WorldWideScience

Sample records for modeling nuclear reactions

  1. Nuclear reaction modeling, verification experiments, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, F.S.

    1995-10-01

    This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.

  2. Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models

    Science.gov (United States)

    Razavi, Rohallah; Rahmatinejad, Azam; Kakavand, Tayeb; Taheri, Fariba; Aghajani, Maghsood; Khooy, Asghar

    2016-02-01

    In this work the nuclear level density parameters of 238U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for 238U(p,2nα)233Pa, and 238U(p,4n)235Np reactions and the fragment yields for the fragments of the 238U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of 238U show a constant temperature behaviour.

  3. Towards many-body based nuclear reaction modelling

    Science.gov (United States)

    Hilaire, Stéphane; Goriely, Stéphane

    2016-06-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic expressions. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical principles, when dealing with very exotic nuclei. Thanks to the high computer power available today, all the ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. This concerns nuclear masses, optical model potential, nuclear level densities, photon strength functions, as well as fission barriers. All these nuclear model ingredients, traditionally given by phenomenological expressions, now have a microscopic counterpart implemented in the TALYS nuclear reaction code. We are thus now able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. Perspectives for the coming years will be drawn on the improvements one can expect.

  4. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation

    Science.gov (United States)

    Herman, M.; Capote, R.; Carlson, B. V.; Obložinský, P.; Sin, M.; Trkov, A.; Wienke, H.; Zerkin, V.

    2007-12-01

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions (∽ keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approach (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with γ-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and γ-ray strength functions. The results can be converted into ENDF-6 formatted files using the

  5. Nuclear reaction

    CERN Multimedia

    Penwarden, C

    2001-01-01

    At the European Research Organization for Nuclear Research, Nobel laureates delve into the mysteries of particle physics. But when they invited artists from across the continent to visit their site in Geneva, they wanted a new kind of experiment.

  6. Studying nuclear level densities of {sup 238}U in the nuclear reactions within the macroscopic nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Rohallah; Aghajani, Maghsood; Khooy, Asghar [Imam Hossein Comprehensive Univ., Tehran (Iran, Islamic Republic of). Dept. of Physics; Rahmatinejad, Azam; Taheri, Fariba [Univ. of Zanjan (Iran, Islamic Republic of). Dept. of Physics; Kakavand, Tayeb [Imam Khomeini International Univ., Qazvin (Iran, Islamic Republic of). Dept. of Physics

    2016-05-01

    In this work the nuclear level density parameters of {sup 238}U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for {sup 238}U(p,2nα){sup 233}Pa, and {sup 238}U(p,4n){sup 235}Np reactions and the fragment yields for the fragments of the {sup 238}U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of {sup 238}U show a constant temperature behaviour.

  7. Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    Science.gov (United States)

    Cyburt, R. H.; Amthor, A. M.; Heger, A.; Johnson, E.; Keek, L.; Meisel, Z.; Schatz, H.; Smith, K.

    2016-10-01

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ), (α, γ), and (α, p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  8. Nuclear reactions an introduction

    CERN Document Server

    Paetz gen. Schieck, Hans

    2014-01-01

    Nuclei and nuclear reactions offer a unique setting for investigating three (and in some cases even all four) of the fundamental forces in nature. Nuclei have been shown – mainly by performing scattering experiments with electrons, muons, and neutrinos – to be extended objects with complex internal structures: constituent quarks; gluons, whose exchange binds the quarks together; sea-quarks, the ubiquitous virtual quark-antiquark pairs and, last but not least, clouds of virtual mesons, surrounding an inner nuclear region, their exchange being the source of the nucleon-nucleon interaction.   The interplay between the (mostly attractive) hadronic nucleon-nucleon interaction and the repulsive Coulomb force is responsible for the existence of nuclei; their degree of stability, expressed in the details and limits of the chart of nuclides; their rich structure and the variety of their interactions. Despite the impressive successes of the classical nuclear models and of ab-initio approaches, there is clearly no ...

  9. EXTENSION OF THE NUCLEAR REACTION MODEL CODE EMPIRE TO ACTINIDES NUCLEAR DATA EVALUATION.

    Energy Technology Data Exchange (ETDEWEB)

    CAPOTE,R.; SIN, M.; TRKOV, A.; HERMAN, M.; CARLSON, B.V.; OBLOZINSKY, P.

    2007-04-22

    Recent extensions and improvements of the EMPIRE code system are outlined. They add new capabilities to the code, such as prompt fission neutron spectra calculations using Hauser-Feshbach plus pre-equilibrium pre-fission spectra, cross section covariance matrix calculations by Monte Carlo method, fitting of optical model parameters, extended set of optical model potentials including new dispersive coupled channel potentials, parity-dependent level densities and transmission through numerically defined fission barriers. These features, along with improved and validated ENDF formatting, exclusive/inclusive spectra, and recoils make the current EMPIRE release a complete and well validated tool for evaluation of nuclear data at incident energies above the resonance region. The current EMPIRE release has been used in evaluations of neutron induced reaction files for {sup 232}Th and {sup 231,233}Pa nuclei in the fast neutron region at IAEA. Triple-humped fission barriers and exclusive pre-fission neutron spectra were considered for the fission data evaluation. Total, fission, capture and neutron emission cross section, average resonance parameters and angular distributions of neutron scattering are in excellent agreement with the available experimental data.

  10. Low Energy Nuclear Reactions?

    CERN Document Server

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  11. Nuclear reactions in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Rayet, M. (Universite Libre de Bruxelles (BE))

    1990-06-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects.

  12. Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models

    CERN Document Server

    Bisterzo, S; Kaeppeler, F; Wiescher, M; Travaglio, C

    2012-01-01

    Asymptotic giant branch (AGB) stars with low initial mass (1 - 3 Msun) are responsible for the production of neutron-capture elements through the main s-process (main slow neutron capture process). The major neutron source is 13C(alpha, n)16O, which burns radiatively during the interpulse periods at about 8 keV and produces a rather low neutron density (10^7 n/cm^3). The second neutron source 22Ne(alpha, n)25Mg, partially activated during the convective thermal pulses when the energy reaches about 23 keV, gives rise to a small neutron exposure but a peaked neutron density (Nn(peak) > 10^11 n/cm^3). At metallicities close to solar, it does not substantially change the final s-process abundances, but mainly affects the isotopic ratios near s-path branchings sensitive to the neutron density. We examine the effect of the present uncertainties of the two neutron sources operating in AGB stars, as well as the competition with the 22Ne(alpha, gamma)26Mg reaction. The analysis is carried out on AGB the main-s process...

  13. Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    CERN Document Server

    Cyburt, R H; Heger, A; Johnson, E; Keek, L; Meisel, Z; Schatz, H; Smith, K

    2016-01-01

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,$\\gamma$), ($\\alpha$,$\\gamma$), and ($\\alpha$,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the {\\Kepler} stellar evolution code. All relevant reaction rates on neutron deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 highest impact reaction rate changes were then repeated in the 1D multi-zone model. We find a number of uncertain reac...

  14. Nuclear reactions at intermediate energies

    Directory of Open Access Journals (Sweden)

    Shyam Radhey

    2016-01-01

    Full Text Available In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant αs is large enough (~ 0.3 - 0.5 to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss the application of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.

  15. Carbon fragmentation measurements and validation of the Geant4 nuclear reaction models for hadrontherapy

    Science.gov (United States)

    De Napoli, M.; Agodi, C.; Battistoni, G.; Blancato, A. A.; Cirrone, G. A. P.; Cuttone, G.; Giacoppo, F.; Morone, M. C.; Nicolosi, D.; Pandola, L.; Patera, V.; Raciti, G.; Rapisarda, E.; Romano, F.; Sardina, D.; Sarti, A.; Sciubba, A.; Scuderi, V.; Sfienti, C.; Tropea, S.

    2012-11-01

    Nuclear fragmentation measurements are necessary when using heavy-ion beams in hadrontherapy to predict the effects of the ion nuclear interactions within the human body. Moreover, they are also fundamental to validate and improve the Monte Carlo codes for their use in planning tumor treatments. Nowadays, a very limited set of carbon fragmentation cross sections are being measured, and in particular, to our knowledge, no double-differential fragmentation cross sections at intermediate energies are available in the literature. In this work, we have measured the double-differential cross sections and the angular distributions of the secondary fragments produced in the 12C fragmentation at 62 A MeV on a thin carbon target. The experimental data have been used to benchmark the prediction capability of the Geant4 Monte Carlo code at intermediate energies, where it was never tested before. In particular, we have compared the experimental data with the predictions of two Geant4 nuclear reaction models: the Binary Light Ions Cascade and the Quantum Molecular Dynamic. From the comparison, it has been observed that the Binary Light Ions Cascade approximates the angular distributions of the fragment production cross sections better than the Quantum Molecular Dynamic model. However, the discrepancies observed between the experimental data and the Monte Carlo simulations lead to the conclusion that the prediction capability of both models needs to be improved at intermediate energies.

  16. Laser induced nuclear reactions

    Science.gov (United States)

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang, Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-01

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 1019W/cm2. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that μCi of 62Cu can be generated via the (γ,n) reaction by a laser with an intensity of about 1019Wcm-2.

  17. Uncertainty evaluation of nuclear reaction model parameters using integral and microscopic measurements. Covariances evaluation with CONRAD code

    Directory of Open Access Journals (Sweden)

    Tommasi J.

    2010-10-01

    Full Text Available In the [eV;MeV] energy range, modelling of the neutron induced reactions are based on nuclear reaction models having parameters. Estimation of co-variances on cross sections or on nuclear reaction model parameters is a recurrent puzzle in nuclear data evaluation. Major breakthroughs were asked by nuclear reactor physicists to assess proper uncertainties to be used in applications. In this paper, mathematical methods developped in the CONRAD code[2] will be presented to explain the treatment of all type of uncertainties, including experimental ones (statistical and systematic and propagate them to nuclear reaction model parameters or cross sections. Marginalization procedure will thus be exposed using analytical or Monte-Carlo solutions. Furthermore, one major drawback found by reactor physicist is the fact that integral or analytical experiments (reactor mock-up or simple integral experiment, e.g. ICSBEP, … were not taken into account sufficiently soon in the evaluation process to remove discrepancies. In this paper, we will describe a mathematical framework to take into account properly this kind of information.

  18. Nuclear Reactions from Lattice QCD

    CERN Document Server

    Briceño, Raúl A; Luu, Thomas C

    2014-01-01

    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low- energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path ...

  19. Redox Chemistry in Radiation Induced Dissolution of Spent Nuclear Fuel : from Elementary Reactions to Predictive Modeling

    OpenAIRE

    Roth, Olivia

    2008-01-01

    The focus of this doctoral thesis is the redox chemistry involved in radiation induced oxidative dissolution of spent nuclear fuel and UO2 (as a model substance for spent nuclear fuel). It is shown that two electron oxidants are more efficient than one electron oxidants in oxidative dissolution of UO2 at low oxidant concentrations. Furthermore, it is shown that H2O2 is the only oxidant that has to be taken into account in radiation induced dissolution of UO2 under deep repository conditions (...

  20. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemsitry in the region of Thulium, Lutetium, and Tantalum I. Results of Built in Spherical Symmetry in a Deformed Region

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-06

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from Terbium (Z = 65) to Rhenium (Z = 75). Of particular interest are the cross sections on Tm, Lu, and Ta including reactions on isomeric targets.

  1. Nuclear reactions from lattice QCD

    Science.gov (United States)

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-02-01

    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, quantum chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three-nucleon (and higher) interactions in a consistent manner. Currently, lattice quantum chromodynamics (LQCD) provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between LQCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from LQCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  2. Nuclear flux densities during a model pericyclic reaction with energies well above and below the potential barrier.

    Science.gov (United States)

    Bredtmann, Timm; Kono, Hirohiko; Manz, Jörn; Nakamura, Kosuke; Stemmle, Christian

    2013-05-10

    Pericyclic reactions with energies E well above the potential energy barrier B (case E>B) proceed with quantum nuclear flux densities 〈j〉 which are essentially proportional to the nuclear densities ρ in the femtosecond time domain. This corresponds to the definition of classical (cl) mechanics, j(cl)=υ(cl) ρ(cl), with almost constant velocity v(cl). For the other case Evalue close to the barrier where ρ is a minimum (in fact where ρ is close to zero). The general conclusion is that quantum mechanical nuclear flux densities may be at variance from traditional expectations based on classical trajectories. This prediction calls for experimental demonstration. The counter-intuitive proof-of-principle is demonstrated for a simple, one-dimensional model of the Cope rearrangement of semibullvalene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nuclear Models

    Science.gov (United States)

    Fossión, Rubén

    2010-09-01

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction). Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  4. Nuclear reaction studies: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, R.M.

    1986-11-19

    A principal focus of recent research has been the three-body problem. A great deal of effort has been devoted to the creation of a computer program to calculate physical observables in the three body problem below 1 GeV. Successful results have been obtained for the triton. Additional work concerns scattering of K/sup +/ mesons from nuclei, antinucleon physics, relativistic nuclear physics and inclusive reactions. (DWL)

  5. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  6. Nuclear model calculations of (n,p) and (n,n'p) reactions on molybdenum isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ivascu, M.; Avrigeanu, M.; Avrigeanu, V.

    1983-06-01

    Cross sections for the (n,p) and (n,n'p) reactions on stable molybdenum isotopes have been calculated in the energy range from threshold up to 20 MeV. The calculations have involved the optical model (SCAT2 code), the statistical model (Kauser-Feshbach STAPRE code) and the preequilibrium decay exciton and hybrid models (incorporated in STAPRE). The input model parameters have been determined or checked analyzing against the available experimental data the calculated neutron strength functions, potential scattering radius, total, differential shape elastic and inelastic scattering cross sections (SPRT method), the excitation function of the reaction /sup 93/Nb(p,n)/sup 93/Mo, neutron resonance data and discrete levels at low excitation energies, neutron radiative capture cross sections on /sup 93/Nb and /sup 98,100/Mo target nuclei, the excitation function of the reaction /sup 92/Mo(n,2n)/sup 91/Mo cross section and isomer ratio, and the proton - emission spectrum for 15 MeV neutron incident energy on /sup 92/Mo target. The calculation of nuclear level density for excitation energies higher than approx.23 MeV are more reliable done by means of the liquid drop model predictions for the back - shifted Fermi gas model parameters. That enables also to use in a unified way the average level density parameter anti a = A/8 MeV/sup -1/ in both statistical and exciton models. The calculated (n,p) and (n,n'p) reaction cross sections are compared with the available experimental data and their sensitivity to the input parameter variations are discussed. 132 refs., 25 figs., 11 tabs.

  7. Photo nuclear reactions by QMD

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Tomoyuki; Niita, Koji; Chiba, Satoshi; Maruyama, Toshiki; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    QMD (Quantum Molecular Dynamics) was applied to photo nuclear reaction. Advantages of QMD were explained. The cross section of (Cr, pX) at 375 MeV/c was simulated. The results showed three peaks, the peak in the lowest momentum indicated contribution of statistics decay and the middle one, the largest peak, was contribution of quasi-free process (QF) which consisted of two-step process. Then, the total cross section of {pi} photoproduction for three target nuclei (C, Al and Cu) was simulated by QMD. The obtained values were larger than the experimental values, so that the present QMD calculation showed small {pi} adsorption. (S.Y.)

  8. Model of iodine transport and reaction kinetics in a nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W. Jr.

    1977-05-01

    A model is presented to describe the time-dependent flow and retention of stable iodine isotopes and the decay of /sup 131/I in a nuclear fuel reprocessing plant. The plant consists of 16 units of equipment such as a voloxidizer or graphite burner, fuel dissolver, solvent extractors, storage tanks, vaporizers, primary iodine sorbers, and silver zeolite. The rate of accumulation of bulk and radioactive iodine in these units and in the environment is described using 19 differential equations. Reasonable time-dependence of iodine retention factors (RFs) by the plant were calculated. RFs for a new plant in excess of 10/sup 6/ for stable iodine and /sup 129/I decrease to the range of 10/sup 3/ to 10/sup 2/ as plant operating times exceed 50 to 100 days. The RFs for /sup 131/I also decrease initially, for a period of approximately 10 days, but then increase by several orders of magnitude due to radioactive decay and isotopic exchange. Generally, the RFs for /sup 131/I exceed those for stable iodine by factors of 10/sup 4/ or more. 19 references, 13 figures, 2 tables. (DLC)

  9. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  10. Hadron Cancer Therapy: Role of Nuclear Reactions

    Science.gov (United States)

    Chadwick, M. B.

    2000-06-20

    Recently it has become feasible to calculate energy deposition and particle transport in the body by proton and neutron radiotherapy beams, using Monte Carlo transport methods. A number of advances have made this possible, including dramatic increases in computer speeds, a better understanding of the microscopic nuclear reaction cross sections, and the development of methods to model the characteristics of the radiation emerging from the accelerator treatment unit. This paper describes the nuclear reaction mechanisms involved, and how the cross sections have been evaluated from theory and experiment, for use in computer simulations of radiation therapy. The simulations will allow the dose delivered to a tumor to be optimized, whilst minimizing the dos given to nearby organs at risk.

  11. $^{12}$C nuclear reaction measurements for hadrontherapy.

    CERN Document Server

    B. Braunn, B; G. Ban, G; J.Colin, J; D. Cussol, D; J.M. Fontbonne, J M; F.R.. Lecolley, F R; C. Pautard, C; Haas, F; Lebhertz, D; Rousseau, M; Stuttge, L; Chevallier, M; Dauvergne, D; Le Foulher, F; Ray, C; Testa, E; Testa, M; Salsac, M D

    2010-01-01

    Hadrontherapy treatments require a very high precision on the dose deposition ( 2.5% and 1-2mm) in order to keep the benefits of the precise ions’ ballistic. The largest uncertainty on the physical dose deposition is due to ion fragmentation. Up to now, the simulation codes are not able to reproduce the fragmentation process with the required precision. To constraint the nuclear models and complete fragmentation cross sections databases; our collaboration has performed an experiment on May 2008 at GANIL with a 95 MeV/u 12C beam. We have measured the fluence, energy and angular distributions of charged fragments and neutrons coming from nuclear reactions of incident 12C on thick water-like PMMA targets. Preliminary comparisons between GEANT4 (G4BinaryLightIonReaction) simulations and experimental data show huge discrepancies.

  12. Forging the link between nuclear reactions and nuclear structure

    Science.gov (United States)

    Dickhoff, W. H.

    2016-06-01

    A review of the recent applications of the dispersive optical model (DOM) is presented. Emphasis is on the nonlocal implementation of the DOM that is capable of describing ground-state properties accurately when data like the nuclear charge density are available. The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied mostly on data from the (e, e' p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The DOM, conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. We have recently introduced a nonlocal dispersive optical potential for both the real and imaginary part. Nonlocal absorptive potentials yield equivalent elastic differential cross sections for 40Ca as compared to local ones but change the l-dependent absorption profile suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e' p) and (p, 2p) reactions are correctly described, including the energy distribution of about 10% high-momentum protons obtained at Jefferson Lab. The nonlocal DOM allows a complete description of experimental data both above (up to 200 MeV) and below the Fermi energy in 40Ca. It is further demonstrated that elastic nucleon-nucleus scattering data constrain the spectral strength in the continuum of orbits that are nominally bound in the independent-particle model. Extension of this analysis to 48Ca allows a prediction of the neutron skin of this nucleus that is larger than most predictions made so far.

  13. Forging the link between nuclear reactions and nuclear structure

    Directory of Open Access Journals (Sweden)

    Dickhoff W. H.

    2016-01-01

    Full Text Available A review of the recent applications of the dispersive optical model (DOM is presented. Emphasis is on the nonlocal implementation of the DOM that is capable of describing ground-state properties accurately when data like the nuclear charge density are available. The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied mostly on data from the (e, e′ p reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The DOM, conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. We have recently introduced a nonlocal dispersive optical potential for both the real and imaginary part. Nonlocal absorptive potentials yield equivalent elastic differential cross sections for 40Ca as compared to local ones but change the l-dependent absorption profile suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e′ p and (p, 2p reactions are correctly described, including the energy distribution of about 10% high-momentum protons obtained at Jefferson Lab. The nonlocal DOM allows a complete description of experimental data both above (up to 200 MeV and below the Fermi energy in 40Ca. It is further demonstrated that elastic nucleon-nucleus scattering data constrain the spectral strength in the continuum of orbits that are nominally bound in the independent-particle model. Extension of this analysis to 48Ca allows a prediction of the neutron skin of this nucleus that is larger than most predictions made so far.

  14. Particle-gamma and particle-particle correlations in nuclear reactions using Monte Carlo Hauser-Feshback model

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Los Alamos National Laboratory; Talou, Patrick [Los Alamos National Laboratory; Watanabe, Takehito [Los Alamos National Laboratory; Chadwick, Mark [Los Alamos National Laboratory

    2010-01-01

    Monte Carlo simulations for particle and {gamma}-ray emissions from an excited nucleus based on the Hauser-Feshbach statistical theory are performed to obtain correlated information between emitted particles and {gamma}-rays. We calculate neutron induced reactions on {sup 51}V to demonstrate unique advantages of the Monte Carlo method. which are the correlated {gamma}-rays in the neutron radiative capture reaction, the neutron and {gamma}-ray correlation, and the particle-particle correlations at higher energies. It is shown that properties in nuclear reactions that are difficult to study with a deterministic method can be obtained with the Monte Carlo simulations.

  15. BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics

    CERN Document Server

    Aikawa, M; Goriely, S; Jorissen, A; Takahashi, K

    2005-01-01

    Nuclear reaction rates are quantities of fundamental importance in astrophysics. Substantial efforts have been devoted in the last decades to measure or calculate them. The present paper presents for the first time a detailed description of the Brussels nuclear reaction rate library BRUSLIB and of the nuclear network generator NETGEN so as to make these nuclear data packages easily accessible to astrophysicists for a large variety of applications. BRUSLIB is made of two parts. The first one contains the 1999 NACRE compilation based on experimental data for 86 reactions with (mainly) stable targets up to Si. The second part of BRUSLIB concerns nuclear reaction rate predictions calculated within a statistical Hauser-Feshbach approximation, which limits the reliability of the rates to reactions producing compound nuclei with a high enough level density. These calculations make use of global and coherent microscopic nuclear models for the quantities entering the rate calculations. The use of such models is utterl...

  16. Nuclear reaction database on Meme Media

    Energy Technology Data Exchange (ETDEWEB)

    Ohbayashi, Yoshihide; Masui, Hiroshi [Meme Media Laboratory, Hokkaido University, Sapporo, Hokkaido (Japan); Aoyama, Shigeyoshi [Information Processing Center, Kitami Institute of Technology, Kitami, Hokkaido (Japan); Kato, Kiyoshi [Division of Physics, Graduate School of Science, Hokkaido Univ., Sapporo, Hokkaido (Japan); Chiba, Masaki [Division of Social Information, Sapporo Gakuin University, Ebetsu, Hokkaido (Japan)

    2000-03-01

    We have developed the system of charged particle nuclear reaction data (CPND) on the IntelligentPad architecture. We called the system CONTIP, which is an abbreviation of 'Creative, Cooperative and Cultural Objects for Nuclear data and Tools'. NRDF (Nuclear Reaction Data File), which is a kind of CPND compilation, is applied as an application example. Although CONTIP is currently applied to NRDF, the framework can be generalized to use the othernuclear database. We will develop CONTIP to give the framework for effective utilization of nuclear data. (author)

  17. Nuclear phenomena in low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  18. Excitation function calculations for α + 93Nb nuclear reactions

    Science.gov (United States)

    Yiğit, M.; Tel, E.; Sarpün, İ. H.

    2016-10-01

    In this study, the excitation functions of alpha-induced reactions on the 93Nb target nucleus were calculated by using ALICE-ASH code. The hybrid model, Weisskopf-Ewing model and geometry dependent hybrid model in this code were used to understand the alpha-niobium interaction. The contribution on the nuclear interaction of compound and pre-compound processes, with variation of the incident alpha particle energy, was presented. Furthermore, the reaction cross sections were calculated by using different level density models such as Superfluid nuclear model, Fermi gas model and Kataria-Ramamurthy Fermi gas model. Obtaining a good agreement between the calculated and the measured cross sections, the exciton numbers and the nuclear level density models were varied. Finally, the proper choice of the exciton numbers and the nuclear level density models was found to be quite important in order to obtain the more realistic cross section values.

  19. Nuclear Data for Astrophysical Modeling

    CERN Document Server

    Pritychenko, Boris

    2016-01-01

    Nuclear physics has been playing an important role in modern astrophysics and cosmology. Since the early 1950's it has been successfully applied for the interpretation and prediction of astrophysical phenomena. Nuclear physics models helped to explain the observed elemental and isotopic abundances and star evolution and provided valuable insights on the Big Bang theory. Today, the variety of elements observed in stellar surfaces, solar system and cosmic rays, and isotope abundances are calculated and compared with the observed values. Consequently, the overall success of the modeling critically depends on the quality of underlying nuclear data that helps to bring physics of macro and micro scales together. To broaden the scope of traditional nuclear astrophysics activities and produce additional complementary information, I will investigate applicability of the U.S. Nuclear Data Program (USNDP) databases for astrophysical applications. EXFOR (Experimental Nuclear Reaction Data) and ENDF (Evaluated Nuclear Dat...

  20. The nuclear structure and low-energy reactions (NSLER) collaboration

    Science.gov (United States)

    Dean, D. J.; NSLER Collaboration

    2006-09-01

    The long-term vision of the Nuclear Structure and Low-Energy Reactions (NSLER) collaboration is to arrive at a comprehensive and unified description of nuclei and their reactions that is grounded in the interactions between the constituent nucleons. For this purpose, we will develop a universal energy density functional for nuclei and replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that will deliver maximum predictive power with minimal uncertainties that are well quantified. Nuclear structure and reactions play an essential role in the science to be investigated at rare isotope facilities, and in nuclear physics applications to the Science-Based Stockpile Stewardship Program, next-generation reactors, and threat reduction. We anticipate an expansion of the computational techniques and methods we currently employ, and developments of new treatments, to take advantage of petascale architectures and demonstrate the capability of the leadership class machines to deliver new science heretofore impossible.

  1. Reaction Rate Parameterization for Nuclear Astrophysics Research

    Science.gov (United States)

    Scott, J. P.; Lingerfelt, E. J.; Smith, M. S.; Hix, W. R.; Bardayan, D. W.; Sharp, J. E.; Kozub, R. L.; Meyer, R. A.

    2004-11-01

    Libraries of thermonuclear reaction rates are used in element synthesis models of a wide variety of astrophysical phenomena, such as exploding stars and the inner workings of our sun. These computationally demanding models are more efficient when libraries, which may contain over 60000 rates and vary by 20 orders of magnitude, have a uniform parameterization for all rates. We have developed an on-line tool, hosted at www.nucastrodata.org, to obtain REACLIB parameters (F.-K. Thielemann et al., Adv. Nucl. Astrophysics 525, 1 (1987)) that represent reaction rates as a function of temperature. This helps to rapidly incorporate the latest nuclear physics results in astrophysics models. The tool uses numerous techniques and algorithms in a modular fashion to improve the quality of the fits to the rates. Features, modules, and additional applications of this tool will be discussed. * Managed by UT-Battelle, LLC, for the U.S. D.O.E. under contract DE-AC05-00OR22725 + Supported by U.S. D.O.E. under Grant No. DE-FG02-96ER40955

  2. Multilayer Network Analysis of Nuclear Reactions

    Science.gov (United States)

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-08-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.

  3. Multilayer network analysis of nuclear reactions

    CERN Document Server

    Zhu, Liang; Chen, Qu; Han, Ding-Ding

    2016-01-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, $^4$He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the $\\beta$-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.

  4. A comprehensive survey of nuclear reactions; Panorama des reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cugnon, J. [Liege Univ., IFPA, AGO Dept. (Belgium)

    2007-07-01

    The various mechanisms of nuclear reactions are surveyed and classified in different regimes, based on the notions of coherent mechanisms and hard versus soft processes. The emphasis is put on the concepts at the basis of the understanding of these regimes and on the elements of nuclear structure which are involved in these different regimes, as well as the on the possibility of extracting this information. Due to lack of space and for pedagogical reasons, the discussion is limited to nucleon-induced and light-ion-induced reactions. However, a few remarks are given concerning some specific probes, such as weakly bound projectiles or neutron-rich nuclei. (author)

  5. Validation of nuclear reaction models of 180 MeV proton-induced fragmentation of {sup 27}Al

    Energy Technology Data Exchange (ETDEWEB)

    Sabra, M.S., E-mail: m.sabra@vanderbilt.edu [Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212 (United States); Clemens, M.A. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Weller, R.A.; Mendenhall, M.H. [Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212 (United States); Barghouty, A.F. [NASA Marshall Space Flight Center, Huntsville, AL 35805 (United States); Malik, F.B. [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2011-11-01

    Kinetic energy, angular distribution, and isobaric cross section data for A = 7-25 fragments formed in p + {sup 27}Al reaction at bombarding energy of 180 MeV are compared with the calculations of the Binary Cascade Model (BIC), the Cascade Exciton Model (CEM), JQMD/PHITS, as well as the Statistical Model with Final State Interaction (SMFSI). For completeness, the kinetic energy spectra of light particles (n, p, {alpha}) formed in p + {sup 27}Al reaction at bombarding energy of 156 MeV are also presented. A general agreement between the data and predictions of these models is found. However, disagreement with the data for the yields of light-mass fragments as well as near-target fragments is also found and discussed. The importance of this comparative study to simulation and analysis of radiation effects on microscopic electrical components operating in space is also discussed.

  6. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    Science.gov (United States)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  7. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  8. Theoretical studies in nuclear reactions and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  9. A Nuclear Reactions Primer with Computers.

    Science.gov (United States)

    Calle, Carlos I.; Roach, Jennifer A.

    1987-01-01

    Described is a microcomputer software program NUCLEAR REACTIONS designed for college level students and in use at Sweet Briar College (Sweet Briar, VA). The program is written in Microsoft Basic Version 2.1 for the Apple Macintosh Microcomputer. It introduces two conservation principles: (1) conservation of charge; and (2) conservation of nucleon…

  10. Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,66−68Zn targets

    Directory of Open Access Journals (Sweden)

    M. Yiğit

    2017-08-01

    Full Text Available In this paper, nuclear data for cross sections of the 64Zn(n,2n63Zn, 64Zn(n,3n62Zn, 64Zn(n,p64Cu, 66Zn(n,2n65Zn, 66Zn(n,p66Cu, 67Zn(n,p67Cu, 68Zn(n,p68Cu, and 68Zn(n,α65Ni reactions were studied for neutron energies up to 40 MeV. In the nuclear model calculations, TALYS 1.6, ALICE/ASH, and EMPIRE 3.2 codes were used. Furthermore, the nuclear data for the (n,2n and (n,p reaction channels were also calculated using various cross-section systematics at energies around 14–15 MeV. The code calculations were analyzed and obtained using the different level densities in the exciton model and the geometry-dependent hybrid model. The results obtained from the excitation function calculations are discussed and compared with literature experimental data, ENDF/B-VII.1, and the TENDL-2015 evaluated data.

  11. Deexcitation Modes in Spallation Nuclear Reactions

    Science.gov (United States)

    Velasco, F. G.; Guzmán, F.; Rodriguez, O.; Tumbarell, O.; Souza, D. A.; Samana, A. R.; Andrade-II, E.; Bernal Castillo, J. L.; Deppman, A.

    2016-08-01

    Spallation nuclear reactions in the range of 0.2 to 1.2 GeV are studied using the CRISP code. A new approach for the deexcitation stage of the compound nucleus was introduced. For the calculations of the level densities, this approach is based on the Back-shifted Fermi gas model (BSFG), which takes into account pairing effects and shell corrections, whereas the calculation of the fission barriers were performed by means of the Extended Thomas-Fermi plus Strutinsky Integral (ETFSI) method, which is a high-speed approximation to the Hartree-Fock method with pairing correlations treated as in the usual BCS plus blocking approach. This procedure is more appropriate to calculate level densities for exotic nuclei. Satisfactory results were obtained and compared with experimental data obtained in the GSI experiments. As another important result, we highlight some directions for the development of a qualitatively superior version of the CRISP code with the implementation of more realistic and suitable physical models to be applied in stable and exotic nuclei that participate in the process. This new version of the code includes several substantial changes in the decay of the hot compound nucleus which allow satisfactory agreement with the experimental data and a reduction of the adjustment parameters.

  12. Progress in microscopic direct reaction modeling of nucleon induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M.; Bauge, E.; Hilaire, S.; Lechaftois, F.; Peru, S.; Pillet, N.; Robin, C. [CEA, DAM, DIF, Arpajon (France)

    2015-12-15

    A microscopic nuclear reaction model is applied to neutron elastic and direct inelastic scatterings, and pre-equilibrium reaction. The JLM folding model is used with nuclear structure information calculated within the quasi-particle random phase approximation implemented with the Gogny D1S interaction. The folding model for direct inelastic scattering is extended to include rearrangement corrections stemming from both isoscalar and isovector density variations occurring during a transition. The quality of the predicted (n,n), (n,n{sup '}), (n,xn) and (n,n{sup '}γ) cross sections, as well as the generality of the present microscopic approach, shows that it is a powerful tool that can help improving nuclear reactions data quality. Short- and long-term perspectives are drawn to extend the present approach to more systems, to include missing reactions mechanisms, and to consistently treat both structure and reaction problems. (orig.)

  13. Random Matrices and Chaos in Nuclear Physics: Nuclear Reactions

    CERN Document Server

    Mitchell, G E; Weidenmueller, H A

    2010-01-01

    The application of random-matrix theory (RMT) to compound-nucleus (CN) reactions is reviewed. An introduction into the basic concepts of nuclear scattering theory is followed by a survey of phenomenological approaches to CN scattering. The implementation of a random-matrix approach into scattering theory leads to a statistical theory of CN reactions. Since RMT applies generically to chaotic quantum systems, that theory is, at the same time, a generic theory of quantum chaotic scattering. It uses a minimum of input parameters (average S-matrix and mean level spacing of the CN). Predictions of the theory are derived with the help of field-theoretical methods adapted from condensed-matter physics and compared with those of phenomenological approaches. Thorough tests of the theory are reviewed, as are applications in nuclear physics, with special attention given to violation of symmetries (isospin, parity) and time-reversal invariance.

  14. Towards Quantum Transport for Central Nuclear Reactions

    CERN Document Server

    Danielewicz, Pawel; Barker, Brent

    2016-01-01

    Nonequilibrium Green's functions represent a promising tool for describing central nuclear reactions. Even at the single-particle level, though, the Green's functions contain more information that computers may handle in the foreseeable future. In this study, we explore slab collisions in one dimension, first in the mean field approximation and demonstrate that only function elements close to the diagonal in arguments are relevant, in practice, for the reaction calculations. This bodes well for the application of the Green's functions to the reactions. Moreover we demonstrate that an initial state for a reaction calculation may be generated through adiabatic transformation of interactions. Finally, we report on our progress in incorporating correlations into the dynamic calculations.

  15. New methods in nuclear reaction theory

    Energy Technology Data Exchange (ETDEWEB)

    Redish, E. F.

    1979-01-01

    Standard nuclear reaction methods are limited to treating problems that generalize two-body scattering. These are problems with only one continuous (vector) degree of freedom (CDOF). The difficulty in extending these methods to cases with two or more CDOFs is not just the additional numerical complexity: the mathematical problem is usually not well-posed. It is hard to guarantee that the proper boundary conditions (BCs) are satisfied. Since this is not generally known, the discussion is begun by considering the physics of this problem in the context of coupled-channel calculations. In practice, the difficulties are usually swept under the rug by the use of a highly developed phenomenology (or worse, by the failure to test a calculation for convergence). This approach limits the kind of reactions that can be handled to ones occurring on the surface of where a second CDOF can be treated perturbatively. In the past twenty years, the work of Faddeev, the quantum three-body problem has been solved. Many techniques (and codes) are now available for solving problems with two CDOFs. A method for using these techniques in the nuclear N-body problem is presented. A set of well-posed (connected kernal) equations for physical scattering operators is taken. Then it is shown how approximation schemes can be developed for a wide range of reaction mechanisms. The resulting general framework for a reaction theory can be applied to a number of nuclear problems. One result is a rigorous treatment of multistep transfer reactions with the possibility of systematically generating corrections. The application of the method to resonance reactions and knock-out is discussed. 12 figures.

  16. A model for particle production in nuclear reactions at intermediate energies: application to C-C collisions at 95 MeV/nucleon

    CERN Document Server

    Dudouet, Jérémie

    2016-01-01

    A model describing nuclear collisions at intermediate energies is presented and the results are compared with recently measured double differential cross sections in C-C reactions at 95 MeV/nucleon. Results show the key role played by geometrical effects and the memory of the entrance channel, in particular the momentum distributions of the two incoming nuclei. Special attention is paid to the description of processes occurring at mid-rapidity. To this end, a random particle production mechanism by means of a coalescence process in velocity space is considered in the overlap region of the two interacting nuclei.

  17. Neutrino-induced Reactions and Neutrino Scattering with Nuclear Targets

    Science.gov (United States)

    Cheoun, Myung-Ki; Ha, Eunja; Yang, Ghil-Seok; Kim, Kyungsik; Kajino, T.

    2016-02-01

    We reviewed present status regarding experimental data and theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation for quasielastic region are presented for MiniBooNE data. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data. Finally, we discussed that one step-process in the reaction is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis.

  18. Neutrino-induced Reactions and Neutrino Scattering with Nuclear Targets

    Directory of Open Access Journals (Sweden)

    Cheoun Myung-Ki

    2016-01-01

    Full Text Available We reviewed present status regarding experimental data and theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation for quasielastic region are presented for MiniBooNE data. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data. Finally, we discussed that one step-process in the reaction is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis.

  19. Direct nuclear reaction experiments for stellar nucleosynthesis

    Science.gov (United States)

    Cherubini, S.

    2017-09-01

    During the last two decades indirect methods where proposed and used in many experiments in order to measure nuclear cross sections between charged particles at stellar energies. These are among the lowest to be measured in nuclear physics. One of these methods, the Trojan Horse method, is based on the Quasi-Free reaction mechanism and has proved to be particularly flexible and reliable. It allowed for the measurement of the cross sections of various reactions of astrophysical interest using stable beams. The use and reliability of indirect methods become even more important when reactions induced by Radioactive Ion Beams are considered, given the much lower intensity generally available for these beams. The first Trojan Horse measurement of a process involving the use of a Radioactive Ion Beam dealt with the ^{18} F(p, α ^{15} O process in Nova conditions. To obtain pieces of information on this process, in particular about its cross section at Nova energies, the Trojan Horse method was applied to the ^{18} F(d, α ^{15} O)n three body reaction. In order to establish the reliability of the Trojan Horse method approach, the Treiman-Yang criterion is an important test and it will be addressed briefly in this paper.

  20. Probing anharmonic properties of nuclear surface vibration by heavy-ion fusion reactions

    CERN Document Server

    Takigawa, N; Kuyucak, S

    1997-01-01

    Describing fusion reactions between ^{16}O and ^{154}Dy and, between ^{16}O and ^{144}Sm by the $sd-$ and $sdf-$ interacting boson model, we show that heavy-ion fusion reactions are strongly affected by anharmonic properties of nuclear surface vibrations and nuclear shape, and thus provide a powerful method to study details of nuclear structure and dynamics.

  1. Coulomb and nuclear effects in breakup and reaction cross sections

    Science.gov (United States)

    Descouvemont, P.; Canto, L. F.; Hussein, M. S.

    2017-01-01

    We use a three-body continuum discretized coupled channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li+208Pb . For breakup, we investigate various aspects, such as the role of the α +t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest a third method which could be efficiently used to address convergence problems at large angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is dominant above the Coulomb barrier. We also draw attention to different definitions of the reaction cross section which exist in the literature and which may induce small, but significant, differences in the numerical values.

  2. Uncertainty study of nuclear model parameters for the n+ ^{56}Fe reactions in the fast neutron region below 20 MeV

    CERN Document Server

    Duan, Junfeng; Sjöstrand, Henrik; Alhassan, Erwin; Gustavsson, Cecilia; Österlund, Michael; Koning, Arjan; Rochman, Dimitri

    2013-01-01

    In this work, we study the uncertainty of nuclear model parameters for neutron induced ^{56}Fe reactions in fast neutron region by using the Total Monte Carlo method. We perform a large number of TALYS runs and compare the calculated results with the experimental data of the cross sections to obtain the uncertainties of the model parameters. Based on the derived uncertainties another 1000 TALYS runs have been performed to create random cross section files. For comparison with the experimental data we calculate a weighted \\chi^2 value for each random file as well as the ENDF/B-VII.1, JEFF3.1, JENDL4.0 and CENDL3.1 data libraries. Furthermore, we investigate the optical model parameters correlation obtained by way of this procedure.

  3. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    Science.gov (United States)

    Skobelev, N. K.

    2016-07-01

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable (6Li) and radioactive (6He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and 3He beams of the U-120M cyclotron at the Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei (6Li and 3He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.

  4. BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics

    Science.gov (United States)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-10-01

    Nuclear reaction rates are quantities of fundamental importance in astrophysics. Substantial efforts have been devoted in the last decades to measuring or calculating them. This paper presents a detailed description of the Brussels nuclear reaction rate library BRUSLIB and of the nuclear network generator NETGEN. BRUSLIB is made of two parts. The first one contains the 1999 NACRE compilation based on experimental data for 86 reactions with (mainly) stable targets up to Si. BRUSLIB provides an electronic link to the published, as well as to a large body of unpublished, NACRE data containing adopted rates, as well as lower and upper limits. The second part of BRUSLIB concerns nuclear reaction rate predictions to complement the experimentally-based rates. An electronic access is provided to tables of rates calculated within a statistical Hauser-Feshbach approximation, which limits the reliability of the rates to reactions producing compound nuclei with a high enough level density. These calculations make use of global and coherent microscopic nuclear models for the quantities entering the rate calculations. The use of such models makes the BRUSLIB rate library unique. A description of the Nuclear Network Generator NETGEN that complements the BRUSLIB package is also presented. NETGEN is a tool to generate nuclear reaction rates for temperature grids specified by the user. The information it provides can be used for a large variety of applications, including Big Bang nucleosynthesis, the energy generation and nucleosynthesis associated with the non-explosive and explosive hydrogen to silicon burning stages, or the synthesis of the heavy nuclides through the s-, α- and r-, rp- or p-processes.

  5. Nuclear effects in neutrino induced reactions

    CERN Document Server

    Vacas, M J Vicente; Geng, L S; Nieves, J; Valverde, M; Hirenzaki, S

    2008-01-01

    We discuss the relevance of nuclear medium effects in the analysis of some low and medium energy neutrino reactions of current interest. In particular, we study the Quasi-Elastic (QE) process, where RPA correlations and Final State Interactions (FSI) are shown to play a crucial role. We have also investigated the neutrino induced coherent pion production. We find a strong reduction of the cross section due to the distortion of the pion wave function and the modification of the production mechanisms in the nucleus. The sensitivity of the results to the axial $N\\Delta$ coupling $C_5^A(0)$ has been also investigated.

