The project is organized in different work packages. In work package 2, the effects of individual and collective thermal energy storage storage systems on subsoils and the environment are determined. In work package 3 the opportunities for thermal energy storage and soil remediation are examined, while in work package 4 the focus is on new sustainable combinations of heat and cold storage. Work package 1 is the umbrella part where communication and policy of and participation in MMB are the main subjects. This report describes the results of the modeling of three existing thermal energy storage projects in the framework of the MMB project. The aim of the modeling of these projects is to gain insight in the reliability of the predicted hydrological and thermal effects, the causes of any deviations and improvements that are possible to improve the reliability of the predictions [Dutch] Het project Meer Met Bodemenergie (MMB) richt zich op het invullen van kennisleemtes en mogelijke kansen ten aanzien van open systemen. De belangrijkste vragen waarop het onderzoeksprogramma MMB antwoord geeft zijn: (1) Welke effecten (hydrologisch, thermisch, microbiologisch en chemisch) treden op in het bodemsysteem bij toepassing van bodemenergie?; (2) Welke technische mogelijkheden zijn er voor het duurzaam inpassen van bodem-energie in de water- en energieketen?; (3) Is het mogelijk om meerdere doelstellingen tegelijk te verwezenlijken door slimme

  20. THE ‘SOCIAL MODEL OF DISABILITY’ MET A NARRATIVE OF (INCREDULITY: A REVIEW

    Directory of Open Access Journals (Sweden)

    M Miles

    2011-05-01

    Full Text Available The article reviews components and recent discussion of the ‘Social Model of Disability’, with special focus on two books, Disability Rights and Wrongs by Tom Shakespeare, and The Social Model: Europe and the Majority World edited by Colin Barnes and Geof Mercer. The ‘Social Model’ calls for close and sceptical scrutiny, as it has become one of the most influential metanarratives in campaigns and publications of the ‘Disability Movement’, while tending to overlook the complexities experienced by many disabled people and their relatives. Some components of a Social Model appear in historical literature of Asia and the Middle East, lending credibility to its ongoing life as an interesting idea. Yet current anglophone advocacy of the model makes assumptions of universality that are questionable in the socio-economic situations experienced by much of the global population having disabilities. A calmer and better informed discussion of the model’s merits and flaws would contribute to greater understanding of global disability.DOI 10.5463/DCID.v22i1.14  

  1. A unified computational model of the development of object unity, object permanence, and occluded object trajectory perception.

    Science.gov (United States)

    Franz, A; Triesch, J

    2010-12-01

    The perception of the unity of objects, their permanence when out of sight, and the ability to perceive continuous object trajectories even during occlusion belong to the first and most important capacities that infants have to acquire. Despite much research a unified model of the development of these abilities is still missing. Here we make an attempt to provide such a unified model. We present a recurrent artificial neural network that learns to predict the motion of stimuli occluding each other and that develops representations of occluded object parts. It represents completely occluded, moving objects for several time steps and successfully predicts their reappearance after occlusion. This framework allows us to account for a broad range of experimental data. Specifically, the model explains how the perception of object unity develops, the role of the width of the occluders, and it also accounts for differences between data for moving and stationary stimuli. We demonstrate that these abilities can be acquired by learning to predict the sensory input. The model makes specific predictions and provides a unifying framework that has the potential to be extended to other visual event categories. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Balance between calibration objectives in a conceptual hydrological model

    NARCIS (Netherlands)

    Booij, Martijn J.; Krol, Martinus S.

    2010-01-01

    Three different measures to determine the optimum balance between calibration objectives are compared: the combined rank method, parameter identifiability and model validation. Four objectives (water balance, hydrograph shape, high flows, low flows) are included in each measure. The contributions of

  3. Field Model: An Object-Oriented Data Model for Fields

    Science.gov (United States)

    Moran, Patrick J.

    2001-01-01

    We present an extensible, object-oriented data model designed for field data entitled Field Model (FM). FM objects can represent a wide variety of fields, including fields of arbitrary dimension and node type. FM can also handle time-series data. FM achieves generality through carefully selected topological primitives and through an implementation that leverages the potential of templated C++. FM supports fields where the nodes values are paired with any cell type. Thus FM can represent data where the field nodes are paired with the vertices ("vertex-centered" data), fields where the nodes are paired with the D-dimensional cells in R(sup D) (often called "cell-centered" data), as well as fields where nodes are paired with edges or other cell types. FM is designed to effectively handle very large data sets; in particular FM employs a demand-driven evaluation strategy that works especially well with large field data. Finally, the interfaces developed for FM have the potential to effectively abstract field data based on adaptive meshes. We present initial results with a triangular adaptive grid in R(sup 2) and discuss how the same design abstractions would work equally well with other adaptive-grid variations, including meshes in R(sup 3).

  4. Conceptual Modeling of Events as Information Objects and Change Agents

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    as a totality of an information object and a change agent. When an event is modeled as an information object it is comparable to an entity that exists only at a specific point in time. It has attributes and can be used for querying and specification of constraints. When an event is modeled as a change agent...... it is comparable to an executable transaction schema. Finally, we briefly compare our approach to object-oriented approaches based on encapsulated objects....

  5. Objectivity

    CERN Document Server

    Daston, Lorraine

    2010-01-01

    Objectivity has a history, and it is full of surprises. In Objectivity, Lorraine Daston and Peter Galison chart the emergence of objectivity in the mid-nineteenth-century sciences--and show how the concept differs from its alternatives, truth-to-nature and trained judgment. This is a story of lofty epistemic ideals fused with workaday practices in the making of scientific images. From the eighteenth through the early twenty-first centuries, the images that reveal the deepest commitments of the empirical sciences--from anatomy to crystallography--are those featured in scientific atlases, the compendia that teach practitioners what is worth looking at and how to look at it. Galison and Daston use atlas images to uncover a hidden history of scientific objectivity and its rivals. Whether an atlas maker idealizes an image to capture the essentials in the name of truth-to-nature or refuses to erase even the most incidental detail in the name of objectivity or highlights patterns in the name of trained judgment is a...

  6. Object Oriented Modeling : A method for combining model and software development

    NARCIS (Netherlands)

    Van Lelyveld, W.

    2010-01-01

    When requirements for a new model cannot be met by available modeling software, new software can be developed for a specific model. Methods for the development of both model and software exist, but a method for combined development has not been found. A compatible way of thinking is required to

  7. Сontrol systems using mathematical models of technological objects ...

    African Journals Online (AJOL)

    Сontrol systems using mathematical models of technological objects in the control loop. ... Journal of Fundamental and Applied Sciences ... Such mathematical models make it possible to specify the optimal operating modes of the considered ...

  8. Oscillating shells: A model for a variable cosmic object

    OpenAIRE

    Nunez, Dario

    1997-01-01

    A model for a possible variable cosmic object is presented. The model consists of a massive shell surrounding a compact object. The gravitational and self-gravitational forces tend to collapse the shell, but the internal tangential stresses oppose the collapse. The combined action of the two types of forces is studied and several cases are presented. In particular, we investigate the spherically symmetric case in which the shell oscillates radially around a central compact object.

  9. Apricot - An Object-Oriented Modeling Language for Hybrid Systems

    OpenAIRE

    Fang, Huixing; Zhu, Huibiao; Shi, Jianqi

    2013-01-01

    We propose Apricot as an object-oriented language for modeling hybrid systems. The language combines the features in domain specific language and object-oriented language, that fills the gap between design and implementation, as a result, we put forward the modeling language with simple and distinct syntax, structure and semantics. In addition, we introduce the concept of design by convention into Apricot.As the characteristic of object-oriented and the component architecture in Apricot, we c...

  10. Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met® Climate Model

    Directory of Open Access Journals (Sweden)

    Dario Ambrosini

    2014-10-01

    Full Text Available Urban morphology and increasing building density play a key role in the overall use of energy and promotion of environmental sustainability. The urban environment causes a local increase of temperature, a phenomenon known as Urban Heat Island (UHI. The purpose of this work is the study of the possible formation of an UHI and the evaluation of its magnitude, in the context of a small city, carried out with the ENVI-met® software. For this purpose, a simulation was needed, and this simulation is preparatory for a monitoring campaign on site, which will be held in the immediate future. ENVI-met® simulates the temporal evolution of several thermodynamics parameters on a micro-scale range, creating a 3D, non-hydrostatic model of the interactions between building-atmosphere-vegetation. The weather conditions applied simulate a typical Italian summer heat wave. Three different case-studies have been analyzed: Base Case, Cool Case and Green Case. Analysis of the actual state in the Base Case shows how even in an area with average building density, such as the old town center of a small city, fully developed UHI may rise with strong thermal gradients between built areas and open zones with plenty of vegetation. These gradients arise in a really tiny space (few hundreds of meters, showing that the influence of urban geometry can be decisive in the characterization of local microclimate. Simulations, carried out considering the application of green or cool roofs, showed small relevant effects as they become evident only in large areas heavily built up (metropolis subject to more intense climate conditions.

  11. An object-oriented approach to energy-economic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wise, M.A.; Fox, J.A.; Sands, R.D.

    1993-12-01

    In this paper, the authors discuss the experiences in creating an object-oriented economic model of the U.S. energy and agriculture markets. After a discussion of some central concepts, they provide an overview of the model, focusing on the methodology of designing an object-oriented class hierarchy specification based on standard microeconomic production functions. The evolution of the model from the class definition stage to programming it in C++, a standard object-oriented programming language, will be detailed. The authors then discuss the main differences between writing the object-oriented program versus a procedure-oriented program of the same model. Finally, they conclude with a discussion of the advantages and limitations of the object-oriented approach based on the experience in building energy-economic models with procedure-oriented approaches and languages.

  12. An object-based visual attention model for robotic applications.

    Science.gov (United States)

    Yu, Yuanlong; Mann, George K I; Gosine, Raymond G

    2010-10-01

    By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.

  13. Protein Nano-Object Integrator (ProNOI for generating atomic style objects for molecular modeling

    Directory of Open Access Journals (Sweden)

    Smith Nicholas

    2012-12-01

    Full Text Available Abstract Background With the progress of nanotechnology, one frequently has to model biological macromolecules simultaneously with nano-objects. However, the atomic structures of the nano objects are typically not available or they are solid state entities. Because of that, the researchers have to investigate such nano systems by generating models of the nano objects in a manner that the existing software be able to carry the simulations. In addition, it should allow generating composite objects with complex shape by combining basic geometrical figures and embedding biological macromolecules within the system. Results Here we report the Protein Nano-Object Integrator (ProNOI which allows for generating atomic-style geometrical objects with user desired shape and dimensions. Unlimited number of objects can be created and combined with biological macromolecules in Protein Data Bank (PDB format file. Once the objects are generated, the users can use sliders to manipulate their shape, dimension and absolute position. In addition, the software offers the option to charge the objects with either specified surface or volumetric charge density and to model them with user-desired dielectric constants. According to the user preference, the biological macromolecule atoms can be assigned charges and radii according to four different force fields: Amber, Charmm, OPLS and PARSE. The biological macromolecules and the atomic-style objects are exported as a position, charge and radius (PQR file, or if a default dielectric constant distribution is not selected, it is exported as a position, charge, radius and epsilon (PQRE file. As illustration of the capabilities of the ProNOI, we created a composite object in a shape of a robot, aptly named the Clemson Robot, whose parts are charged with various volumetric charge densities and holds the barnase-barstar protein complex in its hand. Conclusions The Protein Nano-Object Integrator (ProNOI is a convenient tool for

  14. Application of object modeling technique to medical image retrieval system

    International Nuclear Information System (INIS)

    Teshima, Fumiaki; Abe, Takeshi

    1993-01-01

    This report describes the results of discussions on the object-oriented analysis methodology, which is one of the object-oriented paradigms. In particular, we considered application of the object modeling technique (OMT) to the analysis of a medical image retrieval system. The object-oriented methodology places emphasis on the construction of an abstract model from real-world entities. The effectiveness of and future improvements to OMT are discussed from the standpoint of the system's expandability. These discussions have elucidated that the methodology is sufficiently well-organized and practical to be applied to commercial products, provided that it is applied to the appropriate problem domain. (author)

  15. A Bayesian alternative for multi-objective ecohydrological model specification

    Science.gov (United States)

    Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori

    2018-01-01

    Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior

  16. Modeling recall memory for emotional objects in Alzheimer's disease.

    Science.gov (United States)

    Sundstrøm, Martin

    2011-07-01

    To examine whether emotional memory (EM) of objects with self-reference in Alzheimer's disease (AD) can be modeled with binomial logistic regression in a free recall and an object recognition test to predict EM enhancement. Twenty patients with AD and twenty healthy controls were studied. Six objects (three presented as gifts) were shown to each participant. Ten minutes later, a free recall and a recognition test were applied. The recognition test had target-objects mixed with six similar distracter objects. Participants were asked to name any object in the recall test and identify each object in the recognition test as known or unknown. The total of gift objects recalled in AD patients (41.6%) was larger than neutral objects (13.3%) and a significant EM recall effect for gifts was found (Wilcoxon: p recall and recognition but showed no EM enhancement due to a ceiling effect. A logistic regression showed that likelihood of emotional recall memory can be modeled as a function of MMSE score (p Recall memory was enhanced in AD patients for emotional objects indicating that EM in mild to moderate AD although impaired can be provoked with strong emotional load. The logistic regression model suggests that EM declines with the progression of AD rather than disrupts and may be a useful tool for evaluating magnitude of emotional load.

  17. Sound Synthesis of Objects Swinging through Air Using Physical Models

    Directory of Open Access Journals (Sweden)

    Rod Selfridge

    2017-11-01

    Full Text Available A real-time physically-derived sound synthesis model is presented that replicates the sounds generated as an object swings through the air. Equations obtained from fluid dynamics are used to determine the sounds generated while exposing practical parameters for a user or game engine to vary. Listening tests reveal that for the majority of objects modelled, participants rated the sounds from our model as plausible as actual recordings. The sword sound effect performed worse than others, and it is speculated that one cause may be linked to the difference between expectations of a sound and the actual sound for a given object.

  18. On the effect of model parameters on forecast objects

    Science.gov (United States)

    Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott

    2018-04-01

    Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map. The field for some quantities generally consists of spatially coherent and disconnected objects. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.

  19. Dew Point modelling using GEP based multi objective optimization

    OpenAIRE

    Shroff, Siddharth; Dabhi, Vipul

    2013-01-01

    Different techniques are used to model the relationship between temperatures, dew point and relative humidity. Gene expression programming is capable of modelling complex realities with great accuracy, allowing at the same time, the extraction of knowledge from the evolved models compared to other learning algorithms. We aim to use Gene Expression Programming for modelling of dew point. Generally, accuracy of the model is the only objective used by selection mechanism of GEP. This will evolve...

  20. A New Transgenic Mouse Model of Heart Failure and Cardiac Cachexia Raised by Sustained Activation of Met Tyrosine Kinase in the Heart

    Directory of Open Access Journals (Sweden)

    Valentina Sala

    2016-01-01

    Full Text Available Among other diseases characterized by the onset of cachexia, congestive heart failure takes a place of relevance, considering the high prevalence of this pathology in most European countries and in the United States, and is undergoing a rapid increase in developing countries. Actually, only few models of cardiac cachexia exist. Difficulties in the recruitment and follow-up of clinical trials implicate that new reproducible and well-characterized animal models are pivotal in developing therapeutic strategies for cachexia. We generated a new model of cardiac cachexia: a transgenic mouse expressing Tpr-Met receptor, the activated form of c-Met receptor of hepatocyte growth factor, specifically in the heart. We showed that the cardiac-specific induction of Tpr-Met raises a cardiac hypertrophic remodelling, which progresses into concentric hypertrophy with concomitant increase in Gdf15 mRNA levels. Hypertrophy progresses to congestive heart failure with preserved ejection fraction, characterized by reduced body weight gain and food intake and skeletal muscle wasting. Prevention trial by suppressing Tpr-Met showed that loss of body weight could be prevented. Skeletal muscle wasting was also associated with altered gene expression profiling. We propose transgenic Tpr-Met mice as a new model of cardiac cachexia, which will constitute a powerful tool to understand such complex pathology and test new drugs/approaches at the preclinical level.

  1. The Game Object Model and expansive learning: Creation ...

    African Journals Online (AJOL)

    The Game Object Model and expansive learning: Creation, instantiation, ... The aim of the paper is to develop insights into the design, integration, evaluation and use of video games in learning and teaching. ... AJOL African Journals Online.

  2. Time-dependent inhomogeneous jet models for BL Lac objects

    Science.gov (United States)

    Marlowe, A. T.; Urry, C. M.; George, I. M.

    1992-05-01

    Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.

  3. A PDP model of the simultaneous perception of multiple objects

    Science.gov (United States)

    Henderson, Cynthia M.; McClelland, James L.

    2011-06-01

    Illusory conjunctions in normal and simultanagnosic subjects are two instances where the visual features of multiple objects are incorrectly 'bound' together. A connectionist model explores how multiple objects could be perceived correctly in normal subjects given sufficient time, but could give rise to illusory conjunctions with damage or time pressure. In this model, perception of two objects benefits from lateral connections between hidden layers modelling aspects of the ventral and dorsal visual pathways. As with simultanagnosia, simulations of dorsal lesions impair multi-object recognition. In contrast, a large ventral lesion has minimal effect on dorsal functioning, akin to dissociations between simple object manipulation (retained in visual form agnosia and semantic dementia) and object discrimination (impaired in these disorders) [Hodges, J.R., Bozeat, S., Lambon Ralph, M.A., Patterson, K., and Spatt, J. (2000), 'The Role of Conceptual Knowledge: Evidence from Semantic Dementia', Brain, 123, 1913-1925; Milner, A.D., and Goodale, M.A. (2006), The Visual Brain in Action (2nd ed.), New York: Oxford]. It is hoped that the functioning of this model might suggest potential processes underlying dorsal and ventral contributions to the correct perception of multiple objects.

  4. Fast Appearance Modeling for Automatic Primary Video Object Segmentation.

    Science.gov (United States)

    Yang, Jiong; Price, Brian; Shen, Xiaohui; Lin, Zhe; Yuan, Junsong

    2016-02-01

    Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.

  5. [Requirements imposed on model objects in microevolutionary investigations].

    Science.gov (United States)

    Mina, M V

    2015-01-01

    Extrapolation of results of investigations of a model object is justified only within the limits of a set of objects that have essential properties in common with the modal object. Which properties are essential depends on the aim of a study. Similarity of objects emerged in the process of their independent evolution does not prove similarity of ways and mechanisms of their evolution. If the objects differ in their essential properties then extrapolation of results of investigation of an object on another one is risky because it may lead to wrong decisions and, moreover, to the loss of interest to alternative hypotheses. Positions formulated above are considered with the reference to species flocks of fishes, large African Barbus in particular.

  6. MUSICA MetOp/IASI {H2O,δD} pair retrieval simulations for validating tropospheric moisture pathways in atmospheric models

    Science.gov (United States)

    Schneider, Matthias; Borger, Christian; Wiegele, Andreas; Hase, Frank; García, Omaira E.; Sepúlveda, Eliezer; Werner, Martin

    2017-02-01

    The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) has shown that the sensor IASI aboard the satellite MetOp can measure the free tropospheric {H2O,δD} pair distribution twice per day on a quasi-global scale. Such data are very promising for investigating tropospheric moisture pathways, however, the complex data characteristics compromise their usage in the context of model evaluation studies. Here we present a tool that allows for simulating MUSICA MetOp/IASI {H2O,δD} pair remote sensing data for a given model atmosphere, thereby creating model data that have the remote sensing data characteristics assimilated. This model data can then be compared to the MUSICA data. The retrieval simulation method is based on the physical principles of radiative transfer and we show that the uncertainty of the simulations is within the uncertainty of the MUSICA MetOp/IASI products, i.e. the retrieval simulations are reliable enough. We demonstrate the working principle of the simulator by applying it to ECHAM5-wiso model data. The few case studies clearly reveal the large potential of the MUSICA MetOp/IASI {H2O,δD} data pairs for evaluating modelled moisture pathways. The tool is made freely available in form of MATLAB and Python routines and can be easily connected to any atmospheric water vapour isotopologue model.

  7. Boreal summer sub-seasonal variability of the South Asian monsoon in the Met Office GloSea5 initialized coupled model

    Science.gov (United States)

    Jayakumar, A.; Turner, A. G.; Johnson, S. J.; Rajagopal, E. N.; Mohandas, Saji; Mitra, A. K.

    2017-09-01

    Boreal summer sub-seasonal variability in the Asian monsoon, otherwise known as the monsoon intra-seasonal oscillation (MISO), is one of the dominant modes of intraseasonal variability in the tropics, with large impacts on total monsoon rainfall and India's agricultural production. However, our understanding of the mechanisms involved in MISO is incomplete and its simulation in various numerical models is often flawed. In this study, we focus on the objective evaluation of the fidelity of MISO simulation in the Met Office Global Seasonal forecast system version 5 (GloSea5), an initialized coupled model. We analyze a series of nine-member hindcasts from GloSea5 over 1996-2009 during the peak monsoon period (July-August) over the South-Asian monsoon domain focusing on aspects of the time-mean background state and air-sea interaction processes pertinent to MISO. Dominant modes during this period are evident in power spectrum analysis, but propagation and evolution characteristics of the MISO are not realistic. We find that simulated air-sea interactions in the central Indian Ocean are not supportive of MISO initiation in that region, likely a result of the low surface wind variance there. As a consequence, the expected near-quadrature phase relationship between SST and convection is not represented properly over the central equatorial Indian Ocean, and northward propagation from the equator is poorly simulated. This may reinforce the equatorial rainfall mean state bias in GloSea5.

  8. Ferromanganese Furnace Modelling Using Object-Oriented Principles

    Energy Technology Data Exchange (ETDEWEB)

    Wasboe, S.O.

    1996-12-31

    This doctoral thesis defines an object-oriented framework for aiding unit process modelling and applies it to model high-carbon ferromanganese furnaces. A framework is proposed for aiding modelling of the internal topology and the phenomena taking place inside unit processes. Complex unit processes may consist of a number of zones where different phenomena take place. A topology is therefore defined for the unit process itself, which shows the relations between the zones. Inside each zone there is a set of chemical species and phenomena, such as reactions, phase transitions, heat transfer etc. A formalized graphical methodology is developed as a tool for modelling these zones and their interaction. The symbols defined in the graphical framework are associated with objects and classes. The rules for linking the objects are described using OMT (Object Modeling Technique) diagrams and formal language formulations. The basic classes that are defined are implemented using the C++ programming language. The ferromanganese process is a complex unit process. A general description of the process equipment is given, and a detailed discussion of the process itself and a system theoretical overview of it. The object-oriented framework is then used to develop a dynamic model based on mass and energy balances. The model is validated by measurements from an industrial furnace. 101 refs., 119 figs., 20 tabs.

  9. Behavioral models as theoretical frames to analyze the business objective

    Directory of Open Access Journals (Sweden)

    Hernán Alonso Bafico

    2015-12-01

    Full Text Available This paper examines Pfeffer’s Models of Behavior and connects each of them with attributes of the definition of the firm’s objective, assumed as the maximization of the sustainable, long term valor of the residual claims.Each of the five models of behavior (rational, social, moral, retrospective and cognitive contributes to the decision making and goal setting processes with its particular and complementary elements. From those assuming complete rationality and frictionless markets, to the models emphasizing the role of ethical positions, and the presence of perceptive and cognitive mechanisms. The analysis highlights the main contributions of critical theories and models of behavior, underlining their focus on non-traditional variables, regarded as critical inputs for goal setting processes and designing alternative executive incentive schemes.  The explicit consideration of those variables does not indicate the need for a new definition of corporate objective. The maximization of the long term value of the shareholders’ claims still defines the relevant objective function of the firm, remaining as the main yardstick of corporate performance.Behavioral models are recognized as important tools to help managers direct their attention to long term strategies. In the last part, we comment on the relationship between the objective function and behavioral models, from the practitioners’ perspective.Key words: Firm Objectives, Behavioral Models, Value Maximization, Stakeholder Theory.

  10. Improved scheme for parametrization of convection in the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME)

    Science.gov (United States)

    Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta

    2015-04-01

    NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of

  11. GSMNet: A Hierarchical Graph Model for Moving Objects in Networks

    Directory of Open Access Journals (Sweden)

    Hengcai Zhang

    2017-03-01

    Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.

  12. Model-Based Software Testing for Object-Oriented Software

    Science.gov (United States)

    Biju, Soly Mathew

    2008-01-01

    Model-based testing is one of the best solutions for testing object-oriented software. It has a better test coverage than other testing styles. Model-based testing takes into consideration behavioural aspects of a class, which are usually unchecked in other testing methods. An increase in the complexity of software has forced the software industry…

  13. A General Polygon-based Deformable Model for Object Recognition

    DEFF Research Database (Denmark)

    Jensen, Rune Fisker; Carstensen, Jens Michael

    1999-01-01

    We propose a general scheme for object localization and recognition based on a deformable model. The model combines shape and image properties by warping a arbitrary prototype intensity template according to the deformation in shape. The shape deformations are constrained by a probabilistic distr...

  14. Archive Design Based on Planets Inspired Logical Object Model

    DEFF Research Database (Denmark)

    Zierau, Eld; Johansen, Anders

    2008-01-01

    We describe a proposal for a logical data model based on preliminary work the Planets project In OAIS terms the main areas discussed are related to the introduction of a logical data model for representing the past, present and future versions of the digital object associated with the Archival St...... Storage Package for the publications deposited by our client repositories....

  15. Modeling real conditions of 'Ukrytie' object in 3D measurement

    International Nuclear Information System (INIS)

    Podbereznyj, S.S.

    2001-01-01

    The article covers a technology of creation on soft products basis for designing: AutoCad, and computer graphics and animation 3D Studio, 3DS MAX, of 3D model of geometrical parameters of current conditions of building structures, technological equipment, fuel-containing materials, concrete, water of ruined Unit 4, 'Ukryttia' object, of Chernobyl NPP. The model built using the above technology will be applied in the future as a basis when automating the design and computer modeling of processes at the 'Ukryttia' object

  16. Constructing Multidatabase Collections Using Extended ODMG Object Model

    Directory of Open Access Journals (Sweden)

    Adrian Skehill Mark Roantree

    1999-11-01

    Full Text Available Collections are an important feature in database systems. They provide us with the ability to group objects of interest together, and then to manipulate them in the required fashion. The OASIS project is focused on the construction a multidatabase prototype which uses the ODMG model and a canonical model. As part of this work we have extended the base model to provide a more powerful collection mechanism, and to permit the construction of a federated collection, a collection of heterogenous objects taken from distributed data sources

  17. Fuzzy object models for newborn brain MR image segmentation

    Science.gov (United States)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  18. Towards a semantic learning model fostering learning object reusability

    OpenAIRE

    Fernandes , Emmanuel; Madhour , Hend; Wentland Forte , Maia; Miniaoui , Sami

    2005-01-01

    We try in this paper to propose a domain model for both author's and learner's needs concerning learning objects reuse. First of all, we present four key criteria for an efficient authoring tool: adaptive level of granularity, flexibility, integration and interoperability. Secondly, we introduce and describe our six-level Semantic Learning Model (SLM) designed to facilitate multi-level reuse of learning materials and search by defining a multi-layer model for metadata. Finally, after mapping ...

  19. The Aalborg Model and management by objectives and resources

    DEFF Research Database (Denmark)

    Qvist, Palle; Spliid, Claus Monrad

    2010-01-01

    Model is successful has never been subject to a scientific study. An educational program in an HEI (Higher Education Institution) can be seen and understood as a system managed by objectives (MBO)5 within a given resource frame and based on an “agreement” between the student and the study board....... The student must achieve the objectives decided by the study board and that achievement is then documented with an exam. The study board supports the student with resources which helps them to fulfill the objectives. When the resources are divided into human, material and methodological resources...

  20. Turbulence and Self-Organization Modeling Astrophysical Objects

    CERN Document Server

    Marov, Mikhail Ya

    2013-01-01

    This book focuses on the development of continuum models of natural turbulent media. It provides a theoretical approach to the solutions of different problems related to the formation, structure and evolution of astrophysical and geophysical objects. A stochastic modeling approach is used in the mathematical treatment of these problems, which reflects self-organization processes in open dissipative systems. The authors also consider examples of ordering for various objects in space throughout their evolutionary processes. This volume is aimed at graduate students and researchers in the fields of mechanics, astrophysics, geophysics, planetary and space science.

  1. Object-Oriented Approach to Modeling Units of Pneumatic Systems

    Directory of Open Access Journals (Sweden)

    Yu. V. Kyurdzhiev

    2014-01-01

    Full Text Available The article shows the relevance of the approaches to the object-oriented programming when modeling the pneumatic units (PU.Based on the analysis of the calculation schemes of aggregates pneumatic systems two basic objects, namely a cavity flow and a material point were highlighted.Basic interactions of objects are defined. Cavity-cavity interaction: ex-change of matter and energy with the flows of mass. Cavity-point interaction: force interaction, exchange of energy in the form of operation. Point-point in-teraction: force interaction, elastic interaction, inelastic interaction, and inter-vals of displacement.The authors have developed mathematical models of basic objects and interactions. Models and interaction of elements are implemented in the object-oriented programming.Mathematical models of elements of PU design scheme are implemented in derived from the base class. These classes implement the models of flow cavity, piston, diaphragm, short channel, diaphragm to be open by a given law, spring, bellows, elastic collision, inelastic collision, friction, PU stages with a limited movement, etc.A numerical integration of differential equations for the mathematical models of PU design scheme elements is based on the Runge-Kutta method of the fourth order. On request each class performs a tact of integration i.e. calcu-lation of the coefficient method.The paper presents an integration algorithm of the system of differential equations. All objects of the PU design scheme are placed in a unidirectional class list. Iterator loop cycle initiates the integration tact of all the objects in the list. One in four iteration makes a transition to the next step of integration. Calculation process stops when any object shows a shutdowns flag.The proposed approach was tested in the calculation of a number of PU designs. With regard to traditional approaches to modeling, the authors-proposed method features in easy enhancement, code reuse, high reliability

  2. Multi-objective optimization of GENIE Earth system models.

    Science.gov (United States)

    Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J

    2009-07-13

    The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.

  3. C++, objected-oriented programming, and astronomical data models

    Science.gov (United States)

    Farris, A.

    1992-01-01

    Contemporary astronomy is characterized by increasingly complex instruments and observational techniques, higher data collection rates, and large data archives, placing severe stress on software analysis systems. The object-oriented paradigm represents a significant new approach to software design and implementation that holds great promise for dealing with this increased complexity. The basic concepts of this approach will be characterized in contrast to more traditional procedure-oriented approaches. The fundamental features of objected-oriented programming will be discussed from a C++ programming language perspective, using examples familiar to astronomers. This discussion will focus on objects, classes and their relevance to the data type system; the principle of information hiding; and the use of inheritance to implement generalization/specialization relationships. Drawing on the object-oriented approach, features of a new database model to support astronomical data analysis will be presented.

  4. Object recognition in images via a factor graph model

    Science.gov (United States)

    He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu

    2018-04-01

    Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.

  5. Multi-Objective Optimization of the Hedging Model for reservoir Operation Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    sadegh sadeghitabas

    2015-12-01

    Full Text Available Multi-objective problems rarely ever provide a single optimal solution, rather they yield an optimal set of outputs (Pareto fronts. Solving these problems was previously accomplished by using some simplifier methods such as the weighting coefficient method used for converting a multi-objective problem to a single objective function. However, such robust tools as multi-objective meta-heuristic algorithms have been recently developed for solving these problems. The hedging model is one of the classic problems for reservoir operation that is generally employed for mitigating drought impacts in water resources management. According to this method, although it is possible to supply the total planned demands, only portions of the demands are met to save water by allowing small deficits in the current conditions in order to avoid or reduce severe deficits in future. The approach heavily depends on economic and social considerations. In the present study, the meta-heuristic algorithms of NSGA-II, MOPSO, SPEA-II, and AMALGAM are used toward the multi-objective optimization of the hedging model. For this purpose, the rationing factors involved in Taleghan dam operation are optimized over a 35-year statistical period of inflow. There are two objective functions: a minimizing the modified shortage index, and b maximizing the reliability index (i.e., two opposite objectives. The results show that the above algorithms are applicable to a wide range of optimal solutions. Among the algorithms, AMALGAM is found to produce a better Pareto front for the values of the objective function, indicating its more satisfactory performance.

  6. Object Oriented Toolbox for Modelling and Simulation of Dynamical Systems

    DEFF Research Database (Denmark)

    Poulsen, Mikael Zebbelin; Wagner, Falko Jens; Thomsen, Per Grove

    1998-01-01

    This paper presents the results of an ongoing project, dealing with design and implementation of a simulation toolbox based on object oriented modelling techniques. The paper describes an experimental implementation of parts of such a toolbox in C++, and discusses the experiences drawn from that ...... that process. Essential to the work is the focus on simulation of complex dynamical systems, from modelling the single components/subsystems to building complete systemssuch a toolbox in C++, and discusses the experiences drawn from that process....

  7. Development of a cultural heritage object BIM model

    Science.gov (United States)

    Braila, Natalya; Vakhrusheva, Svetlana; Martynenko, Elena; Kisel, Tatyana

    2017-10-01

    The BIM technology during her creation has been aimed, first of all, at design and construction branch, but its application in the field of studying and operation of architectural heritage can essentially change and transfer this kind of activity to new qualitative level. The question of effective introduction of BIM technologies at the solution of administrative questions of operation and development of monuments of architecture is considered in article. Creation of the information model of the building object of cultural heritage including a full complex of information on an object is offered: historical and archival, legal, technical, administrative, etc. The 3D model of an object of cultural heritage with color marking of elements on degree of wear and a first priority of carrying out repair will become one of components of model. This model will allow to estimate visually technical condition of the building in general and to gain general idea about scales of necessary repair and construction actions that promotes improvement of quality of operation of an object, and also simplifies and accelerates processing of information and in need of a memorial building assessment as subject to investment.

  8. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation

    Science.gov (United States)

    2009-09-01

    Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and

  9. A Convergent Participation Model for Evaluation of Learning Objects

    Directory of Open Access Journals (Sweden)

    John Nesbit

    2002-10-01

    Full Text Available The properties that distinguish learning objects from other forms of educational software - global accessibility, metadata standards, finer granularity and reusability - have implications for evaluation. This article proposes a convergent participation model for learning object evaluation in which representatives from stakeholder groups (e.g., students, instructors, subject matter experts, instructional designers, and media developers converge toward more similar descriptions and ratings through a two-stage process supported by online collaboration tools. The article reviews evaluation models that have been applied to educational software and media, considers models for gathering and meta-evaluating individual user reviews that have recently emerged on the Web, and describes the peer review model adopted for the MERLOT repository. The convergent participation model is assessed in relation to other models and with respect to its support for eight goals of learning object evaluation: (1 aid for searching and selecting, (2 guidance for use, (3 formative evaluation, (4 influence on design practices, (5 professional development and student learning, (6 community building, (7 social recognition, and (8 economic exchange.

  10. Are Face and Object Recognition Independent? A Neurocomputational Modeling Exploration.

    Science.gov (United States)

    Wang, Panqu; Gauthier, Isabel; Cottrell, Garrison

    2016-04-01

    Are face and object recognition abilities independent? Although it is commonly believed that they are, Gauthier et al. [Gauthier, I., McGugin, R. W., Richler, J. J., Herzmann, G., Speegle, M., & VanGulick, A. E. Experience moderates overlap between object and face recognition, suggesting a common ability. Journal of Vision, 14, 7, 2014] recently showed that these abilities become more correlated as experience with nonface categories increases. They argued that there is a single underlying visual ability, v, that is expressed in performance with both face and nonface categories as experience grows. Using the Cambridge Face Memory Test and the Vanderbilt Expertise Test, they showed that the shared variance between Cambridge Face Memory Test and Vanderbilt Expertise Test performance increases monotonically as experience increases. Here, we address why a shared resource across different visual domains does not lead to competition and to an inverse correlation in abilities? We explain this conundrum using our neurocomputational model of face and object processing ["The Model", TM, Cottrell, G. W., & Hsiao, J. H. Neurocomputational models of face processing. In A. J. Calder, G. Rhodes, M. Johnson, & J. Haxby (Eds.), The Oxford handbook of face perception. Oxford, UK: Oxford University Press, 2011]. We model the domain general ability v as the available computational resources (number of hidden units) in the mapping from input to label and experience as the frequency of individual exemplars in an object category appearing during network training. Our results show that, as in the behavioral data, the correlation between subordinate level face and object recognition accuracy increases as experience grows. We suggest that different domains do not compete for resources because the relevant features are shared between faces and objects. The essential power of experience is to generate a "spreading transform" for faces (separating them in representational space) that

  11. RANCANGAN DATABASE SUBSISTEM PRODUKSI DENGAN PENDEKATAN SEMANTIC OBJECT MODEL

    Directory of Open Access Journals (Sweden)

    Oviliani Yenty Yuliana

    2002-01-01

    Full Text Available To compete in the global market, business performer who active in industry fields should have and get information quickly and accurately, so they could make the precise decision. Traditional cost accounting system cannot give sufficient information, so many industries shift to Activity-Based Costing system (ABC. ABC system is more complex and need more data that should be save and process, so it should be applied information technology and database than traditional cost accounting system. The development of the software technology recently makes the construction of application program is not problem again. The primary problem is how to design database that presented information quickly and accurately. For that reason it necessary to make the model first. This paper discusses database modelling with semantic object model approach. This model is easier to use and is generate more normal database design than entity relationship model approach. Abstract in Bahasa Indonesia : Dalam persaingan di pasar bebas, para pelaku bisnis di bidang industri dalam membuat suatu keputusan yang tepat memerlukan informasi secara cepat dan akurat. Sistem akuntansi biaya tradisional tidak dapat menyediakan informasi yang memadai, sehingga banyak perusahaan industri yang beralih ke sistem Activity-Based Costing (ABC. Tetapi, sistem ABC merupakan sistem yang kompleks dan memerlukan banyak data yang harus disimpan dan diolah, sehingga harus menggunakan teknologi informasi dan database. Kemajuan di bidang perangkat lunak mengakibatkan pembuatan aplikasi program bukan masalah lagi. Permasalahan utama adalah bagaimana merancang database, agar dapat menyajikan informasi secara cepat dan akurat. Untuk itu, dalam makalah ini dibahas pemodelan database dengan pendekatan semantic object model. Model data ini lebih mudah digunakan dan menghasilkan transformasi yang lebih normal, jika dibandingkan dengan entity relationship model yang umum digunakan. Kata kunci: Sub Sistem

  12. Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations

    International Nuclear Information System (INIS)

    Yegin, G.

    2008-01-01

    In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems

  13. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models

    Science.gov (United States)

    Piao, Yuji; Park, Soon Young; Henry, Verlene; Smith, Bryan D.; Tiao, Ningyi; Flynn, Daniel L.

    2016-01-01

    Background Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy. Methods We investigated the activity of altiratinib (a novel balanced inhibitor of MET/TIE2/VEGFR2) against human glioblastoma stem cell lines in vitro and in vivo using xenograft mouse models. The biological activity of altiratinib was assessed in vitro by testing the expression of HGF-stimulated MET phosphorylation as well as cell viability after altiratinib treatment. Tumor volume, stem cell and mesenchymal marker levels, microvessel density, and TIE2-expressing monocyte infiltration were evaluated in vivo following treatment with a control, bevacizumab alone, bevacizumab combined with altiratinib, or altiratinib alone. Results In vitro, HGF-stimulated MET phosphorylation was completely suppressed by altiratinib in GSC17 and GSC267, and altiratinib markedly inhibited cell viability in several glioblastoma stem cell lines. More importantly, in multiple xenograft mouse models, altiratinib combined with bevacizumab dramatically reduced tumor volume, invasiveness, mesenchymal marker expression, microvessel density, and TIE2-expressing monocyte infiltration compared with bevacizumab alone. Furthermore, in the GSC17 xenograft model, altiratinib combined with bevacizumab significantly prolonged survival compared with bevacizumab alone. Conclusions Together, these data suggest that altiratinib may suppress tumor growth, invasiveness, angiogenesis, and myeloid cell infiltration in glioblastoma. Thus, altiratinib administered alone or in combination with bevacizumab may overcome resistance to bevacizumab and prolong survival in patients with glioblastoma. PMID:26965451

  14. An ODP computational model of a cooperative binding object

    Science.gov (United States)

    Logé, Christophe; Najm, Elie; Chen, Ken

    1997-12-01

    A next generation of systems that should appear will have to manage simultaneously several geographically distributed users. These systems belong to the class of computer-supported cooperative work systems (CSCW). The development of such complex systems requires rigorous development methods and flexible open architectures. Open distributed processing (ODP) is a standardization effort that aims at providing such architectures. ODP features appropriate abstraction levels and a clear articulation between requirements, programming and infrastructure support. ODP advocates the use of formal methods for the specification of systems and components. The computational model, an object-based model, one of the abstraction levels identified within ODP, plays a central role in the global architecture. In this model, basic objects can be composed with communication and distribution abstractions (called binding objects) to form a computational specification of distributed systems, or applications. Computational specifications can then be mapped (in a mechanism akin to compilation) onto an engineering solution. We use an ODP-inspired method to computationally specify a cooperative system. We start from a general purpose component that we progressively refine into a collection of basic and binding objects. We focus on two issues of a co-authoring application, namely, dynamic reconfiguration and multiview synchronization. We discuss solutions for these issues and formalize them using the MT-LOTOS specification language that is currently studied in the ISO standardization formal description techniques group.

  15. Modeling and Simulation of Grasping of Deformable Objects

    DEFF Research Database (Denmark)

    Fugl, Andreas Rune

    Automated robot solutions have for decades been increasing productivity around the world. They are attractive for being fast, accurate and able to work in dangerous and repetitive environments. In traditional applications the grasped object is kinematically attached to the Tool Center Point....... The purpose of this thesis is to address the modeling and simulation of deformable objects, as applied to robotic grasping and manipulation. The main contributions of this work are: An evaluation of 3D linear elasticity used for robot grasping as implemented by a Finite Difference Method supporting regular...

  16. An object-oriented approach to evaluating multiple spectral models

    International Nuclear Information System (INIS)

    Majoras, R.E.; Richardson, W.M.; Seymour, R.S.