  6. Modelling of the spallation reaction: analysis and testing of nuclear models; Simulation de la spallation: analyse et test des modeles nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Toccoli, C

    2000-04-03

    The spallation reaction is considered as a 2-step process. First a very quick stage (10{sup -22}, 10{sup -29} s) which corresponds to the individual interaction between the incident projectile and nucleons, this interaction is followed by a series of nucleon-nucleon collisions (intranuclear cascade) during which fast particles are emitted, the nucleus is left in a strongly excited level. Secondly a slower stage (10{sup -18}, 10{sup -19} s) during which the nucleus is expected to de-excite completely. This de-excitation is performed by evaporation of light particles (n, p, d, t, {sup 3}He, {sup 4}He) or/and fission or/and fragmentation. The HETC code has been designed to simulate spallation reactions, this simulation is based on the 2-steps process and on several models of intranuclear cascades (Bertini model, Cugnon model, Helder Duarte model), the evaporation model relies on the statistical theory of Weiskopf-Ewing. The purpose of this work is to evaluate the ability of the HETC code to predict experimental results. A methodology about the comparison of relevant experimental data with results of calculation is presented and a preliminary estimation of the systematic error of the HETC code is proposed. The main problem of cascade models originates in the difficulty of simulating inelastic nucleon-nucleon collisions, the emission of pions is over-estimated and corresponding differential spectra are badly reproduced. The inaccuracy of cascade models has a great impact to determine the excited level of the nucleus at the end of the first step and indirectly on the distribution of final residual nuclei. The test of the evaporation model has shown that the emission of high energy light particles is under-estimated. (A.C.)

  7. Forging the link between nuclear reactions and nuclear structure.

    Science.gov (United States)

    Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J

    2014-04-25

    A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64  MeV/A.

  8. Determination of the nucleon-nucleon interaction in the ImQMD model by nuclear reaction at the Fermi energy region

    CERN Document Server

    Li, Cheng; Qin, Yujiao; Li, Jingjing; Wang, Ning

    2013-01-01

    The nucleon-nucleon interaction is investigated by using the ImQMD model with the three sets of parameters IQ1, IQ2 and IQ3 in which the corresponding incompressibility coefficients of nuclear matter are different. The charge distribution of fragments for various reaction systems are calculated at different incident energies. The parameters strongly affect the charge distribution below the threshold energy of nuclear multifragmentation. The fragment multiplicity spectrum for $^{238}$U+$^{197}$Au at 15 AMeV and the charge distribution for $^{129}$Xe+$^{120}$Sn at 32 and 45 AMeV, and $^{197}$Au+$^{197}$Au at 35 AMeV are reproduced by the ImQMD model with the set of parameter IQ3. It is concluded that charge distribution of the fragments and the fragment multiplicity spectrum are good observables for studying N-N interaction, the Fermi energy region is a sensitive energy region to explore the N-N interaction, and IQ3 is a suitable set of parameters for the ImQMD model.

  9. Nuclear reaction rates and opacity in massive star evolution calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bahena, D [Astronomical Institute of the Academy of Sciences, BocnI II 1401, 14131 Praha 4 (Czech Republic); Klapp, J [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carr. Mexico-Toluca, 52750 Edo. de Mexico (Mexico); Dehnen, H, E-mail: jaime.klapp@inin.gob.m [Universitaet Konstanz, Fachbereich Physik, Fach M568, D-78457 Konstanz (Germany)

    2010-07-01

    Nuclear reaction rates and opacity are important parameters in stellar evolution. The input physics in a stellar evolution code determines the main theoretical characteristics of the stellar structure, evolution and nucleosynthesis of a star. For different input physics, in this work we calculate stellar evolution models of very massive first stars during the hydrogen and helium burning phases. We have considered 100 and 200M{sub s}un galactic and pregalactic stars with metallicity Z = 10{sup -6} and 10{sup 9}, respectively. The results show important differences from old to new formulations for the opacity and nuclear reaction rates, in particular the evolutionary tracks are significantly affected, that indicates the importance of using up to date and reliable input physics. The triple alpha reaction activates sooner for pregalactic than for galactic stars.

  10. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  11. Thermonuclear Reaction Rate Parameterization for Nuclear Astrophysics

    Science.gov (United States)

    Sharp, Jacob; Kozub, Raymond L.; Smith, Michael S.; Scott, Jason; Lingerfelt, Eric

    2004-10-01

    The knowledge of thermonuclear reaction rates is vital to simulate novae, supernovae, X-ray bursts, and other astrophysical events. To facilitate dissemination of this knowledge, a set of tools has been created for managing reaction rates, located at www.nucastrodata.org. One tool is a rate parameterizer, which provides a parameterization for nuclear reaction rate vs. temperature values in the most widely used functional form. Currently, the parameterizer uses the Levenberg-Marquardt method (LMM), which requires an initial estimate of the best-fit parameters. The initial estimate is currently provided randomly from a preselected pool. To improve the quality of fits, a new, active method of selecting parameters has been developed. The parameters of each set in the pool are altered for a few iterations to replicate the input data as closely as possible. Then, the set which most nearly matches the input data (based on chi squared) is used in the LMM as the initial estimate for the final fitting procedure. A description of the new, active algorithm and its performance will be presented. Supported by the U. S. Department of Energy.

  12. Particle production in antiproton induced nuclear reactions

    CERN Document Server

    Feng, Zhao-Qing

    2014-01-01

    The quantum molecular dynamics model has been improved to investigate the reaction dynamics induced by antiprotons. The reaction channels of elastic scattering, annihilation, charge exchange and inelastic collisions have been included in the model. Dynamics on particle production, in particular pions, kaons, antikaons and hyperons, is investigated in collisions of $\\overline{p}$ on $^{12}$C, $^{20}$Ne, $^{40}$Ca, $^{112}$Sn, $^{181}$Ta, $^{197}$Au and $^{238}$U from a low to high incident momentum. The rapidity and momentum distributions of $\\pi^{+}$ and protons from the LEAR measurements can be well reproduced. The impacts of system size and incident momentum on particle emissions are investigated from the inclusive spectra, transverse momentum and rapidity distributions. It is found that the annihilations of $\\overline{p}$ on nucleons are of importance on the particle production. Hyperons are mainly produced via meson induced reactions on nucleons and strangeness exchange collisions when the incident moment...

  13. Towards Nuclear Reactions from Lattice QCD

    Science.gov (United States)

    Briceno, Raul

    2012-10-01

    In this talk I will motivate the evaluation of nuclear reactions cross sections from Lattice Quantum Chromodynamics (LQCD) and discuss challenges associated with such calculations. In particular, I will explore the connection between the energy spectrum of a three-body system in a finite volume and infinite volume scattering matrix elements using an effective field theoretical approach. The implication of this formalism for studying systems composed of a particle and a bound-state below the bound-state break- up, as well as a trimer state will be discussed. I will show that one in fact recovers a Luscher-like quantization condition for sufficiently low-energy up to exponential corrections in the volume due to the size of the two-particle bound-state. I will briefly discuss the similarities of the three-body problem and that of two- body coupled-channels systems and will comment on challenges in applying the formalism above the inelastic threshold.

  14. Nuclear reactions in Monte Carlo codes.

    Science.gov (United States)

    Ferrari, A; Sala, P R

    2002-01-01

    The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references.

  15. Evaluation of nuclear reaction cross section of some isotopes of ...

    African Journals Online (AJOL)

    Evaluation of nuclear reaction cross section of some isotopes of plutonium at energy range ... Nigerian Journal of Chemical Research ... Their choice is as a result of their importance in the modern day nuclear reactor and the energy range 10 ...

  16. Theoretical descriptions of compound-nuclear reactions: open problems & challenges

    CERN Document Server

    Carlson, Brett V; Hussein, Mahir S

    2014-01-01

    Compound-nuclear processes play an important role for nuclear physics applications and are crucial for our understanding of the nuclear many-body problem. Despite intensive interest in this area, some of the available theoretical developments have not yet been fully tested and implemented. We revisit the general theory of compound-nuclear reactions, discuss descriptions of pre-equilibrium reactions, and consider extensions that are needed in order to get cross section information from indirect measurements.

  17. Mean-field instabilities and cluster formation in nuclear reactions

    CERN Document Server

    Colonna, M; Baran, V

    2016-01-01

    We review recent results on intermediate mass cluster production in heavy ion collisions at Fermi energy and in spallation reactions. Our studies are based on modern transport theories, employing effective interactions for the nuclear mean-field and incorporating two-body correlations and fluctuations. Namely we will consider the Stochastic Mean Field (SMF) approach and the recently developed Boltzmann-Langevin One Body (BLOB) model. We focus on cluster production emerging from the possible occurrence of low-density mean-field instabilities in heavy ion reactions. Within such a framework, the respective role of one and two-body effects, in the two models considered, will be carefully analysed. We will discuss, in particular, fragment production in central and semi-peripheral heavy ion collisions, which is the object of many recent experimental investigations. Moreover, in the context of spallation reactions, we will show how thermal expansion may trigger the development of mean-field instabilities, leading to...

  18. The US nuclear reaction data network. Summary of the first meeting, March 13 & 14 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclear Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN.

  19. Modelling the nuclear parton distributions

    CERN Document Server

    Kulagin, S A

    2016-01-01

    We review a semi-microscopic model of nuclear parton distributions, which takes into account a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents and off-shell corrections to bound nucleon distributions as well as nuclear shadowing effect. We also discuss applications of the model to the lepton-nuclear deep-inelastic scattering, Drell-Yan process and neutrino total cross sections.

  20. Nuclear-Pumped Lasers. [efficient conversion of energy liberated in nuclear reactions to coherent radiation

    Science.gov (United States)

    1979-01-01

    The state of the art in nuclear pumped lasers is reviewed. Nuclear pumped laser modeling, nuclear volume and foil excitation of laser plasmas, proton beam simulations, nuclear flashlamp excitation, and reactor laser systems studies are covered.

  1. Coulomb and nuclear effects in breakup and reaction cross sections

    CERN Document Server

    Descouvemont, Pierre; Hussein, Mahir S

    2016-01-01

    We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the 'Coulomb' and 'nuclear' breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest...

  2. Unified ab initio approaches to nuclear structure and reactions

    CERN Document Server

    Navratil, Petr; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-01-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in {\\em ab initio} nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six...

  3. Microscopic calculations for solar nuclear reactions

    CERN Document Server

    Csoto, A; Csoto, Attila; Langanke, Karlheinz

    2001-01-01

    We have studied the 4He(3He,gamma)7Be, 3He(3He,2p)4He, and 7Be(p,gamma)8B reactions of the solar p-p chain, using microscopic cluster models. Among other results, we showed that the 6Li+p channel has a nontrivial effect on the 7Be-producing reaction, that the existence of a resonance in 6Be close to the 3He+3He threshold is rather unlikely, and that the correlations between some properties of 7Be/8B and the low-energy cross section of 7Be(p,gamma)8B might help one to constrain the value of the S_17(0) astrophysical S-factor.

  4. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    Science.gov (United States)

    Hirdt, J. A.; Brown, D. A.

    2016-01-01

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  5. Effects of Neutron Skin Thickness in Peripheral Nuclear Reactions

    Institute of Scientific and Technical Information of China (English)

    FANG De-Qing; MA Yu-Gang; CAI Xiang-Zhou; TIAN Wen-Dong; WANG Hong-Wei

    2011-01-01

    Effects of neutron skin thickness in peripheral nuclear collisions are investigated using the statistical abrasion ablation (SAA) model. The reaction cross section, neutron (proton) removal cross section, one-neutron (proton) removal cross section as well as their ratios for nuclei with different neutron skin thickness are studied. It is demonstrated that there are good linear correlations between these observables and the neutron skin thickness for neutron-rich nuclei. The ratio between the (one-)neutron and proton removal cross section is found to be the most sensitive observable of neutron skin thickness. Analysis shows that the relative increase of this ratio could be used to determine the neutron skin size in neutron-rich nuclei.%Effects of neutron skin thickness in peripheral nuclear collisions are investigated using the statistical abrasion ablation (SAA ) model.The reaction cross section,neutron (proton) removal cross section,one-neutron (proton) removal cross section as well as their ratios for nuclei with different neutron skin thickness are studied.It is demonstrated that there are good linear correlations between these observables and the neutron skin thickness for neutron-rich nuclei.The ratio between the (one-)neutron and proton removal cross section is found to be the most sensitive observable of neutron skin thickness.Analysis shows that the relative increase of this ratio could be used to determine the neutron skin size in neutron-rich nuclei.Determining the size and shape of a nucleus is one of the most important subjects since the discovery of atomic nuclei.The rms radii of the neutron (rn) and proton (rp) density distributions are among the most prominent observables for this purpose.Studies for stable nuclei have shown that the nuclear radii are proportional to A1/3,with A being the nuclear mass number.Meanwhile,the density distributions of neutrons and protons in stable nuclei are very similar.

  6. Key nuclear reaction experiments discoveries and consequences

    CERN Document Server

    Paetz gen. Schieck, Hans

    2015-01-01

    In this book the author charts the developments in nuclear physics since its inception around a century ago by reviewing the key experiments that helped drive and shape our understanding of the field, especially in the context of the wider developments in physics in the early 20th Century. In addition to providing a path through the field and the crucial events it looks at how these experiments not only answered key questions at the time but presented new challenges to the contemporary perception of the nuclear and sub-atomic worlds and how they helped develop our present understanding of nuclear physics.

  7. Direct Reactions for Nuclear Structure and Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Katherine Louise [Univ. of Tennessee, Knoxville, TN (United States). Experimental Low-Energy Nuclear Physics Group

    2014-12-18

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106Sn at the NSCL, and on 131Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  8. A Classical Approach in Simple Nuclear Fusion Reaction 1H2 + 1H3 using Two-Dimension Granular Molecular Dynamics Model

    CERN Document Server

    Viridi, Sparisoma; Waris, Abdul; Perkasa, Yudha Satya

    2011-01-01

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between 1H2 and 1H3 is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary 2He4 nucleus.

  9. Electromagnetic studies of nuclear structure and reactions

    Science.gov (United States)

    Hersman, F. W.; Dawson, J. F.; Heisenberg, J. H.; Calarco, J. R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  10. Research on Nuclear Reaction Network Equation for Fission Product Nuclides

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Nuclear Reaction Network Equation calculation system for fission product nuclides was developed. With the system, the number of the fission product nuclides at different time can be calculated in the different neutron field intensity and neutron energy spectra

  11. Nuclear reaction analysis (NRA) for trace element detection

    Energy Technology Data Exchange (ETDEWEB)

    Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Noll, K. [Bern Univ. (Switzerland)

    1997-09-01

    Ion beam induced nuclear reactions can be used to analyse trace element concentrations in materials. The method is especially suited for the detection of light contaminants in heavy matrices. (author) 3 figs., 2 refs.

  12. QGSM development for spallation reactions modeling

    Directory of Open Access Journals (Sweden)

    Gudima K.K.

    2012-12-01

    Full Text Available The growing interest in spallation neutron sources, accelerator-driven systems, R&D of rare isotope beams, and development of external beam radiation therapy necessitated the improvement of nuclear reaction models for both stand-alone codes for the analysis of nuclear reactions and event generators within the Monte Carlo transport systems for calculations of interactions of high-energy particles with matter in a wide range of energy and in arbitrary 3D geometry of multicomponent targets. The exclusive approach to the description of nuclear reactions is the most effective for detailed calculation of inelastic interactions with atomic nuclei. It provides the correct description of particle production, single- and double-differential spectra, recoil, and fission product yields. This approach has been realized in the Quark Gluon String Model (QGSM for nuclear reactions induced by photons, hadrons, and high energy heavy ions. In this article, improved versions of the QGSM model and a corresponding code have been developed tested and bench marked against experimental data for neutron production in spallation reactions on thin and thick targets in the energy range from a few MeV to several GeV/nucleon.

  13. QGSM development for spallation reactions modeling

    Science.gov (United States)

    Baznat, M. I.; Chigrinov, S. E.; Gudima, K. K.

    2012-12-01

    The growing interest in spallation neutron sources, accelerator-driven systems, R&D of rare isotope beams, and development of external beam radiation therapy necessitated the improvement of nuclear reaction models for both stand-alone codes for the analysis of nuclear reactions and event generators within the Monte Carlo transport systems for calculations of interactions of high-energy particles with matter in a wide range of energy and in arbitrary 3D geometry of multicomponent targets. The exclusive approach to the description of nuclear reactions is the most effective for detailed calculation of inelastic interactions with atomic nuclei. It provides the correct description of particle production, single- and double-differential spectra, recoil, and fission product yields. This approach has been realized in the Quark Gluon String Model (QGSM) for nuclear reactions induced by photons, hadrons, and high energy heavy ions. In this article, improved versions of the QGSM model and a corresponding code have been developed tested and bench marked against experimental data for neutron production in spallation reactions on thin and thick targets in the energy range from a few MeV to several GeV/nucleon.

  14. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    Science.gov (United States)

    Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.

    2009-12-01

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains

  15. Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas

    Science.gov (United States)

    Knapp, Patrick

    2014-10-01

    The goal of Magneto-Inertial Fusion (MIF) is to relax the extreme pressure requirements of inertial confinement fusion by magnetizing the fuel. Understanding the level of magnetization at stagnation is critical for charting the performance of any MIF concept. We show here that the secondary nuclear reactions in magnetized deuterium plasma can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The secondary neutron yields and spectra are examined and shown to be extremely sensitive to BR. In particular, embedded magnetic fields are shown to affect profoundly the isotropy of the secondary neutron spectra. Detailed modeling of these spectra along with the ratio of overall secondary to primary neutron yields is used to form the basis of a diagnostic technique used to infer BR at stagnation. Effects of gradients in density, temperature and magnetic field strength are examined, as well as other possible non-uniform fuel configurations. Computational results employing a fully kinetic treatment of charged reaction product transport and Monte Carlo treatment of secondary reactions are compared to results from recent experiments at Sandia National Laboratories' Z machine testing the MAGnetized Liner Inertial Fusion (MagLIF) concept. The technique reveals that the charged reaction products were highly magnetized in these experiments. Implications for eventual ignition-relevant experiments with deuterium-tritium fuel are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  16. Nuclear Checker Board Model

    Science.gov (United States)

    Lach, Theodore

    2016-03-01

    The NCB Model 1 , 2 , 3 suggests that the nucleus is a relativistic 2D structure. In 1996 at Argonne National Lab the Checker Board Model was first presented. In that poster presentation it was explained that the relativistic constituent quarks orbit inside the proton at about 85% c and about 99% c inside the neutron. As a way to test the model it was found that the de Broglie wavelength of the up quark matched the calculated circumference of the proton (radius = 0.5194 fm) analogous to the Bohr model of the electron in the H atom. 20 years later it is now accepted that the quarks are moving at relativistic speeds and the orbital motion of the quarks contribute the major part of the spin of the proton. If one considers the motion of the relativistic quarks inside the nucleus (take for example Ca 40) about its center of mass, one realizes that these relativistic quarks are confined to shells inside the nucleus (the He shell {the inner 4 nucleons}, the Oxygen shell ...). So the CBM eliminates the need for an illusionary strong nuclear force in favor of a force based upon an E/M force in perfect spin synchronization in a 2D plane. So the CBM is not at odds with the shell model but instead explains why the nucleus has a shell structure and correctly predicts the shell closures.

  17. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  18. On microscopic theory of radiative nuclear reaction characteristics

    CERN Document Server

    Kamerdzhiev, Sergei; Avdeenkov, Alexander; Goriely, Stephane

    2015-01-01

    A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma-rays is given. First of all, we discuss the impact of phonon coupling (PC) on the photon strength function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the stan- dard HFB+QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation, or simply QTBA, is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even-even semi-magic Sn and Ni isotopes as well as for double-magic 132Sn and 208Pb using the reaction codes EMPIRE and TALYS with several nuclear level density (NLD) models: 1) the neutron capture cross sections, 2) the corresponding neutron capture...

  19. Opportunities in nuclear structure and reactions

    Science.gov (United States)

    Nunes, Filomena

    2015-10-01

    The last decade has seen important advances in the area of low energy nuclear physics. New measurements have provided crucial insight into the behavior of nuclei at the limits of stability, including the mapping of the neutron dripline up to Oxygen, investigations of unbound nuclear states, and the discovery of new super-heavy elements. In parallel we have seen a revolution in low-energy nuclear theory, moving toward quantified predictability, rooted in the underlying inter-nucleon forces. But the next decade offers even more opportunities with a new generation factory of rare isotopes, and the anticipated developments in high performance computing. The Facility for Rare Isotope Beams coupled with new state-of-the-art detectors will allow us to access a large fraction of the necessary information for the r-process responsible for making at least half of the heavy elements in our universe. FRIB will provide the needed intensities to study global nuclear properties, shell structure, and collective phenomena far from stability. Key measurements are anticipated, at various facilities, which will inform symmetry tests with rare isotopes. We expect to put strict constraints on the equation of state. These and many other opportunities will be highlighted in this overview talk.

  20. Isospin dynamics on neck fragmentation in isotopic nuclear reactions

    CERN Document Server

    Feng, Zhao-Qing

    2016-01-01

    The neck dynamics in Fermi-energy heavy-ion collisions, to probe the nuclear symmetry energy in the domain of sub-saturation densities, is investigated within an isospin dependent transport model. The single and double ratios of neutron/proton from free nucleons and light clusters (complex particles) in the isotopic reactions are analyzed systematically. Isospin effects of particles produced from the neck fragmentations are explored, which are constrained within the midrapidities ($|y/y_{proj}|<$0.3) and azimuthal angles (70$^{o}\\sim$110$^{o}$, 250$^{o}\\sim$290$^{o}$) in semiperipheral nuclear collisions. It is found that the ratios of the energetic isospin particles strongly depend on the stiffness of nuclear symmetry energy and the effects increase with softening the symmetry energy, which would be a nice probe for extracting the symmetry energy below the normal density in experimentally. A flat structure appears at the tail spectra from the double ratio distributions. The neutron to proton ratio of ligh...

  1. Electrodisintegration of the deuteron in nuclear reactions

    Science.gov (United States)

    Liu, L. C.; Thaler, R. M.

    1990-06-01

    We estimate that the electrodisintegration of the deuteron contributes at least 25% of the total reaction cross section when the deuteron interacts with a nucleus of charge Z>~40 at a kinetic energy lower than 50 MeV. The neglect of this breakup channel in deuteron-nucleus optical potentials might lead to unrealistic predictions for the mass and energy dependence of the total deuteron reaction cross sections.

  2. Electrodisintegration of the deuteron in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.C. (Theoretical Division, T-2, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (USA)); Thaler, R.M. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (USA) Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106 (USA))

    1990-06-01

    We estimate that the electrodisintegration of the deuteron contributes at least 25% of the total reaction cross section when the deuteron interacts with a nucleus of charge {ital Z}{approx gt}40 at a kinetic energy lower than 50 MeV. The neglect of this breakup channel in deuteron-nucleus optical potentials might lead to unrealistic predictions for the mass and energy dependence of the total deuteron reaction cross sections.

  3. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    Energy Technology Data Exchange (ETDEWEB)

    Boeltzig, A. [Gran Sasso Science Institute, L' Aquila (Italy); Bruno, C.G.; Davinson, T. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Cavanna, F.; Ferraro, F. [Dipartimento di Fisica, Universita di Genova (Italy); INFN, Genova (Italy); Cristallo, S. [Osservatorio Astronomico di Collurania, INAF, Teramo (Italy); INFN, Napoli (Italy); Depalo, R. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN, Padova (Italy); DeBoer, R.J.; Wiescher, M. [University of Notre Dame, Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, Notre Dame, Indiana (United States); Di Leva, A.; Imbriani, G. [Dipartimento di Fisica, Universita di Napoli Federico II, Napoli (Italy); INFN, Napoli (Italy); Marigo, P. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Terrasi, F. [Dipartimento di Matematica e Fisica Seconda Universita di Napoli, Caserta (Italy); INFN, Napoli (Italy)

    2016-04-15

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions. (orig.)

  4. Microscopic effective reaction theory for direct nuclear reactions

    Directory of Open Access Journals (Sweden)

    Ogata Kazuyuki

    2016-01-01

    Full Text Available Some recent activities with the microscopic effective reaction theory (MERT on elastic, inelastic, breakup, transfer, and knockout processes are reviewed briefly. As a possible alternative to MERT, a description of elastic and inelastic scattering with the continuum particle-vibration coupling (cPVC method is also discussed.

  5. Physical Mechanism of Nuclear Reactions at Low Energies

    CERN Document Server

    Oleinik, V P; Arepjev, Yu.D

    2002-01-01

    The physical mechanism of nuclear reactions at low energies caused by spatial extension of electron is considered. Nuclear reactions of this type represent intra-electronic processes, more precisely, the processes occurring inside the area of basic localization of electron. Distinctive characteristics of these processes are defined by interaction of the own field produced by electrically charged matter of electron with free nuclei. Heavy nucleus, appearing inside the area of basic localization of electron, is inevitably deformed because of interaction of protons with the adjoining layers of electronic cloud, which may cause nuclear fission. If there occur "inside" electron two or greater number of light nuclei, an attractive force appears between the nuclei which may result in the fusion of nuclei. The intra-electronic mechanism of nuclear reactions is of a universal character. For its realization it is necessary to have merely a sufficiently intensive stream of free electrons, i.e. heavy electric current, an...

  6. Derivation of Energy Generated by Nuclear Fission-Fusion Reaction

    OpenAIRE

    Kayano, Hideo; Teshigawara, Makoto; Konashi, Kenji; Yamamoto, Takuya

    1994-01-01

    In the solids which contain fissionable elements and deuterium, it is expected that the energy generated by nuclear fission contributes to the promotion of the D-D nuclear fusion in the solids. When nuclear fission occurs by neutrons in the solid, the fissionable elements divide into two fission product nuclei having the energy of 100MeV, respectively. It is expected that the hige energy fission products promote rapidly nuclear fision reaction by knocking out the D atoms in the solids and by ...

  7. Opportunities for nuclear reaction studies at future facilities

    CERN Document Server

    Veselsky, Martin; Vujisicova, Nikoleta; Souliotis, Georgios A

    2016-01-01

    Opportunities for investigations of nuclear reactions at the future nuclear physics facilities such as radioactive ion beam facilities and high-power laser facilities are considered. Post-accelerated radioactive ion beams offer possibilities for study of the role of isospin asymmetry in the reaction mechanisms at various beam energies. Fission barrier heights of neutron-deficient nuclei can be directly determined at low energies. Post-accelerated radioactive ion beams, specifically at the future facilities such as HIE-ISOLDE, SPIRAL-2 or RAON-RISP can be also considered as a candidate for production of very neutron-rich nuclei via mechanism of multi-nucleon transfer. High-power laser facilities such as ELI-NP offer possibilities for nuclear reaction studies with beams of unprecedented properties. Specific cases such as ternary reactions or even production of super-heavy elements are considered.

  8. Databases and tools for nuclear astrophysics applications BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    CERN Document Server

    Xu, Yi; Jorissen, Alain; Chen, Guangling; Arnould, Marcel; 10.1051/0004-6361/201220537

    2012-01-01

    An update of a previous description of the BRUSLIB+NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-HFB model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8<=Z<=110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100000 Hauser-Feshbach n-, p-, a-, and gamma-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer react...

  9. Few-body models for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    P. Descouvemont

    2014-02-01

    Full Text Available We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the 2H(d, γ4He, 2H(d, p3H and 2H(d, n3He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  10. Few-body models for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0198 (Japan); Aoyama, S., E-mail: aoyama@cc.niigata-u.ac.jp [Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Arai, K., E-mail: arai@nagaoka-ct.ac.jp [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  11. Nuclear Reaction Uncertainties, Massive Gravitino Decays and the Cosmological Lithium Problem

    CERN Document Server

    Cyburt, Richard H; Fields, Brian D; Luo, Feng; Olive, Keith A; Spanos, Vassilis C

    2010-01-01

    We consider the effects of uncertainties in nuclear reaction rates on the cosmological constraints on the decays of unstable particles during or after Big-Bang nucleosynthesis (BBN). We identify the nuclear reactions due to non-thermal hadrons that are the most important in perturbing standard BBN, then quantify the uncertainties in these reactions and in the resulting light-element abundances. These results also indicate the key nuclear processes for which improved cross section data would allow different light-element abundances to be determined more accurately, thereby making possible more precise probes of BBN and evaluations of the cosmological constraints on unstable particles. Applying this analysis to models with unstable gravitinos decaying into neutralinos, we calculate the likelihood function for the light-element abundances measured currently, taking into account the current experimental errors in the determinations of the relevant nuclear reaction rates. We find a region of the gravitino mass and...

  12. Nuclear Checker Board Model

    Science.gov (United States)

    Lach, Theodore

    2017-01-01

    The Checkerboard model of the Nucleus has been in the public domain for over 20 years. Over those years it has been described by nuclear and particle physicists as; cute, ``the Bohr model of the nucleus'' and ``reminiscent of the Eightfold Way''. It has also been ridiculed as numerology, laughed at, and even worse. In 2000 the theory was taken to the next level by attempting to explain why the mass of the ``up'' and ``dn'' quarks were significantly heavier than the SM ``u'' and ``d'' quarks. This resulted in a paper published on arXiv.nucl-th/0008026 in 2000, predicting 5 generations of quarks, each quark and negative lepton particle related to each other by a simple geometric mean. The CBM predicts that the radii of the elementary particles are proportional to the cube root of their masses. This was realized Pythagorean musical intervals (octave, perfect 5th, perfect 4th plus two others). Therefore each generation can be explained by a simple right triangle and the height of the hypotenuse. Notice that the height of a right triangle breaks the hypotenuse into two line segments. The geometric mean of those two segments equals the length of the height of this characteristic triangle. Therefore the CBM theory now predicts that all the elementary particles mass are proportion to the cube of their radii. Therefore the mass density of all elementary particles (and perhaps black holes too) are a constant of nature.

  13. Impact of phonon coupling on the radiative nuclear reaction characteristics

    CERN Document Server

    Achakovskiy, Oleg; Kamerdzhiev, Sergei

    2015-01-01

    The pygmy dipole resonance and photon strength functions (PSF) in stable and unstable Ni and Sn isotopes are calculated within the microscopic self-consistent version of the extended theory of finite fermi systems in the quasiparticle time blocking approximation. The approach includes phonon coupling (PC) effects in addition to the standard QRPA approach. The Skyrme force SLy4 is used. A pygmy dipole resonance in 72Ni is predicted at the mean energy of 12.4 MeV exhausting 25.7% of the total energy-weighted sum rule. With our microscopic E1 PSFs in the EMPIRE 3.1 code, the following radiative nuclear reaction characteristics have been calculated for several stable and unstable even-even Sn and Ni isotopes: 1) neutron capture cross sections, 2) corresponding neutron capture gamma-spectra, 3) average radiative widths of neutron resonances. Here, three variants of the microscopic nuclear level density models have been used and a comparison with the phenomenological generalized superfluid model (GSM) has been perf...

  14. Impact of phonon coupling on the radiative nuclear reaction characteristics

    Directory of Open Access Journals (Sweden)

    Achakovskiy Oleg

    2016-01-01

    Full Text Available The pygmy dipole resonance and photon strength functions (PSF in stable and unstable Ni and Sn isotopes are calculated within the microscopic self-consistent version of the extended theory of finite Fermi systems in the quasiparticle time blocking approximation. The approach includes phonon coupling (PC effects in addition to the standard QRPA approach. The Skyrme force SLy4 is used. A pygmy dipole resonance in 72Ni is predicted at the mean energy of 12.4 MeV exhausting 25.7% of the total energy-weighted sum rule. With our microscopic E1 PSFs in the EMPIRE 3.1 code, the following radiative nuclear reaction characteristics have been calculated for several stable and unstable even-even Sn and Ni isotopes: 1 neutron capture cross sections, 2 corresponding neutron capture gamma-spectra, 3 average radiative widths of neutron resonances. Here, three variants of the microscopic nuclear level density models have been used and a comparison with the phenomenological generalized superfluid model has been performed. In all the considered properties, including the recent experimental data for PSF in Sn isotopes, the PC contributions turned out to be significant, as compared with the QRPA one, and necessary to explain the available experimental data.

  15. Stochastic Nuclear Reaction Theory: Breit-Wigner nuclear noise

    Energy Technology Data Exchange (ETDEWEB)

    de Saussure, G.; Perez, R.B.

    1988-01-01

    The purpose of this paper is the application of various statistical tests for the detection of the intermediate structure, which lies immersed in the Breit-Wigner ''noise'' arising from the superposition of many compound nucleus resonances. To this end, neutron capture cross sections are constructed by Monte-Carlo simulations of the compound nucleus, hence providing the ''noise'' component. In a second step intermediate structure is added to the Breit-Wigner noise. The performance of the statistical tests in detecting the intermediate structure is evaluated using mocked-up neutron cross sections as the statistical samples. Afterwards, the statistical tests are applied to actual nuclear cross section data. 10 refs., 1 fig., 2 tabs.

  16. Modeling nuclear processes by Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my [Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor (Malaysia)

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  17. Modeling nuclear processes by Simulink

    Science.gov (United States)

    Rashid, Nahrul Khair Alang Md

    2015-04-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  18. Global nuclear material control model

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, J.S.; Rutherford, D.A.

    1996-05-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material.

  19. Development of the Experimental Photo-Nuclear Reaction Database in Hokkaido University

    Science.gov (United States)

    Makinaga, A.

    2015-10-01

    Nuclear databases are important tools to apply nuclear phenomena to various fields of nuclear engineering. It is now recognized that the databases must be further developed for photo-nuclear reaction data for nuclear security, safety and nonproliferation applications. Hokkaido University Nuclear Reaction Data Centre (JCPRG) has contributed to the Experimental Nuclear Reaction Data Library (EXFOR) which is developed by the International Network of Nuclear Reaction Data Centres under coordination by IAEA. We report here on the recent compilation of the nuclear data files for the photonuclear reaction.

  20. EXFOR SYSTEMS MANUAL NUCLEAR REACTION DATA EXCHANGE FORMAT.

    Energy Technology Data Exchange (ETDEWEB)

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format.

  1. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report.

  2. Separable Multichannel Momentum Space Potentials for Nuclear Reactions

    Science.gov (United States)

    Hlophe, Linda; Elster, Charlotte

    2016-09-01

    Many nuclei are deformed and their properties can be described using a rotational model. This involves defining a deformed surface of the nucleus and constructing the nucleon-nucleus interaction as a function of distance to the surface. Such a potential has non-zero matrix elements between different nuclear rotational states which are characterized by the spin-parity Iπ, leading to channel couplings. For specific reaction calculations, it is advantageous to have separable representations of the interaction matrix elements available. We develop separable representations following a scheme suggested by Ernst, Shakin, and Thaler (EST). Since optical potentials are complex and energy-dependent, the multichannel EST scheme is generalized to complex, energy-dependent separable potentials. In the case of proton-nucleus interactions the EST scheme is further extended to include charged particles. The multichannel EST scheme is applied to nucleon scattering off 12C, where the first two excited states (Iπ =2+ ,4+) are taken into account. Research for this project was supported in part by the US Department of Energy, Office of Science of Nuclear Physics under Contract No. DE-FG02-93ER40756.

  3. Development of nuclear reaction data retrieval system on Meme media

    Energy Technology Data Exchange (ETDEWEB)

    Ohbayasi, Yosihide; Masui, Hiroshi [Meme Media Lab., Hokkaido Univ., Sapporo (Japan); Aoyama, Shigeyoshi [Information Processing Center, Kitami Inst. of Tech., Hokkaido (Japan); Kato, Kiyoshi [Graduate School of Science, Hokkaido Univ., Sapporo (Japan); Chiba, Masaki [Division of Social Information, Sapporo Gakuin Univ., Ebetsu, Hokkaido (Japan)

    2000-03-01

    A newly designed retrieval system of charged particle nuclear reaction data is developed on Meme media architecture. We designed the network-based (client-server) retrieval system. The server system is constructed on a UNIX workstation with a relational database, and the client system is constructed on Microsoft Windows PC using an IntelligentPad software package. The IntelligentPad is currently available as developing Meme media. We will develop the system to realize effective utilization of nuclear reaction data: I. 'Re-production, Re-edit, Re-use', II. 'Circulation, Coordination and Evolution', III. 'Knowledge discovery'. (author)

  4. Modeling the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  5. Uncertainties in Nuclear Proliferation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Min; Yim, Man-Sung; Park, Hyeon Seok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. Such systematic approaches have shown the possibility to provide warning for the international community to prevent nuclear proliferation activities. However, there are still large debates for the robustness of the actual effect of determinants and projection results. Some studies have shown that several factors can cause uncertainties in previous quantitative nuclear proliferation modeling works. This paper analyzes the uncertainties in the past approaches and suggests future works in the view of proliferation history, analysis methods, and variable selection. The research community still lacks the knowledge for the source of uncertainty in current models. Fundamental problems in modeling will remain even other advanced modeling method is developed. Before starting to develop fancy model based on the time dependent proliferation determinants' hypothesis, using graph theory, etc., it is important to analyze the uncertainty of current model to solve the fundamental problems of nuclear proliferation modeling. The uncertainty from different proliferation history coding is small. Serious problems are from limited analysis methods and correlation among the variables. Problems in regression analysis and survival analysis cause huge uncertainties when using the same dataset, which decreases the robustness of the result. Inaccurate variables for nuclear proliferation also increase the uncertainty. To overcome these problems, further quantitative research should focus on analyzing the knowledge suggested on the qualitative nuclear proliferation studies.

  6. Physics with post-accelerated beams at ISOLDE: nuclear reactions

    Science.gov (United States)

    Di Pietro, A.; Riisager, K.; Van Duppen, P.

    2017-04-01

    Nuclear-reaction studies have until now constituted a minor part of the physics program with post-accelerated beams at ISOLDE, mainly due to the maximum energy of REX-ISOLDE of around 3 MeV/u that limits reaction work to the mass region below A = 100. We give an overview of the current experimental status and of the physics results obtained so far. Finally, the improved conditions given by the HIE-ISOLDE upgrade are described.

  7. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  8. Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei

    Institute of Scientific and Technical Information of China (English)

    GUO Wen-Jun; JIANG Huan-Qing; LIU Jian-Ye; ZUO Wei; REN Zhong-Zhou; LEE Xi-Guo

    2003-01-01

    We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable. nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy. The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite different mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections induced by the halo nuclei due to the very weak binding and the very extended density distribution.

  9. Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei

    Institute of Scientific and Technical Information of China (English)

    GUOWen-Jun; JIANGHuan-Qing; LIUJian-Ye; ZUOWei; RENZhong-Zhou; LEEXi-Guo

    2003-01-01

    We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy.The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite digerent mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections, induced by the halo nuclei due to the very weak binding and the very extended density distribution.

  10. Databases and tools for nuclear astrophysics applications. BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    Science.gov (United States)

    Xu, Y.; Goriely, S.; Jorissen, A.; Chen, G. L.; Arnould, M.

    2013-01-01

    An update of a previous description of the BRUSLIB + NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-Hartree-Fock-Bogoliubov model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8 ≤ Z ≤ 110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100 000 Hauser-Feshbach neutron-, proton-, α-, and γ-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer reactions and 19 charged-particle radiative captures on stable targets with mass numbers A < 16. NACRE II features the inclusion of experimental data made available after the publication of NACRE in 1999 and up to 2011. In addition, the extrapolation of the available data to the very low energies of astrophysical relevance is improved through the systematic use of phenomenological potential models. Uncertainties in the rates are also evaluated on this basis. Finally, the latest release v10.0 of the web-based tool NETGEN is presented. In addition to the data already used in the previous NETGEN package, it contains in a fully documented form the new BRUSLIB and NACRE II data, as well as new experiment-based radiative neutron capture cross sections. The full new versions of BRUSLIB, NACRE II, and NETGEN are available electronically from the nuclear database at http://www.astro.ulb.ac.be/NuclearData. The nuclear material is presented in

  11. Nuclear Data and Nuclear Model Methods

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Developing nuclear data needs towards to sustainable development on fission reactor design and many nuclear applications out the field of fission reactor technology that are growing economicsignificance and that have substantial data requirements are introduced. International standard codes used in nuclear data evaluations and calculations are introduced and compared each other. Generally

  12. Towards consistent nuclear models and comprehensive nuclear data evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bouland, O [Los Alamos National Laboratory; Hale, G M [Los Alamos National Laboratory; Lynn, J E [Los Alamos National Laboratory; Talou, P [Los Alamos National Laboratory; Bernard, D [FRANCE; Litaize, O [FRANCE; Noguere, G [FRANCE; De Saint Jean, C [FRANCE; Serot, O [FRANCE

    2010-01-01

    The essence of this paper is to enlighten the consistency achieved nowadays in nuclear data and uncertainties assessments in terms of compound nucleus reaction theory from neutron separation energy to continuum. Making the continuity of theories used in resolved (R-matrix theory), unresolved resonance (average R-matrix theory) and continuum (optical model) rangcs by the generalization of the so-called SPRT method, consistent average parameters are extracted from observed measurements and associated covariances are therefore calculated over the whole energy range. This paper recalls, in particular, recent advances on fission cross section calculations and is willing to suggest some hints for future developments.

  13. A primer for electroweak induced low-energy nuclear reactions

    Indian Academy of Sciences (India)

    Y N Srivastava; A Widom; L Larsen

    2010-10-01

    Under special circumstances, electromagnetic and weak interactions can induce low-energy nuclear reactions to occur with observable rates for a variety of processes. A common element in all these applications is that the electromagnetic energy stored in many relatively slow-moving electrons can – under appropriate circumstances – be collectively transferred into fewer, much faster electrons with energies sufficient for the latter to combine with protons (or deuterons, if present) to produce neutrons via weak interactions. The produced neutrons can then initiate low-energy nuclear reactions through further nuclear transmutations. The aim of this paper is to extend and enlarge upon various examples analysed previously, present order of magnitude estimates for each and to illuminate a common unifying theme amongst all of them.

  14. Nuclear models on a lattice

    CERN Document Server

    De Soto, F; Carbonell, J; Leroy, J P; Pène, O; Roiesnel, C; Boucaud, Ph.

    2007-01-01

    We present the first results of a quantum field approach to nuclear models obtained by lattice techniques. Renormalization effects for fermion mass and coupling constant in case of scalar and pseudoscalar interaction lagrangian densities are discussed.

  15. Equilibration within a semiclassical off-shell transport approach 24.10.Cn; 24.10.-i; 25.70.-z; Many-body theory; Nuclear-reaction models and methods; Low and intermediate energy heavy-ion reactions

    CERN Document Server

    Cassing, W

    2000-01-01

    Equilibration times for nuclear matter configurations -- modelling intermediate and high energy nucleus-nucleus collisions -- are evaluated within the semiclassical off-shell transport approach developed recently. The transport equations are solved for a finite box in coordinate space employing periodic boundary conditions. The off-shell transport model is shown to give proper off-shell equilibrium distributions in the limit t-> infinity for the nucleon and DELTA-resonance spectral functions. We find that equilibration times within the off-shell approach are only slightly enhanced as compared to the on-shell limit for the momentum configurations considered.

  16. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Progress report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1992-12-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A {approx_equal} 182 region, structure of {sup 182}Hg and {sup 182}Au at high spin, a highly deformed band in {sup 136}Pm and the anomalous h{sub 11/2} proton crossing in the A{approximately}135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier {alpha} particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative {sup 209}Bi + {sup 136}Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4{pi} channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  17. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. [Dept. of Chemistry, Washington Univ. , St. Louis, Mo

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A [approx equal] 182 region, structure of [sup 182]Hg and [sup 182]Au at high spin, a highly deformed band in [sup 136]Pm and the anomalous h[sub 11/2] proton crossing in the A[approximately]135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier [alpha] particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative [sup 209]Bi + [sup 136]Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4[pi] channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  18. Exploratory study of nuclear reaction data utility framework of Japan charged particle reaction data group (JCPRG)

    Energy Technology Data Exchange (ETDEWEB)

    Masui, Hiroshi; Ohnishi, Akira; Kato, Kiyoshi [Hokkaido Univ., Graduate School of Science, Sapporo, Hokkaido (Japan); Ohbayasi, Yosihide [Hokkaido Univ., Meme Media Lab., Sapporo, Hokkaido (Japan); Aoyama, Shigeyoshi [Kitami Institute of Technology, Information Processing Center, Kitami, Hokkaido (Japan); Chiba, Masaki [Sapporo Gakuin Univ., Faculty of Social Information, Ebetsu, Hokkaido (Japan)

    2002-08-01

    Compilation, evaluation and dissemination are essential pieces of work for the nuclear data activities. We, Japan charged particle data group, have researched the utility framework for the nuclear reaction data on the basis of recent progress of computer and network technologies. These technologies will be not only for the data dissemination but for the compilation and evaluation assistance among the many corresponding researchers of all over the world. In this paper, current progress of our research and development is shown. (author)

  19. Sigma: Web Retrieval Interface for Nuclear Reaction Data

    Energy Technology Data Exchange (ETDEWEB)

    Pritychenko,B.; Sonzogni, A.A.

    2008-06-24

    The authors present Sigma, a Web-rich application which provides user-friendly access in processing and plotting of the evaluated and experimental nuclear reaction data stored in the ENDF-6 and EXFOR formats. The main interface includes browsing using a periodic table and a directory tree, basic and advanced search capabilities, interactive plots of cross sections, angular distributions and spectra, comparisons between evaluated and experimental data, computations between different cross section sets. Interactive energy-angle, neutron cross section uncertainties plots and visualization of covariance matrices are under development. Sigma is publicly available at the National Nuclear Data Center website at www.nndc.bnl.gov/sigma.

  20. Insights into nuclear reactions through fusion barrier distribution measurements

    CERN Document Server

    Hinde, D J; Morton, C R; Berriman, A C; Butt, R D; Newton, J O

    1999-01-01

    The study of nuclear fusion has been greatly enhanced following the realisation that an experimental fusion barrier distribution can be determined from precisely measured fusion cross-sections. Experimental fusion barrier distributions for different reactions have shown clear signatures of a range of nuclear structure effects, for example those of static quadrupole and hexadecapole deformations, and of coupling to single- and double-phonon states. Applications of this improved quantitative understanding of fusion in the fields of fission, and fusion of weakly bound nuclei are discussed.

  1. Challenges in describing nuclear reactions outcomes at near-barrier energies

    Science.gov (United States)

    Dasgupta, M.; Simpson, E. C.; Kalkal, S.; Cook, K. J.; Carter, I. P.; Hinde, D. J.; Luong, D. H.

    2017-01-01

    The properties of light nuclei such as 6Li, 7Li, 9Be and 12C, and their reaction outcomes are known to be strongly influenced by their underlying α-cluster structure. Reaction models do not yet exist to allow accurate predictions of outcomes following a collision of these nuclei with another nucleus. As a result, reaction models within GEANT, and nuclear fusion models do not accurately describe measured products or cross sections. Recent measurements at the Australian National University have shown new reaction modes that lead to breakup of 6Li, 7Li into lighter clusters, again presenting a further challenge to current models. The new observations and subsequent model developments will impact on accurate predictions of reaction outcomes of 12C - a three α-cluster nucleus – that is used in heavy ion therapy.

  2. Supporting the Josephson Interpretation of Low Energy Nuclear Reactions and Stabilization of Nuclear Waste

    Directory of Open Access Journals (Sweden)

    F. Osman

    2005-01-01

    Full Text Available Brian Josephson appealed at the meeting of the Nobel Laureates July 2004 against the ignorance of physicist to the phenomenon of cold fusion. Though there are good reasons against many publications on this topic but not for all what was reported. It seems to be indicated to summarize the following serious, reproducible and confirmed observations on the reactions of protons or deuterons incorporated in host metals such as palladium, nickel and other metals. We underline the confusing discovery by Cockroft and Oliphant with the anomalous low energy for nuclear reactions which was hundred times lower than in the usual cases when smashing nuclei against their Coulomb potential. A similar unexpected result was that of Otto Hahn’s-the chemist!-Discovery of fission that had changed the world. A significant result of cold fusion was seen in gaseous atmosphere or discharges between palladium targets, rather significant and fully reproducible, e.g. From the “life after death” heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect-preferably in the swimming electron layer-may lead to reactions at nuclear distances d of picometers with reaction probability times U off about mega seconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to Low Energy Nuclear Reactions (LENR where the involvement of pollution could be excluded from the generation of very seldom rare earth elements. A basically new theory for DD cross sections is used to confirm the picometer-mega second reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nucleus generation, magic numbers and to quark

  3. Novel Role of Superfluidity in Low-Energy Nuclear Reactions

    CERN Document Server

    Magierski, Piotr; Wlazłowski, Gabriel

    2016-01-01

    We demonstrate, within symmetry unrestricted time dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses capture cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in non-central collisions are significantly affected. The modification of the capture cross section and possibilities for its experimental detection are discussed.

  4. Massive Star Evolution Nucleosynthesis and Nuclear Reaction Rate Uncertainties

    CERN Document Server

    Heger, A; Rauscher, T; Hoffman, R D; Boyes, M M

    2002-01-01

    We present a nucleosynthesis calculation of a 25 solar mass star of solar composition that includes all relevant isotopes up to polonium. In particular, all stable isotopes and necessary nuclear reaction rates are covered. We follow the stellar evolution from hydrogen burning till iron core collapse and simulate the explosion using a ``piston'' approach. We discuss the influence of two key nuclear reaction rates, C12(a,g) and Ne22(a,n), on stellar evolution and nucleosynthesis. The former significantly influences the resulting core sizes (iron, silicon, oxygen) and the overall presupernova structure of the star. It thus has significant consequences for the supernova explosion itself and the compact remnant formed. The later rate considerably affects the s-process in massive stars and we demonstrate the changes that different currently suggested values for this rate cause.

  5. Target preparation by the precipitation method for nuclear reactions.

    Science.gov (United States)

    Takamiya, K; Ohtsuki, T; Yuki, H; Mitsugashira, T; Sato, N; Suzuki, T; Fujita, M; Shinozuka, T; Kasamatsu, Y; Kikunaga, H; Shinohara, A; Shibata, S; Nakanishi, T

    2007-01-01

    A technique for preparing nuclear reaction targets of various thicknesses was developed by using common filtration technique of hydroxide precipitates with a porous Al(2)O(3) membrane filter. Uniformity was found to be within a few % in each thickness. Durability for beam irradiation was also confirmed. The preparation procedure is convenient and the method is appropriate for several target materials, including not only precious materials but also radioactive materials with low contamination.

  6. Complex signal amplitude analysis for complete fusion nuclear reaction products

    CERN Document Server

    Tsyganov, Yu S

    2015-01-01

    A complex analysis has been performed on the energy amplitude signals corresponding to events of Z=117 element measured in the 249Bk+48Ca complete fusion nuclear reaction. These signals were detected with PIPS position sensitive detector. The significant values of pulse height defect both for recoils (ER) and fission fragments (FF) were measured. Comparison with the computer simulations and empirical formulae has been performed both for ER and FF signals.

  7. Reduction of chemical reaction models

    Science.gov (United States)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  8. Measurement of anomalous nuclear reaction in deuterium-loaded metal

    Institute of Scientific and Technical Information of China (English)

    Jiang Song-Sheng; Li Jing-Huai; Wang Jian-Qing; He Ming; Wu Shao-Yong; Zhang Hong-Tao; Yao Shun-He; Zhao Yong-Gang

    2009-01-01

    This paper reports on an experiment for testing natural nuclear fusion at low temperature searching for evidence of the origin of 3He from natural nuclear fusion in deep Earth.The experiment was carried out using deuterium-loaded titanium foil samples and powder sample.Detection of charged particle was carried out using a low-level charged particle spectrometer.An Al foil was used as an energy absorber for identification of charged particle.Although the counting rate is very low in the experiment,the emission of energetic particle from the sample is obscrved and the particle is identified as a proton having energy about 2.8 MeV after exiting the titanium sample.This work provides a positive result for the emission of charged particle in the deuterium-loaded titanium foil samples at low temperature,but a negative result for the deuterium-loaded titanium powder sample.The average reaction yield is deduced to be(0.46±0.08)protons/h for the foil samples.With the suggestion that the proton originates from d-d reaction,we of the deuterium-loaded titanium powder sample suggests that the reaction yield might be correlated with the density or microscopic variables of deuterium-loaded titanium materials.The negative result also indicates that d-d reaction catalysed by μ-meson from cosmic ray can be excluded in the samples in this experiment.

  9. Visualized kinematics code for two-body nuclear reactions

    Science.gov (United States)

    Lee, E. J.; Chae, K. Y.

    2016-05-01

    The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.

  10. Low-energy nuclear reactions in crystal structures

    Science.gov (United States)

    Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Rusetskii, A. S.

    2017-09-01

    Results of studying low-energy nuclear reactions at the HELIS facility (LPI) are presented. Investigations of yields from DD reactions in deuterated crystal structures at deuteron energies of 10 to 25 keV show a considerable enhancement effect. It is shown that exposure of the deuterated targets to the H+ (proton) and Ne+ beams with energies from 10 to 25 keV and an X-ray beam with the energy of 20 to 30 keV stimulates DD reaction yields. For the CVD diamond target, it is shown that its orientation with respect to the deuteron beam affects the neutron yield. The D+ beam is shown to cause much higher heat release in the TiDx target than the H+ and Ne+ beams, and this heat release depends on the deuterium concentration in the target and the current density of the deuteron beam.

  11. Microscopic calculations of the characteristics of radiative nuclear reactions for double-magic nuclei

    CERN Document Server

    Achakovskiy, Oleg; Tselyaev, Victor; Shitov, Mikhail

    2015-01-01

    The neutron capture cross sections and average radiative widths of neutron resonances for two double-magic nuclei 132Sn and 208Pb have been calculated using the microscopic photon strength functions, which were obtained within the microscopic self-consistent version of the extended theory of finite Fermi systems in the time blocking approximation. For the first time, the microscopic PSFs have been obtained within the fully self-consistent approach with exact accounting for the single particle continuum (for 208Pb). The approach includes phonon coupling effects in addition to the standard RPA approach. The known Skyrme force has been used. The calculations of nuclear reaction characteristics have been performed with the EMPIRE 3.1 nuclear reaction code. Here, three nuclear level density (NLD) models have been used: the so-called phenomenological GSM, the EMPIRE specific (or Enhanced GSM) and the microscopical combinatorial HFB NLD models. For both considered characteristics we found a significant disagreement ...

  12. Statistical models for nuclear decay from evaporation to vaporization

    CERN Document Server

    Cole, A J

    2000-01-01

    Elements of equilibrium statistical mechanics: Introduction. Microstates and macrostates. Sub-systems and convolution. The Boltzmann distribution. Statistical mechanics and thermodynamics. The grand canonical ensemble. Equations of state for ideal and real gases. Pseudo-equilibrium. Statistical models of nuclear decay. Nuclear physics background: Introduction. Elements of the theory of nuclear reactions. Quantum mechanical description of scattering from a potential. Decay rates and widths. Level and state densities in atomic nuclei. Angular momentum in quantum mechanics. History of statistical

  13. Nuclear level density: Shell-model approach

    Science.gov (United States)

    Sen'kov, Roman; Zelevinsky, Vladimir

    2016-06-01

    Knowledge of the nuclear level density is necessary for understanding various reactions, including those in the stellar environment. Usually the combinatorics of a Fermi gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally used parameters are also compared with standard phenomenological approaches.

  14. Real-time electron dynamics simulation of two-electron transfer reactions induced by nuclear motion

    Science.gov (United States)

    Suzuki, Yasumitsu; Yamashita, Koichi

    2012-04-01

    Real-time electron dynamics of two-electron transfer reactions induced by nuclear motion is calculated by three methods: the numerically exact propagation method, the time-dependent Hartree (TDH) method and the Ehrenfest method. We find that, as long as the nuclei move as localized wave packets, the TDH and Ehrenfest methods can reproduce the exact electron dynamics of a simple charge transfer reaction model containing two electrons qualitatively well, even when nonadiabatic transitions between adiabatic states occur. In particular, both methods can reproduce the cases where a complete two-electron transfer reaction occurs and those where it does not occur.

  15. EXFOR systems manual: Nuclear reaction data exchange format

    Energy Technology Data Exchange (ETDEWEB)

    McLane, V. [ed.

    1996-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. In addition to storing the data and its bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine).

  16. Ab Initio Calculations Of Nuclear Reactions And Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-05

    Our ultimate goal is to develop a fundamental theory and efficient computational tools to describe dynamic processes between nuclei and to use such tools toward supporting several DOE milestones by: 1) performing predictive calculations of difficult-to-measure landmark reactions for nuclear astrophysics, such as those driving the neutrino signature of our sun; 2) improving our understanding of the structure of nuclei near the neutron drip line, which will be the focus of the DOE’s Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University; but also 3) helping to reveal the true nature of the nuclear force. Furthermore, these theoretical developments will support plasma diagnostic efforts at facilities dedicated to the development of terrestrial fusion energy.

  17. Cross Sections Calculations of ( d, t) Nuclear Reactions up to 50 MeV

    Science.gov (United States)

    Tel, E.; Yiğit, M.; Tanır, G.

    2013-04-01

    In nuclear fusion reactions two light atomic nuclei fuse together to form a heavier nucleus. Fusion power is the power generated by nuclear fusion processes. In contrast with fission power, the fusion reaction processes does not produce radioactive nuclides. The fusion will not produce CO2 or SO2. So the fusion energy will not contribute to environmental problems such as particulate pollution and excessive CO2 in the atmosphere. Fusion powered electricity generation was initially believed to be readily achievable, as fission power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2010, more than 60 years after the first attempts, commercial power production is still believed to be unlikely before 2050. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. In the fusion reactor, tritium self-sufficiency must be maintained for a commercial power plant. Therefore, for self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( d, t) nuclear reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. Since the experimental data of charged particle induced reactions are scarce, self-consistent calculation and analyses using nuclear theoretical models are very important. In this study, ( d, t) cross sections for target nuclei 19F, 50Cr, 54Fe, 58Ni, 75As, 89Y, 90Zr, 107Ag, 127I, 197Au and 238U have been investigated up to 50 MeV deuteron energy. The excitation functions for ( d, t) reactions have been calculated by pre-equilibrium reaction mechanism. Calculation results have been also compared with the available measurements in

  18. Modeling nuclear parton distribution functions

    CERN Document Server

    Honkanen, H; Guzey, V

    2013-01-01

    The presence of nuclear medium and collective phenomena which involve several nucleons modify the parton distribution functions of nuclei (nPDFs) compared to those of a free nucleon. These modifications have been investigated by different groups using global analyses of high energy nuclear reaction world data resulting in modern nPDF parametrizations with error estimates, such as EPS09(s), HKN07 and nDS. These phenomenological nPDF sets roughly agree within their uncertainty bands, but have antiquarks for large-$x$ and gluons for the whole $x$-range poorly constrained by the available data. In the kinematics accessible at the LHC this has negative impact on the interpretation of the heavy-ion collision data, especially for the $p + A$ benchmarking runs. The EMC region is also sensitive to the proper definition of $x$, where the nuclear binding effects have to be taken into account, and for heavy nuclei one also needs to take into account that a fraction of the nucleus momentum is carried by the equivalent pho...

  19. Further evidence of nuclear reactions in the Pd/D lattice: emission of charged particles.

    Science.gov (United States)

    Szpak, Stanislaw; Mosier-Boss, Pamela A; Gordon, Frank E

    2007-06-01

    Almost two decades ago, Fleischmann and Pons reported excess enthalpy generation in the negatively polarized Pd/D-D2O system, which they attributed to nuclear reactions. In the months and years that followed, other manifestations of nuclear activities in this system were observed, viz. tritium and helium production and transmutation of elements. In this report, we present additional evidence, namely, the emission of highly energetic charged particles emitted from the Pd/D electrode when this system is placed in either an external electrostatic or magnetostatic field. The density of tracks registered by a CR-39 detector was found to be of a magnitude that provides undisputable evidence of their nuclear origin. The experiments were reproducible. A model based upon electron capture is proposed to explain the reaction products observed in the Pd/D-D2O system.

  20. Completing the nuclear reaction puzzle of the nucleosynthesis of 92Mo

    CERN Document Server

    Tveten, G M; Schwengner, R; Naqvi, F; Larsen, A C; Eriksen, T K; Garrote, F L Bello; Bernstein, L A; Bleuel, D L; Campo, L Crespo; Guttormsen, M; Giacoppo, F; Görgen, A; Hagen, T W; Hadynska-Klek, K; Klintefjord, M; Meyer, B S; Nyhus, H T; Renstrøm, T; Rose, S J; Sahin, E; Siem, S; Tornyi, T G

    2016-01-01

    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme, astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average strength function of $^{92}$Mo. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of this isotope. Our data provide stringent constraints on the $^{91}$Nb$(p,{\\gamma})^{92}$Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of $^{92}$Mo. Based on our results, we conclude that the $^{92}$Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.

  1. Completing the nuclear reaction puzzle of the nucleosynthesis of 92Mo

    Science.gov (United States)

    Tveten, G. M.; Spyrou, A.; Schwengner, R.; Naqvi, F.; Larsen, A. C.; Eriksen, T. K.; Bello Garrote, F. L.; Bernstein, L. A.; Bleuel, D. L.; Crespo Campo, L.; Guttormsen, M.; Giacoppo, F.; Görgen, A.; Hagen, T. W.; Hadynska-Klek, K.; Klintefjord, M.; Meyer, B. S.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tornyi, T. G.

    2016-08-01

    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme astrophysical environments. A particularly challenging part of that question is the creation of the so-called p -nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average γ strength function of 92Mo. State-of-the-art p -process calculations systematically underestimate the observed solar abundance of this isotope. Our data provide stringent constraints on the 91Nb(p ,γ )92Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of 92Mo. Based on our results, we conclude that the 92Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.

  2. The effect of nuclear structure in the emission of reaction products in heavy-ion reactions

    Indian Academy of Sciences (India)

    Samir Kundu

    2014-04-01

    Study of intermediate mass fragments (IMFs) and light charged particles (LCPs) emission has been carried out for a few reactions involving -cluster and non--cluster systems to see how the emission processes are affected by nuclear clustering. Li, Be, B and -particles have been studied from α-clustered system 16O + 12C for 117, 125, 145 and 160 MeV bombarding energies respectively. The enhanced yields of near-entrance channel fragment B and large quadrupole deformation of the produced composite 28Si* extracted from LCP spectra indicate the survival of orbiting-like process in 16O + 12C system at these energies. The same IMFs emitted from the -cluster system 12C (77 MeV) + 28Si and nearby non- cluster 11B (64 MeV) + 28Si and 12C (73 MeV) + 27Al (all having the same excitation energy of ∼67 MeV) have also been studied. The fully energy damped (fusion–fission) and the partially energy damped (deep inelastic) components of the fragment energy spectra have been extracted. It has been found that the yields of the fully energy damped fragments for all the above reactions are in conformity with the respective statistical model predictions. The time-scales of various deep inelastic fragment emissions have been extracted from the angular distribution data. The angular momentum dissipation in deep inelastic collisions has been estimated from the data and it has been found to be close to the corresponding sticking limit value.

  3. Helium mobility in SON68 borosilicate nuclear glass: A nuclear reaction analysis approach

    Energy Technology Data Exchange (ETDEWEB)

    Bès, R., E-mail: rene.bes@cnrs-orleans.fr [CNRS, UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orléans cedex 2 (France); Sauvage, T. [CNRS, UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orléans cedex 2 (France); Université d’Orléans, Faculté des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orléans cedex 2 (France); Peuget, S. [CEA/DEN/VRH/DTCD/SECM/LMPA Marcoule (France); Haussy, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Chamssedine, F. [Université Libanaise, Faculté des Sciences V, Nabatiyeh (Lebanon); Oliviero, E. [CSNSM, CNRS/IN2P3 and Université Paris-Sud, Bât. 104-108, F-91405 Orsay (France); Fares, T. [CEA/DEN/VRH/DTCD/SECM/LMPA Marcoule (France); Vincent, L. [Institut d’Electronique Fondamentale, CNRS and Université Paris-Sud, UMR 8622, F-91405 Orsay (France)

    2013-11-15

    The {sup 3}He behavior in the non active R7T7 type borosilicate glass called SON68 has been investigated using the implantation method to introduce helium in the material. Nuclear Reaction Analysis (NRA) was performed to follow the helium concentration depth profile evolution as a function of annealing time and temperature. In addition, in situ Transmission Electron Microscopy (TEM) has been implemented to study the formation of helium bubbles during both implantation and annealing processes. Numerical modeling with two different approaches is proposed and discussed to investigate the helium mobility mechanisms. Our study reveals for helium incorporation by implantation at low temperature the presence of several helium populations with disparate diffusivities. The most mobile helium fraction would be attributed to atomic diffusion. The corresponding activation energy value (0.61 eV) extracted from Arrhenius graphs is in good agreement with literature data. The results also highlight that the damages associated to helium sursaturation are the source of small helium clusters formation, with a reduced mobility instead of the atomic mobility measured by the infusion technique. Small cavities that support this assumption have been observed by TEM at low temperature.

  4. Activation cross sections of $\\alpha$-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: production of $^{178}$W/$^{178m}$Ta generator

    CERN Document Server

    Tárk'anyi, F; Ditrói, F; Hermanne, A; Ignatyuk, A V; Uddin, M S

    2014-01-01

    In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of $^{178m}$Ta through $^{nat}$Hf($\\alpha$,xn)$^{178}$W-$^{178m}$Ta nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions $^{nat}$Hf($\\alpha$,x)$^{179,177,176,175}$W, $^{183,182,178g,177,176,175}$Ta, $^{179m,177m,175}$Hf were also assessed. Stacked foil irradiation technique and $\\gamma$-ray spectrometry were used. New experimental cross section data for the $^{nat}$Ta(d,xn)$^{178}$W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and ($^3$He,x)) production routes for $^{178}$W.

  5. An accurate analytic representation of the temperature dependence of nonresonant nuclear reaction rate coefficients

    Science.gov (United States)

    Shizgal, Bernie D.

    2016-12-01

    There has been intense interest for several decades by different research groups to accurately model the temperature dependence of a large number of nuclear reaction rate coefficients for both light and heavy nuclides. The rate coefficient, k(T) , is given by the Maxwellian average of the reactive cross section expressed in terms of the astrophysical factor, S(E) , which for nonresonant reactions is generally written as a power series in the relative energy E. A computationally efficient algorithm for the temperature dependence of nuclear reaction rate coefficients is required for fusion reactor research and for models of nucleosynthesis and stellar evolution. In this paper, an accurate analytical expression for the temperature dependence of nuclear reaction rate coefficients is provided in terms of τ = 3(b / 2) 2/3 or equivalently, T - 1/3 , where b = B /√{kB T }, B is the Gamow factor and kB is the Boltzmann constant. The methodology is appropriate for all nonresonant nuclear reactions for which S(E) can be represented as a power series in E. The explicit expression for the rate coefficient versus temperature is derived with the asymptotic expansions of the moments of w(E) = exp(- E /kB T - B /√{ E }) in terms of τ. The zeroth order moment is the familiar Gaussian approximation to the rate coefficient. Results are reported for the representative reactions D(d, p)T, D(d, n)3He and 7Li(p, α) α and compared with several different fitting procedures reported in the literature.

  6. A study of stopping power in nuclear reactions at intermediate energies

    CERN Document Server

    Lehaut, G; Lopez, O

    2010-01-01

    We show a systematic experimental study based on INDRA data of the stopping power in central symmetric nuclear reactions. Total mass of the systems goes from 80 to 400 nucleons while the incident energy range is from 12 AMeV to 100 AMeV. The role of isospin diffusion at 32 and 45 MeV/nucleon with 124,136Xe projectiles on 112,124Sn targets performed at GANIL is also discussed. Results suggest a strong memory of the entrance channel above 20 AMeV/A (nuclear transparency) and, as such, constitute valuable tests of the microscopic transport models.

  7. Redox reaction and foaming in nuclear waste glass melting

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.L.

    1995-08-01

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  8. A study of heavy-heavy nuclear reactions. [nuclear research/nuclear particles

    Science.gov (United States)

    Khandelwal, G. S.

    1975-01-01

    Calculations are presented for the reaction products in high energy collisions and of the atmospheric transport of particles such as protons, neutrons and other nucleons. The magnetic moments of charmed baryons are examined. Total cross sections which are required for cosmic heavy ion transport and shielding studies are also examined.

  9. Nuclear microprobe and nuclear reaction spectrometry at a few square micrometer level: myth or reality

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P. E-mail: ptrocel@nimitz.saclay.cea.fr; Berger, P.; Berthier, B.; Berthoumieux, E.; Gallien, J.P.; Metrich, N.; Moreau, C.; Mosbah, M.; Varela, M.E

    1999-09-02

    Proton induced X-ray emission and Rutherford backscattering spectrometry are the most often used IBA methods in conjunction with a nuclear microprobe. Their main advantages derive both from the corresponding cross sections having relatively high values and their multielemental response. {mu}PIXE allows one to reach the spatial distribution of elements with Z>12 and {mu}RBS permits the study of multilayered solids with a good selectivity for thin heavy element layers deposited on light substrates. Nuclear reactions on the other hand generally exhibit low cross section values but are well adapted for light element isotope measurements in any substrate. This paper intends to provide an overview of nuclear reaction spectrometry analytical capabilities using {sup 1}H, {sup 2}H, {sup 3}He or {sup 4}He microbeams. Practical performances such as selectivity, sensitivity, total analysable depth and depth resolution are discussed. Finally, application examples are presented in the following areas: metallurgy and material sciences, earth sciences and cosmochemistry, biochemistry and archaeometry.

  10. Multielectron SEFs for nuclear reactions involved in advanced stages of stellar evolution

    CERN Document Server

    Liolios, T E

    2001-01-01

    Multielectron screening effects encountered in laboratory astrophysical reactions are investigated by considering the reactants Thomas-Fermi atoms. By means of that model, previous studies are extended to derive the corresponding screening enhancement factor (SEF), so that it takes into account ionization, thermal, exchange and relativistic effects. The present study, by imposing a very satisfactory constraint on the possible values of the screening energies and the respective SEFs, corrects the current (and the future) experimental values of the astrophysical factors associated with nuclear reactions involved in advanced stages of stellar evolution.

  11. Phase-space methods in nuclear reactions around the Fermi energy

    OpenAIRE

    Lacroix, Denis; Durand, Dominique; Lehaut, Gregory; Lopez, Olivier; Vient, Emmanuel

    2006-01-01

    Some prescriptions for in-medium complex particle production in nuclear reactions are proposed. They have been implemented in two models to simulate nucleon-nucleus (nIPSE) and nucleus-nucleus (HIPSE) reactions around the Fermi energy \\cite{Lac04,Lac05}. Our work emphasizes the effect of randomness in cluster formation, the importance of the nucleonic Fermi motion as well as the role of conservation laws. The key role of the phase-space exploration before and after secondary decay is underlin...

  12. A study on nuclear specific material detection technique using nuclear resonance reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. K.; Ha, J. H.; Cho, Y. S.; Choi, B. H. [KAERI, Taejon (Korea, Republic of)

    2001-10-01

    The non-destructive nuclear material detection technique is one of the novel methods under somewhat dangerous environments, for example, high level radiation or landmine areas. Specially, the detection of a landmine is a hot issue on the peaceful use of nuclear technology for human welfare. Generally, the explosives contain specific elements such as {sup 14}N or {sup 35}Cl. The photo-nuclear resonance gamma-rays are produced by nuclear reaction {sup 13}C(p , {gamma}){sup 14}N or {sup 34}S(p, {gamma}){sup 35}Cl in which target is bombarded by about 2MeV proton beam extracted from the proton accelerator. To avoid other neighboring resonant gamma-rays, we selected a higher resonant energy above 5MeV. The resonance gamma rays produced are absorbed or scattered when they react with {sup 14}N or {sup 35}Cl included in the mines and explosive. We can determine existence and position of mines or explosives by detecting the absorption and scattering gamma-ray signals.

  13. Evolutionary implications of the new triple-alpha nuclear reaction rate for low mass stars

    CERN Document Server

    Dotter, Aaron

    2009-01-01

    Context: Ogata et al. (2009; hereafter OKK) presented a theoretical determination of the triple-alpha nuclear reaction rate. Their rate differs from the NACRE rate by many orders of magnitude at temperatures relevant for low mass stars. Aims: We explore the evolutionary implications of adopting the OKK triple-alpha reaction rate in low mass stars and compare the results with those obtained using the NACRE rate. Methods: The triple-alpha reaction rates are compared by following the evolution of stellar models at 1 and 1.5 Msol with Z=0.0002 and Z=0.02. Results: Results show that the OKK rate has severe consequences for the late stages of stellar evolution in low mass stars. Most notable is the shortening--or disappearance--of the red giant phase. Conclusions: The OKK triple-alpha reaction rate is incompatible with observations of extended red giant branches and He burning stars in old stellar systems.

  14. Computer subroutines for the estimation of nuclear reaction effects in proton-tissue-dose calculations

    Science.gov (United States)

    Wilson, J. W.; Khandelwal, G. S.

    1976-01-01

    Calculational methods for estimation of dose from external proton exposure of arbitrary convex bodies are briefly reviewed. All the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is placed on retaining the effects of nuclear reaction, especially in relation to the dose equivalent. Computer subroutines to evaluate all of the relevant functions are discussed. Nuclear reaction contributions for standard space radiations are in most cases found to be significant. Many of the existing computer programs for estimating dose in which nuclear reaction effects are neglected can be readily converted to include nuclear reaction effects by use of the subroutines described herein.

  15. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Jr., P. B.; Erickson, A. S.; Mayer, Michael F.; Nattress, J.; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  16. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    Science.gov (United States)

    Rose, P. B.; Erickson, A. S.; Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-04-01

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  17. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    Science.gov (United States)

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  18. Nuclear reaction measurements on tissue-equivalent materials and GEANT4 Monte Carlo simulations for hadrontherapy

    Science.gov (United States)

    De Napoli, M.; Romano, F.; D'Urso, D.; Licciardello, T.; Agodi, C.; Candiano, G.; Cappuzzello, F.; Cirrone, G. A. P.; Cuttone, G.; Musumarra, A.; Pandola, L.; Scuderi, V.

    2014-12-01

    When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned. Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u-1 12C beam with thick muscle and cortical bone targets. Three reaction models used by the Geant4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.

  19. Laser-initiated primary and secondary nuclear reactions in Boron-Nitride

    Science.gov (United States)

    Labaune, C.; Baccou, C.; Yahia, V.; Neuville, C.; Rafelski, J.

    2016-02-01

    Nuclear reactions initiated by laser-accelerated particle beams are a promising new approach to many applications, from medical radioisotopes to aneutronic energy production. We present results demonstrating the occurrence of secondary nuclear reactions, initiated by the primary nuclear reaction products, using multicomponent targets composed of either natural boron (B) or natural boron nitride (BN). The primary proton-boron reaction (p + 11B → 3 α + 8.7 MeV), is one of the most attractive aneutronic fusion reaction. We report radioactive decay signatures in targets irradiated at the Elfie laser facility by laser-accelerated particle beams which we interpret as due to secondary reactions induced by alpha (α) particles produced in the primary reactions. Use of a second nanosecond laser beam, adequately synchronized with the short laser pulse to produce a plasma target, further enhanced the reaction rates. High rates and chains of reactions are essential for most applications.

  20. A new look at low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B; Marwan, Jan

    2009-10-01

    This paper presents a new look at low-energy nuclear reaction research, a field that has developed from one of the most controversial subjects in science, "cold fusion." Early in the history of this controversy, beginning in 1989, a strong polarity existed; many scientists fiercely defended the claim of new physical effects as well as a new process in which like-charged atomic nuclei overcome the Coulomb barrier at normal temperatures and pressures. Many other scientists considered the entire collection of physical observations-along with the hypothesis of a "cold fusion"--entirely a mistake. Twenty years later, some people who had dismissed the field in its entirety are considering the validity of at least some of the reported experimental phenomena. As well, some researchers in the field are wondering whether the underlying phenomena may be not a fusion process but a neutron capture/absorption process. In 2002, a related tabletop form of thermonuclear fusion was discovered in the field of acoustic inertial confinement fusion. We briefly review some of this work, as well.

  1. Nuclear structure and reaction studies at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, G.W.; Ray, R.L.

    1990-10-01

    This document constitutes the (1988--1991) technical progress report for the ongoing medium energy physics research program supported by the US Department of Energy through special Research Grant FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF), the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL), and at the Fermi National Accelerator Laboratory (FNAL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics;(2) provide unique, first-of-a-kind exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics.

  2. Nuclear Structure and Reaction Properties of Ne, Mg and Si Isotopes with RMF Densities

    CERN Document Server

    Panda, R N; Patra, S K

    2013-01-01

    We have studied nuclear structure and reaction properties of Ne, Mg and Si isotopes, using relativistic mean field densities, in the frame work of Glauber model. Total reaction cross section $\\sigma_R$ for Ne isotopes on 12C target have been calculated at incident energy 240 MeV. The results are compared with the experimental data and with the recent theoretical study [W. Horiuchi et al., Phys. Rev. C, 86, 024614 (2012)]. Study of $\\sigma_R$ using deformed densities have shown a good agreement with the data. We have also predicted total reaction cross section $\\sigma_R$ for Ne, Mg and Si isotopes as projectiles and 12C as target at different incident energies.

  3. Effect of gamma-strength on nuclear reaction calculations

    CERN Document Server

    Kadenko, Igor; Bondar, Borys; Gorbachenko, Oleksandr; Leshchenko, Borys; Solodovnyk, Kateryna; Tkach, Oleksandr; Zheltonozhskyi, Viktor

    2016-01-01

    The results of the study of gamma-transition description in fast neutron capture and photofission are presented. Recent experimental data were used, namely, the spectrum of prompt gamma-rays in the energy range 2{\\div}18 MeV from 14-MeV neutron capture in natural Ni and isomeric ratios in primary fragments of photofission of the isotopes of U, Np and Pu by bremsstrahlung with end-point energies $E_e$= 10.5, 12 and 18 MeV. The data are compared with the theoretical calculations performed within EMPIRE 3.2 and TALYS 1.6 codes. The mean value of angular momenta and their distributions were determined in the primary fragments $^{84}$Br, $^{97}$Nb, $^{90}$Rb, $^{131,133}$Te, $^{132}$Sb, $^{132,134}$I, $^{135}$Xe of photofissions. An impact of the characteristics of nuclear excited states on the calculation results is studied using different models for photon strength function and nuclear level density.

  4. Modeling Proton- and Light Ion-Induced Reactions at Low Energies in the MARS15 Code

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gudima, K. K. [National Academy of Sciences, Cisineu (Moldova)

    2015-04-25

    An implementation of both ALICE code and TENDL evaluated nuclear data library in order to describe nuclear reactions induced by low-energy projectiles in the Monte Carlo code MARS15 is presented. Comparisons between results of modeling and experimental data on reaction cross sections and secondary particle distributions are shown.

  5. Modelling Chemical Reasoning to Predict Reactions

    CERN Document Server

    Segler, Marwin H S

    2016-01-01

    The ability to reason beyond established knowledge allows Organic Chemists to solve synthetic problems and to invent novel transformations. Here, we propose a model which mimics chemical reasoning and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180,000 randomly selected binary reactions. We show that our data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-) discovering novel transformations (even including transition-metal catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph, and because each single reaction prediction is typically ac...

  6. Power Installations based on Activated Nuclear Reactions of Fission and Synthesis

    CERN Document Server

    Grigoriev, Yuriy

    2016-01-01

    The general scheme of power installations based on nuclear reactions of fission and synthesis activated by external sources is analyzed. The external activation makes possible to support nuclear reactions at temperatures and pressures lower than needed for chain reactions, so simplifies considerably practical realization of power installations. The possibility of operation on subcritical masses allows making installations compact and safe at emergency situations. Installations are suitable for transmutation of radioactive nuclides, what solves the problem of utilization of nuclear waste products. It is proposed and considered schemes of power installations based on nuclear reactions of fission and fusion, activated by external sources, different from ADS systems. Variants of activation of nuclear reactions of fission (U-235, 238, Pu-239) and fusion (Li-6,7, B-10,11) are considered.

  7. Effect of a strong magnetic field on the energy yield of nuclear reactions in dense nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Sekerzhitskii, V.S. [Pushkin Pedagogical Institute, Brest (Belarus)

    1995-01-01

    According to modern concepts, the electron-neutron-nuclear (Aen) phase of dense highly degenerate matter can be realized in the shells of neutron stars. This phase has relatively stable and absolutely stable states of thermodynamic equilibrium. Strong magnetic fields can exist in neutron stars. For this reason, analysis of their effect on the characteristics of the Aen phase is of great interest. It is specially important to study the influence of strong magnetic fields on the energy yield of nuclear reactions in dense nuclear matter because the transition to the absolute equilibrium state proceeds through these reactions.

  8. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cognata, M. La; Pizzone, R. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gulino, M.; Tumino, A. [Kore University, Enna, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  9. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Science.gov (United States)

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Tumino, A.

    2014-05-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  10. Exclusive measurements of nuclear breakup reactions of 17Ne

    Directory of Open Access Journals (Sweden)

    Wamers F.

    2014-03-01

    Full Text Available We have studied one-proton-removal reactions of about 500MeV/u 17Ne beams on a carbon target at the R3B/LAND setup at GSI by detecting beam-like 15O-p and determining their relative-energy distribution. We exclusively selected the removal of a 17Ne halo proton, and the Glauber-model analysis of the 16F momentum distribution resulted in an s2 contribution in the 17Ne ground state of about 40%.

  11. Development of a utility system for charged particle nuclear reaction data by using intelligentPad

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shigeyoshi; Ohbayashi, Yoshihide [Information Processing Center, Kitami Institute of Technology, Kitami, Hokkaido (Japan); Masui, Hiroshi [Meme Media Laboratory, Hokkaido University, Sapporo, Hokkaido (Japan); Kato, Kiyoshi [Hokkaido University, Graduate School of Science, Sapporo, Hokkaido (Japan); Chiba, Masaki [Faculty of Social Information, Sapporo Gakuin Univ., Ebetsu, Hokkaido (Japan)

    2000-03-01

    We have developed a utility system, WinNRDF2, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on the IntelligentPad architecture. By using the system, we can search the experimental data of a charged particle reaction of NRDF. Furthermore, we also see the experimental data by using graphic pads which was made through the CONTIP project. (author)

  12. Nuclear fragmentation and charge-exchange reactions induced by pions in the $\\Delta$-resonance region

    CERN Document Server

    Feng, Zhao-Qing

    2016-01-01

    Dynamics of the nuclear fragmentations and the charge exchange reactions in pion-nucleus collisions near the $\\Delta$(1232) resonance energies has been investigated within the Lanzhou quantum molecular dynamics (LQMD) transport model. An isospin, momentum and density-dependent pion-nucleon potential is implemented in the model, which influences the pion dynamics, in particular the kinetic energy spectra, but weakly impacts the fragmentation mechanism. The absorption process in pion-nucleon collisions to form the $\\Delta$(1232) resonance dominates the heating mechanism of target nucleus. The excitation energy transferred to the target nucleus increases with the pion kinetic energy and is similar for both $\\pi^{-}$ and $\\pi^{+}$ induced reactions. The magnitude of fragmentation of target nucleus weakly depends on the pion energy. The isospin ratio in the pion double charge exchange is influenced by the isospin ingredient of target nucleus.

  13. Multiple scattering and N-body approaches to nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Picklesimer, A.; Tandy, P.C.; Thaler, R.M.

    1983-02-01

    The relationship between conventional multiple scattering approaches and the recently developed N-body approaches to nuclear reactions is considered with a view towards elastic scattering applications. Connectivity expansions in the N-body approach and multiple scattering expansions in the Watson approach are developed by a common technique so that a comparison of the physical content of each can be made. In the N-body case this leads to a new derivation of the equations of Bencze, Redish, and Sloan in both particle-labelled and partition-labelled form and this yields new insight into minimal dimensionality of these equations and into the role of channel coupling schemes within this formulation. The relative simplicity and generality with which these results are obtained is designed to be easily understood by those unfamiliar with N-body formalisms. The two approaches are contrasted first for the three-particle problem and subsequently for the many-body problem. We argue that a strict adherence to the connected-kernel property which is advantageous for the three-particle problem may not be so advantageous for the many-body elastic scattering problem. Undesirable physical characteristics of the connectivity expansion for elastic scattering are identified and their rectification is discussed. The off-shell transformation associated with the N-body approach is examined critically. The origin of the multiplicity of N-body coupling schemes is elucidated. It is shown that a modified concept of connectivity, called inclusive connectivity, can be introduced to guide expansions which can be truncated in a physically meaningful way. The inclusive connectivity expansion is seen to be identical to the spectator expansion for an elementary projectile but differs in the case of a composite projectile.

  14. Low-energy nuclear reactions with double-solenoid- based radioactive nuclear beam

    Indian Academy of Sciences (India)

    Valdir Guimarães

    2010-07-01

    The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Methods Res. A505, 377 (2003)) and later the University of São Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems the solenoids act as thick lenses to collect, select, and focus the secondary beam into a scattering chamber. Many experiments with radioactive light particle beams (RNB) such as 6He, 7Be, 8Li, 8B have been performed at these two facilities. These low-energy RNB have been used to investigate low-energy reactions such as elastic scattering, transfer and breakup, providing useful information on the structure of light nuclei near the drip line and on astrophysics. Total reaction cross-sections, derived from elastic scattering analysis, have also been investigated for light system as a function of energy and the role of breakup of weakly bound or exotic nuclei is discussed.

  15. Effective interaction: From nuclear reactions to neutron stars

    Indian Academy of Sciences (India)

    D N Basu

    2014-05-01

    An equation of state (EoS) for symmetric nuclear matter is constructed using the density-dependent M3Y effective interaction and extended for isospin asymmetric nuclear matter. Theoretically obtained values of symmetric nuclear matter incompressibility, isobaric incompressibility, symmetry energy and its slope agree well with experimentally extracted values. Folded microscopic potentials using this effective interaction, whose density dependence is determined from nuclear matter calculations, provide excellent descriptions for proton, alpha and cluster radioactivities, elastic and inelastic scattering. The nuclear deformation parameters extracted from inelastic scattering of protons agree well with other available results. The high density behaviour of symmetric and asymmetric nuclear matter satisfies the constraints from the observed flow data of heavy-ion collisions. The neutron star properties studied using -equilibrated neutron star matter obtained from this effective interaction reconcile with the recent observations of the massive compact stars.

  16. Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions

    CERN Document Server

    Ejiri, H

    2016-01-01

    Spin dipole (SD) strengths for double beta-decay (DBD) nuclei were studied experimentally for the first time by using measured cross sections of (3He,t) charge exchange reactions (CERs). Then SD nuclear matrix elements (NMEs) for low-lying 2- states were derived from the experimental SD strengths by referring to the experimental GT (Gamow-Teller) and F (Fermi) strengths. They are consistent with the empirical SD NMEs based on the quasi-particle model with the empirical effective SD coupling constant. The CERs are used to evaluate the SD NME, which is associated with one of the major components of the neutrino-less DBD NME.