    1995-01-01

    A versatile, spectroscopy analysis engine has been developed by using object-oriented design and analysis techniques coupled with an object-oriented language, C++. This engine provides the spectroscopist with the choice of several different peak shape models that are tailored to the type of spectroscopy being performed. It also allows ease of development in adapting the engine to other analytical methods requiring more complex peak fitting in the future. This results in a program that can currently be used across a wide range of spectroscopy applications and anticipates inclusion of future advances in the field. (author) 6 refs.; 1 fig

  17. Towards a unified biological hypothesis for the BDNF Val66Met-associated memory deficits in humans: a model of impaired dendritic mRNA trafficking

    Directory of Open Access Journals (Sweden)

    Gabriele eBaj

    2013-10-01

    Full Text Available Brain-derived neurotrophic factor (BDNF represents promotesa key molecule for the survival and differentiation of specific populations of neurons in the central nervous system. BDNF also regulates plasticity-related processes underlying memory and learning. A common single nucleotide polymorphism (SNP rs6265 has been identified on the coding sequence of human BDNF located at 11p13. The SNP rs6265 is a single base mutation with an adenine instead of a guanine at position 196 (G196A, resulting in the amino acid substitution Val66Met. This polymorphism only exists in humans and has been associated with a plethora of effects ranging from molecular, cellular and brain structural modifications in association with deficits in social and cognitive functions. To date, the literature on Val66Met polymorphism describes a complex and often conflicting pattern of effects. In this review, we attempt to provide a unifying model of the Val66Met effects. We discuss the clinical evidence of the association between Val66Met and memory deficits, as well as the molecular mechanisms involved including the reduced transport of BDNF mRNA to the dendrites as well as the reduced processing and secretion of BDNF protein through the regulated secretory pathway.

  18. Farm Planning by Fuzzy Multi Objective Programming Model

    Directory of Open Access Journals (Sweden)

    m Raei Jadidi

    2010-05-01

    Full Text Available In current study, Fuzzy Goal Programming (FGP model by considering a set of social and economic goals, was applied to optimal land allocation in Koshksaray district, Marand city, East Azarbaijan province, Iran. Farmer goals including total cultivable area, factor of production, production levels of various crops and total expected profit were considered fuzzily in establishment of the model. The goals were considered by 16 scenarios in the form of single objective, compound and priority structures. Results showed that, cost minimization in single objective and compound scenario is the best as compared with current conditions. In priority structure, scenario 10 with priorities of profit maximization, cost minimization, satisfying of production goals considering cost minimization and production goals, and scenario 13 with priorities of profit maximization, satisfying factor of production goals, cost minimization and fulfilling production goals, had minimum Euclidean Distance and satisfied the fuzzy objectives. Moreover, dry barley, irrigated and dry wheat and irrigated barely had maximum and minimum cultivated area, respectively. According to the findings, by reallocation of resources, farmers can achieve their better goals and objectives.

  19. Remote object authentication: confidence model, cryptosystem and protocol

    Science.gov (United States)

    Lancrenon, Jean; Gillard, Roland; Fournel, Thierry

    2009-04-01

    This paper follows a paper by Bringer et al.3 to adapt a security model and protocol used for remote biometric authentication to the case of remote morphometric object authentication. We use a different type of encryption technique that requires smaller key sizes and has a built-in mechanism to help control the integrity of the messages received by the server. We also describe the optical technology used to extract the morphometric templates.

  20. MODELING OF CONVECTIVE STREAMS IN PNEUMOBASIC OBJECTS (Part 2

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available The article presents modeling for investigation of aerodynamic processes on area sections (including a group of complex constructional works for different regimes of drop and wind streams  and  temperature  conditions  and  in  complex  constructional  works  (for  different regimes of heating and ventilation. There were developed different programs for innovation problems solution in the field of heat and mass exchange in three-dimensional space of pres- sures-speeds-temperatures of оbjects.The field of uses of pneumobasic objects: construction and roof of tennis courts, hockey pitches, swimming pools , and also exhibitions’ buildings, circus buildings, cafes, aqua parks, studios, mobile objects of medical purposes, hangars, garages, construction sites, service sta- tions and etc. Advantages of such objects are the possibility and simplicity of multiple instal- lation and demolition works. Their large-scale implementation is determined by temperature- moisture conditions under the shells.Analytical and calculating researches, real researches of thermodynamic parameters of heat and mass exchange, multifactorial processes of air in pneumobasic objects, their shells in a wide range of climatic parameters of air (January – December in the Republic of Belarus, in many geographical latitudes of many countries have shown that the limit of the possibility of optimizing wind loads, heat flow, acoustic effects is infinite (sports, residential, industrial, warehouse, the military-technical units (tanks, airplanes, etc.. In modeling of convective flows in pneumobasic objects (part 1 there are processes with higher dynamic parameters of the air flow for the characteristic pneumobasic object, carried out the calculation of the velocity field, temperature, pressure at the speed of access of air through the inflow holes up to 5 m/sec at the moments of times (20, 100, 200, 400 sec. The calculation was performed using the developed mathematical

  1. THE INVESTMENT MODEL OF THE CONSTRUCTION OF PUBLIC OBJECTS

    Directory of Open Access Journals (Sweden)

    Reperger Šandor

    2009-11-01

    Full Text Available One of the possible models of the construction and use of sports objects, especi- ally indoor facilities (sports centres, halls, swimming pools, shooting alleys and others is the cooperation of the public and private sector, by the investment model of PPP (Pu- blic-Private Partnership. PPP (Public-Private Partnership construction is the new form of securing civil works, already known in the developed countries, in which the job of planning, construc- tion, functioning and financing is done by the private sector – in the scope of a precisely elaborated cooperation with the state. The state engages the private sector for the administering of the civil works. By public adverstisements and contests they will find the investors who accept the administe- ring of certain public works by themselves or with the help of project partners with their own resources (with 60-85% of bank loans, secure the conditions for conducting certain services (by using the objects, halls, etc until the expiration of the agreed deadline. The essence of PPP construction is the fact that an investor from the private sec- tor, chosen through a contest, realizes the project using its own means. The object beco- mes the property of the investor and it secures the regular functioning of the object with exclusive rights. The income from the functioning belongs to the investor, in return the costs of the functioning of the object, the upkeep, as well as the costs of the personnel and public utilities are the responsibility of the investor. The public use of the object is realised by the means that the authorised ministry and the partner from the contest in an agreement of the realization and functioning of the object accurately define the time of maintenance and the duration of the services on the behalf of social interest. From the time specified in the agreement the investor doesn’t charge precisely defined users for general and specific services. As Sebia, with all its

  2. Wind field and trajectory models for tornado-propelled objects

    International Nuclear Information System (INIS)

    Anon

    1978-01-01

    This report contains the results of the second phase of a research program which has as its objective the development of a mathematical model to predict the trajectory of tornado-borne objects postulated to be in the vicinity of nuclear power plants. An improved tornado wind field model satisfies the no-slip ground boundary condition of fluid mechanics and includes the functional dependence of eddy viscosity with altitude. Sub-scale wind tunnel data are obtained for all of the missiles currently specified for nuclear plant design. Confirmatory full-scale data are obtained for a 12-inch pipe and automobile. The original six-degree-of-freedom trajectory model is modified to include the improved wind field and increased capability as to body shapes and inertial characteristics that can be handled. The improved trajectory model is used to calculate maximum credible speeds, which for all of the heavy missiles are considerably less than those currently specified for design. Equivalent coefficients for use in three-degree-of-freedom models are developed and the sensitivity of range and speed to various trajectory parameters for the 12-inch diameter pipe is examined

  3. Sereniteit met een dip

    NARCIS (Netherlands)

    dr Ed de Jonge

    2015-01-01

    Boekbespreking van Serendipiteit. De ongezochte vondst. Het boek opent met een verzameling van citaten die direct of indirect met het onderwerp samenhangen. Daarna volgt een kort voorwoord van Hans Clevers, de toenmalige president van de KNAW, die een lans breekt voor serendipiteit in de biologie.

  4. Learning-based stochastic object models for characterizing anatomical variations

    Science.gov (United States)

    Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua

    2018-03-01

    It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.

  5. Advertising Model of Residential Real Estate Object in Lithuania

    Directory of Open Access Journals (Sweden)

    Jelena Mazaj

    2012-07-01

    Full Text Available Since the year 2000, during the period of economic growth, the real estate market has been rapidly expanding. During this period advertising of real estate objects was implemented using one set of similar channels (press advertising, Internet advertising, leaflets with contact information of real estate agents and others, however the start of the economic recession has intensified the competition in the market and forced companies to search for new advertising means or to diversify the advertising package. The article presents real estate property, as a product, one of the marketing components – including advertising, conclusions and suggestions based on conducted surveys and a model for advertising the residential real estate objects.Article in Lithuanian

  6. Objective Characterization of Snow Microstructure for Microwave Emission Modeling

    Science.gov (United States)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian

    2012-01-01

    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  7. AVIATION SECURITY AS AN OBJECT OF MATHEMATICAL MODELING

    Directory of Open Access Journals (Sweden)

    N. Elisov Lev

    2017-01-01

    Full Text Available The paper presents a mathematical formulation of the problem formalization of the subject area related to aviation security in civil aviation. The formalization task is determined by the modern issue of providing aviation security. Aviationsecurity in modern systems is based upon organizational standard of security control. This standard doesn’t require calcu- lating the security level. It allows solving the aviation security task without estimating the solution and evaluating the per- formance of security facilities. The issue of acceptable aviation security level stays unsolved, because its control lies in inspections that determine whether the object security facilities meet the requirements or not. The pending problem is also in whether the requirements are calculable and the evaluation is subjective.Lately, there has been determined quite a certain tendency to consider aviation security issues from the perspective of its level optimal control with the following identification, calculation and evaluation problems solving and decision mak- ing. The obtained results analysis in this direction shows that it’s strongly recommended to move to object formalization problem, which provides a mathematical modeling for aviation security control optimization.In this case, the authors assume to find the answer in the process of object formalization. Therefore aviation secu- rity is presented as some security environment condition, which defines the parameters associated with the object protec-tion system quality that depends on the use of protective equipment in conditions of counteraction to factors of external andinternal threats. It is shown that the proposed model belongs to a class of boundary value problems described by differential equations in partial derivatives. The classification of boundary value problems is presented.

  8. Modeling of Geological Objects and Geophysical Fields Using Haar Wavelets

    Directory of Open Access Journals (Sweden)

    A. S. Dolgal

    2014-12-01

    Full Text Available This article is a presentation of application of the fast wavelet transform with basic Haar functions for modeling the structural surfaces and geophysical fields, characterized by fractal features. The multiscale representation of experimental data allows reducing significantly a cost of the processing of large volume data and improving the interpretation quality. This paper presents the algorithms for sectionally prismatic approximation of geological objects, for preliminary estimation of the number of equivalent sources for the analytical approximation of fields, and for determination of the rock magnetization in the upper part of the geological section.

  9. Quantum superposition of massive objects and collapse models

    International Nuclear Information System (INIS)

    Romero-Isart, Oriol

    2011-01-01

    We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.

  10. Quantum superposition of massive objects and collapse models

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Isart, Oriol [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)

    2011-11-15

    We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.

  11. The resolution sensitivity of the Asian summer monsoon and its inter-model comparison between MRI-AGCM and MetUM

    Science.gov (United States)

    Ogata, Tomomichi; Johnson, Stephanie J.; Schiemann, Reinhard; Demory, Marie-Estelle; Mizuta, Ryo; Yoshida, Kohei; Osamu Arakawa

    2017-11-01

    In this study, we compare the resolution sensitivity of the Asian Summer Monsoon (ASM) in two Atmospheric General Circulation Models (AGCMs): the MRI-AGCM and the MetUM. We analyze the MetUM at three different resolutions, N96 (approximately 200-km mesh on the equator), N216 (90-km mesh) and N512 (40-km mesh), and the MRI-AGCM at TL95 (approximately 180-km mesh on the equator), TL319 (60-km mesh), and TL959 (20-km mesh). The MRI-AGCM and the MetUM both show decreasing precipitation over the western Pacific with increasing resolution, but their precipitation responses differ over the Indian Ocean. In MRI-AGCM, a large precipitation increase appears off the equator (5-20°N). In MetUM, this off-equatorial precipitation increase is less significant and precipitation decreases over the equator. Moisture budget analysis demonstrates that a changing in moisture flux convergence at higher resolution is related to the precipitation response. Orographic effects, intra-seasonal variability and the representation of the meridional thermal gradient are explored as possible causes of the resolution sensitivity. Both high-resolution AGCMs (TL959 and N512) can represent steep topography, which anchors the rainfall pattern over south Asia and the Maritime Continent. In MRI-AGCM, representation of low pressure systems in TL959 also contributes to the rainfall pattern. Furthermore, the seasonal evolution of the meridional thermal gradient appears to be more accurate at higher resolution, particularly in the MRI-AGCM. These findings emphasize that the impact of resolution is only robust across the two AGCMs for some features of the ASM, and highlights the importance of multi-model studies of GCM resolution sensitivity.

  12. Connected Component Model for Multi-Object Tracking.

    Science.gov (United States)

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  13. Interactive object modelling based on piecewise planar surface patches.

    Science.gov (United States)

    Prankl, Johann; Zillich, Michael; Vincze, Markus

    2013-06-01

    Detecting elements such as planes in 3D is essential to describe objects for applications such as robotics and augmented reality. While plane estimation is well studied, table-top scenes exhibit a large number of planes and methods often lock onto a dominant plane or do not estimate 3D object structure but only homographies of individual planes. In this paper we introduce MDL to the problem of incrementally detecting multiple planar patches in a scene using tracked interest points in image sequences. Planar patches are reconstructed and stored in a keyframe-based graph structure. In case different motions occur, separate object hypotheses are modelled from currently visible patches and patches seen in previous frames. We evaluate our approach on a standard data set published by the Visual Geometry Group at the University of Oxford [24] and on our own data set containing table-top scenes. Results indicate that our approach significantly improves over the state-of-the-art algorithms.

  14. Interactive object modelling based on piecewise planar surface patches☆

    Science.gov (United States)

    Prankl, Johann; Zillich, Michael; Vincze, Markus

    2013-01-01

    Detecting elements such as planes in 3D is essential to describe objects for applications such as robotics and augmented reality. While plane estimation is well studied, table-top scenes exhibit a large number of planes and methods often lock onto a dominant plane or do not estimate 3D object structure but only homographies of individual planes. In this paper we introduce MDL to the problem of incrementally detecting multiple planar patches in a scene using tracked interest points in image sequences. Planar patches are reconstructed and stored in a keyframe-based graph structure. In case different motions occur, separate object hypotheses are modelled from currently visible patches and patches seen in previous frames. We evaluate our approach on a standard data set published by the Visual Geometry Group at the University of Oxford [24] and on our own data set containing table-top scenes. Results indicate that our approach significantly improves over the state-of-the-art algorithms. PMID:24511219

  15. A knowledge discovery object model API for Java

    Directory of Open Access Journals (Sweden)

    Jones Steven JM

    2003-10-01

    Full Text Available Abstract Background Biological data resources have become heterogeneous and derive from multiple sources. This introduces challenges in the management and utilization of this data in software development. Although efforts are underway to create a standard format for the transmission and storage of biological data, this objective has yet to be fully realized. Results This work describes an application programming interface (API that provides a framework for developing an effective biological knowledge ontology for Java-based software projects. The API provides a robust framework for the data acquisition and management needs of an ontology implementation. In addition, the API contains classes to assist in creating GUIs to represent this data visually. Conclusions The Knowledge Discovery Object Model (KDOM API is particularly useful for medium to large applications, or for a number of smaller software projects with common characteristics or objectives. KDOM can be coupled effectively with other biologically relevant APIs and classes. Source code, libraries, documentation and examples are available at http://www.bcgsc.ca/bioinfo/software.

  16. SED Modeling of 20 Massive Young Stellar Objects

    Science.gov (United States)

    Tanti, Kamal Kumar

    In this paper, we present the spectral energy distributions (SEDs) modeling of twenty massive young stellar objects (MYSOs) and subsequently estimated different physical and structural/geometrical parameters for each of the twenty central YSO outflow candidates, along with their associated circumstellar disks and infalling envelopes. The SEDs for each of the MYSOs been reconstructed by using 2MASS, MSX, IRAS, IRAC & MIPS, SCUBA, WISE, SPIRE and IRAM data, with the help of a SED Fitting Tool, that uses a grid of 2D radiative transfer models. Using the detailed analysis of SEDs and subsequent estimation of physical and geometrical parameters for the central YSO sources along with its circumstellar disks and envelopes, the cumulative distribution of the stellar, disk and envelope parameters can be analyzed. This leads to a better understanding of massive star formation processes in their respective star forming regions in different molecular clouds.

  17. Mathematical model of innovative sustainability “green” construction object

    Directory of Open Access Journals (Sweden)

    Slesarev Michail

    2016-01-01

    Full Text Available The paper addresses the issue of finding sustainability of “green” innovative processes in interaction between construction activities and the environment. The problem of today’s construction science is stated as comprehensive integration and automation of natural and artificial intellects within systems that ensure environmental safety of construction based on innovative sustainability of “green” technologies in the life environment, and “green” innovative products. The suggested solution to the problem should formalize sustainability models and methods for interpretation of optimization mathematical modeling problems respective to problems of environmental-based innovative process management, adapted to construction of “green” objects, “green” construction technologies, “green” innovative materials and structures.

  18. Models for predicting objective function weights in prostate cancer IMRT

    International Nuclear Information System (INIS)

    Boutilier, Justin J.; Lee, Taewoo; Craig, Tim; Sharpe, Michael B.; Chan, Timothy C. Y.

    2015-01-01

    Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR

  19. Models for predicting objective function weights in prostate cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, Justin J., E-mail: j.boutilier@mail.utoronto.ca; Lee, Taewoo [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 (Canada); Craig, Tim [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9, Canada and Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Sharpe, Michael B. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada); Chan, Timothy C. Y. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada)

    2015-04-15

    Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR

  20. Objective models of compressed breast shapes undergoing mammography

    Science.gov (United States)

    Feng, Steve Si Jia; Patel, Bhavika; Sechopoulos, Ioannis

    2013-01-01

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  1. Objective models of compressed breast shapes undergoing mammography

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Steve Si Jia [Department of Biomedical Engineering, Georgia Institute of Technology and Emory University and Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Patel, Bhavika [Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sechopoulos, Ioannis [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States)

    2013-03-15

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  2. Objective models of compressed breast shapes undergoing mammography

    International Nuclear Information System (INIS)

    Feng, Steve Si Jia; Patel, Bhavika; Sechopoulos, Ioannis

    2013-01-01

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  3. An integrated approach to engineering curricula improvement with multi-objective decision modeling and linear programming

    Science.gov (United States)

    Shea, John E.

    The structure of engineering curricula currently in place at most colleges and universities has existed since the early 1950's, and reflects an historical emphasis on a solid foundation in math, science, and engineering science. However, there is often not a close match between elements of the traditional engineering education, and the skill sets that graduates need to possess for success in the industrial environment. Considerable progress has been made to restructure engineering courses and curricula. What is lacking, however, are tools and methodologies that incorporate the many dimensions of college courses, and how they are structured to form a curriculum. If curriculum changes are to be made, the first objective must be to determine what knowledge and skills engineering graduates need to possess. To accomplish this, a set of engineering competencies was developed from existing literature, and used in the development of a comprehensive mail survey of alumni, employers, students and faculty. Respondents proposed some changes to the topics in the curriculum and recommended that work to improve the curriculum be focused on communication, problem solving and people skills. The process of designing a curriculum is similar to engineering design, with requirements that must be met, and objectives that must be optimized. From this similarity came the idea for developing a linear, additive, multi-objective model that identifies the objectives that must be considered when designing a curriculum, and contains the mathematical relationships necessary to quantify the value of a specific alternative. The model incorporates the three primary objectives of engineering topics, skills, and curriculum design principles and uses data from the survey. It was used to design new courses, to evaluate various curricula alternatives, and to conduct sensitivity analysis to better understand their differences. Using the multi-objective model to identify the highest scoring curriculum

  4. Ervaringen met beeldverwerking.

    NARCIS (Netherlands)

    Meuleman, J.

    1989-01-01

    Verslag van een werkbezoek aan het Franse instituut Cemagref, met nadruk op beeldverwerking. Toepassingen van beeldverwerking zijn onder andere: een plukrobot voor appels; het detecteren van oppervlaktebeschadigingen bij appels; het detecteren van breuk in eieren; remote sensing

  5. Nisine geholpen met hordentechnologie

    NARCIS (Netherlands)

    Jong, de L.S.

    2001-01-01

    Een combinatie van nisine met carvacrol, thymol of carvon leidde tot een synergistische reductie van het aantal levensvatbare cellen van Listeria monocytogenes en Bacillus cereus. Verslag van een promotieonderzoek

  6. Autorijden met ADHD

    NARCIS (Netherlands)

    Fuermaier, Anselm B.M.; Tucha, Lara; de Vries, Stefanie M.; Koerts, Janneke; de Waard, Dick; Brookhuis, Karel; Tucha, Oliver

    Volwassenen met attention deficit hyperactivity disorder (ADHD) hebben uiteenlopende cognitieve beperkingen, die een aanzienlijke invloed kunnen hebben op verschillende aspecten van het dagelijks leven. Een van deze aspecten is het besturen van een auto. Autorijden is een belangrijke activiteit in

  7. When Historiography Met Epistemology

    Directory of Open Access Journals (Sweden)

    Jean-François Stoffel

    2017-06-01

    Full Text Available Review of Bordoni, Stefano. When historiography met epistemology: Sophisticated histories and philosophies of science in French-speaking countries in the second half of the nineteenth century. Reviewed by Jean-François Stoffel.

  8. Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects

    Science.gov (United States)

    Cichocki, Filippo; Domínguez-Vázquez, Adrián; Merino, Mario; Ahedo, Eduardo

    2017-12-01

    This paper presents a hybrid particle-in-cell (PIC) fluid approach to model the interaction of a plasma plume with a spacecraft and/or any nearby object. Ions and neutrals are modeled with a PIC approach, while electrons are treated as a fluid. After a first iteration of the code, the domain is split into quasineutral and non-neutral regions, based on non-neutrality criteria, such as the relative charge density and the Debye length-to-cell size ratio. At the material boundaries of the former quasineutral region, a dedicated algorithm ensures that the Bohm condition is met. In the latter non-neutral regions, the electron density and electric potential are obtained by solving the coupled electron momentum balance and Poisson equations. Boundary conditions for both the electric current and potential are finally obtained with a plasma sheath sub-code and an equivalent circuit model. The hybrid code is validated by applying it to a typical plasma plume-spacecraft interaction scenario, and the physics and capabilities of the model are finally discussed.

  9. Polarimetry of Solar System Objects: Observations vs. Models

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and

  10. Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN) coating cermet tools

    OpenAIRE

    Ouahid Keblouti; Lakhdar Boulanouar; Mohamed Walid Azizi; Mohamed Athmane Yallese

    2017-01-01

    The present work concerns an experimental study of turning with coated cermet tools with TiCN-TiN coating layer of AISI 52100 bearing steel. The main objectives are firstly focused on the effect of cutting parameters and coating material on the performances of cutting tools. Secondly, to perform a Multi-objective optimization for minimizing surface roughness (Ra) and maximizing material removal rate by desirability approach. A mathematical model was developed based on the Response Surface Met...

  11. Visuo-motor coordination and internal models for object interception.

    Science.gov (United States)

    Zago, Myrka; McIntyre, Joseph; Senot, Patrice; Lacquaniti, Francesco

    2009-02-01

    Intercepting and avoiding collisions with moving objects are fundamental skills in daily life. Anticipatory behavior is required because of significant delays in transforming sensory information about target and body motion into a timed motor response. The ability to predict the kinematics and kinetics of interception or avoidance hundreds of milliseconds before the event may depend on several different sources of information and on different strategies of sensory-motor coordination. What are exactly the sources of spatio-temporal information and what are the control strategies remain controversial issues. Indeed, these topics have been the battlefield of contrasting views on how the brain interprets visual information to guide movement. Here we attempt a synthetic overview of the vast literature on interception. We discuss in detail the behavioral and neurophysiological aspects of interception of targets falling under gravity, as this topic has received special attention in recent years. We show that visual cues alone are insufficient to predict the time and place of interception or avoidance, and they need to be supplemented by prior knowledge (or internal models) about several features of the dynamic interaction with the moving object.

  12. MODELING OF CONVECTIVE FLOWS IN PNEUMOBASED OBJECTS. Part 1

    Directory of Open Access Journals (Sweden)

    B. M. Khrustalyov

    2014-01-01

    Full Text Available A computer modeling process of three-dimensional forced convection proceeding from computation of thermodynamic parameters of pneumo basic buildings (pneumo supported structures is presented. The mathematical model of numerical computation method of temperature and velocity fields, pressure profile in the object is developed using the package Solid works and is provided by grid methods on specified software. Special Navier–Stokes, Clapeyron–Mendeleev, continuity and thermal-conductivity equations are used to calculate parameters in the building with four supply and exhaust channels. Differential equations are presented by algebraic equation systems, initial-boundary conditions are changed by differential conditions for mesh functions and their solutions are performed by algebraic operations. In this article the following is demonstrated: in pneumo basic buildings convective and heat flows are identical structures near the surfaces in unlimited space, but in single-multiply shells (envelopescirculation lines take place, geometrical sizes of which depend on thermal-physical characteristics of gas(airin envelopes, radiation reaction with heated surfaces of envelopes with  sphere, earth surface, neighboring buildings. Natural surveys of pneumo-basic buildings of different purposes were carried out in Minsk, in different cities of Belarus and Russia, including temperature fields of external and internal surfaces of air envelopes, relative humidity, thermal (heatflows, radiation characteristics and others.The results of research work are illustrated with diagrams of temperature, velocity, density and pressure dependent on coordinates and time.

  13. Automatic video segmentation employing object/camera modeling techniques

    NARCIS (Netherlands)

    Farin, D.S.

    2005-01-01

    Practically established video compression and storage techniques still process video sequences as rectangular images without further semantic structure. However, humans watching a video sequence immediately recognize acting objects as semantic units. This semantic object separation is currently not

  14. Object-oriented process dose modeling for glovebox operations

    International Nuclear Information System (INIS)

    Boerigter, S.T.; Fasel, J.H.; Kornreich, D.E.

    1999-01-01

    The Plutonium Facility at Los Alamos National Laboratory supports several defense and nondefense-related missions for the country by performing fabrication, surveillance, and research and development for materials and components that contain plutonium. Most operations occur in rooms with one or more arrays of gloveboxes connected to each other via trolley gloveboxes. Minimizing the effective dose equivalent (EDE) is a growing concern as a result of steadily declining allowable dose limits being imposed and a growing general awareness of safety in the workplace. In general, the authors discriminate three components of a worker's total EDE: the primary EDE, the secondary EDE, and background EDE. A particular background source of interest is the nuclear materials vault. The distinction between sources inside and outside of a particular room is arbitrary with the underlying assumption that building walls and floors provide significant shielding to justify including sources in other rooms in the background category. Los Alamos has developed the Process Modeling System (ProMoS) primarily for performing process analyses of nuclear operations. ProMoS is an object-oriented, discrete-event simulation package that has been used to analyze operations at Los Alamos and proposed facilities such as the new fabrication facilities for the Complex-21 effort. In the past, crude estimates of the process dose (the EDE received when a particular process occurred), room dose (the EDE received when a particular process occurred in a given room), and facility dose (the EDE received when a particular process occurred in the facility) were used to obtain an integrated EDE for a given process. Modifications to the ProMoS package were made to utilize secondary dose information to use dose modeling to enhance the process modeling efforts

  15. Multi-Objective Nonlinear Model Predictive Control: Lexicographic Method

    OpenAIRE

    Zheng, Tao; Wu, Gang; Liu, Guang-Hong; Ling, Qing

    2010-01-01

    In this chapter, to avoid the disadvantages of weight coefficients in multi-objective dynamic optimization, lexicographic (completely stratified) and partially stratified frameworks of multi-objective controller are proposed. The lexicographic framework is absolutely prioritydriven and the partially stratified framework is a modification of it, they both can solve the multi-objective control problem with the concept of priority for objective’s relative importance, while the latter one is mo...

  16. Object-oriented classification of drumlins from digital elevation models

    Science.gov (United States)

    Saha, Kakoli

    Drumlins are common elements of glaciated landscapes which are easily identified by their distinct morphometric characteristics including shape, length/width ratio, elongation ratio, and uniform direction. To date, most researchers have mapped drumlins by tracing contours on maps, or through on-screen digitization directly on top of hillshaded digital elevation models (DEMs). This paper seeks to utilize the unique morphometric characteristics of drumlins and investigates automated extraction of the landforms as objects from DEMs by Definiens Developer software (V.7), using the 30 m United States Geological Survey National Elevation Dataset DEM as input. The Chautauqua drumlin field in Pennsylvania and upstate New York, USA was chosen as a study area. As the study area is huge (approximately covers 2500 sq.km. of area), small test areas were selected for initial testing of the method. Individual polygons representing the drumlins were extracted from the elevation data set by automated recognition, using Definiens' Multiresolution Segmentation tool, followed by rule-based classification. Subsequently parameters such as length, width and length-width ratio, perimeter and area were measured automatically. To test the accuracy of the method, a second base map was produced by manual on-screen digitization of drumlins from topographic maps and the same morphometric parameters were extracted from the mapped landforms using Definiens Developer. Statistical comparison showed a high agreement between the two methods confirming that object-oriented classification for extraction of drumlins can be used for mapping these landforms. The proposed method represents an attempt to solve the problem by providing a generalized rule-set for mass extraction of drumlins. To check that the automated extraction process was next applied to a larger area. Results showed that the proposed method is as successful for the bigger area as it was for the smaller test areas.

  17. A control model for object virtualization in supply chain management

    NARCIS (Netherlands)

    Verdouw, C.N.; Beulens, A.J.M.; Reijers, H.A.; van der Vorst, J.G.A.J.

    2015-01-01

    Due to the emergence of the Internet of Things, supply chain control can increasingly be based on virtual objects instead of on the direct observation of physical objects. Object virtualization allows the decoupling of control activities from the handling and observing of physical products and

  18. Auditory object perception: A neurobiological model and prospective review.

    Science.gov (United States)

    Brefczynski-Lewis, Julie A; Lewis, James W

    2017-10-01

    Interaction with the world is a multisensory experience, but most of what is known about the neural correlates of perception comes from studying vision. Auditory inputs enter cortex with its own set of unique qualities, and leads to use in oral communication, speech, music, and the understanding of emotional and intentional states of others, all of which are central to the human experience. To better understand how the auditory system develops, recovers after injury, and how it may have transitioned in its functions over the course of hominin evolution, advances are needed in models of how the human brain is organized to process real-world natural sounds and "auditory objects". This review presents a simple fundamental neurobiological model of hearing perception at a category level that incorporates principles of bottom-up signal processing together with top-down constraints of grounded cognition theories of knowledge representation. Though mostly derived from human neuroimaging literature, this theoretical framework highlights rudimentary principles of real-world sound processing that may apply to most if not all mammalian species with hearing and acoustic communication abilities. The model encompasses three basic categories of sound-source: (1) action sounds (non-vocalizations) produced by 'living things', with human (conspecific) and non-human animal sources representing two subcategories; (2) action sounds produced by 'non-living things', including environmental sources and human-made machinery; and (3) vocalizations ('living things'), with human versus non-human animals as two subcategories therein. The model is presented in the context of cognitive architectures relating to multisensory, sensory-motor, and spoken language organizations. The models' predictive values are further discussed in the context of anthropological theories of oral communication evolution and the neurodevelopment of spoken language proto-networks in infants/toddlers. These phylogenetic

  19. The internal/external issue what is an outer object? Another person as object and as separate other in object relations models.

    Science.gov (United States)

    Zachrisson, Anders

    2013-01-01

    The question of what we mean by the term outer object has its roots in the epistemological foundation of psychoanalysis. From the very beginning, Freud's view was Kantian, and psychoanalysis has kept that stance, as it seems. The author reviews the internal/external issue in Freud's thinking and in the central object relations theories (Klein, Winnicott, and Bion). On this background he proposes a simple model to differentiate the concept of object along one central dimension: internal object, external object, and actual person. The main arguments are: (1) there is no direct, unmediated perception of the actual person--the experience of the other is always affected by the perceiver's subjectivity; (2) in intense transference reactions and projections, the perception of the person is dominated by the qualities of an inner object--and the other person "becomes" an external object for the perceiver; (3) when this distortion is less dominating, the other person to a higher degree remains a separate other--a person in his or her own right. Clinical material illustrates these phenomena, and a graphical picture of the model is presented. Finally with the model as background, the author comments on a selection of phenomena and concepts such as unobjectionable transference, "the third position," mourning and loneliness. The way that the internal colours and distorts the external is of course a central preoccupation of psychoanalysis generally. (Spillius et al., 2011, p. 326)

  20. Food pattern modeling shows that the 2010 Dietary Guidelines for sodium and potassium cannot be met simultaneously

    Science.gov (United States)

    Maillot, Matthieu; Monsivais, Pablo; Drewnowski, Adam

    2013-01-01

    The 2010 US Dietary Guidelines recommended limiting intake of sodium to 1500 mg/d for people older than 50 years, African Americans, and those suffering from chronic disease. The guidelines recommended that all other people consume less than 2300 mg sodium and 4700 mg of potassium per day. The theoretical feasibility of meeting the sodium and potassium guidelines while simultaneously maintaining nutritional adequacy of the diet was tested using food pattern modeling based on linear programming. Dietary data from the National Health and Nutrition Examination Survey 2001-2002 were used to create optimized food patterns for 6 age-sex groups. Linear programming models determined the boundary conditions for the potassium and sodium content of the modeled food patterns that would also be compatible with other nutrient goals. Linear programming models also sought to determine the amounts of sodium and potassium that both would be consistent with the ratio of Na to K of 0.49 and would cause the least deviation from the existing food habits. The 6 sets of food patterns were created before and after an across-the-board 10% reduction in sodium content of all foods in the Food and Nutrition Database for Dietary Studies. Modeling analyses showed that the 2010 Dietary Guidelines for sodium were incompatible with potassium guidelines and with nutritionally adequate diets, even after reducing the sodium content of all US foods by 10%. Feasibility studies should precede or accompany the issuing of dietary guidelines to the public. PMID:23507224

  1. Jeugd met beperkingen

    NARCIS (Netherlands)

    Sjoerd Kooiker

    2006-01-01

    Voor kinderen en jongeren met een lichamelijke of verstandelijke beperking is 'gewoon meedoen' in de samenleving geen vanzelfsprekendheid.  Zij ervaren vaak meer obstakels bij het naar school gaan, het vinden van een baan en in hun vrijetijdsbesteding dan andere kinderen en jongeren. Ook

  2. Studeren met Hans Rosenberg

    NARCIS (Netherlands)

    Rutten, R.J.

    2001-01-01

    Hoe was het om in de jaren zestig te studeren? Laat ik een terugblik ophangen aan een studiemakker, Hans Rosenberg. We vormden samen de sterrekundejaar- gang 1961. Hans studeerde af in 1966 met hoofdvak wiskunde, promoveerde op radiostralingsprocessen in de zonnecorona in 1973, verliet de

  3. SPSS met syntax

    NARCIS (Netherlands)

    Grotenhuis, H.F. te; Visscher, C.A.M.

    2007-01-01

    Dit boekje wijkt af van de gebruikelijke statistiekboeken omdat het sec gaat over het bekende statistische computerprogramma SPSS, en dan alleen nog de oorspronkelijke variant waarin wordt gewerkt met syntax (intypen commando's -zoals bij DOS) i.p.v. de later ontwikkelde 'Windows-schil' (aanklikken

  4. Multi-objective compared to single-objective optimization with application to model validation and uncertainty quantification

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Riegert, R.; Krosche, M.; Stekolschikov, K. [Scandpower Petroleum Technology GmbH, Hamburg (Germany); Fahimuddin, A. [Technische Univ. Braunschweig (Germany)

    2007-09-13

    History Matching in Reservoir Simulation, well location and production optimization etc. is generally a multi-objective optimization problem. The problem statement of history matching for a realistic field case includes many field and well measurements in time and type, e.g. pressure measurements, fluid rates, events such as water and gas break-throughs, etc. Uncertainty parameters modified as part of the history matching process have varying impact on the improvement of the match criteria. Competing match criteria often reduce the likelihood of finding an acceptable history match. It is an engineering challenge in manual history matching processes to identify competing objectives and to implement the changes required in the simulation model. In production optimization or scenario optimization the focus on one key optimization criterion such as NPV limits the identification of alternatives and potential opportunities, since multiple objectives are summarized in a predefined global objective formulation. Previous works primarily focus on a specific optimization method. Few works actually concentrate on the objective formulation and multi-objective optimization schemes have not yet been applied to reservoir simulations. This paper presents a multi-objective optimization approach applicable to reservoir simulation. It addresses the problem of multi-objective criteria in a history matching study and presents analysis techniques identifying competing match criteria. A Pareto-Optimizer is discussed and the implementation of that multi-objective optimization scheme is applied to a case study. Results are compared to a single-objective optimization method. (orig.)

  5. Handling Emergency Management in [an] Object Oriented Modeling Environment

    Science.gov (United States)

    Tokgoz, Berna Eren; Cakir, Volkan; Gheorghe, Adrian V.

    2010-01-01

    It has been understood that protection of a nation from extreme disasters is a challenging task. Impacts of extreme disasters on a nation's critical infrastructures, economy and society could be devastating. A protection plan itself would not be sufficient when a disaster strikes. Hence, there is a need for a holistic approach to establish more resilient infrastructures to withstand extreme disasters. A resilient infrastructure can be defined as a system or facility that is able to withstand damage, but if affected, can be readily and cost-effectively restored. The key issue to establish resilient infrastructures is to incorporate existing protection plans with comprehensive preparedness actions to respond, recover and restore as quickly as possible, and to minimize extreme disaster impacts. Although national organizations will respond to a disaster, extreme disasters need to be handled mostly by local emergency management departments. Since emergency management departments have to deal with complex systems, they have to have a manageable plan and efficient organizational structures to coordinate all these systems. A strong organizational structure is the key in responding fast before and during disasters, and recovering quickly after disasters. In this study, the entire emergency management is viewed as an enterprise and modelled through enterprise management approach. Managing an enterprise or a large complex system is a very challenging task. It is critical for an enterprise to respond to challenges in a timely manner with quick decision making. This study addresses the problem of handling emergency management at regional level in an object oriented modelling environment developed by use of TopEase software. Emergency Operation Plan of the City of Hampton, Virginia, has been incorporated into TopEase for analysis. The methodology used in this study has been supported by a case study on critical infrastructure resiliency in Hampton Roads.

  6. Trajectory control sensor engineering model detailed test objective

    Science.gov (United States)

    Dekome, Kent; Barr, Joseph Martin

    1991-01-01

    The concept employed in an existing Trajectory Control Sensor (TCS) breadboard is being developed into an engineering model to be considered for flight on the Shuttle as a Detailed Test Objective (DTO). The sensor design addresses the needs of Shuttle/SSF docking/berthing by providing relative range and range rate to 1500 meters as well as the perceived needs of AR&C by relative attitude measurement over the last 100 meters. Range measurement is determined using a four-tone ranging technique. The Doppler shift on the highest frequency tone will be used to provide direct measurement of range rate. Bearing rate and attitude rates will be determined through back differencing of bearing and attitude, respectively. The target consists of an isosceles triangle configuration of three optical retroreflectors, roughly one meter and one-half meter in size. After target acquisition, the sensor continually updates the positions of the three retros at a rate of about one hertz. The engineering model is expected to weigh about 25 pounds, consume 25-30 watts, and have an envelope of about 1.25 cubic feet. The following concerns were addressed during the presentation: are there any concerns with differentiating attitude and bearing to get attitude and bearing rates? Since the docking scenario has low data bandwidth, back differencing is a sufficient approximation of a perfect differentiator for this application. Could range data be obtained if there were no retroreflectors on the target vehicle? Possibly, but only at close range. It would be dependent on target characteristics.

  7. Possibility of object recognition using Altera's model based design approach

    International Nuclear Information System (INIS)

    Tickle, A J; Harvey, P K; Smith, J S; Wu, F

    2009-01-01

    Object recognition is an image processing task of finding a given object in a selected image or video sequence. Object recognition can be divided into two areas: one of these is decision-theoretic and deals with patterns described by quantitative descriptors, for example such as length, area, shape and texture. With this Graphical User Interface Circuitry (GUIC) methodology employed here being relatively new for object recognition systems, the aim of this work is to identify if the developed circuitry can detect certain shapes or strings within the target image. A much smaller reference image feeds the preset data for identification, tests are conducted for both binary and greyscale and the additional mathematical morphology to highlight the area within the target image with the object(s) are located is also presented. This then provides proof that basic recognition methods are valid and would allow the progression to developing decision-theoretical and learning based approaches using GUICs for use in multidisciplinary tasks.

  8. The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations

    Science.gov (United States)

    Williams, K. D.; Copsey, D.; Blockley, E. W.; Bodas-Salcedo, A.; Calvert, D.; Comer, R.; Davis, P.; Graham, T.; Hewitt, H. T.; Hill, R.; Hyder, P.; Ineson, S.; Johns, T. C.; Keen, A. B.; Lee, R. W.; Megann, A.; Milton, S. F.; Rae, J. G. L.; Roberts, M. J.; Scaife, A. A.; Schiemann, R.; Storkey, D.; Thorpe, L.; Watterson, I. G.; Walters, D. N.; West, A.; Wood, R. A.; Woollings, T.; Xavier, P. K.

    2018-02-01

    The Global Coupled 3 (GC3) configuration of the Met Office Unified Model is presented. Among other applications, GC3 is the basis of the United Kingdom's submission to the Coupled Model Intercomparison Project 6 (CMIP6). This paper documents the model components that make up the configuration (although the scientific descriptions of these components are in companion papers) and details the coupling between them. The performance of GC3 is assessed in terms of mean biases and variability in long climate simulations using present-day forcing. The suitability of the configuration for predictability on shorter time scales (weather and seasonal forecasting) is also briefly discussed. The performance of GC3 is compared against GC2, the previous Met Office coupled model configuration, and against an older configuration (HadGEM2-AO) which was the submission to CMIP5. In many respects, the performance of GC3 is comparable with GC2, however, there is a notable improvement in the Southern Ocean warm sea surface temperature bias which has been reduced by 75%, and there are improvements in cloud amount and some aspects of tropical variability. Relative to HadGEM2-AO, many aspects of the present-day climate are improved in GC3 including tropospheric and stratospheric temperature structure, most aspects of tropical and extratropical variability and top-of-atmosphere and surface fluxes. A number of outstanding errors are identified including a residual asymmetric sea surface temperature bias (cool northern hemisphere, warm Southern Ocean), an overly strong global hydrological cycle and insufficient European blocking.

  9. Modelling object typicality in description logics - [Workshop on Description Logics

    CSIR Research Space (South Africa)

    Britz, K

    2009-07-01

    Full Text Available than those not in C. This is a technical construction which allows us to order the entire domain, instead of only the members of C. This leads us to take as starting point a finite set of preference orders f j : j 2 J g on objects in the application... domain, with index set J . If j prefers any object in C to any object outside of C, we call j a C-order. To ensure that the subsumption relations eventually generated are rational [4, 14], we assume the preference orders to be a modular partial...

  10. Working memory contributes to the encoding of object location associations: Support for a 3-part model of object location memory.

    Science.gov (United States)

    Gillis, M Meredith; Garcia, Sarah; Hampstead, Benjamin M

    2016-09-15

    A recent model by Postma and colleagues posits that the encoding of object location associations (OLAs) requires the coordination of several cognitive processes mediated by ventral (object perception) and dorsal (spatial perception) visual pathways as well as the hippocampus (feature binding) [1]. Within this model, frontoparietal network recruitment is believed to contribute to both the spatial processing and working memory task demands. The current study used functional magnetic resonance imaging (fMRI) to test each step of this model in 15 participants who encoded OLAs and performed standard n-back tasks. As expected, object processing resulted in activation of the ventral visual stream. Object in location processing resulted in activation of both the ventral and dorsal visual streams as well as a lateral frontoparietal network. This condition was also the only one to result in medial temporal lobe activation, supporting its role in associative learning. A conjunction analysis revealed areas of shared activation between the working memory and object in location phase within the lateral frontoparietal network, anterior insula, and basal ganglia; consistent with prior working memory literature. Overall, findings support Postma and colleague's model and provide clear evidence for the role of working memory during OLA encoding. Published by Elsevier B.V.

  11. A tri-objective, dynamic weapon assignment model for surface ...

    African Journals Online (AJOL)

    2015-05-11

    May 11, 2015 ... metaheuristic for solving the vehicle routing problem with time .... them the dynamic programming formulation by Bradford [3] in 1961, the nonlinear pro- ..... The concept of multi-objective optimisation naturally gives rise to the ...

  12. An object-oriented model for ex ante accounting information

    NARCIS (Netherlands)

    Verdaasdonk, P.J.A.

    2003-01-01

    Present accounting data models such as the Research-Event-Agent (REA) model merely focus on the modeling of static accounting phenomena. In this paper, it is argued that these models are not able to provide relevant ex ante accounting data for operations management decisions. These decisions require

  13. Geoengineering by stratospheric SO2 injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE

    Directory of Open Access Journals (Sweden)

    B. Kravitz

    2010-07-01

    Full Text Available We examine the response of the Met Office Hadley Centre's HadGEM2-AO climate model to simulated geoengineering by continuous injection of SO2 into the lower stratosphere, and compare the results with those from the Goddard Institute for Space Studies ModelE. Despite the differences between the models, we find a broadly similar geographic distribution of the response to geoengineering in both models in terms of near-surface air temperature and mean June–August precipitation. The simulations also suggest that significant changes in regional climate would be experienced even if geoengineering was successful in maintaining global-mean temperature near current values, and both models indicate rapid warming if geoengineering is not sustained.

  14. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    Science.gov (United States)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  15. Modeling Spatial Data within Object Relational-Databases

    Directory of Open Access Journals (Sweden)

    Iuliana BOTHA

    2011-03-01

    Full Text Available Spatial data can refer to elements that help place a certain object in a certain area. These elements are latitude, longitude, points, geometric figures represented by points, etc. However, when translating these elements into data that can be stored in a computer, it all comes down to numbers. The interesting part that requires attention is how to memorize them in order to obtain fast and various spatial queries. This part is where the DBMS (Data Base Management System that contains the database acts in. In this paper, we analyzed and compared two object-relational DBMS that work with spatial data: Oracle and PostgreSQL.

  16. Optimizing an objective function under a bivariate probability model

    NARCIS (Netherlands)

    X. Brusset; N.M. Temme (Nico)

    2007-01-01

    htmlabstractThe motivation of this paper is to obtain an analytical closed form of a quadratic objective function arising from a stochastic decision process with bivariate exponential probability distribution functions that may be dependent. This method is applicable when results need to be

  17. The CTQ flowdown as a conceptual model of project objectives

    NARCIS (Netherlands)

    de Koning, H.; de Mast, J.

    2007-01-01

    The purpose of this article is to describe and clarify a tool that is at the core of the definition phase of most quality improvement projects. This tool is called the critical to quality (CTQ) flowdown. It relates high-level strategic focal points to project objectives. In their turn project

  18. Climate Variability over India and Bangladesh from the Perturbed UK Met Office Hadley Model: Impacts on Flow and Nutrient Fluxes in the Ganges Delta System

    Science.gov (United States)

    Whitehead, P. G.; Caesar, J.; Crossman, J.; Barbour, E.; Ledesma, J.; Futter, M. N.

    2015-12-01

    A semi-distributed flow and water quality model (INCA- Integrated Catchments Model) has been set up for the whole of the Ganges- Brahmaputra- Meghna (GBM) River system in India and Bangladesh. These massive rivers transport large fluxes of water and nutrients into the Bay of Bengal via the GBM Delta system in Bangladesh. Future climate change will impact these fluxes with changing rainfall, temperature, evapotranspiration and soil moisture deficits being altered in the catchment systems. In this study the INCA model has been used to assess potential impacts of climate change using the UK Met Office Hadley Centre GCM model linked to a regionally coupled model of South East Asia, covering India and Bangladesh. The Hadley Centre model has been pururbed by varying the parameters in the model to generate 17 realisations of future climates. Some of these reflect expected change but others capture the more extreme potential behaviour of future climate conditions. The 17 realisations have been used to drive the INCA Flow and Nitrogen model inorder to generate downstream times series of hydrology and nitrate- nitrogen. The variability of the climates on these fluxes are investigated and and their likley impact on the Bay of Begal Delta considered. Results indicate a slight shift in the monsoon season with increased wet season flows and increased temperatures which alter nutrient fluxes. Societal Importance to Stakeholders The GBM Delta supports one of the most densely populated regions of people living in poverty, who rely on ecosystem services provided by the Delta for survival. These ecosystem services are dependent upon fluxes of water and nutrients. Freshwater for urban, agriculture, and aquaculture requirements are essential to livelihoods. Nutrient loads stimulate estuarine ecosystems, supporting fishing stocks, which contribute significantly the economy of Bangladesh. Thus the societal importance of upstream climate driven change change in Bangladesh are very

  19. Chemists’ knowledge object. Formulation, modification and abandonment of iconic model

    Directory of Open Access Journals (Sweden)

    Rómulo Gallego Badillo

    2006-12-01

    Full Text Available This article presents an analysis of different perspectives in regards to chemistry scientific statute. The category of scientific model was considered to characterize the proposal and development of technological-iconic model. It was necessary to have a look at the time in which the introduction of analogical and symbolic models was indispensable to modify the initial model. It also established the way in which the technological-iconic model can be a didactic foundation to lead secondary students towards Chemistry as one of the natural sciences.

  20. 2D Modeling and Classification of Extended Objects in a Network of HRR Radars

    NARCIS (Netherlands)

    Fasoula, A.

    2011-01-01

    In this thesis, the modeling of extended objects with low-dimensional representations of their 2D geometry is addressed. The ultimate objective is the classification of the objects using libraries of such compact 2D object models that are much smaller than in the state-of-the-art classification

  1. Theories of extended objects and composite models of particles

    International Nuclear Information System (INIS)

    Barut, A.O.

    1992-05-01

    The goal of the relativistic theory of extended objects is to predict and correlate the experimentally observed mass spectra, form factors, inelastic transitions, polarizabilities, structure functions of particles from different probes (photons, neutrinos, electrons), and eventually, the break-up, pair production of the system, and scattering of extended objects among themselves. The internal structure may be classified by the nature and number of the internal variables: discrete (fundamental particles), finite number of continuous variables (bound systems), infinite number of continuous variables (p-membranes or localized fields). The algebraic group theoretical S-matrix approach allows us to formulate all the above properties in a unified manner. Different structures are then characterized by different specific parameters. (author). Refs, 4 figs, 1 tab

  2. Modeling 3D Objects for Navigation Purposes Using Laser Scanning

    Directory of Open Access Journals (Sweden)

    Cezary Specht

    2016-07-01

    Full Text Available The paper discusses the creation of 3d models and their applications in navigation. It contains a review of available methods and geometric data sources, focusing mostly on terrestrial laser scanning. It presents detailed description, from field survey to numerical elaboration, how to construct accurate model of a typical few storey building as a hypothetical reference in complex building navigation. Hence, the paper presents fields where 3d models are being used and their potential new applications.

  3. Automation of program model developing for complex structure control objects

    International Nuclear Information System (INIS)

    Ivanov, A.P.; Sizova, T.B.; Mikhejkina, N.D.; Sankovskij, G.A.; Tyufyagin, A.N.

    1991-01-01

    A brief description of software for automated developing the models of integrating modular programming system, program module generator and program module library providing thermal-hydraulic calcualtion of process dynamics in power unit equipment components and on-line control system operation simulation is given. Technical recommendations for model development are based on experience in creation of concrete models of NPP power units. 8 refs., 1 tab., 4 figs

  4. Validation of a multi-objective, predictive urban traffic model

    NARCIS (Netherlands)

    Wilmink, I.R.; Haak, P. van den; Woldeab, Z.; Vreeswijk, J.

    2013-01-01

    This paper describes the results of the verification and validation of the ecoStrategic Model, which was developed, implemented and tested in the eCoMove project. The model uses real-time and historical traffic information to determine the current, predicted and desired state of traffic in a

  5. Principles of object-oriented modeling and simulation with Modelica 2.1

    CERN Document Server

    Fritzson, Peter

    2004-01-01

    A timely introduction to the latest modeling and simulation techniques. Object-oriented modeling is a fast-growing area of modeling and simulation that provides a structured, computer-supported way of doing mathematical and equation-based modeling. Modelica is today's most promising modeling language in that it effectively unifies and generalizes previous object-oriented modeling languages and provides a sound basis for the basic concepts. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1 introduces the latest methods of object-oriented component-based system modeling and

  6. Proposal for a new CAPE-OPEN Object Model

    Science.gov (United States)

    Process simulation applications require the exchange of significant amounts of data between the flowsheet environment, unit operation model, and thermodynamic server. Packing and unpacking various data types and exchanging data using structured text-based architectures, including...

  7. Deformable object model and simulation. Application to lung cancer treatment

    International Nuclear Information System (INIS)

    Baudet, V.

    2006-06-01

    Ionising treatment against cancers such as conformal radiotherapy and hadron therapy are set with error margins that take into account statistics of tumour motions, for instance. We are looking for reducing these margins by searching deformable models that would simulate displacements occurring in lungs during a treatment. It must be personalized with the geometry obtained from CT scans of the patient and also it must be parameterized with physiological measures of the patient. In this Ph. D. thesis, we decided to use a mass-spring system to model lungs because of its fast and physically realist deformations obtained in animation. As a starting point, we chose the model proposed by Van Gelder in order to parameterize a mass-spring system with rheological characteristics of an homogeneous, linear elastic isotropic material in two dimensions (2D). However, we tested this model and proved it was false. Hence we did a Lagrangian study in order to obtain a parametric model with rectangular in 2D (cubic in 3D) elements. We also determined the robustness by testing with stretching, inflating, shearing and bending experiments and also by comparing results with other infinite element method. Thus, in this Ph.D. thesis, we explain how to obtain this parametric model, and how it will be linked to physiological data and how accurate it will be. (author)

  8. OBJECT ORIENTED MODELLING, A MODELLING METHOD OF AN ECONOMIC ORGANIZATION ACTIVITY

    Directory of Open Access Journals (Sweden)

    TĂNĂSESCU ANA

    2014-05-01

    Full Text Available Now, most economic organizations use different information systems types in order to facilitate their activity. There are different methodologies, methods and techniques that can be used to design information systems. In this paper, I propose to present the advantages of using the object oriented modelling at the information system design of an economic organization. Thus, I have modelled the activity of a photo studio, using Visual Paradigm for UML as a modelling tool. For this purpose, I have identified the use cases for the analyzed system and I have presented the use case diagram. I have, also, realized the system static and dynamic modelling, through the most known UML diagrams.

  9. Use of fuzzy sets in modeling of GIS objects

    Science.gov (United States)

    Mironova, Yu N.

    2018-05-01

    The paper discusses modeling and methods of data visualization in geographic information systems. Information processing in Geoinformatics is based on the use of models. Therefore, geoinformation modeling is a key in the chain of GEODATA processing. When solving problems, using geographic information systems often requires submission of the approximate or insufficient reliable information about the map features in the GIS database. Heterogeneous data of different origin and accuracy have some degree of uncertainty. In addition, not all information is accurate: already during the initial measurements, poorly defined terms and attributes (e.g., "soil, well-drained") are used. Therefore, there are necessary methods for working with uncertain requirements, classes, boundaries. The author proposes using spatial information fuzzy sets. In terms of a characteristic function, a fuzzy set is a natural generalization of ordinary sets, when one rejects the binary nature of this feature and assumes that it can take any value in the interval.

  10. Final Report: Legion Core Object Model, March 1, 1996 - September 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Grimshaw, Andrew S.

    1999-09-30

    The model specifies the composition and functionality of Legion's core objects - those objects that cooperate to create, locate, manage, and remove objects from the legion project. In particular, the object model facilitates a flexible extensible implementation, provides a single persistent name space, grants site autonomy to participating organizations, and scales to millions of sites and trillions of objects. Further, it offers a framework that is well suited to providing mechanisms for high performance, security, fault tolerance and commerce.

  11. Modeling the drift of objects floating in the sea

    Science.gov (United States)

    Nof, D.; Girihagama, L. N.

    2016-02-01

    The question how buoyant objects drift and where are they ultimately washed ashore must have troubled humans since the beginning of civilization. A good summary of the observational aspect of the problem is given in Ebbesmeyer (2015) and the references given therein. It includes the journey of shoes originally housed in containers that were accidently swept from the deck of cargo ships to the ocean as well as the famous world war two case of a corpse released by the British Counter Intelligence agency near the Spanish Coast. Of practical modern importance is the question how did the flaperon, belonging to the Malaysian Airplane lost last year (supposedly over the Indian Ocean near Western Australia), travelled almost across the entire Indian Ocean in just 15 months (corresponding to the very high speed of six centimeters per-second, about three times the speed of most ocean currents away from boundaries). Traditionally, it has been thought that three processes affect the drift-ocean currents, surface waves and wind. Of these, the last two are usually regarded as small. The waves effect (Stokes drift) is nonlinear and is probably indeed very small in most cases because the amplitudes are small. It is not so easy to estimate the wind effect and we will argue here that it is not necessarily small though it is obviously close to zero in some cases. The wind speed is typically two orders of magnitude faster than the water (meters per second compared to centimeters per second) and the stress is proportional to the square of the wind speed implying that the wind is important even if only a very small portion of the object protrudes above the sea-level. It is argued that wind, rather than ocean current dominated the drift of both the WWII corpse and the modern day flaperon.

  12. Dimensionering van de Uniqfill chemischer wasser met lamellen

    NARCIS (Netherlands)

    Starmans, D.A.J.

    2006-01-01

    In dit rapport wordt een eerste aanzet gegeven tot de modellering van een kruisstroom chemische wasser met lamellen. Met behulp van bestaande metingen is de stofoverdrachtscoëfficiënt afgeschat, waarna scenario's voor nieuwe wassers doorgerekend konden worden.

  13. Flying, Feathery and Beaked Objects: Children's Mental Models about Birds

    Science.gov (United States)

    Ahi, Berat

    2016-01-01

    Purpose of this research is to state preschool students' mental model about birds by analyzing their drawing. This is a hermeneutical phenomenology research that is based on social constructivist philosophy. Typical case sampling method has used in order to form working group of this research. Working group consisting of 325 children who are in…

  14. Metastasis: objections to the same-gene model

    NARCIS (Netherlands)

    Bernards, R.A.; Weinberg, R.A.

    2002-01-01

    Sir— The model of cancer metastasis suggested by René Bernards and Robert A. Weinberg in their Concepts essay (Nature 418, 823; 2002) is, in my view, a tautology. The suggestion that the same genes are exclusively responsible both for cancer-cell metastasis and for the emergence

  15. Relativistic models of a class of compact objects

    Indian Academy of Sciences (India)

    describe compact stars in hydrostatic equilibrium are discussed. The stellar ... [2] and examine the physical plausibility of several models of a class of neutron stars ... the physical space. However, for k = 0, the space-time metric (12) degenerates into that of Einstein's static Universe filled with matter of uniform density.

  16. Model-based recognition of 3-D objects by geometric hashing technique

    International Nuclear Information System (INIS)

    Severcan, M.; Uzunalioglu, H.

    1992-09-01

    A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs

  17. Integration of a Three-Dimensional Process-Based Hydrological Model into the Object Modeling System

    Directory of Open Access Journals (Sweden)

    Giuseppe Formetta

    2016-01-01

    Full Text Available The integration of a spatial process model into an environmental modeling framework can enhance the model’s capabilities. This paper describes a general methodology for integrating environmental models into the Object Modeling System (OMS regardless of the model’s complexity, the programming language, and the operating system used. We present the integration of the GEOtop model into the OMS version 3.0 and illustrate its application in a small watershed. OMS is an environmental modeling framework that facilitates model development, calibration, evaluation, and maintenance. It provides innovative techniques in software design such as multithreading, implicit parallelism, calibration and sensitivity analysis algorithms, and cloud-services. GEOtop is a physically based, spatially distributed rainfall-runoff model that performs three-dimensional finite volume calculations of water and energy budgets. Executing GEOtop as an OMS model component allows it to: (1 interact directly with the open-source geographical information system (GIS uDig-JGrass to access geo-processing, visualization, and other modeling components; and (2 use OMS components for automatic calibration, sensitivity analysis, or meteorological data interpolation. A case study of the model in a semi-arid agricultural catchment is presented for illustration and proof-of-concept. Simulated soil water content and soil temperature results are compared with measured data, and model performance is evaluated using goodness-of-fit indices. This study serves as a template for future integration of process models into OMS.

  18. Applying CIPP Model for Learning-Object Management

    Science.gov (United States)

    Morgado, Erla M. Morales; Peñalvo, Francisco J. García; Martín, Carlos Muñoz; Gonzalez, Miguel Ángel Conde

    Although knowledge management process needs to receive some evaluation in order to determine their suitable functionality. There is not a clear definition about the stages where LOs need to be evaluated and the specific metrics to continuously promote their quality. This paper presents a proposal for LOs evaluation during their management for e-learning systems. To achieve this, we suggest specific steps for LOs design, implementation and evaluation into the four stages proposed by CIPP model (Context, Input, Process, Product).

  19. Object location and object recognition memory impairments, motivation deficits and depression in a model of Gulf War illness.

    Science.gov (United States)

    Hattiangady, Bharathi; Mishra, Vikas; Kodali, Maheedhar; Shuai, Bing; Rao, Xiolan; Shetty, Ashok K

    2014-01-01

    Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory

  20. Quasi-equilibrium models of magnetized compact objects

    International Nuclear Information System (INIS)

    Markakis, Charalampos; Uryu, Koji; Gourgoulhon, Eric

    2011-01-01

    We report work towards a relativistic formulation for modeling strongly magnetized neutron stars, rotating or in a close circular orbit around another neutron star or black hole, under the approximations of helical symmetry and ideal MHD. The quasi-stationary evolution is governed by the frst law of thermodynamics for helically symmetric systems, which is generalized to include magnetic felds. The formulation involves an iterative scheme for solving the Einstein-Maxwell and relativistic MHD-Euler equations numerically. The resulting configurations for binary systems could be used as self-consistent initial data for studying their inspiral and merger.

  1. An object oriented implementation of the Yeadon human inertia model.

    Science.gov (United States)

    Dembia, Christopher; Moore, Jason K; Hubbard, Mont

    2014-01-01

    We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.

  2. An object oriented implementation of the Yeadon human inertia model

    Science.gov (United States)

    Dembia, Christopher; Moore, Jason K.; Hubbard, Mont

    2015-01-01

    We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input. PMID:25717365

  3. An object model for genome information at all levels of resolution

    Energy Technology Data Exchange (ETDEWEB)

    Honda, S.; Parrott, N.W.; Smith, R.; Lawrence, C.

    1993-12-31

    An object model for genome data at all levels of resolution is described. The model was derived by considering the requirements for representing genome related objects in three application domains: genome maps, large-scale DNA sequencing, and exploring functional information in gene and protein sequences. The methodology used for the object-oriented analysis is also described.

  4. A Dynamic Object Behavior Model and Implementation Based on Computational Reflection

    Institute of Scientific and Technical Information of China (English)

    HE Cheng-wan; HE Fei; HE Ke-qing

    2005-01-01

    A dynamic object behavior model based on computational reflection is proposed. This model consists of function level and meta level, the meta objects in meta level manage the base objects and behaviors in function level, including dynamic binding and unbinding of base object and behavior.We implement this model with RoleJava Language, which is our self linguistic extension of the Java Language. Meta Objects are generated automatically at compile-time, this makes the reflecton mechanism transparent to programmers. Finally an example applying this model to a banking system is presented.

  5. A hierarchical probabilistic model for rapid object categorization in natural scenes.

    Directory of Open Access Journals (Sweden)

    Xiaofu He

    Full Text Available Humans can categorize objects in complex natural scenes within 100-150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ∼6,000 in a leading model feature space and often categorize objects in natural scenes by categorizing the context that co-occurs with objects when objects do not occupy large portions of the scenes. It is thus unclear how humans achieve rapid scene categorization.To address this issue, we developed a hierarchical probabilistic model for rapid object categorization in natural scenes. In this model, a natural object category is represented by a coarse hierarchical probability distribution (PD, which includes PDs of object geometry and spatial configuration of object parts. Object parts are encoded by PDs of a set of natural object structures, each of which is a concatenation of local object features. Rapid categorization is performed as statistical inference. Since the model uses a very small number (∼100 of structures for even complex object categories such as animals and cars, it requires little training and is robust in the presence of large variations within object categories and in their occurrences in natural scenes. Remarkably, we found that the model categorized animals in natural scenes and cars in street scenes with a near human-level performance. We also found that the model located animals and cars in natural scenes, thus overcoming a flaw in many other models which is to categorize objects in natural context by categorizing contextual features. These results suggest that coarse PDs of object categories based on natural object structures and statistical operations on these PDs may underlie the human ability to rapidly categorize scenes.

  6. Using the object modeling system for hydrological model development and application

    Directory of Open Access Journals (Sweden)

    S. Kralisch

    2005-01-01

    Full Text Available State of the art challenges in sustainable management of water resources have created demand for integrated, flexible and easy to use hydrological models which are able to simulate the quantitative and qualitative aspects of the hydrological cycle with a sufficient degree of certainty. Existing models which have been de-veloped to fit these needs are often constrained to specific scales or purposes and thus can not be easily adapted to meet different challenges. As a solution for flexible and modularised model development and application, the Object Modeling System (OMS has been developed in a joint approach by the USDA-ARS, GPSRU (Fort Collins, CO, USA, USGS (Denver, CO, USA, and the FSU (Jena, Germany. The OMS provides a modern modelling framework which allows the implementation of single process components to be compiled and applied as custom tailored model assemblies. This paper describes basic principles of the OMS and its main components and explains in more detail how the problems during coupling of models or model components are solved inside the system. It highlights the integration of different spatial and temporal scales by their representation as spatial modelling entities embedded into time compound components. As an exam-ple the implementation of the hydrological model J2000 is discussed.

  7. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.

    2015-10-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  8. Mars MetNet Precursor Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.

    2013-09-01

    We are developing a new kind of planetary exploration mission for Mars in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  9. Model of Recommendation System for for Indexing and Retrieving the Learning Object based on Multiagent System

    Directory of Open Access Journals (Sweden)

    Ronaldo Lima Rocha Campos

    2012-07-01

    Full Text Available This paper proposes a multiagent system application model for indexing, retrieving and recommendation learning objects stored in different and heterogeneous repositories. The objects within these repositories are described by filled fields using different metadata standards. The searching mechanism covers several different learning object repositories and the same object can be described in these repositories by the use of different types of fields. Aiming to improve accuracy and coverage in terms of recovering a learning object and improve the signification of the results we propose an information retrieval model based on the multiagent system approach and an ontological model to describe the knowledge domain covered.

  10. An Overview of the Object Protocol Model (OPM) and the OPM Data Management Tools.

    Science.gov (United States)

    Chen, I-Min A.; Markowitz, Victor M.

    1995-01-01

    Discussion of database management tools for scientific information focuses on the Object Protocol Model (OPM) and data management tools based on OPM. Topics include the need for new constructs for modeling scientific experiments, modeling object structures and experiments in OPM, queries and updates, and developing scientific database applications…

  11. Development and investigation of aggregate models for nuclear objects with time shifts

    International Nuclear Information System (INIS)

    Gharakhanlou, J.; Kazachkov, I.V.

    2012-01-01

    The development and investigation of aggregate models for nuclear objects with shift arguments are discussed.The nonlinear differential equations of the model are described and the Cauchy problem is stated. The specific feature of the mathematical model for potentially hazardous nuclear objects are analyzed and computer simulation is presented

  12. Multi-objective possibilistic model for portfolio selection with transaction cost

    Science.gov (United States)

    Jana, P.; Roy, T. K.; Mazumder, S. K.

    2009-06-01

    In this paper, we introduce the possibilistic mean value and variance of continuous distribution, rather than probability distributions. We propose a multi-objective Portfolio based model and added another entropy objective function to generate a well diversified asset portfolio within optimal asset allocation. For quantifying any potential return and risk, portfolio liquidity is taken into account and a multi-objective non-linear programming model for portfolio rebalancing with transaction cost is proposed. The models are illustrated with numerical examples.

  13. The social patterning of risk factors for noncommunicable diseases in five countries: evidence from the modeling the epidemiologic transition study (METS

    Directory of Open Access Journals (Sweden)

    Silvia Stringhini

    2016-09-01

    Full Text Available Abstract Background Associations between socioeconomic status (SES and risk factors for noncommunicable diseases (NCD-RFs may differ in populations at different stages of the epidemiological transition. We assessed the social patterning of NCD-RFs in a study including populations with different levels of socioeconomic development. Methods Data on SES, smoking, physical activity, body mass index, blood pressure, cholesterol and glucose were available from the Modeling the Epidemiologic Transition Study (METS, with about 500 participants aged 25–45 in each of five sites (Ghana, South Africa, Jamaica, Seychelles, United States. Results The prevalence of NCD-RFs differed between these populations from five countries (e.g., lower prevalence of smoking, obesity and hypertension in rural Ghana and by sex (e.g., higher prevalence of smoking and physical activity in men and of obesity in women in most populations. Smoking and physical activity were associated with low SES in most populations. The associations of SES with obesity, hypertension, cholesterol and elevated blood glucose differed by population, sex, and SES indicator. For example, the prevalence of elevated blood glucose tended to be associated with low education, but not with wealth, in Seychelles and USA. The association of SES with obesity and cholesterol was direct in some populations but inverse in others. Conclusions In conclusion, the distribution of NCD-RFs was socially patterned in these populations at different stages of the epidemiological transition, but associations between SES and NCD-RFs differed substantially according to risk factor, population, sex, and SES indicator. These findings emphasize the need to assess and integrate the social patterning of NCD-RFs in NCD prevention and control programs in LMICs.

  14. Design of a Model Execution Framework: Repetitive Object-Oriented Simulation Environment (ROSE)

    Science.gov (United States)

    Gray, Justin S.; Briggs, Jeffery L.

    2008-01-01

    The ROSE framework was designed to facilitate complex system analyses. It completely divorces the model execution process from the model itself. By doing so ROSE frees the modeler to develop a library of standard modeling processes such as Design of Experiments, optimizers, parameter studies, and sensitivity studies which can then be applied to any of their available models. The ROSE framework accomplishes this by means of a well defined API and object structure. Both the API and object structure are presented here with enough detail to implement ROSE in any object-oriented language or modeling tool.

  15. Gezondheidsrisico's in verband met het werken met Pentachloorfenol : een onderzoek

    NARCIS (Netherlands)

    Geuskens, R.B.M.; Nossent, S.M.; Koëter, H.B.W.M.; Dreef-van der Meulen, H.C.; Stijkel, A.; Zielhuis, R.l.

    1989-01-01

    De gezondheidsrisico's i.v.m. het werken met pentachloorfenol (PCP) wordt geevalueerd. Het gebruik van PCP in Nederlandse arbeidssituaties neemt sterk af en is beperkt tot de formulering van emeltenkorrels en de, met name preventieve, houtverduurzaming. De totale risicopopulatie is niet omvangrijk

  16. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, Ari-Matti; Aleksashkin, Sergei; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Haukka, Harri

    2015-04-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Scientific Payload The payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: 1. MetBaro Pressure device 2. MetHumi Humidity device 3. MetTemp Temperature sensors Optical devices: 1. PanCam Panoramic 2. MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer 3. DS Dust sensor The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the

  17. Uncertain and multi-objective programming models for crop planting structure optimization

    Directory of Open Access Journals (Sweden)

    Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

    2016-03-01

    Full Text Available Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP model and an inexact fuzzy linear programming (IFLP model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods

  18. Modeling the Object-Oriented Software Process: OPEN and the Unified Process

    NARCIS (Netherlands)

    van den Berg, Klaas; Aksit, Mehmet; van den Broek, P.M.

    A short introduction to software process modeling is presented, particularly object-oriented modeling. Two major industrial process models are discussed: the OPEN model and the Unified Process model. In more detail, the quality assurance in the Unified Process tool (formally called Objectory) is

  19. Modeling the Object-Oriented Software Process: OPEN and the Unified Process

    OpenAIRE

    van den Berg, Klaas; Aksit, Mehmet; van den Broek, P.M.

    1999-01-01

    A short introduction to software process modeling is presented, particularly object-oriented modeling. Two major industrial process models are discussed: the OPEN model and the Unified Process model. In more detail, the quality assurance in the Unified Process tool (formally called Objectory) is reviewed.

  20. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  1. Eerstejaars zicht geven op hun latere beroep: herontwerp van propedeuse Facility management met behulp van het 4C-ID model

    NARCIS (Netherlands)

    Hoogveld, Bert; Steinen, Hennie

    2010-01-01

    Redesign of preparatory higher professional bachelor curriculum facility management applying 4C-ID instructional design methodology. Reference please cite as: Hoogveld, A. W. M., & Steinen, H. (2008). Eerstejaars zicht geven op hun latere beroep: herontwerp van propedeuse Facility management met

  2. The OCoN approach to workflow modeling in object-oriented systems

    NARCIS (Netherlands)

    Wirtz, G.; Weske, M.H.; Giese, H.

    2001-01-01

    Workflow management aims at modeling and executing application processes in complex technical and organizational environments. Modern information systems are often based on object-oriented design techniques, for instance, the Unified Modeling Language (UML). These systems consist of application

  3. Conditioning 3D object-based models to dense well data

    Science.gov (United States)

    Wang, Yimin C.; Pyrcz, Michael J.; Catuneanu, Octavian; Boisvert, Jeff B.

    2018-06-01

    Object-based stochastic simulation models are used to generate categorical variable models with a realistic representation of complicated reservoir heterogeneity. A limitation of object-based modeling is the difficulty of conditioning to dense data. One method to achieve data conditioning is to apply optimization techniques. Optimization algorithms can utilize an objective function measuring the conditioning level of each object while also considering the geological realism of the object. Here, an objective function is optimized with implicit filtering which considers constraints on object parameters. Thousands of objects conditioned to data are generated and stored in a database. A set of objects are selected with linear integer programming to generate the final realization and honor all well data, proportions and other desirable geological features. Although any parameterizable object can be considered, objects from fluvial reservoirs are used to illustrate the ability to simultaneously condition multiple types of geologic features. Channels, levees, crevasse splays and oxbow lakes are parameterized based on location, path, orientation and profile shapes. Functions mimicking natural river sinuosity are used for the centerline model. Channel stacking pattern constraints are also included to enhance the geological realism of object interactions. Spatial layout correlations between different types of objects are modeled. Three case studies demonstrate the flexibility of the proposed optimization-simulation method. These examples include multiple channels with high sinuosity, as well as fragmented channels affected by limited preservation. In all cases the proposed method reproduces input parameters for the object geometries and matches the dense well constraints. The proposed methodology expands the applicability of object-based simulation to complex and heterogeneous geological environments with dense sampling.

  4. Creation of integrated information model of 'Ukryttia' object premises condition to support the works

    International Nuclear Information System (INIS)

    Postil, S.D.; Ermolenko, A.I.; Ivanov, V.V.; Kotlyarov, V.T.

    2002-01-01

    A technology for creation of integrated information model of 'Ukryttia' Object premises conditions was developed on the basis of geoinformation system AutoCad. DB Access and instrumental utility 3D MAX. Information models and database for conditions of 'Ukryttia' object's premises located between 0.000 and 67.000 marks in axes 41-52, row G-T, were created. Using integrated information model of 'Ukryttia' object premises conditions, 3D surface distribution of radiation field in the object premises on level 0.000 has been received. It is revealed that maximum values of radiation field are concentrated over the clusters of fuel-containing materials

  5. Engineering the object-relation database model in O-Raid

    Science.gov (United States)

    Dewan, Prasun; Vikram, Ashish; Bhargava, Bharat

    1989-01-01

    Raid is a distributed database system based on the relational model. O-raid is an extension of the Raid system and will support complex data objects. The design of O-Raid is evolutionary and retains all features of relational data base systems and those of a general purpose object-oriented programming language. O-Raid has several novel properties. Objects, classes, and inheritance are supported together with a predicate-base relational query language. O-Raid objects are compatible with C++ objects and may be read and manipulated by a C++ program without any 'impedance mismatch'. Relations and columns within relations may themselves be treated as objects with associated variables and methods. Relations may contain heterogeneous objects, that is, objects of more than one class in a certain column, which can individually evolve by being reclassified. Special facilities are provided to reduce the data search in a relation containing complex objects.

  6. Microbewerking met behulp van lasers

    NARCIS (Netherlands)

    Ezendam, M.M.M.

    1994-01-01

    Het bewerken van materialen met behulp van lasers staat momenteel enorm in de belangstelling, en terecht. De ontwikkeling van bestaande en nieuwe typen lasers staat alles behalve stil. Ontwikkelingen bevinden zich met name in het gebied van hogere vermogens, betere bundelkwaliteit en hogere

  7. Development of a Conceptual Model and Survey Instrument to Measure Conscientious Objection to Abortion Provision.

    Directory of Open Access Journals (Sweden)

    Laura Florence Harris

    Full Text Available Conscientious objection to abortion, clinicians' refusal to perform legal abortions because of their religious or moral beliefs, has been the subject of increasing debate among bioethicists, policymakers, and public health advocates in recent years. Conscientious objection policies are intended to balance reproductive rights and clinicians' beliefs. However, in practice, clinician objection can act as a barrier to abortion access-impinging on reproductive rights, and increasing unsafe abortion and related morbidity and mortality. There is little information about conscientious objection from a medical or public health perspective. A quantitative instrument is needed to assess prevalence of conscientious objection and to provide insight on its practice. This paper describes the development of a survey instrument to measure conscientious objection to abortion provision.A literature review, and in-depth formative interviews with stakeholders in Colombia were used to develop a conceptual model of conscientious objection. This model led to the development of a survey, which was piloted, and then administered, in Ghana.The model posits three domains of conscientious objection that form the basis for the survey instrument: 1 beliefs about abortion and conscientious objection; 2 actions related to conscientious objection and abortion; and 3 self-identification as a conscientious objector.The instrument is intended to be used to assess prevalence among clinicians trained to provide abortions, and to gain insight on how conscientious objection is practiced in a variety of settings. Its results can inform more effective and appropriate strategies to regulate conscientious objection.

  8. The introduction of Greek Central Health Fund: Has the reform met its goal in the sector of Primary Health Care or is there a new model needed?

    Science.gov (United States)

    Polyzos, Nikos; Karakolias, Stefanos; Dikeos, Costas; Theodorou, Mamas; Kastanioti, Catherine; Mama, Kalomira; Polizoidis, Periklis; Skamnakis, Christoforos; Tsairidis, Charalampos; Thireos, Eleutherios

    2014-11-25

    The National Organization for Healthcare Provision (EOPYY) originates from the recent reform in Greek healthcare, aiming amidst economic predicament, at the rationalization of health expenditure and reactivation of the pivotal role of Primary Health Care (PHC). Health funding (public/private) mix is examined, alongside the role of pre-existing health insurance funds. The main pursuit of this paper is to evaluate whether EOPYY has met its goals. The article surveys for best practices in advanced health systems and similar sickness funds. The main benchmarks focus on PHC provision and providers' reimbursement. It then turns to an analysis of EOPYY, focusing on specific questions and searching the relevant databases. It compares the best practice examples to the EOPYY (alongside further developments set by new legislation in L 4238/14), revealing weaknesses relevant to non-integrated PHC network, unbalanced manpower, non-gatekeeping, under-financing and other funding problems caused by the current crisis. Finally, a new model of medical procedures cost accounting was tested in health centers. An alternative operation of EOPYY functioning primarily as an insurer whereas its proprietary units are integrated with these of the NHS is proposed. The paper claims it is critical to revise the current induced demand favorable reimbursement system, via per capita payments for physicians combined with extra pay-for-performance payments, while cost accounting corroborates a prospective system for NHS's and EOPYY's units, under a combination of global budgets and Ambulatory Patient Groups (APGs) Self-critical points on the limitations of results due to lack of adequate data (not) given by EOPYY are initially raised. Then the issue concerning the debate between 'copying' benchmarks and 'a la cart' selectively adopting and adapting best practices from wider experience is discussed, with preference to the latter. The idea of an 'a la cart' choice of international examples is proposed

  9. Tool Support for Collaborative Teaching and Learning of Object-Oriented Modelling

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Ratzer, Anne Vinter

    2002-01-01

    Modeling is central to doing and learning object-oriented development. We present a new tool, Ideogramic UML, for gesture-based collaborative modeling with the Unified Modeling Language (UML), which can be used to collaboratively teach and learn modeling. Furthermore, we discuss how we have...

  10. Unsupervised Object Modeling and Segmentation with Symmetry Detection for Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Jui-Yuan Su

    2015-04-01

    Full Text Available In this paper we present a novel unsupervised approach to detecting and segmenting objects as well as their constituent symmetric parts in an image. Traditional unsupervised image segmentation is limited by two obvious deficiencies: the object detection accuracy degrades with the misaligned boundaries between the segmented regions and the target, and pre-learned models are required to group regions into meaningful objects. To tackle these difficulties, the proposed approach aims at incorporating the pair-wise detection of symmetric patches to achieve the goal of segmenting images into symmetric parts. The skeletons of these symmetric parts then provide estimates of the bounding boxes to locate the target objects. Finally, for each detected object, the graphcut-based segmentation algorithm is applied to find its contour. The proposed approach has significant advantages: no a priori object models are used, and multiple objects are detected. To verify the effectiveness of the approach based on the cues that a face part contains an oval shape and skin colors, human objects are extracted from among the detected objects. The detected human objects and their parts are finally tracked across video frames to capture the object part movements for learning the human activity models from video clips. Experimental results show that the proposed method gives good performance on publicly available datasets.

  11. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based Model Selection.

    Directory of Open Access Journals (Sweden)

    Mark N Read

    2016-09-01

    Full Text Available The advent of two-photon microscopy now reveals unprecedented, detailed spatio-temporal data on cellular motility and interactions in vivo. Understanding cellular motility patterns is key to gaining insight into the development and possible manipulation of the immune response. Computational simulation has become an established technique for understanding immune processes and evaluating hypotheses in the context of experimental data, and there is clear scope to integrate microscopy-informed motility dynamics. However, determining which motility model best reflects in vivo motility is non-trivial: 3D motility is an intricate process requiring several metrics to characterize. This complicates model selection and parameterization, which must be performed against several metrics simultaneously. Here we evaluate Brownian motion, Lévy walk and several correlated random walks (CRWs against the motility dynamics of neutrophils and lymph node T cells under inflammatory conditions by simultaneously considering cellular translational and turn speeds, and meandering indices. Heterogeneous cells exhibiting a continuum of inherent translational speeds and directionalities comprise both datasets, a feature significantly improving capture of in vivo motility when simulated as a CRW. Furthermore, translational and turn speeds are inversely correlated, and the corresponding CRW simulation again improves capture of our in vivo data, albeit to a lesser extent. In contrast, Brownian motion poorly reflects our data. Lévy walk is competitive in capturing some aspects of neutrophil motility, but T cell directional persistence only, therein highlighting the importance of evaluating models against several motility metrics simultaneously. This we achieve through novel application of multi-objective optimization, wherein each model is independently implemented and then parameterized to identify optimal trade-offs in performance against each metric. The resultant Pareto

  12. Gezondheidsrisico's in verband met het werken met Polychloorbifenylen : een onderzoek

    NARCIS (Netherlands)

    Geuskens, R.B.M.; Nossent, S.M.; Koëter, H.B.W.M.; Dreef-van der Meulen, H.C.; Stijkel, A.; Zielhuis, R.L.

    1989-01-01

    Met behulp van gegevens verkregen uit een werkplekinventarisatie naar gegevens over produktie/gebruik, risicopopulatie en (mogelijke) blootstelling aan polychloorbifenylen (PCB's), en een literatuurstudie naar mogelijke schadelijke eigenschappen van PCB's op het reproductiesysteem en/of nageslacht

  13. Model-based object classification using unification grammars and abstract representations

    Science.gov (United States)

    Liburdy, Kathleen A.; Schalkoff, Robert J.