  17. New exclusive CHIPS-TPT algorithms for simulation of neutron-nuclear reactions

    Science.gov (United States)

    Kosov, M.; Savin, D.

    2015-05-01

    The CHIPS-TPT physics library for simulation of neutron-nuclear reactions on the new exclusive level is being developed in CFAR VNIIA. The exclusive modeling conserves energy, momentum and quantum numbers in each neutron-nuclear interaction. The CHIPS-TPT algorithms are based on the exclusive CHIPS library, which is compatible with Geant4. Special CHIPS-TPT physics lists in the Geant4 format are provided. The calculation time for an exclusive CHIPS-TPT simulation is comparable to the time of the corresponding Geant4- HP simulation. In addition to the reduction of the deposited energy fluctuations, which is a consequence of the energy conservation, the CHIPS-TPT libraries provide a possibility of simulation of the secondary particles correlation, e.g. secondary gammas, and of the Doppler broadening of gamma lines in the spectrum, which can be measured by germanium detectors.

  18. Unified description of structure and reactions: implementing the Nuclear Field Theory program

    CERN Document Server

    Broglia, Ricardo A; Barranco, Francisco; Vigezzi, Enrico; Idini, Andrea; Potel, Gregory

    2015-01-01

    The modern theory of the atomic nucleus results from the merging of the liquid drop (Niels Bohr and Fritz Kalckar) and of the shell model (Marie Goeppert Meyer and Axel Jensen), which contributed the concepts of collective excitations and of independent-particle motion respectively. The unification of these apparently contradictory views in terms of the particle-vibration (rotation) coupling (Aage Bohr and Ben Mottelson) has allowed for an ever increasingly complete, accurate and detailed description of the nuclear structure, Nuclear Field Theory (NFT, developed by the Copenhagen-Buenos Aires collaboration) providing a powerful quantal embodiment. In keeping with the fact that reactions are not only at the basis of quantum mechanics (statistical interpretation, Max Born) , but also the specific tools to probe the atomic nucleus, NFT is being extended to deal with processes which involve the continuum in an intrinsic fashion, so as to be able to treat them on an equal footing with those associated with discret...

  19. Modeling and Simulation of Nuclear Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Van Brutzel, Laurent; Chartier, Alan; Gueneau, Christine; Mattsson, Ann E.; Tikare, Veena; Bartel, Timothy; Besmann, T. M.; Stan, Marius; Van Uffelen, Paul

    2010-10-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios, and the small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  20. Unified description of structure and reactions: implementing the nuclear field theory program

    Science.gov (United States)

    Broglia, R. A.; Bortignon, P. F.; Barranco, F.; Vigezzi, E.; Idini, A.; Potel, G.

    2016-06-01

    The modern theory of the atomic nucleus results from the merging of the liquid drop model of Niels Bohr and Fritz Kalckar, and of the shell model of Marie Goeppert Meyer and Hans Jensen. The first model contributed the concepts of collective excitations. The second, those of independent-particle motion. The unification of these apparently contradictory views in terms of the particle-vibration and particle-rotation couplings carried out by Aage Bohr and Ben Mottelson has allowed for an ever more complete, accurate and detailed description of nuclear structure. Nuclear field theory (NFT), developed by the Copenhagen-Buenos Aires collaboration, provided a powerful quantal embodiment of this unification. Reactions are not only at the basis of quantum mechanics (statistical interpretation, Max Born), but also the specific tools to probe the atomic nucleus. It is then natural that NFT is being extended to deal with processes which involve the continuum in an intrinsic fashion, so as to be able to treat them on an equal footing with those associated with bound states (structure). As a result, spectroscopic studies of transfer to continuum states could eventually make use of the NFT rules, properly extended to take care of recoil effects. In the present contribution we review the implementation of the NFT program of structure and reactions, setting special emphasis on open problems and outstanding predictions.

  1. Development of a utility system for nuclear reaction data file: WinNRDF

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shigeyoshi [Information Processing Center, Kitami Inst. of Tech., Hokkaido (Japan); Ohbayasi, Yosihide; Masui, Hiroshi [Meme Media Lab., Hokkaido Univ., Sapporo (Japan); Chiba, Masaki [Graduate School of Science, Hokkaido Univ., Sapporo (Japan); Kato, Kiyoshi; Ohnishi, Akira [Faculty of Social Information, Sapporo Gakuin Univ., Ebetsu, Hokkaido (Japan)

    2000-03-01

    A utility system, WinNRDF, is developed for charged particle nuclear reaction data of NRDF (Nuclear Reaction Data File) on the Windows interface. By using this system, we can easily search the experimental data of a charged particle nuclear reaction in NRDF than old retrieval systems on the mainframe and also see graphically the experimental data on GUI (Graphical User Interface). We adopted a mechanism of making a new index of keywords to put to practical use of the time dependent properties of the NRDF database. (author)

  2. Rotational nuclear models and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moya de Guerra, E.

    1986-05-01

    A review is made of the basic formalism involved in the application of nuclear rotational models to the problem of electron scattering from axially symmetric deformed nuclei. Emphasis is made on the use of electron scattering to extract information on the nature of the collective rotational model. In this respect, the interest of using polarized beam and target is discussed with the help of illustrative examples. Concerning the nuclear structure four rotational models are considered: Two microscopic models, namely the Projected Hartree-Fock (PHF) and cranking models; and two collective models, the rigid rotor and the irrotational flow models. The problem of current conservation within the different models is also discussed.

  3. Activation cross sections of proton induced nuclear reactions on ytterbium up to 70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tarkanyi, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen, Bem ter 18/c (Hungary); Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels (Belgium); Takacs, S.; Ditroi, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen, Bem ter 18/c (Hungary); Kiraly, B. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen, Bem ter 18/c (Hungary)], E-mail: kiralyb@atomki.hu; Yamazaki, H.; Baba, M.; Mohammadi, A. [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai 980-8578 (Japan); Ignatyuk, A.V. [Institute of Physics and Power Engineering (IPPE), Obninsk 249020 (Russian Federation)

    2009-09-01

    Cross sections of proton induced nuclear reactions on ytterbium were measured up to 70 MeV by using the standard stacked foil irradiation technique and high-resolution gamma-ray spectroscopy. Experimental cross sections and derived integral yields are reported for the first time for the {sup nat}Yb(p,xn){sup 173,172mg,171mg,170,167}Lu, {sup nat}Yb(p,x){sup 175cum,166cum}Yb and {sup nat}Yb(p,x){sup 173ind,172ind,168,167cum,165cum}Tm reactions. No earlier experimental cross section data were found in the literature. The experimental data were compared to and analyzed with the results of the theoretical model code ALICE-IPPE. Production routes of medical radioisotope {sup 167}Tm are discussed.

  4. Phase-space methods in nuclear reactions around the Fermi energy

    CERN Document Server

    Lacroix, D; Lehaut, G; López, O; Vient, E; Lacroix, Denis; Durand, Dominique; Lehaut, Gregory; Lopez, Olivier; Vient, Emmanuel

    2006-01-01

    Some prescriptions for in-medium complex particle production in nuclear reactions are proposed. They have been implemented in two models to simulate nucleon-nucleus (nIPSE) and nucleus-nucleus (HIPSE) reactions around the Fermi energy \\cite{Lac04,Lac05}. Our work emphasizes the effect of randomness in cluster formation, the importance of the nucleonic Fermi motion as well as the role of conservation laws. The key role of the phase-space exploration before and after secondary decay is underlined. This is illustrated in the case of two debated issues: the memory loss of the entrance channel in central collisions and the $(N,Z)$ partitions after the pre-equilibrium stage.

  5. STARLIB: A Next-Generation Reaction-Rate Library for Nuclear Astrophysics

    CERN Document Server

    Sallaska, A L; Champagne, A E; Goriely, S; Starrfield, S; Timmes, F X

    2013-01-01

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, w...

  6. A sensitivity study of s-process: the impact of uncertainties from nuclear reaction rates

    Science.gov (United States)

    Vinyoles, N.; Serenelli, A.

    2016-01-01

    The slow neutron capture process (s-process) is responsible for the production of about half the elements beyond the Fe-peak. The production sites and the conditions under which the different components of s-process occur are relatively well established. A detailed quantitative understanding of s-process nucleosynthesis may yield light in physical processes, e.g. convection and mixing, taking place in the production sites. For this, it is important that the impact of uncertainties in the nuclear physics is well understood. In this work we perform a study of the sensitivity of s-process nucleosynthesis, with particular emphasis in the main component, on the nuclear reaction rates. Our aims are: to quantify the current uncertainties in the production factors of s-process elements originating from nuclear physics and, to identify key nuclear reactions that require more precise experimental determinations. In this work we studied two different production sites in which s-process occurs with very different neutron exposures: 1) a low-mass extremely metal-poor star during the He-core flash (nn reaching up to values of ∼ 1014cm-3); 2) the TP-AGB phase of a M⊙, Z=0.01 model, the typical site of the main s-process component (nn up to 108 — 109cm-3). In the first case, the main variation in the production of s-process elements comes from the neutron poisons and with relative variations around 30%-50%. In the second, the neutron poison are not as important because of the higher metallicity of the star that actually acts as a seed and therefore, the final error of the abundances are much lower around 10%-25%.

  7. Resonance Conversion as a Catalyser of Nuclear Reactions

    CERN Document Server

    Karpeshin, Feodor; Zhang, Weining

    2014-01-01

    It is shown that resonance interal conversion offers a feasible tool for mastering nuclear processes with laser or synchrotron radiation. Physics of the process is discussed in detail in historical aspect. Possible way of experimental applicaytion is shown in the case of the $M1$ 70.6-keV transition in nuclei of $^{169}$Yb. Nuclear transition rate in hydrogenlike ions of this nuclide can be enhanced by up to four orders of magnitude.

  8. Resonance Conversion as a Catalyzer of Nuclear Reactions

    Institute of Scientific and Technical Information of China (English)

    KARPESHIN Feodor; ZHANG Jing-Bo; ZHANG Wei-Ning

    2006-01-01

    @@ It is shown that resonance internal conversion offers a feasible tool for mastering nuclear processes with laser or synchrotron radiation. The physics of the process is discussed in detail in a historical aspect. Possible experimental application is shown in the case of the M1 70.6-keV transition in nuclei of 169 Yb. The nuclear transition rate in hydrogen-like ions of this nuclide can be enhanced by up to four orders of magnitude.

  9. Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-wen; KO Che-Ming; LI Bao-an; YONG Gao-chan

    2007-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide a unique means to investigate the equation of state of isospin-asymmetric nuclear matter,especially the density dependence of the nuclear symmetry energy.In particular,recent analyses of the isospin diffusion data in heavyion reactions have already put a stringent constraint on thenuclear symmetry energy around the nuclear matter saturation density.We review this exciting result and discuss its implications on nuclear effective interactions and the neutron skin thickness of heavy nuclei.In addition,we also review the theoretical progress on probing the high density behaviors of the nuclear symmetry energy in heavy-ion reactions induced by high energy radioactive beams.

  10. Modelling Chemical Reasoning to Predict Reactions

    OpenAIRE

    Segler, Marwin H. S.; Waller, Mark P.

    2016-01-01

    The ability to reason beyond established knowledge allows Organic Chemists to solve synthetic problems and to invent novel transformations. Here, we propose a model which mimics chemical reasoning and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outpe...

  11. Summary Report of the Workshop on The Experimental Nuclear Reaction Data Database

    Energy Technology Data Exchange (ETDEWEB)

    Semkova, V. [IAEA Nuclear Data Section, Vienna (Austria); Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-10-10

    The Workshop on the Experimental Nuclear Reaction Data Database (EXFOR) was held at IAEA Headquarters in Vienna from 6 to 10 October 2014. The workshop was organized to discuss various aspects of the EXFOR compilation process including compilation rules, different techniques for nuclear reaction data measurements, software developments, etc. A summary of the presentations and discussions that took place during the workshop is reported here.

  12. Summary Report of the Workshop on The Experimental Nuclear Reaction Data Database

    Energy Technology Data Exchange (ETDEWEB)

    Semkova, V. [IAEA Nuclear Data Section, Vienna (Austria); Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-12-01

    The Workshop on the Experimental Nuclear Reaction Data Database (EXFOR) was held at IAEA Headquarters in Vienna from 6 to 10 October 2014. The workshop was organized to discuss various aspects of the EXFOR compilation process including compilation rules, different techniques for nuclear reaction data measurements, software developments, etc. A summary of the presentations and discussions that took place during the workshop is reported here.

  13. EXFOR – a global experimental nuclear reaction data repository: Status and new developments

    Directory of Open Access Journals (Sweden)

    Semkova Valentina

    2017-01-01

    Full Text Available Members of the International Network of Nuclear Reaction Data Centres (NRDC have collaborated since the 1960s on the worldwide collection, compilation and dissemination of experimental nuclear reaction data. New publications are systematically complied, and all agreed data assembled and incorporated within the EXFOR database. Recent upgrades to achieve greater completeness of the contents are described, along with reviews and adjustments of the compilation rules for specific types of data.

  14. Safety Cultural Competency Modeling in Nuclear Organizations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Oh, Yeon Ju; Luo, Meiling; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear safety cultural competency model should be supplemented through a bottom-up approach such as behavioral event interview. The developed model, however, is meaningful for determining what should be dealt for enhancing safety cultural competency of nuclear organizations. The more details of the developing process, results, and applications will be introduced later. Organizational culture include safety culture in terms of its organizational characteristics.

  15. Cutaneous reactions in nuclear, biological and chemical warfare

    Directory of Open Access Journals (Sweden)

    Arora Sandeep

    2005-03-01

    Full Text Available Nuclear, biological and chemical warfare have in recent times been responsible for an increasing number of otherwise rare dermatoses. Many nations are now maintaining overt and clandestine stockpiles of such arsenal. With increasing terrorist threats, these agents of mass destruction pose a risk to the civilian population. Nuclear and chemical attacks manifest immediately while biological attacks manifest later. Chemical and biological attacks pose a significant risk to the attending medical personnel. The large scale of anticipated casualties in the event of such an occurrence would need the expertise of all physicians, including dermatologists, both military and civilian. Dermatologists are uniquely qualified in this respect. This article aims at presenting a review of the cutaneous manifestations in nuclear, chemical and biological warfare and their management.

  16. Modeling news dissemination on nuclear issues

    Energy Technology Data Exchange (ETDEWEB)

    Reis Junior, Jose S.B.; Barroso, Antonio C.O.; Menezes, Mario O., E-mail: jsbrj@ime.usp.b, E-mail: barroso@ipen.b, E-mail: mario@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Using a modified epidemiological model, the dissemination of news by media agents after the occurrence of large scale disasters was studied. A modified compartmented model was developed in a previous paper presented at INAC 2007. There it used to study to the Chernobyl's nuclear accident (1986) and the Concorde airplane crash (2000). Now the model has been applied to a larger and more diverse group of events - nuclear, non-nuclear and naturally caused disasters. To be comprehensive, old and recent events from various regions of the world were selected. A more robust news repository was used, and improved search techniques were developed to ensure that the scripts would not count false positive news. The same model was used but with improved non-linear embedded simulation optimization algorithms to generate the parameters of interest for our model. Individual parameters and some specific combination of them allow some interesting perceptions on how the nature of the accident / disaster gives rise to different profiles of growth and decay of the news. In our studies events involving nuclear causes generate news repercussion with more explosive / robust surge profiles and longer decaying tails than those of other natures. As a consequence of these differences, public opinion and policy makers are also much more sensitive to some issues than to others. The model, through its epidemiological parameters, shows in quantitative manner how 'nervous' the media content generators are with respect to nuclear installations and how resilient this negative feelings about nuclear is. (author)

  17. Nuclear coherences in photosynthetic reaction centers following light excitation

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S.; Norris, J.R. [Univ. of Chicago, IL (United States). Dept. of Chemistry; Berthold, T.; Ohmes, E.; Kothe, G. [Univ. of Freiburg (Germany). Dept. of Physical Chemistry; Thurnauer, M.C. [Argonne National Lab., IL (United States). Chemistry Div.

    1997-07-01

    Transient electron paramagnetic resonance is used to study the secondary radical pair in plant photosystem I. Nuclear coherences are observed in the transverse magnetization at lower temperatures following light excitation. Comparative studies of deuterated and deuterated {sup 15}N-substituted cyanobacteria S. lividus indicate assignment of these coherences to nitrogen nuclei in the primary donor and deuterons in the secondary acceptor. The modulation amplitude of a deuteron matrix line, as a function of the microwave power, reveals a distinct resonance behavior. The maximum amplitude is obtained when the Rabi frequency equals the nuclear Zeeman frequency.

  18. Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Sterpin, E. [Center of Molecular Imaging, Radiotherapy and Oncology, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels (Belgium); Sorriaux, J. [Center of Molecular Imaging, Radiotherapy and Oncology, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve (Belgium); Vynckier, S. [Center of Molecular Imaging, Radiotherapy and Oncology, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and Département de radiothérapie, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels (Belgium)

    2013-11-15

    Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for {sup 1}H and ICRU 63 data for {sup 12}C, {sup 14}N, {sup 16}O, {sup 31}P, and {sup 40}Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth

  19. Activation cross-sections of deuteron induced nuclear reactions on neodymium up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tárkányi, F.; Takács, S. [Institute for Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Ditrói, F., E-mail: ditroi@atomki.hu [Institute for Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Yamazaki, H.; Baba, M.; Mohammadi, A. [Cyclotron Radioisotope Center (CYRIC), Tohoku University, Sendai (Japan); Ignatyuk, A.V. [Institute of Physics and Power Engineering (IPPE), Obninsk (Russian Federation)

    2014-04-01

    Highlights: • Experimental excitation function of deuteron induced reactions on natural Nd. • Model code calculations with EMPIRE-D, ALICE-D and TALYS (TENDL-2012). • Physical yield calculation and comparison. • Discussion of medical and industrial applications. - Abstract: In the frame of a systematic study of activation cross sections of deuteron induced nuclear reactions on rare earths, the reactions on neodymium for production of therapeutic radionuclides were measured for the first time. The excitation functions of the {sup nat}Nd(d,x) {sup 151,150,149,148m,148g,146,144,143}Pm, {sup 149,147,139m}Nd, {sup 142}Pr and {sup 139g}Ce nuclear reactions were assessed by using the stacked foil activation technique and high resolution γ-spectrometry. The experimental excitation functions were compared to the theoretical predictions calculated with the modified model codes ALICE-IPPE-D and EMPIRE-II-D and with the data in the TENDL-2012 library based on latest version of the TALYS code. The application of the data in the field of medical isotope production and nuclear reaction theory is discussed.

  20. Connectionist and diffusion models of reaction time.

    Science.gov (United States)

    Ratcliff, R; Van Zandt, T; McKoon, G

    1999-04-01

    Two connectionist frameworks, GRAIN (J. L. McClelland, 1993) and brain-state-in-a-box (J. A. Anderson, 1991), and R. Ratcliff's (1978) diffusion model were evaluated using data from a signal detection task. Dependent variables included response probabilities, reaction times for correct and error responses, and shapes of reaction-time distributions. The diffusion model accounted for all aspects of the data, including error reaction times that had previously been a problem for all response-time models. The connectionist models accounted for many aspects of the data adequately, but each failed to a greater or lesser degree in important ways except for one model that was similar to the diffusion model. The findings advance the development of the diffusion model and show that the long tradition of reaction-time research and theory is a fertile domain for development and testing of connectionist assumptions about how decisions are generated over time.

  1. Chemical-reaction model for Mexican wave

    Science.gov (United States)

    Nagatani, Takashi

    2003-05-01

    We present a chemical-reaction model to describe the Mexican wave ( La Ola) in football stadia. The spectator's action is described in terms of chemical reactions. The model is governed by three reaction rates k 1, k 2, and k3. We study the nonlinear waves on one- and two-dimensional lattices. The Mexican wave is formulated as a clockwise forwardly propagating wave. Waves are growing or disappear, depending on the values of reaction rates. In the specific case of k1= k2= k3=1, the nonlinear-wave equation produces a propagating pulse like soliton.

  2. Quantifying lithium in the solid electrolyte interphase layer and beyond using Lithium- Nuclear Reaction Analysis technique

    Science.gov (United States)

    Schulz, Adam; Bakhru, Hassaram; DeRosa, Don; Higashiya, Seiichiro; Rane-Fondacaro, Manisha; Haldar, Pradeep

    2017-08-01

    Accurate knowledge of lithium content within the solid electrolyte interphase (SEI) layer and anode would significantly enhance the current understanding of the lithium ion battery (LIB) degradation mechanisms, enabling knowledge-based improvements in the technology. For the first time, we have demonstrated the capabilities of highly selective Lithium Nuclear Reaction Analysis (Li-NRA) as a non-destructive depth profiling technique for quantifying Li within the SEI and anode without accurate knowledge of the composition, which is unavailable with other depth profiling techniques. The Li-NRA technique detects the gamma radiation resulting from a nuclear reaction at characteristic resonance energy between an incident high-energy proton and Li. The intensity of γ-ray is directly proportional to the Li content, and the energy of the incident proton is increased stepwise to depth profile the sample. We performed Li-NRA on the carbonaceous negative electrodes of commercial LIB coin cells at varying states of charge (SOC) and states of health (SOH) conditions. We used three simple models for the composition of SEI and anode material to show concurrence between theoretical and experimental value for Li content at varying SOC conditions, estimated the average SEI layer thickness, and correlated the residual Li content within the SOH samples with electrochemical data.

  3. Ion beam analysis - development and application of nuclear reaction analysis methods, in particular at a nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeland, K.A.

    1996-11-01

    This thesis treats the development of Ion Beam Analysis methods, principally for the analysis of light elements at a nuclear microprobe. The light elements in this context are defined as having an atomic number less than approx. 13. The work reported is to a large extent based on multiparameter methods. Several signals are recorded simultaneously, and the data can be effectively analyzed to reveal structures that can not be observed through one-parameter collection. The different techniques are combined in a new set-up at the Lund Nuclear Microprobe. The various detectors for reaction products are arranged in such a way that they can be used for the simultaneous analysis of hydrogen, lithium, boron and fluorine together with traditional PIXE analysis and Scanning Transmission Ion Microscopy as well as photon-tagged Nuclear Reaction Analysis. 48 refs.

  4. Compositional change of some first wall materials by considering multiple step nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Tetsuji; Utsumi, Misako; Fujita, Mitsutane [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1997-03-01

    The conceptual system for nuclear material design is considered and some trials on WWW server with functions of the easily accessible simulation of nuclear reactions are introduced. Moreover, as an example of the simulation on the system using nuclear data, transmutation calculation was made for candidate first wall materials such as 9Cr-2W steel, V-5Cr-5Ti and SiC in SUS316/Li{sub 2}O/H{sub 2}O(SUS), 9Cr-2WLi{sub 2}O/H{sub 2}O(RAF), V alloy/Li/Be(V), and SiC/Li{sub 2}ZrO{sub 3}/He(SiC) blanket/shield systems based on ITER design model. Neutron spectrum varies with different blanket/shield compositions. The flux of low energy neutrons decreases in order of V-SiC-RAF-SUS blanket/shield systems. Fair amounts of W depletion in 9Cr-2W steel and the increase of Cr content in V-5Cr-5Ti were predicted in SUS or RAF systems. Concentration change in W and Cr is estimated to be suppressed if Li coolant is used in place of water. Helium and hydrogen production are not strongly affected by the different blanket/shield compositions. (author)

  5. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    Science.gov (United States)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; Strydom, Gerhard; Windes, William E.

    2017-09-01

    For the next generation of nuclear reactors, HTGRs specifically, an unlikely air ingress warrants inclusion in the license applications of many international regulators. Much research on oxidation rates of various graphite grades under a number of conditions has been undertaken to address such an event. However, consequences to the reactor result from the microstructural changes to the graphite rather than directly from oxidation. The microstructure is inherent to a graphite's properties and ultimately degradation to the graphite's performance must be determined to establish the safety of reactor design. To understand the oxidation induced microstructural change and its corresponding impact on performance, a thorough understanding of the reaction system is needed. This article provides a thorough review of the graphite-molecular oxygen reaction in terms of kinetics, mass and energy transport, and structural evolution: all three play a significant role in the observed rate of graphite oxidation. These provide the foundations of a microstructurally informed model for the graphite-molecular oxygen reaction system, a model kinetically independent of graphite grade, and capable of describing both the observed and local oxidation rates under a wide range of conditions applicable to air-ingress.

  6. A Networks Approach to Modeling Enzymatic Reactions.

    Science.gov (United States)

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes.

  7. A method of analysing experimental data of nuclear reaction cross sections

    Institute of Scientific and Technical Information of China (English)

    FengJun; ShenWen-Qing

    1997-01-01

    A method of analysing experimental data of nuclear reaction cross sections σr induced by radioactive beam is described.It can be used in analysis of experimental unclear reaction cross section data obtained by Na-isopope radioactive beams on different targets.Neutron halo has not been found in these nuclei.

  8. Development of an inertial confinement fusion platform to study charged-particle-producing nuclear reactions relevant to nuclear astrophysics

    Science.gov (United States)

    Gatu Johnson, M.; Zylstra, A. B.; Bacher, A.; Brune, C. R.; Casey, D. T.; Forrest, C.; Herrmann, H. W.; Hohenberger, M.; Sayre, D. B.; Bionta, R. M.; Bourgade, J.-L.; Caggiano, J. A.; Cerjan, C.; Craxton, R. S.; Dearborn, D.; Farrell, M.; Frenje, J. A.; Garcia, E. M.; Glebov, V. Yu.; Hale, G.; Hartouni, E. P.; Hatarik, R.; Hohensee, M.; Holunga, D. M.; Hoppe, M.; Janezic, R.; Khan, S. F.; Kilkenny, J. D.; Kim, Y. H.; Knauer, J. P.; Kohut, T. R.; Lahmann, B.; Landoas, O.; Li, C. K.; Marshall, F. J.; Masse, L.; McEvoy, A.; McKenty, P.; McNabb, D. P.; Nikroo, A.; Parham, T. G.; Paris, M.; Petrasso, R. D.; Pino, J.; Radha, P. B.; Remington, B.; Rinderknecht, H. G.; Robey, H.; Rosenberg, M. J.; Rosse, B.; Rubery, M.; Sangster, T. C.; Sanchez, J.; Schmitt, M.; Schoff, M.; Séguin, F. H.; Seka, W.; Sio, H.; Stoeckl, C.; Tipton, R. E.

    2017-04-01

    This paper describes the development of a platform to study astrophysically relevant nuclear reactions using inertial-confinement fusion implosions on the OMEGA and National Ignition Facility laser facilities, with a particular focus on optimizing the implosions to study charged-particle-producing reactions. Primary requirements on the platform are high yield, for high statistics in the fusion product measurements, combined with low areal density, to allow the charged fusion products to escape. This is optimally achieved with direct-drive exploding pusher implosions using thin-glass-shell capsules. Mitigation strategies to eliminate a possible target sheath potential which would accelerate the emitted ions are discussed. The potential impact of kinetic effects on the implosions is also considered. The platform is initially employed to study the complementary T(t,2n)α, T(3He,np)α and 3He(3He,2p)α reactions. Proof-of-principle results from the first experiments demonstrating the ability to accurately measure the energy and yields of charged particles are presented. Lessons learned from these experiments will be used in studies of other reactions. The goals are to explore thermonuclear reaction rates and fundamental nuclear physics in stellar-like plasma environments, and to push this new frontier of nuclear astrophysics into unique regimes not reachable through existing platforms, with thermal ion velocity distributions, plasma screening, and low reactant energies.

  9. TORUS: Theory of Reactions for Unstable iSotopes.Topical Collaboration for Nuclear Theory Project. Period: June 1, 2010 - May 31, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Arbanas, Goran [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elster, Charlotte [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nunes, Filomena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-28

    The work of this collaboration during its existence is summarized. The mission of the TORUS Topical Collaboration was to develop new methods that advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct reaction calculations. This multi-institution collaborative effort was and remains directly relevant to three areas of interest: the properties of nuclei far from stability, microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory. The TORUS project focused on understanding the details of (d,p) reactions for neutron transfer to heavier nuclei. The bulk of the work fell into three areas: coupled channel theory, modeling (d,p) reactions with a Faddeev-AGS approach, and capture reactions.

  10. Deuteron Induced ( d,p) and ( d,2p) Nuclear Reactions up to 50 MeV

    Science.gov (United States)

    Yiğit, M.; Tel, E.; Kara, A.

    2013-06-01

    Many studies have shown that the nuclear reactions of charged particles with nuclei are very important in many fields of nuclear physics. The interactions of deuterons with nuclei have been especially the subject of common research in the history of nuclear physics. Moreover, the knowledge of cross section for deuteron-nucleus interactions are required for various application such as space applications, accelerator driven sub-critical systems, nuclear medicine, nuclear fission reactors and controlled thermonuclear fusion reactors. Particularly, the future of controlled thermonuclear fusion reactors is largely dependent on the nuclear reaction cross section data and the selection of structural fusion materials. Finally, the reaction cross section data of deuteron induced reactions on fusion structural materials are of great importance for development and design of both experimental and commercial fusion devices. In this work, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as Al ( Aluminium), Ti ( Titanium), Cu ( Copper), Ni ( Nickel), Co ( Cobalt), Fe ( Iron), Zr ( Zirconium), Hf ( Hafnium) and Ta ( Tantalum) have been investigated. The new calculations on the excitation functions of 27 Al( d,2p) 27 Mg, 47 Ti( d,2p) 47 Sc, 65 Cu( d,2p) 65 Ni, 58 Ni( d,2p) 58 Co, 59 Co( d,2p) 59 Fe, 58 Fe( d,p) 59 Fe, 96 Zr( d,p) 97 Zr, 180 Hf ( d,p) 181 Hf and 181 Ta( d,p) 182 Ta have been carried out for incident deuteron energies up to 50 MeV. In these calculations, the equilibrium and pre-equilibrium effects for ( d,p) and ( d,2p) reactions have been investigated. The equilibrium effects are calculated according to the Weisskopf-Ewing ( WE) Model. The pre-equilibrium calculations involve the new evaluated the Geometry Dependent Hybrid Model ( GDH) and Hybrid Model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the

  11. Kinetics of Model Reactions for Interfacial Polymerization

    Directory of Open Access Journals (Sweden)

    Henry Hall

    2012-02-01

    Full Text Available To model the rates of interfacial polycondensations, the rates of reaction of benzoyl chloride and methyl chloroformate with various aliphatic monoamines in acetonitrile were determined at 25 °C. Buffering with picric acid slowed these extremely fast reactions so the rate constants could be determined from the rate of disappearance of picrate ion. The rates of the amine reactions correlated linearly with their Swain-Scott nucleophilicities.

  12. Sensitivity of (d,p) reactions to high n-p momenta and the consequences for nuclear spectroscopy studies

    CERN Document Server

    Bailey, G W; Tostevin, J A

    2016-01-01

    Theoretical models of low-energy (d,p) single-neutron transfer reactions are a crucial link between experimentation, nuclear structure and nuclear astrophysical studies. Whereas reaction models that use local optical potentials are insensitive to short-range physics in the deuteron, we show that including the inherent nonlocality of the nucleon-target interactions and realistic deuteron wave functions generates significant sensitivity to high n-p relative momenta and to the underlying nucleon-nucleon interaction. We quantify this effect upon the deuteron channel distorting potentials within the framework of the adiabatic deuteron breakup model. The implications for calculated (d,p) cross sections and spectroscopic information deduced from experiments are discussed.

  13. LDRD Final Report: Surrogate Nuclear Reactions and the Origin of the Heavy Elements (04-ERD-057)

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Bernstein, L A; Bleuel, D; Burke, J; Church, J A; Dietrich, F S; Forssen, C; Gueorguiev, V; Hoffman, R D

    2007-02-23

    Research carried out in the framework of the LDRD project ''Surrogate Nuclear Reactions and the Origin of the Heavy Elements'' (04-ERD-057) is summarized. The project was designed to address the challenge of determining cross sections for nuclear reactions involving unstable targets, with a particular emphasis on reactions that play a key role in the production of the elements between Iron and Uranium. This report reviews the motivation for the research, introduces the approach employed to address the problem, and summarizes the resulting scientific insights, technical findings, and related accomplishments.

  14. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    Science.gov (United States)

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, S. D.; Peters, W. A.; Adekola, A.; Allen, J.; Bardayan, D. W.; Becker, J. A.; Blackmon, J. C.; Chae, K. Y.; Chipps, K. A.; Erikson, L.; Gaddis, A.; Harlin, C.; Hatarik, R.; Howard, J.; Jandel, M.; Johnson, M. S.; Kapler, R.; Krolas, W.; Liang, F.; Livesay, R. J.; Ma, Z.; Matei, C.; Matthews, C.; Moazen, B.; Nesaraja, C. D.; O'Malley, P.; Patterson, N.; Paulauskas, S. V.; Pelham, T.; Pittman, S. T.; Radford, D.; Rogers, J.; Schmitt, K.; Shapira, D.; Shriner, J. F.; Sissom, D. J.; Smith, M. S.; Swan, T.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, G. L.

    2009-03-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on 130,132Sn, 134Te and 75As are discussed.

  15. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J. A. [Rutgers University; Jones, K. L. [University of Tennessee; Kozub, R. L. [Tennessee Technological University; Pain, Steven D [ORNL; Peters, W. A. [Rutgers University; Adekola, Aderemi S [ORNL; Allen, J. [Rutgers University; Bardayan, Daniel W [ORNL; Becker, J. [Lawrence Livermore National Laboratory (LLNL); Blackmon, Jeff C [ORNL; Chae, K. Y. [University of Tennessee; Chipps, K. [Colorado School of Mines, Golden; Erikson, Luke [Colorado School of Mines, Golden; Gaddis, A. L. [Furman University; Harlin, Christopher W [ORNL; Hatarik, Robert [Rutgers University; Howard, Joshua A [ORNL; Jandel, M. [Los Alamos National Laboratory (LANL); Johnson, Micah [ORNL; Kapler, R. [University of Tennessee; Krolas, W. [University of Warsaw; Liang, J Felix [ORNL; Livesay, Jake [ORNL; Ma, Zhanwen [ORNL; Matei, Catalin [Oak Ridge Associated Universities (ORAU); Matthews, C. [Rutgers University; Moazen, Brian [University of Tennessee; Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Patterson, N. P. [University of Surrey, UK; Paulauskas, Stanley [University of Tennessee; Pelham, T. [University of Surrey, UK; Pittman, S. T. [University of Tennessee, Knoxville (UTK); Radford, David C [ORNL; Rogers, J. [Tennessee Technological University; Schmitt, Kyle [University of Tennessee; Shapira, Dan [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Sissom, D. J. [Tennessee Technological University; Smith, Michael Scott [ORNL; Swan, T. P. [University of Surrey, UK; Thomas, J. S. [Rutgers University; Vieira, D. J. [Los Alamos National Laboratory (LANL); Wilhelmy, J. B. [Los Alamos National Laboratory (LANL); Wilson, Gemma L [ORNL

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  16. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    Science.gov (United States)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  17. A Full Disturbance Model for Reaction Wheels

    NARCIS (Netherlands)

    Le, M.P.; Ellenbroek, Marcellinus Hermannus Maria; Seiler, R; van Put, P.; Cottaar, E.J.E.

    2014-01-01

    Reaction wheels are rotating devices used for the attitude control of spacecraft. However, reaction wheels also generate undesired disturbances in the form of vibrations, which may have an adverse effect on the pointing accuracy and stability of spacecraft (optical) payloads. A disturbance model for

  18. Modeling of turbulent chemical reaction

    Science.gov (United States)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  19. Nuclear chemistry model of borated fuel crud

    Energy Technology Data Exchange (ETDEWEB)

    Sawicki, J.A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    2002-07-01

    Fuel crud deposits on Callaway Cycle 9 once-burnt high-axial offset anomaly (AOA {approx} -15%) feed assemblies revealed a complex 4-phase matted-layered morphology of a new type that is uncommon in pressurized water reactors [1-3]. The up to 140-{open_square}m-thick crud flakes consisted predominantly of insoluble needle-like particles of Ni-Fe oxy-borate Ni{sub 2}FeBO{sub 5} (bonaccordite) and granular precipitates of m-ZrO{sub 2} (baddeleyite), along with nickel oxide NiO (bunsenite) and minor amount of nickel ferrite NiFe{sub 2}O{sub 4} (trevorite). Furthermore, boron in crud flakes showed that the concentration of {sup 10}B had depleted to 10.2{+-}0.2%, as compared to its 20% natural isotopic abundance and its 17% end-of-cycle abundance in bulk coolant. The form and depth distribution of Ni{sub 2}FeBO{sub 5} and m-ZrO{sub 2} precipitates, as well as substantial {sup 10}B burn-up, point to a strongly alkaline environment at the clad surface of the high-duty fuel rods. This paper extends a nuclear chemistry model of heavily borated fuel crud deposits. The paper shows that the local nuclear heat and lithium buildup from {sup 10}B(n,{open_square}){sup 7}Li reactions may help to create hydrothermal and chemical conditions within the crud layer in favor of Ni{sub 2}FeBO{sub 5} formation and a ZrO{sub 2} dissolution-reprecipitation mechanism. Consistent with the model, the hydrothermal formation of Ni{sub 2}FeBO{sub 5} needles was recently proved to be possible in laboratory tests with aqueous NiO-Fe{sub 2}O{sub 3}-H{sub 3}BO{sub 3}-LiOH slurries, at temperatures only slightly exceeding 400 C. (author)

  20. The role of nuclear reactions in Monte Carlo calculations of absorbed and biological effective dose distributions in hadron therapy

    CERN Document Server

    Brons, S; Elsässer, T; Ferrari, A; Gadioli, E; Mairani, A; Parodi, K; Sala, P; Scholz, M; Sommerer, F

    2010-01-01

    Monte Carlo codes are rapidly spreading among hadron therapy community due to their sophisticated nuclear/electromagnetic models which allow an improved description of the complex mixed radiation field produced by nuclear reactions in therapeutic irradiation. In this contribution results obtained with the Monte Carlo code FLUKA are presented focusing on the production of secondary fragments in carbon ion interaction with water and on CT-based calculations of absorbed and biological effective dose for typical clinical situations. The results of the simulations are compared with the available experimental data and with the predictions of the GSI analytical treatment planning code TRiP.

  1. Isospin transport and reaction mechanism in nuclear reactions in the range 20–40 MeV/n

    Energy Technology Data Exchange (ETDEWEB)

    Barlini, S., E-mail: barlini@fi.infn.it; Piantelli, S.; Casini, G.; Olmi, A.; Bini, M.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Valdré, S.; Pastore, G. [Dipartimento di Fisica ed Astronomia dell’Università and INFN Sezione di Firenze, Firenze (Italy); Bougault, R.; Lopez, O.; Le Neindre, N.; Parlog, M.; Vient, E. [LPC, IN2P3-CNRS, ENSICAEN et Université de Caen, F-14050 Caen-Cedex (France); Bonnet, E.; Chibhi, A.; Frankland, J. D. [GANIL, CEA/DSM-CNRS/IN2P3, B.P.5027, F-14076 Caen cedex (France); Borderie, B.; Rivet, M. F. [Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud 11, F-91406 Orsay cedex (France); and others

    2015-10-15

    In recent years, many efforts have been devoted to the investigation of the isospin degree of freedom in nuclear reactions. Comparing systems involving partners with different N/Z, it has been possible to investigate the isospin transport process and its influence on the final products population. This can be then related to the symmetry energy term of the nuclear EOS. From the experimental point of view, this task requires detectors able to measure both charge and mass of the emitted products, in the widest possible range of energy and size of the fragments. With this objective, the FAZIA and GARFIELD+RCo apparatus have been used with success in some recent experiments.

  2. Isospin transport and reaction mechanism in nuclear reactions in the range 20-40 MeV/n

    Science.gov (United States)

    Barlini, S.; Piantelli, S.; Casini, G.; Olmi, A.; Bini, M.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Bougault, R.; Bonnet, E.; Borderie, B.; Chibhi, A.; Frankland, J. D.; Gruyer, D.; Lopez, O.; Le Neindre, N.; Parlog, M.; Rivet, M. F.; Vient, E.; Rosato, E.; Vigilante, M.; Bruno, M.; Marchi, T.; Morelli, L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Kozik, T.; Twarog, T.; Fabris, D.; Valdré, S.; Pastore, G.

    2015-10-01

    In recent years, many efforts have been devoted to the investigation of the isospin degree of freedom in nuclear reactions. Comparing systems involving partners with different N/Z, it has been possible to investigate the isospin transport process and its influence on the final products population. This can be then related to the symmetry energy term of the nuclear EOS. From the experimental point of view, this task requires detectors able to measure both charge and mass of the emitted products, in the widest possible range of energy and size of the fragments. With this objective, the FAZIA and GARFIELD+RCo apparatus have been used with success in some recent experiments.

  3. A Semi-Classical Model to Study Nuclear Fragmentation

    Science.gov (United States)

    Navarro, Martha; Chernomoretz, Ariel; Dorso, Claudio; Lopez, Jorge

    1999-10-01

    A semi-classical model based on the use of molecular dynamics has been developed for the study of heavy-ion reactions at intermediate energies. The model reproduces nucleon-nucleon cross sections through the use of a two-body potential. The study covers several characteristics of heavy-ion collisions, such as formation of necks, and formation of intermediate residue. Preliminary results on the use of the model to study the caloric curve of nuclear matter and the temperature evolution of the system are also discussed.

  4. Evaluation of the nuclear cross section variance-covariance matrices issued from the nuclear optical model; Evaluation des matrices de variance-covariance des sections efficaces nucleaires issues du modele optique

    Energy Technology Data Exchange (ETDEWEB)

    Brassart, M. [Ecole Nationale Superieure Ingenieurs de Bourges, 18 - Bourges (France); Mounier, C. [CEA Saclay, Dir. de l' Energie Nucleaire DEN, Service d' Etudes des Reacteurs et de Modelisation Avancee, 91 - Gif sur Yvette (France); Dossantos-Uzarralde, P. [CEA Bruyeres le Chatel, 91 (France). Dept. de Physique Theorique et Appliquee

    2004-07-01

    Nuclear reaction models play an important role in today's nuclear data evaluations. There are, however, difficulties associated with evaluating data uncertainties, both while performing the experimental measurements as well as constructing them by nuclear models. In this general context, our interest is particularly targeted towards the study of the propagation uncertainties within nuclear models. In this report we discuss two distinct ways of calculating the nuclear cross section variance-covariance matrices and then show these can be applied to the nuclear spherical optical model. (authors)

  5. Ab initio nuclear structure and reactions with chiral three-body forces

    Energy Technology Data Exchange (ETDEWEB)

    Langhammer, Joachim; Roth, Robert; Calci, Angelo [Institut fuer Kernphysik - Theoriezentrum, TU Darmstadt (Germany); Navratil, Petr [TRIUMF, Vancouver (Canada)

    2014-07-01

    One major ambition of ab initio nuclear theory is the description of nuclear-structure and reaction observables on equal footing. This is accomplished by combining the no-core shell model (NCSM) with the resonating-group method (RGM) to a unified ab initio approach to bound and continuum states, which is developed further to the no-core shell model with continuum (NCSMC). We present the formal developments to include three-nucleon interactions in both the NCSM/RGM and NCSMC formalism. This provides the possibility to assess the predictive power of chiral two- and three-nucleon forces in the variety of scattering observables. We study three-nucleon force effects on phase-shifts, cross sections and analyzing powers in first ab-initio studies of nucleon-{sup 4}He scattering with chiral two- and three-nucleon forces. Finally, we focus on heavier target nuclei using the NCSMC, e.g., in neutron-{sup 8}Be scattering and study the impact of the continuum on the spectrum of {sup 9}Be.