    1993-04-01

    The design and implementation of a high level computer vision system which performs object classification is described. General object labelling and functional analysis require models of classes which display a wide range of geometric variations. A large representational gap exists between abstract criteria such as `graspable' and current geometric image descriptions. The vision system developed and described in this work addresses this problem and implements solutions based on a fusion of semantics, unification, and formal language theory. Object models are represented using unification grammars, which provide a framework for the integration of structure and semantics. A methodology for the derivation of symbolic image descriptions capable of interacting with the grammar-based models is described and implemented. A unification-based parser developed for this system achieves object classification by determining if the symbolic image description can be unified with the abstract criteria of an object model. Future research directions are indicated.

  14. Feedforward Object-Vision Models Only Tolerate Small Image Variations Compared to Human

    Directory of Open Access Journals (Sweden)

    Masoud eGhodrati

    2014-07-01

    Full Text Available Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modelling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well when images with more complex variations of the same object are applied to them. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e. briefly presented masked stimuli with complex image variations, human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modelling. We show that this approach is not of significant help in solving the computational crux of object recognition (that is invariant object recognition when the identity-preserving image variations become more complex.

  15. Controlling Business Object States in Business Process Models to Support Compliance

    OpenAIRE

    Peņicina, L

    2016-01-01

    The doctoral thesis addresses the existing gap between business process models and states of business objects. Existing modelling methods such as BPMN and ArchiMate lack an explicitly declarative approach for capturing states of business objects and laws of state transitions. This gap hinders the compliance of business process models with regulations imposed internally or externally, and can result in potential legal problems for organizations. Also this g...

  16. Modeling guidance and recognition in categorical search: Bridging human and computer object detection

    OpenAIRE

    Zelinsky, Gregory J.; Peng, Yifan; Berg, Alexander C.; Samaras, Dimitris

    2013-01-01

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of ...

  17. Definition of an Object-Oriented Modeling Language for Enterprise Architecture

    OpenAIRE

    Lê, Lam Son; Wegmann, Alain

    2005-01-01

    In enterprise architecture, the goal is to integrate business resources and IT resources in order to improve an enterprises competitiveness. In an enterprise architecture project, the development team usually constructs a model that represents the enterprise: the enterprise model. In this paper, we present a modeling language for building such enterprise models. Our enterprise models are hierarchical object-oriented representations of the enterprises. This paper presents the foundations of o...

  18. Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall-runoff model

    NARCIS (Netherlands)

    Deckers, Dave L.E.H.; Booij, Martijn J.; Rientjes, T.H.M.; Krol, Martinus S.

    2010-01-01

    This study attempts to examine if catchment variability favours regionalisation by principles of catchment similarity. Our work combines calibration of a simple conceptual model for multiple objectives and multi-regression analyses to establish a regional model between model sensitive parameters and

  19. An object-oriented forest landscape model and its representation of tree species

    Science.gov (United States)

    Hong S. He; David J. Mladenoff; Joel Boeder

    1999-01-01

    LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...

  20. A Linear Programming Model to Optimize Various Objective Functions of a Foundation Type State Support Program.

    Science.gov (United States)

    Matzke, Orville R.

    The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…

  1. Soft object deformation monitoring and learning for model-based robotic hand manipulation.

    Science.gov (United States)

    Cretu, Ana-Maria; Payeur, Pierre; Petriu, Emil M

    2012-06-01

    This paper discusses the design and implementation of a framework that automatically extracts and monitors the shape deformations of soft objects from a video sequence and maps them with force measurements with the goal of providing the necessary information to the controller of a robotic hand to ensure safe model-based deformable object manipulation. Measurements corresponding to the interaction force at the level of the fingertips and to the position of the fingertips of a three-finger robotic hand are associated with the contours of a deformed object tracked in a series of images using neural-network approaches. The resulting model captures the behavior of the object and is able to predict its behavior for previously unseen interactions without any assumption on the object's material. The availability of such models can contribute to the improvement of a robotic hand controller, therefore allowing more accurate and stable grasp while providing more elaborate manipulation capabilities for deformable objects. Experiments performed for different objects, made of various materials, reveal that the method accurately captures and predicts the object's shape deformation while the object is submitted to external forces applied by the robot fingers. The proposed method is also fast and insensitive to severe contour deformations, as well as to smooth changes in lighting, contrast, and background.

  2. Modreg: A Modular Framework for RGB-D Image Acquisition and 3D Object Model Registration

    Directory of Open Access Journals (Sweden)

    Kornuta Tomasz

    2017-09-01

    Full Text Available RGB-D sensors became a standard in robotic applications requiring object recognition, such as object grasping and manipulation. A typical object recognition system relies on matching of features extracted from RGB-D images retrieved from the robot sensors with the features of the object models. In this paper we present ModReg: a system for registration of 3D models of objects. The system consists of a modular software associated with a multi-camera setup supplemented with an additional pattern projector, used for the registration of high-resolution RGB-D images. The objects are placed on a fiducial board with two dot patterns enabling extraction of masks of the placed objects and estimation of their initial poses. The acquired dense point clouds constituting subsequent object views undergo pairwise registration and at the end are optimized with a graph-based technique derived from SLAM. The combination of all those elements resulted in a system able to generate consistent 3D models of objects.

  3. A multi-objective programming model for assessment the GHG emissions in MSW management

    International Nuclear Information System (INIS)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-01-01

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH 4 generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application

  4. A multi-objective programming model for assessment the GHG emissions in MSW management

    Energy Technology Data Exchange (ETDEWEB)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr [National Technical University of Athens, Iroon Polytechniou 9, Zografou, Athens, 15780 (Greece); Skoulaxinou, Sotiria [EPEM SA, 141 B Acharnon Str., Athens, 10446 (Greece); Gakis, Nikos [FACETS SA, Agiou Isidorou Str., Athens, 11471 (Greece); Katsouros, Vassilis [Athena Research and Innovation Center, Artemidos 6 and Epidavrou Str., Maroussi, 15125 (Greece); Georgopoulou, Elena [National Observatory of Athens, Thisio, Athens, 11810 (Greece)

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the

  5. On Modeling the Behavior of Comparators for Complex Fuzzy Objects in a Fuzzy Object-Relational Database Management System

    Directory of Open Access Journals (Sweden)

    JuanM. Medina

    2012-08-01

    Full Text Available This paper proposes a parameterized definition for fuzzy comparators on complex fuzzy datatypes like fuzzy collections with conjunctive semantics and fuzzy objects. This definition and its implementation on a Fuzzy Object-Relational Database Management System (FORDBMS provides the designer with a powerful tool to adapt the behavior of these operators to the semantics of the considered application.

  6. An Investigation on the Correlation of Learner Styles and Learning Objects Characteristics in a Proposed Learning Objects Management Model (LOMM)

    Science.gov (United States)

    Wanapu, Supachanun; Fung, Chun Che; Kerdprasop, Nittaya; Chamnongsri, Nisachol; Niwattanakul, Suphakit

    2016-01-01

    The issues of accessibility, management, storage and organization of Learning Objects (LOs) in education systems are a high priority of the Thai Government. Incorporating personalized learning or learning styles in a learning object management system to improve the accessibility of LOs has been addressed continuously in the Thai education system.…

  7. An object-oriented language-database integration model: The composition filters approach

    NARCIS (Netherlands)

    Aksit, Mehmet; Bergmans, Lodewijk; Vural, Sinan; Vural, S.

    1991-01-01

    This paper introduces a new model, based on so-called object-composition filters, that uniformly integrates database-like features into an object-oriented language. The focus is on providing persistent dynamic data structures, data sharing, transactions, multiple views and associative access,

  8. An Object-Oriented Language-Database Integration Model: The Composition-Filters Approach

    NARCIS (Netherlands)

    Aksit, Mehmet; Bergmans, Lodewijk; Vural, S.; Vural, Sinan; Lehrmann Madsen, O.

    1992-01-01

    This paper introduces a new model, based on so-called object-composition filters, that uniformly integrates database-like features into an object-oriented language. The focus is on providing persistent dynamic data structures, data sharing, transactions, multiple views and associative access,

  9. More with thermal energy storage. Report 7. Interference. Effects of thermal energy storage systems on the environment. Modelling of large-scale implementation in urban areas. Final report; Meer met bodemenergie. Rapport 7. Interferentie. Effecten van bodemenergiesystemen op hun omgeving. Modellering grootschalige inpassing in stedelijke gebieden. Eindrapport

    Energy Technology Data Exchange (ETDEWEB)

    Van Oostrom, N.; Bakr, M. [Deltares, Delft (Netherlands)

    2012-06-29

    The project More With Thermal Energy Storage (MMB, abbreviated in Dutch) focuses on knowledge gaps and potential opportunities regarding open systems. The main questions to be answered are: (1) What effects (hydrological, thermal, microbiological and chemical) occur in the soil system by application of thermal energy storage; (2) Which technical options are available for a sustainable integration of thermal energy storage in the water and energy chain?; (3) Is it possible to achieve multiple objectives by using smart combinations? The project is organized in different work packages. In work package 2, the effects of individual and collective thermal energy storage storage systems on subsoils and the environment are determined. In work package 3 the opportunities for thermal energy storage and soil remediation are examined, while in work package 4 the focus is on new sustainable combinations of heat and cold storage. Work package 1 is the umbrella part where communication and policy of and participation in MMB are the main subjects. The objective of this report is to gain insight in the mutual influencing of heat and cold storage systems in areas where several such systems occur close to each other. This insight might contribute to a policy and/or model approach to interference [Dutch] Het project Meer Met Bodemenergie (MMB) richt zich op het invullen van kennisleemtes en mogelijke kansen ten aanzien van open systemen. De belangrijkste vragen waarop het onderzoeksprogramma MMB antwoord geeft zijn: (1) Welke effecten (hydrologisch, thermisch, microbiologisch en chemisch) treden op in het bodemsysteem bij toepassing van bodemenergie?; (2) Welke technische mogelijkheden zijn er voor het duurzaam inpassen van bodem-energie in de water- en energieketen?; (3) Is het mogelijk om meerdere doelstellingen tegelijk te verwezenlijken door slimme combinaties te maken? Het project is ingericht met verschillende werkpakketten. In werkpakket 2 worden de effecten van individuele en

  10. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    Science.gov (United States)

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.

  11. A probabilistic multi objective CLSC model with Genetic algorithm-ε_Constraint approach

    Directory of Open Access Journals (Sweden)

    Alireza TaheriMoghadam

    2014-05-01

    Full Text Available In this paper an uncertain multi objective closed-loop supply chain is developed. The first objective function is maximizing the total profit. The second objective function is minimizing the use of row materials. In the other word, the second objective function is maximizing the amount of remanufacturing and recycling. Genetic algorithm is used for optimization and for finding the pareto optimal line, Epsilon-constraint method is used. Finally a numerical example is solved with proposed approach and performance of the model is evaluated in different sizes. The results show that this approach is effective and useful for managerial decisions.

  12. Improving a Deep Learning based RGB-D Object Recognition Model by Ensemble Learning

    DEFF Research Database (Denmark)

    Aakerberg, Andreas; Nasrollahi, Kamal; Heder, Thomas

    2018-01-01

    Augmenting RGB images with depth information is a well-known method to significantly improve the recognition accuracy of object recognition models. Another method to im- prove the performance of visual recognition models is ensemble learning. However, this method has not been widely explored...... in combination with deep convolutional neural network based RGB-D object recognition models. Hence, in this paper, we form different ensembles of complementary deep convolutional neural network models, and show that this can be used to increase the recognition performance beyond existing limits. Experiments...

  13. The significance of the choice of radiobiological (NTCP) models in treatment plan objective functions

    International Nuclear Information System (INIS)

    Miller, J.; Fuller, M.; Vinod, S.; Holloway, L.

    2009-01-01

    Full text: A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at lOGy (V|0) and 20 G y (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.

  14. Application of multiple objective models to water resources planning and management

    International Nuclear Information System (INIS)

    North, R.M.

    1993-01-01

    Over the past 30 years, we have seen the birth and growth of multiple objective analysis from an idea without tools to one with useful applications. Models have been developed and applications have been researched to address the multiple purposes and objectives inherent in the development and management of water resources. A practical approach to multiple objective modelling incorporates macroeconomic-based policies and expectations in order to optimize the results from both engineering (structural) and management (non-structural) alternatives, while taking into account the economic and environmental trade-offs. (author). 27 refs, 4 figs, 3 tabs

  15. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller

    International Nuclear Information System (INIS)

    Bellary, Sayed Ahmed Imran; Samad, Abdus; Husain, Afzal

    2014-01-01

    The major issue of multiple fidelity based analysis and optimization of fluid machinery system depends upon the proper construction of low fidelity model or meta-model. A low fidelity model uses responses obtained from a high fidelity model, and the meta-model is then used to produce population of solutions required for evolutionary algorithm for multi-objective optimization. The Pareto-optimal front which shows functional relationships among the multiple objectives can produce erroneous results if the low fidelity models are not well-constructed. In the present research, response surface approximation and Kriging meta-models were evaluated for their effectiveness for the application in the turbomachinery design and optimization. A high fidelity model such as CFD technique along with the metamodels was used to obtain Pareto-optimal front via multi-objective genetic algorithm. A centrifugal impeller has been considered as case study to find relationship between two conflicting objectives, viz., hydraulic efficiency and head. Design variables from the impeller geometry have been chosen and the responses of the objective functions were evaluated through CFD analysis. The fidelity of each metamodel has been discussed in context of their predictions in entire design space in general and near optimal region in particular. Exploitation of the multiple meta-models enhances the quality of multi-objective optimization and provides the information pertaining to fidelity of optimization model. It was observed that the Kriging meta-model was better suited for this type of problem as it involved less approximation error in the Pareto-optimal front.

  16. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller

    Energy Technology Data Exchange (ETDEWEB)

    Bellary, Sayed Ahmed Imran; Samad, Abdus [Indian Institute of Technology Madras, Chennai (India); Husain, Afzal [Sultan Qaboos University, Al-Khoudh (Oman)

    2014-12-15

    The major issue of multiple fidelity based analysis and optimization of fluid machinery system depends upon the proper construction of low fidelity model or meta-model. A low fidelity model uses responses obtained from a high fidelity model, and the meta-model is then used to produce population of solutions required for evolutionary algorithm for multi-objective optimization. The Pareto-optimal front which shows functional relationships among the multiple objectives can produce erroneous results if the low fidelity models are not well-constructed. In the present research, response surface approximation and Kriging meta-models were evaluated for their effectiveness for the application in the turbomachinery design and optimization. A high fidelity model such as CFD technique along with the metamodels was used to obtain Pareto-optimal front via multi-objective genetic algorithm. A centrifugal impeller has been considered as case study to find relationship between two conflicting objectives, viz., hydraulic efficiency and head. Design variables from the impeller geometry have been chosen and the responses of the objective functions were evaluated through CFD analysis. The fidelity of each metamodel has been discussed in context of their predictions in entire design space in general and near optimal region in particular. Exploitation of the multiple meta-models enhances the quality of multi-objective optimization and provides the information pertaining to fidelity of optimization model. It was observed that the Kriging meta-model was better suited for this type of problem as it involved less approximation error in the Pareto-optimal front.

  17. On hierarchical models for visual recognition and learning of objects, scenes, and activities

    CERN Document Server

    Spehr, Jens

    2015-01-01

    In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model...

  18. Knowledge-Based Topic Model for Unsupervised Object Discovery and Localization.

    Science.gov (United States)

    Niu, Zhenxing; Hua, Gang; Wang, Le; Gao, Xinbo

    Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object instances from a given image collection without any supervision. Previous work has attempted to tackle this problem with vanilla topic models, such as latent Dirichlet allocation (LDA). However, in those methods no prior knowledge for the given image collection is exploited to facilitate object discovery. On the other hand, the topic models used in those methods suffer from the topic coherence issue-some inferred topics do not have clear meaning, which limits the final performance of object discovery. In this paper, prior knowledge in terms of the so-called must-links are exploited from Web images on the Internet. Furthermore, a novel knowledge-based topic model, called LDA with mixture of Dirichlet trees, is proposed to incorporate the must-links into topic modeling for object discovery. In particular, to better deal with the polysemy phenomenon of visual words, the must-link is re-defined as that one must-link only constrains one or some topic(s) instead of all topics, which leads to significantly improved topic coherence. Moreover, the must-links are built and grouped with respect to specific object classes, thus the must-links in our approach are semantic-specific , which allows to more efficiently exploit discriminative prior knowledge from Web images. Extensive experiments validated the efficiency of our proposed approach on several data sets. It is shown that our method significantly improves topic coherence and outperforms the unsupervised methods for object discovery and localization. In addition, compared with discriminative methods, the naturally existing object classes in the given image collection can be subtly discovered, which makes our approach well suited for realistic applications of unsupervised object discovery.Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object

  19. Dynamic information processing states revealed through neurocognitive models of object semantics

    Science.gov (United States)

    Clarke, Alex

    2015-01-01

    Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632

  20. Neuronal encoding of object and distance information: A model simulation study on naturalistic optic flow processing

    Directory of Open Access Journals (Sweden)

    Patrick eHennig

    2012-03-01

    Full Text Available We developed a model of the input circuitry of the FD1 cell, an identified motion-sensitive interneuron in the blowfly’s visual system. The model circuit successfully reproduces the FD1 cell’s most conspicuous property: Its larger responses to objects than to spatially extended patterns. The model circuit also mimics the time-dependent responses of FD1 to dynamically complex naturalistic stimuli, shaped by the blowfly’s saccadic flight and gaze strategy: The FD1 responses are enhanced when, as a consequence of self-motion, a nearby object crosses the receptive field during intersaccadic intervals. Moreover, the model predicts that these object-induced responses are superimposed by pronounced pattern-dependent fluctuations during movements on virtual test flights in a three-dimensional environment with systematic modifications of the environmental patterns. Hence, the FD1 cell is predicted to detect not unambiguously objects defined by the spatial layout of the environment, but to be also sensitive to objects distinguished by textural features. These ambiguous detection abilities suggest an encoding of information about objects - irrespective of the features by which the objects are defined - by a population of cells, with the FD1 cell presumably playing a prominent role in such an ensemble.

  1. Computational Modelling of the Neural Representation of Object Shape in the Primate Ventral Visual System

    Directory of Open Access Journals (Sweden)

    Akihiro eEguchi

    2015-08-01

    Full Text Available Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognise the whole object.

  2. Testing the utility of three social-cognitive models for predicting objective and self-report physical activity in adults with type 2 diabetes.

    Science.gov (United States)

    Plotnikoff, Ronald C; Lubans, David R; Penfold, Chris M; Courneya, Kerry S

    2014-05-01

    Theory-based interventions to promote physical activity (PA) are more effective than atheoretical approaches; however, the comparative utility of theoretical models is rarely tested in longitudinal designs with multiple time points. Further, there is limited research that has simultaneously tested social-cognitive models with self-report and objective PA measures. The primary aim of this study was to test the predictive ability of three theoretical models (social cognitive theory, theory of planned behaviour, and protection motivation theory) in explaining PA behaviour. Participants were adults with type 2 diabetes (n = 287, 53.8% males, mean age = 61.6 ± 11.8 years). Theoretical constructs across the three theories were tested to prospectively predict PA behaviour (objective and self-report) across three 6-month time intervals (baseline-6, 6-12, 12-18 months) using structural equation modelling. PA outcomes were steps/3 days (objective) and minutes of MET-weighted PA/week (self-report). The mean proportion of variance in PA explained by these models was 6.5% for objective PA and 8.8% for self-report PA. Direct pathways to PA outcomes were stronger for self-report compared with objective PA. These theories explained a small proportion of the variance in longitudinal PA studies. Theory development to guide interventions for increasing and maintaining PA in adults with type 2 diabetes requires further research with objective measures. Theory integration across social-cognitive models and the inclusion of ecological levels are recommended to further explain PA behaviour change in this population. Statement of contribution What is already known on this subject? Social-cognitive theories are able to explain partial variance for physical activity (PA) behaviour. What does this study add? The testing of three theories in a longitudinal design over 3, 6-month time intervals. The parallel use and comparison of both objective and self-report PA measures in testing these

  3. Efficient view based 3-D object retrieval using Hidden Markov Model

    Science.gov (United States)

    Jain, Yogendra Kumar; Singh, Roshan Kumar

    2013-12-01

    Recent research effort has been dedicated to view based 3-D object retrieval, because of highly discriminative property of 3-D object and has multi view representation. The state-of-art method is highly depending on their own camera array setting for capturing views of 3-D object and use complex Zernike descriptor, HAC for representative view selection which limit their practical application and make it inefficient for retrieval. Therefore, an efficient and effective algorithm is required for 3-D Object Retrieval. In order to move toward a general framework for efficient 3-D object retrieval which is independent of camera array setting and avoidance of representative view selection, we propose an Efficient View Based 3-D Object Retrieval (EVBOR) method using Hidden Markov Model (HMM). In this framework, each object is represented by independent set of view, which means views are captured from any direction without any camera array restriction. In this, views are clustered (including query view) to generate the view cluster, which is then used to build the query model with HMM. In our proposed method, HMM is used in twofold: in the training (i.e. HMM estimate) and in the retrieval (i.e. HMM decode). The query model is trained by using these view clusters. The EVBOR query model is worked on the basis of query model combining with HMM. The proposed approach remove statically camera array setting for view capturing and can be apply for any 3-D object database to retrieve 3-D object efficiently and effectively. Experimental results demonstrate that the proposed scheme has shown better performance than existing methods. [Figure not available: see fulltext.

  4. Child's objection to non-beneficial research: capacity and distress based models.

    Science.gov (United States)

    Waligora, Marcin; Różyńska, Joanna; Piasecki, Jan

    2016-03-01

    A child's objection, refusal and dissent regarding participation in non-beneficial biomedical research must be respected, even when the parents or legal representatives have given their permission. There is, however, no consensus on the definition and criteria of a meaningful and valid child's objection. The aim of this article is to clarify this issue. In the first part we describe the problems of a child's assent in research. In the second part we distinguish and analyze two models of a child's objection to research: the capacity-based model and the distress-based model. In the last part we present arguments for a broader and unified understanding of a child's objection within regulations and practices. This will strengthen children's rights and facilitate the entire process of assessment of research protocols.

  5. Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects

    Directory of Open Access Journals (Sweden)

    Diemer de Vries

    2007-01-01

    Full Text Available It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.

  6. Metodology of identification parameters of models control objects of automatic trailing system

    Directory of Open Access Journals (Sweden)

    I.V. Zimchuk

    2017-04-01

    Full Text Available The determining factor for the successful solution of the problem of synthesis of optimal control systems of different processes are adequacy of mathematical model of control object. In practice, the options can differ from the objects taken priori, causing a need to clarification of them. In this context, the article presents the results of the development and application of methods parameters identification of mathematical models of control object of automatic trailing system. The stated problem in the article is solved provided that control object is fully controlled and observed, and a differential equation of control object is known a priori. The coefficients of this equation to be determined. Identifying quality criterion is to minimize the integral value of squared error of identification. The method is based on a description of the dynamics of the object in space state. Equation of identification synthesized using the vector-matrix representation of model. This equation describes the interconnection of coefficients of matrix state and control with inputs and outputs of object. The initial data for calculation are the results of experimental investigation of the reaction of phase coordinates of control object at a typical input signal. The process of calculating the model parameters is reduced to solving the system of equations of the first order each. Application the above approach is illustrated in the example identification of coefficients transfer function of control object first order. Results of digital simulation are presented, they are confirming the justice of set out mathematical calculations. The approach enables to do the identification of models of one-dimensional and multidimensional objects and does not require a large amount of calculation for its implementation. The order of identified model is limited capabilities of measurement phase coordinates of corresponding control object. The practical significance of the work is

  7. Invariant visual object and face recognition: neural and computational bases, and a model, VisNet

    Directory of Open Access Journals (Sweden)

    Edmund T eRolls

    2012-06-01

    Full Text Available Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy modelin which invariant representations can be built by self-organizing learning based on the temporal and spatialstatistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associativesynaptic learning rule with a short term memory trace, and/or it can use spatialcontinuity in Continuous Spatial Transformation learning which does not require a temporal trace. The model of visual processing in theventral cortical stream can build representations of objects that are invariant withrespect to translation, view, size, and also lighting. The modelhas been extended to provide an account of invariant representations in the dorsal visualsystem of the global motion produced by objects such as looming, rotation, and objectbased movement. The model has been extended to incorporate top-down feedback connectionsto model the control of attention by biased competition in for example spatial and objectsearch tasks. The model has also been extended to account for how the visual system canselect single objects in complex visual scenes, and how multiple objects can berepresented in a scene. The model has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  8. Whole object surface area and volume of partial-view 3D models

    International Nuclear Information System (INIS)

    Mulukutla, Gopal K; Proussevitch, Alexander A; Genareau, Kimberly D; Durant, Adam J

    2017-01-01

    Micro-scale 3D models, important components of many studies in science and engineering, are often used to determine morphological characteristics such as shape, surface area and volume. The application of techniques such as stereoscopic scanning electron microscopy on whole objects often results in ‘partial-view’ models with a portion of object not within the field of view thus not captured in the 3D model. The nature and extent of the surface not captured is dependent on the complex interaction of imaging system attributes (e.g. working distance, viewing angle) with object size, shape and morphology. As a result, any simplistic assumptions in estimating whole object surface area or volume can lead to significant errors. In this study, we report on a novel technique to estimate the physical fraction of an object captured in a partial-view 3D model of an otherwise whole object. This allows a more accurate estimate of surface area and volume. Using 3D models, we demonstrate the robustness of this method and the accuracy of surface area and volume estimates relative to true values. (paper)

  9. An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.

    Science.gov (United States)

    Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen

    2018-06-01

    This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Computation of spatial significance of mountain objects extracted from multiscale digital elevation models

    International Nuclear Information System (INIS)

    Sathyamoorthy, Dinesh

    2014-01-01

    The derivation of spatial significance is an important aspect of geospatial analysis and hence, various methods have been proposed to compute the spatial significance of entities based on spatial distances with other entities within the cluster. This paper is aimed at studying the spatial significance of mountain objects extracted from multiscale digital elevation models (DEMs). At each scale, the value of spatial significance index SSI of a mountain object is the minimum number of morphological dilation iterations required to occupy all the other mountain objects in the terrain. The mountain object with the lowest value of SSI is the spatially most significant mountain object, indicating that it has the shortest distance to the other mountain objects. It is observed that as the area of the mountain objects reduce with increasing scale, the distances between the mountain objects increase, resulting in increasing values of SSI. The results obtained indicate that the strategic location of a mountain object at the centre of the terrain is more important than its size in determining its reach to other mountain objects and thus, its spatial significance

  11. Improved object optimal synthetic description, modeling, learning, and discrimination by GEOGINE computational kernel

    Science.gov (United States)

    Fiorini, Rodolfo A.; Dacquino, Gianfranco

    2005-03-01

    GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous

  12. Towards an objective evaluation of tolerances for beam modeling in a treatment planning system

    International Nuclear Information System (INIS)

    Rangel, A; Ploquin, N; Kay, I; Dunscombe, P

    2007-01-01

    The performance of a convolution/superposition based treatment planning system depends on the ability of the dose calculation algorithm to accurately account for physical interactions taking place in the tissue, key components of the linac head and on the accuracy of the photon beam model. Generally the user has little or no control over the performance of the dose calculation algorithm but is responsible for the accuracy of the beam model within the constraints imposed by the system. This study explores the dosimetric impact of limitations in photon beam modeling accuracy on complex 3D clinical treatment plans. A total of 70 photon beam models was created in the Pinnacle(TM) treatment planning system. Two of the models served as references for 6 MV and 15 MV beams, while the rest were created by perturbing the reference models in order to produce specific deviations in specific regions of the calculated dose profiles (central axis and transverse). The beam models were then used to generate 3D plans on seven CT data sets each for four different treatment sites (breast and conformal prostate, lung and brain). The equivalent uniform doses (EUD) of the targets and the principal organs at risk (OARs) of all plans (∼1000) were calculated and compared to the EUDs delivered by the reference beam models. In general, accurate dosimetry of the target is most greatly compromised by poor modeling of the central axis depth dose and the horns, while the EUDs of the OARs exhibited the greatest sensitivity to beam width accuracy. Based on the results of this analysis we suggest a set of tolerances to be met during commissioning of the beam models in a treatment planning system that are consistent in terms of clinical outcomes as predicted by the EUD

  13. Objectives for next generation of practical short-range atmospheric dispersion models

    International Nuclear Information System (INIS)

    Olesen, H.R.; Mikkelsen, T.

    1992-01-01

    The proceedings contains papers from the workshop ''Objectives for Next Generation of Practical Short-Range Atmospheric Dispersion Models''. They deal with two types of models, namely models for regulatory purposes and models for real-time applications. The workshop was the result of an action started in 1991 for increased cooperation and harmonization within atmospheric dispersion modelling. The focus of the workshop was on the management of model development and the definition of model objectives, rather than on detailed model contents. It was the intention to identify actions that can be taken in order to improve the development and use of atmospheric dispersion models. The papers in the proceedings deal with various topics within the broad spectrum of matters related to up-to-date practical models, such as their scientific basis, requirements for model input and output, meteorological preprocessing, standardisation within modelling, electronic information exchange as a potentially useful tool, model evaluation and data bases for model evaluation. In addition to the papers, the proceedings contain summaries of the discussions at the workshop. These summaries point to a number of recommended actions which can be taken in order to improve ''modelling culture''. (AB)

  14. Geospatial Database for Strata Objects Based on Land Administration Domain Model (ladm)

    Science.gov (United States)

    Nasorudin, N. N.; Hassan, M. I.; Zulkifli, N. A.; Rahman, A. Abdul

    2016-09-01

    Recently in our country, the construction of buildings become more complex and it seems that strata objects database becomes more important in registering the real world as people now own and use multilevel of spaces. Furthermore, strata title was increasingly important and need to be well-managed. LADM is a standard model for land administration and it allows integrated 2D and 3D representation of spatial units. LADM also known as ISO 19152. The aim of this paper is to develop a strata objects database using LADM. This paper discusses the current 2D geospatial database and needs for 3D geospatial database in future. This paper also attempts to develop a strata objects database using a standard data model (LADM) and to analyze the developed strata objects database using LADM data model. The current cadastre system in Malaysia includes the strata title is discussed in this paper. The problems in the 2D geospatial database were listed and the needs for 3D geospatial database in future also is discussed. The processes to design a strata objects database are conceptual, logical and physical database design. The strata objects database will allow us to find the information on both non-spatial and spatial strata title information thus shows the location of the strata unit. This development of strata objects database may help to handle the strata title and information.

  15. Object and subject relations in adulthood--towards an integrative model of interpersonal relationships.

    Science.gov (United States)

    Zvelc, Gregor

    2010-12-01

    In the article the author presents a model of interpersonal relationships based on integration of object relations theory and theory of attachment. He proposes three main bipolar dimensions of interpersonal relationships: Independence - Dependence, Connectedness - Alienation and Reciprocity - Self-absorption. The author also proposes that it is important to distinguish between two main types of adult interpersonal relationships: object and subject relations. Object relations describe relationships in which the other person is perceived as an object that serves the satisfaction of the first person's needs. Object relations are a manifestation of the right pole of the three main dimensions of interpersonal relationships (Dependence, Alienation and Self-absorption). Subject relations are a counter-pole to the concept of object relations. They describe relationships with other people who are experienced as subjects with their own wishes, interests and needs. Subject relations are a manifestation of the left pole of the main dimensions (Independence, Connectedness and Reciprocity). In this article the author specifically focuses on definitions of object relations in adulthood through a description of six sub-dimensions of object relations: Symbiotic Merging, Separation Anxiety, Social Isolation, Fear of Engulfment, Egocentrism and Narcissism. Every sub-dimension is described in connection to adaptive and pathological functioning. Further research is needed to test the clinical and scientific validity of the model.

  16. A neural network model of semantic memory linking feature-based object representation and words.

    Science.gov (United States)

    Cuppini, C; Magosso, E; Ursino, M

    2009-06-01

    Recent theories in cognitive neuroscience suggest that semantic memory is a distributed process, which involves many cortical areas and is based on a multimodal representation of objects. The aim of this work is to extend a previous model of object representation to realize a semantic memory, in which sensory-motor representations of objects are linked with words. The model assumes that each object is described as a collection of features, coded in different cortical areas via a topological organization. Features in different objects are segmented via gamma-band synchronization of neural oscillators. The feature areas are further connected with a lexical area, devoted to the representation of words. Synapses among the feature areas, and among the lexical area and the feature areas are trained via a time-dependent Hebbian rule, during a period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from acoustic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits).

  17. Generalizing a model beyond the inherence heuristic and applying it to beliefs about objective value.

    Science.gov (United States)

    Wood, Graham

    2014-10-01

    The inherence heuristic is characterized as part of an instantiation of a more general model that describes the interaction between undeveloped intuitions, produced by System 1 heuristics, and developed beliefs, constructed by System 2 reasoning. The general model is described and illustrated by examining another instantiation of the process that constructs belief in objective moral value.

  18. An Object-Oriented Information Model for Policy-based Management of Distributed Applications

    NARCIS (Netherlands)

    Diaz, G.; Gay, V.C.J.; Horlait, E.; Hamza, M.H.

    2002-01-01

    This paper presents an object-oriented information model to support a policy-based management for distributed multimedia applications. The information base contains application-level information about the users, the applications, and their profile. Our Information model is described in details and

  19. Aggregate meta-models for evolutionary multiobjective and many-objective optimization

    Czech Academy of Sciences Publication Activity Database

    Pilát, Martin; Neruda, Roman

    Roč. 116, 20 September (2013), s. 392-402 ISSN 0925-2312 R&D Projects: GA ČR GAP202/11/1368 Institutional support: RVO:67985807 Keywords : evolutionary algorithms * multiobjective optimization * many-objective optimization * surrogate models * meta-models * memetic algorithm Subject RIV: IN - Informatics, Computer Science Impact factor: 2.005, year: 2013

  20. Three-dimensional model-based object recognition and segmentation in cluttered scenes.

    Science.gov (United States)

    Mian, Ajmal S; Bennamoun, Mohammed; Owens, Robyn

    2006-10-01

    Viewpoint independent recognition of free-form objects and their segmentation in the presence of clutter and occlusions is a challenging task. We present a novel 3D model-based algorithm which performs this task automatically and efficiently. A 3D model of an object is automatically constructed offline from its multiple unordered range images (views). These views are converted into multidimensional table representations (which we refer to as tensors). Correspondences are automatically established between these views by simultaneously matching the tensors of a view with those of the remaining views using a hash table-based voting scheme. This results in a graph of relative transformations used to register the views before they are integrated into a seamless 3D model. These models and their tensor representations constitute the model library. During online recognition, a tensor from the scene is simultaneously matched with those in the library by casting votes. Similarity measures are calculated for the model tensors which receive the most votes. The model with the highest similarity is transformed to the scene and, if it aligns accurately with an object in the scene, that object is declared as recognized and is segmented. This process is repeated until the scene is completely segmented. Experiments were performed on real and synthetic data comprised of 55 models and 610 scenes and an overall recognition rate of 95 percent was achieved. Comparison with the spin images revealed that our algorithm is superior in terms of recognition rate and efficiency.

  1. Requirements-level semantics and model checking of object-oriented statecharts

    NARCIS (Netherlands)

    Eshuis, H.; Jansen, D.N.; Wieringa, Roelf J.

    2002-01-01

    In this paper we define a requirements-level execution semantics for object-oriented statecharts and show how properties of a system specified by these statecharts can be model checked using tool support for model checkers. Our execution semantics is requirements-level because it uses the perfect

  2. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  3. A software engineering perspective on environmental modeling framework design: The object modeling system

    Science.gov (United States)

    The environmental modeling community has historically been concerned with the proliferation of models and the effort associated with collective model development tasks (e.g., code generation, data provisioning and transformation, etc.). Environmental modeling frameworks (EMFs) have been developed to...

  4. Toward Self-Referential Autonomous Learning of Object and Situation Models.

    Science.gov (United States)

    Damerow, Florian; Knoblauch, Andreas; Körner, Ursula; Eggert, Julian; Körner, Edgar

    2016-01-01

    Most current approaches to scene understanding lack the capability to adapt object and situation models to behavioral needs not anticipated by the human system designer. Here, we give a detailed description of a system architecture for self-referential autonomous learning which enables the refinement of object and situation models during operation in order to optimize behavior. This includes structural learning of hierarchical models for situations and behaviors that is triggered by a mismatch between expected and actual action outcome. Besides proposing architectural concepts, we also describe a first implementation of our system within a simulated traffic scenario to demonstrate the feasibility of our approach.

  5. A new multi objective optimization model for designing a green supply chain network under uncertainty

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Saffar

    2015-01-01

    Full Text Available Recently, researchers have focused on how to minimize the negative effects of industrial activities on environment. Consequently, they work on mathematical models, which minimize the environmental issues as well as optimizing the costs. In the field of supply chain network design, most managers consider economic and environmental issues, simultaneously. This paper introduces a bi-objective supply chain network design, which uses fuzzy programming to obtain the capability of resisting uncertain conditions. The design considers production, recovery, and distribution centers. The advantage of using this model includes the optimal facilities, locating them and assigning the optimal facilities to them. It also chooses the type and the number of technologies, which must be bought. The fuzzy programming converts the multi objective model to an auxiliary crisp model by Jimenez approach and solves it with ε-constraint. For solving large size problems, the Multi Objective Differential Evolutionary algorithm (MODE is applied.

  6. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    Science.gov (United States)

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  7. Modeling guidance and recognition in categorical search: bridging human and computer object detection.

    Science.gov (United States)

    Zelinsky, Gregory J; Peng, Yifan; Berg, Alexander C; Samaras, Dimitris

    2013-10-08

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery.

  8. Moving object detection using dynamic motion modelling from UAV aerial images.

    Science.gov (United States)

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  9. A recurrent neural model for proto-object based contour integration and figure-ground segregation.

    Science.gov (United States)

    Hu, Brian; Niebur, Ernst

    2017-12-01

    Visual processing of objects makes use of both feedforward and feedback streams of information. However, the nature of feedback signals is largely unknown, as is the identity of the neuronal populations in lower visual areas that receive them. Here, we develop a recurrent neural model to address these questions in the context of contour integration and figure-ground segregation. A key feature of our model is the use of grouping neurons whose activity represents tentative objects ("proto-objects") based on the integration of local feature information. Grouping neurons receive input from an organized set of local feature neurons, and project modulatory feedback to those same neurons. Additionally, inhibition at both the local feature level and the object representation level biases the interpretation of the visual scene in agreement with principles from Gestalt psychology. Our model explains several sets of neurophysiological results (Zhou et al. Journal of Neuroscience, 20(17), 6594-6611 2000; Qiu et al. Nature Neuroscience, 10(11), 1492-1499 2007; Chen et al. Neuron, 82(3), 682-694 2014), and makes testable predictions about the influence of neuronal feedback and attentional selection on neural responses across different visual areas. Our model also provides a framework for understanding how object-based attention is able to select both objects and the features associated with them.

  10. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-05-01

    Full Text Available We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences.

  11. Integrated production planning and control: A multi-objective optimization model

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2013-09-01

    Full Text Available Purpose: Production planning and control has crucial impact on the production and business activities of enterprise. Enterprise Resource Planning (ERP is the most popular resources planning and management system, however there are some shortcomings and deficiencies in the production planning and control because its core component is still the Material Requirements Planning (MRP. For the defects of ERP system, many local improvement and optimization schemes have been proposed, and improve the feasibility and practicality of the plan in some extent, but study considering the whole planning system optimization in the multiple performance management objectives and achieving better application performance is less. The purpose of this paper is to propose a multi-objective production planning optimization model Based on the point of view of the integration of production planning and control, in order to achieve optimization and control of enterprise manufacturing management. Design/methodology/approach: On the analysis of ERP planning system’s defects and disadvantages, and related research and literature, a multi-objective production planning optimization model is proposed, in addition to net demand and capacity, multiple performance management objectives, such as on-time delivery, production balance, inventory, overtime production, are considered incorporating into the examination scope of the model, so that the manufacturing process could be management and controlled Optimally between multiple objectives. The validity and practicability of the model will be verified by the instance in the last part of the paper. Findings: The main finding is that production planning management of manufacturing enterprise considers not only the capacity and materials, but also a variety of performance management objectives in the production process, and building a multi-objective optimization model can effectively optimize the management and control of enterprise

  12. Topical video object discovery from key frames by modeling word co-occurrence prior.

    Science.gov (United States)

    Zhao, Gangqiang; Yuan, Junsong; Hua, Gang; Yang, Jiong

    2015-12-01

    A topical video object refers to an object, that is, frequently highlighted in a video. It could be, e.g., the product logo and the leading actor/actress in a TV commercial. We propose a topic model that incorporates a word co-occurrence prior for efficient discovery of topical video objects from a set of key frames. Previous work using topic models, such as latent Dirichelet allocation (LDA), for video object discovery often takes a bag-of-visual-words representation, which ignored important co-occurrence information among the local features. We show that such data driven co-occurrence information from bottom-up can conveniently be incorporated in LDA with a Gaussian Markov prior, which combines top-down probabilistic topic modeling with bottom-up priors in a unified model. Our experiments on challenging videos demonstrate that the proposed approach can discover different types of topical objects despite variations in scale, view-point, color and lighting changes, or even partial occlusions. The efficacy of the co-occurrence prior is clearly demonstrated when compared with topic models without such priors.

  13. A multiple objective mixed integer linear programming model for power generation expansion planning

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, C. Henggeler; Martins, A. Gomes [INESC-Coimbra, Coimbra (Portugal); Universidade de Coimbra, Dept. de Engenharia Electrotecnica, Coimbra (Portugal); Brito, Isabel Sofia [Instituto Politecnico de Beja, Escola Superior de Tecnologia e Gestao, Beja (Portugal)

    2004-03-01

    Power generation expansion planning inherently involves multiple, conflicting and incommensurate objectives. Therefore, mathematical models become more realistic if distinct evaluation aspects, such as cost and environmental concerns, are explicitly considered as objective functions rather than being encompassed by a single economic indicator. With the aid of multiple objective models, decision makers may grasp the conflicting nature and the trade-offs among the different objectives in order to select satisfactory compromise solutions. This paper presents a multiple objective mixed integer linear programming model for power generation expansion planning that allows the consideration of modular expansion capacity values of supply-side options. This characteristic of the model avoids the well-known problem associated with continuous capacity values that usually have to be discretized in a post-processing phase without feedback on the nature and importance of the changes in the attributes of the obtained solutions. Demand-side management (DSM) is also considered an option in the planning process, assuming there is a sufficiently large portion of the market under franchise conditions. As DSM full costs are accounted in the model, including lost revenues, it is possible to perform an evaluation of the rate impact in order to further inform the decision process (Author)

  14. Use of Image Based Modelling for Documentation of Intricately Shaped Objects

    Science.gov (United States)

    Marčiš, M.; Barták, P.; Valaška, D.; Fraštia, M.; Trhan, O.

    2016-06-01

    In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.

  15. [Location selection for Shenyang urban parks based on GIS and multi-objective location allocation model].

    Science.gov (United States)

    Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi

    2011-12-01

    Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.

  16. User's Manual for the Object User Interface (OUI): An Environmental Resource Modeling Framework

    Science.gov (United States)

    Markstrom, Steven L.; Koczot, Kathryn M.

    2008-01-01

    The Object User Interface is a computer application that provides a framework for coupling environmental-resource models and for managing associated temporal and spatial data. The Object User Interface is designed to be easily extensible to incorporate models and data interfaces defined by the user. Additionally, the Object User Interface is highly configurable through the use of a user-modifiable, text-based control file that is written in the eXtensible Markup Language. The Object User Interface user's manual provides (1) installation instructions, (2) an overview of the graphical user interface, (3) a description of the software tools, (4) a project example, and (5) specifications for user configuration and extension.

  17. An Efficient Role and Object Based Access Control Model Implemented in a PDM System

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaowen; TAN Jian; HUANG Xiangguo

    2006-01-01

    An effective and reliable access control is crucial to a PDM system. This article has discussed the commonly used access control models, analyzed their advantages and disadvantages, and proposed a new Role and Object based access control model that suits the particular needs of a PDM system. The new model has been implemented in a commercial PDM system, which has demonstrated enhanced flexibility and convenience.

  18. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    International Nuclear Information System (INIS)

    Zhou, Z; Folkert, M; Wang, J

    2016-01-01

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  19. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z; Folkert, M; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  20. Modeling and query the uncertainty of network constrained moving objects based on RFID data

    Science.gov (United States)

    Han, Liang; Xie, Kunqing; Ma, Xiujun; Song, Guojie

    2007-06-01

    The management of network constrained moving objects is more and more practical, especially in intelligent transportation system. In the past, the location information of moving objects on network is collected by GPS, which cost high and has the problem of frequent update and privacy. The RFID (Radio Frequency IDentification) devices are used more and more widely to collect the location information. They are cheaper and have less update. And they interfere in the privacy less. They detect the id of the object and the time when moving object passed by the node of the network. They don't detect the objects' exact movement in side the edge, which lead to a problem of uncertainty. How to modeling and query the uncertainty of the network constrained moving objects based on RFID data becomes a research issue. In this paper, a model is proposed to describe the uncertainty of network constrained moving objects. A two level index is presented to provide efficient access to the network and the data of movement. The processing of imprecise time-slice query and spatio-temporal range query are studied in this paper. The processing includes four steps: spatial filter, spatial refinement, temporal filter and probability calculation. Finally, some experiments are done based on the simulated data. In the experiments the performance of the index is studied. The precision and recall of the result set are defined. And how the query arguments affect the precision and recall of the result set is also discussed.

  1. A Model of Socially Connected Web Objects for IoT Applications

    Directory of Open Access Journals (Sweden)

    Sajjad Ali

    2018-01-01

    Full Text Available The Internet of Things (IoT is evolving with the connected objects at an unprecedented rate, bringing about enormous opportunities for the future IoT applications as well as challenges. One of the major challenges is to handle the complexity generated by the interconnection of billions of objects. However, Social Internet of Things (SIoT, emerging from the conglomeration of IoT and social networks, has realized an efficient way to facilitate the development of complex future IoT applications. Nevertheless, to fully utilize the benefits of SIoT, a platform that can provide efficient services using social relations among heterogeneous objects is highly required. The web objects enabled IoT environment promotes SIoT features by enabling virtualization using virtual objects and supporting the modularity with microservices. To realize SIoT services, this article proposes an architecture that provides a foundation for the development of lightweight microservices based on socially connected web objects. To efficiently discover web objects and reduce the complexity of service provisioning processes, a social relationship model is presented. To realize the interoperable service operations, a semantic ontology model has been developed. Finally, to evaluate the proposed design, a prototype has been implemented based on a use case scenario.

  2. Considering Decision Variable Diversity in Multi-Objective Optimization: Application in Hydrologic Model Calibration

    Science.gov (United States)

    Sahraei, S.; Asadzadeh, M.

    2017-12-01

    Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.

  3. Teach it Yourself - Fast Modeling of Industrial Objects for 6D Pose Estimation

    DEFF Research Database (Denmark)

    Sølund, Thomas; Rajeeth Savarimuthu, Thiusius; Glent Buch, Anders

    2015-01-01

    In this paper, we present a vision system that allows a human to create new 3D models of novel industrial parts by placing the part in two different positions in the scene. The two shot modeling framework generates models with a precision that allows the model to be used for 6D pose estimation wi....... In addition, the models are applied in a pose estimation application, evaluated with 37 different scenes with 61 unique object poses. The pose estimation results show a mean translation error on 4.97 mm and a mean rotation error on 3.38 degrees....

  4. Country Selection Model for Sustainable Construction Businesses Using Hybrid of Objective and Subjective Information

    Directory of Open Access Journals (Sweden)

    Kang-Wook Lee

    2017-05-01

    Full Text Available An important issue for international businesses and academia is selecting countries in which to expand in order to achieve entrepreneurial sustainability. This study develops a country selection model for sustainable construction businesses using both objective and subjective information. The objective information consists of 14 variables related to country risk and project performance in 32 countries over 25 years. This hybrid model applies subjective weighting from industrial experts to objective information using a fuzzy LinPreRa-based Analytic Hierarchy Process. The hybrid model yields a more accurate country selection compared to a purely objective information-based model in experienced countries. Interestingly, the hybrid model provides some different predictions with only subjective opinions in unexperienced countries, which implies that expert opinion is not always reliable. In addition, feedback from five experts in top international companies is used to validate the model’s completeness, effectiveness, generality, and applicability. The model is expected to aid decision makers in selecting better candidate countries that lead to sustainable business success.

  5. Perceptual video quality assessment in H.264 video coding standard using objective modeling.

    Science.gov (United States)

    Karthikeyan, Ramasamy; Sainarayanan, Gopalakrishnan; Deepa, Subramaniam Nachimuthu

    2014-01-01

    Since usage of digital video is wide spread nowadays, quality considerations have become essential, and industry demand for video quality measurement is rising. This proposal provides a method of perceptual quality assessment in H.264 standard encoder using objective modeling. For this purpose, quality impairments are calculated and a model is developed to compute the perceptual video quality metric based on no reference method. Because of the shuttle difference between the original video and the encoded video the quality of the encoded picture gets degraded, this quality difference is introduced by the encoding process like Intra and Inter prediction. The proposed model takes into account of the artifacts introduced by these spatial and temporal activities in the hybrid block based coding methods and an objective modeling of these artifacts into subjective quality estimation is proposed. The proposed model calculates the objective quality metric using subjective impairments; blockiness, blur and jerkiness compared to the existing bitrate only calculation defined in the ITU G 1070 model. The accuracy of the proposed perceptual video quality metrics is compared against popular full reference objective methods as defined by VQEG.

  6. Towards a Unified Theory of Health-Disease: I. Health as a complex model-object

    Directory of Open Access Journals (Sweden)

    Naomar Almeida-Filho

    2013-06-01

    Full Text Available Theory building is one of the most crucial challenges faced by basic, clinical and population research, which form the scientific foundations of health practices in contemporary societies. The objective of the study is to propose a Unified Theory of Health-Disease as a conceptual tool for modeling health-disease-care in the light of complexity approaches. With this aim, the epistemological basis of theoretical work in the health field and concepts related to complexity theory as concerned to health problems are discussed. Secondly, the concepts of model-object, multi-planes of occurrence, modes of health and disease-illness-sickness complex are introduced and integrated into a unified theoretical framework. Finally, in the light of recent epistemological developments, the concept of Health-Disease-Care Integrals is updated as a complex reference object fit for modeling health-related processes and phenomena.

  7. Probabilistic safety assessment model in consideration of human factors based on object-oriented bayesian networks

    International Nuclear Information System (INIS)

    Zhou Zhongbao; Zhou Jinglun; Sun Quan

    2007-01-01

    Effect of Human factors on system safety is increasingly serious, which is often ignored in traditional probabilistic safety assessment methods however. A new probabilistic safety assessment model based on object-oriented Bayesian networks is proposed in this paper. Human factors are integrated into the existed event sequence diagrams. Then the classes of the object-oriented Bayesian networks are constructed which are converted to latent Bayesian networks for inference. Finally, the inference results are integrated into event sequence diagrams for probabilistic safety assessment. The new method is applied to the accident of loss of coolant in a nuclear power plant. the results show that the model is not only applicable to real-time situation assessment, but also applicable to situation assessment based certain amount of information. The modeling complexity is kept down and the new method is appropriate to large complex systems due to the thoughts of object-oriented. (authors)

  8. The application of the unified modeling language in object-oriented analysis of healthcare information systems.

    Science.gov (United States)

    Aggarwal, Vinod

    2002-10-01

    This paper concerns itself with the beneficial effects of the Unified Modeling Language (UML), a nonproprietary object modeling standard, in specifying, visualizing, constructing, documenting, and communicating the model of a healthcare information system from the user's perspective. The author outlines the process of object-oriented analysis (OOA) using the UML and illustrates this with healthcare examples to demonstrate the practicality of application of the UML by healthcare personnel to real-world information system problems. The UML will accelerate advanced uses of object-orientation such as reuse technology, resulting in significantly higher software productivity. The UML is also applicable in the context of a component paradigm that promises to enhance the capabilities of healthcare information systems and simplify their management and maintenance.

  9. Identification of a Multicriteria Decision-Making Model Using the Characteristic Objects Method

    Directory of Open Access Journals (Sweden)

    Andrzej Piegat

    2014-01-01

    Full Text Available This paper presents a new, nonlinear, multicriteria, decision-making method: the characteristic objects (COMET. This approach, which can be characterized as a fuzzy reference model, determines a measurement standard for decision-making problems. This model is distinguished by a constant set of specially chosen characteristic objects that are independent of the alternatives. After identifying a multicriteria model, this method can be used to compare any number of decisional objects (alternatives and select the best one. In the COMET, in contrast to other methods, the rank-reversal phenomenon is not observed. Rank-reversal is a paradoxical feature in the decision-making methods, which is caused by determining the absolute evaluations of considered alternatives on the basis of the alternatives themselves. In the Analytic Hierarchy Process (AHP method and similar methods, when a new alternative is added to the original alternative set, the evaluation base and the resulting evaluations of all objects change. A great advantage of the COMET is its ability to identify not only linear but also nonlinear multicriteria models of decision makers. This identification is based not on a ranking of component criteria of the multicriterion but on a ranking of a larger set of characteristic objects (characteristic alternatives that are independent of the small set of alternatives analyzed in a given problem. As a result, the COMET is free of the faults of other methods.

  10. Developing a Novel Multi-objective Programming Model for Personnel Assignment Problem

    Directory of Open Access Journals (Sweden)

    Mehdi Seifbarghy

    2014-05-01

    Full Text Available The assignment of personnel to the right positions in order to increase organization's performance is one of the most crucial tasks in human resource management. In this paper, personnel assignment problem is formulated as a multi-objective binary integer programming model in which skills, level of satisfaction and training cost of personnel are considered simultaneously in productive company. The purpose of this model is to obtain the best matching between candidates and positions. In this model, a set of methods such as a group analytic hierarchy process (GAHP, Shannon entropy, coefficient of variation (CV and fuzzy logic are used to calculate the weights of evaluation criteria, weights of position and coefficient of objective functions. This proposed model can rationalize the subjective judgments of decision makers with mathematic models.

  11. OntoVIP: an ontology for the annotation of object models used for medical image simulation.

    Science.gov (United States)

    Gibaud, Bernard; Forestier, Germain; Benoit-Cattin, Hugues; Cervenansky, Frédéric; Clarysse, Patrick; Friboulet, Denis; Gaignard, Alban; Hugonnard, Patrick; Lartizien, Carole; Liebgott, Hervé; Montagnat, Johan; Tabary, Joachim; Glatard, Tristan

    2014-12-01

    This paper describes the creation of a comprehensive conceptualization of object models used in medical image simulation, suitable for major imaging modalities and simulators. The goal is to create an application ontology that can be used to annotate the models in a repository integrated in the Virtual Imaging Platform (VIP), to facilitate their sharing and reuse. Annotations make the anatomical, physiological and pathophysiological content of the object models explicit. In such an interdisciplinary context we chose to rely on a common integration framework provided by a foundational ontology, that facilitates the consistent integration of the various modules extracted from several existing ontologies, i.e. FMA, PATO, MPATH, RadLex and ChEBI. Emphasis is put on methodology for achieving this extraction and integration. The most salient aspects of the ontology are presented, especially the organization in model layers, as well as its use to browse and query the model repository. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Use of an object model in three dimensional image reconstruction. Application in medical imaging

    International Nuclear Information System (INIS)

    Delageniere-Guillot, S.

    1993-02-01

    Threedimensional image reconstruction from projections corresponds to a set of techniques which give information on the inner structure of the studied object. These techniques are mainly used in medical imaging or in non destructive evaluation. Image reconstruction is an ill-posed problem. So the inversion has to be regularized. This thesis deals with the introduction of a priori information within the reconstruction algorithm. The knowledge is introduced through an object model. The proposed scheme is applied to the medical domain for cone beam geometry. We address two specific problems. First, we study the reconstruction of high contrast objects. This can be applied to bony morphology (bone/soft tissue) or to angiography (vascular structures opacified by injection of contrast agent). With noisy projections, the filtering steps of standard methods tend to smooth the natural transitions of the investigated object. In order to regularize the reconstruction but to keep contrast, we introduce a model of classes which involves the Markov random fields theory. We develop a reconstruction scheme: analytic reconstruction-reprojection. Then, we address the case of an object changing during the acquisition. This can be applied to angiography when the contrast agent is moving through the vascular tree. The problem is then stated as a dynamic reconstruction. We define an evolution AR model and we use an algebraic reconstruction method. We represent the object at a particular moment as an intermediary state between the state of the object at the beginning and at the end of the acquisition. We test both methods on simulated and real data, and we prove how the use of an a priori model can improve the results. (author)

  13. MODELING OF TECHNICAL CHANNELS OF INFORMATION LEAKAGE AT DISTRIBUTED CONTROL OBJECTS

    Directory of Open Access Journals (Sweden)

    Aleksander Vladimirovich Karpov

    2018-05-01

    Full Text Available The significant increase in requirements for distributed control objects’ functioning can’t be realized only at the expense of the widening and strengthening of security control measures. The first step in ensuring the information security at such objects is the analysis of the conditions of their functioning and modeling of technical channels of information leakage. The development of models of such channels is essentially the only method of complete study of their opportunities and it is pointed toward receiving quantitative assessments of the safe operation of compound objects. The evaluation data are necessary to make a decision on the degree of the information security from a leak according to the current criterion. The existing models are developed for the standard concentrated objects and allow to evaluate the level of information security from a leak on each of channels separately, what involves the significant increase in the required protective resource and time of assessment of information security on an object in general. The article deals with a logical-and-probabilistic method of a security assessment of structurally-compound objects. The model of a security leak on the distributed control objects is cited as an example. It is recommended to use a software package of an automated structurally-logistical modeling of compound systems, which allows to evaluate risk of information leakage in the loudspeaker. A possibility of information leakage by technical channels is evaluated and such differential characteristics of the safe operation of the distributed control objects as positive and negative contributions of the initiating events and conditions, which cause a leak are calculated. Purpose. The aim is a quantitative assessment of data risk, which is necessary for justifying the rational composition of organizational and technical protection measures, as well as a variant of the structure of the information security system from a

  14. Single-objective vs. multi-objective autocalibration in modelling total suspended solids and phosphorus in a small agricultural watershed with SWAT.

    Science.gov (United States)

    Rasolomanana, Santatriniaina Denise; Lessard, Paul; Vanrolleghem, Peter A

    2012-01-01

    To obtain greater precision in modelling small agricultural watersheds, a shorter simulation time step is beneficial. A daily time step better represents the dynamics of pollutants in the river and provides more realistic simulation results. However, with a daily evaluation performance, good fits are rarely obtained. With the Shuffled Complex Evolution (SCE) method embedded in the Soil and Water Assessment Tool (SWAT), two calibration approaches are available, single-objective or multi-objective optimization. The goal of the present study is to evaluate which approach can improve the daily performance with SWAT, in modelling flow (Q), total suspended solids (TSS) and total phosphorus (TP). The influence of weights assigned to the different variables included in the objective function has also been tested. The results showed that: (i) the model performance depends not only on the choice of calibration approach, but essentially on the influential parameters; (ii) the multi-objective calibration estimating at once all parameters related to all measured variables is the best approach to model Q, TSS and TP; (iii) changing weights does not improve model performance; and (iv) with a single-objective optimization, an excellent water quality modelling performance may hide a loss of performance of predicting flows and unbalanced internal model components.

  15. Real-time Pipeline for Object Modeling and Grasping Pose Selection via Superquadric Functions

    Directory of Open Access Journals (Sweden)

    Giulia Vezzani

    2017-11-01

    Full Text Available This work provides a novel real-time pipeline for modeling and grasping of unknown objects with a humanoid robot. Such a problem is of great interest for the robotic community, since conventional approaches fail when the shape, dimension, or pose of the objects are missing. Our approach reconstructs in real-time a model for the object under consideration and represents the robot hand both with proper and mathematically usable models, i.e., superquadric functions. The volume graspable by the hand is represented by an ellipsoid and is defined a priori, because the shape of the hand is known in advance. The superquadric representing the object is obtained in real-time from partial vision information instead, e.g., one stereo view of the object under consideration, and provides an approximated 3D full model. The optimization problem we formulate for the grasping pose computation is solved online by using the Ipopt software package and, thus, does not require off-line computation or learning. Even though our approach is for a generic humanoid robot, we developed a complete software architecture for executing this approach on the iCub humanoid robot. Together with that, we also provide a tutorial on how to use this framework. We believe that our work, together with the available code, is of a strong utility for the iCub community for three main reasons: object modeling and grasping are relevant problems for the robotic community, our code can be easily applied on every iCub, and the modular structure of our framework easily allows extensions and communications with external code.

  16. A fast mass spring model solver for high-resolution elastic objects

    Science.gov (United States)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  17. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Science.gov (United States)

    Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien

    2017-01-01

    Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.

  18. Wonderful Things? A Consideration of 3D Modelling of Objects in Material Culture Research

    Directory of Open Access Journals (Sweden)

    Molloy Barry

    2018-04-01

    Full Text Available The role of 3D modelling in archaeology is increasing exponentially, from fieldwork to architecture to material culture studies. For the study of archaeological objects the roles of digital and print models for public engagement has been much considered in recent literature. For model makers, focus has typically been placed on exceptional and visually striking objects with inherent appeal. In contrast, this paper explores some of the potential roles for 3D digital models for routine artefact research and publication. Particular emphasis is placed on the challenges this technology raises for archaeological theory and practice. Following a consideration of how 3D models relate to established illustration and photographic traditions, the paper evaluates some of the unique features of 3D models, focussing on both positive and negative aspects of these. This is followed by a discussion of the role of potential research connections between digital and craft models in experimental research. Our overall objective is to emphasise a need to engage with the ways in which this gradual development has begun to change aspects of longestablished workflows. In turn, the increasing use of this technology is argued to have wider ramifications for the development of archaeology, and material culture studies in particular, as a discipline that requires reflection.

  19. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Directory of Open Access Journals (Sweden)

    Marko Budinich

    Full Text Available Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA and multi-objective flux variability analysis (MO-FVA. Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity that take place at the ecosystem scale.

  20. Solving a bi-objective mathematical programming model for bloodmobiles location routing problem

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2017-01-01

    Full Text Available Perishability of platelets, uncertainty of donors’ arrival and conflicting views in platelet supply chain have made platelet supply chain planning a problematic issue. In this paper, mobile blood collection system for platelet production is investigated. Two mathematical models are presented to cover the bloodmobile collection planning problem. The first model is a multi-objective fuzzy mathematical programming in which the bloodmobiles locations are considered with the aim of maximizing potential amount of blood collection and minimizing the operational cost. The second model is a vehicle routing problem with time windows which studies the shuttles routing problem. To tackle the first model, it is reformulated as a crisp multi objective linear programming model and then solved through a fuzzy multi objective programming approach. Several sensitivity analysis are conducted on important parameters to demonstrate the applicability of the proposed model. The proposed model is then solved by using a tailored Simulated Annealing (SA algorithm. The numerical results demonstrate promising efficiency of the proposed solution method.

  1. More performance results and implementation of an object oriented track reconstruction model in different OO frameworks

    International Nuclear Information System (INIS)

    Gaines, Irwin; Qian Sijin

    2001-01-01

    This is an update of the report about an Object Oriented (OO) track reconstruction model, which was presented in the previous AIHENP'99 at Crete, Greece. The OO model for the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. It has been coded in the C++ programming language and successfully implemented into a few different OO computing environments of the CMS and ATLAS experiments at the future Large Hadron Collider at CERN. We shall report: (1) more performance result: (2) implementing the OO model into the new SW OO framework 'Athena' of ATLAS experiment and some upgrades of the OO model itself

  2. Development of Large Concrete Object Geometrical Model Based on Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Zaczek-Peplinska Janina

    2015-02-01

    Full Text Available The paper presents control periodic measurements of movements and survey of concrete dam on Dunajec River in Rożnów, Poland. Topographical survey was conducted using laser scanning technique. The goal of survey was data collection and creation of a geometrical model. Acquired cross- and horizontal sections were utilised to create a numerical model of object behaviour at various load depending of changing level of water in reservoir. Modelling was accomplished using finite elements technique. During the project an assessment was conducted to terrestrial laser scanning techniques for such type of research of large hydrotechnical objects such as gravitational water dams. Developed model can be used to define deformations and displacement prognosis.

  3. An insect-inspired model for visual binding I: learning objects and their characteristics.

    Science.gov (United States)

    Northcutt, Brandon D; Dyhr, Jonathan P; Higgins, Charles M

    2017-04-01

    Visual binding is the process of associating the responses of visual interneurons in different visual submodalities all of which are responding to the same object in the visual field. Recently identified neuropils in the insect brain termed optic glomeruli reside just downstream of the optic lobes and have an internal organization that could support visual binding. Working from anatomical similarities between optic and olfactory glomeruli, we have developed a model of visual binding based on common temporal fluctuations among signals of independent visual submodalities. Here we describe and demonstrate a neural network model capable both of refining selectivity of visual information in a given visual submodality, and of associating visual signals produced by different objects in the visual field by developing inhibitory neural synaptic weights representing the visual scene. We also show that this model is consistent with initial physiological data from optic glomeruli. Further, we discuss how this neural network model may be implemented in optic glomeruli at a neuronal level.

  4. Multi-objective calibration of a reservoir model: aggregation and non-dominated sorting approaches

    Science.gov (United States)

    Huang, Y.

    2012-12-01

    Numerical reservoir models can be helpful tools for water resource management. These models are generally calibrated against historical measurement data made in reservoirs. In this study, two methods are proposed for the multi-objective calibration of such models: aggregation and non-dominated sorting methods. Both methods use a hybrid genetic algorithm as an optimization engine and are different in fitness assignment. In the aggregation method, a weighted sum of scaled simulation errors is designed as an overall objective function to measure the fitness of solutions (i.e. parameter values). The contribution of this study to the aggregation method is the correlation analysis and its implication to the choice of weight factors. In the non-dominated sorting method, a novel method based on non-dominated sorting and the method of minimal distance is used to calculate the dummy fitness of solutions. The proposed methods are illustrated using a water quality model that was set up to simulate the water quality of Pepacton Reservoir, which is located to the north of New York City and is used for water supply of city. The study also compares the aggregation and the non-dominated sorting methods. The purpose of this comparison is not to evaluate the pros and cons between the two methods but to determine whether the parameter values, objective function values (simulation errors) and simulated results obtained are significantly different with each other. The final results (objective function values) from the two methods are good compromise between all objective functions, and none of these results are the worst for any objective function. The calibrated model provides an overall good performance and the simulated results with the calibrated parameter values match the observed data better than the un-calibrated parameters, which supports and justifies the use of multi-objective calibration. The results achieved in this study can be very useful for the calibration of water

  5. D Modelling and Interactive Web-Based Visualization of Cultural Heritage Objects

    Science.gov (United States)

    Koeva, M. N.

    2016-06-01

    Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria - a country with thousands of years of history and cultural heritage dating back to ancient civilizations. This motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1) image-based modelling using a non-metric hand-held camera; (2) 3D visualization based on spherical panoramic images; (3) and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This comparative study

  6. 3D MODELLING AND INTERACTIVE WEB-BASED VISUALIZATION OF CULTURAL HERITAGE OBJECTS

    Directory of Open Access Journals (Sweden)

    M. N. Koeva

    2016-06-01

    Full Text Available Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria – a country with thousands of years of history and cultural heritage dating back to ancient civilizations. \\this motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1 image-based modelling using a non-metric hand-held camera; (2 3D visualization based on spherical panoramic images; (3 and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This

  7. A Multi-Objective Trade-Off Model in Sustainable Construction Projects

    Directory of Open Access Journals (Sweden)

    Guangdong Wu

    2017-10-01

    Full Text Available Based on the consideration of the relative importance of sustainability-related objectives and the inherent nature of sustainable construction projects, this study proposes that the contractor can balance the levels of efforts and resources used to improve the overall project sustainability. A multi-objective trade-off model using game theory was established and verified through simulation and numerical example under a moral hazard situation. Results indicate that effort levels of the contractor on sustainability-related objectives are positively related to the outcome coefficient while negatively to the coefficients of effort cost of the relevant objectives. High levels of the relative importance of sustainability-related objectives contribute to high levels of effort of the contractor. With the variation in effort levels and the coefficient of benefit allocation, the project net benefit increases before declining. The function of project benefit has a marked peak value, with an inverted “U” shape. An equilibrium always exists as for the given relative importance and coefficients of the effort costs of sustainability-related objectives. Under this condition, the owner may offer the contractor a less intense incentive and motivate the contractor reasonably arranging input resources. The coefficient of benefit allocation is affected by the contractor characteristic factors and the project characteristic factors. The owner should balance these two types of factors and select the most appropriate incentive mechanism to improve the project benefit. Meanwhile, the contractor can balance the relative importance of the objectives and arrange the appropriate levels of effort and resources to achieve a sustainability-related objective. Very few studies have emphasized the effects of the relative importance of sustainability-related objectives on the benefits of sustainable construction projects. This study therefore builds a multi-objective trade

  8. Modeling of information on the impact of mining exploitation on bridge objects in BIM

    Science.gov (United States)

    Bętkowski, Piotr

    2018-04-01

    The article discusses the advantages of BIM (Building Information Modeling) technology in the management of bridge infrastructure on mining areas. The article shows the problems with information flow in the case of bridge objects located on mining areas and the advantages of proper information management, e.g. the possibility of automatic monitoring of structures, improvement of safety, optimization of maintenance activities, cost reduction of damage removal and preventive actions, improvement of atmosphere for mining exploitation, improvement of the relationship between the manager of the bridge and the mine. Traditional model of managing bridge objects on mining areas has many disadvantages, which are discussed in this article. These disadvantages include among others: duplication of information about the object, lack of correlation in investments due to lack of information flow between bridge manager and mine, limited assessment possibilities of damage propagation on technical condition and construction resistance to mining influences.

  9. Static Object Detection Based on a Dual Background Model and a Finite-State Machine

    Directory of Open Access Journals (Sweden)

    Heras Evangelio Rubén

    2011-01-01

    Full Text Available Detecting static objects in video sequences has a high relevance in many surveillance applications, such as the detection of abandoned objects in public areas. In this paper, we present a system for the detection of static objects in crowded scenes. Based on the detection of two background models learning at different rates, pixels are classified with the help of a finite-state machine. The background is modelled by two mixtures of Gaussians with identical parameters except for the learning rate. The state machine provides the meaning for the interpretation of the results obtained from background subtraction; it can be implemented as a look-up table with negligible computational cost and it can be easily extended. Due to the definition of the states in the state machine, the system can be used either full automatically or interactively, making it extremely suitable for real-life surveillance applications. The system was successfully validated with several public datasets.

  10. An Object-oriented Knowledge Link Model for General Knowledge Management

    OpenAIRE

    Xiao-hong, CHEN; Bang-chuan, LAI

    2005-01-01

    The knowledge link is the basic on knowledge share and the indispensable part in knowledge standardization management. In this paper, a object-oriented knowledge link model is proposed for general knowledge management by using objectoriented representation based on knowledge levels system. In the model, knowledge link is divided into general knowledge link and integrated knowledge with corresponding link properties and methods. What’s more, its BNF syntax is described and designed.

  11. Structural modeling of the production quality as a multidimensional object of measurement and control

    OpenAIRE

    Зубрецкая, Наталья Анатольевна

    2015-01-01

    The structural-analytical models of product quality as a multidimensional process of evaluation, measurement and control are developed. The product quality is represented as a multi-factor, multi-criteria and multi-parameter estimation object. This structural formalization of quality demonstrates the multidimensional qualities: comprehensiveness due to a set of environmental factors; multicriteriality due collectively evaluated quality criteria; multiparameter information models that describe...

  12. Structuring research methods and data with the research object model: genomics workflows as a case study.

    Science.gov (United States)

    Hettne, Kristina M; Dharuri, Harish; Zhao, Jun; Wolstencroft, Katherine; Belhajjame, Khalid; Soiland-Reyes, Stian; Mina, Eleni; Thompson, Mark; Cruickshank, Don; Verdes-Montenegro, Lourdes; Garrido, Julian; de Roure, David; Corcho, Oscar; Klyne, Graham; van Schouwen, Reinout; 't Hoen, Peter A C; Bechhofer, Sean; Goble, Carole; Roos, Marco

    2014-01-01

    One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as "which particular data was input to a particular workflow to test a particular hypothesis?", and "which particular conclusions were drawn from a particular workflow?". Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well. The Research Object is available at http://www.myexperiment.org/packs/428 The Wf4Ever Research Object Model is available at http://wf4ever.github.io/ro.

  13. La metáfora

    DEFF Research Database (Denmark)

    Agustin, Oscar Garcia

    2007-01-01

    2002 y principios de 2003, anteriores a la proclamación de las Juntas de Buen Gobierno. Nuestro objetivo es comprobar cómo las metáforas crean nuevas significaciones, que intentan deshacer una lógica comúnmente asumida, y promover otros modos de comprender la acción y la realidad político-social. Este...

  14. Efficacy of c-Met inhibitor for advanced prostate cancer

    International Nuclear Information System (INIS)

    Tu, William H; Zhu, Chunfang; Clark, Curtis; Christensen, James G; Sun, Zijie

    2010-01-01

    Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer. We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression. We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration. The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer

  15. Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes

    NARCIS (Netherlands)

    Rodriguez Ruiz, A.; Feng, S.S.J.; Zelst, J.C.M. van; Vreemann, S.; Mann, J.R.; D'Orsi, C.J.; Sechopoulos, I.

    2017-01-01

    PURPOSE: To develop a set of accurate 2D models of compressed breasts undergoing mammography or breast tomosynthesis, based on objective analysis, to accurately characterize mammograms with few linearly independent parameters, and to generate novel clinically realistic paired cranio-caudal (CC) and

  16. An Object Model for Integrating Diverse Remote Sensing Satellite Sensors: A Case Study of Union Operation

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-01-01

    Full Text Available In the Earth Observation sensor web environment, the rapid, accurate, and unified discovery of diverse remote sensing satellite sensors, and their association to yield an integrated solution for a comprehensive response to specific emergency tasks pose considerable challenges. In this study, we propose a remote sensing satellite sensor object model, based on the object-oriented paradigm and the Open Geospatial Consortium Sensor Model Language. The proposed model comprises a set of sensor resource objects. Each object consists of identification, state of resource attribute, and resource method. We implement the proposed attribute state description by applying it to different remote sensors. A real application, involving the observation of floods at the Yangtze River in China, is undertaken. Results indicate that the sensor inquirer can accurately discover qualified satellite sensors in an accurate and unified manner. By implementing the proposed union operation among the retrieved sensors, the inquirer can further determine how the selected sensors can collaboratively complete a specific observation requirement. Therefore, the proposed model provides a reliable foundation for sharing and integrating multiple remote sensing satellite sensors and their observations.

  17. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    Science.gov (United States)

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  18. A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking.

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Shafiee

    Full Text Available In this work, we introduce a deep-structured conditional random field (DS-CRF model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering.

  19. Error-Driven Learning in Visual Categorization and Object Recognition: A Common-Elements Model

    Science.gov (United States)

    Soto, Fabian A.; Wasserman, Edward A.

    2010-01-01

    A wealth of empirical evidence has now accumulated concerning animals' categorizing photographs of real-world objects. Although these complex stimuli have the advantage of fostering rapid category learning, they are difficult to manipulate experimentally and to represent in formal models of behavior. We present a solution to the representation…

  20. Towards a model for egocentric interaction with physical and virtual objects

    DEFF Research Database (Denmark)

    Pederson, Thomas; Janlert, Lars-Erik; Surie, Dipak

    2010-01-01

    Designers of mobile context-aware systems are struggling with the problem of conceptually incorporating the real world into the system design. We present a body-centric modeling framework (as opposed to device-centric) that incorporates physical and virtual objects of interest on the basis...... of proximity and human perception, framed in the context of an emerging "egocentric" interaction paradigm....

  1. An object-oriented framework for magnetic-fusion modeling and analysis codes

    International Nuclear Information System (INIS)

    Cohen, R H; Yang, T Y Brian.

    1999-01-01

    The magnetic-fusion energy (MFE) program, like many other scientific and engineering activities, has a need to efficiently develop complex modeling codes which combine detailed models of components to make an integrated model of a device, as well as a rich supply of legacy code that could provide the component models. There is also growing recognition in many technical fields of the desirability of steerable software: computer programs whose functionality can be changed by the user as it is run. This project had as its goals the development of two key pieces of infrastructure that are needed to combine existing code modules, written mainly in Fortran, into flexible, steerable, object-oriented integrated modeling codes for magnetic- fusion applications. These two pieces are (1) a set of tools to facilitate the interfacing of Fortran code with a steerable object-oriented framework (which we have chosen to be based on PythonlW3, an object-oriented interpreted language), and (2) a skeleton for the integrated modeling code which defines the relationships between the modules. The first of these activities obviously has immediate applicability to a spectrum of projects; the second is more focussed on the MFE application, but may be of value as an example for other applications

  2. A Mixed Land Cover Spatio-temporal Data Model Based on Object-oriented and Snapshot

    Directory of Open Access Journals (Sweden)

    LI Yinchao

    2016-07-01

    Full Text Available Spatio-temporal data model (STDM is one of the hot topics in the domains of spatio-temporal database and data analysis. There is a common view that a universal STDM is always of high complexity due to the various situation of spatio-temporal data. In this article, a mixed STDM is proposed based on object-oriented and snapshot models for modelling and analyzing landcover change (LCC. This model uses the object-oriented STDM to describe the spatio-temporal processes of land cover patches and organize their spatial and attributive properties. In the meantime, it uses the snapshot STDM to present the spatio-temporal distribution of LCC on the whole via snapshot images. The two types of models are spatially and temporally combined into a mixed version. In addition to presenting the spatio-temporal events themselves, this model could express the transformation events between different classes of spatio-temporal objects. It can be used to create database for historical data of LCC, do spatio-temporal statistics, simulation and data mining with the data. In this article, the LCC data in Heilongjiang province is used for case study to validate spatio-temporal data management and analysis abilities of mixed STDM, including creating database, spatio-temporal query, global evolution analysis and patches spatio-temporal process expression.

  3. An Object-Oriented Python Implementation of an Intermediate-Level Atmospheric Model

    Science.gov (United States)

    Lin, J. W.

    2008-12-01

    The Neelin-Zeng Quasi-equilibrium Tropical Circulation Model (QTCM1) is a Fortran-based intermediate-level atmospheric model that includes simplified treatments of several physical processes, including a GCM-like convective scheme and a land-surface scheme with representations of different surface types, evaporation, and soil moisture. This model has been used in studies of the Madden-Julian oscillation, ENSO, and vegetation-atmosphere interaction effects on climate. Through the assumption of convective quasi-equilibrium in the troposphere, the QTCM1 is able to include full nonlinearity, resolve baroclinic disturbances, and generate a reasonable climatology, all at low computational cost. One year of simulation on a PC at 5.625 × 3.75 degree longitude-latitude resolution takes under three minutes of wall-clock time. The Python package qtcm implements the QTCM1 in a mixed-language environment that retains the speed of compiled Fortran while providing the benefits of Python's object-oriented framework and robust suite of utilities and datatypes. We describe key programming constructs used to create this modeling environment: the decomposition of model runs into Python objects, providing methods so visualization tools are attached to model runs, and the use of Python's mutable datatypes (lists and dictionaries) to implement the "run list" entity, which enables total runtime control of subroutine execution order and content. The result is an interactive modeling environment where the traditional sequence of "hypothesis → modeling → visualization and analysis" is opened up and made nonlinear and flexible. In this environment, science tasks such as parameter-space exploration and testing alternative parameterizations can be easily automated, without the need for multiple versions of the model code interacting with a bevy of makefiles and shell scripts. The environment also simplifies interfacing of the atmospheric model to other models (e.g., hydrologic models

  4. A multi-objective approach to improve SWAT model calibration in alpine catchments

    Science.gov (United States)

    Tuo, Ye; Marcolini, Giorgia; Disse, Markus; Chiogna, Gabriele

    2018-04-01

    Multi-objective hydrological model calibration can represent a valuable solution to reduce model equifinality and parameter uncertainty. The Soil and Water Assessment Tool (SWAT) model is widely applied to investigate water quality and water management issues in alpine catchments. However, the model calibration is generally based on discharge records only, and most of the previous studies have defined a unique set of snow parameters for an entire basin. Only a few studies have considered snow observations to validate model results or have taken into account the possible variability of snow parameters for different subbasins. This work presents and compares three possible calibration approaches. The first two procedures are single-objective calibration procedures, for which all parameters of the SWAT model were calibrated according to river discharge alone. Procedures I and II differ from each other by the assumption used to define snow parameters: The first approach assigned a unique set of snow parameters to the entire basin, whereas the second approach assigned different subbasin-specific sets of snow parameters to each subbasin. The third procedure is a multi-objective calibration, in which we considered snow water equivalent (SWE) information at two different spatial scales (i.e. subbasin and elevation band), in addition to discharge measurements. We tested these approaches in the Upper Adige river basin where a dense network of snow depth measurement stations is available. Only the set of parameters obtained with this multi-objective procedure provided an acceptable prediction of both river discharge and SWE. These findings offer the large community of SWAT users a strategy to improve SWAT modeling in alpine catchments.

  5. Segmentation of Concealed Objects in Passive Millimeter-Wave Images Based on the Gaussian Mixture Model

    Science.gov (United States)

    Yu, Wangyang; Chen, Xiangguang; Wu, Lei

    2015-04-01

    Passive millimeter wave (PMMW) imaging has become one of the most effective means to detect the objects concealed under clothing. Due to the limitations of the available hardware and the inherent physical properties of PMMW imaging systems, images often exhibit poor contrast and low signal-to-noise ratios. Thus, it is difficult to achieve ideal results by using a general segmentation algorithm. In this paper, an advanced Gaussian Mixture Model (GMM) algorithm for the segmentation of concealed objects in PMMW images is presented. Our work is concerned with the fact that the GMM is a parametric statistical model, which is often used to characterize the statistical behavior of images. Our approach is three-fold: First, we remove the noise from the image using both a notch reject filter and a total variation filter. Next, we use an adaptive parameter initialization GMM algorithm (APIGMM) for simulating the histogram of images. The APIGMM provides an initial number of Gaussian components and start with more appropriate parameter. Bayesian decision is employed to separate the pixels of concealed objects from other areas. At last, the confidence interval (CI) method, alongside local gradient information, is used to extract the concealed objects. The proposed hybrid segmentation approach detects the concealed objects more accurately, even compared to two other state-of-the-art segmentation methods.

  6. Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations

    Energy Technology Data Exchange (ETDEWEB)

    Kudryashov, Nikolay A.; Shilnikov, Kirill E. [National Research Nuclear University MEPhI, Department of Applied Mathematics, Moscow (Russian Federation)

    2016-06-08

    Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumor tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.

  7. Multi-objective decision-making model based on CBM for an aircraft fleet

    Science.gov (United States)

    Luo, Bin; Lin, Lin

    2018-04-01

    Modern production management patterns, in which multi-unit (e.g., a fleet of aircrafts) are managed in a holistic manner, have brought new challenges for multi-unit maintenance decision making. To schedule a good maintenance plan, not only does the individual machine maintenance have to be considered, but also the maintenance of the other individuals have to be taken into account. Since most condition-based maintenance researches for aircraft focused on solely reducing maintenance cost or maximizing the availability of single aircraft, as well as considering that seldom researches concentrated on both the two objectives: minimizing cost and maximizing the availability of a fleet (total number of available aircraft in fleet), a multi-objective decision-making model based on condition-based maintenance concentrated both on the above two objectives is established. Furthermore, in consideration of the decision maker may prefer providing the final optimal result in the form of discrete intervals instead of a set of points (non-dominated solutions) in real decision-making problem, a novel multi-objective optimization method based on support vector regression is proposed to solve the above multi-objective decision-making model. Finally, a case study regarding a fleet is conducted, with the results proving that the approach efficiently generates outcomes that meet the schedule requirements.