  6. Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions

    CERN Document Server

    Guo, Ya-Fei; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing

    2016-01-01

    Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The mass splitting of $m^{*}_{n}>m^{*}_{p}$ and $m^{*}_{n}nuclear matter and the different stiffness of symmetry energy are used in the model. The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of $^{112}$Sn+$^{112}$Sn and $^{124}$Sn+$^{124}$Sn at the incident energies of 50 and 120 MeV/nucleon, respectively. It is found that the both effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). Specific constraints are obtained from the double ratio spectra, which are evaluated from the ratios of isospin observab...

  7. Microscopic nuclear models for astrophysics: The Brussels BRUSLIB nuclear library and beyond

    Science.gov (United States)

    Arnould, M.; Goriely, S.

    2006-10-01

    Astrophysics is in need of a broad variety of nuclear data. This concerns static ground state properties, characteristics of excited nuclei, spontaneous decay properties, or interactions of nuclei with (mainly) nucleons, α-particles or photons. A strong theoretical activity complementing laboratory efforts is also mandatory. A large variety of highly ‘exotic’ laboratory-unreachable nuclei are indeed involved in the astrophysics modelling. Even when laboratory-studied nuclei are considered, theory has very often to be called for. Mastering the huge volume of nuclear information and making it available in an accurate and usable form for incorporation into astrophysics models is clearly of pivotal importance. The recognition of this necessity has been the driving motivation for the construction of the Brussels library (BRUSLIB) of computed data of astrophysics relevance. It provides an extended information in tabular form on masses, nuclear level densities and partition functions, fission barriers, and thermonuclear reaction rates. In addition of the unprecedented broadness of its scope, BRUSLIB has the unique and most important feature of relying to the largest possible extent on global and coherent microscopic nuclear models. The models of this sort that we have developed to predict the basic properties of the nuclei and of their interactions are briefly reviewed. The content of the BRUSLIB library that relies on these models is described, as well as a user-friendly nuclear network generator (NETGEN) complementing BRUSLIB. Finally, an application of BRUSLIB and NETGEN to the p-process nucleosynthesis during He detonation in sub-Chandrasekhar CO white dwarfs is proposed.

  8. Microscopic nuclear models for astrophysics: The Brussels BRUSLIB nuclear library and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. [Institut d Astronomie et d Astrophysique, CP 226, Universite Libre de Bruxelles, 1050 Brussels (Belgium)]. E-mail: marnould@astro.ulb.ac.be; Goriely, S. [Institut d Astronomie et d Astrophysique, CP 226, Universite Libre de Bruxelles, 1050 Brussels (Belgium)

    2006-10-17

    Astrophysics is in need of a broad variety of nuclear data. This concerns static ground state properties, characteristics of excited nuclei, spontaneous decay properties, or interactions of nuclei with (mainly) nucleons, {alpha}-particles or photons. A strong theoretical activity complementing laboratory efforts is also mandatory. A large variety of highly 'exotic' laboratory-unreachable nuclei are indeed involved in the astrophysics modelling. Even when laboratory-studied nuclei are considered, theory has very often to be called for. Mastering the huge volume of nuclear information and making it available in an accurate and usable form for incorporation into astrophysics models is clearly of pivotal importance. The recognition of this necessity has been the driving motivation for the construction of the Brussels library (BRUSLIB) of computed data of astrophysics relevance. It provides an extended information in tabular form on masses, nuclear level densities and partition functions, fission barriers, and thermonuclear reaction rates. In addition of the unprecedented broadness of its scope, BRUSLIB has the unique and most important feature of relying to the largest possible extent on global and coherent microscopic nuclear models. The models of this sort that we have developed to predict the basic properties of the nuclei and of their interactions are briefly reviewed. The content of the BRUSLIB library that relies on these models is described, as well as a user-friendly nuclear network generator (NETGEN) complementing BRUSLIB. Finally, an application of BRUSLIB and NETGEN to the p-process nucleosynthesis during He detonation in sub-Chandrasekhar CO white dwarfs is proposed.

  9. Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions

    Science.gov (United States)

    Ejiri, H.; Frekers, D.

    2016-11-01

    Spin dipole (SD) strengths for double beta-decay (DBD) nuclei were studied experimentally for the first time by using measured cross sections of (3He, t) charge-exchange reactions (CERs). Then SD nuclear matrix elements (NMEs) {M}α ({{SD}}) for low-lying 2- states were derived from the experimental SD strengths by referring to the experimental α = GT (Gamow-Teller) and α = F (Fermi) strengths. They are consistent with the empirical NMEs M({{SD}}) based on the quasi-particle model with the empirical effective SD coupling constant. The CERs are used to evaluate the SD NME, which is associated with one of the major components of the neutrino-less DBD NME.

  10. Model Action Plan for Nuclear Forensics and Nuclear Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Dudder, G B; Niemeyer, S; Smith, D K; Kristo, M J

    2004-03-01

    Nuclear forensics and nuclear attribution have become increasingly important tools in the fight against illegal trafficking in nuclear and radiological materials. This technical report documents the field of nuclear forensics and nuclear attribution in a comprehensive manner, summarizing tools and procedures that have heretofore been described independently in the scientific literature. This report also provides national policy-makers, decision-makers, and technical managers with guidance for responding to incidents involving the interdiction of nuclear and radiological materials. However, due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. In fact, there are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Most of the laboratories that have the requisite equipment, personnel, and experience to perform nuclear forensic analysis are participants in the Nuclear Smuggling International Technical Working Group or ITWG (see Section 1.8). Consequently, there is a need to disseminate information on an appropriate response to incidents of nuclear smuggling, including a comprehensive approach to gathering evidence that meets appropriate legal standards and to developing insights into the source and routes of nuclear and radiological contraband. Appendix A presents a ''Menu of Options'' for other Member States to request assistance from the ITWG Nuclear Forensics Laboratories (INFL) on nuclear forensic cases.

  11. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    OpenAIRE

    P. B. Rose; Erickson, A. S.; Mayer, M; J. Nattress; Jovanovic, I.

    2016-01-01

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of act...

  12. Nuclear Transparency in a Relativistic Quark Model

    CERN Document Server

    Iwama, T; Yazaki, K; Iwama, Tetsu; Kohama, Akihisa; Yazaki, Koichi

    1998-01-01

    We examine the nuclear transparency for the quasi-elastic ($e, e'p$) process at large momentum transfers in a relativistic quantum-mechanical model for the internal structure of the proton, using a relativistic harmonic oscillator model. A proton in a nuclear target is struck by the incident electron and then propagates through the residual nucleus suffering from soft interactions with other nucleons. We call the proton "dynamical" when we take into account of internal excitations, and "inert" when we freeze it to the ground state. When the dynamical proton is struck with a hard (large-momentum transfer) interaction, it shrinks, i.e., small-sized configuration dominates the process. It then travels through nuclear medium as a time-dependent mixture of intrinsic excited states and thus changing its size. Its absorption due to the soft interactions with nuclear medium depends on its transverse-size. Since the nuclear transparency is a measure of the absorption strength, we calculate it in our model for the dyna...

  13. Experimental test of nuclear magnetization distribution and nuclear structure models

    Energy Technology Data Exchange (ETDEWEB)

    Beirsdorfer, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lopez-Urrutia, J Crespo R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Utter, S. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-02-26

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron' s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to

  14. Dynamical Behavior of Core 3 He Nuclear Reaction-Diffusion Systems and Sun's Gravitational Field

    Institute of Scientific and Technical Information of China (English)

    DU Jiulin; SHEN Hong

    2005-01-01

    The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analyses of the system are made in this paper by using the theory of nonequilibrium dynamics. It is showed that, in the nuclear reaction regions extending from the center to about 0.38 times of the radius of the sun, the gravitational field enables the core 3He nuclear reaction-diffusion system to become unstable and, after the instability, new states to appear in the system have characteristic of time oscillation. This may change the production rates of both 7Be and 8B neutrinos.

  15. Absorption-Fluctuation Theorem for Nuclear Reactions: Brink-Axel, Incomplete Fusion and All That

    CERN Document Server

    Hussein, M S

    2007-01-01

    We discuss the connection between absorption, averages and fluctuations in nuclear reactions. The fluctuations in the entrance channel result in the compound nucleus, Hauser-Feshbach, cross section, the fluctuations in the intermediate channels, result in modifications of multistep reaction cross sections, while the fluctuations in the final channel result in hybrid cross sections that can be used to describe incomplete fusion reactions. We discuss the latter in details and comment on the validity of the assumptions used in the develpoment of the Surrogate method. We also discuss the theory of multistep reactions with regards to intermediate state fluctuations and the energy dependence and non-locality of the intermediate channels optical potentials.

  16. Optimized $\\delta$ expansion for relativistic nuclear models

    CERN Document Server

    Krein, G I; Peres-Menezes, D; Nielsen, M; Pinto, M B

    1998-01-01

    The optimized $\\delta$-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. This technique is discussed in the $\\lambda \\phi^4$ model and then implemented in the Walecka model for the equation of state of nuclear matter. The results obtained with the $\\delta$ expansion are compared with those obtained with the traditional mean field, relativistic Hartree and Hartree-Fock approximations.

  17. Study of Nuclear Reactions with 11C and 15O Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwon [Univ. of California, Berkeley, CA (United States)

    2007-05-14

    Nuclear reaction study with radioactive ion beams is one of the most exciting research topics in modern nuclear physics. The development of radioactive ion beams has allowed nuclear scientists and engineers to explore many unknown exotic nuclei far from the valley of nuclear stability, and to further our understanding of the evolution of the universe. The recently developed radioactive ion beam facility at the Lawrence Berkeley National Laboratory's 88-inch cyclotron is denoted as BEARS and provides 11C, 14O and 15O radioactive ion beams of high quality. These moderate to high intensity, proton-rich radioactive ion beams have been used to explore the properties of unstable nuclei such as 12N and 15F. In this work, the proton capture reaction on 11C has been evaluated via the indirect d(11C, 12N)n transfer reaction using the inverse kinematics method coupled with the Asymptotic Normalization Coefficient (ANC) theoretical approach. The total effective 12N → 11C+p ANC is found to be (C eff12N = 1.83 ± 0.27 fm-1. With the high 11C beam intensity available, our experiment showed excellent agreement with theoretical predictions and previous experimental studies. This study also indirectly confirmed that the 11C(p,γ) reaction is a key step in producing CNO nuclei in supermassive low-metallicity stars, bypassing the slow triple alpha process. The newly developed 15O radioactive ion beam at BEARS was used to study the poorly known level widths of 16F via the p(15O,15O)p reaction. Among the nuclei in the A=16, T=1 isobaric triad, many states in 16N and 16O have been well established, but less has been reported on 16F. Four states of 16F below 1 MeV have been identified experimentally: 0-, 1

  18. Exclusive CHIPS-TPT algorithms for simulation of neutron-nuclear reactions

    Science.gov (United States)

    Kosov, Mikhail; Savin, Dmitriy

    2016-09-01

    The CHIPS-TPT physics library for simulation of neutron-nuclear reactions on the new exclusive level is being developed in CFAR VNIIA. The exclusive modeling conserves energy, momentum and quantum numbers in each neutron-nuclear interaction. The CHIPS-TPT algorithms are based on the exclusive CHIPS library, which is compatible with Geant4. Special CHIPS-TPT physics lists in the Geant4 format are provided. The calculation time for an exclusive CHIPS-TPT simulation is comparable to the time of the corresponding inclusive Geant4-HP simulation and much faster for mono-isotopic simulations. In addition to the reduction of the deposited energy fluctuations, which is a consequence of the energy conservation, the CHIPS-TPT libraries provide a possibility of simulation of the secondary particles correlation, e.g. secondary gammas or n-γ correlations, and of the Doppler broadening of the γ-lines in the simulated spectra, which can be measured by germanium detectors.

  19. Connexions for the nuclear geometrical collective model

    Science.gov (United States)

    Rosensteel, G.; Sparks, N.

    2015-11-01

    The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM(3), has two hidden mathematical structures, one group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new feature that this paper investigates in some detail. Using the de Rham Laplacian \\triangle =\\star d \\star d for the kinetic energy extends significantly the physical scope of the GCM(3) model. This Laplacian contains a ‘magnetic’ term due to the connexion between base manifold rotational and fibre vortex degrees of freedom. When the connexion specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator.

  20. Nuclear Reaction Rates in a Plasma The Effect of Highly Damped Modes

    CERN Document Server

    Opher, M; Opher, Merav; Opher, Reuven

    2000-01-01

    The fluctuation-dissipation theorem is used to evaluate the screening factor of nuclear reactions due to the electromagnetic fluctuations in a plasma. We show that the commonly used Saltpeter factor is obtained if only fluctuations near the plasma eigenfrequency are assumed to be important (\\omega \\sim \\omega_{pe}\\ll T (\\hbar=k_{B}=1)). By taking into account all the fluctuations, the highly damped ones, with \\omega >\\omega_{pe}, as well as those with \\omega\\leq\\omega_{pe}, we find that nuclear reaction rates are higher than those obtained using the Saltpeter factor, for many interesting plasmas.

  1. Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics

    CERN Document Server

    Kálmán, Péter

    2015-01-01

    The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted r...

  2. Euclidean resonance and a new type of nuclear reactions

    CERN Document Server

    Ivlev, B I

    2003-01-01

    The extremely small probability of quantum tunneling through an almost classical potential barrier may become not small under the action of the specially adapted nonstationary field. The tunneling rate has a sharp peak as a function of the particle energy when it is close to the certain resonant value defined by the nonstationary field (Euclidean resonance). Alpha decay of nuclei has a small probability since the alpha particle should tunnel through a very nontransparent Coulomb barrier. The incident proton, due to the Coulomb interaction with the tunneling alpha particle, plays the role of a nonstationary field which may result in Euclidean resonance in tunneling of the alpha particle. At the resonant proton energy, which is of the order of 0.2 Mev, the alpha particle escapes the nucleus and goes to infinity with no influence of the nuclear Coulomb barrier. The process is inelastic since the alpha particle releases energy and the proton gains it. This stimulation of alpha decay by a proton constitutes a new ...

  3. FOUNDATION OF NUCLEAR ALGEBRAIC MODELS

    Institute of Scientific and Technical Information of China (English)

    周孝谦

    1990-01-01

    Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.

  4. Organizational model of the nuclear sector

    Energy Technology Data Exchange (ETDEWEB)

    Metri, Paulo, E-mail: pmetri@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN/CGRC), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The Brazilian Constitution prohibits private investment in many activities of the Nuclear Industry. Right now, it is in progress a constitutional amendment that allows private companies to build and operate nuclear power plants of its own. This work rescues the historical reasons that led the Congress of 1988 to choose the State owned model for this sector. In addition, the arguments that are used to propose the present changes are repeated here. As indicated in INAC 2015 website, 'sustainable development is supported by three pillars: social, economic and environmental'. Thus, the organizational model to be adopted for the Nuclear Sector must meet these requirements. The official objectives of the energy sector, as set out in the law 9,478, are remembered. New objectives, better established, and also adapted to the electrical subsector, are shown. Besides the use of these objectives to choose the sources and related technologies for the electric generation, they also can be used as evaluation criteria to help in the decision process of the organizational model for the Nuclear Sector. Acting in this way, it is ensured that social, economic and environmental requirements are being attended. Finally, if the developed evaluation criteria are applied, the impacts of each organizational model can be analyzed and preliminary conclusion and recommendation can be made. (author)

  5. A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application

    OpenAIRE

    2012-01-01

    This paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations involving no reactions. Partial decomposition of the system of water quality constituent transport equations is performed via Gauss-Jordan column reduction of the reaction network by pivoting on equil...

  6. An Adaptive QSE-reduced Nuclear Reaction Network for Silicon Burning

    Science.gov (United States)

    Parete-Koon, Suzanne; Hix, W.; Thielemann, F.

    2008-03-01

    The nuclei of the "iron peak" are formed in massive stars shortly before core collapse and during their supernova outbursts as well as during thermonuclear supernovae. Complete and incomplete silicon burning during these events are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present an improvement on our hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. Because the size and membership of these groups vary as the temperature, density and electron faction change, achieving maximal efficiency requires dynamic adjustment of group number and membership. Toward this end, we are implementing a scheme beginning with a single QSE (NSE) group at appropriately high temperature, then progressing through 2, 3 and 4 group stages (with successively more independent variables) as temperature declines. This combination allows accurate prediction of the nuclear abundance evolution, deleptonization and energy generation at a further reduced computational cost when compared to a conventional nuclear reaction network or our previous 3 fixed group QSE-reduced network. During silicon burning, the resultant QSE-reduced network is up to 20 times faster than the full network it replaces without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications. This work has been supported by the National Science Foundation, by the Department of Energy's Scientic Discovery through Advanced Computing

  7. Ranking the importance of nuclear reactions for activation and transmutation events

    CERN Document Server

    Arter, Wayne; Relton, Samuel D; Higham, Nicholas J

    2015-01-01

    Pathways-reduced analysis is one of the techniques used by the Fispact-II nuclear activation and transmutation software to study the sensitivity of the computed inventories to uncertainties in reaction cross-sections. Although deciding which pathways are most important is very helpful in for example determining which nuclear data would benefit from further refinement, pathways-reduced analysis need not necessarily define the most critical reaction, since one reaction may contribute to several different pathways. This work examines three different techniques for ranking reactions in their order of importance in determining the final inventory, viz. a pathways based metric (PBM), the direct method and one based on the Pearson correlation coefficient. Reasons why the PBM is to be preferred are presented.

  8. Azimuthal anisotropies as stringent test for nuclear transport models

    Science.gov (United States)

    Crochet, P.; Rami, F.; Donà, R.; Coffin, J. P.; Fintz, P.; Guillaume, G.; Jundt, F.; Kuhn, C.; Roy, C.; de Schauenburg, B.; Tizniti, L.; Wagner, P.; Alard, J. P.; Andronic, A.; Basrak, Z.; Bastid, N.; Belyaev, I.; Bendarag, A.; Berek, G.; Best, D.; Biegansky, J.; Buta, A.; Čaplar, R.; Cindro, N.; Dupieux, P.; Dželalija, M.; Fan, Z. G.; Fodor, Z.; Fraysse, L.; Freifelder, R. P.; Gobbi, A.; Herrmann, N.; Hildenbrand, K. D.; Hong, B.; Jeong, S. C.; Kecskemeti, J.; Kirejczyk, M.; Koncz, P.; Korolija, M.; Kotte, R.; Lebedev, A.; Leifels, Y.; Manko, V.; Moisa, D.; Mösner, J.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Reisdorf, W.; Ritman, J. L.; Sadchikov, A. G.; Schüll, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczyńska, K.; Sodan, U.; Teh, K. M.; Trzaska, M.; Wang, G. S.; Wessels, J. P.; Wienold, T.; Wisniewski, K.; Wohlfarth, D.; Zhilin, A.; Hartnack, C.; FOPI Collaboration

    1997-02-01

    Azimuthal distributions of charged particles and intermediate mass fragments emitted in Au+Au collisions at 600 A MeV have been measured using the FOPI facility at GSI-Darmstadt. Data show a strong increase of the in-plane azimuthal anisotropy ratio with the charge of the detected fragment. Intermediate mass fragments are found to exhibit a strong momentum-space alignment with respect of the reaction plane. The experimental results are presented as a function of the polar centre-of-mass angle and over a broad range of impact parameters. They are compared to the predictions of the Isospin Quantum Molecular Dynamics model using three different parametrisations of the equation of state. We show that such highly accurate data provide stringent test for microscopic transport models and can potentially constrain separately the stiffness of the nuclear equation of state and the momentum dependence of the nuclear interaction.

  9. The s Process: Nuclear Physics, Stellar Models, Observations

    CERN Document Server

    Kaeppeler, Franz; Bisterzo, Sara; Aoki, Wako

    2010-01-01

    Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear...

  10. Nuclear Level Density: Shell Model vs Mean Field

    CERN Document Server

    Sen'kov, Roman

    2015-01-01

    The knowledge of the nuclear level density is necessary for understanding various reactions including those in the stellar environment. Usually the combinatorics of Fermi-gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from the conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally...

  11. Activation cross-sections of deuteron induced nuclear reactions on gold up to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tarkanyi, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Ditroi, F., E-mail: ditroi@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Takacs, S.; Kiraly, B. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Yamazaki, H.; Baba, M.; Mohammadi, A. [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai (Japan); Ignatyuk, A.V. [Institute of Physics and Power Engineering (IPPE), Obninsk (Russian Federation)

    2011-06-15

    Cross-sections of deuteron induced nuclear reactions on gold were measured up to 40 MeV by using the standard stacked foil irradiation technique and high resolution gamma-ray spectroscopy. Experimental cross-sections and derived integral yields are reported for the {sup 197}Au(d,xn){sup 197m,197g,195m,195g}Hg and {sup 197}Au(d,x){sup 198g,196m,196g,195,194}Au nuclear reactions. The experimental data are analyzed and compared to literature and predictions of the ALICE-IPPE, EMPIRE and TALYS theoretical model codes. The application of the new cross-sections for accelerator technology, medical radioisotope production, thin layer activation and dose calculation is discussed.

  12. Curing Reaction Model of Epoxy Asphalt Binder

    Institute of Scientific and Technical Information of China (English)

    QIAN Zhendong; CHEN Leilei; WANG Yaqi; SHEN Jialin

    2012-01-01

    In order to understand the strength developing law of the epoxy asphalt mixture,a curing reaction model of the epoxy asphalt binder was proposed based upon the thermokinetic analysis.Given some assumptions,the model was developed by applying the Kissinger law as well as Arrhenius equation,and the differential scanning calorimetry was performed for estimating the model parameters.To monitor the strength development of the epoxy asphalt mixture,a strength test program was employed and then results were compared to those produced from the proposed model.The comparative evaluation shows that a good consistency exists between the outputs from test program and the proposed model,indicating that the proposed model can be used effectively for simulating the curing reaction process for the epoxy asphalt binder and predicting the strength development for the epoxy asphalt mixture.

  13. Nonlinear control of the Salnikov model reaction

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...... and Control Lyapunov Functions (CLF's). The results show that based on the lowest possible cost function and shortest settling time, the exact linearisation performs marginally better than the other methods....

  14. Dynamical Model of Weak Pion Production Reactions

    CERN Document Server

    Sato, T; Lee, T S H

    2003-01-01

    The dynamical model of pion electroproduction has been extended to investigate the weak pion production reactions. The predicted cross sections of neutrino-induced pion production reactions are in good agreement with the existing data. We show that the renormalized(dressed) axial N-$\\Delta$ form factor contains large dynamical pion cloud effects and this renormalization effects are crucial in getting agreement with the data. We conclude that the N-$\\Delta$ transitions predicted by the constituent quark model are consistent with the existing neutrino induced pion production data in the $\\Delta$ region.

  15. Nuclear Structure Functions from Constituent Quark Model

    CERN Document Server

    Arash, F; Arash, Firooz; Atashbar-Tehrani, Shahin

    1999-01-01

    We have used the notion of the constituent quark model of nucleon, where a constituent quark carries its own internal structure, and applied it to determine nuclear structure functions ratios. It is found that the description of experimental data require the inclusion of strong shadowing effect for $x<0.01$. Using the idea of vector meson dominance model and other ingredients this effect is calculated in the context of the constituent quark model. It is rather striking that the constituent quark model, used here, gives a good account of the data for a wide range of atomic mass number from A=4 to A=204.

  16. Combinatorial nuclear level-density model

    Energy Technology Data Exchange (ETDEWEB)

    Moller, Peter [Los Alamos National Laboratory; Aberg, Sven [LUND SWEDEN; Uhrenhoit, Henrik [LUND SWEDEN; Ickhikawa, Takatoshi [RIKEN

    2008-01-01

    A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: neutron separation energy level spacings, data on total level-density functions from the Oslo method and data on parity ratios.

  17. Nuclear and hadronic reaction mechanisms producing spin asymmetry

    Indian Academy of Sciences (India)

    Ken-Ichi Kubo

    2001-08-01

    We briefly review concept of the quark recombination (QRC) model and a general success of the model. To solve the existing problem, so called anomalous spin observables, in the high energy hyperon spin phenomena, we propose a mechanism; the primarily produced quarks, which are predominantly and quarks, act as the leading partons to form the hyperons. Extension of the quark recombination concept with this mechanism is successful in providing a good account of the anomalous spin observables. Another kind of anomaly, the non-zero analysing power and spin depolarization in the hyperon productions, are also discussed and well understood by the presently proposed mechanism. Recently, a further difficulty was observed in an exclusive K+ production and we will indicate a possible diagram for resolving it.

  18. Open Problems in Applying Random-Matrix Theory to Nuclear Reactions

    CERN Document Server

    Weidenmueller, H A

    2014-01-01

    Problems in applying random-matrix theory (RMT) to nuclear reactions arise in two domains. To justify the approach, statistical properties of isolated resonances observed experimentally must agree with RMT predictions. That agreement is less striking than would be desirable. In the implementation of the approach, the range of theoretically predicted observables is too narrow.

  19. Open problems in applying random-matrix theory to nuclear reactions

    Science.gov (United States)

    Weidenmüller, H. A.

    2014-09-01

    Problems in applying random-matrix theory (RMT) to nuclear reactions arise in two domains. To justify the approach, statistical properties of isolated resonances observed experimentally must agree with RMT predictions. That agreement is less striking than would be desirable. In the implementation of the approach, the range of theoretically predicted observables is too narrow.

  20. Nuclear reactions in astrophysics: Recent experimental and theoretical studies, and further quests

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. (Inst. d' Astronomie et d' Astrophysique, Univ. Libre, Brussels (Belgium))

    1992-03-09

    A brief review is presented of recent theoretical and experimental efforts that have led to an improvement in our knowledge of nuclear reaction rates of interest in astrophysics. Emphasis is also put on the still existing (sometimes very large) uncertainties that affect some important rates. This is especially the case when short-lived nuclei are involved in the entrance channel. (orig.).

  1. Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart: Web Report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blackmon, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elster, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Launey, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scielzo, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-12

    Recent years have seen exciting new developments and progress in nuclear structure theory, reaction theory, and experimental techniques, that allow us to move towards a description of exotic systems and environments, setting the stage for new discoveries. The purpose of the 5-week program was to bring together physicists from the low-energy nuclear structure and reaction communities to identify avenues for achieving reliable and predictive descriptions of reactions involving nuclei across the isotopic chart. The 4-day embedded workshop focused on connecting theory developments to experimental advances and data needs for astrophysics and other applications. Nuclear theory must address phenomena from laboratory experiments to stellar environments, from stable nuclei to weakly-bound and exotic isotopes. Expanding the reach of theory to these regimes requires a comprehensive understanding of the reaction mechanisms involved as well as detailed knowledge of nuclear structure. A recurring theme throughout the program was the desire to produce reliable predictions rooted in either ab initio or microscopic approaches. At the same time it was recognized that some applications involving heavy nuclei away from stability, e.g. those involving fi ssion fragments, may need to rely on simple parameterizations of incomplete data for the foreseeable future. The goal here, however, is to subsequently improve and refine the descriptions, moving to phenomenological, then microscopic approaches. There was overarching consensus that future work should also focus on reliable estimates of errors in theoretical descriptions.

  2. Suppression of the chain nuclear fusion reaction based on the p+{sup 11}B reaction because of the deceleration of alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Shmatov, M. L., E-mail: M.Shmatov@mail.ioffe.ru [Ioffe Institute (Russian Federation)

    2016-09-15

    It is shown that a rapid deceleration of alpha particles in matter of electron temperature up to 100 keV leads a strong suppression of the chain nuclear fusion reaction on the basis of the p+{sup 11}B reaction with the reproduction of fast protons in the α+{sup 11}B and n+{sup 10}B reactions. The statement that the chain nuclear fusion reaction based on the p+{sup 11}B reaction with an acceleration of {sup 11}B nuclei because of elastic alpha-particle scattering manifests itself in experiments at the PALS (Prague Asterix Laser System) facility is analyzed.

  3. Triple nuclear reactions (d, n) in laser-generated plasma from deuterated targets

    Science.gov (United States)

    Torrisi, Lorenzo; Cutroneo, Mariapompea

    2017-06-01

    Measurements performed at Prague Asterix Laser System laboratory have permitted to study nuclear reactions in plasma produced by high intensity laser pulses (1016 W/cm2) accelerating high energetic ions. In particular, the laser irradiation of deuterated polyethylene (CD2) primary target, as thin foils, has produced the ion acceleration of C and D ions, and the presence of a thick LiD secondary target has produced nuclear reaction events due to the deuteron-deuteron, deuterons-lithium, and deuteron-carbon interactions. Fast and slow neutrons have been obtained mainly from the nuclear reactions 7Li(d, n)8Be, 2H(d, n)3He, and 12C(d, n)13N. Plasma monitoring and measurements of kinetic energies of produced particles in different directions were obtained using many detectors. The analyses were based on a semiconductor time-of-flight technique, an electric and magnetic ion deflection in a Thomson spectrometer, and ion track detectors. The maximum yields of neutrons produced in the used experimental conditions were evaluated to be about 4 × 108 and 3 × 108 neutrons/laser shot at energies of 14 MeV and 2.4 MeV, from the D-Li and D-D reactions, respectively, while the production of low energy neutrons from the third D-C reaction was negligible.

  4. Nuclear reactions with 11C and 14O radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fanqing

    2004-12-09

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z

  5. Investigating resonances above and below the threshold in nuclear reactions of astrophysical interest and beyond

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M., E-mail: lacognata@lns.infn.it [Laboratori Nazionali del Sud - INFN, Catania (Italy); Kiss, G. G. [ATOMKI, Debrecen (Hungary); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A& M University, College Station, Texas (United States); Spitaleri, C. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Department of Physics and Astronomy, University of Catania, Catania (Italy); Trippella, O. [Sezione di Perugia - INFN, Perugia (Italy)

    2015-10-15

    Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization to direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.

  6. Kinetic modeling of reactions in Foods

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2008-01-01

    The level of quality that food maintains as it travels down the production-to-consumption path is largely determined by the chemical, biochemical, physical, and microbiological changes that take place during its processing and storage. Kinetic Modeling of Reactions in Foods demonstrates how to effec

  7. Activation cross sections of α-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: production of ¹⁷⁸W/(178m)Ta generator.

    Science.gov (United States)

    Tárkányi, F; Takács, S; Ditrói, F; Hermanne, A; Ignatyuk, A V; Uddin, M S

    2014-09-01

    In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of (178m)Ta through (nat)Hf(α,xn)(178)W-(178m)Ta nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions (nat)Hf(α,x)(179,177,176,175)W, (183,182,178g,177,176,175)Ta, (179m,177m,175)Hf were also assessed. Stacked foil irradiation technique and γ-ray spectrometry were used. New experimental cross section data for the (nat)Ta(d,xn)(178)W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and ((3)He,x)) production routes for (178)W. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Low-energy heavy-ion reactions: a link between nuclear structure and reaction dynamics

    CERN Document Server

    Corradi, L; Beghini, S; Lin, C J; Montagnoli, G; Pollarolo, G; Scarlassara, F; Segato, G F; Stefanini, A M; Zheng, L F

    1999-01-01

    High precision data recently obtained in the study of multinucleon transfer and sub-barrier fusion reactions at LNL are presented. The studies of transfer channels in the systems sup 4 sup 0 sup , sup 4 sup 8 Ca+ sup 1 sup 2 sup 4 Sn and sup 6 sup 4 Ni+ sup 2 sup 3 sup 8 U revealed important effects not identified in the past, and demonstrated the possibility of a quantitative understanding of the role played by the various degrees of freedom in the reaction mechanism. Evidence of their influence on the fusion enhancements seem to show-up in the systems sup 4 sup 0 Ca+ sup 1 sup 2 sup 4 sup , sup 1 sup 1 sup 6 Sn and sup 4 sup 0 Ca+ sup 9 sup 0 sup , sup 9 sup 6 Zr, but, in general, the data still escape a consistent treatment.

  9. Reaction dynamics and nuclear structure of moderately neutron-rich Ne isotopes by heavy ion reactions

    Directory of Open Access Journals (Sweden)

    Bottoni S.

    2014-03-01

    Full Text Available The heavy ion reaction 22Ne+208Pb at 128 MeV of bombarding energy has been studied using the PRISMA-CLARA experimental setup at Legnaro National Laboratories. Elastic, inelastic and one nucleon transfer cross sections have been measured. The experimental results are presented in parallel with the analysis on existing data for the unstable 24Ne nucleus, from the reaction 24Ne+208Pb at 182 MeV (measured at SPIRAL with the VAMOS-EXOGAM setup. The β2C charge deformation parameter for both 22Ne and 24Ne has been determined by a DWBA analysis of the experimental angular dis- tributions, showing a strong reduction for 24Ne.

  10. Quasi-elastic reactions: an interplay of reaction dynamics and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Szilner, S; Jelavic-Malenica, D; Mijatovic, T; Soic, N [Ruder Botkovic Institute and University of Zagreb, Zagreb (Croatia); Corradi, L; Fioretto, E; Gadea, A; Mengoni, D; Stefanini, A M; Valiente-Dobon, J J [INFN - Laboratori Nazionali di Legnaro, Legnaro (Italy); Pollarolo, G [INFN and Universita di Torino (Italy); Beghini, S; Farnea, E; Lunardi, S; Montagnoli, G; Scarlassara, F; Ur, C A [INFN and Universita di Padova, Padova (Italy); Courtin, S; Haas, F; Lebhertz, D, E-mail: szilner@irb.hr [IPHC, CNRS/IN2P3 and Universite de Strasbourg, Strasbourg (France)

    2011-02-01

    The revival of transfer reaction studies benefited from the construction of the new generation large solid angle spectrometers based on trajectory reconstruction that reached an unprecedented efficiency and selectivity. The coupling of these spectrometers with large {gamma} arrays allowed the identification of individual excited states, their population pattern and decay modes via particle-{gamma} coincidences. In the present paper aspects of fragment-{gamma} coincidence studies measured with the Prisma-Clara set up in {sup 40}Ca+{sup 96}Zr and {sup 40}Ar+{sup 208}Pb are discussed. In particular, we report about states of particle-phonon character, supporting the idea that the relevant degrees of freedom acting in the reaction dynamics define the final yield distributions.

  11. A nuclear fragmentation energy deposition model

    Science.gov (United States)

    Ngo, D. M.; Wilson, J. W.; Fogarty, T. N.; Buck, W. W.; Townsend, L. W. (Principal Investigator)

    1991-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. A nuclear data base is recommended that agrees well with the measurements of McNulty et al. using surface barrier detectors. High-energy events observed by McNulty et al., which are not predicted by intranuclear cascade models, are well represented by the present work.

  12. Computational modeling of nuclear thermal rockets

    Science.gov (United States)

    Peery, Steven D.

    1993-01-01

    The topics are presented in viewgraph form and include the following: rocket engine transient simulation (ROCETS) system; ROCETS performance simulations composed of integrated component models; ROCETS system architecture significant features; ROCETS engineering nuclear thermal rocket (NTR) modules; ROCETS system easily adapts Fortran engineering modules; ROCETS NTR reactor module; ROCETS NTR turbomachinery module; detailed reactor analysis; predicted reactor power profiles; turbine bypass impact on system; and ROCETS NTR engine simulation summary.

  13. DSMC modeling of flows with recombination reactions

    Science.gov (United States)

    Gimelshein, Sergey; Wysong, Ingrid

    2017-06-01

    An empirical microscopic recombination model is developed for the direct simulation Monte Carlo method that complements the extended weak vibrational bias model of dissociation. The model maintains the correct equilibrium reaction constant in a wide range of temperatures by using the collision theory to enforce the number of recombination events. It also strictly follows the detailed balance requirement for equilibrium gas. The model and its implementation are verified with oxygen and nitrogen heat bath relaxation and compared with available experimental data on atomic oxygen recombination in argon and molecular nitrogen.

  14. Spallation reactions. A successful interplay between modeling and applications

    CERN Document Server

    David, J -C

    2015-01-01

    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improv...

  15. Reaction-diffusion pulses: a combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Llebot, Josep Enric [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Fort, Joaquim [Dept. de FIsica, Univ. de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)

    2004-07-02

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations.

  16. Effect of compound nuclear reaction mechanism in 12C(6Li,d) reaction at sub-Coulomb energy

    Science.gov (United States)

    Mondal, Ashok; Adhikari, S.; Basu, C.

    2017-09-01

    The angular distribution of the 12C(6Li,d) reaction populating the 6.92 and 7.12 MeV states of 16O at sub-Coulomb energy (Ecm=3 MeV) are analysed in the framework of the Distorted Wave Born Approximation (DWBA). Recent results on excitation function measurements and backward angle angular distributions derive ANC for both the states on the basis of an alpha transfer mechanism. In the present work, we show that considering both forward and backward angle data in the analysis, the 7.12 MeV state at sub-Coulomb energy is populated from Compound nuclear process rather than transfer process. The 6.92 MeV state is however produced from direct reaction mechanism.

  17. Reaction Wheel Disturbance Model Extraction Software - RWDMES

    Science.gov (United States)

    Blaurock, Carl

    2009-01-01

    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral

  18. Study of nuclear reactions producing 36Cl by micro-AMS

    Science.gov (United States)

    Luís, H.; Jesus, A. P.; Fonseca, M.; Cruz, J.; Galaviz, D.; Franco, N.; Alves, E.

    2016-01-01

    36Cl is one of several short to medium lived isotopes (as compared to the earth age) whose abundances at the earlier solar system may help to clarify its formation process. There are two generally accepted possible models for the production of this radionuclide: it originated from the ejecta of a nearby supernova (where 36Cl was most probably produced in the s-process by neutron irradiation of 35Cl) and/or it was produced by in-situ irradiation of nebular dust by energetic particles (mostly, p, a, 3He -X-wind irradiation model). The objective of the present work is to measure the cross section of the 37Cl(p,d)36Cl and 35Cl(d,p)36Cl nuclear reactions, by measuring the 36Cl content of AgCl samples (previously bombarded with high energy protons and deuterons) with AMS, taking advantage of the very low detection limits of this technique for chlorine measurements. For that, the micro-AMS system of the LF1/ITN laboratory had to be optimized for chlorine measurements, as to our knowledge this type of measurements had never been performed in such a system (AMS with micro-beam). Here are presented the first results of these developments, namely the tests in terms of precision and reproducibility that were done by comparing AgCl blanks irradiated at the Portuguese National Reactor with standards produced by the dilution of the NIST SRM 4943 standard material.

  19. A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2012-01-01

    Full Text Available This paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations involving no reactions. Partial decomposition of the system of water quality constituent transport equations is performed via Gauss-Jordan column reduction of the reaction network by pivoting on equilibrium reactions to decouple equilibrium and kinetic reactions. This approach minimizes the number of partial differential advective-dispersive transport equations and enables robust numerical integration. Complete matrix decomposition by further pivoting on linearly independent kinetic reactions allows some rate equations to be formulated individually and explicitly enforces conservation of component species when component transport equations are solved. The methodology is demonstrated for a case study involving eutrophication reactions in the Des Moines River in Iowa, USA and for two hypothetical examples to illustrate the ability of the model to simulate sediment and chemical transport with both mobile and immobile water phases and with complex reaction networks involving both kinetic and equilibrium reactions.

  20. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    Science.gov (United States)

    de Angelis, Giacomo; Fiorentini, Gianni

    2016-11-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ-ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ-detector array based on γ-ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes.

  1. New activation cross section data on longer lived radio-nuclei produced in proton induced nuclear reaction on zirconium

    CERN Document Server

    Tárkányi, F; Takács, S; Hermanne, A; Al-Abyad, M; Yamazaki, H; Baba, M; Mohammadi, M A

    2016-01-01

    In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of $^{178m}$Ta through $^{nat}$Hf($\\alpha$,xn)$^{178-178m}$Ta nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions $^{nat}$Hf($\\alpha$,x)$^{179,177,176,175}$W, $^{183,182,178g,177,176,175}$Ta, $^{179m,177m,175}$Hf were also assessed. Stacked foil irradiation technique and $\\gamma$-ray spectrometry were used. New experimental cross section data for the $^{nat}$Ta(d,xn)$^{178}$W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and ($^3$He,x)) production routes for $^{178}$W.

  2. Investigation and Modelling of Diesel Hydrotreating Reactions

    DEFF Research Database (Denmark)

    Boesen, Rasmus Risum

    This project consists of a series of studies, that are related to hydrotreating of diesel. Hy- drotreating is an important refinery process, in which the oil stream is upgraded to meet the required environmental specifications and physical properties. Although hydrotreating is a ma- ture technology...... on a commercial CoMo catalyst, and a simple kinetic model is presented. Hydrogenation of fused aromatic rings are known to be fast, and it is possible, that the reaction rates are limited by either internal or external mass transfer. An experiment conducted at industrial temperatures and pressure, using...... kinetic models. Hydrogenation reactions are quite fast, and in order to avoid mass transfer limitations, and only measure intrinsic rates, experiments are often conducted, at conditions that are milder than in industrial units. A reactor model for a Robinson-Mahoney reactor that takes mass transfer...

  3. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  4. Quasi-elastic reactions: an interplay of reaction dynamics and nuclear structure

    Directory of Open Access Journals (Sweden)

    Recchia F.

    2011-10-01

    Full Text Available Multinucleon transfer reactions have been investigated in 40Ar+208Pb with the Prisma+Clara set-up. The experimental differential cross sections of different neutron transfer channels have been obtained at three different angular settings taking into account the transmission through the spectrometer. The experimental yields of the excited states have been determined via particle-γ coincidences. In odd Ar isotopes, we reported a signif cant population of 11/2− states, reached via neutron transfer. Their structure matches a stretched conf guration of the valence neutron coupled to vibration quanta.

  5. Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production

    Energy Technology Data Exchange (ETDEWEB)

    Qaim, Syed M.; Spahn, Ingo; Scholten, Bernhard; Neumaier, Bernd [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin (INM), Nuklearchemie (INM-5)

    2016-11-01

    Alpha particles exhibit three important characteristics: scattering, ionisation and activation. This article briefly discusses those properties and outlines their major applications. Among others, α-particles are used in elemental analysis, investigation and improvement of materials properties, nuclear reaction studies and medical radionuclide production. The latter two topics, dealing with activation of target materials, are treated in some detail in this paper. Measurements of excitation functions of α-particle induced reactions shed some light on their reaction mechanisms, and studies of isomeric cross sections reveal the probability of population of high-spin nuclear levels. Regarding medical radionuclides, an overview is presented of the isotopes commonly produced using α-particle beams. Consideration is also given to some routes which could be potentially useful for production of a few other radionuclides. The significance of α-particle induced reactions to produce a few high-spin isomeric states, decaying by emission of low-energy conversion or Auger electrons, which are of interest in localized internal radiotherapy, is outlined. The α-particle beam, thus broadens the scope of nuclear chemistry research related to development of non-standard positron emitters and therapeutic radionuclides.