  8. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    Science.gov (United States)

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  9. Efficient Use of Video for 3d Modelling of Cultural Heritage Objects

    Science.gov (United States)

    Alsadik, B.; Gerke, M.; Vosselman, G.

    2015-03-01

    Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.

  10. EFFICIENT USE OF VIDEO FOR 3D MODELLING OF CULTURAL HERITAGE OBJECTS

    Directory of Open Access Journals (Sweden)

    B. Alsadik

    2015-03-01

    Full Text Available Currently, there is a rapid development in the techniques of the automated image based modelling (IBM, especially in advanced structure-from-motion (SFM and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 – 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.

  11. A foreground object features-based stereoscopic image visual comfort assessment model

    Science.gov (United States)

    Jin, Xin; Jiang, G.; Ying, H.; Yu, M.; Ding, S.; Peng, Z.; Shao, F.

    2014-11-01

    Since stereoscopic images provide observers with both realistic and discomfort viewing experience, it is necessary to investigate the determinants of visual discomfort. By considering that foreground object draws most attention when human observing stereoscopic images. This paper proposes a new foreground object based visual comfort assessment (VCA) metric. In the first place, a suitable segmentation method is applied to disparity map and then the foreground object is ascertained as the one having the biggest average disparity. In the second place, three visual features being average disparity, average width and spatial complexity of foreground object are computed from the perspective of visual attention. Nevertheless, object's width and complexity do not consistently influence the perception of visual comfort in comparison with disparity. In accordance with this psychological phenomenon, we divide the whole images into four categories on the basis of different disparity and width, and exert four different models to more precisely predict its visual comfort in the third place. Experimental results show that the proposed VCA metric outperformance other existing metrics and can achieve a high consistency between objective and subjective visual comfort scores. The Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are over 0.84 and 0.82, respectively.

  12. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    Science.gov (United States)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-06-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  13. Complexity analysis of dual-channel game model with different managers' business objectives

    Science.gov (United States)

    Li, Ting; Ma, Junhai

    2015-01-01

    This paper considers dual-channel game model with bounded rationality, using the theory of bifurcations of dynamical system. The business objectives of retailers are assumed to be different, which is closer to reality than previous studies. We study the local stable region of Nash equilibrium point and find that business objectives can expand the stable region and play an important role in price strategy. One interesting finding is that a fiercer competition tends to stabilize the Nash equilibrium. Simulation shows the complex behavior of two dimensional dynamic system, we find period doubling bifurcation and chaos phenomenon. We measure performances of the model in different period by using the index of average profit. The results show that unstable behavior in economic system is often an unfavorable outcome. So this paper discusses the application of adaptive adjustment mechanism when the model exhibits chaotic behavior and then allows the retailers to eliminate the negative effects.

  14. Personalised learning object based on multi-agent model and learners’ learning styles

    Directory of Open Access Journals (Sweden)

    Noppamas Pukkhem

    2011-09-01

    Full Text Available A multi-agent model is proposed in which learning styles and a word analysis technique to create a learning object recommendation system are used. On the basis of a learning style-based design, a concept map combination model is proposed to filter out unsuitable learning concepts from a given course. Our learner model classifies learners into eight styles and implements compatible computational methods consisting of three recommendations: i non-personalised, ii preferred feature-based, and iii neighbour-based collaborative filtering. The analysis of preference error (PE was performed by comparing the actual preferred learning object with the predicted one. In our experiments, the feature-based recommendation algorithm has the fewest PE.

  15. A fuzzy multi-objective optimization model for sustainable reverse logistics network design

    DEFF Research Database (Denmark)

    Govindan, Kannan; Paam, Parichehr; Abtahi, Amir Reza

    2016-01-01

    Decreasing the environmental impact, increasing the degree of social responsibility, and considering the economic motivations of organizations are three significant features in designing a reverse logistics network under sustainability respects. Developing a model, which can simultaneously consider...... a multi-echelon multi-period multi-objective model for a sustainable reverse logistics network. To reflect all aspects of sustainability, we try to minimize the present value of costs, as well as environmental impacts, and optimize the social responsibility as objective functions of the model. In order...... these environmental, social, and economic aspects and their indicators, is an important problem for both researchers and practitioners. In this paper, we try to address this comprehensive approach by using indicators for measurement of aforementioned aspects and by applying fuzzy mathematical programming to design...

  16. Hydrologic Model Development and Calibration: Contrasting a Single- and Multi-Objective Approach for Comparing Model Performance

    Science.gov (United States)

    Asadzadeh, M.; Maclean, A.; Tolson, B. A.; Burn, D. H.

    2009-05-01

    Hydrologic model calibration aims to find a set of parameters that adequately simulates observations of watershed behavior, such as streamflow, or a state variable, such as snow water equivalent (SWE). There are different metrics for evaluating calibration effectiveness that involve quantifying prediction errors, such as the Nash-Sutcliffe (NS) coefficient and bias evaluated for the entire calibration period, on a seasonal basis, for low flows, or for high flows. Many of these metrics are conflicting such that the set of parameters that maximizes the high flow NS differs from the set of parameters that maximizes the low flow NS. Conflicting objectives are very likely when different calibration objectives are based on different fluxes and/or state variables (e.g., NS based on streamflow versus SWE). One of the most popular ways to balance different metrics is to aggregate them based on their importance and find the set of parameters that optimizes a weighted sum of the efficiency metrics. Comparing alternative hydrologic models (e.g., assessing model improvement when a process or more detail is added to the model) based on the aggregated objective might be misleading since it represents one point on the tradeoff of desired error metrics. To derive a more comprehensive model comparison, we solved a bi-objective calibration problem to estimate the tradeoff between two error metrics for each model. Although this approach is computationally more expensive than the aggregation approach, it results in a better understanding of the effectiveness of selected models at each level of every error metric and therefore provides a better rationale for judging relative model quality. The two alternative models used in this study are two MESH hydrologic models (version 1.2) of the Wolf Creek Research basin that differ in their watershed spatial discretization (a single Grouped Response Unit, GRU, versus multiple GRUs). The MESH model, currently under development by Environment

  17. Modelling with Relational Calculus of Object and Component Systems - rCOS

    DEFF Research Database (Denmark)

    Chen, Zhenbang; Hannousse, Abdel Hakim; Hung, Dang Van

    2008-01-01

    This chapter presents a formalization of functional and behavioural requirements, and a refinement of requirements to a design for CoCoME using the Relational Calculus of Object and Component Systems (rCOS). We give a model of requirements based on an abstraction of the use cases described...... in Chapter 3.2. Then the refinement calculus of rCOS is used to derive design models corresponding to the top level designs of Chapter 3.4. We demonstrate how rCOS supports modelling different views and their relationships of the system and the separation of concerns in the development....

  18. Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.

    Science.gov (United States)

    Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus

    2017-01-01

    Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.

  19. Appropriate Objective Functions for Quantifying Iris Mechanical Properties Using Inverse Finite Element Modeling.

    Science.gov (United States)

    Pant, Anup D; Dorairaj, Syril K; Amini, Rouzbeh

    2018-07-01

    Quantifying the mechanical properties of the iris is important, as it provides insight into the pathophysiology of glaucoma. Recent ex vivo studies have shown that the mechanical properties of the iris are different in glaucomatous eyes as compared to normal ones. Notwithstanding the importance of the ex vivo studies, such measurements are severely limited for diagnosis and preclude development of treatment strategies. With the advent of detailed imaging modalities, it is possible to determine the in vivo mechanical properties using inverse finite element (FE) modeling. An inverse modeling approach requires an appropriate objective function for reliable estimation of parameters. In the case of the iris, numerous measurements such as iris chord length (CL) and iris concavity (CV) are made routinely in clinical practice. In this study, we have evaluated five different objective functions chosen based on the iris biometrics (in the presence and absence of clinical measurement errors) to determine the appropriate criterion for inverse modeling. Our results showed that in the absence of experimental measurement error, a combination of iris CL and CV can be used as the objective function. However, with the addition of measurement errors, the objective functions that employ a large number of local displacement values provide more reliable outcomes.

  20. Multi-object segmentation framework using deformable models for medical imaging analysis.

    Science.gov (United States)

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed

  1. Multi-objective optimization of the management of a waterworks using an integrated well field model

    DEFF Research Database (Denmark)

    Hansen, Annette Kirstine; Bauer-Gottwein, Peter; Rosbjerg, Dan

    2012-01-01

    of predicting the water level and the energy consumption of the individual production wells. The model has been applied to Søndersø waterworks in Denmark, where it predicts the energy consumption within 1.8% of the observed. The objectives of the optimization problem are to minimize the specific energy...... provides the decision-makers with compromise solutions between the two competing objectives. In the test case the Pareto optimal solutions are compared with an exhaustive benchmark solution. It is shown that the energy consumption can be reduced by 4% by changing the pumping configuration without violating...

  2. A fuzzy MCDM model with objective and subjective weights for evaluating service quality in hotel industries

    Science.gov (United States)

    Zoraghi, Nima; Amiri, Maghsoud; Talebi, Golnaz; Zowghi, Mahdi

    2013-12-01

    This paper presents a fuzzy multi-criteria decision-making (FMCDM) model by integrating both subjective and objective weights for ranking and evaluating the service quality in hotels. The objective method selects weights of criteria through mathematical calculation, while the subjective method uses judgments of decision makers. In this paper, we use a combination of weights obtained by both approaches in evaluating service quality in hotel industries. A real case study that considered ranking five hotels is illustrated. Examples are shown to indicate capabilities of the proposed method.

  3. Positioning graphical objects on computer screens: a three-phase model.

    Science.gov (United States)

    Pastel, Robert

    2011-02-01

    This experiment identifies and models phases during the positioning of graphical objects (called cursors in this article) on computer displays. The human computer-interaction community has traditionally used Fitts' law to model selection in graphical user interfaces, whereas human factors experiments have found the single-component Fitts' law inadequate to model positioning of real objects. Participants (N=145) repeatedly positioned variably sized square cursors within variably sized rectangular targets using computer mice. The times for the cursor to just touch the target, for the cursor to enter the target, and for participants to indicate positioning completion were observed. The positioning tolerances were varied from very precise and difficult to imprecise and easy. The time for the cursor to touch the target was proportional to the initial cursor-target distance. The time for the cursor to completely enter the target after touching was proportional to the logarithms of cursor size divided by target tolerances. The time for participants to indicate positioning after entering was inversely proportional to the tolerance. A three-phase model defined by regions--distant, proximate, and inside the target--was proposed and could model the positioning tasks. The three-phase model provides a framework for ergonomists to evaluate new positioning techniques and can explain their deficiencies. The model provides a means to analyze tasks and enhance interaction during positioning.

  4. Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.

    Directory of Open Access Journals (Sweden)

    Travis S Hughes

    Full Text Available Fluorine (19F NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC to objectively determine which model (number of peaks would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/.

  5. VNM: An R Package for Finding Multiple-Objective Optimal Designs for the 4-Parameter Logistic Model

    OpenAIRE

    Hyun, Seung Won; Wong, Weng Kee; Yang, Yarong

    2018-01-01

    A multiple-objective optimal design is useful for dose-response studies because it can incorporate several objectives at the design stage. Objectives can be of varying interests and a properly constructed multiple-objective optimal design can provide user-specified efficiencies, delivering higher efficiencies for the more important objectives. In this work, we introduce the VNM package written in R for finding 3-objective locally optimal designs for the 4-parameter logistic (4PL) model widely...

  6. Underwater Cylindrical Object Detection Using the Spectral Features of Active Sonar Signals with Logistic Regression Models

    Directory of Open Access Journals (Sweden)

    Yoojeong Seo

    2018-01-01

    Full Text Available The issue of detecting objects bottoming on the sea floor is significant in various fields including civilian and military areas. The objective of this study is to investigate the logistic regression model to discriminate the target from the clutter and to verify the possibility of applying the model trained by the simulated data generated by the mathematical model to the real experimental data because it is not easy to obtain sufficient data in the underwater field. In the first stage of this study, when the clutter signal energy is so strong that the detection of a target is difficult, the logistic regression model is employed to distinguish the strong clutter signal and the target signal. Previous studies have found that if the clutter energy is larger, false detection occurs even for the various existing detection schemes. For this reason, the discrete Fourier transform (DFT magnitude spectrum of acoustic signals received by active sonar is applied to train the model to distinguish whether the received signal contains a target signal or not. The goodness of fit of the model is verified in terms of receiver operation characteristic (ROC, area under ROC curve (AUC, and classification table. The detection performance of the proposed model is evaluated in terms of detection rate according to target to clutter ratio (TCR. Furthermore, the real experimental data are employed to test the proposed approach. When using the experimental data to test the model, the logistic regression model is trained by the simulated data that are generated based on the mathematical model for the backscattering of the cylindrical object. The mathematical model is developed according to the size of the cylinder used in the experiment. Since the information on the experimental environment including the sound speed, the sediment type and such is not available, once simulated data are generated under various conditions, valid simulated data are selected using 70% of the

  7. DESIGN OF OBJECT-ORIENTED DEBUGGER MODEL BY USING UNIFIED MODELING LANGUAGE

    OpenAIRE

    Nor Fazlida Mohd Sani; Noor Afiza Mohd Ariffin; Rodziah Atan

    2013-01-01

    Debugging on computer program is a complex cognitive activity. Although it is complex, itâs still one of the popular issues in computer programming task. It is a difficult task, which is to understand what the error is and how to solve such error? In computer programming the difficulty is to understand the Object-Oriented programming concept together with the programming logic. If the programming logic is incorrect, the program codes will have such error named as logic error and can caused hi...

  8. Applying different quality and safety models in healthcare improvement work: Boundary objects and system thinking

    International Nuclear Information System (INIS)

    Wiig, Siri; Robert, Glenn; Anderson, Janet E.; Pietikainen, Elina; Reiman, Teemu; Macchi, Luigi; Aase, Karina

    2014-01-01

    A number of theoretical models can be applied to help guide quality improvement and patient safety interventions in hospitals. However there are often significant differences between such models and, therefore, their potential contribution when applied in diverse contexts. The aim of this paper is to explore how two such models have been applied by hospitals to improve quality and safety. We describe and compare the models: (1) The Organizing for Quality (OQ) model, and (2) the Design for Integrated Safety Culture (DISC) model. We analyze the theoretical foundations of the models, and show, by using a retrospective comparative case study approach from two European hospitals, how these models have been applied to improve quality and safety. The analysis shows that differences appear in the theoretical foundations, practical approaches and applications of the models. Nevertheless, the case studies indicate that the choice between the OQ and DISC models is of less importance for guiding the practice of quality and safety improvement work, as they are both systemic and share some important characteristics. The main contribution of the models lay in their role as boundary objects directing attention towards organizational and systems thinking, culture, and collaboration

  9. Electricity supply industry modelling for multiple objectives under demand growth uncertainty

    International Nuclear Information System (INIS)

    Heinrich, G.; Basson, L.; Howells, M.; Petrie, J.

    2007-01-01

    Appropriate energy-environment-economic (E3) modelling provides key information for policy makers in the electricity supply industry (ESI) faced with navigating a sustainable development path. Key challenges include engaging with stakeholder values and preferences, and exploring trade-offs between competing objectives in the face of underlying uncertainty. As a case study we represent the South African ESI using a partial equilibrium E3 modelling approach, and extend the approach to include multiple objectives under selected future uncertainties. This extension is achieved by assigning cost penalties to non-cost attributes to force the model's least-cost objective function to better satisfy non-cost criteria. This paper incorporates aspects of flexibility to demand growth uncertainty into each future expansion alternative by introducing stochastic programming with recourse into the model. Technology lead times are taken into account by the inclusion of a decision node along the time horizon where aspects of real options theory are considered within the planning process. Hedging in the recourse programming is automatically translated from being purely financial, to include the other attributes that the cost penalties represent. From a retrospective analysis of the cost penalties, the correct market signals, can be derived to meet policy goal, with due regard to demand uncertainty. (author)

  10. An interactive system for creating object models from range data based on simulated annealing

    International Nuclear Information System (INIS)

    Hoff, W.A.; Hood, F.W.; King, R.H.

    1997-01-01

    In hazardous applications such as remediation of buried waste and dismantlement of radioactive facilities, robots are an attractive solution. Sensing to recognize and locate objects is a critical need for robotic operations in unstructured environments. An accurate 3-D model of objects in the scene is necessary for efficient high level control of robots. Drawing upon concepts from supervisory control, the authors have developed an interactive system for creating object models from range data, based on simulated annealing. Site modeling is a task that is typically performed using purely manual or autonomous techniques, each of which has inherent strengths and weaknesses. However, an interactive modeling system combines the advantages of both manual and autonomous methods, to create a system that has high operator productivity as well as high flexibility and robustness. The system is unique in that it can work with very sparse range data, tolerate occlusions, and tolerate cluttered scenes. The authors have performed an informal evaluation with four operators on 16 different scenes, and have shown that the interactive system is superior to either manual or automatic methods in terms of task time and accuracy

  11. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    Science.gov (United States)

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Object instance recognition using motion cues and instance specific appearance models

    Science.gov (United States)

    Schumann, Arne

    2014-03-01

    In this paper we present an object instance retrieval approach. The baseline approach consists of a pool of image features which are computed on the bounding boxes of a query object track and compared to a database of tracks in order to find additional appearances of the same object instance. We improve over this simple baseline approach in multiple ways: 1) we include motion cues to achieve improved robustness to viewpoint and rotation changes, 2) we include operator feedback to iteratively re-rank the resulting retrieval lists and 3) we use operator feedback and location constraints to train classifiers and learn an instance specific appearance model. We use these classifiers to further improve the retrieval results. The approach is evaluated on two popular public datasets for two different applications. We evaluate person re-identification on the CAVIAR shopping mall surveillance dataset and vehicle instance recognition on the VIVID aerial dataset and achieve significant improvements over our baseline results.

  13. A Proposed Model for Assessing Organisational Culture Towards Achieving Business Objectives

    Directory of Open Access Journals (Sweden)

    Hafez Salleh

    2011-09-01

    Full Text Available Most of the traditional business performances measures are based on productivity and process criteria, which mainly focus on method of investment appraisal such as payback method, return on investment (ROI, cost-benefits analysis (CBA, net present value (NPV, internal rate of return (IRR. However, the measurement scales of business performance are not limited to those measures. One element that has strong correlation to the business performances is ‘organisational culture’. Many studies proved that one of the significant criteria for achieving desired business objectives is the right organisational culture within workplace. Basically, the measurement of organisational culture is reflecting on two distinct elements: organisational culture and business objectives. In broader perspective, an organisation is considered effective if it meets its business objectives. This paper aims to present and discuss the preliminary culture model to indicate the culture performance within organisational. The model has been developed through literature review, expert opinion and experience which is anticipated of being able to potentially measure the culture capability of organisations across industries to “successfully achieve business objectives”. The model is composed of six progressive stages of maturity that an organisation can achieve its culture performance. For each maturity stage, the model describes a set of characteristics that must be in place for the company to achieve each stage. The validity of the proposed model will be tested by a few case studies. The idea is to provide managers with a qualitative measurement tools to enable them to identify where culture improvements are required within their organisations and to indicate their readiness for achieving business objectives.

  14. Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    Science.gov (United States)

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-01-01

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718

  15. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    Science.gov (United States)

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  16. Closed-loop model identification of cooperative manipulators holding deformable objects

    Science.gov (United States)

    Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.

    2017-11-01

    This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.

  17. Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin

    Science.gov (United States)

    Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M.

    2006-01-01

    The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated, consistently with measured values.

  18. Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex.

    Science.gov (United States)

    Cowell, Rosemary A; Bussey, Timothy J; Saksida, Lisa M

    2006-11-22

    Object recognition is the canonical test of declarative memory, the type of memory putatively impaired after damage to the temporal lobes. Studies of object recognition memory have helped elucidate the anatomical structures involved in declarative memory, indicating a critical role for perirhinal cortex. We offer a mechanistic account of the effects of perirhinal cortex damage on object recognition memory, based on the assumption that perirhinal cortex stores representations of the conjunctions of visual features possessed by complex objects. Such representations are proposed to play an important role in memory when it is difficult to solve a task using representations of only individual visual features of stimuli, thought to be stored in regions of the ventral visual stream caudal to perirhinal cortex. The account is instantiated in a connectionist model, in which development of object representations with visual experience provides a mechanism for judgment of previous occurrence. We present simulations addressing the following empirical findings: (1) that impairments after damage to perirhinal cortex (modeled by removing the "perirhinal cortex" layer of the network) are exacerbated by lengthening the delay between presentation of to-be-remembered items and test, (2) that such impairments are also exacerbated by lengthening the list of to-be-remembered items, and (3) that impairments are revealed only when stimuli are trial unique rather than repeatedly presented. This study shows that it may be possible to account for object recognition impairments after damage to perirhinal cortex within a hierarchical, representational framework, in which complex conjunctive representations in perirhinal cortex play a critical role.

  19. Object as a model of intelligent robot in the virtual workspace

    Science.gov (United States)

    Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.

    2015-11-01

    The contemporary industry requires that every element of a production line will fit into the global schema, which is connected with the global structure of business. There is the need to find the practical and effective ways of the design and management of the production process. The term “effective” should be understood in a manner that there exists a method, which allows building a system of nodes and relations in order to describe the role of the particular machine in the production process. Among all the machines involved in the manufacturing process, industrial robots are the most complex ones. This complexity is reflected in the realization of elaborated tasks, involving handling, transporting or orienting the objects in a work space, and even performing simple machining processes, such as deburring, grinding, painting, applying adhesives and sealants etc. The robot also performs some activities connected with automatic tool changing and operating the equipment mounted on the wrist of the robot. Because of having the programmable control system, the robot also performs additional activities connected with sensors, vision systems, operating the storages of manipulated objects, tools or grippers, measuring stands, etc. For this reason the description of the robot as a part of production system should take into account the specific nature of this machine: the robot is a substitute of a worker, who performs his tasks in a particular environment. In this case, the model should be able to characterize the essence of "employment" in the sufficient way. One of the possible approaches to this problem is to treat the robot as an object, in the sense often used in computer science. This allows both: to describe certain operations performed on the object, as well as describing the operations performed by the object. This paper focuses mainly on the definition of the object as the model of the robot. This model is confronted with the other possible descriptions. The

  20. Object as a model of intelligent robot in the virtual workspace

    International Nuclear Information System (INIS)

    Foit, K; Gwiazda, A; Banas, W; Sekala, A; Hryniewicz, P

    2015-01-01

    The contemporary industry requires that every element of a production line will fit into the global schema, which is connected with the global structure of business. There is the need to find the practical and effective ways of the design and management of the production process. The term “effective” should be understood in a manner that there exists a method, which allows building a system of nodes and relations in order to describe the role of the particular machine in the production process. Among all the machines involved in the manufacturing process, industrial robots are the most complex ones. This complexity is reflected in the realization of elaborated tasks, involving handling, transporting or orienting the objects in a work space, and even performing simple machining processes, such as deburring, grinding, painting, applying adhesives and sealants etc. The robot also performs some activities connected with automatic tool changing and operating the equipment mounted on the wrist of the robot. Because of having the programmable control system, the robot also performs additional activities connected with sensors, vision systems, operating the storages of manipulated objects, tools or grippers, measuring stands, etc. For this reason the description of the robot as a part of production system should take into account the specific nature of this machine: the robot is a substitute of a worker, who performs his tasks in a particular environment. In this case, the model should be able to characterize the essence of 'employment' in the sufficient way. One of the possible approaches to this problem is to treat the robot as an object, in the sense often used in computer science. This allows both: to describe certain operations performed on the object, as well as describing the operations performed by the object. This paper focuses mainly on the definition of the object as the model of the robot. This model is confronted with the other possible

  1. Multi-objective optimization for generating a weighted multi-model ensemble

    Science.gov (United States)

    Lee, H.

    2017-12-01

    Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic

  2. Multi-Model Estimation Based Moving Object Detection for Aerial Video

    Directory of Open Access Journals (Sweden)

    Yanning Zhang

    2015-04-01

    Full Text Available With the wide development of UAV (Unmanned Aerial Vehicle technology, moving target detection for aerial video has become a popular research topic in the computer field. Most of the existing methods are under the registration-detection framework and can only deal with simple background scenes. They tend to go wrong in the complex multi background scenarios, such as viaducts, buildings and trees. In this paper, we break through the single background constraint and perceive the complex scene accurately by automatic estimation of multiple background models. First, we segment the scene into several color blocks and estimate the dense optical flow. Then, we calculate an affine transformation model for each block with large area and merge the consistent models. Finally, we calculate subordinate degree to multi-background models pixel to pixel for all small area blocks. Moving objects are segmented by means of energy optimization method solved via Graph Cuts. The extensive experimental results on public aerial videos show that, due to multi background models estimation, analyzing each pixel’s subordinate relationship to multi models by energy minimization, our method can effectively remove buildings, trees and other false alarms and detect moving objects correctly.

  3. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  4. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali; Choi, Yun Seok

    2012-01-01

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  5. Novel object exploration in the C58/J mouse model of autistic-like behavior.

    Science.gov (United States)

    Blick, Mikkal G; Puchalski, Breann H; Bolanos, Veronica J; Wolfe, Kaitlin M; Green, Matthew C; Ryan, Bryce C

    2015-04-01

    Mouse models of autistic like behaviors are a valuable tool to use when studying the causes, symptoms, and potential treatments for autism. The inbred C58/J strain is a strain of interest for this model and has previously been shown to possess face validity for some of the core traits of autism, including low social behavior and elevated motor stereotypies. Higher order repetitive behaviors have not been extensively studied in this strain, or in mice in general. In this study, we looked for evidence of higher-order repetitive behaviors in the C58/J strain using a novel object assay. This assay utilized a mouse's natural exploratory behavior among unfamiliar objects to identify potential sequencing patterns in motor activity. The motor stereotypies displayed by the C58/J strain during testing were consistent with past studies. The C58/J strain also displayed a high preference for a single object in the round arena assays and the females demonstrating elevated sequencing patterns in the round arena. Although the C58/J strain did not show pervasive evidence of higher-order repetitive behaviors across all measures, there was evidence of higher order repetitive behaviors in certain situations. This study further demonstrates the potential of the C58/J mouse strains as a model for lower-order and potentially, higher-order repetitive behaviors. This study also demonstrates that the shape of the novel object arena can change the behavior displayed by the test animals. Further studies utilizing the C58/J strain and further validation of the novel object assay are warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. USE OF IMAGE BASED MODELLING FOR DOCUMENTATION OF INTRICATELY SHAPED OBJECTS

    Directory of Open Access Journals (Sweden)

    M. Marčiš

    2016-06-01

    Full Text Available In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.

  7. A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem

    Science.gov (United States)

    Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid

    2016-09-01

    Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

  8. Virtual memory support for distributed computing environments using a shared data object model

    Science.gov (United States)

    Huang, F.; Bacon, J.; Mapp, G.

    1995-12-01

    Conventional storage management systems provide one interface for accessing memory segments and another for accessing secondary storage objects. This hinders application programming and affects overall system performance due to mandatory data copying and user/kernel boundary crossings, which in the microkernel case may involve context switches. Memory-mapping techniques may be used to provide programmers with a unified view of the storage system. This paper extends such techniques to support a shared data object model for distributed computing environments in which good support for coherence and synchronization is essential. The approach is based on a microkernel, typed memory objects, and integrated coherence control. A microkernel architecture is used to support multiple coherence protocols and the addition of new protocols. Memory objects are typed and applications can choose the most suitable protocols for different types of object to avoid protocol mismatch. Low-level coherence control is integrated with high-level concurrency control so that the number of messages required to maintain memory coherence is reduced and system-wide synchronization is realized without severely impacting the system performance. These features together contribute a novel approach to the support for flexible coherence under application control.

  9. Art form as an object of cognitive modeling (towards development of Vygotsky`s semiotic model)

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, V. [Oklahoma State Univ. (United States); Perlovsky, L.I.

    1996-12-31

    We suggest a further development of Vygotsky`s esthetic-semiotic model. First, we discuss Vygotsky`s model originally developed for the analysis of Ivan Bunin`s story {open_quotes}Light Breath{close_quotes}. Vygotsky analyzes formal methods used by Bunin to achieve a specific esthetic effect of {open_quote}lightness{close_quotes} while describing {open_quotes}dirty{close_quotes} events of everyday life. According to Vygotsky, this effect is achieved by ordering of events in a non-linear fashion. Vygotsky creams an airy pattern of smooth lines connecting events of story that he first orders linearly in time. And, he insists that this airy pattern creates an impression of airy lightness. In the language of semiotics, the esthetic effect is created by a specific structural organization of signs. Second, we present our critique of Vygotsky`s model. Although, we do not agree with Vygotsky`s sometimes moralistic judgements, and we consider the dynamics between inner personal values and received moral values to be more complicated than implied in his judgements, our critique in this paper is limited to the structure of his semiotic model. We emphasize that Vygotsky`s model does not explicitly account for a hierarchy of multiple levels of semiotic analysis. His analysis regularly slips from one level to another: (1) a lever of cognitive perception by a regular reader is confused with a level of creative genius of a writer; (2) {open_quotes}open{close_quotes} time of real world is mixed up with {open_quote}closed{close_quote} time of the story; (3) events are not organized by the hierarchy of their importance, nor in real world, nor in the inner model of the personages, nor in the story.

  10. Design and selection of load control strategies using a multiple objective model and evolutionary algorithms

    International Nuclear Information System (INIS)

    Gomes, Alvaro; Antunes, Carlos Henggeler; Martins, Antonio Gomes

    2005-01-01

    This paper aims at presenting a multiple objective model to evaluate the attractiveness of the use of demand resources (through load management control actions) by different stakeholders and in diverse structure scenarios in electricity systems. For the sake of model flexibility, the multiple (and conflicting) objective functions of technical, economical and quality of service nature are able to capture distinct market scenarios and operating entities that may be interested in promoting load management activities. The computation of compromise solutions is made by resorting to evolutionary algorithms, which are well suited to tackle multiobjective problems of combinatorial nature herein involving the identification and selection of control actions to be applied to groups of loads. (Author)

  11. A 3D City Model with Dynamic Behaviour Based on Geospatial Managed Objects

    DEFF Research Database (Denmark)

    Kjems, Erik; Kolář, Jan

    2014-01-01

    of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited resources in the most sustainable way. Using 3D......One of the major development efforts within the GI Science domain are pointing at real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation...... occasions we have been advocating for a new and advanced formulation of real world features using the concept of Geospatial Managed Objects (GMO). This chapter presents the outcome of the InfraWorld project, a 4 million Euro project financed primarily by the Norwegian Research Council where the concept...

  12. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Pindoriya, N.M.; Singh, S.N. [Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Singh, S.K. [Indian Institute of Management Lucknow, Lucknow 226013 (India)

    2010-10-15

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  13. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    International Nuclear Information System (INIS)

    Pindoriya, N.M.; Singh, S.N.; Singh, S.K.

    2010-01-01

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  14. Automated quantification and sizing of unbranched filamentous cyanobacteria by model based object oriented image analysis

    OpenAIRE

    Zeder, M; Van den Wyngaert, S; Köster, O; Felder, K M; Pernthaler, J

    2010-01-01

    Quantification and sizing of filamentous cyanobacteria in environmental samples or cultures are time-consuming and are often performed by using manual or semiautomated microscopic analysis. Automation of conventional image analysis is difficult because filaments may exhibit great variations in length and patchy autofluorescence. Moreover, individual filaments frequently cross each other in microscopic preparations, as deduced by modeling. This paper describes a novel approach based on object-...

  15. Implementation of the Multidimensional Modeling Concepts into Object-Relational Databases

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available A key to survival in the business world is being able to analyze, plan and react to changing business conditions as fast as possible. With multidimensional models the managers can explore information at different levels of granularity and the decision makers at all levels can quickly respond to changes in the business climate-the ultimate goal of business intelligence. This paper focuses on the implementation of the multidimensional concepts into object-relational databases.

  16. Mathematical programming model for heat exchanger design through optimization of partial objectives

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.

    2013-01-01

    Highlights: • Rigorous design of shell-and-tube heat exchangers according to TEMA standards. • Division of the problem into sets of equations that are easier to solve. • Selected heuristic objective functions based on the physical behavior of the problem. • Sequential optimization approach to avoid solutions stuck in local minimum. • The results obtained with this model improved the values reported in the literature. - Abstract: Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature

  17. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  18. A Building Model Framework for a Genetic Algorithm Multi-objective Model Predictive Control

    DEFF Research Database (Denmark)

    Arendt, Krzysztof; Ionesi, Ana; Jradi, Muhyiddine

    2016-01-01

    Model Predictive Control (MPC) of building systems is a promising approach to optimize building energy performance. In contrast to traditional control strategies which are reactive in nature, MPC optimizes the utilization of resources based on the predicted effects. It has been shown that energy ...

  19. GOOSE Version 1.4: A powerful object-oriented simulation environment for developing reactor models

    International Nuclear Information System (INIS)

    Nypaver, D.J.; March-Leuba, C.; Abdalla, M.A.; Guimaraes, L.

    1992-01-01

    A prototype software package for a fully interactive Generalized Object-Oriented Simulation Environment (GOOSE) is being developed at Oak Ridge National Laboratory. Dynamic models are easily constructed and tested; fully interactive capabilities allow the user to alter model parameters and complexity without recompilation. This environment provides assess to powerful tools such as numerical integration packages, graphical displays, and online help. In GOOSE, portability has been achieved by creating the environment in Objective-C 1 , which is supported by a variety of platforms including UNIX and DOS. GOOSE Version 1.4 introduces new enhancements like the capability of creating ''initial,'' ''dynamic,'' and ''digital'' methods. The object-oriented approach to simulation used in GOOSE combines the concept of modularity with the additional features of allowing precompilation, optimization, testing, and validation of individual modules. Once a library of classes has been defined and compiled, models can be built and modified without recompilation. GOOSE Version 1.4 is primarily command-line driven

  20. An object-oriented, coprocessor-accelerated model for ice sheet simulations

    Science.gov (United States)

    Seddik, H.; Greve, R.

    2013-12-01

    Recently, numerous models capable of modeling the thermo-dynamics of ice sheets have been developed within the ice sheet modeling community. Their capabilities have been characterized by a wide range of features with different numerical methods (finite difference or finite element), different implementations of the ice flow mechanics (shallow-ice, higher-order, full Stokes) and different treatments for the basal and coastal areas (basal hydrology, basal sliding, ice shelves). Shallow-ice models (SICOPOLIS, IcIES, PISM, etc) have been widely used for modeling whole ice sheets (Greenland and Antarctica) due to the relatively low computational cost of the shallow-ice approximation but higher order (ISSM, AIF) and full Stokes (Elmer/Ice) models have been recently used to model the Greenland ice sheet. The advance in processor speed and the decrease in cost for accessing large amount of memory and storage have undoubtedly been the driving force in the commoditization of models with higher capabilities, and the popularity of Elmer/Ice (http://elmerice.elmerfem.com) with an active user base is a notable representation of this trend. Elmer/Ice is a full Stokes model built on top of the multi-physics package Elmer (http://www.csc.fi/english/pages/elmer) which provides the full machinery for the complex finite element procedure and is fully parallel (mesh partitioning with OpenMPI communication). Elmer is mainly written in Fortran 90 and targets essentially traditional processors as the code base was not initially written to run on modern coprocessors (yet adding support for the recently introduced x86 based coprocessors is possible). Furthermore, a truly modular and object-oriented implementation is required for quick adaptation to fast evolving capabilities in hardware (Fortran 2003 provides an object-oriented programming model while not being clean and requiring a tricky refactoring of Elmer code). In this work, the object-oriented, coprocessor-accelerated finite element

  1. Toward a Dexter-based model for open hypermedia: Unifying embedded references and link objects

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Trigg, Randall Hagner

    1996-01-01

    Nominated for the Doug Engelbart best paper award. This paper discusses experiences and lessons learned from the design of an open hypermedia system, one that integrates applications and data not ''owned'' by the hypermedia. The Dexter Hypertext Reference Model was used as the basis for the design....... Though our experiences were generally positive, we found the model constraining in certain ways and underdeveloped in others. For instance, Dexter argues against dangling links, but we found several situations where permitting and supporting dangling links was advisable. In Dexter, the data objects...

  2. Creation of integrated information model of 'Ukryttya' object premises and industrial site conditions to support works

    International Nuclear Information System (INIS)

    Postil, S.D.; Ermolenko, A.I.; Ivanov, V.V.; Kotlyarov, V.T.

    2004-01-01

    Data integration is made using standard AutoCAD utility and special software developed in Visual Basic for Application language. Mutual transfer is realized between the applications prepared in Access and AutoCAD with displaying the submitted information. The work demonstrates a possibility to apply integrated information model for investigating radiation field's change and analysis regularities in premises and on industrial site area, development and visualization, with the use of computer animation means, of movement routes, displaying of emergency situations being forecast with the help of computer graphics means, integration of raster display of structures and vector computer model of objects

  3. Improved signal model for confocal sensors accounting for object depending artifacts.

    Science.gov (United States)

    Mauch, Florian; Lyda, Wolfram; Gronle, Marc; Osten, Wolfgang

    2012-08-27

    The conventional signal model of confocal sensors is well established and has proven to be exceptionally robust especially when measuring rough surfaces. Its physical derivation however is explicitly based on plane surfaces or point like objects, respectively. Here we show experimental results of a confocal point sensor measurement of a surface standard. The results illustrate the rise of severe artifacts when measuring curved surfaces. On this basis, we present a systematic extension of the conventional signal model that is proven to be capable of qualitatively explaining these artifacts.

  4. Objective Tuning of Model Parameters in CAM5 Across Different Spatial Resolutions

    Science.gov (United States)

    Bulaevskaya, V.; Lucas, D. D.

    2014-12-01

    Parameterizations of physical processes in climate models are highly dependent on the spatial and temporal resolution and must be tuned for each resolution under consideration. At high spatial resolutions, objective methods for parameter tuning are computationally prohibitive. Our work has focused on calibrating parameters in the Community Atmosphere Model 5 (CAM5) for three spatial resolutions: 1, 2, and 4 degrees. Using perturbed-parameter ensembles and uncertainty quantification methodology, we have identified input parameters that minimize discrepancies of energy fluxes simulated by CAM5 across the three resolutions and with respect to satellite observations. We are also beginning to exploit the parameter-resolution relationships to objectively tune parameters in a high-resolution version of CAM5 by leveraging cheaper, low-resolution simulations and statistical models. We will present our approach to multi-resolution climate model parameter tuning, as well as the key findings. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported from the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC) project on Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System.

  5. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    Science.gov (United States)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  6. A Model for Semi-Automatic Composition of Educational Content from Open Repositories of Learning Objects

    Directory of Open Access Journals (Sweden)

    Paula Andrea Rodríguez Marín

    2014-04-01

    Full Text Available Learning objects (LOs repositories are important in building educational content and should allow search, retrieval and composition processes to be successfully developed to reach educational goals. However, such processes require so much time-consuming and not always provide the desired results. Thus, the aim of this paper is to propose a model for the semiautomatic composition of LOs, which are automatically recovered from open repositories. For the development of model, various text similarity measures are discussed, while for calibration and validation some comparison experiments were performed using the results obtained by teachers. Experimental results show that when using a value of k (number of LOs selected of at least 3, the percentage of similarities between the model and such made by experts exceeds 75%. To conclude, it can be established that the model proposed allows teachers to save time and effort for LOs selection by performing a pre-filter process.

  7. Improved bow shock models for Herbig-Haro objects - application to HH 2A-prime

    International Nuclear Information System (INIS)

    Raymond, J.C.; Hartmann, L.; Hartigan, P.

    1988-01-01

    An improved version of the bow shock theory previously applied to Herbig-Haro objects is presented. The modifications provide a more accurate calculation of the ionization state of material entering the bow shock. The revised preionization does not drastically affect the emission-line predictions for a 200 km/s bow shock model, though the effects will be more severe for slower shock velocities. The line profiles of the new models resemble the observed profiles somewhat more closely, and the relative emission-line intensities typically differ by 30 percent from those predicted by the older models. The models agree well with new IUE spectra and existing optical data for HH 2A-prime. 32 references

  8. A Framework for Realistic Modeling and Display of Object Surface Appearance

    Science.gov (United States)

    Darling, Benjamin A.

    With advances in screen and video hardware technology, the type of content presented on computers has progressed from text and simple shapes to high-resolution photographs, photorealistic renderings, and high-definition video. At the same time, there have been significant advances in the area of content capture, with the development of devices and methods for creating rich digital representations of real-world objects. Unlike photo or video capture, which provide a fixed record of the light in a scene, these new technologies provide information on the underlying properties of the objects, allowing their appearance to be simulated for novel lighting and viewing conditions. These capabilities provide an opportunity to continue the computer display progression, from high-fidelity image presentations to digital surrogates that recreate the experience of directly viewing objects in the real world. In this dissertation, a framework was developed for representing objects with complex color, gloss, and texture properties and displaying them onscreen to appear as if they are part of the real-world environment. At its core, there is a conceptual shift from a traditional image-based display workflow to an object-based one. Instead of presenting the stored patterns of light from a scene, the objective is to reproduce the appearance attributes of a stored object by simulating its dynamic patterns of light for the real viewing and lighting geometry. This is accomplished using a computational approach where the physical light sources are modeled and the observer and display screen are actively tracked. Surface colors are calculated for the real spectral composition of the illumination with a custom multispectral rendering pipeline. In a set of experiments, the accuracy of color and gloss reproduction was evaluated by measuring the screen directly with a spectroradiometer. Gloss reproduction was assessed by comparing gonio measurements of the screen output to measurements of the

  9. NURSING PROCESS, ACCORDING TO THE CONCEPTUAL MODEL OF WANDA HORTA, APPLIED TO A FAMILY MET BY THE REGIONAL CORE OF HOME CARE, DISTRITO FEDERAL.

    OpenAIRE

    Prince Vangeris Silva Fernandes de Lima; Ana Karoliny Couto Nascimento; Hellen Cristina Seganfredo; Isabella Cristina Ribeiro; Anne Caroline Coelho Leal Árias Amorim; Elioenai Dornelles Alves

    2014-01-01

    The case report describes the nursing care, systematized according to the conceptual model of Wanda Horta, who was dismissed to a family accompanied by a core team of Regional home care, an administrative region of the Federal District through prioritization, based on the scale of Cascavel, a member of this for such a public service. The context part according to reports from the Discipline community health nursing in ' 02 and ' Stage, mandatory mode sold to students from the undergraduat...

  10. Objective Model Selection for Identifying the Human Feedforward Response in Manual Control.

    Science.gov (United States)

    Drop, Frank M; Pool, Daan M; van Paassen, Marinus Rene M; Mulder, Max; Bulthoff, Heinrich H

    2018-01-01

    Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models. A new model selection criterion is proposed to decide on the model order (number of parameters) and the presence of feedforward in addition to feedback. For a range of typical control tasks, it is shown by means of Monte Carlo computer simulations that the classical Bayesian information criterion (BIC) leads to selecting models that contain a feedforward path from data generated by a pure feedback model: "false-positive" feedforward detection. To eliminate these false-positives, the modified BIC includes an additional penalty on model complexity. The appropriate weighting is found through computer simulations with a hypothesized HC model prior to performing a tracking experiment. Experimental human-in-the-loop data will be considered in future work. With appropriate weighting, the method correctly identifies the HC dynamics in a wide range of control tasks, without false-positive results.

  11. Object selection costs in visual working memory: A diffusion model analysis of the focus of attention.

    Science.gov (United States)

    Sewell, David K; Lilburn, Simon D; Smith, Philip L

    2016-11-01

    A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016

  12. Catechol-O-Methyltransferase (COMT) Gene (Val158Met) and Brain-Derived Neurotropic Factor (BDNF) (Val66Met) Genes Polymorphism in Schizophrenia: A Case-Control Study.

    Science.gov (United States)

    Saravani, Ramin; Galavi, Hamid Reza; Lotfian Sargazi, Marzieh

    2017-10-01

    Objective: Several studies have shown that some polymorphisms of genes encoding catechol-O-methyltransferase (COMT), the key enzyme in degrading dopamine, and norepinephrine and the human brain-derived neurotropic factor (BDNF), a nerve growth factor, are strong candidates for risk of schizophrenia (SCZ). In the present study, we aimed at examining the effects of COMT Val158Met (G>A) and BDNF Val66Met (G>A) polymorphisms on SCZ risk in a sample of Iranian population. Method: This case- control study included 92 SCZ patients and 92 healthy controls (HCs). Genotyping of both variants (COMT Val158Met (G>A) and BDNF Val66Met (G>A)) were conducted using Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR). Results: The findings revealed that the COMT Val158Met (G>A) polymorphism was not associated with the risk/protective of SCZ in all models (OR=0.630, 95%CI=0.299-1.326, P=0.224, GA vs. GG, OR=1.416, 95%CI=0.719-2.793, P=0.314, AA vs. GG, OR=1.00, 95%CI=0.56-1.79, P=1.00 GA+AA vs. GG, OR=1.667, 95%CI=0.885-3.125, P=0.11, AA vs. GG+GA, OR=1.247, 95%CI=0.825-1.885, P=0.343, A vs. G,). However, BDNF Val66Met (G>A) variant increased the risk of SCZ (OR = 2.008 95%CI = 1.008-4.00, P = 0.047, GA vs. GG, OR = 3.876 95%CI = 1.001-14.925, P = 0.049. AA vs. GG, OR = 2.272. 95%CI = 1.204-4.347, P = 0.011, GA+AA vs. GG, OR = 2.22 95%CI = 1.29-3.82. P = 0.005, A vs. G). Conclusion: The results did not support an association between COMT Val158Met (G>A) variant and risk/protective of SCZ. Moreover, it was found that BDNF Val66Met (G>A) polymorphism may increase the risk of SCZ development. Further studies and different ethnicities are recommended to confirm the findings.

  13. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    Science.gov (United States)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  14. Reactions of Met-Cars

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.; Guo, B.C.

    1993-01-01

    A new class of metal-carbon complexes, termed metallo-carbohedrenes (Met-Cars), have been discovered to form in a plasma reactor in which early transition metals are vaporized into a stream carrying small hydrocarbon molecules. The initial discovery involved the species Ti 8 c 12 + , while subsequent studies revealed the stability of the anion and, most importantly, the neutral species. Subsequent investigations show that similar molecules, predicted to have a pentagonal dodecahedral structure, can also be formed with vanadium, hafnium, and zirconium. In the case of the latter, more recent investigations have displaced an interesting growth pattern. In particular, pentagonal dodecahedrons with dangling carbon atoms can undergo further growth, adding at least a second and third cage. The latest results on the properties and reactivities of these new cage-like molecular clusters will be discussed

  15. Multi-objective optimization and simulation model for the design of distributed energy systems

    International Nuclear Information System (INIS)

    Falke, Tobias; Krengel, Stefan; Meinerzhagen, Ann-Kathrin; Schnettler, Armin

    2016-01-01

    Highlights: • Development of a model for the optimal design of district energy systems. • Multi-objective approach: integrated economic and ecological optimization. • Consideration of conventional conversion technologies, RES and district heating. • Decomposition of optimization problem to reduce computation complexity. • Approach enables the investigation of districts with more than 150 buildings. - Abstract: In this paper, a multi-objective optimization model for the investment planning and operation management of distributed heat and electricity supply systems is presented. Different energy efficiency measures and supply options are taken into account, including various distributed heat and power generation units, storage systems and energy-saving renovation measures. Furthermore, district heating networks are considered as an alternative to conventional, individual heat supply for each building. The optimization problem is decomposed into three subproblems to reduce the computational complexity. This enables a high level of detail in the optimization and simultaneously the comprehensive investigation of districts with more than 100 buildings. These capabilities distinguish the model from previous approaches in this field of research. The developed model is applied to a district in a medium-sized town in Germany in order to analyze the effects of different efficiency measures regarding total costs and emissions of CO 2 equivalents. Based on the Pareto efficient solutions, technologies and efficiency measures that can contribute most efficiently to reduce greenhouse gas emissions are identified.

  16. An Object-Relational Ifc Storage Model Based on Oracle Database

    Science.gov (United States)

    Li, Hang; Liu, Hua; Liu, Yong; Wang, Yuan

    2016-06-01

    With the building models are getting increasingly complicated, the levels of collaboration across professionals attract more attention in the architecture, engineering and construction (AEC) industry. In order to adapt the change, buildingSMART developed Industry Foundation Classes (IFC) to facilitate the interoperability between software platforms. However, IFC data are currently shared in the form of text file, which is defective. In this paper, considering the object-based inheritance hierarchy of IFC and the storage features of different database management systems (DBMS), we propose a novel object-relational storage model that uses Oracle database to store IFC data. Firstly, establish the mapping rules between data types in IFC specification and Oracle database. Secondly, design the IFC database according to the relationships among IFC entities. Thirdly, parse the IFC file and extract IFC data. And lastly, store IFC data into corresponding tables in IFC database. In experiment, three different building models are selected to demonstrate the effectiveness of our storage model. The comparison of experimental statistics proves that IFC data are lossless during data exchange.

  17. Multi-objective Analysis for a Sequencing Planning of Mixed-model Assembly Line

    Science.gov (United States)

    Shimizu, Yoshiaki; Waki, Toshiya; Yoo, Jae Kyu

    Diversified customer demands are raising importance of just-in-time and agile manufacturing much more than before. Accordingly, introduction of mixed-model assembly lines becomes popular to realize the small-lot-multi-kinds production. Since it produces various kinds on the same assembly line, a rational management is of special importance. With this point of view, this study focuses on a sequencing problem of mixed-model assembly line including a paint line as its preceding process. By taking into account the paint line together, reducing work-in-process (WIP) inventory between these heterogeneous lines becomes a major concern of the sequencing problem besides improving production efficiency. Finally, we have formulated the sequencing problem as a bi-objective optimization problem to prevent various line stoppages, and to reduce the volume of WIP inventory simultaneously. Then we have proposed a practical method for the multi-objective analysis. For this purpose, we applied the weighting method to derive the Pareto front. Actually, the resulting problem is solved by a meta-heuristic method like SA (Simulated Annealing). Through numerical experiments, we verified the validity of the proposed approach, and discussed the significance of trade-off analysis between the conflicting objectives.

  18. MASCOT HTML and XML parser: an implementation of a novel object model for protein identification data.

    Science.gov (United States)

    Yang, Chunguang G; Granite, Stephen J; Van Eyk, Jennifer E; Winslow, Raimond L

    2006-11-01

    Protein identification using MS is an important technique in proteomics as well as a major generator of proteomics data. We have designed the protein identification data object model (PDOM) and developed a parser based on this model to facilitate the analysis and storage of these data. The parser works with HTML or XML files saved or exported from MASCOT MS/MS ions search in peptide summary report or MASCOT PMF search in protein summary report. The program creates PDOM objects, eliminates redundancy in the input file, and has the capability to output any PDOM object to a relational database. This program facilitates additional analysis of MASCOT search results and aids the storage of protein identification information. The implementation is extensible and can serve as a template to develop parsers for other search engines. The parser can be used as a stand-alone application or can be driven by other Java programs. It is currently being used as the front end for a system that loads HTML and XML result files of MASCOT searches into a relational database. The source code is freely available at http://www.ccbm.jhu.edu and the program uses only free and open-source Java libraries.

  19. An object-oriented model for complex bills of materials in process industries

    Directory of Open Access Journals (Sweden)

    Vegetti M.

    2002-01-01

    Full Text Available In recent years, many process industries have been forced to drastically increase their product variety and adopt mass customization production strategies. Many of them have found that traditional bill of material (BOM processing systems do not sufficiently support the maintenance of the very large amounts of data (concerned with product structure demanded by these new production policies. Due to the use of BOM technology within the framework of integrated information systems, there is a demand for both (i a new representation of BOMs, able to deal efficiently with product variants and to handle decomposition-based production strategies, and (ii its corresponding BOM information processing system. This paper describes a conceptual representation that integrates elements of semantic relationships with object-oriented concepts to develop a data model for a hybrid bill of materials. The proposed semantic relationships include composed-of, decomposed-into, variant-of, restriction-of, and their corresponding reverse relationships. The conceptual model has been implemented using object-oriented data-based management system (OODBMS technology that allows creation of persistent Java objects. Preliminary tests show a remarkable reduction in the number of relationships when compared with former approaches.

  20. GPR Imaging for Deeply Buried Objects: A Comparative Study Based on FDTD Models and Field Experiments

    Science.gov (United States)

    Tilley, roger; Dowla, Farid; Nekoogar, Faranak; Sadjadpour, Hamid

    2012-01-01

    Conventional use of Ground Penetrating Radar (GPR) is hampered by variations in background environmental conditions, such as water content in soil, resulting in poor repeatability of results over long periods of time when the radar pulse characteristics are kept the same. Target objects types might include voids, tunnels, unexploded ordinance, etc. The long-term objective of this work is to develop methods that would extend the use of GPR under various environmental and soil conditions provided an optimal set of radar parameters (such as frequency, bandwidth, and sensor configuration) are adaptively employed based on the ground conditions. Towards that objective, developing Finite Difference Time Domain (FDTD) GPR models, verified by experimental results, would allow us to develop analytical and experimental techniques to control radar parameters to obtain consistent GPR images with changing ground conditions. Reported here is an attempt at developing 20 and 3D FDTD models of buried targets verified by two different radar systems capable of operating over different soil conditions. Experimental radar data employed were from a custom designed high-frequency (200 MHz) multi-static sensor platform capable of producing 3-D images, and longer wavelength (25 MHz) COTS radar (Pulse EKKO 100) capable of producing 2-D images. Our results indicate different types of radar can produce consistent images.

  1. Implementation of an object oriented track reconstruction model into multiple LHC experiments*

    Science.gov (United States)

    Gaines, Irwin; Gonzalez, Saul; Qian, Sijin

    2001-10-01

    An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.

  2. DAE Tools: equation-based object-oriented modelling, simulation and optimisation software

    Directory of Open Access Journals (Sweden)

    Dragan D. Nikolić

    2016-04-01

    Full Text Available In this work, DAE Tools modelling, simulation and optimisation software, its programming paradigms and main features are presented. The current approaches to mathematical modelling such as the use of modelling languages and general-purpose programming languages are analysed. The common set of capabilities required by the typical simulation software are discussed, and the shortcomings of the current approaches recognised. A new hybrid approach is introduced, and the modelling languages and the hybrid approach are compared in terms of the grammar, compiler, parser and interpreter requirements, maintainability and portability. The most important characteristics of the new approach are discussed, such as: (1 support for the runtime model generation; (2 support for the runtime simulation set-up; (3 support for complex runtime operating procedures; (4 interoperability with the third party software packages (i.e. NumPy/SciPy; (5 suitability for embedding and use as a web application or software as a service; and (6 code-generation, model exchange and co-simulation capabilities. The benefits of an equation-based approach to modelling, implemented in a fourth generation object-oriented general purpose programming language such as Python are discussed. The architecture and the software implementation details as well as the type of problems that can be solved using DAE Tools software are described. Finally, some applications of the software at different levels of abstraction are presented, and its embedding capabilities and suitability for use as a software as a service is demonstrated.

  3. Neo: an object model for handling electrophysiology data in multiple formats

    Directory of Open Access Journals (Sweden)

    Samuel eGarcia

    2014-02-01

    Full Text Available Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs.A common representation of the core data would improve interoperability and facilitate data-sharing.To that end, we propose here a language-independent object model, named Neo, suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language.In addition to representing electrophysiology data in memory for the purposes of analysis and visualisation, the Python implementation provides a set of input/output (IO modules for reading/writing the data from/to a variety of commonly used file formats.Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB.Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation.For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualisation.Software for neurophysiology data analysis and visualisation built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in

  4. Operation room tool handling and miscommunication scenarios: an object-process methodology conceptual model.

    Science.gov (United States)

    Wachs, Juan P; Frenkel, Boaz; Dori, Dov

    2014-11-01

    Errors in the delivery of medical care are the principal cause of inpatient mortality and morbidity, accounting for around 98,000 deaths in the United States of America (USA) annually. Ineffective team communication, especially in the operation room (OR), is a major root of these errors. This miscommunication can be reduced by analyzing and constructing a conceptual model of communication and miscommunication in the OR. We introduce the principles underlying Object-Process Methodology (OPM)-based modeling of the intricate interactions between the surgeon and the surgical technician while handling surgical instruments in the OR. This model is a software- and hardware-independent description of the agents engaged in communication events, their physical activities, and their interactions. The model enables assessing whether the task-related objectives of the surgical procedure were achieved and completed successfully and what errors can occur during the communication. The facts used to construct the model were gathered from observations of various types of operations miscommunications in the operating room and its outcomes. The model takes advantage of the compact ontology of OPM, which is comprised of stateful objects - things that exist physically or informatically, and processes - things that transform objects by creating them, consuming them or changing their state. The modeled communication modalities are verbal and non-verbal, and errors are modeled as processes that deviate from the "sunny day" scenario. Using OPM refinement mechanism of in-zooming, key processes are drilled into and elaborated, along with the objects that are required as agents or instruments, or objects that these processes transform. The model was developed through an iterative process of observation, modeling, group discussions, and simplification. The model faithfully represents the processes related to tool handling that take place in an OR during an operation. The specification is at

  5. The Object Oriented Model of the AD Cycle and its Implementation

    CERN Document Server

    Mulder, H

    1999-01-01

    Central to the control and operation of the CERN Antiproton Decelerator (AD) is the deceleration cycle which involves accelerator sub-systems such as magnet current, timing, RF systems etc. It is fundamental to AD operation that these sub-system cycles are coherent and an integrated AD Cycle Editor has been proposed to guarantee this coherence. In the object oriented model of the AD, the highest level of abstraction is the class "AD Cycle" which is described in physical terms with an associated set of operations. The accelerator sub-systems inherit from this class thus guaranteeing coherence. The model is implemented in the AD Cycle Editor, which acts on the AD Cycle class and implicitly therefore also on the sub-systems. In this paper the model of the AD Cycle and sub-systems are discussed. The AD Cycle Editor is also presented with comments on the results of the commissioned system.

  6. A spatial multi-objective optimization model for sustainable urban wastewater system layout planning.

    Science.gov (United States)

    Dong, X; Zeng, S; Chen, J

    2012-01-01

    Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.

  7. Principal-subordinate hierarchical multi-objective programming model of initial water rights allocation

    Directory of Open Access Journals (Sweden)

    Dan Wu

    2009-06-01

    Full Text Available The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.

  8. Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes.

    Science.gov (United States)

    Rodríguez-Ruiz, Alejandro; Feng, Steve Si Jia; van Zelst, Jan; Vreemann, Suzan; Mann, Jessica Rice; D'Orsi, Carl Joseph; Sechopoulos, Ioannis

    2017-06-01

    To develop a set of accurate 2D models of compressed breasts undergoing mammography or breast tomosynthesis, based on objective analysis, to accurately characterize mammograms with few linearly independent parameters, and to generate novel clinically realistic paired cranio-caudal (CC) and medio-lateral oblique (MLO) views of the breast. We seek to improve on an existing model of compressed breasts by overcoming detector size bias, removing the nipple and non-mammary tissue, pairing the CC and MLO views from a single breast, and incorporating the pectoralis major muscle contour into the model. The outer breast shapes in 931 paired CC and MLO mammograms were automatically detected with an in-house developed segmentation algorithm. From these shapes three generic models (CC-only, MLO-only, and joint CC/MLO) with linearly independent components were constructed via principal component analysis (PCA). The ability of the models to represent mammograms not used for PCA was tested via leave-one-out cross-validation, by measuring the average distance error (ADE). The individual models based on six components were found to depict breast shapes with accuracy (mean ADE-CC = 0.81 mm, ADE-MLO = 1.64 mm, ADE-Pectoralis = 1.61 mm), outperforming the joint CC/MLO model (P ≤ 0.001). The joint model based on 12 principal components contains 99.5% of the total variance of the data, and can be used to generate new clinically realistic paired CC and MLO breast shapes. This is achieved by generating random sets of 12 principal components, following the Gaussian distributions of the histograms of each component, which were obtained from the component values determined from the images in the mammography database used. Our joint CC/MLO model can successfully generate paired CC and MLO view shapes of the same simulated breast, while the individual models can be used to represent with high accuracy clinical acquired mammograms with a small set of parameters. This is the first

  9. Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.

    Science.gov (United States)

    Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon

    2017-01-01

    In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.

  10. A multi-objective reliable programming model for disruption in supply chain

    Directory of Open Access Journals (Sweden)

    Emran Mohammadi

    2013-05-01

    Full Text Available One of the primary concerns on supply chain management is to handle risk components, properly. There are various reasons for having risk in supply chain such as natural disasters, unexpected incidents, etc. When a series of facilities are built and deployed, one or a number of them could probably fail at any time due to bad weather conditions, labor strikes, economic crises, sabotage or terrorist attacks and changes in ownership of the system. The objective of risk management is to reduce the effects of different domains to an acceptable level. To overcome the risk, we propose a reliable capacitated supply chain network design (RSCND model by considering random disruptions risk in both distribution centers and suppliers. The proposed study of this paper considers three objective functions and the implementation is verified using some instance.

  11. The electron density and temperature distributions predicted by bow shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1990-01-01

    The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs

  12. Reliable software systems via chains of object models with provably correct behavior

    International Nuclear Information System (INIS)

    Yakhnis, A.; Yakhnis, V.

    1996-01-01

    This work addresses specification and design of reliable safety-critical systems, such as nuclear reactor control systems. Reliability concerns are addressed in complimentary fashion by different fields. Reliability engineers build software reliability models, etc. Safety engineers focus on prevention of potential harmful effects of systems on environment. Software/hardware correctness engineers focus on production of reliable systems on the basis of mathematical proofs. The authors think that correctness may be a crucial guiding issue in the development of reliable safety-critical systems. However, purely formal approaches are not adequate for the task, because they neglect the connection with the informal customer requirements. They alleviate that as follows. First, on the basis of the requirements, they build a model of the system interactions with the environment, where the system is viewed as a black box. They will provide foundations for automated tools which will (a) demonstrate to the customer that all of the scenarios of system behavior are presented in the model, (b) uncover scenarios not present in the requirements, and (c) uncover inconsistent scenarios. The developers will work with the customer until the black box model will not possess scenarios (b) and (c) above. Second, the authors will build a chain of several increasingly detailed models, where the first model is the black box model and the last model serves to automatically generated proved executable code. The behavior of each model will be proved to conform to the behavior of the previous one. They build each model as a cluster of interactive concurrent objects, thus they allow both top-down and bottom-up development

  13. Proef met duurzaam watergebruik in de bollenstreek

    NARCIS (Netherlands)

    Fliegenthart, F.; Dik, P.E.; Groenendijk, P.

    2009-01-01

    In 2007 begon in de Wieringermeer een praktijkproef met alternatieve waterbeheersystemen voor de bollenteelt. Met drie verschillende teeltsystemen wordt onderzoek verricht naar zo optimaal mogelijk gebruik van zoet water door recirculatie en hergebruik. Ook loopt onderzoek naar de emissie van

  14. NURSING PROCESS, ACCORDING TO THE CONCEPTUAL MODEL OF WANDA HORTA, APPLIED TO A FAMILY MET BY THE REGIONAL CORE OF HOME CARE, DISTRITO FEDERAL.

    Directory of Open Access Journals (Sweden)

    Prince Vangeris Silva Fernandes de Lima

    2014-05-01

    Full Text Available The case report describes the nursing care, systematized according to the conceptual model of Wanda Horta, who was dismissed to a family accompanied by a core team of Regional home care, an administrative region of the Federal District through prioritization, based on the scale of Cascavel, a member of this for such a public service. The context part according to reports from the Discipline community health nursing in ' 02 and ' Stage, mandatory mode sold to students from the undergraduate program in nursing, University of Brasilia. At this juncture, described the history and nursing diagnoses, a welfare plan, as well as the prescription, the evolution and prognosis of nursing. In the residence there was the importance of specific health care provided not only by the nurse, but for the entire multidisciplinary team, customers with chronic clinical pictures and aggravated, but stable, that demand care that exceed those offered by primary health care. Seeking the completeness of the care, professionals and students involved started for the opportunity to visualize and better understand the patterns of relationships established between the client, family and healthcare professionals, with an emphasis on how the actors involved in this scenario mobilized in support of ailing client.

  15. Windfield and trajectory models for tornado-propelled objects. Final report

    International Nuclear Information System (INIS)

    Redmann, G.H.; Radbill, J.R.; Marte, J.E.; Dergarabedian, P.; Fendell, F.E.

    1983-03-01

    This is the final report of a three-phased research project to develop a six-degree-of-freedom mathematical model to predict the trajectories of tornado-propelled objects. The model is based on the meteorological, aerodynamic, and dynamic processes that govern the trajectories of missiles in a tornadic windfield. The aerodynamic coefficients for the postulated missiles were obtained from full-scale wind tunnel tests on a 12-inch pipe and car and from drop tests. Rocket sled tests were run whereby the 12-inch pipe and car were injected into a worst-case tornado windfield in order to verify the trajectory model. To simplify and facilitate the use of the trajectory model for design applications without having to run the computer program, this report gives the trajectory data for NRC-postulated missiles in tables based on given variables of initial conditions of injection and tornado windfield. Complete descriptions of the tornado windfield and trajectory models are presented. The trajectory model computer program is also included for those desiring to perform trajectory or sensitivity analyses beyond those included in the report or for those wishing to examine other missiles and use other variables

  16. Multi-objective genetic algorithm parameter estimation in a reduced nuclear reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Marseguerra, M.; Zio, E.; Canetta, R. [Polytechnic of Milan, Dept. of Nuclear Engineering, Milano (Italy)

    2005-07-01

    The fast increase in computing power has rendered, and will continue to render, more and more feasible the incorporation of dynamics in the safety and reliability models of complex engineering systems. In particular, the Monte Carlo simulation framework offers a natural environment for estimating the reliability of systems with dynamic features. However, the time-integration of the dynamic processes may render the Monte Carlo simulation quite burdensome so that it becomes mandatory to resort to validated, simplified models of process evolution. Such models are typically based on lumped effective parameters whose values need to be suitably estimated so as to best fit to the available plant data. In this paper we propose a multi-objective genetic algorithm approach for the estimation of the effective parameters of a simplified model of nuclear reactor dynamics. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest to the actual evolution profiles. A case study is reported in which the real reactor is simulated by the QUAndry based Reactor Kinetics (Quark) code available from the Nuclear Energy Agency and the simplified model is based on the point kinetics approximation to describe the neutron balance in the core and on thermal equilibrium relations to describe the energy exchange between the different loops. (authors)

  17. Multi-objective genetic algorithm parameter estimation in a reduced nuclear reactor model

    International Nuclear Information System (INIS)

    Marseguerra, M.; Zio, E.; Canetta, R.

    2005-01-01

    The fast increase in computing power has rendered, and will continue to render, more and more feasible the incorporation of dynamics in the safety and reliability models of complex engineering systems. In particular, the Monte Carlo simulation framework offers a natural environment for estimating the reliability of systems with dynamic features. However, the time-integration of the dynamic processes may render the Monte Carlo simulation quite burdensome so that it becomes mandatory to resort to validated, simplified models of process evolution. Such models are typically based on lumped effective parameters whose values need to be suitably estimated so as to best fit to the available plant data. In this paper we propose a multi-objective genetic algorithm approach for the estimation of the effective parameters of a simplified model of nuclear reactor dynamics. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest to the actual evolution profiles. A case study is reported in which the real reactor is simulated by the QUAndry based Reactor Kinetics (Quark) code available from the Nuclear Energy Agency and the simplified model is based on the point kinetics approximation to describe the neutron balance in the core and on thermal equilibrium relations to describe the energy exchange between the different loops. (authors)

  18. Modeling a terminology-based electronic nursing record system: an object-oriented approach.

    Science.gov (United States)

    Park, Hyeoun-Ae; Cho, InSook; Byeun, NamSoo

    2007-10-01

    The aim of this study was to present our perspectives on healthcare information analysis at a conceptual level and the lessons learned from our experience with the development of a terminology-based enterprise electronic nursing record system - which was one of components in an EMR system at a tertiary teaching hospital in Korea - using an object-oriented system analysis and design concept. To ensure a systematic approach and effective collaboration, the department of nursing constituted a system modeling team comprising a project manager, systems analysts, user representatives, an object-oriented methodology expert, and healthcare informaticists (including the authors). A rational unified process (RUP) and the Unified Modeling Language were used as a development process and for modeling notation, respectively. From the scenario and RUP approach, user requirements were formulated into use case sets and the sequence of activities in the scenario was depicted in an activity diagram. The structure of the system was presented in a class diagram. This approach allowed us to identify clearly the structural and behavioral states and important factors of a terminology-based ENR system (e.g., business concerns and system design concerns) according to the viewpoints of both domain and technical experts.

  19. Identification of mutated driver pathways in cancer using a multi-objective optimization model.

    Science.gov (United States)

    Zheng, Chun-Hou; Yang, Wu; Chong, Yan-Wen; Xia, Jun-Feng

    2016-05-01

    New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A sustainable manufacturing system design: A fuzzy multi-objective optimization model.

    Science.gov (United States)

    Nujoom, Reda; Mohammed, Ahmed; Wang, Qian

    2017-08-10

    In the past decade, there has been a growing concern about the environmental protection in public society as governments almost all over the world have initiated certain rules and regulations to promote energy saving and minimize the production of carbon dioxide (CO 2 ) emissions in many manufacturing industries. The development of sustainable manufacturing systems is considered as one of the effective solutions to minimize the environmental impact. Lean approach is also considered as a proper method for achieving sustainability as it can reduce manufacturing wastes and increase the system efficiency and productivity. However, the lean approach does not include environmental waste of such as energy consumption and CO 2 emissions when designing a lean manufacturing system. This paper addresses these issues by evaluating a sustainable manufacturing system design considering a measurement of energy consumption and CO 2 emissions using different sources of energy (oil as direct energy source to generate thermal energy and oil or solar as indirect energy source to generate electricity). To this aim, a multi-objective mathematical model is developed incorporating the economic and ecological constraints aimed for minimization of the total cost, energy consumption, and CO 2 emissions for a manufacturing system design. For the real world scenario, the uncertainty in a number of input parameters was handled through the development of a fuzzy multi-objective model. The study also addresses decision-making in the number of machines, the number of air-conditioning units, and the number of bulbs involved in each process of a manufacturing system in conjunction with a quantity of material flow for processed products. A real case study was used for examining the validation and applicability of the developed sustainable manufacturing system model using the fuzzy multi-objective approach.

  1. A Statistical Model for Generating a Population of Unclassified Objects and Radiation Signatures Spanning Nuclear Threats

    International Nuclear Information System (INIS)

    Nelson, K.; Sokkappa, P.

    2008-01-01

    range of possibilities. Once an object is generated, its radiation signature is calculated using a 1-dimensional deterministic transport code. Objects that do not make sense based on physics principles or other constraints are rejected. Thus, the model can be used to generate a population of spectral signatures that spans a large space, including smuggled nuclear material and nuclear weapons

  2. Buoyancy limits on magnetic viscosity stress-law scalings in quasi stellar object accretion disk models

    International Nuclear Information System (INIS)

    Sakimoto, P.J.

    1985-01-01

    Quasi-Stellar Objects (QSOs) are apparently the excessively bright nuclei of distant galaxies. They are thought to be powered by accretion disks surrounding supermassive black holes: however, proof of this presumption is hampered by major uncertainties in the viscous stress necessary for accretion to occur. Models generally assume an and hoc stress law which scales the stress with the total pressure. Near the black hole, radiation pressure dominates gas pressure; scaling the stress with the radiation pressure results in disk models that are thermally unstable and optically thin. This dissertation shows that a radiation pressure scaling for the stress is not possible if the viscosity is due to turbulent magnetic Maxwell stresses. The argument is one of internal self-consistency. First, four model accretion disks that bound the reasonably expected ranges of viscous stress scalings and vertical structures are constructed. Magnetic flux tubes of various initial field strengths are then placed within these models, nd their buoyancy is modeled numerically. In disks using the radiation pressure stress law scaling, low opacities allow rapid heat flow into the flux tubes: the tubes are extremely buoyant, and magnetic fields strong enough to provide the required stress cannot be retained. If an alternative gas pressure scaling for the stress is assumed, then the disks are optically thick; flux tubes have corresponding lower buoyancy, and magnetic fields strong enough to provide the stress can be retained for dynamically significant time periods

  3. Multi objective optimization model for minimizing production cost and environmental impact in CNC turning process

    Science.gov (United States)

    Widhiarso, Wahyu; Rosyidi, Cucuk Nur

    2018-02-01

    Minimizing production cost in a manufacturing company will increase the profit of the company. The cutting parameters will affect total processing time which then will affect the production cost of machining process. Besides affecting the production cost and processing time, the cutting parameters will also affect the environment. An optimization model is needed to determine the optimum cutting parameters. In this paper, we develop an optimization model to minimize the production cost and the environmental impact in CNC turning process. The model is used a multi objective optimization. Cutting speed and feed rate are served as the decision variables. Constraints considered are cutting speed, feed rate, cutting force, output power, and surface roughness. The environmental impact is converted from the environmental burden by using eco-indicator 99. Numerical example is given to show the implementation of the model and solved using OptQuest of Oracle Crystal Ball software. The results of optimization indicate that the model can be used to optimize the cutting parameters to minimize the production cost and the environmental impact.

  4. Objective spatiotemporal proxy-model comparisons of the Asian monsoon for the last millennium

    Science.gov (United States)

    Anchukaitis, K. J.; Cook, E. R.; Ammann, C. M.; Buckley, B. M.; D'Arrigo, R. D.; Jacoby, G.; Wright, W. E.; Davi, N.; Li, J.

    2008-12-01

    The Asian monsoon system can be studied using a complementary proxy/simulation approach which evaluates climate models using estimates of past precipitation and temperature, and which subsequently applies the best understanding of the physics of the climate system as captured in general circulation models to evaluate the broad-scale dynamics behind regional paleoclimate reconstructions. Here, we use a millennial-length climate field reconstruction of monsoon season summer (JJA) drought, developed from tree- ring proxies, with coupled climate simulations from NCAR CSM1.4 and CCSM3 to evaluate the cause of large- scale persistent droughts over the last one thousand years. Direct comparisons are made between the external forced response within the climate model and the spatiotemporal field reconstruction. In order to identify patterns of drought associated with internal variability in the climate system, we use a model/proxy analog technique which objectively selects epochs in the model that most closely reproduce those observed in the reconstructions. The concomitant ocean-atmosphere dynamics are then interpreted in order to identify and understand the internal climate system forcing of low frequency monsoon variability. We examine specific periods of extensive or intensive regional drought in the 15th, 17th, and 18th centuries, many of which are coincident with major cultural changes in the region.

  5. Development of the Object-Oriented Dynamic Simulation Models Using Visual C++ Freeware

    Directory of Open Access Journals (Sweden)

    Alexander I. Kozynchenko

    2016-01-01

    Full Text Available The paper mostly focuses on the methodological and programming aspects of developing a versatile desktop framework to provide the available basis for the high-performance simulation of dynamical models of different kinds and for diverse applications. So the paper gives some basic structure for creating a dynamical simulation model in C++ which is built on the Win32 platform with an interactive multiwindow interface and uses the lightweight Visual C++ Express as a free integrated development environment. The resultant simulation framework could be a more acceptable alternative to other solutions developed on the basis of commercial tools like Borland C++ or Visual C++ Professional, not to mention the domain specific languages and more specialized ready-made software such as Matlab, Simulink, and Modelica. This approach seems to be justified in the case of complex research object-oriented dynamical models having nonstandard structure, relationships, algorithms, and solvers, as it allows developing solutions of high flexibility. The essence of the model framework is shown using a case study of simulation of moving charged particles in the electrostatic field. The simulation model possesses the necessary visualization and control features such as an interactive input, real time graphical and text output, start, stop, and rate control.

  6. Coastal aquifer management based on surrogate models and multi-objective optimization

    Science.gov (United States)

    Mantoglou, A.; Kourakos, G.

    2011-12-01

    The demand for fresh water in coastal areas and islands can be very high, especially in summer months, due to increased local needs and tourism. In order to satisfy demand, a combined management plan is proposed which involves: i) desalinization (if needed) of pumped water to a potable level using reverse osmosis and ii) injection of biologically treated waste water into the aquifer. The management plan is formulated into a multiobjective optimization framework, where simultaneous minimization of economic and environmental costs is desired; subject to a constraint to satisfy demand. The method requires modeling tools, which are able to predict the salinity levels of the aquifer in response to different alternative management scenarios. Variable density models can simulate the interaction between fresh and saltwater; however, they are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNN)]. The surrogate models are trained adaptively during optimization based on a Genetic Algorithm. In the crossover step of the genetic algorithm, each pair of parents generates a pool of offspring. All offspring are evaluated based on the fast surrogate model. Then only the most promising offspring are evaluated based on the exact numerical model. This eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. Three new criteria for selecting the most promising offspring were proposed, which improve the Pareto set and maintain the diversity of the optimum solutions. The method has important advancements compared to previous methods, e.g. alleviation of propagation of errors due to surrogate model approximations. The method is applied to a real coastal aquifer in the island of Santorini which is a very touristy island with high water demands. The results show that the algorithm

  7. a Multi Objective Model for Optimization of a Green Supply Chain Network

    Science.gov (United States)

    Paksoy, Turan; Özceylan, Eren; Weber, Gerhard-Wilhelm

    2010-06-01

    This study develops a model of a closed-loop supply chain (CLSC) network which starts with the suppliers and recycles with the decomposition centers. As a traditional network design, we consider minimizing the all transportation costs and the raw material purchasing costs. To pay attention for the green impacts, different transportation choices are presented between echelons according to their CO2 emissions. The plants can purchase different raw materials in respect of their recyclable ratios. The focuses of this paper are conducting the minimizing total CO2 emissions. Also we try to encourage the customers to use recyclable materials as an environmental performance viewpoint besides minimizing total costs. A multi objective linear programming model is developed via presenting a numerical example. We close the paper with recommendations for future researches.

  8. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    Science.gov (United States)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  9. Automated Object-Oriented Simulation Framework for Modelling of Superconducting Magnets at CERN

    CERN Document Server

    Maciejewski, Michał; Bartoszewicz, Andrzej

    The thesis aims at designing a flexible, extensible, user-friendly interface to model electro thermal transients occurring in superconducting magnets. Simulations are a fundamental tool for assessing the performance of a magnet and its protection system against the effects of a quench. The application is created using scalable and modular architecture based on object-oriented programming paradigm which opens an easy way for future extensions. What is more, each model composed of thousands of blocks is automatically created in MATLAB/Simulink. Additionally, the user is able to automatically run sets of simulations with varying parameters. Due to its scalability and modularity the framework can be easily used to simulate wide range of materials and magnet configurations.

  10. A comparison of signal detection theory to the objective threshold/strategic model of unconscious perception.

    Science.gov (United States)

    Haase, Steven J; Fisk, Gary D

    2011-08-01

    A key problem in unconscious perception research is ruling out the possibility that weak conscious awareness of stimuli might explain the results. In the present study, signal detection theory was compared with the objective threshold/strategic model as explanations of results for detection and identification sensitivity in a commonly used unconscious perception task. In the task, 64 undergraduate participants detected and identified one of four briefly displayed, visually masked letters. Identification was significantly above baseline (i.e., proportion correct > .25) at the highest detection confidence rating. This result is most consistent with signal detection theory's continuum of sensory states and serves as a possible index of conscious perception. However, there was limited support for the other model in the form of a predicted "looker's inhibition" effect, which produced identification performance that was significantly below baseline. One additional result, an interaction between the target stimulus and type of mask, raised concerns for the generality of unconscious perception effects.

  11. A biologically inspired neural network model to transformation invariant object recognition

    Science.gov (United States)

    Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz

    2007-09-01

    Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to

  12. A NEW WASTE CLASSIFYING MODEL: HOW WASTE CLASSIFICATION CAN BECOME MORE OBJECTIVE?

    Directory of Open Access Journals (Sweden)

    Burcea Stefan Gabriel

    2015-07-01

    documents available in the virtual space, on the websites of certain international organizations involved in the wide and complex issue of waste management. The second part of the paper contains a proposal classification model with four main criteria in order to make waste classification a more objective process. The new classification model has the main role of transforming the traditional patterns of waste classification into an objective waste classification system and a second role of eliminating the strong contextuality of the actual waste classification models.

  13. Lightweight Expression of Granular Objects (LEGO) Content Modeling Using the SNOMED CT Observables Model to Represent Nursing Assessment Data.

    Science.gov (United States)

    Johnson, Christie

    2016-01-01

    This poster presentation presents a content modeling strategy using the SNOMED CT Observable Model to represent large amounts of detailed clinical data in a consistent and computable manner that can support multiple use cases. Lightweight Expression of Granular Objects (LEGOs) represent question/answer pairs on clinical data collection forms, where a question is modeled by a (usually) post-coordinated SNOMED CT expression. LEGOs transform electronic patient data into a normalized consumable, which means that the expressions can be treated as extensions of the SNOMED CT hierarchies for the purpose of performing subsumption queries and other analytics. Utilizing the LEGO approach for modeling clinical data obtained from a nursing admission assessment provides a foundation for data exchange across disparate information systems and software applications. Clinical data exchange of computable LEGO patient information enables the development of more refined data analytics, data storage and clinical decision support.

  14. Dominance of objects over context in a mediotemporal lobe model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Lucia M Talamini

    Full Text Available BACKGROUND: A large body of evidence suggests impaired context processing in schizophrenia. Here we propose that this impairment arises from defective integration of mediotemporal 'what' and 'where' routes, carrying object and spatial information to the hippocampus. METHODOLOGY AND FINDINGS: We have previously shown, in a mediotemporal lobe (MTL model, that the abnormal connectivity between MTL regions observed in schizophrenia can explain the episodic memory deficits associated with the disorder. Here we show that the same neuropathology leads to several context processing deficits observed in patients with schizophrenia: 1 failure to choose subordinate stimuli over dominant ones when the former fit the context, 2 decreased contextual constraints in memory retrieval, as reflected in increased false alarm rates and 3 impaired retrieval of contextual information in source monitoring. Model analyses show that these deficits occur because the 'schizophrenic MTL' forms fragmented episodic representations, in which objects are overrepresented at the expense of spatial contextual information. CONCLUSIONS AND SIGNIFICANCE: These findings highlight the importance of MTL neuropathology in schizophrenia, demonstrating that it may underlie a broad spectrum of deficits, including context processing and memory impairments. It is argued that these processing deficits may contribute to central schizophrenia symptoms such as contextually inappropriate behavior, associative abnormalities, conversational drift, concreteness and delusions.

  15. TRUST AND REPUTATION MODEL DESIGN FOR OBJECTS OF MULTI-AGENT ROBOTICS SYSTEMS WITH DECENTRALIZED CONTROL

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-03-01

    Full Text Available The problem of mechanisms design for protection of multi-agent robotics systems from attacks of robots-saboteurs is considered. Functioning analysis of these systems with decentralized control is carried out. The type of the so-called soft attacks using interception of messages, misinformation formation and transmission to group of robots which are also realizing other actions without identified signs of invasion of robots-saboteurs. Analysis of existing information security models of the system based on the trust level computation, calculated in the process of agents’ interaction is carried out. Information security model is offered in which robots-agents produce the trust levels to each other on the basis of situation analysis emerging on a certain step of iterative algorithm with usage of onboard sensor devices. On the basis of calculated trust levels, recognition of “saboteur” objects in the group of legitimate robots-agents is done. For measure of likeness (adjacency increase for objects from the same category (“saboteur” or “legitimate agent”, calculation algorithm for agents reputation is offered as a measure of public opinion about qualities of this or that agent-subject. Implementation alternatives of the algorithms for detection of saboteurs on the example of the basic algorithm for distribution of purposes in the group of robots are considered.

  16. Model building with a dynamical volume element in gravity, particle theory and theories of extended object

    International Nuclear Information System (INIS)

    Guendelman, E.