  6. On the nuclear $(n;t)-$reaction in the three-electron ${}^{6}$Li atom

    CERN Document Server

    Frolov, Alexei M

    2012-01-01

    The nuclear $(n;t)-$reaction of the three-electron ${}^{6}$Li atom with thermal/slow neutrons is considered. An effective method has been developed for determining the probabilities of formation of various atoms and ions in different bound states. We discuss a number of fundamental questions directly related to numerical computations of the final state atomic probabilities. A few appropriate variational expansions for atomic wave functions of the incident lithium atom and final helium atom and/or tritium negatively charged ion are discussed. It appears that the final ${}^4$He atom arising during the nuclear $(n,{}^{6}$Li; ${}^4$He$,t)$-reaction in the three-electron Li atom can also be created in its triplet states. The formation of the quasi-stable three-electron $e^{-}_3$ during the nuclear $(n; t)-$reaction at the Li atom is briefly discussed. Bremsstrahlung emitted by atomic electrons accelerated by the rapidly moving fragments from this reaction is analyzed. The frequency spectrum of the emitted radiatio...

  7. Anomalous Nuclear Reaction in Earth's Interior: a New Field in Physics Science?

    Institute of Scientific and Technical Information of China (English)

    蒋崧生; 何明

    2012-01-01

    Tritium (3^H) in excess of the atmospheric values was found at volcanic Lakes Pavin (France), Laacher (Germany) and Nemrut (Turkey), as well as Kilauea Volcano at Hawaii (USA) and other volcanoes. Because 3^H has a short half-life of 12.3 years, the tritium and the resulting 3^He must have formed recently in the Earth. The result suggests that nuclear reactions may generate a significant amount of tritium in the interior of the Earth, although we have not yet learned what the reaction mechanism may be responsible. The nuclear reaction that can be responsible for tritium production in the Earth is probably a new research field in physics science. Nuclear reactions that generate tritium might be a source of "missing" energy (heat) in the interior of the Earth. Finding in-situ 3^H in the mantle may exhibit an alternative explanation of 3^He origin in the deep Earth.

  8. Nuclear reaction excitation functions in the interaction of protons with silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, A.V.; Kondratyev, S.N.; Lobach, Yo.N.; Sklyarenko, V.D.; Tokarevsky, V.V.; Vysotsky, O.N. (AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Yadernykh Issledovanij)

    1993-12-01

    Nuclear reaction excitation functions have been investigated which result in radioactive and stable nuclide formation following the proton bombardment of silicon with proton energies up to 100 MeV. Summarized experimental data and excitation function calculations have been performed regarding the mechanisms of pre-equilibrium emission and evaporation from compound nuclides based on the ALICE LIVERMORE code. With the aim of nuclear doping, transmutation coefficients for Al, Mg and Na have been calculated as well as the [gamma]-ray activities of the doped material. (Author).

  9. The Nuclear Yukawa Model on a Lattice

    CERN Document Server

    de Soto, F; Carbonell, J

    2011-01-01

    We present the results of the quantum field theory approach to nuclear Yukawa model obtained by standard lattice techniques. We have considered the simplest case of two identical fermions interacting via a scalar meson exchange. Calculations have been performed using Wilson fermions in the quenched approximation. We found the existence of a critical coupling constant above which the model cannot be numerically solved. The range of the accessible coupling constants is below the threshold value for producing two-body bound states. Two-body scattering lengths have been obtained and compared to the non relativistic results.

  10. EXFOR basics: A short guide to the nuclear reaction data exchange format

    Energy Technology Data Exchange (ETDEWEB)

    McLane, V.

    1996-07-01

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear data between the Nuclear Reaction Data Centers. In addition to storing the data and its` bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear data compilation centers. This format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center`s own sphere of responsibility. The exchange format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine). The data presently included in the EXFOR exchange include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle induced reaction data, a selected compilation of photon-induced reaction data.

  11. Common Cause Failure Modeling: Aerospace Versus Nuclear

    Science.gov (United States)

    Stott, James E.; Britton, Paul; Ring, Robert W.; Hark, Frank; Hatfield, G. Spencer

    2010-01-01

    Aggregate nuclear plant failure data is used to produce generic common-cause factors that are specifically for use in the common-cause failure models of NUREG/CR-5485. Furthermore, the models presented in NUREG/CR-5485 are specifically designed to incorporate two significantly distinct assumptions about the methods of surveillance testing from whence this aggregate failure data came. What are the implications of using these NUREG generic factors to model the common-cause failures of aerospace systems? Herein, the implications of using the NUREG generic factors in the modeling of aerospace systems are investigated in detail and strong recommendations for modeling the common-cause failures of aerospace systems are given.

  12. Modelling of reaction cross sections and prompt neutron emission

    Science.gov (United States)

    Hambsch, F.-J.; Tudora, A.; Oberstedt, S.

    2010-10-01

    Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  13. Compound-nuclear reactions with unstable nuclei: Constraining theory through innovative experimental approaches

    Directory of Open Access Journals (Sweden)

    Escher J. E.

    2016-01-01

    Full Text Available Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Several indirect methods have recently been proposed to determine neutron capture cross sections for unstable isotopes. We consider three approaches that aim at constraining statistical calculations of capture cross sections with data obtained from the decay of the compound nucleus relevant to the desired reaction. Each method produces this compound nucleus in a different manner (via a light-ion reaction, a photon-induced reaction, or β-decay and requires additional ingredients to yield the sought-after cross section. We give a brief outline of the approaches and employ preliminary results from recent measurements to illustrate the methods. We discuss the main advantages and challenges of each approach.

  14. High-Spin Isomeric States in Nuclear Reactions Induced by He Isotopes

    Science.gov (United States)

    Chuvilskaya, Tatjana; Shirokova, Alla

    2010-11-01

    The high-spin states production in nuclear reactions is reviewed. The analysis of various experiments, our estimates and calculations reveal that in different compound nucleus energy regions maximal relative yield of high-spin states can be realized by different projectiles: at low energies -- by neutrons, in ˜ 20 -- 50 MeV region -- by α-particles, at higher energies -- by heavy ions. It was predicted [1] that there are energy ranges in which neutron-rich radioactive ions (^6,8He, for example) are favorable. σm/σg (the ratio between the yields of high-spin Jm and low-spin Jg metastable states of a nucleus in one and the same reaction) e.g. the isomeric cross-section ratio is a very good indicator of high-spin states production capability of a nuclear reaction. These experiments demonstrate that maximal values of isomeric cross-section ratios (up to 30) are obtained in α-particle induced reactions. Experiment with ^6He beam [2] confirms the predictions of the work [1] concerning the prospects of neutron-rich radioactive-ion beams in high-spin states population. The results of calculations of the isomeric cross section ratios using the code EMPIRE-II-18 approach to statistical theory of nuclear reactions demonstrate rather good agreement with the experimental data. Due to that these prediction power of these calculation is confirmed. The results of widespread calculations of the isomeric cross-section ratios of the reactions with ^6,8He are presented. [1] T.V.Chvilskaya et al., AIP-Conference Proceedings ENAM-98 1998. V. 455. P. 482. [2] P.A.DeYoung et al., Phys.Rev.C. 2000. V. 62. P.047601.

  15. MCNPX simulations of the silicon carbide semiconductor detector response to fast neutrons from D-T nuclear reaction

    Science.gov (United States)

    Sedlačková, Katarína; Šagátová, Andrea; Zat'ko, Bohumír; Nečas, Vladimír; Solar, Michael; Granja, Carlos

    2016-09-01

    Silicon Carbide (SiC) has been long recognized as a suitable semiconductor material for use in nuclear radiation detectors of high-energy charged particles, gamma rays, X-rays and neutrons. The nuclear interactions occurring in the semiconductor are complex and can be quantified using a Monte Carlo-based computer code. In this work, the MCNPX (Monte Carlo N-Particle eXtended) code was employed to support detector design and analysis. MCNPX is widely used to simulate interaction of radiation with matter and supports the transport of 34 particle types including heavy ions in broad energy ranges. The code also supports complex 3D geometries and both nuclear data tables and physics models. In our model, monoenergetic neutrons from D-T nuclear reaction were assumed as a source of fast neutrons. Their energy varied between 16 and 18.2 MeV, according to the accelerating voltage of the deuterons participating in D-T reaction. First, the simulations were used to calculate the optimum thickness of the reactive film composed of High Density PolyEthylene (HDPE), which converts neutral particles to charged particles and thusly enhancing detection efficiency. The dependency of the optimal thickness of the HDPE layer on the energy of the incident neutrons has been shown for the inspected energy range. Further, from the energy deposited by secondary charged particles and recoiled ions, the detector response was modeled and the effect of the conversion layer on detector response was demonstrated. The results from the simulations were compared with experimental data obtained for a detector covered by a 600 and 1300 μm thick conversion layer. Some limitations of the simulations using MCNPX code are also discussed.

  16. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G.

    1994-10-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, {sup 3}He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei.

  17. A method for the determination of nuclear cross sections of proton beams by the collective model and extended nuclear-shell theory

    CERN Document Server

    Ulmer, W

    2010-01-01

    A recapitulatory analysis of total nuclear cross sections of various nuclei is presented, which yields detailed knowledge on the different physical processes such as potential/resonance scatter and nuclear reactions. The physical base for potential/resonance scatter and the threshold energy resulting from Coulomb repulsion of nuclei are collective/oscillator models. The part pertaining to the nuclear reactions can only be determined by the microscopic theory (Schr\\"odinger equation and strong interactions). The physical impact is the fluence decrease of proton beams in different media and the scatter behavior of secondary particles.

  18. Charged particle-induced nuclear fission reactions – Progress and prospects

    Indian Academy of Sciences (India)

    S Kailas; K Mahata

    2014-12-01

    The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of fissionable nuclei has been generated. The theoretical developments to describe the fission phenomenon have kept pace with the progress in the corresponding experimental measurements. As the fission process initiated by the neutrons has been well documented, the present article will be restricted to charged particle-induced fission reactions. The progress made in recent years and the prospects in the area of nuclear fission research will be the focus of this review.

  19. Doorway states in nuclear reactions as a manifestation of the "super-radiant" mechanism

    CERN Document Server

    Auerbach, N

    2007-01-01

    A mechanism is considered for generating doorway states and intermediate structure in low-energy nuclear reactions as a result of collectivization of widths of unstable intrinsic states coupled to common decay channels. At the limit of strong continuum coupling, the segregation of broad (''super-radiating") and narrow (''trapped") states occurs revealing the separation of direct and compound processes. We discuss the conditions for the appearance of intermediate structure in this process and doorways related to certain decay channels.

  20. Applications of nuclear reaction analysis for determining hydrogen and deuterium distribution in metals

    Energy Technology Data Exchange (ETDEWEB)

    Altstetter, C.J.

    1981-01-01

    The use of ion beams for materials analysis has made a successful transition from the domain of the particle physicist to that of the materials scientist. The subcategory of this field, nuclear reaction analysis, is just now undergoing the transition, particularly in applications to hydrogen in materials. The materials scientist must locate the nearest accelerator, because now he will find that using it can solve mysteries that do not yield to other techniques. 9 figures

  1. Status of The Facility for Experiments of Nuclear Reactions in Stars

    Science.gov (United States)

    Longland, Richard; Kelley, John; Marshall, Caleb; Portillo, Federico; Setoodehnia, Kiana; Underwood, Daniel

    2016-09-01

    To make connections between observations of stellar atmospheres and the processes occurring deep inside stars, me must rely on accurate nuclear cross sections. Often, the Coulomb barrier makes these cross sections immeasurably small in the laboratory. Particle transfer reactions are one tool in our inventory that can be used to infer the necessary properties of nuclear reactions, thus opening an avenue to calculate their cross sections. Enge split-pole magnetic spectrographs are one tool in our inventory that have been used successfully to perform these experiments. However, after a rash of closures, there were no operational spectrographs of this kind in North America to provide these valuable capabilities. Over the last few years, we have revived the Enge split-pole spectrograph at TUNL. We have also upgraded much of the equipment, ranging from the data acquisition system to the control system and detector package. These upgrades have enabled a powerful, flexible, and modern facility - the Facility for Experiments of Nuclear Reactions in Stars (FENRIS). In this talk, I will present a status upgrade of FENRIS, highlighting our upgrades, capabilities, and first science results. I will also highlight future upgrade plans for the facility.

  2. Experimental and phenomenological comparison between Piezonuclear reactions and Condensed Matter Nuclear Science phenomenology

    CERN Document Server

    Cardone, F; Petrucci, A

    2011-01-01

    The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtained from low energy nuclear reac- tion experiments. Some theoretical concepts and ideas, on which our experiments are grounded, will be sketched and it will be shown that, in order to trigger our measured effects, it exists an energy threshold, that has to be overcome, and a maximum inter- val of time for this energy to be released to the nuclear system. Eventually, a research hypothesis will be put forward about the chance to raise the level of analogy from the mere comparison of results up to the phenomenological level. H...

  3. Reaction-contingency based bipartite Boolean modelling

    Science.gov (United States)

    2013-01-01

    Background Intracellular signalling systems are highly complex, rendering mathematical modelling of large signalling networks infeasible or impractical. Boolean modelling provides one feasible approach to whole-network modelling, but at the cost of dequantification and decontextualisation of activation. That is, these models cannot distinguish between different downstream roles played by the same component activated in different contexts. Results Here, we address this with a bipartite Boolean modelling approach. Briefly, we use a state oriented approach with separate update rules based on reactions and contingencies. This approach retains contextual activation information and distinguishes distinct signals passing through a single component. Furthermore, we integrate this approach in the rxncon framework to support automatic model generation and iterative model definition and validation. We benchmark this method with the previously mapped MAP kinase network in yeast, showing that minor adjustments suffice to produce a functional network description. Conclusions Taken together, we (i) present a bipartite Boolean modelling approach that retains contextual activation information, (ii) provide software support for automatic model generation, visualisation and simulation, and (iii) demonstrate its use for iterative model generation and validation. PMID:23835289

  4. Mathematical Modeling for Simulation of Nuclear Reactor Analysis

    OpenAIRE

    Salah Ud-Din Khan; Shahab Ud-Din Khan

    2013-01-01

    In this paper, we have developed a mathematical model for the nuclear reactor analysis to be implemented in the nuclear reactor code. THEATRe is nuclear reactor analysis code which can only work for the cylindrical type fuel reactor and cannot applicable for the plate type fuel nuclear reactor. Therefore, the current studies encompasses on the modification of THEATRe code for the plate type fuel element. This mathematical model is applicable to the thermal analysis of the reactor which is ver...

  5. A theoretical model of metal surface reactions

    Energy Technology Data Exchange (ETDEWEB)

    Shustorovich, E. (Eastman Kodak Co., Rochester, NY); Baetzold, R.C.; Muetterties, E.L.

    1983-03-31

    Metal surface reactions are modeled with a novel theoretical construct in which periodic trends can be scrutinized. The theoretical model is succinctly presented and a conspectus of periodic trends, based on the model, is explored. Periodic trends are discussed in the contexts of chemisorption bond energies, electron transfer between metal surface and adsorbate, stereochemical features of chemisorption states for closed-shell diatomic and linear X-CN or X-NC molecules, and hydrocarbon reactions. Hydrocarbon C-H bond-breaking processes are analyzed in terms of d-level occupancy, electron transfer, and stereochemistry of intermediates. Conceptually and computationally, the metal surface is characterized as a good electron donor: antibonding molecular orbitals of the adsorbate species appear to be significant contributors to the chemisorption bond and also play a decisive role in bond-breaking processes. No aspect of the model projections is inconsistent with the experimental data although the electronic characterization of some chemisorption states are counter to commonly held perceptions.

  6. Reaction intermediates in the catalytic Gif-type oxidation from nuclear inelastic scattering

    Science.gov (United States)

    Rajagopalan, S.; Asthalter, T.; Rabe, V.; Laschat, S.

    2016-12-01

    Nuclear inelastic scattering (NIS) of synchrotron radiation, also known as nuclear resonant vibrational spectroscopy (NRVS), has been shown to provide valuable insights into metal-centered vibrations at Mössbauer-active nuclei. We present a study of the iron-centered vibrational density of states (VDOS) during the first step of the Gif-type oxidation of cyclohexene with a novel trinuclear Fe3(μ 3-O) complex as catalyst precursor. The experiments were carried out on shock-frozen solutions for different combinations of reactants: Fe3(μ 3-O) in pyridine solution, Fe3(μ 3-O) plus Zn/acetic acid in pyridine without and with addition of either oxygen or cyclohexene, and Fe3(μ 3-O)/Zn/acetic acid/pyridine/cyclohexene (reaction mixture) for reaction times of 1 min, 5 min, and 30 min. The projected VDOS of the Fe atoms was calculated on the basis of pseudopotential density functional calculations. Two possible reaction intermediates were identified as [Fe(III)(C5H5N)2(O2CCH3)2]+ and Fe(II)(C5H5N)4(O2CCH3)2, yielding evidence that NIS (NRVS) allows to identify the presence of iron-centered intermediates also in complex reaction mixtures.

  7. Nuclear halo effect on nucleon capture reaction rates at stellar energies

    Institute of Scientific and Technical Information of China (English)

    Liu Zu-Hua; Zhou Hong-Yu

    2005-01-01

    The capture cross sections at stellar energies are very difficult to measure directly. Hence, data are usually evaluated by using indirect methods or extrapolations from the experimental data obtained at the lowest possible energies. The asymptotic normalization coefficient (ANC) approach of the transfer reactions provides a reliable way for the determination of the capture cross sections at stellar energies. By virtue of its reliability, we have calculated the capture cross sections of the 10Be(n,γ)11Be reaction by using nuclear ANC method. 11Be is a well-known neutron halo nucleus with two weakly bound states. As a typical example, we have shown that the radiative cross sections for a nucleon captured into a halo state are obviously enhanced. The enormous enhancement of the capture cross section is just due to the large overlap of the incident neutron wave with the extended tail of the halo. The 10Be(n,γ)11Be capture reaction is involved in the inhomogeneous big-bang nucleosynthesis. We have evaluated its reaction rates at stellar energies with the nuclear ANC method.

  8. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Horn, K.M.; Doyle, B. [Sandia National Labs., Albuquerque, NM (United States); Segal, M.N. [Univ. of New Mexico Medical School, Albuquerque, NM (United States). Dept. of Otolaryngology; Hamm, R.W. [Accsys Technology Inc., Pleasanton, CA (United States); Adler, R.J. [North Star Research Corp., Albuquerque, NM (United States); Glatstein, E. [Univ. of Texas Southwest Medical Center, Dallas, TX (United States)

    1995-04-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d({sup 3}He,p){sup 4}He nuclear reaction. This examination will describe the basic physics associated with this reaction`s production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in `nested`-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output {sup 3}He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  9. Reaction intermediates in the catalytic Gif-type oxidation from nuclear inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, S., E-mail: rajagopalan78@hotmail.com [Indira Gandhi Centre for Atomic Research, Materials Science Group (India); Asthalter, T., E-mail: t.asthalter@web.de [Universität Stuttgart, Institute of Physical Chemistry (Germany); Rabe, V.; Laschat, S. [Universität Stuttgart, Institute of Organic Chemistry (Germany)

    2016-12-15

    Nuclear inelastic scattering (NIS) of synchrotron radiation, also known as nuclear resonant vibrational spectroscopy (NRVS), has been shown to provide valuable insights into metal-centered vibrations at Mössbauer-active nuclei. We present a study of the iron-centered vibrational density of states (VDOS) during the first step of the Gif-type oxidation of cyclohexene with a novel trinuclear Fe{sub 3}(μ{sub 3}-O) complex as catalyst precursor. The experiments were carried out on shock-frozen solutions for different combinations of reactants: Fe{sub 3}(μ{sub 3}-O) in pyridine solution, Fe{sub 3}(μ{sub 3}-O) plus Zn/acetic acid in pyridine without and with addition of either oxygen or cyclohexene, and Fe{sub 3}(μ{sub 3}-O)/Zn/acetic acid/pyridine/cyclohexene (reaction mixture) for reaction times of 1 min, 5 min, and 30 min. The projected VDOS of the Fe atoms was calculated on the basis of pseudopotential density functional calculations. Two possible reaction intermediates were identified as [Fe{sup (III)}(C{sub 5}H{sub 5}N){sub 2}(O{sub 2}CCH{sub 3}){sub 2}]{sup +} and Fe{sup (II)}(C{sub 5}H{sub 5}N){sub 4}(O{sub 2}CCH{sub 3}){sub 2}, yielding evidence that NIS (NRVS) allows to identify the presence of iron-centered intermediates also in complex reaction mixtures.

  10. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  11. Two-step nuclear reactions: The Surrogate Method, the Trojan Horse Method and their common foundations

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Mahir S. [DCTA, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, C. P. 72012, Sao Paulo, SP (Brazil); Universidade de Sao Paulo, Instituto de Fisica, C. P. 66318, Sao Paulo, SP (Brazil)

    2017-05-15

    In this Letter I argue that the Surrogate Method, used to extract the fast neutron capture cross section on actinide target nuclei, which has important practical application for the next generation of breeder reactors, and the Trojan Horse Method employed to extract reactions of importance to nuclear astrophysics, have a common foundation, the Inclusive Non-Elastic Breakup (INEB) Theory. Whereas the Surrogate Method relies on the premise that the extracted neutron cross section in a (d, p) reaction is predominantly a compound-nucleus one, the Trojan Horse Method assumes a predominantly direct process for the secondary reaction induced by the surrogate fragment. In general, both methods contain both direct and compound contributions, and I show how these seemingly distinct methods are in fact the same but at different energies and different kinematic regions. The unifying theory is the rather well developed INEB theory. (orig.)

  12. γ-Particle coincidence technique for the study of nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zagatto, V.A.B., E-mail: vinicius.zagatto@gmail.com [Instituto de Física da Universidade de São Paulo (Brazil); Oliveira, J.R.B.; Allegro, P.R.P.; Chamon, L.C.; Cybulska, E.W.; Medina, N.H.; Ribas, R.V.; Seale, W.A.; Silva, C.P.; Gasques, L.R. [Instituto de Física da Universidade de São Paulo (Brazil); Zahn, G.S.; Genezini, F.A.; Shorto, J.M.B. [Instituto de Pesquisas Energéticas e Nucleares (Brazil); Lubian, J.; Linares, R. [Instituto de Física da Universidade Federal Fluminense (Brazil); Toufen, D.L. [Instituto Federal de Educação, Ciência e Tecnologia (Brazil); Silveira, M.A.G. [Centro Universitário da FEI (Brazil); Rossi, E.S. [Centro Universitário FIEO – UNIFIEO (Brazil); Nobre, G.P. [Lawrence Livermore National Laboratory (United States)

    2014-06-01

    The Saci-Perere γ ray spectrometer (located at the Pelletron AcceleratorLaboratory – IFUSP) was employed to implement the γ-particle coincidence technique for the study of nuclear reaction mechanisms. For this, the {sup 18}O+{sup 110}Pd reaction has been studied in the beam energy range of 45–54 MeV. Several corrections to the data due to various effects (energy and angle integrations, beam spot size, γ detector finite size and the vacuum de-alignment) are small and well controlled. The aim of this work was to establish a proper method to analyze the data and identify the reaction mechanisms involved. To achieve this goal the inelastic scattering to the first excited state of {sup 110}Pd has been extracted and compared to coupled channel calculations using the São Paulo Potential (PSP), being reasonably well described by it.

  13. Two-step nuclear reactions: The Surrogate Method, the Trojan Horse Method and their common foundations

    Science.gov (United States)

    Hussein, Mahir S.

    2017-05-01

    In this Letter I argue that the Surrogate Method, used to extract the fast neutron capture cross section on actinide target nuclei, which has important practical application for the next generation of breeder reactors, and the Trojan Horse Method employed to extract reactions of importance to nuclear astrophysics, have a common foundation, the Inclusive Non-Elastic Breakup (INEB) Theory. Whereas the Surrogate Method relies on the premise that the extracted neutron cross section in a ( d, p) reaction is predominantly a compound-nucleus one, the Trojan Horse Method assumes a predominantly direct process for the secondary reaction induced by the surrogate fragment. In general, both methods contain both direct and compound contributions, and I show how these seemingly distinct methods are in fact the same but at different energies and different kinematic regions. The unifying theory is the rather well developed INEB theory.

  14. Nonelastic nuclear reactions induced by light ions with the BRIEFF code

    CERN Document Server

    Duarte, H

    2010-01-01

    The intranuclear cascade (INC) code BRIC has been extended to compute nonelastic reactions induced by light ions on target nuclei. In our approach the nucleons of the incident light ion move freely inside the mean potential of the ion in its center-of-mass frame while the center-of-mass of the ion obeys to equations of motion dependant on the mean nuclear+Coulomb potential of the target nucleus. After transformation of the positions and momenta of the nucleons of the ion into the target nucleus frame, the collision term between the nucleons of the target and of the ion is computed taking into account the partial or total breakup of the ion. For reactions induced by low binding energy systems like deuteron, the Coulomb breakup of the ion at the surface of the target nucleus is an important feature. Preliminary results of nucleon production in light ion induced reactions are presented and discussed.

  15. Nuclear structure of {sup 129}Te studied with (n, {gamma}), (d, p) and (d{yields}, t) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, H.-F. E-mail: hans-friedrich.wirth@lmu.de; Egidy, T. von; Tomandl, I.; Honzatko, J.; Bucurescu, D.; Marginean, N.; Ponomarev, V.Yu.; Hertenberger, R.; Eisermann, Y.; Graw, G

    2003-03-24

    The nuclear structure of {sup 129}Te has been investigated with the {sup 128}Te(n, {gamma}{gamma}){sup 129}Te reaction using thermal neutrons, with the {sup 128}Te(d, p){sup 129}Te reaction at E{sub d}=24 MeV and E{sub d}=18 MeV, and with the {sup 130}Te(d{yields}, t){sup 129}Te reaction at E{sub d}=24 MeV. More than 110 levels were identified already below 3 MeV excitation energy, in most cases including spin, parity, and {gamma} decay. The neutron binding energy was determined to be 6082.42(11) keV. The thermal neutron capture cross sections to the ground state and to the 11/2{sup -} isomer were found to be 0.165(20) b and 0.021(3) b, respectively. The mechanism of direct neutron capture was verified to play an important role in the {sup 128}Te(n, {gamma}){sup 129}Te reaction. The experimental level scheme is compared with predictions of the Interacting Boson-Fermion Model (IBFM) and of the Quasiparticle Phonon Model (QPM)

  16. Nuclear structure of sup 1 sup 2 sup 9 Te studied with (n, gamma), (d, p) and (d->, t) reactions

    CERN Document Server

    Wirth, H F; Tomandl, I; Honzatko, J; Bucurescu, D; Marginean, N; Ponomarev, V Yu; Hertenberger, R; Eisermann, Y; Graw, G

    2003-01-01

    The nuclear structure of sup 1 sup 2 sup 9 Te has been investigated with the sup 1 sup 2 sup 8 Te(n, gamma gamma) sup 1 sup 2 sup 9 Te reaction using thermal neutrons, with the sup 1 sup 2 sup 8 Te(d, p) sup 1 sup 2 sup 9 Te reaction at E sub d =24 MeV and E sub d =18 MeV, and with the sup 1 sup 3 sup 0 Te(d->, t) sup 1 sup 2 sup 9 Te reaction at E sub d =24 MeV. More than 110 levels were identified already below 3 MeV excitation energy, in most cases including spin, parity, and gamma decay. The neutron binding energy was determined to be 6082.42(11) keV. The thermal neutron capture cross sections to the ground state and to the 11/2 sup - isomer were found to be 0.165(20) b and 0.021(3) b, respectively. The mechanism of direct neutron capture was verified to play an important role in the sup 1 sup 2 sup 8 Te(n, gamma) sup 1 sup 2 sup 9 Te reaction. The experimental level scheme is compared with predictions of the Interacting Boson-Fermion Model (IBFM) and of the Quasiparticle Phonon Model (QPM).

  17. Advancing the Theory of Nuclear Reactions with Rare Isotopes: From the Laboratory to the Cosmos

    Energy Technology Data Exchange (ETDEWEB)

    Elster, Charlotte [Ohio Univ., Athens, OH (United States)

    2015-06-01

    The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. Ohio University concentrates its efforts on the first part of the mission. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. For this reason we first embarked in introducing a separable representation for complex phenomenological optical potentials of Woods-Saxon type.

  18. Nuclear reactions with radioactive and stable beams (Part I); Reacciones nucleares con haces radiactivos y estables (Parte I)

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-12-15

    At the present time there is a great interest at world level in experiments, with accelerated nuclei of short half life. The dispersion, fusion, transfer and break processes in the interaction of weakly light projectiles bounded with targets of Z great its have been object of intense recent investigation, at world level. Our group, in collaboration with the University of Notre Dame, it has measured and analyzed these processes for weakly bound systems as: {sup 6}He + {sup 209}Bi, {sup 8}Li + {sup 208}Pb, {sup 10}Be + {sup 208}Pb. On the other hand a research line that has wakened up great interest, it is that of studies of resonant reactions using the Inverse Kinematics technique with thick targets. The use of this technique allows to measure an entire excitation function with a single bombardment. Our group has carried out, in the ININ, preliminary bombardments for the system {sup 12}C + {sup 4}He. This allowed to establish the feasibility of implementing this technique in our Laboratory. The application of this and other techniques to different systems like {sup 18}O + {sup 4}He, {sup 12}C + {sup 12}C, {sup 12}C + {sup 16}O, {sup 16}O + {sup 16}O, it opens the possibility to measure the fusion of these systems at very low energy and to deepen in the knowledge of the nuclear structure and the nuclear astrophysics. In this technical report, the activities carried out by our group during 2004 are described.(Author)

  19. Measurement of Nuclear Transparency from A(e,e',π+) Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Clasie, Benjamin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-08-01

    We have measured the nuclear transparency of the A(e, e' π+) process in 2H,12C, 27Al, 63Cu and 197Au targets. These measurements were performed at the Jefferson Laboratory over a four momen- tum transfer squared range Q2 = 1.1 to 4.7 (GeV/c)2. The nuclear transparency was extracted as the super-ratio of ( σA/ σH) from data to a model of pion-electroproduction from nuclei without N final state interactions. The Q2 and atomic number dependence of the nuclear transparency both show deviations from traditional nuclear physics expectations, and are consistent with calculations that include the quantum chromodynamical phenomenon of color transparency.

  20. Reaction-diffusion models of decontamination

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    A contaminant, which also contains a polymer is in the form of droplets on a solid surface. It is to be removed by the action of a decontaminant, which is applied in aqueous solution. The contaminant is only sparingly soluble in water, so the reaction mechanism is that it slowly dissolves...... in the aqueous solution and then is oxidized by the decontaminant. The polymer is insoluble in water, and so builds up near the interface, where its presence can impede the transport of contaminant. In these circumstances, Dstl wish to have mathematical models that give an understanding of the process, and can...

  1. Accuracy of Reaction Cross Section for Exotic Nuclei in Glauber Model Based on MCMC Diagnostics

    Science.gov (United States)

    Rueter, Keiti; Novikov, Ivan

    2017-01-01

    Parameters of a nuclear density distribution for an exotic nuclei with halo or skin structures can be determined from the experimentally measured reaction cross-section. In the presented work, to extract parameters such as nuclear size information for a halo and core, we compare experimental data on reaction cross-sections with values obtained using expressions of the Glauber Model. These calculations are performed using a Markov Chain Monte Carlo algorithm. We discuss the accuracy of the Monte Carlo approach and its dependence on k*, the power law turnover point in the discreet power spectrum of the random number sequence and on the lag-1 autocorrelation time of the random number sequence.

  2. Research on the Quantum Multistep Theory for Pre-equilibrium Nuclear Reaction

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Feshbach-Kerman-Koonin (FKK) quantum multistep theory of the pre-equilibrium reaction is further improved and perfected, A unified description for the multistep compound (MSC) process of the pre-equilibrium reaction and the compound nucleus (CN) process of full equilibrium reaction can be presented. This formula can integrate MSC and CN theories with the optical model and Hauser-Feshbach formula, and can get self-consistent expression. In multistep direct (MSB) process of the pre-equilibrium reaction, the μ-step cross section can be expressed by the convolution of μ

  3. Dynamical evolution of angular momentum in damped nuclear reactions (I). Accumulation of angular momentum by nucleon transfer

    Science.gov (United States)

    Døssing, Thomas; Randrup, Jørgen

    1985-02-01

    The dynamical accumulation of angular momentum in the course of a damped nuclear reaction is studied within the framework of the nucleon exchange transport model. The dinuclear spin distribution is described by the mean values and the covariances of the two prefragment spins and their orbital angular momentum overlineL. Using an intrinsic coordinate system aligned with the fluctuating direction of overlineL, the equations of motion for the spin distribution are derived and discussed. The ultimate transformation to an externally defined reference frame is also discussed. The evolution of other observables and their coupling to the spin variables are included and, by integrating conditional distributions over all impact parameters, results are obtained for differential cross sections corresponding to a specified loss of relative kinetic energy. The characteristic features of the evolution of the spin distribution is discussed in detail. First the stationary solution of the equations of motion is considered and its different appearance in the various relevant coordinate systems is exhibited. The dynamical evolution is discussed in terms of the time-dependent relaxation times associated with the six different intrinsic modes of rotation in the disphere. Due to the relative smallness of the window size the positive modes will dominate (for not too long times), resulting in a predominantly positive correlation between the fragment spin fluctuations. Illustrative applications to cases of experimental interest are made and a critical discussion is given of other models addressing angular momentum in damped nuclear reactions.

  4. Heavy-ion double charge exchange reactions: A tool toward 0 νββ nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Cappuzzello, F.; Bondi, M. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Laboratori Nazionali del Sud, Catania (Italy); Cavallaro, M.; Agodi, C.; Carbone, D.; Cunsolo, A. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Foti, A. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Sezione di Catania, Catania (Italy)

    2015-11-15

    The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial- and final-state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the {sup 40}Ca({sup 18}O,{sup 18}Ne){sup 40}Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0{sup +} → 0{sup +} transition to {sup 40}Ar{sub gs}, at least at very forward angles. (orig.)

  5. Thermohydraulic and nuclear modeling of natural fission reactors

    Science.gov (United States)

    Viggato, Jason Charles

    Experimental verification of proposed nuclear waste storage schemes in geologic repositories is not possible, however, a natural analog exists in the form of ancient natural reactors that existed in uranium-rich ores. Two billion years ago, the enrichment of natural uranium was high enough to allow a sustained chain reaction in the presence of water as a moderator. Several natural reactors occurred in Gabon, Africa and were discovered in the early 1970's. These reactors operated at low power levels for hundreds of thousands of years. Heated water generated from the reactors also leached uranium from the surrounding rock strata and deposited it in the reactor cores. This increased the concentration of uranium in the core over time and served to "refuel" the reactor. This has strong implications in the design of modern geologic repositories for spent nuclear fuel. The possibility of accidental fission events in man-made repositories exists and the geologic evidence from Oklo suggests how those events may progress and enhance local concentrations of uranium. Based on a review of the literature, a comprehensive code was developed to model the thermohydraulic behavior and criticality conditions that may have existed in the Oklo reactor core. A two-dimensional numerical model that incorporates modeling of fluid flow, temperatures, and nuclear fission and subsequent heat generation was developed for the Oklo natural reactors. The operating temperatures ranged from about 456 K to about 721 K. Critical reactions were observed for a wide range of concentrations and porosity values (9 to 30 percent UO2 and 10 to 20 percent porosity). Periodic operation occurred in the computer model prediction with UO2 concentrations of 30 percent in the core and 5 percent in the surrounding material. For saturated conditions and 30 percent porosity, the model predicted temperature transients with a period of about 5 hours. Kuroda predicted 3 to 4 hour durations for temperature transients

  6. EXFOR systems manual: Nuclear reaction data exchange format. Revision 97/1

    Energy Technology Data Exchange (ETDEWEB)

    McLane, V. [ed.] [comp.

    1997-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Center Network. In addition to storing the data and its` bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility rather than optimization of data processing in order to meet the diverse needs of the nuclear reaction data centers. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center`s own sphere of responsibility. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine).

  7. Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model

    Energy Technology Data Exchange (ETDEWEB)

    Shama, Mahesh K., E-mail: maheshphy82@gmail.com [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Department of Applied Sciences, Chandigarh Engineering College, Landran Mohali-140307 (India); Panda, R. N. [Department of Physics, ITER, Shiksha O Anusandhan University, Bhubaneswar-751030 (India); Sharma, Manoj K. [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Patra, S. K. [Institute of Physics, Sachivalaya marg Bhubneswar-751005 (India)

    2015-08-28

    We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.

  8. Modeling stochasticity in biochemical reaction networks

    Science.gov (United States)

    Constantino, P. H.; Vlysidis, M.; Smadbeck, P.; Kaznessis, Y. N.

    2016-03-01

    Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts.

  9. Compound-nuclear reaction cross sections via the Surrogate method: considering the underlying assumptions

    Science.gov (United States)

    Escher, Jutta; Dietrich, Frank

    2006-10-01

    The Surrogate Nuclear Reactions approach makes it possible to determine compound-nuclear reaction cross sections indirectly. The method has been employed to determine (n,f) cross sections for various actinides, including unstable species [1-4]; other, primarily neutron- induced, reactions are being considered also [5,6]. The extraction of the sought-after cross sections typically relies on approximations to the full Surrogate formalism [7]. This presentation will identify and critically examine the most significant assumptions underlying the experimental work carried out so far. Calculations that test the validity of the approximations employed will be presented. [1] J.D. Cramer and H.C. Britt, Nucl. Sci. and Eng. 41, 177(1970); H.C. Britt and J.B. Wilhelmy, ibid. 72, 222(1979) [2] M. Petit et al, Nucl. Phys. A735, 345(2004) [3] C. Plettner et al, Phys. Rev. C 71, 051602(2005); J. Burke et al, Phys. Rev. C. 73, 054604(2006) [4] W. Younes and H.C. Britt, Phys. Rev. C 67, 024610(2003); 68, 034610(2003) [5] L.A. Bernstein et al, AIP Conf. Proc. 769, 890(2005) [6] J. Escher et al, Nucl. Phys. A758, 43c(2005) [7] J. Escher and F.S. Dietrich, submitted (2006)

  10. The optical model potential of the $\\Sigma$ hyperon in nuclear matter

    OpenAIRE

    Dabrowski, J; Rozynek, J.

    2009-01-01

    We present our attempts to determine the optical model potential $U_\\Sigma = V_\\Sigma -iW_\\Sigma$ of the $\\Sigma$ hyperon in nuclear matter. We analyze the following sources of information on $U_\\Sigma$: $\\Sigma N$ scattering, $\\Sigma^-$ atoms, and final state interaction of $\\Sigma$ hyperons in the $(\\pi,K^+)$ and $(K^-.\\pi)$ reactions on nuclear targets. We conclude that $V_\\Sigma$ is repulsive inside the nucleus and has a shallow a tractive pocket at the nuclear surface. These features of ...

  11. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW.

  12. Compound-nuclear Reactions with Unstable Isotopes: Constraining Capture Cross Sections with Indirect Data and Theory

    Science.gov (United States)

    Escher, Jutta

    2016-09-01

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Several indirect methods have recently been proposed to determine neutron capture cross sections for unstable isotopes. These methods aim at constraining statistical calculations of capture cross sections with data obtained from the decay of the compound nucleus relevant to the desired reaction. Each method produces this compound nucleus in a different manner (via a light-ion reaction, a photon-induced reaction, or β decay) and requires additional ingredients to yield the sought-after cross section. This contribution focuses on the process of determining capture cross sections from inelastic scattering and transfer experiments. Specifically, theoretical descriptions of the (p,d) transfer reaction have been developed to complement recent measurements in the Zr-Y region. The procedure for obtaining constraints for unknown capture cross sections is illustrated. The main advantages and challenges of this approach are compared to those of the proposed alternatives. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Advancing the Theory of Nuclear Reactions with Rare Isotopes. From the Laboratory to the Cosmos

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Filomena [Michigan State Univ., East Lansing, MI (United States)

    2015-06-01

    The mission of the Topical Collaboration on the Theory of Reactions for Unstable iSotopes (TORUS) was to develop new methods to advance nuclear reaction theory for unstable isotopes—particularly the (d,p) reaction in which a deuteron, composed of a proton and a neutron, transfers its neutron to an unstable nucleus. After benchmarking the state-of-the-art theories, the TORUS collaboration found that there were no exact methods to study (d,p) reactions involving heavy targets; the difficulty arising from the long-range nature of the well known, yet subtle, Coulomb force. To overcome this challenge, the TORUS collaboration developed a new theory where the complexity of treating the long-range Coulomb interaction is shifted to the calculation of so-called form-factors. An efficient implementation for the computation of these form factors was a major achievement of the TORUS collaboration. All the new machinery developed are essential ingredients to analyse (d,p) reactions involving heavy nuclei relevant for astrophysics, energy production, and stockpile stewardship.

  14. Computer Generated Cardiac Model For Nuclear Medicine

    Science.gov (United States)

    Hills, John F.; Miller, Tom R.

    1981-07-01

    A computer generated mathematical model of a thallium-201 myocardial image is described which is based on realistic geometric and physiological assumptions. The left ventricle is represented by an ellipsoid truncated by aortic and mitral valve planes. Initially, an image of a motionless left ventricle is calculated with the location, size, and relative activity of perfusion defects selected by the designer. The calculation includes corrections for photon attenuation by overlying structures and the relative distribution of activity within the tissues. Motion of the ventricular walls is simulated either by a weighted sum of images at different stages in the cardiac cycle or by a blurring function whose width varies with position. Camera and collimator blurring are estimated by the MTF of the system measured at a representative depth in a phantom. Statistical noise is added using a Poisson random number generator. The usefulness of this model is due to two factors: the a priori characterization of location and extent of perfusion defects and the strong visual similarity of the images to actual clinical studies. These properties should permit systematic evaluation of image processing algorithms using this model. The principles employed in developing this cardiac image model can readily be applied to the simulation of other nuclear medicine studies and to other medical imaging modalities including computed tomography, ultrasound, and digital radiography.

  15. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    Science.gov (United States)

    Glass, James F.

    1993-01-01

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  16. Voter Model Perturbations and Reaction Diffusion Equations

    CERN Document Server

    Cox, J Theodore; Perkins, Edwin

    2011-01-01

    We consider particle systems that are perturbations of the voter model and show that when space and time are rescaled the system converges to a solution of a reaction diffusion equation in dimensions $d \\ge 3$. Combining this result with properties of the PDE, some methods arising from a low density super-Brownian limit theorem, and a block construction, we give general, and often asymptotically sharp, conditions for the existence of non-trivial stationary distributions, and for extinction of one type. As applications, we describe the phase diagrams of three systems when the parameters are close to the voter model: (i) a stochastic spatial Lotka-Volterra model of Neuhauser and Pacala, (ii) a model of the evolution of cooperation of Ohtsuki, Hauert, Lieberman, and Nowak, and (iii) a continuous time version of the non-linear voter model of Molofsky, Durrett, Dushoff, Griffeath, and Levin. The first application confirms a conjecture of Cox and Perkins and the second confirms a conjecture of Ohtsuki et al in the ...

  17. Reactions of psychiatric patients to the Three Mile Island nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Bromet, E.; Schulberg, H.C.; Dunn, L.