    2004-01-01

    Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat

  17. Connectomes as constitutively epistemic objects: Critical perspectives on modeling in current neuroanatomy.

    Science.gov (United States)

    Haueis, Philipp; Slaby, Jan

    2017-01-01

    The term "connectome" is commonly taken to describe a complete map of neural connections in a nervous system of a given species. This chapter provides a critical perspective on the role of connectomes in neuroscientific practice and asks how the connectomic approach fits into a larger context in which network thinking permeates technology, infrastructure, social life, and the economy. In the first part of this chapter, we argue that, seen from the perspective of ongoing research, the notion of connectomes as "complete descriptions" is misguided. Our argument combines Rachel Ankeny's analysis of neuroanatomical wiring diagrams as "descriptive models" with Hans-Jörg Rheinberger's notion of "epistemic objects," i.e., targets of research that are still partially unknown. Combining these aspects we conclude that connectomes are constitutively epistemic objects: there just is no way to turn them into permanent and complete technical standards because the possibilities to map connection properties under different modeling assumptions are potentially inexhaustible. In the second part of the chapter, we use this understanding of connectomes as constitutively epistemic objects in order to critically assess the historical and political dimensions of current neuroscientific research. We argue that connectomics shows how the notion of the "brain as a network" has become the dominant metaphor of contemporary brain research. We further point out that this metaphor shares (potentially problematic) affinities to the form of contemporary "network societies." We close by pointing out how the relation between connectomes and networks in society could be used in a more fruitful manner. © 2017 Elsevier B.V. All rights reserved.

  18. NCWin — A Component Object Model (COM) for processing and visualizing NetCDF data

    Science.gov (United States)

    Liu, Jinxun; Chen, J.M.; Price, D.T.; Liu, S.

    2005-01-01

    NetCDF (Network Common Data Form) is a data sharing protocol and library that is commonly used in large-scale atmospheric and environmental data archiving and modeling. The NetCDF tool described here, named NCWin and coded with Borland C + + Builder, was built as a standard executable as well as a COM (component object model) for the Microsoft Windows environment. COM is a powerful technology that enhances the reuse of applications (as components). Environmental model developers from different modeling environments, such as Python, JAVA, VISUAL FORTRAN, VISUAL BASIC, VISUAL C + +, and DELPHI, can reuse NCWin in their models to read, write and visualize NetCDF data. Some Windows applications, such as ArcGIS and Microsoft PowerPoint, can also call NCWin within the application. NCWin has three major components: 1) The data conversion part is designed to convert binary raw data to and from NetCDF data. It can process six data types (unsigned char, signed char, short, int, float, double) and three spatial data formats (BIP, BIL, BSQ); 2) The visualization part is designed for displaying grid map series (playing forward or backward) with simple map legend, and displaying temporal trend curves for data on individual map pixels; and 3) The modeling interface is designed for environmental model development by which a set of integrated NetCDF functions is provided for processing NetCDF data. To demonstrate that the NCWin can easily extend the functions of some current GIS software and the Office applications, examples of calling NCWin within ArcGIS and MS PowerPoint for showing NetCDF map animations are given.

  19. Multi-objective analytical model for optimal sizing of stand-alone photovoltaic water pumping systems

    International Nuclear Information System (INIS)

    Olcan, Ceyda

    2015-01-01

    Highlights: • An analytical optimal sizing model is proposed for PV water pumping systems. • The objectives are chosen as deficiency of power supply and life-cycle costs. • The crop water requirements are estimated for a citrus tree yard in Antalya. • The optimal tilt angles are calculated for fixed, seasonal and monthly changes. • The sizing results showed the validity of the proposed analytical model. - Abstract: Stand-alone photovoltaic (PV) water pumping systems effectively use solar energy for irrigation purposes in remote areas. However the random variability and unpredictability of solar energy makes difficult the penetration of PV implementations and complicate the system design. An optimal sizing of these systems proves to be essential. This paper recommends a techno-economic optimization model to determine optimally the capacity of the components of PV water pumping system using a water storage tank. The proposed model is developed regarding the reliability and cost indicators, which are the deficiency of power supply probability and life-cycle costs, respectively. The novelty is that the proposed optimization model is analytically defined for two-objectives and it is able to find a compromise solution. The sizing of a stand-alone PV water pumping system comprises a detailed analysis of crop water requirements and optimal tilt angles. Besides the necessity of long solar radiation and temperature time series, the accurate forecasts of water supply needs have to be determined. The calculation of the optimal tilt angle for yearly, seasonally and monthly frequencies results in higher system efficiency. It is, therefore, suggested to change regularly the tilt angle in order to maximize solar energy output. The proposed optimal sizing model incorporates all these improvements and can accomplish a comprehensive optimization of PV water pumping systems. A case study is conducted considering the irrigation of citrus trees yard located in Antalya, Turkey

  20. Modeling heading and path perception from optic flow in the case of independently moving objects

    Science.gov (United States)

    Raudies, Florian; Neumann, Heiko

    2013-01-01

    Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589

  1. Parameter Estimation of a Delay Time Model of Wearing Parts Based on Objective Data

    Directory of Open Access Journals (Sweden)

    Y. Tang

    2015-01-01

    Full Text Available The wearing parts of a system have a very high failure frequency, making it necessary to carry out continual functional inspections and maintenance to protect the system from unscheduled downtime. This allows for the collection of a large amount of maintenance data. Taking the unique characteristics of the wearing parts into consideration, we establish their respective delay time models in ideal inspection cases and nonideal inspection cases. The model parameters are estimated entirely using the collected maintenance data. Then, a likelihood function of all renewal events is derived based on their occurring probability functions, and the model parameters are calculated with the maximum likelihood function method, which is solved by the CRM. Finally, using two wearing parts from the oil and gas drilling industry as examples—the filter element and the blowout preventer rubber core—the parameters of the distribution function of the initial failure time and the delay time for each example are estimated, and their distribution functions are obtained. Such parameter estimation based on objective data will contribute to the optimization of the reasonable function inspection interval and will also provide some theoretical models to support the integrity management of equipment or systems.

  2. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    Science.gov (United States)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  3. Multi-Objective Demand Response Model Considering the Probabilistic Characteristic of Price Elastic Load

    Directory of Open Access Journals (Sweden)

    Shengchun Yang

    2016-01-01

    Full Text Available Demand response (DR programs provide an effective approach for dealing with the challenge of wind power output fluctuations. Given that uncertain DR, such as price elastic load (PEL, plays an important role, the uncertainty of demand response behavior must be studied. In this paper, a multi-objective stochastic optimization problem of PEL is proposed on the basis of the analysis of the relationship between price elasticity and probabilistic characteristic, which is about stochastic demand models for consumer loads. The analysis aims to improve the capability of accommodating wind output uncertainty. In our approach, the relationship between the amount of demand response and interaction efficiency is developed by actively participating in power grid interaction. The probabilistic representation and uncertainty range of the PEL demand response amount are formulated differently compared with those of previous research. Based on the aforementioned findings, a stochastic optimization model with the combined uncertainties from the wind power output and the demand response scenario is proposed. The proposed model analyzes the demand response behavior of PEL by maximizing the electricity consumption satisfaction and interaction benefit satisfaction of PEL. Finally, a case simulation on the provincial power grid with a 151-bus system verifies the effectiveness and feasibility of the proposed mechanism and models.

  4. A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Kesseli, Aurora Y. [Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States); Petkova, Maya A.; Wood, Kenneth; Gregory, Scott G. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9AD (United Kingdom); Whitney, Barbara A. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St, Madison, WI 53706 (United States); Hillenbrand, L. A. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Stauffer, J. R.; Morales-Calderon, M.; Rebull, L. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Alencar, S. H. P., E-mail: aurorak@bu.com [Departamento de Física—ICEx—UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil)

    2016-09-01

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at optical and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.

  5. Capacitated set-covering model considering the distance objective and dependency of alternative facilities

    Science.gov (United States)

    Wayan Suletra, I.; Priyandari, Yusuf; Jauhari, Wakhid A.

    2018-03-01

    We propose a new model of facility location to solve a kind of problem that belong to a class of set-covering problem using an integer programming formulation. Our model contains a single objective function, but it represents two goals. The first is to minimize the number of facilities, and the other is to minimize the total distance of customers to facilities. The first goal is a mandatory goal, and the second is an improvement goal that is very useful when alternate optimum solutions for the first goal exist. We use a big number as a weight on the first goal to force the solution algorithm to give first priority to the first goal. Besides considering capacity constraints, our model accommodates a kind of either-or constraints representing facilities dependency. The either-or constraints will prevent the solution algorithm to select two or more facilities from the same set of facility with mutually exclusive properties. A real location selection problem to locate a set of wastewater treatment facility (IPAL) in Surakarta city, Indonesia, will describe the implementation of our model. A numerical example is given using the data of that real problem.

  6. Modeling Heading and Path Perception from Optic Flow in the Case of Independently Moving Objects

    Directory of Open Access Journals (Sweden)

    Florian eRaudies

    2013-04-01

    Full Text Available Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMO in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion / deletion, expansion / contraction, acceleration / deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans’ heading and path perception robust in the presence of such IMOs.

  7. A Theoretical Model of X-Ray Jets from Young Stellar Objects

    Energy Technology Data Exchange (ETDEWEB)

    Takasao, Shinsuke; Suzuki, Takeru K. [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan); Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2017-09-20

    There is a subclass of X-ray jets from young stellar objects that are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models have attributed the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot corona with a temperature of ≳10{sup 6} K, even if the average field strength in the disk is moderately weak, ≳1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass-loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass-loss rate are consistent with the prediction of our model in the case of a disk magnetic field strength of ∼20 G and a heating region of <0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool for estimating the magnetic field strength. We also find that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead zone size.

  8. COMT (Val158Met and BDNF (Val66Met Genes Polymorphism in Schizophrenia: A Case-Control Report

    Directory of Open Access Journals (Sweden)

    ramin saravani

    2017-10-01

    Full Text Available Objective: The effects of human brain-derived neurotropic factor (BDNF Val66Met (G>A and the human Catechol-O-methylTransferase (COMT Val158Met (G>A polymorphisms on Schizophrenia (SCZ risk were evaluated.Methods: This case control study included 92 SCZ patients and 92 healthy controls (HCs. Genotyping of both variants were conducted using Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR.Results: The findings showed that BDNF Val66Met (G>A variant increased the risk of SCZ (OR=2.008 95%CI=1.008-4.00, P=0.047, GA vs. GG, OR=3.876 95%CI=1.001-14.925, P=0.049. AA vs. GG, OR=2.272. 95%CI=1.204-4.347, P=0.011, GA+AA vs. GG, OR=2.22 95%CI=1.29-3.82. P=0.005, A vs. G. COMT Val158Met (G>A polymorphism was not associated with the risk/protective of SCZ.Conclusion: The results proposed that BDNF Val66Met (G>A polymorphism may increase the risk of SCZ development and did not support an association between COMT Val158Met (G>A variant and risk/protective of SCZ. Further studies and different ethnicities are recommended to confirm the findings.

  9. A comparison of metabolic syndrome (MetS) risk factors in Filipino women and Filipino American women: a pilot study.

    Science.gov (United States)

    Ancheta, Irma B; Battie, Cynthia A; Tuason, Teresa; Ancheta, Christine V

    2012-01-01

    Cardiovascular disease (CVD) is a significant cause of morbidity and mortality in women of Filipino ethnicity. The objective of our work was to determine if metabolic syndrome (MetS), a modifiable CVD risk factor, differs in women as a function of country of residency and to determine if, CVD prevention strategies need to differ for these groups of Filipino women. Data were collected in community-based health screenings for this cross-sectional study. PARTICIPANTS were recruited at places of worship in southeast United States (n=60) and Central Visayas, Philippines (n=56). Prevalence of MetS and its component factors as defined by the International Diabetes Federation criteria. The prevalence of MetS in Filipino women (FW) and Filipino American women (FAW) groups was similar (52% vs 55%, P=.08) although the prevalence of elevated waist circumference was greater for FAW (78% vs 59%, P=.03). Conversely, the percentage of FW women with risk-associated high-density lipoprotein (HDL) levels was higher than the FAW group (84% vs 42%, PFilipino women regardless of the country of residency although the FAW tended to have higher rates of central obesity while the FW tended to have higher rates of risk-associated HDL levels. Further research should examine the cause of these differences in order to develop better cardiovascular screening and intervention strategies.

  10. Extended objects

    International Nuclear Information System (INIS)

    Creutz, M.

    1976-01-01

    After some disconnected comments on the MIT bag and string models for extended hadrons, I review current understanding of extended objects in classical conventional relativistic field theories and their quantum mechanical interpretation

  11. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Harri, A.-M.; Haukka, H.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Siikonen, T.; Palin, M.

    2017-09-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  12. Differences in MetS marker prevalence between black African and ...

    African Journals Online (AJOL)

    Multiple linear regression analysis, independent of covariates, showed that the albumin:creatinine ratio is explained only by glucose in Africans. Conclusion: African women, as a group, present with few MetS risk factors, and glucose is associated with renal function risk in Africans. Keywords: MetS, metabolic syndrome, ...

  13. Threat Object Detection using Covariance Matrix Modeling in X-ray Images

    International Nuclear Information System (INIS)

    Jeon, Byoun Gil; Kim, Jong Yul; Moon, Myung Kook

    2016-01-01

    The X-ray imaging system for the aviation security is one of the applications. In airports, all passengers and properties should be inspected and accepted by security machines before boarding on aircrafts to avoid all treat factors. That treat factors might be directly connected on terrorist threats awfully hazardous to not only passengers but also people in highly populated area such as major cities or buildings. Because the performance of the system is increasing along with the growth of IT technology, information that has various type and good quality can be provided for security check. However, human factors are mainly affected on the inspections. It means that human inspectors should be proficient corresponding to the growth of technology for efficient and effective inspection but there is clear limit of proficiency. Human being is not a computer. Because of the limitation, the aviation security techniques have the tendencies to provide not only numerous and nice information but also effective assistance for security inspectors. Many image processing applications already have been developed to provide efficient assistance for the security systems. Naturally, the security check procedure should not be altered by automatic software because it's not guaranteed that the automatic system will never make any mistake. This paper addressed an application of threat object detection using the covariance matrix modeling. The algorithm is implemented in MATLAB environment and evaluated the performance by comparing with other detection algorithms. Considering the shape of an object on an image is changed by the attitude of that to the imaging machine, the implemented detector has the robustness for rotation and scale of an object

  14. Threat Object Detection using Covariance Matrix Modeling in X-ray Images

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byoun Gil; Kim, Jong Yul; Moon, Myung Kook [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The X-ray imaging system for the aviation security is one of the applications. In airports, all passengers and properties should be inspected and accepted by security machines before boarding on aircrafts to avoid all treat factors. That treat factors might be directly connected on terrorist threats awfully hazardous to not only passengers but also people in highly populated area such as major cities or buildings. Because the performance of the system is increasing along with the growth of IT technology, information that has various type and good quality can be provided for security check. However, human factors are mainly affected on the inspections. It means that human inspectors should be proficient corresponding to the growth of technology for efficient and effective inspection but there is clear limit of proficiency. Human being is not a computer. Because of the limitation, the aviation security techniques have the tendencies to provide not only numerous and nice information but also effective assistance for security inspectors. Many image processing applications already have been developed to provide efficient assistance for the security systems. Naturally, the security check procedure should not be altered by automatic software because it's not guaranteed that the automatic system will never make any mistake. This paper addressed an application of threat object detection using the covariance matrix modeling. The algorithm is implemented in MATLAB environment and evaluated the performance by comparing with other detection algorithms. Considering the shape of an object on an image is changed by the attitude of that to the imaging machine, the implemented detector has the robustness for rotation and scale of an object.

  15. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  16. Multi-objective reverse logistics model for integrated computer waste management.

    Science.gov (United States)

    Ahluwalia, Poonam Khanijo; Nema, Arvind K

    2006-12-01

    This study aimed to address the issues involved in the planning and design of a computer waste management system in an integrated manner. A decision-support tool is presented for selecting an optimum configuration of computer waste management facilities (segregation, storage, treatment/processing, reuse/recycle and disposal) and allocation of waste to these facilities. The model is based on an integer linear programming method with the objectives of minimizing environmental risk as well as cost. The issue of uncertainty in the estimated waste quantities from multiple sources is addressed using the Monte Carlo simulation technique. An illustrated example of computer waste management in Delhi, India is presented to demonstrate the usefulness of the proposed model and to study tradeoffs between cost and risk. The results of the example problem show that it is possible to reduce the environmental risk significantly by a marginal increase in the available cost. The proposed model can serve as a powerful tool to address the environmental problems associated with exponentially growing quantities of computer waste which are presently being managed using rudimentary methods of reuse, recovery and disposal by various small-scale vendors.

  17. Holistic energy system modeling combining multi-objective optimization and life cycle assessment

    Science.gov (United States)

    Rauner, Sebastian; Budzinski, Maik

    2017-12-01

    Making the global energy system more sustainable has emerged as a major societal concern and policy objective. This transition comes with various challenges and opportunities for a sustainable evolution affecting most of the UN’s Sustainable Development Goals. We therefore propose broadening the current metrics for sustainability in the energy system modeling field by using industrial ecology techniques to account for a conclusive set of indicators. This is pursued by including a life cycle based sustainability assessment into an energy system model considering all relevant products and processes of the global supply chain. We identify three pronounced features: (i) the low-hanging fruit of impact mitigation requiring manageable economic effort; (ii) embodied emissions of renewables cause increasing spatial redistribution of impact from direct emissions, the place of burning fuel, to indirect emissions, the location of the energy infrastructure production; (iii) certain impact categories, in which more overall sustainable systems perform worse than the cost minimal system, require a closer look. In essence, this study makes the case for future energy system modeling to include the increasingly important global supply chain and broaden the metrics of sustainability further than cost and climate change relevant emissions.

  18. A novel method for objective vision testing in canine models of inherited retinal disease.

    Science.gov (United States)

    Gearhart, Patricia M; Gearhart, Chris C; Petersen-Jones, Simon M

    2008-08-01

    The use of canine models of retinal disease in the development of therapeutic strategies for inherited retinal disorders is a growing area of research. To evaluate accurately the success of potential vision-enhancing treatments, reliable methods for objectively assessing visual function in canine models is necessary. A simple vision-testing device was constructed that consisted of a junction box with four exit tunnels. Dogs were placed in the junction box and given one vision-based choice for exit. The first-choice tunnel and time to exit were recorded and analyzed. Two canine models of retinal disease with distinct molecular defects, a null mutation in the gene encoding the alpha subunit of rod cyclic GMP phosphodiesterase (PDE6A), and a null mutation in the gene encoding a retinal pigment epithelium-specific protein (RPE65) were tested and compared to those in unaffected dogs. With the use of bright light versus dim red light, the test differentiated between unaffected dogs and dogs affected with either mutation with a high degree of certainty. The white-light intensity series showed a significantly different performance between the unaffected and affected dogs. A significant difference in performance was detected between the dogs with each mutation. The results indicate that this novel canine vision-testing method is an accurate and sensitive means of distinguishing between unaffected dogs and dogs affected with two different forms of inherited retinal disease and should be useful as a means of assessing response to therapy in future studies.

  19. Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems.

    Directory of Open Access Journals (Sweden)

    Zili Zhang

    Full Text Available Bi-objective Traveling Salesman Problem (bTSP is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM. PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs.

  20. New test of bow-shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Raga, A.C.; Bohm, K.H.; Solf, J.; Max-Planck-Institut fuer Astronomie, Heidelberg, West Germany)

    1986-01-01

    Long-slit, high-resolution spectroscopy of the Herbig-Haro oject HH 32 has shown that the emission-line profiles in all four condensations A, B, C, and D show high- and low-velocity components. The spatial maxima of these two components are always arranged in a double-layer pattern, with the maximum of the high-velocity component 0.6-1.0 arcsecs closer to the central star (AS 353A) than the low-velocity maximum. A study of the emission-line profiles predicted from a model of a radiating bow shock shows that such a double-layer structure appears naturally for this type of flow. In this case both the high-velocity and the low-velocity components come from the post-shock gas, in agreement with the theoretical prediction that it should be very difficult to detect the pre-shock gas observationally. The present results agree qualitatively well with observations of HH 32, strengthening the case for a bow-shock interpretation of this Herbig-Haro object. It is shown that the double-layer effect will be more easily observable for bow shocks which move at a relatively large angle with respect to the plane of the sky (i.e., for Herbig-Haro objects which have large radial velocities). 31 references

  1. MODEL PENGEMBANGAN APLIKASI PEMBAYARAN ANGSURAN PINJAMAN ONLINE MENGGUNAKAN PHP-MYSQL DENGAN METODE OBJECT ORIENTED PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Whisnumurti Adhiwibowo

    2017-12-01

    Full Text Available Sistem pembayaran angsuran berbasis web pada suatu koperasi merupakan sistem yang bersifat dinamis dalam arti akan selalu berkembang dan kompleks. Metode Pemrograman prosedural memiliki kelemahan saat mengembangkan aplikasi yang kompleks. Ketika terjadi permasalahan, penanganannya menjadi sulit karena porgram terdiri dari banyak fungsi dan pada saat mengubah suatu fungsi akan mengubah fungsi fungsi yang lain. Tidak hanya saat terjadi permasalahan, suatu sistem berbasis pemrograman prosedural juga susah apabila akan dikembangkan. Oleh karena itu di pendang perlu untuk mengembangan Sistem dengan metode object Oriented Programming (OOP, merupakan metode pemrograman berorientasi obyek.  Sistem yang di bangun dengan metode ini terdiri dari banyak obyek yang saling berhubungan. Perancangan yang dipakai menggunakan Unified Modeling Language (UML, suatu metodologi untuk mengembangkan sistem dengan pendekatan OOP. Pengembangan Sistem ini menggunakan Hypertext Prepocessor (PHP. Metode pengembangan sistem yang digunakan adalah Waterfall. Hasil dari penelitian ini adalah terbentuknya sistem pembayaran transaksi berbasis web dengan metode OOP, sehingga dapat lebih mudah pemeliharaan dan pengembangannya

  2. Two Quarantine Models on the Attack of Malicious Objects in Computer Network

    Directory of Open Access Journals (Sweden)

    Bimal Kumar Mishra

    2012-01-01

    Full Text Available SEIQR (Susceptible, Exposed, Infectious, Quarantined, and Recovered models for the transmission of malicious objects with simple mass action incidence and standard incidence rate in computer network are formulated. Threshold, equilibrium, and their stability are discussed for the simple mass action incidence and standard incidence rate. Global stability and asymptotic stability of endemic equilibrium for simple mass action incidence have been shown. With the help of Poincare Bendixson Property, asymptotic stability of endemic equilibrium for standard incidence rate has been shown. Numerical methods have been used to solve and simulate the system of differential equations. The effect of quarantine on recovered nodes is analyzed. We have also analyzed the behavior of the susceptible, exposed, infected, quarantine, and recovered nodes in the computer network.

  3. Identification of a putative man-made object from an underwater crash site using CAD model superimposition.

    Science.gov (United States)

    Vincelli, Jay; Calakli, Fatih; Stone, Michael; Forrester, Graham; Mellon, Timothy; Jarrell, John

    2018-04-01

    In order to identify an object in video, a comparison with an exemplar object is typically needed. In this paper, we discuss the methodology used to identify an object detected in underwater video that was recorded during an investigation into Amelia Earhart's purported crash site. A computer aided design (CAD) model of the suspected aircraft component was created based on measurements made from orthogonally rectified images of a reference aircraft, and validated against historical photographs of the subject aircraft prior to the crash. The CAD model was then superimposed on the underwater video, and specific features on the object were geometrically compared between the CAD model and the video. This geometrical comparison was used to assess the goodness of fit between the purported object and the object identified in the underwater video. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Modelling 3D spatial objects in a geo-DBMS using a 3D primitive

    Science.gov (United States)

    Arens, Călin; Stoter, Jantien; van Oosterom, Peter

    2005-03-01

    There is a growing interest in modelling the world in three dimensions, both in applications and in science. At the same time, geographical information systems are changing into integrated architecture in which administrative and spatial data are maintained in one environment. It is for this reason that mainstream Data Base Management Systems (DBMSs) have implemented spatial data types according to the 'Simple Feature Specifications for SQL', described by the OpenGeospatial Consortium. However, these specifications are 2D, as indeed are the implementations in DBMSs. At the Section GIS Technology of TU Delft, research has been carried out in which a 3D primitive was implemented in a DBMS (Oracle Spatial). To explore the possibilities and complications, a fairly simple 3D primitive was chosen to start with: a polyhedron. In the future the study will be extended with more complex primitives, the ultimate aim being to build 3D models with features closer to the real world. Besides the data structure, a validation function was developed to check the geometric accuracy of the data. Rules for validation were established and translated into prototype implementations with the aid of literature. In order to manipulate the data, a list of useful 3D functions was specified. Most of these were translated into algorithms, which were implemented in the DBMS. The algorithms for these functions were obtained from the relevant literature. The research also comprised a comparative performance test on spatial indexing in 2D and 3D, using an R-tree. Finally, existing software was used to visualize 3D objects structured with the implemented 3D primitive. This research is a first attempt to implement a true 3D primitive in a DBMS. Future research will focus on extending and improving the implementations and on optimizing maintenance and query of 3D objects in DBMSs.

  5. Modelling of cooperating robotized systems with the use of object-based approach

    Science.gov (United States)

    Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.

    2015-11-01

    Today's robotized manufacturing systems are characterized by high efficiency. The emphasis is placed mainly on the simultaneous work of machines. It could manifest in many ways, where the most spectacular one is the cooperation of several robots, during work on the same detail. What's more, recently a dual-arm robots are used that could mimic the manipulative skills of human hands. As a result, it is often hard to deal with the situation, when it is necessary not only to maintain sufficient precision, but also the coordination and proper sequence of movements of individual robots’ arms. The successful completion of this task depends on the individual robot control systems and their respective programmed, but also on the well-functioning communication between robot controllers. A major problem in case of cooperating robots is the possibility of collision between particular links of robots’ kinematic chains. This is not a simple case, because the manufacturers of robotic systems do not disclose the details of the control algorithms, then it is hard to determine such situation. Another problem with cooperation of robots is how to inform the other units about start or completion of part of the task, so that other robots can take further actions. This paper focuses on communication between cooperating robotic units, assuming that every robot is represented by object-based model. This problem requires developing a form of communication protocol that the objects can use for collecting the information about its environment. The approach presented in the paper is not limited to the robots and could be used in a wider range, for example during modelling of the complete workcell or production line.

  6. Tidal analysis of Met rocket wind data

    Science.gov (United States)

    Bedinger, J. F.; Constantinides, E.

    1976-01-01

    A method of analyzing Met Rocket wind data is described. Modern tidal theory and specialized analytical techniques were used to resolve specific tidal modes and prevailing components in observed wind data. A representation of the wind which is continuous in both space and time was formulated. Such a representation allows direct comparison with theory, allows the derivation of other quantities such as temperature and pressure which in turn may be compared with observed values, and allows the formation of a wind model which extends over a broader range of space and time. Significant diurnal tidal modes with wavelengths of 10 and 7 km were present in the data and were resolved by the analytical technique.

  7. A first-in-human phase I study of SAR125844, a selective MET tyrosine kinase inhibitor, in patients with advanced solid tumours with MET amplification.

    Science.gov (United States)

    Angevin, Eric; Spitaleri, Gianluca; Rodon, Jordi; Dotti, Katia; Isambert, Nicolas; Salvagni, Stefania; Moreno, Victor; Assadourian, Sylvie; Gomez, Corinne; Harnois, Marzia; Hollebecque, Antoine; Azaro, Analia; Hervieu, Alice; Rihawi, Karim; De Marinis, Filippo

    2017-12-01

    Dysregulated MET signalling is implicated in oncogenesis. The safety and preliminary efficacy of a highly selective MET kinase inhibitor (SAR125844) was investigated in patients with advanced solid tumours and MET dysregulation. This was a phase I dose-escalation (3 + 3 design [50-740 mg/m 2 ]) and dose-expansion study. In the dose escalation, patients had high total MET (t-MET) expression by immunohistochemistry (IHC) or MET amplification by fluorescence in situ hybridisation. In the dose expansion, patients had MET amplification (including a subset of patients with non-small cell lung cancer [NSCLC]) or phosphorylated-MET (p-MET) expression (IHC). Objectives were determination of maximum tolerated dose (MTD) of once-weekly intravenous SAR125844 based on dose-limiting toxicities; safety and pharmacokinetic profile; preliminary efficacy of SAR125844 MTD in the expansion cohort. In total, 72 patients were enrolled: dose escalation, N = 33; dose expansion, N = 39; 570 mg/m 2 was established as the MTD. Most frequent treatment-emergent adverse events (AEs) were asthenia/fatigue (58.3%), nausea (31.9%), and abdominal pain, constipation, and dyspnea (27.8% for each); 58.3% of patients reported grade 3 AEs (19.4% were treatment related). Of the 29 evaluable patients with MET amplification treated at 570 mg/m 2 , five achieved a partial response, including four of 22 with NSCLC; 17 patients had stable disease. No response was observed in patients with high p-MET solid tumours. There was no correlation between tumour response and t-MET status or MET gene copy number. The MTD of once-weekly SAR125844 was 570 mg/m 2 ; SAR125844 was well tolerated, with significant antitumour activity in patients with MET-amplified NSCLC. NCT01391533. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Activation of c-MET induces a stem-like phenotype in human prostate cancer.

    Directory of Open Access Journals (Sweden)

    Geert J L H van Leenders

    Full Text Available Prostate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model or represent an inducible population emerging upon appropriate stimulation of differentiated cells. Hepatocyte Growth Factor (HGF receptor c-MET is specifically expressed in immature prostate cells. Our objective is to determine the role of immature cells in prostate cancer by analysis of the HGF/c-MET pathway.Gene-expression profiling of DU145 prostate cancer cells stimulated with HGF revealed induction of a molecular signature associated with stem cells, characterized by up-regulation of CD49b, CD49f, CD44 and SOX9, and down-regulation of CD24 ('stem-like signature'. We confirmed the acquisition of a stem-like phenotype by quantitative PCR, FACS analysis and Western blotting. Further, HGF led to activation of the stem cell related Notch pathway by up-regulation of its ligands Jagged-1 and Delta-like 4. Small molecules SU11274 and PHA665752 targeting c-MET activity were both able to block the molecular and biologic effects of HGF. Knock-down of c-MET by shRNA infection resulted in significant reduction and delay of orthotopic tumour-formation in male NMRI mice. Immunohistochemical analysis in prostatectomies revealed significant enrichment of c-MET positive cells at the invasive front, and demonstrated co-expression of c-MET with stem-like markers CD49b and CD49f.In conclusion, activation of c-MET in prostate cancer cells induced a stem-like phenotype, indicating a dynamic relation between differentiated and stem-like cells in this malignancy. Its mediation of efficient tumour-formation in vivo and predominant receptor expression at the invasive front implicate that c-MET regulates tumour infiltration in surrounding tissues putatively by acquisition of a stem-like phenotype.

  9. A flexible hydrological modelling system developed using an object oriented methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rinde, Trond

    1998-12-31

    The report presents a software system called Process Integrating Network (PINE). The capabilities, working principles, programming technical design and principles of use of the system are described as are some practical applications. PINE is a simulation tool for modelling of hydrological and hydrologically related phenomena. The system is based on object oriented programming principles and was specially designed to provide freedom in the choice of model structures and algorithms for process descriptions. It supports full freedom with regards to spatial distribution and temporal resolution. Geographical information systems (GIS) may be integrated with PINE in order to provide full spatial distribution in system parametrisation, process simulation and visualisation of simulation results. Simulation models are developed by linking components for process description together in a structure. The system can handle compound working media such as water with chemical or biological constituents. Non-hydrological routines may then be included to describe the responses of such constituents. Features such as extensibility and reuse of program components are emphasised in the program design. Separation between process topology, process descriptions and process data facilitates simple and consistent implementation of components for process description. Such components may be automatically prototyped and their response functions may be implemented without knowledge of other parts of the program system and without the need to program import or export routines or a user interface. Model extension is thus a rapid process that does not require extensive programming skills. Components for process descriptions may further be placed in separate program libraries, which can be included in the program as required. The program system can thus be very compact while it still has a large number of process algorithms available. The system can run on both PC and UNIX platforms. 106 figs., 20

  10. Comparison of different multi-objective calibration criteria using a conceptual rainfall-runoff model of flood events

    Directory of Open Access Journals (Sweden)

    R. Moussa

    2009-04-01

    Full Text Available A conceptual lumped rainfall-runoff flood event model was developed and applied on the Gardon catchment located in Southern France and various single-objective and multi-objective functions were used for its calibration. The model was calibrated on 15 events and validated on 14 others. The results of both the calibration and validation phases are compared on the basis of their performance with regards to six criteria, three global criteria and three relative criteria representing volume, peakflow, and the root mean square error. The first type of criteria gives more weight to large events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent on the type of criteria used. Significant trade-offs are observed between the different objectives: no unique set of parameters is able to satisfy all objectives simultaneously. Instead, the solution to the calibration problem is given by a set of Pareto optimal solutions. From this set of optimal solutions, a balanced aggregated objective function is proposed, as a compromise between up to three objective functions. The single-objective and multi-objective calibration strategies are compared both in terms of parameter variation bounds and simulation quality. The results of this study indicate that two well chosen and non-redundant objective functions are sufficient to calibrate the model and that the use of three objective functions does not necessarily yield different results. The problems of non-uniqueness in model calibration, and the choice of the adequate objective functions for flood event models, emphasise the importance of the modeller's intervention. The recent advances in automatic optimisation techniques do not minimise the user's responsibility, who has to choose multiple criteria based on the aims of the study, his appreciation on the errors induced by data and model structure and his knowledge of the

  11. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Hari, Ari-Matti; Haukka, Harri; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Siikonen, Timo; Palin, Matti

    2017-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: - MetBaro Pressure device - MetHumi Humidity device - MetTemp Temperature sensors Optical devices: - PanCam Panoramic - MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer - DS Dust sensor Composition and Structure Devices: Tri-axial magnetometer MOURA Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special 3-axis

  12. Metsämaisema ulkoilijoiden kokemana

    OpenAIRE

    Vuohijoki, Jaana

    2010-01-01

    Työn aiheena oli tutkia, miten ulkoilijat kokevat metsämaiseman Tampereella. Tavoitteena oli selvittää ulkoilijoiden maisema-arvostuksia sekä suhtautumista metsänhoidon toimenpiteisiin. Tutkimus toteutettiin maastohaastatteluina Tampereella kolmella eri asuinalueella: Hallilassa, Leinolassa ja Tesomajärvellä. Otoskooksi muodostui kymmenen haastattelua aluetta kohti, mutta yhdeltä vastaajalta ei ehditty kysyä kaikkia kysymyksiä. Vastaajat olivat yleisesti ottaen tyytyväisiä alueiden metsän...

  13. MET gene exon 14 deletion created using the CRISPR/Cas9 system enhances cellular growth and sensitivity to a MET inhibitor.

    Science.gov (United States)

    Togashi, Yosuke; Mizuuchi, Hiroshi; Tomida, Shuta; Terashima, Masato; Hayashi, Hidetoshi; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-12-01

    MET splice site mutations resulting in an exon 14 deletion have been reported to be present in about 3% of all lung adenocarcinomas. Patients with lung adenocarcinoma and a MET splice site mutation who have responded to MET inhibitors have been reported. The CRISPR/Cas9 system is a recently developed genome-engineering tool that can easily and rapidly cause small insertions or deletions. We created an in vitro model for MET exon 14 deletion using the CRISPR/Cas9 system and the HEK293 cell line. The phenotype, which included MET inhibitor sensitivity, was then investigated in vitro. Additionally, MET splice site mutations were analyzed in several cancers included in The Cancer Genome Atlas (TCGA) dataset. An HEK293 cell line with a MET exon 14 deletion was easily and rapidly created; this cell line had a higher MET protein expression level, enhanced MET phosphorylation, and prolonged MET activation. In addition, a direct comparison of phenotypes using this system demonstrated enhanced cellular growth, colony formation, and MET inhibitor sensitivity. In the TCGA dataset, lung adenocarcinomas had the highest incidence of MET exon 14 deletions, while other cancers rarely carried such mutations. Approximately 10% of the lung adenocarcinoma samples without any of driver gene alterations carried the MET exon 14 deletion. These findings suggested that this system may be useful for experiments requiring the creation of specific mutations, and the present experimental findings encourage the development of MET-targeted therapy against lung cancer carrying the MET exon 14 deletion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. An object-oriented model of the cardiopulmonary system with emphasis on the gravity effect.

    Science.gov (United States)

    Chuong Ngo; Herranz, Silvia Briones; Misgeld, Berno; Vollmer, Thomas; Leonhardt, Steffen

    2016-08-01

    We introduce a novel comprehensive model of the cardiopulmonary system with emphasis on perfusion and ventilation distribution along the vertical thorax axis under the gravity effect. By using an object-oriented environment, the complex physiological system can be represented by a network of electrical, lumped-element compartments. The lungs are divided into three zones: upper, middle, and lower zone. Blood flow increases with the distance from the apex to the base of the lungs. The upper zone is characterized by a complete collapse of the pulmonary capillary vasculature; thus, there is no flow in this zone. The second zone has a "waterfall effect" where the blood flow is determined by the difference between the pulmonary-arterial and alveolar pressures. At resting position, the upper lobes of the lungs are more expanded than the middle and lower lobes. However, during spontaneous breathing, ventilation is nonuniform with more air entering the lower lobes than the middle and upper lobes. A simulative model of the complete system is developed which shows results in good agreement with the literature.

  15. Change Analysis and Decision Tree Based Detection Model for Residential Objects across Multiple Scales

    Directory of Open Access Journals (Sweden)

    CHEN Liyan

    2018-03-01

    Full Text Available Change analysis and detection plays important role in the updating of multi-scale databases.When overlap an updated larger-scale dataset and a to-be-updated smaller-scale dataset,people usually focus on temporal changes caused by the evolution of spatial entities.Little attention is paid to the representation changes influenced by map generalization.Using polygonal building data as an example,this study examines the changes from different perspectives,such as the reasons for their occurrence,their performance format.Based on this knowledge,we employ decision tree in field of machine learning to establish a change detection model.The aim of the proposed model is to distinguish temporal changes that need to be applied as updates to the smaller-scale dataset from representation changes.The proposed method is validated through tests using real-world building data from Guangzhou city.The experimental results show the overall precision of change detection is more than 90%,which indicates our method is effective to identify changed objects.

  16. Multi-objective optimization algorithms for mixed model assembly line balancing problem with parallel workstations

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2016-12-01

    Full Text Available This paper deals with mixed model assembly line (MMAL balancing problem of type-I. In MMALs several products are made on an assembly line while the similarity of these products is so high. As a result, it is possible to assemble several types of products simultaneously without any additional setup times. The problem has some particular features such as parallel workstations and precedence constraints in dynamic periods in which each period also effects on its next period. The research intends to reduce the number of workstations and maximize the workload smoothness between workstations. Dynamic periods are used to determine all variables in different periods to achieve efficient solutions. A non-dominated sorting genetic algorithm (NSGA-II and multi-objective particle swarm optimization (MOPSO are used to solve the problem. The proposed model is validated with GAMS software for small size problem and the performance of the foregoing algorithms is compared with each other based on some comparison metrics. The NSGA-II outperforms MOPSO with respect to some comparison metrics used in this paper, but in other metrics MOPSO is better than NSGA-II. Finally, conclusion and future research is provided.

  17. Enhancing community based health programs in Iran: a multi-objective location-allocation model.

    Science.gov (United States)

    Khodaparasti, S; Maleki, H R; Jahedi, S; Bruni, M E; Beraldi, P

    2017-12-01

    Community Based Organizations (CBOs) are important health system stakeholders with the mission of addressing the social and economic needs of individuals and groups in a defined geographic area, usually no larger than a county. The access and success efforts of CBOs vary, depending on the integration between health care providers and CBOs but also in relation to the community participation level. To achieve widespread results, it is important to carefully design an efficient network which can serve as a bridge between the community and the health care system. This study addresses this challenge through a location-allocation model that deals with the hierarchical nature of the system explicitly. To reflect social welfare concerns of equity, local accessibility, and efficiency, we develop the model in a multi-objective framework, capturing the ambiguity in the decision makers' aspiration levels through a fuzzy goal programming approach. This study reports the findings for the real case of Shiraz city, Fars province, Iran, obtained by a thorough analysis of the results.

  18. A Conceptual Model for Delineating Land Management Units (LMUs Using Geographical Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Deniz Gerçek

    2017-06-01

    Full Text Available Land management and planning is crucial for present and future use of land and the sustainability of land resources. Physical, biological and cultural characteristics of land can be used to define Land Management Units (LMUs that aid in decision making for managing land and communicating information between different research and application domains. This study aims to describe the classification of ecologically relevant land units that are suitable for land management, planning and conservation purposes. Relying on the idea of strong correlation between landform and potential landcover, a conceptual model for creating Land Management Units (LMUs from topographic data and biophysical information is presented. The proposed method employs a multi-level object-based classification of Digital Terrain Models (DTMs to derive landform units. The sensitivity of landform units to changes in segmentation scale is examined, and the outcome of the landform classification is evaluated. Landform classes are then aggregated with landcover information to produce ecologically relevant landform/landcover assemblages. These conceptual units that constitute a framework of connected entities are finally enriched given available socio-economic information e.g., land use, ownership, protection status, etc. to generate LMUs. LMUs attached to a geographic database enable the retrieval of information at various levels to support decision making for land management at various scales. LMUs that are created present a basis for conservation and management in a biodiverse area in the Black Sea region of Turkey.

  19. Nonpaternity and Half-Siblingships as Objective Measures of Extramarital Sex: Mathematical Modeling and Simulations

    Directory of Open Access Journals (Sweden)

    Ryosuke Omori

    2017-01-01

    Full Text Available Background. Understanding the epidemiology of HIV and other sexually transmitted infections (STIs requires knowledge of sexual behavior, but self-reported behavior has limitations. We explored the reliability and validity of nonpaternity and half-siblings ratios as biomarkers of current and past extramarital sex. Methods. An individual-based Monte Carlo simulation model was constructed to describe partnering and conception in human populations with a focus on Sub-Saharan Africa (SSA. The model was parameterized with representative biological, behavioral, and demographic data. Results. Nonpaternity and half-siblings ratios were strongly correlated with extramarital sex, with Pearson correlation coefficients (PCC of 0.79 (95% CI: 0.71–0.86 and 0.77 (0.68–0.84, respectively. Age-specific