    1982-06-01

    The reaction of patients in the community mental health system to the nuclear accident at Three Mile Island (TMI), Middletown, Pa, were assessed. The sample was composed of 151 patients from the TMI area and 64 patients from a comparison site where a similar nuclear plant is located. Mental health status was determined for the period immediately after the accident, nine to ten months later, and one year later. No significant differences were found between the TMI group and the comparison group. To isolate risk factors within the TMI group, patients who were most distressed were compared with patients with the least distress. The results showed that quality of network support and viewing TMI as dangerous were significantly associated with mental health.

  18. Low Energy Nuclear Reaction Aircraft- 2013 ARMD Seedling Fund Phase I Project

    Science.gov (United States)

    Wells, Douglas P.; McDonald, Robert; Campbell, Robbie; Chase, Adam; Daniel, Jason; Darling, Michael; Green, Clayton; MacGregor, Collin; Sudak, Peter; Sykes, Harrison; hide

    2014-01-01

    This report serves as the final written documentation for the Aeronautic Research Mission Directorate (ARMD) Seedling Fund's Low Energy Nuclear Reaction (LENR) Aircraft Phase I project. The findings presented include propulsion system concepts, synergistic missions, and aircraft concepts. LENR is a form of nuclear energy that potentially has over 4,000 times the energy density of chemical energy sources. It is not expected to have any harmful emissions or radiation which makes it extremely appealing. There is a lot of interest in LENR, but there are no proven theories. This report does not explore the feasibility of LENR. Instead, it assumes that a working system is available. A design space exploration shows that LENR can enable long range and high speed missions. Six propulsion concepts, six missions, and four aircraft concepts are presented. This report also includes discussion of several issues and concerns that were uncovered during the study and potential research areas to infuse LENR aircraft into NASA's aeronautics research.

  19. Probing the nuclear equation of state by heavy-ion reactions and neutron star properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, P.K.; Cassing, W.; Thoma, M.H. [Inst. fuer Theoretische Physik, Univ. Giessen (Germany)

    1998-06-01

    We discuss the nuclear equation of state (EOS) using a non-linear relativistic transport model. From the baryon flow for Ni + Ni as well as Au + Au systems we find that the strength of the vector potential has to be reduced at high density or at high relative momenta to describe the experimental flow data at 1-2 A GeV. We use the same dynamical model to calculate the nuclear EOS and then employ this EOS to neutron star structure calculations. We consider the core of the neutron star to be composed of neutrons with an admixture of protons, electrons, muons, sigmas and lambdas at zero temperature. We find that the nuclear equation of state is softer at high densities and hence the maximum mass and the radius of the neutron star are in the observable range of M {proportional_to} 1.7 M{sub s}un and R = 8 km, respectively. (orig.)

  20. Excitation functions for nuclear reactions with interaction of up to 47-MeV deuterons with tin

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, A.V.; Kondratev, S.N.; Lobach, Y.N.; Nevskii, S.V.; Sklyarenko, V.D.; Tokarevskii, V.V. [Institute of Nuclear Research (Russian Federation)

    1994-03-01

    The investigations, initiated in, of the deuteron excitation functions for nuclear reactions with interaction energies of up to several tens of MeV were continued. The aim of the investigations is to obtain experimental data that can be used to determine the concentration of nuclides forming as a result of the transmutation of nuclei of the deuteron-irradiated material as well as to study the possibilities of predicting the data theoretically. In the present work we measured the excitation function for reactions in which long-lived nuclides are formed under irradiation of tin by deuterons. Calculations of the excitation functions were performed on the basis of the model of pre-equilibrium emission of nucleons and evaporation of nucleons and {gamma}-rays from the compound nucleus using the program ALICE LIVERMORE. Conclusions are drawn on the basis of a comparison of the measurements and calculations about the role of the compound-nucleus mechanism in reactions with deuterons on tin and the possibility of using the ALICE LIVERMORE program for predicting reaction excitation functions. Thus far the only such investigation for tin is the experiment performed with deuteron energies up to 13.6 MeV.

  1. Applications of computer simulation, nuclear reactions and elastic scattering to surface analysis of materials

    Directory of Open Access Journals (Sweden)

    Pacheco de Carvalho, J. A.

    2008-08-01

    Full Text Available This article involves computer simulation and surface analysis by nuclear techniques, which are non-destructive. Both the “energy method of analysis” for nuclear reactions and elastic scattering are used. Energy spectra are computer simulated and compared with experimental data, giving target composition and concentration profile information. The method is successfully applied to thick flat targets of graphite, quartz and sapphire and targets containing thin films of aluminium oxide. Depth profiles of 12C and 16O nuclei are determined using (d,p and (d,α deuteron induced reactions. Rutherford and resonance elastic scattering of (4He+ ions are also used.

    Este artículo trata de simulación por ordenador y del análisis de superficies mediante técnicas nucleares, que son no destructivas. Se usa el “método de análisis en energia” para reacciones nucleares, así como el de difusión elástica. Se simulan en ordenador espectros en energía que se comparan com datos experimentales, de lo que resulta la obención de información sobre la composición y los perfiles de concentración de la muestra. Este método se aplica con éxito em muestras espesas y planas de grafito, cuarzo y zafiro y muestras conteniendo películas finas de óxido de aluminio. Se calculan perfiles en profundidad de núcleos de 12C y de 16O a través de reacciones (d,p y (d,α inducidas por deuterones. Se utiliza también la difusión elástica de iones (4He+, tanto a Rutherford como resonante.

  2. Nuclear model calculations on cyclotron production of {sup 51}Cr

    Energy Technology Data Exchange (ETDEWEB)

    Kakavand, Tayeb [Imam Khomeini International Univ., Qazvin (Iran, Islamic Republic of). Dept. of Physics; Aboudzadeh, Mohammadreza [Nuclear Science and Technology Research Institute/AEOI, Karaj (Iran, Islamic Republic of). Agricultural, Medical and Industrial Research School; Farahani, Zahra; Eslami, Mohammad [Zanjan Univ. (Iran, Islamic Republic of). Dept. of Physics

    2015-12-15

    {sup 51}Cr (T{sub 1/2} = 27.7 d), which decays via electron capture (100 %) with 320 keV gamma emission (9.8 %), is a radionuclide with still a large application in biological studies. In this work, ALICE/ASH and TALYS nuclear model codes along with some adjustments are used to calculate the excitation functions for proton, deuteron, α-particle and neutron induced on various targets leading to the production of {sup 51}Cr radioisotope. The production yields of {sup 51}Cr from various reactions are determined using the excitation function calculations and stopping power data. The results are compared with corresponding experimental data and discussed from point of view of feasibility.

  3. COMMENTS ON "A NEW LOOK AT LOW-ENERGY NUCLEAR REACTION RESEARCH"

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, K.

    2009-12-30

    Cold fusion researchers have accumulated a large body of anomalous results over the last 20 years that they claim proves a new, mysterious nuclear reaction is active in systems they study. Krivit and Marwan give a brief and wholly positive view of this body of research. Unfortunately, cold fusion researchers routinely ignore conventional explanations of their observations, and claim much greater than real accuracy and precision for their techniques. This paper attempts to equally briefly address those aspects of the field with the intent of providing a balanced view of the field, and to establish some criteria for subsequent publications in this arena.

  4. Comparison between the entropy approach and Monte Carlo calculations for statistical nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, H.M.; Mertelmeier, T. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Theoretische Physik); Mello, P.A. (Instituto Nacional de Investigaciones Nucleares, Mexico City. Lab. del Acelerador); Seligman, T.H. (Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Fisica)

    1981-12-14

    A comparison is presented between predictions of the entropy approach to statistical nuclear reactions, and numerical calculations performed by generating an ensemble of S-matrices in terms of K-matrices with specified statistical distributions for their parameters. The comparison is done for: (a) the 2nd, 3rd and 4th moments of S in a 4-channel case and (b) the actual distribution of the S-matrix elements in a 2-channel case. In both cases the agreement is found to be very good in the domain of strong absorption.

  5. Detection of submonolayer oxygen-18 on a gold surface by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Kenny, M.J.; Wieczorek, L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    A gold substrate is the preferred solid surface for formation of an organic self-assembled monolayer ( SAM ). Device fabrication process may require the gold film to be exposed to photolithographic processing and plasma treatment prior to molecular assembly. It has been observed that oxygen plasma treatment prevents the formation of SAMs; however, subsequent treatment with an argon plasma allows assembly of the organic monolayers. To understand the mechanisms involved, a plasma containing 98% {sup 18}O was used and the film surface was analysed using the {sup 18}O (p,{alpha}){sup 15}N nuclear reaction. 5 refs., 1 tab., 3 figs.

  6. Modeling of Reaction Processes Controlled by Diffusion

    CERN Document Server

    Revelli, J

    2003-01-01

    Stochastic modeling is quite powerful in science and technology.The technics derived from this process have been used with great success in laser theory, biological systems and chemical reactions.Besides, they provide a theoretical framework for the analysis of experimental results on the field of particle's diffusion in ordered and disordered materials.In this work we analyze transport processes in one-dimensional fluctuating media, which are media that change their state in time.This fact induces changes in the movements of the particles giving rise to different phenomena and dynamics that will be described and analyzed in this work.We present some random walk models to describe these fluctuating media.These models include state transitions governed by different dynamical processes.We also analyze the trapping problem in a lattice by means of a simple model which predicts a resonance-like phenomenon.Also we study effective diffusion processes over surfaces due to random walks in the bulk.We consider differe...

  7. An improved nuclear mass model: FRDM (2012)

    Science.gov (United States)

    Moller, Peter

    2011-10-01

    We have developed an improved nuclear mass model which we plan to finalize in 2012, so we designate it FRDM(2012). Relative to our previous mass table in 1995 we do a full four-dimensional variation of the shape coordinates EPS2, EPS3, EPS4, and EPS6, we consider axial asymmetric shape degrees of freedom and we vary the density symmetry parameter L. Other additional features are also implemented. With respect to the Audi 2003 data base we now have an accuracy of 0.57 MeV. We have carefully tested the extrapolation properties of the new mass table by adjusting model parameters to limited data sets and testing on extended data sets and find it is highly reliable in new regions of nuclei. We discuss what the remaining differences between model calculations and experiment tell us about the limitations of the currently used effective single-particle potential and possible extensions. DOE No. DE-AC52-06NA25396.

  8. Study for Nuclear Structures of 22-35Na Isotopes via Measurements of Reaction Cross Sections

    Science.gov (United States)

    Suzuki, Shinji

    2014-09-01

    T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn., Kochi Univ. of Tech.) Reaction cross sections (σR) for 22-35Na isotopes have been measured at around 240 MeV/nucleon. The σR for 22-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. These enhancement can be mainly ascribed to the nuclear deformation. We will discuss the nuclear structure (neutron skin, nuclear shell structure) for neutron-excess Na isotopes. T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn

  9. Transition from in-plane to out-of-plane azimuthal enhancement in Au+Au collisions[25.75.Ld; 25.70.Pq; Nuclear reactions; E=90-400A MeV; Semicentral collisions; Flow angle; Azimuthal distributions; Transition energy; Quantum molecular dynamics model; Nuclear matter Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, A. E-mail: A.Andronic@gsi.de; Stoicea, G.; Petrovici, M.; Simion, V.; Crochet, P.; Alard, J.P.; Averbeck, R.; Barret, V.; Basrak, Z.; Bastid, N.; Bendarag, A.; Berek, G.; Caplar, R.; Devismes, A.; Dupieux, P.; Dzelalija, M.; Eskef, M.; Finck, Ch.; Fodor, Z.; Gobbi, A.; Grishkin, Y.; Hartmann, O.N.; Herrmann, N.; Hildenbrand, K.D.; Hong, B.; Kecskemeti, J.; Kim, Y.J.; Kirejczyk, M.; Korolija, M.; Kotte, R.; Kress, T.; Kutsche, R.; Lebedev, A.; Lee, K.S.; Leifels, Y.; Manko, V.; Merlitz, H.; Neubert, W.; Pelte, D.; Plettner, C.; Rami, F.; Reisdorf, W.; De Schauenburg, B.; Schuell, D.; Seres, Z.; Sikora, B.; Sim, K.S.; Siwek-Wilczynska, K.; Smolyankin, V.; Stockmeier, M.R.; Vasiliev, M.; Wagner, P.; Wisniewski, K.; Wohlfarth, D.; Yushmanov, I.; Zhilin, A

    2001-01-01

    The incident energy at which the azimuthal distributions in semicentral heavy-ion collisions change from in-plane to out-of-plane enhancement -- E{sub tran} is studied as a function of mass of emitted particles, their transverse momentum and centrality for Au+Au collisions. The analysis is performed in a reference frame rotated with the sidewards flow angle ({theta}{sub flow}) relative to the beam axis. A systematic decrease of E{sub tran} as function of mass of the reaction products, their transverse momentum and collision centrality is evidenced. The predictions of a microscopic transport model (IQMD) are compared with the experimental results.

  10. Activation cross sections of proton induced nuclear reactions on palladium up to 80 MeV

    CERN Document Server

    Tárkányi, F; Takács, S; Csikai, J; Hermanne, A; Uddin, S; Baba, M

    2016-01-01

    Activation cross sections of proton induced nuclear reactions on palladium were measured up to 80 MeV by using the stacked foil irradiation technique and gamma ray spectrometry. The beam intensity, the incident energy and the energy degradation were controlled by a method based on flux constancy via normalization to the excitation functions of monitor reactions measured in parallel. Excitation functions for direct and cumulative cross-sections were measured for the production of ${}^{104m,104g,105}$${}^{g,106m,110m}$Ag, ${}^{100,101}$Pd, ${}^{99m,99g,100,}$${}^{101m}$${}^{,101g,102m,102g,105}$Rh and ${}^{103,}$${}^{97}$Ru radioisotopes. The cross section data were compared with the theoretical predictions of TENDL-2014 and -2015 libraries. For practical applications thick target yields were derived from the measured excitation functions. Application in the field of medical radionuclide production is shortly discussed.

  11. Modelling of reaction cross sections and prompt neutron emission

    Directory of Open Access Journals (Sweden)

    Oberstedt S.

    2010-10-01

    Full Text Available Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f and 237Np(n, f both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  12. Nuclear reactions with radioactive and stable beams (Part II); Reacciones nucleares con haces radiactivos y estables (Parte II)

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-12-15

    At the present time there is a great interest at world level in experiments, with accelerated nuclei of short half life. The dispersion, fusion, transfer and break processes in the interaction of weakly light projectiles bounded with targets of Z great its have been object of intense recent investigation, at world level. Our group, in collaboration with the University of Notre Dame, it has measured and analyzed these processes for weakly bound systems as: {sup 6}He + {sup 209}Bi, {sup 8}Li + {sup 208}Pb, {sup 10}Be + {sup 208}Pb. On the other hand a research line that has wakened up great interest, it is that of studies of resonant reactions using the Inverse Kinematics technique with thick targets. The use of this technique allows to measure an entire excitation function with a single bombardment. Our group has carried out, in the ININ, preliminary bombardments for the system {sup 12}C + {sup 4}He. This allowed to establish the feasibility of implementing this technique in our Laboratory. The application of this and other techniques to different systems like {sup 18}O + {sup 4}He, {sup 12}C + {sup 12}C, {sup 12}C + {sup 16}O, {sup 16}O + {sup 16}O, it opens the possibility to measure the fusion of these systems at very low energy and to deepen in the knowledge of the nuclear structure and the nuclear astrophysics. In this technical report, the activities carried out by our group during the second stage of this project, considered for 2005 are described. Also in that year, our group carries out a research stay in the University of Notre Dame, during this stay, the angular distribution of the projectiles of {sup 8}B dispersed in an enriched target of {sup 58}Ni was measured. The same as in the previous experiments, in this occasion it was also possible to measure those angular distributions of the projectiles of {sup 7}Be and {sup 6}Li dispersed in this same target. In this same one our stay group participates in other three experiments proposed by collaborators of

  13. Evaluation of the nuclear data on ({alpha}, n) reaction for F, Na, Al, Cr, Fe, Ni, and Cu

    Energy Technology Data Exchange (ETDEWEB)

    Matsunobu, Hiroyuki [Data Engineering, Inc., Fujisawa, Kanagawa (Japan); Yamamuro, Nobuhiro

    2002-08-01

    Evaluation of the nuclear data on ({alpha}, n) reaction, which are very important in analyzing radiation shielding and criticality safety relating to storage, transport, and handling of spent fuel was carried out for 18 nuclides, and the results were compared with the experimental data for ({alpha}, n) reaction cross section and thick target neutron yield. (author)

  14. Study of nuclear reactions involving heavy nuclei and intermediate- and high-energy protons and an application in nuclear reactor physics (ADS); Estudo das reacoes nucleares envolvendo nucleos pesados e protons a energias intermediarias e altas de uma aplicacao em fisica de reatores nucleares (ADS)

    Energy Technology Data Exchange (ETDEWEB)

    Matuoka, Paula Fernanda Toledo

    2016-07-01

    In the present work, intermediate- and high-energy nuclear reactions involving heavy nuclei and protons were studied with the Monte Carlo CRISP (Rio - Ilheus - Sao Paulo Collaboration) model. The most relevant nuclear processes studied were intranuclear cascade and fission-evaporation competition. Preliminary studies showed fair agreement between CRISP model calculation and experimental data of multiplicity of evaporated neutrons (E < 20 MeV) from the p(1200 MeV) + {sup 208}Pb reaction and of spallation residues from the p(1000 MeV) + {sup 208}Pb reaction. The investigation of neutron multiplicity from proton-induced fission of {sup 232}Th up to 85 MeV showed that it was being overestimated by CRISP model; on the other hand, fission cross section were being underestimated. This behavior is due to limitations of the intranuclear cascade model for low-energies (around 50 MeV). The p(1200 MeV) + {sup 208}Pb reaction was selected for the study of a spallation neutron source. High-energy neutrons (E > 20 MeV) were emitted mostly in the intranuclear cascade stage, while evaporation presented larger neutron multiplicity. Fission cross section of 209 mb and spallation cross section of 1788 mb were calculated both in agreement with experimental data. The fission process resulted in a symmetric mass distribution. Another Monte Carlo code, MCNP, was used for radiation transport in order to understand the role of a spallation neutron source in a ADS (Accelerator Driven System) nuclear reactor. Initially, a PWR reactor was simulated to study the isotopic compositions in spent nuclear fuel. As a rst attempt, a spallation neutron source was adapted to an industrial size nuclear reactor. The results showed no evidence of incineration of transuranic elements and modifications were suggested. (author)

  15. Modelling study on production cross sections of {sup 111}In radioisotopes used in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Ayhan; Korkut, Turgay [Sinop Univ. (Turkey). Faculty of Engineering; Yigit, Mustafa [Aksaray Univ. (Turkey). Faculty of Science and Arts; Tel, Eyyup [Osmaniye Korkut Ata Univ. (Turkey). Faculty of Science and Arts

    2015-07-15

    Radiopharmaceuticals are radioactive drugs used for diagnosis or treatment in a tracer quantity with no pharmacological action. The production of radiopharmaceuticals is carried out in the special research centers generally using by the cyclotron systems. Indium-111 is one of the most useful radioisotopes used in nuclear medicine. In this paper, we calculated the production cross sections of {sup 111}In radioisotope via {sup 111-114}Cd(p,xn) nuclear reactions up to 60 MeV energy. In the model calculations, ALICE/ASH, TALYS 1.6 and EMPIRE 3.2 Malta nuclear reaction code systems were used. The model calculation results were compared to the experimental literature data and TENDL-2014 (TALYS-based) data.

  16. Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions

    CERN Document Server

    Giuffrida, L; Cirrone, G A P; Picciotto, A; Korn, G

    2016-01-01

    We propose a series of simulations about the potential use of Boron isotopes to trigger neutron-free (aneutronic) nuclear reactions in cancer cells through the interaction with an incoming energetic proton beam, thus resulting in the emission of characteristic prompt gamma radiation (429 keV, 718 keV and 1435 keV). Furthermore assuming that the Boron isotopes are absorbed in cancer cells, the three alpha-particles produced in each p-11B aneutronic nuclear fusion reactions can potentially result in the enhancement of the biological dose absorbed in the tumor region since these multi-MeV alpha-particles are stopped inside the single cancer cell, thus allowing to spare the surrounding tissues. Although a similar approach based on the use of 11B nuclei has been proposed in [1], our work demonstrate, using Monte Carlo simulations, the crucial importance of the use of 10B nuclei (in a solution containing also 11B) for the generation of prompt gamma-rays, which can be applied to medical imaging. In fact, we demonstr...

  17. Experimental approaches for determining in-medium properties of hadrons from photo-nuclear reactions

    CERN Document Server

    Metag, Volker; Berghäuser, Henning; Friedrich, Stefan; Lemmer, Boris; Mosel, Ulrich

    2011-01-01

    Properties of hadrons and their modification within strongly interacting matter provide a link between experimental observables and Quantum Chromodynamics (QCD) in the non-perturbative sector. The sensitivity of various observables to in-medium modifications of mesons is discussed. The transparency ratio, comparing the meson yield per nucleon within a nucleus relative to that on a free nucleon, is related to the in-medium width of the meson. While the transparency ratio can be determined for any meson lifetime the meson line shape only contains information on in-medium properties if the meson is so short-lived that it decays in the medium after production in a nuclear reaction. Light vector mesons are thus particularly suited for these investigations. The momentum distribution of mesons produced in a photo-nuclear reaction as well as the excitation function also show some sensitivity to different in-medium modification scenarios. As an example, high statistics data taken at MAMI-C on the photoproduction of \\o...

  18. Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions

    Science.gov (United States)

    Giuffrida, L.; Margarone, D.; Cirrone, G. A. P.; Picciotto, A.; Cuttone, G.; Korn, G.

    2016-10-01

    We propose a series of simulations about the potential use of Boron isotopes to trigger neutron-free (aneutronic) nuclear reactions in cancer cells through the interaction with an incoming energetic proton beam, thus resulting in the emission of characteristic prompt gamma radiation (429 keV, 718 keV and 1435 keV). Furthermore assuming that the Boron isotopes are absorbed in cancer cells, the three alpha-particles produced in each p-11B aneutronic nuclear fusion reactions can potentially result in the enhancement of the biological dose absorbed in the tumor region since these multi-MeV alpha-particles are stopped inside the single cancer cell, thus allowing to spare the surrounding tissues. Although a similar approach based on the use of 11B nuclei has been proposed in [Yoon et al. Applied Physics Letters 105, 223507 (2014)], our work demonstrate, using Monte Carlo simulations, the crucial importance of the use of 10B nuclei (in a solution containing also 11B) for the generation of prompt gamma-rays, which can be applied to medical imaging. In fact, we demonstrate that the use of 10B nuclei can enhance the intensity of the 718 keV gamma-ray peak more than 30 times compared to the solution containing only 11B nuclei. A detailed explanation of the origin of the different prompt gamma-rays, as well as of their application as real-time diagnostics during a potential cancer treatment, is here discussed.

  19. Mission to Mars by catalyzed nuclear reactions of the commercialized cold fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Yonsei University, Wonju (Korea, Republic of)

    2016-05-15

    The chemical compound source is deficient to reach to the power as much as the journey to Mars, unless the massive equipment is installed like the nuclear fusion reactor. However, there is very significant limitations of making up the facility due to the propellant power. Therefore, the light and cheap energy source, Low energy nuclear reactions (LENRs), powered rocket has been proposed. In this paper, the power conditions by LENRs are analyzed. After the successful Apollo mission to Moon of the National Aeronautics and Space Administration (NASA) in the U.S. government, the civilian companies have proposed for the manned mission to Mars for the commercial journey purposes. The nuclear power has been a critical issue for the energy source in the travel, especially, by the LENR of LENUCO, Champaign, USA. As the velocity of the rocket increases, the mass flow rate decreases. It could be imaginable to take the reasonable velocity of spacecraft. The energy of the travel system is and will be created for the better one in economical and safe method. There is the imagination of boarding pass for spacecraft ticket shows the selected companies of cold fusion products. In order to solve the limitations of the conventional power sources like the chemical and solar energies, it is reasonable to design LENR concept. Since the economical and safe spacecraft is very important in the long journey on and beyond the Mars orbit, a new energy source, LENR, should be studied much more.

  20. Model for reaction kinetics in pyrolysis of wood

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, P.; Singh, P.C.; Upadhyay, S.N.; Kumar, S. [Banaras Hindu Univ., Varanasi (India)

    1996-12-31

    A reaction model for the pyrolysis of small and large particles of wood Is developed. The chemical reactions that take place when biomass is pyrolyzed are the devolatilization reactions (primary) and due to the vapour-solid interactions (secondary). In the case of small particles, when the volatiles are immediately removed by the purge gas, only primary reactions occur and the reaction model is described by weight loss and char forming reactions. The of heterogeneous secondary reactions occur in the case of large particles due to the interaction between the volatiles and the hot nascent primary char. A chain reaction mechanism of secondary char formation is proposed. The model takes both the volatiles retention time and cracking and repolymerization reactions of the vapours with the decomposing solid as well as autocatalysis into consideration. 7 refs., 3 figs., 2 tabs.

  1. Model for reaction kinetics in pyrolysis of wood

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, P.; Singh, P.C.; Upadhyay, S.N.; Kuma, S. [Banaras Hindu Univ., Varanasi (India)

    1996-12-31

    A reaction model for the pyrolysis of small and large particles of wood is developed. The chemical reactions that take place when biomass is pyrolyzed are the devolatilization reactions (primary) and due to the vapour-solid interactions (secondary). In the case of small particles, when the volatiles are immediately removed by the purge gas, only primary reactions occur and the reaction model is described by weight loss and char forming reactions. The heterogeneous secondary reactions occur in the case of large particles due to the interaction between the volatiles and the hot nascent primary char. A chain reaction mechanism of secondary char formation is proposed. The model takes both the volatiles retention time and cracking and repolymerization reactions of the vapours with the decomposing solid as well as autocatalysis into consideration. 6 refs., 3 figs., 2 tabs.

  2. Neutrinoless Double Beta Nuclear Matrix Elements Around Mass 80 in the Nuclear Shell Model

    Science.gov (United States)

    Yoshinaga, Naotaka; Higashiyama, Koji; Taguchi, Daisuke; Teruya, Eri

    The observation of the neutrinoless double-beta decay can determine whether the neutrino is a Majorana particle or not. In its theoretical nuclear side it is particularly important to estimate three types of nuclear matrix elements, namely, Fermi (F), Gamow-Teller (GT), and tensor (T) types matrix elements. The shell model calculations and also the pair-truncated shell model calculations are carried out to check the model dependence on nuclear matrix elements. In this work the neutrinoless double-beta decay for mass A = 82 nuclei is studied. It is found that the matrix elements are quite sensitive to the ground state wavefunctions.

  3. Analytical continuous slowing down model for nuclear reaction cross-section measurements by exploitation of stopping for projectile energy scanning and results for 13C(3He,α)12C and 13C(3He,p)15N

    Science.gov (United States)

    Möller, S.

    2017-03-01

    Ion beam analysis is a set of precise, calibration free and non-destructive methods for determining surface-near concentrations of potentially all elements and isotopes in a single measurement. For determination of concentrations the reaction cross-section of the projectile with the targets has to be known, in general at the primary beam energy and all energies below. To reduce the experimental effort of cross-section measurements a new method is presented here. The method is based on the projectile energy reduction when passing matter of thick targets. The continuous slowing down approximation is used to determine cross-sections from a thick target at projectile energies below the primary energy by backward calculation of the measured product spectra. Results for 12C(3He,p)14N below 4.5 MeV are in rough agreement with literature data and reproduce the measured spectra. New data for reactions of 3He with 13C are acquired using the new technique. The applied approximations and further applications are discussed.

  4. TDH solution of the Suzuki model of nuclear monopole oscillation

    Science.gov (United States)

    Skalski, J.

    1987-09-01

    The exact time-dependent Hartree solution of the schematic model describing nuclear monopole oscillation — the Suzuki model — is presented. The energies of vibrational states are quantized according to the gauge-invariant periodic quantization prescription.

  5. Transition from in-plane to out-of-plane azimuthal enhancement in Au+Au collisions 25.75.Ld; 25.70.Pq; Nuclear reactions; E=90-400A MeV; Semicentral collisions; Flow angle; Azimuthal distributions; Transition energy; Quantum molecular dynamics model; Nuclear matter Equation of State

    CERN Document Server

    Andronic, A; Petrovici, M; Simion, V; Crochet, Philippe; Alard, J P; Averbeck, R; Barret, V; Basrak, Z; Bastid, N; Bendarag, A; Berek, G; Caplar, R; Devismes, A; Dupieux, P; Dzelalija, M; Eskef, M; Finck, C; Fodor, Z; Gobbi, A; Grishkin, Y; Hartmann, O N; Herrmann, N; Hildenbrand, K D; Hong, B; Kecskeméti, J; Kim, Y J; Kirejczyk, M; Korolija, M; Kotte, R; Kress, T; Kutsche, R; Lebedev, A; Lee, K S; Leifels, Y; Man'ko, V; Merlitz, H; Neubert, W; Pelte, D; Plettner, C; Rami, F; Reisdorf, W; De Schauenburg, B; Schuell, D; Seres, Z; Sikora, B; Sim, K S; Siwek-Wilczynska, K; Smolyankin, V T; Stockmeier, M R; Vasilev, M; Wagner, P; Wisniewski, K; Wohlfarth, D; Yushmanov, I E; Zhilin, A

    2001-01-01

    The incident energy at which the azimuthal distributions in semicentral heavy-ion collisions change from in-plane to out-of-plane enhancement -- E sub t sub r sub a sub n is studied as a function of mass of emitted particles, their transverse momentum and centrality for Au+Au collisions. The analysis is performed in a reference frame rotated with the sidewards flow angle (THETA sub f sub l sub o sub w) relative to the beam axis. A systematic decrease of E sub t sub r sub a sub n as function of mass of the reaction products, their transverse momentum and collision centrality is evidenced. The predictions of a microscopic transport model (IQMD) are compared with the experimental results.

  6. Determination of sulphur and copper depth distribution in patina layers using nuclear reaction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kalliabakos, G.; Kossionides, S.; Misailides, P.; Papadopoulos, C.T.; Vlastou, R. E-mail: vlastou@central.ntua.gr

    2000-10-01

    A method for Cu and S profiling in patina layers was developed by applying a combination of nuclear reaction analysis (NRA) and Rutherford backscattering spectroscopy (RBS). The copper profiling was performed by using the 1327 keV {gamma}-ray deexciting the third excited state to the ground state of {sup 63}Cu produced by the reaction {sup 63}Cu(p,p{sup '}{gamma}){sup 63}Cu. For the determination of sulphur the 2230 keV {gamma}-ray was used deexciting the first excited state to the ground state of {sup 32}S formed through the reaction {sup 32}S(p,p{sup '}{gamma}){sup 32}S, which exhibits three sharp resonances at projectile energies 3.094, 3.195 and 3.379 MeV. The relevant cross-sections were measured in the energy range between 3.0 and 3.7 MeV in steps of 20 keV at 125 deg. to the incident proton beam direction. The technique was tested using artificially produced and natural copper patina layers. Supporting information on the depth distribution of the constituent elements of the patina samples was obtained by p-RBS (E{sub p}: 1.5 MeV, {theta}: 160 deg.)

  7. Towards a nonequilibrium Green's function description of nuclear reactions: one-dimensional mean-field dynamics

    CERN Document Server

    Rios, Arnau; Buchler, Mark; Danielewicz, Pawel

    2010-01-01

    Nonequilibrium Green's function methods allow for an intrinsically consistent description of the evolution of quantal many-body body systems, with inclusion of different types of correlations. In this paper, we focus on the practical developments needed to build a Green's function methodology for nuclear reactions. We start out by considering symmetric collisions of slabs in one dimension within the mean-field approximation. We concentrate on two issues of importance for actual reaction simulations. First, the preparation of the initial state within the same methodology as for the reaction dynamics is demonstrated by an adiabatic switching on of the mean-field interaction, which leads to the mean-field ground state. Second, the importance of the Green's function matrix-elements far away from the spatial diagonal is analyzed by a suitable suppression process that does not significantly affect the evolution of the elements close to the diagonal. The relative lack of importance of the far-away elements is tied t...

  8. Modeling fabrication of nuclear components: An integrative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.

    1996-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  9. Spanish Electric Sector Nuclear R and D Model

    Energy Technology Data Exchange (ETDEWEB)

    Casero, M.; Francia, L.

    2005-07-01

    This paper presents the R and D model that, based on the experience gained and lessons learned in nearly forty years of nuclear power use in Spain, is Promoted by the Spanish Electricity Sector for the nuclear R and D activities it develops in a coordinated manner in the frame of the Nuclear Energy Committee of the Association Espanola de la Industria Electrica (UNESA). (Author)

  10. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50 MeV

    CERN Document Server

    Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2016-01-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40 MeV up to 50 MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides $^{113,110}$Sn, $^{116m,115m,114m,113m,111,110g,109}$In and $^{115}$Cd are reported in the 37-50 MeV energy range, for production of $^{110}$Sn and $^{110g,109}$In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS1.6 nuclear model code as listed in the on-line library TENDL-2014.

  11. Nuclear geyser model of the origin of life: Driving force to promote the synthesis of building blocks of life

    Directory of Open Access Journals (Sweden)

    Toshikazu Ebisuzaki

    2017-03-01

    Full Text Available We propose the nuclear geyser model to elucidate an optimal site to bear the first life. Our model overcomes the difficulties that previously proposed models have encountered. Nuclear geyser is a geyser driven by a natural nuclear reactor, which was likely common in the Hadean Earth, because of a much higher abundance of 235U as nuclear fuel. The nuclear geyser supplies the following: (1 high-density ionizing radiation to promote chemical chain reactions that even tar can be used for intermediate material to restart chemical reactions, (2 a system to maintain the circulation of material and energy, which includes cyclic environmental conditions (warm/cool, dry/wet, etc. to enable to produce complex organic compounds, (3 a lower temperature than 100 °C as not to break down macromolecular organic compounds, (4 a locally reductive environment depending on rock types exposed along the geyser wall, and (5 a container to confine and accumulate volatile chemicals. These five factors are the necessary conditions that the birth place of life must satisfy. Only the nuclear geyser can meet all five, in contrast to the previously proposed birth sites, such as tidal flat, submarine hydrothermal vent, and outer space. The nuclear reactor and associated geyser, which maintain the circulations of material and energy with its surrounding environment, are regarded as the nuclear geyser system that enables numerous kinds of chemical reactions to synthesize complex organic compounds, and where the most primitive metabolism could be generated.

  12. Model description of non-Maxwellian nuclear processes in the solar interior

    CERN Document Server

    Voronchev, Victor T; Watanabe, Yukinobu

    2016-01-01

    A consistent model for the description of non-Maxwellian nuclear processes in the solar core triggered by fast reaction-produced particles is formulated. It essentially extends an approach to study suprathermal solar reactions discussed previously [Phys. Rev. C 91, 028801 (2015)] and refines its predictions. The model is applied to examine in detail the slowing-down of 8.7-MeV alpha particles produced in the 7Li(p,alpha)alpha reaction of the pp chain, and to study suprathermal processes in the solar CNO cycle induced by them. The influence of electron degeneracy and electron screening on suprathermal reactions through in-flight reaction probability and fast particle emission rate is clarified. In particular, these effects account for a 20% increase of the 14N(alpha,p)17O reaction rate at R 18F of nuclear flow transforms to abnormal sequential flow 14N --> 17O --> 18F, and the 14N(alpha,p)17O reaction rate exceeds the rate of 17O burn up through conventional 17O(p,alpha)14N and 17O(p,gamma)18F processes. It i...

  13. Extraction of Nuclear Matter Properties from Nuclear Masses by a Model of Equation of State

    Institute of Scientific and Technical Information of China (English)

    K.C.Chung; C.S.Wang; A.J.Santiago

    2001-01-01

    The extraction of nuclear matter properties from measured nuclear masses is investigated in the energy density functional formalism of nuclei.It is shown that the volume energy a1 and the nuclear incompressibility Ko depend essentially on μnN -+- pZ - 2EN,whereas the symmetry energy J and the density symmetry coefficient L as well as symmetry incompressibility Ks depend essentially on μn - μp,where μp =μp - Ec/ Z,μn and μp are the neutron and proton chemical potentials respectively,EN the nuclear energy,and Ec the Coulomb energy.The obtained symmetry energy is J = 28.5 MeV,while other coefficients are uncertain within ranges depending on the model of nuclear equation of state.``

  14. Feasibility study of nuclear transmutation by negative muon capture reaction using the PHITS code

    Science.gov (United States)

    Abe, Shin-ichiro; Sato, Tatsuhiko

    2016-06-01

    Feasibility of nuclear transmutation of fission products in high-level radioactive waste by negative muon capture reaction is investigated using the Particle and Heave Ion Transport code System (PHITS). It is found that about 80 % of stopped negative muons contribute to transmute target nuclide into stable or short-lived nuclide in the case of 135Cs, which is one of the most important nuclide in the transmutation. The simulation result also indicates that the position of transmutation is controllable by changing the energy of incident negative muon. Based on our simulation, it takes approximately 8.5 × 108years to transmute 500 g of 135Cs by negative muon beam with the highest intensity currently available.

  15. Measurement and evaluation of the excitation functions for alpha particle induced nuclear reactions on niobium

    CERN Document Server

    Tarkanyi, F; Szelecsenyi, F; Sonck, M; Hermanne, A

    2002-01-01

    Alpha particle induced nuclear reactions were investigated with the stacked foil activation technique on natural niobium targets up to 43 MeV. Excitation functions were measured for the production of sup 9 sup 6 sup m sup g Tc, sup 9 sup 5 sup m Tc, sup 9 sup 5 sup g Tc, sup 9 sup 4 sup g Tc, sup 9 sup 5 sup m sup g Nb and sup 9 sup 2 sup m Nb. Cumulative cross-sections, thick target yields and activation functions were deduced and compared with available literature data. Applications of the excitation functions in the field of thin layer activation techniques and beam monitoring are also discussed.

  16. Information theory and statistical nuclear reactions. I. General theory and applications to few-channel problems

    Energy Technology Data Exchange (ETDEWEB)

    Mello, P.A.; Pereyra, P.; Seligman, T.H.

    1985-05-01

    Ensembles of scattering S-matrices have been used in the past to describe the statistical fluctuations exhibited by many nuclear-reaction cross sections as a function of energy. In recent years, there have been attempts to construct these ensembles explicitly in terms of S, by directly proposinng a statistical law for S. In the present paper, it is shown that, for an arbitrary number of channels, one can incorporate, in the ensemble of S-matrices, the conditions of flux conservation, time-reversal invariance, causality, ergodicity, and the requirement that the ensemble average coincide with the optical scattering matrix. Since these conditions do not specify the ensemble uniquely, the ensemble that has maximum information-entropy is dealt with among those that satisfy the above requirements. Some applications to few-channel problems and comparisons to Monte-Carlo calculations are presented.

  17. A computational study of pyrolysis reactions of lignin model compounds

    Science.gov (United States)

    Thomas Elder

    2010-01-01

    Enthalpies of reaction for the initial steps in the pyrolysis of lignin have been evaluated at the CBS-4m level of theory using fully substituted b-O-4 dilignols. Values for competing unimolecular decomposition reactions are consistent with results previously published for phenethyl phenyl ether models, but with lowered selectivity. Chain propagating reactions of free...

  18. Investigation of phosphorous in thin films using the {sup 31}P(α,p){sup 34}S nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, E., E-mail: eduardo.pitthan@ufrgs.br [PGMICRO, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Gobbi, A.L. [Laboratório Nacional de Nanotecnologia, 13083-100 Campinas, SP (Brazil); Stedile, F.C. [PGMICRO, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900 Porto Alegre, RS (Brazil)

    2016-03-15

    Phosphorus detection and quantification were obtained, using the {sup 31}P(α,p){sup 34}S nuclear reaction and Rutherford Backscattering Spectrometry, in deposited silicon oxide films containing phosphorus and in carbon substrates implanted with phosphorus. It was possible to determine the total amount of phosphorus using the resonance at 3.640 MeV of the {sup 31}P(α,p){sup 34}S nuclear reaction in samples with phosphorus present in up to 23 nm depth. Phosphorous amounts as low as 4 × 10{sup 14} cm{sup −2} were detected. Results obtained by nuclear reaction were in good agreement with those from RBS measurements. Possible applications of phosphorus deposition routes used in this work are discussed.

  19. Investigation of phosphorous in thin films using the 31P(α,p)34S nuclear reaction

    Science.gov (United States)

    Pitthan, E.; Gobbi, A. L.; Stedile, F. C.

    2016-03-01

    Phosphorus detection and quantification were obtained, using the 31P(α,p)34S nuclear reaction and Rutherford Backscattering Spectrometry, in deposited silicon oxide films containing phosphorus and in carbon substrates implanted with phosphorus. It was possible to determine the total amount of phosphorus using the resonance at 3.640 MeV of the 31P(α,p)34S nuclear reaction in samples with phosphorus present in up to 23 nm depth. Phosphorous amounts as low as 4 × 1014 cm-2 were detected. Results obtained by nuclear reaction were in good agreement with those from RBS measurements. Possible applications of phosphorus deposition routes used in this work are discussed.

  20. Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions

    Directory of Open Access Journals (Sweden)

    L. Giuffrida

    2016-10-01

    Full Text Available We propose a series of simulations about the potential use of Boron isotopes to trigger neutron-free (aneutronic nuclear reactions in cancer cells through the interaction with an incoming energetic proton beam, thus resulting in the emission of characteristic prompt gamma radiation (429 keV, 718 keV and 1435 keV. Furthermore assuming that the Boron isotopes are absorbed in cancer cells, the three alpha-particles produced in each p-11B aneutronic nuclear fusion reactions can potentially result in the enhancement of the biological dose absorbed in the tumor region since these multi-MeV alpha-particles are stopped inside the single cancer cell, thus allowing to spare the surrounding tissues. Although a similar approach based on the use of 11B nuclei has been proposed in [Yoon et al. Applied Physics Letters 105, 223507 (2014], our work demonstrate, using Monte Carlo simulations, the crucial importance of the use of 10B nuclei (in a solution containing also 11B for the generation of prompt gamma-rays, which can be applied to medical imaging. In fact, we demonstrate that the use of 10B nuclei can enhance the intensity of the 718 keV gamma-ray peak more than 30 times compared to the solution containing only 11B nuclei. A detailed explanation of the origin of the different prompt gamma-rays, as well as of their application as real-time diagnostics during a potential cancer treatment, is here discussed.

  1. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  2. Polymerization as a Model Chain Reaction

    Science.gov (United States)

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  3. Reaction Wheel Disturbance Model Extraction Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel mechanical noise is one of the largest sources of disturbance forcing on space-based observatories. Such noise arises from mass imbalance, bearing...

  4. Reaction Wheel Disturbance Model Extraction Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel disturbances are some of the largest sources of noise on sensitive telescopes. Such wheel-induced mechanical noises are not well characterized....

  5. Modelling Chemical Reasoning to Predict and Invent Reactions.

    Science.gov (United States)

    Segler, Marwin H S; Waller, Mark P

    2016-11-11

    The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180 000 randomly selected binary reactions. The data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-)discovering novel transformations (even including transition metal-catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub-second time frame, the model can be used as a high-throughput generator of reaction hypotheses for reaction discovery.

  6. Pion Effect of Nuclear Matter in a Chiral Sigma Model

    Institute of Scientific and Technical Information of China (English)

    HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong

    2009-01-01

    We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.

  7. Detailed reduction of reaction mechanisms for flame modeling

    Science.gov (United States)

    Wang, Hai; Frenklach, Michael

    1991-01-01

    A method for reduction of detailed chemical reaction mechanisms, introduced earlier for ignition system, was extended to laminar premixed flames. The reduction is based on testing the reaction and reaction-enthalpy rates of the 'full' reaction mechanism using a zero-dimensional model with the flame temperature profile as a constraint. The technique is demonstrated with numerical tests performed on the mechanism of methane combustion.

  8. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  9. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    Science.gov (United States)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  10. Strong screening effects on resonant nuclear reaction $^{23}$Mg $(p,\\gamma)$ $^{24}$Al in the surface of magnetars

    CERN Document Server

    Liu, Jing-Jing

    2016-01-01

    Based on the theory of relativistic superstrong magnetic fields(SMFs), by using the method of the Thomas-Fermi-Dirac approximations, we investigate the problem of strong electron screening(SES) in SMFs, and the influence of SES on the nuclear reaction of $^{23}$Mg $(p, \\gamma)$$^{24}$Al. Our calculations show that the nuclear reaction will be markedly effected by the SES in SMFs in the surface of magnetars. Our calculated screening rates can increase two orders of magnitude due to SES in SMFs.

  11. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    Energy Technology Data Exchange (ETDEWEB)

    Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  12. On-line monitoring of chemical reactions by using bench-top nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Danieli, E; Perlo, J; Duchateau, A L L; Verzijl, G K M; Litvinov, V M; Blümich, B; Casanova, F

    2014-10-06

    Real-time nuclear magnetic resonance (NMR) spectroscopy measurements carried out with a bench-top system installed next to the reactor inside the fume hood of the chemistry laboratory are presented. To test the system for on-line monitoring, a transfer hydrogenation reaction was studied by continuously pumping the reaction mixture from the reactor to the magnet and back in a closed loop. In addition to improving the time resolution provided by standard sampling methods, the use of such a flow setup eliminates the need for sample preparation. Owing to the progress in terms of field homogeneity and sensitivity now available with compact NMR spectrometers, small molecules dissolved at concentrations on the order of 1 mmol L(-1) can be characterized in single-scan measurements with 1 Hz resolution. Owing to the reduced field strength of compact low-field systems compared to that of conventional high-field magnets, the overlap in the spectrum of different NMR signals is a typical situation. The data processing required to obtain concentrations in the presence of signal overlap are discussed in detail, methods such as plain integration and line-fitting approaches are compared, and the accuracy of each method is determined. The kinetic rates measured for different catalytic concentrations show good agreement with those obtained with gas chromatography as a reference analytical method. Finally, as the measurements are performed under continuous flow conditions, the experimental setup and the flow parameters are optimized to maximize time resolution and signal-to-noise ratio.

  13. Isospin dependence of nuclear multifragmentation in statistical model

    Institute of Scientific and Technical Information of China (English)

    张蕾; 谢东珠; 张艳萍; 高远

    2011-01-01

    The evolution of nuclear disintegration mechanisms with increasing excitation energy, from compound nucleus to multifragmentation, has been studied by using the Statistical Multifragmentation Model (SMM) within a micro-canonical ensemble. We discuss the o

  14. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  15. Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye.

    Science.gov (United States)

    Dietzek, Benjamin; Brüggemann, Ben; Pascher, Torbjörn; Yartsev, Arkady

    2007-10-31

    Using optimal control as a spectroscopic tool we decipher the details of the molecular dynamics of the essential multidimensional excited-state photoisomerization - a fundamental chemical reaction of key importance in biology. Two distinct nuclear motions are identified in addition to the overall bond-twisting motion: Initially, the reaction is dominated by motion perpendicular to the torsion coordinate. At later times, a second optically active vibration drives the system along the reaction path to the bottom of the excited-state potential. The time scales of the wavepacket motion on a different part of the excited-state potential are detailed by pump-shaped dump optimal control. This technique offers new means to control a chemical reaction far from the Franck-Condon point of absorption and to map details of excited-state reaction pathways revealing unique insights into the underlying reaction mechanism.

  16. Colloid formation during waste form reaction: implications for nuclear waste disposal

    Science.gov (United States)

    Bates, J. K.; Bradley, J.; Teetsov, A.; Bradley, C. R.; ten Brink, Marilyn Buchholtz

    1992-01-01

    Insoluble plutonium- and americium-bearing colloidal particles formed during simulated weathering of a high-level nuclear waste glass. Nearly 100 percent of the total plutonium and americium in test ground water was concentrated in these submicrometer particles. These results indicate that models of actinide mobility and repository integrity, which assume complete solubility of actinides in ground water, underestimate the potential for radionuclide release into the environment. A colloid-trapping mechanism may be necessary for a waste repository to meet long-term performance specifications.

  17. Nuclear level densities in 208Bi and 209Po from the neutron spectra in the ( p, n) reactions on 208Pb and 209Bi nuclei

    Science.gov (United States)

    Zhuravlev, B. V.; Lychagin, A. A.; Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2010-07-01

    The spectra of neutrons from the ( p, n) reactions on the 208Pb and 209Bi nuclei were measured in the proton-energy range 8-11 MeV. These measurements were performed by using a time-of-flight spectrometer of fast neutrons on the basis of the pulsed tandem accelerator EGP-15 of the Institute of Physics and Power Engineering (Obninsk, Russian Federation). A high resolution and stability of the time-of-flight spectrometermade it possible to identify reliably low-lying discrete levels alongwith the continuum section of the neutron spectra. The measured data were analyzed on the basis of the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed by using the precise formalism of Hauser-Feshbach statistical theory together with the generalizedmodel of a superfluid nucleus and the back-shifted Fermi gas model for the nuclear-level density. The nuclear-level densities in 208Bi and 209Po were determined along with their energy dependences and model parameters. Our results are discussed together with available experimental data and recommendations of model systematics.

  18. Monte Carlo Numerical Models for Nuclear Logging Applications

    Directory of Open Access Journals (Sweden)

    Fusheng Li

    2012-06-01

    Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models

  19. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  20. Modeling the isotope effect in Walden inversion reactions

    Science.gov (United States)

    Schechter, Israel

    1991-05-01

    A simple model to explain the isotope effect in the Walden exchange reaction is suggested. It is developed in the spirit of the line-of-centers models, and considers a hard-sphere collision that transfers energy from the relative translation to the desired vibrational mode, as well as geometrical properties and steric requirements. This model reproduces the recently measured cross sections for the reactions of hydrogen with isotopic silanes and older measurements of the substitution reactions of tritium atoms with isotopic methanes. Unlike previously given explanations, this model explains the effect of the attacking atom as well as of the other participating atoms. The model provides also qualitative explanation of the measured relative yields and thresholds of CH 3T and CH 2TF from the reaction T + CH 3F. Predictions for isotope effects and cross sections of some unmeasured reactions are given.

  1. Proton induced nuclear reactions on natural antimony up to 17 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Elbinawi, Alaa; Al-abyad, Mogahed; Hassan, Khaled F. [Atomic Energy Authority, Cairo (Egypt). Cyclotron Facility; Abd-Elmageed, Karima E. [Benha Univ. (Egypt). Dept. of Physics; Ditroi, Ferenc [Hungarian Academy of Sciences, Debrecen (Hungary). Inst. for Nuclear Research (ATOMKI)

    2016-08-01

    The activation cross sections of proton induced reactions on {sup nat}Sb target leading to the formation of the radioisotopes {sup 121m,g,123m}Te were measured. The experimental excitation functions were compared with the theoretical model calculations using the codes EMPIRE-3.1 and TALYS-1.4. The integral yields of the three radionuclides were calculated and the possibility of their production is discussed.

  2. Towards a self-consistent dynamical nuclear model

    Science.gov (United States)

    Roca-Maza, X.; Niu, Y. F.; Colò, G.; Bortignon, P. F.

    2017-04-01

    Density functional theory (DFT) is a powerful and accurate tool, exploited in nuclear physics to investigate the ground-state and some of the collective properties of nuclei along the whole nuclear chart. Models based on DFT are not, however, suitable for the description of single-particle dynamics in nuclei. Following the field theoretical approach by A Bohr and B R Mottelson to describe nuclear interactions between single-particle and vibrational degrees of freedom, we have taken important steps towards the building of a microscopic dynamic nuclear model. In connection with this, one important issue that needs to be better understood is the renormalization of the effective interaction in the particle-vibration approach. One possible way to renormalize the interaction is by the so-called subtraction method. In this contribution, we will implement the subtraction method in our model for the first time and study its consequences.

  3. Study of the Nuclear Transparency in $\\alpha$ + A Reactions at Energies $\\geq$ 12 GeV/nucleon

    CERN Multimedia

    2002-01-01

    The question about transparency is crucial for heavy ion reaction studies. If the transparency is low at 10-15 GeV per nucleon then very large baryon densities can be achieved in this energy range, maybe enough to produce quark-gluon plasma in U+U collisions. We propose to measure, event by event, pseudo-rapidity and multiplicity distributions of singly charged relativistic particles (@b~$>$~0.7) globally and in selected regions of rapidity as well as multiplicities of recoiling protons (30-400~Me charged nuclear fragments. These studies will explore general features of @a+A reactions at energies @$>$~12~GeV/nucleon. The main goal of the experiment is to measure the transparency of nuclear matter in this energy range. The detector will be nuclear emulsion.

  4. DSMC Modeling of Flows with Recombination Reactions

    Science.gov (United States)

    2017-06-23

    rarefied gas dynamics community has seen the development of efficient algorithms for modern computer architectures16–19 which dramatically expand the area of...that participate in recombination. ACKNOWLEDGMENTS The work was supported by the Air Force Office of Sci - entific Research (Program Officer Dr. Ivett...flow,” Prog. Aerosp. Sci . 72, 66–79 (2015). 14R. D. Levine,Molecular Reaction Dynamics (Cambridge University Press, Cambridge, 2005). 15A. Alexeenko and

  5. Effect of reactions in small eddies on biomass gasification with eddy dissipation concept - Sub-grid scale reaction model.

    Science.gov (United States)

    Chen, Juhui; Yin, Weijie; Wang, Shuai; Meng, Cheng; Li, Jiuru; Qin, Bai; Yu, Guangbin

    2016-07-01

    Large-eddy simulation (LES) approach is used for gas turbulence, and eddy dissipation concept (EDC)-sub-grid scale (SGS) reaction model is employed for reactions in small eddies. The simulated gas molar fractions are in better agreement with experimental data with EDC-SGS reaction model. The effect of reactions in small eddies on biomass gasification is emphatically analyzed with EDC-SGS reaction model. The distributions of the SGS reaction rates which represent the reactions in small eddies with particles concentration and temperature are analyzed. The distributions of SGS reaction rates have the similar trend with those of total reactions rates and the values account for about 15% of the total reactions rates. The heterogeneous reaction rates with EDC-SGS reaction model are also improved during the biomass gasification process in bubbling fluidized bed.

  6. (Im)precise nuclear forces: From experiment to model

    Science.gov (United States)

    Navarro Perez, Rodrigo

    2017-01-01

    The nuclear force is the most fundamental building block in nuclear science. It is the cornerstone of every nuclear application from nuclear reactors to the production of heavy elements in supernovae. Despite being rigorously derived from the Standard Model, the actual determination of the nuclear force requires adjusting a set of parameters to reproduce experimental data. This introduces uncertainties that need to be quantified and propagated into all nuclear applications. I'll review a series of works on the determination of the Nucleon-Nucleon interaction from a collection of over 8000 elastic scattering data. Statistical tools used on the selection of data and the propagation of statistical uncertainties will be presented. The implications for charge independence of the pion-nucleon coupling constant and the predictive power of chiral interactions will be discussed. Although this is not the final word on theoretical nuclear uncertainties, as other sources of errors should be explored, this series of works allow to set the foundations for a new era for uncertainty quantification in nuclear applications. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Funding was also provided by the U.S. Department of Energy, Office of Science, Award DE-SC0008511 (NUCLEI SciDAC Collaboration)

  7. Nuclear mass dependence of chaotic dynamics in Ginocchio model

    CERN Document Server

    Yoshinaga, N; Shigehara, T; Yoshinaga, Naotaka; Yoshida, Nobuaki; Shigehara, Takaomi

    1995-01-01

    The chaotic dynamics in nuclear collective motion is studied in the framework of a schematic shell model which has only monopole and quadrupole degrees of freedom. The model is shown to reproduce the experimentally observed global trend toward less chaotic motion in heavier nuclei. The relation between current approach and the earlier studies with bosonic models is discussed.

  8. Simulations of H 2O 2 concentration profiles in the water surrounding spent nuclear fuel taking mixed radiation fields and bulk reactions into account

    Science.gov (United States)

    Nielsen, Fredrik; Jonsson, Mats

    2008-02-01

    To simulate the dynamics of the concentration gradient of hydrogen peroxide in groundwater surrounding spent nuclear fuel under various conditions, a model has been developed. The model treats the water volume as a sequence of volume elements, and applies the processes that affect hydrogen peroxide concentration to each volume element. The surface steady-state concentrations of H 2O 2, and the time to reach steady-state, have been determined under different conditions. The processes accounted for in the model are radiolytic production of H 2O 2 from α- and β-radiation, surface reactions consuming H 2O 2, homogeneous reactions consuming H 2O 2, and diffusion. The system has been modeled mainly for different surface reaction rate constants and homogeneous (bulk) reaction rate constants. The simulations show that the surface concentration of H 2O 2 approaches the steady-state concentration very rapidly and that the impact of homogeneous (bulk) reactions consuming H 2O 2 on the steady-state concentration is significant.

  9. Photo-catalytic oxidation of a di-nuclear manganese centre in an engineered bacterioferritin 'reaction centre'.

    Science.gov (United States)

    Conlan, Brendon; Cox, Nicholas; Su, Ji-Hu; Hillier, Warwick; Messinger, Johannes; Lubitz, Wolfgang; Dutton, P Leslie; Wydrzynski, Tom

    2009-09-01

    Photosynthesis involves the conversion of light into chemical energy through a series of electron transfer reactions within membrane-bound pigment/protein complexes. The Photosystem II (PSII) complex in plants, algae and cyanobacteria catalyse the oxidation of water to molecular O2. The complexity of PSII has thus far limited attempts to chemically replicate its function. Here we introduce a reverse engineering approach to build a simple, light-driven photo-catalyst based on the organization and function of the donor side of the PSII reaction centre. We have used bacterioferritin (BFR) (cytochrome b1) from Escherichia coli as the protein scaffold since it has several, inherently useful design features for engineering light-driven electron transport. Among these are: (i.) a di-iron binding site; (ii.) a potentially redox-active tyrosine residue; and (iii.) the ability to dimerise and form an inter-protein heme binding pocket within electron tunnelling distance of the di-iron binding site. Upon replacing the heme with the photoactive zinc-chlorin e6 (ZnCe6) molecule and the di-iron binding site with two manganese ions, we show that the two Mn ions bind as a weakly coupled di-nuclear Mn2II,II centre, and that ZnCe6 binds in stoichiometric amounts of 1:2 with respect to the dimeric form of BFR. Upon illumination the bound ZnCe6 initiates electron transfer, followed by oxidation of the di-nuclear Mn centre possibly via one of the inherent tyrosine residues in the vicinity of the Mn cluster. The light dependent loss of the MnII EPR signals and the formation of low field parallel mode Mn EPR signals are attributed to the formation of MnIII species. The formation of the MnIII is concomitant with consumption of oxygen. Our model is the first artificial reaction centre developed for the photo-catalytic oxidation of a di-metal site within a protein matrix which potentially mimics water oxidation centre (WOC) photo-assembly.

  10. Benchmarking geant4 nuclear models for hadron therapy with 95 MeV/nucleon carbon ions

    Science.gov (United States)

    Dudouet, J.; Cussol, D.; Durand, D.; Labalme, M.

    2014-05-01

    In carbon therapy, the interaction of the incoming beam with human tissue may lead to the production of a large amount of nuclear fragments and secondary light particles. An accurate estimation of the biological dose on the tumor and the surrounding healthy tissue thus requires sophisticated simulation tools based on nuclear reaction models. The validity of such models requires intensive comparisons with as many sets of experimental data as possible. Up to now, a rather limited set of double differential carbon fragmentation cross sections has been measured in the energy range used in hadron therapy (up to 400 MeV/nucleon). However, new data have been recently obtained at intermediate energy (95 MeV/nucleon). The aim of this work is to compare the reaction models embedded in the geant4 Monte Carlo toolkit with these new data. The strengths and weaknesses of each tested model, i.e., G4BinaryLightIonReaction, G4QMDReaction, and INCL++, coupled to two different de-excitation models, i.e., the generalized evaporation model and the Fermi break-up model, are discussed.

  11. An introduction to nuclear physics

    CERN Document Server

    Jana, Yatramohan

    2015-01-01

    AN INTRODUCTION TO NUCLEAR PHYSICS explores the nucleus - its size, shape and structure, its static and dynamic properties, its interaction with external system (particles and radiation), and above all the nuclear interaction in the two-nucleon and many-nucleon systems. It covers all aspects of the nucleus, divided into five Parts and nineteen Chapters. Part-1 introduces nuclear binding energy, separation energy and nuclear stability. Part-2 explores the two-nucleon potential through the study of the deuteron problem, nucleon-nucleon scattering, and also presents a meson theoretical description of the nuclear potential. Part-3 deals with the nuclear structure through different models, e.g., liquid-drop model, Fermi gas model, nuclear shell model, collective model. Part-4 develops different theoretical models for nuclear reactions, e.g., compound nucleus, statistical model, continuum model, optical model, direct reaction mechanism.

  12. Statistical Model Calculations for (n,γ Reactions

    Directory of Open Access Journals (Sweden)

    Beard Mary

    2015-01-01

    Full Text Available Hauser-Feshbach (HF cross sections are of enormous importance for a wide range of applications, from waste transmutation and nuclear technologies, to medical applications, and nuclear astrophysics. It is a well-observed result that different nuclear input models sensitively affect HF cross section calculations. Less well known however are the effects on calculations originating from model-specific implementation details (such as level density parameter, matching energy, back-shift and giant dipole parameters, as well as effects from non-model aspects, such as experimental data truncation and transmission function energy binning. To investigate the effects or these various aspects, Maxwellian-averaged neutron capture cross sections have been calculated for approximately 340 nuclei. The relative effects of these model details will be discussed.

  13. Role of anharmonicities of nuclear vibrations in fusion reactions at subbarrier energies

    CERN Document Server

    Hagino, K; Kuyucak, S

    1997-01-01

    We discuss the effects of double octupole and quadrupole phonon excitations in $^{144}$Sm on fusion reactions between $^{16}$O and $^{144}$Sm at subbarrier energies. The effects of anharmonicities of the vibrational states are taken into account by using the $sdf$-interacting boson model. We compare the results with those in the harmonic limit to show that anharmonicities play an essential role in reproducing the experimental fusion barrier distribution. From the analysis of the high quality fusion data available for this system, we deduce negative static quadrupole moments for both the first 2$^{+}$ and 3$^{-}$ states in $^{144}$Sm. This is the first time that the sign of static quadrupole moments of phonon states in a spherical nucleus is determined from the data of subbarrier fusion reactions.

  14. Neutrinoless double beta nuclear matrix elements around mass 80 in the nuclear shell-model

    Science.gov (United States)

    Yoshinaga, N.; Higashiyama, K.; Taguchi, D.; Teruya, E.

    2015-05-01

    The observation of the neutrinoless double-beta decay can determine whether the neutrino is a Majorana particle or not. For theoretical nuclear physics it is particularly important to estimate three types of matrix elements, namely Fermi (F), Gamow-Teller (GT), and tensor (T) matrix elements. In this paper, we carry out shell-model calculations and also pair-truncated shell-model calculations to check the model dependence in the case of mass A=82 nuclei.

  15. Neutrinoless double beta nuclear matrix elements around mass 80 in the nuclear shell-model

    Directory of Open Access Journals (Sweden)

    Yoshinaga N.

    2015-01-01

    Full Text Available The observation of the neutrinoless double-beta decay can determine whether the neutrino is a Majorana particle or not. For theoretical nuclear physics it is particularly important to estimate three types of matrix elements, namely Fermi (F, Gamow-Teller (GT, and tensor (T matrix elements. In this paper, we carry out shell-model calculations and also pair-truncated shell-model calculations to check the model dependence in the case of mass A=82 nuclei.

  16. Relativistic Mean-Field Models and Nuclear Matter Constraints

    CERN Document Server

    Dutra, M; Carlson, B V; Delfino, A; Menezes, D P; Avancini, S S; Stone, J R; Providência, C; Typel, S

    2013-01-01

    This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear \\sigma^3+\\sigma^4 models, (iii) \\sigma^3+\\sigma^4+\\omega^4 models, (iv) models containing mixing terms in the fields \\sigma and \\omega, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the \\sigma (\\omega) field. The isospin dependence of the interaction is modeled by the \\rho meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.

  17. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasmaa)

    Science.gov (United States)

    Torrisi, L.; Cavallaro, S.; Cutroneo, M.; Giuffrida, L.; Krasa, J.; Margarone, D.; Velyhan, A.; Kravarik, J.; Ullschmied, J.; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2012-02-01

    A 1016 W/cm2 Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD2 targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD2 targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  18. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma.

    Science.gov (United States)

    Torrisi, L; Cavallaro, S; Cutroneo, M; Giuffrida, L; Krasa, J; Margarone, D; Velyhan, A; Kravarik, J; Ullschmied, J; Wolowski, J; Szydlowski, A; Rosinski, M

    2012-02-01

    A 10(16) W∕cm(2) Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD(2) targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD(2) targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  19. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L. [INFN-LNS Via S. Sofia 44, 95123 Catania (Italy); Dip.to di Fisica, Universita di Messina, V.le F.S. D' Alcontres 31, 98166 S. Agata, Messina (Italy); Cavallaro, S.; Giuffrida, L. [INFN-LNS Via S. Sofia 44, 95123 Catania (Italy); Cutroneo, M. [Dip.to di Fisica, Universita di Messina, V.le F.S. D' Alcontres 31, 98166 S. Agata, Messina (Italy); Krasa, J.; Margarone, D.; Velyhan, A.; Ullschmied, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Kravarik, J. [Czech Technical University, Faculty of Electro-Engineering, Prague (Czech Republic); Wolowski, J.; Szydlowski, A.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, IPPLM, 23 Hery Str., 01-497 Warsaw (Poland)

    2012-02-15

    A 10{sup 16} W/cm{sup 2} Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD{sub 2} targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD{sub 2} targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  20. Deuterium–deuterium nuclear reaction induced by high intensity laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: lorenzo.torrisi@unime.it [INFN-LNS, Via S. Sofia 44, 95123 Catania (Italy); Dip.to di Fisica, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); Cavallaro, S.; Cutroneo, M.; Giuffrida, L. [INFN-LNS, Via S. Sofia 44, 95123 Catania (Italy); Dip.to di Fisica, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); Krasa, J.; Margarone, D.; Velyhan, A. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Kravarik, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Czech Technical University, Faculty of Electro-Engineering, Prague (Czech Republic); Ullschmied, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Wolowski, J.; Szydlowski, A.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, IPPLM, 23 Hery Str., 01-497 Warsaw (Poland)

    2013-05-01

    A 10{sup 16} W/cm{sup 2} Asterix laser pulse intensity, 1315 nm wavelength, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD{sub 2} targets placed into the high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deuterons and carbon ions emission with energy up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deuterium ions may induce high D–D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD{sub 2} targets can be availed to be irradiated by the plasma-accelerated deuterons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  1. Deuterium-deuterium nuclear reaction induced by high intensity laser pulses

    Science.gov (United States)

    Torrisi, L.; Cavallaro, S.; Cutroneo, M.; Giuffrida, L.; Krasa, J.; Margarone, D.; Velyhan, A.; Kravarik, J.; Ullschmied, J.; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2013-05-01

    A 1016 W/cm2 Asterix laser pulse intensity, 1315 nm wavelength, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD2 targets placed into the high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deuterons and carbon ions emission with energy up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deuterium ions may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD2 targets can be availed to be irradiated by the plasma-accelerated deuterons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  2. Melter Feed Reactions at T ≤ 700°C for Nuclear Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hrma, Pavel R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rice, Jarrett A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-23

    Batch reactions and phase transitions in a nuclear waste feed heated at 5 K min-1 up to 600°C were investigated by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometer, and X-ray diffraction. Quenched samples were leached in deionized water at room temperature and 80°C to extract soluble salts and early glass-forming melt, respectively. To determine the content and composition of leachable phases, the leachates were analyzed by the inductively-coupled plasma spectroscopy. By ~400°C, gibbsite and borax lost water and converted to amorphous and intermediate crystalline phases. Between 400°C and 600°C, the sodium borate early glass-forming melt reacted with amorphous aluminum oxide and calcium oxide to form intermediate products containing Al and Ca. At ~600°C, half Na and B converted to the early glass-forming melt, and quartz began to dissolve in the melt.

  3. Interplay between diffusion, accretion and nuclear reactions in the atmospheres of Sirius and Przybylski's star

    CERN Document Server

    Yushchenko, A; Goriely, S; Shavrina, A; Kang, Y W; Rostopchin, S; Valyavin, G; Mkrtichian, D; Hatzes, A; Lee, B C; Kim, C; Yushchenko, Alexander; Gopka, Vera; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon; Rostopchin, Sergey; Valyavin, Gennady; Mkrtichian, David; Hatzes, Artie; Lee, Byeong-Cheol; Kim, Chulhee

    2006-01-01

    The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that Cp stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. We report the result of determination of abundances of elements in the atmosphere of hot Am star: Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with the abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of investigation on the stratification of chemical elements in the atmosphere of Przybylski's star ...

  4. Experimental study of the excitation functions of proton induced nuclear reactions on (167)Er for production of medically relevant (167)Tm.

    Science.gov (United States)

    Tárkányi, F; Hermanne, A; Takács, S; Király, B; Spahn, I; Ignatyuk, A V

    2010-02-01

    (167)Tm (T(1/2)=9.25d) is a candidate radioisotope for medical therapy and diagnostics due to its Auger-electron and low-energy X- and gamma-ray emission. Excitation functions of the (167)Er(p,n)(167)Tm reaction and (168)Er(p,n)(168)Tm, (167)Er(p,2n)(166)Tm, (166)Er(p,2n)(165)Tm disturbing reactions were measured up to 15MeV by using the stacked foil irradiation technique and gamma-ray spectroscopy. The measured excitation functions agree well with the results of ALICE-IPPE, EMPIRE-II and TALYS nuclear reaction model codes. The thick target yield of (167)Tm in the 15-8MeV energy range is 6.9MBq/microAh. A short comparison of charged particle production routes of (167)Tm is given. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.

    Science.gov (United States)

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  6. Dependence of X-ray Burst Models on Nuclear Masses

    CERN Document Server

    Schatz, H

    2016-01-01

    X-ray burst model predictions of light curves and final composition of the nuclear ashes are affected by uncertain nuclear physics. Nuclear masses play an important role. Significant progress has been made in measuring the masses of very neutron deficient rare isotopes along the path of the rapid proton capture process (rp-process) in X-ray bursts. This paper identifies the remaining nuclear mass uncertainties in X-ray burst models using a one zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated - a typical mixed H/He burst with a limited rp-process and an extreme mixed H/He burst with an extended rp-process. Only three remaining nuclear mass uncertainties affect the light curve predictions of a typical H/He burst, and only three additional masses affect the composition strongly. A larger number of mass uncertainties remains to be addressed for the extreme H/He burst. Mass uncertainties of better than...

  7. Abundances in Astrophysical Environments: Reaction Network Simulations with Reaction Rates from Many-nucleon Modeling

    Science.gov (United States)

    Amason, Charlee; Dreyfuss, Alison; Launey, Kristina; Draayer, Jerry

    2017-01-01

    We use the ab initio (first-principle) symmetry-adapted no-core shell model (SA-NCSM) to calculate reaction rates of significance to type I X-ray burst nucleosynthesis. We consider the 18O(p,γ)19F reaction, which may influence the production of fluorine, as well as the 16O(α,γ)20Ne reaction, which is key to understanding the production of heavier elements in the universe. Results are compared to those obtained in the no-core sympletic shell model (NCSpM) with a schematic interaction. We discuss how these reaction rates affect the relevant elemental abundances. We thank the NSF for supporting this work through the REU Site in Physics & Astronomy (NSF grant #1560212) at Louisiana State University. This work was also supported by the U.S. NSF (OCI-0904874, ACI -1516338) and the U.S. DOE (DE-SC0005248).

  8. The nuclear physics input to astrophysics modelling, and the r- and p-processes: Where do we stand 50 years after B^2FH and Cameron?

    Science.gov (United States)

    Arnould, M.

    2008-11-01

    This is a brief review of the progress made since the seminal contributions to the foundations of the theory of nucleosynthesis by M. Burbidge, G. Burbidge, Fowler and Hoyle, and by Cameron. The reviewed topics are (1) the nuclear physics input to the nucleosynthesis models (nuclear masses, fission, rates of β-decays, neutrino reactions, photoreactions, and nuclear charged particle-induced or neutron-induced reactions), (2) the nuclear physics and astrophysics aspects of the r-process, and (3) the same items for the p-process.

  9. Modelling and modal properties of nuclear fuel assembly

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2011-12-01

    Full Text Available The paper deals with the modelling and modal analysis of the hexagonal type nuclear fuel assembly. This very complicated mechanical system is created from the many beam type components shaped into spacer grids. The cyclic and central symmetry of the fuel rod package and load-bearing skeleton is advantageous for the fuel assembly decomposition into six identical revolved fuel rod segments, centre tube and skeleton linked by several spacer grids in horizontal planes. The derived mathematical model is used for the modal analysis of the Russian TVSA-T fuel assembly and validated in terms of experimentally determined natural frequencies, modes and static deformations caused by lateral force and torsional couple of forces. The presented model is the first necessary step for modelling of the nuclear fuel assembly vibration caused by different sources of excitation during the nuclear reactor VVER type operation.

  10. GCR Transport in the Brain: Assessment of Self-Shielding, Columnar Damage, and Nuclear Reactions on Cell Inactivation Rates

    Science.gov (United States)

    Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)

    1999-01-01

    Radiation shield design is driven by the need to limit radiation risks while optimizing risk reduction with launch mass/expense penalties. Both limitation and optimization objectives require the development of accurate and complete means for evaluating the effectiveness of various shield materials and body-self shielding. For galactic cosmic rays (GCR), biophysical response models indicate that track structure effects lead to substantially different assessments of shielding effectiveness relative to assessments based on LET-dependent quality factors. Methods for assessing risk to the central nervous system (CNS) from heavy ions are poorly understood at this time. High-energy and charge (HZE) ion can produce tissue events resulting in damage to clusters of cells in a columnar fashion, especially for stopping heavy ions. Grahn (1973) and Todd (1986) have discussed a microlesion concept or model of stochastic tissue events in analyzing damage from HZE's. Some tissues, including the CNS, maybe sensitive to microlesion's or stochastic tissue events in a manner not illuminated by either conventional dosimetry or fluence-based risk factors. HZE ions may also produce important lateral damage to adjacent cells. Fluences of high-energy proton and alpha particles in the GCR are many times higher than HZE ions. Behind spacecraft and body self-shielding the ratio of protons, alpha particles, and neutrons to HZE ions increases several-fold from free-space values. Models of GCR damage behind shielding have placed large concern on the role of target fragments produced from tissue atoms. The self-shielding of the brain reduces the number of heavy ions reaching the interior regions by a large amount and the remaining light particle environment (protons, neutrons, deuterons. and alpha particles) may be the greatest concern. Tracks of high-energy proton produce nuclear reactions in tissue, which can deposit doses of more than 1 Gv within 5 - 10 cell layers. Information on rates of

  11. Subgroup A : nuclear model codes report to the Sixteenth Meeting of the WPEC

    Energy Technology Data Exchange (ETDEWEB)

    Talou, P. (Patrick); Chadwick, M. B. (Mark B.); Dietrich, F. S.; Herman, M.; Kawano, T. (Toshihiko); Konig, A.; Obložinský, P.

    2004-01-01

    The Subgroup A activities focus on the development of nuclear reaction models and codes, used in evaluation work for nuclear reactions from the unresolved energy region up to the pion threshold production limit, and for target nuclides from the low teens and heavier. Much of the efforts are devoted by each participant to the continuing development of their own Institution codes. Progresses in this arena are reported in detail for each code in the present document. EMPIRE-II is of public access. The release of the TALYS code has been announced for the ND2004 Conference in Santa Fe, NM, October 2004. McGNASH is still under development and is not expected to be released in the very near future. In addition, Subgroup A members have demonstrated a growing interest in working on common modeling and codes capabilities, which would significantly reduce the amount of duplicate work, help manage efficiently the growing lines of existing codes, and render codes inter-comparison much easier. A recent and important activity of the Subgroup A has therefore been to develop the framework and the first bricks of the ModLib library, which is constituted of mostly independent pieces of codes written in Fortran 90 (and above) to be used in existing and future nuclear reaction codes. Significant progresses in the development of ModLib have been made during the past year. Several physics modules have been added to the library, and a few more have been planned in detail for the coming year.

  12. Effect of nuclear spin on chemical reactions and internal molecular rotation

    Energy Technology Data Exchange (ETDEWEB)

    Sterna, L.L.

    1980-12-01

    Part I of this dissertation is a study of the magnetic isotope effect, and results are presented for the separation of /sup 13/C and /sup 12/C isotopes. Two models are included in the theoretical treatment of the effect. In the first model the spin states evolve quantum mechanically, and geminate recombination is calculated by numerically integrating the collision probability times the probability the radical pair is in a singlet state. In the second model the intersystem crossing is treated via first-order rate constants which are average values of the hyperfine couplings. Using these rate constants and hydrodynamic diffusion equations, an analytical solution, which accounts for all collisions, is obtained for the geminate recombination. The two reactions studied are photolysis of benzophenone and toluene and the photolytic decomposition of dibenzylketone (1,3-diphenyl-2-propanone). No magnetic isotope effect was observed in the benzophenone reaction. /sup 13/C enrichment was observed for the dibenzylketone reaction, and this enrichment was substantially enhanced at intermediate viscosities and low temperatures. Part II of this dissertation is a presentation of theory and results for the use of Zeeman spin-lattice relaxation as a probe of methyl group rotation in the solid state. Experimental results are presented for the time and angular dependences of rotational polarization, the methyl group magnetic moment, and methyl-methyl steric interactions. The compounds studied are 2,6-dimethylphenol, methyl iodide, 1,4,5,8-tetramethylanthracene, 1,4,5,8-tetramethylnaphthalene, 1,2,4,5-tetramethylbenzene, and 2,3-dimethylmaleicanhydride.

  13. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  14. Critical phenomena of asymmetric nuclear matter in the extended Zimanyi-Moszkowski model

    CERN Document Server

    Miyazaki, K

    2005-01-01

    We have studied the liquid-gas phase transition of warm asymmetric nuclear matter in the extended Zimanyi-Moszkowski model. The three sets of the isovector-meson coupling constants are used. It is found that the critical temperature depends only on the difference of the symmetry energy but not on the differences of each isovector coupling constant. We treat the asymmetric nuclear matter as one-component system and employ the Maxwell construction so as to calculate the liquid-gas phase coexistence curve. The derived critical exponents depend on neither the symmetry energy nor the asymmetry of the system. Their values beta=0.33 and gamma=1.21 agree with the empirical values derived from the recent multifragmentation reactions. Consequently, we have confirmed the universality of the critical phenomena in the liquid-gas phase transition of nuclear matter.

  15. Investigation of reflective electrochromic all-solid-state devices by Nuclear Reaction Analysis

    Science.gov (United States)

    Bange, Klaus; Ottermann, Clemens R.; Wagner, Wolfgang; Rauch, Friedrich

    1990-08-01

    Electrochromic all-solid-state devices (ASSD) produced by reactive evaporation have been investigated by iaeans of reflectance measurements in the VIS/NIR range and cyclovoltammetry. Hydrogen depth proil were then by a NRA-technique employing the resonant reaction H( N, ar) C. Two different types of designs have been characterized. The electrochromic behaviour of ASSD's can not be described by models based on H transport for devices containing only W03 layers as active materials. Using NiOXH films as electrochromic substances, the injected/ejected charge corelates with changes in the H content.

  16. Applications of dynamic nuclear polarization to the study of reactions and reagents in organic and biomolecular chemistry.

    Science.gov (United States)

    Hilty, Christian; Bowen, Sean

    2010-08-07

    Nuclear Magnetic Resonance (NMR) is an important spectroscopic tool for the identification and structural characterization of molecules in chemistry and biochemistry. The most significant limitation of NMR compared to other spectroscopies is its relatively low sensitivity, which thus often requires long measurement times or large amounts of sample. A way of increasing sensitivity of single scan NMR spectra by several orders of magnitude is through hyperpolarization of nuclear spins. Dynamic nuclear polarization allows hyperpolarization of most spins in small molecules encountered in chemistry and biochemistry. NMR spectra of small amounts of samples from natural source, or from chemical synthesis can readily be acquired. Perhaps more interestingly, the availability of the entire hyperpolarized NMR signal in one single scan allows the measurement of transient processes in real time, if applied together with a stopped-flow technique. Through observation of chemical shift, different reactant and product species can be distinguished, and kinetics and mechanisms, for example in enzyme catalyzed reactions, can be elucidated. Real-time hyperpolarization-enhanced NMR is uniquely amenable to correlating atomic positions not only through space, but also over time between reactant and product species. Such correlations carry mechanistic information about a reaction, and can prove reaction pathways. Applications of this technique are emerging in different areas of chemistry concerned with rapid reactions, including not only enzymatic processes, but also chemical catalysis and protein folding.

  17. Nuclear reaction measurements of 95 MeV/u 12C interactions on PMMA for hadrontherapy

    Science.gov (United States)

    Braunn, B.; Labalme, M.; Ban, G.; Chevallier, M.; Colin, J.; Cussol, D.; Dauvergne, D.; Fontbonne, J. M.; Haas, F.; Guertin, A.; Lebhertz, D.; Le Foulher, F.; Pautard, C.; Ray, C.; Rousseau, M.; Salsac, M. D.; Stuttge, L.; Testa, E.; Testa, M.

    2011-11-01

    The ion dose deposition in tissues is characterized by a favorable depth dose profile (i.e. Bragg peak) and a small lateral spread. In order to keep these benefits of ions in cancer treatments, a very high accuracy is required on the dose deposition (±3%). For given target stoichiometry and geometry, the largest uncertainty on the physical dose deposition is due to the ion nuclear fragmentation. We have performed an experiment at GANIL with a 95 MeV/u 12C beam on thick tissue equivalent PMMA targets (thicknesses: 5, 10, 15, 20 and 25 mm). The main goals of this experiment are to provide experimental fragmentation data for benchmarking the physical models used for treatment planning. Production rates, energy and angular distributions of charged fragments have been measured. The purpose of this paper is to present the results of this experiment.

  18. Interacting boson models of nuclear and nucleon structure

    CERN Document Server

    Bijker, R

    1998-01-01

    Interacting boson models provide an elegant and powerful method to describe collective excitations of complex systems by introducing a set of effective degrees of freedom. We review the interacting boson model of nuclear structure and discuss a recent extension to the nucleon and its excited states.

  19. Modelling aqueous corrosion of nuclear waste phosphate glass

    Science.gov (United States)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A.; Ojovan, Michael I.

    2017-02-01

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface.

  20. Benchmarking GEANT4 nuclear models for carbon-therapy at 95 MeV/A

    CERN Document Server

    Dudouet, J; Durand, D; Labalme, M

    2013-01-01

    In carbon-therapy, the interaction of the incoming beam with human tissues may lead to the production of a large amount of nuclear fragments and secondary light particles. An accurate estimation of the biological dose deposited into the tumor and the surrounding healthy tissues thus requires sophisticated simulation tools based on nuclear reaction models. The validity of such models requires intensive comparisons with as many sets of experimental data as possible. Up to now, a rather limited set of double di erential carbon fragmentation cross sections have been measured in the energy range used in hadrontherapy (up to 400 MeV/A). However, new data have been recently obtained at intermediate energy (95 MeV/A). The aim of this work is to compare the reaction models embedded in the GEANT4 Monte Carlo toolkit with these new data. The strengths and weaknesses of each tested model, i.e. G4BinaryLightIonReaction, G4QMDReaction and INCL++, coupled to two di fferent de-excitation models, i.e. the generalized evaporat...

  1. Test of statistical model cross section calculations for $\\alpha$-induced reactions on $^{107}$Ag at energies of astrophysical interest

    CERN Document Server

    Yalcin, C; Rauscher, T; Kiss, G G; Özkan, N; Güray, R T; Halász, Z; Szücs, T; Fülöp, Zs; Korkulu, Z; Somorjai, E

    2015-01-01

    Astrophysical reaction rates, which are mostly derived from theoretical cross sections, are necessary input to nuclear reaction network simulations for studying the origin of $p$ nuclei. Past experiments have found a considerable difference between theoretical and experimental cross sections in some cases, especially for ($\\alpha$,$\\gamma$) reactions at low energy. Therefore, it is important to experimentally test theoretical cross section predictions at low, astrophysically relevant energies. The aim is to measure reaction cross sections of $^{107}$Ag($\\alpha$,$\\gamma$)$^{111}$In and $^{107}$Ag($\\alpha$,n)$^{110}$In at low energies in order to extend the experimental database for astrophysical reactions involving $\\alpha$ particles towards lower mass numbers. Reaction rate predictions are very sensitive to the optical model parameters and this introduces a large uncertainty into theoretical rates involving $\\alpha$ particles at low energy. We have also used Hauser-Feshbach statistical model calculations to s...

  2. Formal modeling of a system of chemical reactions under uncertainty.

    Science.gov (United States)

    Ghosh, Krishnendu; Schlipf, John

    2014-10-01

    We describe a novel formalism representing a system of chemical reactions, with imprecise rates of reactions and concentrations of chemicals, and describe a model reduction method, pruning, based on the chemical properties. We present two algorithms, midpoint approximation and interval approximation, for construction of efficient model abstractions with uncertainty in data. We evaluate computational feasibility by posing queries in computation tree logic (CTL) on a prototype of extracellular-signal-regulated kinase (ERK) pathway.

  3. Modeling of Flow in Nuclear Reactor Fuel Cell Outlet

    Directory of Open Access Journals (Sweden)

    František URBAN

    2010-12-01

    Full Text Available Safe and effective load of nuclear reactor fuel cells demands qualitative and quantitative analysis of relations between coolant temperature in fuel cell outlet temperature measured by thermocouple and middle temperature of coolant in thermocouple plane position. In laboratory at Insitute of thermal power engineering of the Slovak University of Technology in Bratislava was installed an experimental physical fuel cell model of VVER 440 nuclear power plant with V 213 nuclear reactors. Objective of measurements on physical model was temperature and velocity profiles analysis in the fuel cell outlet. In this paper the measured temperature and velocity profiles are compared with the results of CFD simulation of fuel cell physical model coolant flow.

  4. Estimation of Schiff moments using the nuclear shell model

    Science.gov (United States)

    Teruya, Eri; Yoshinaga, Naotaka; Arai, Ryoichi; Higashiyama, Koji

    2014-09-01

    The existence of finite permanent electric dipole moment (EDM) of an elementary particle or an atom indicates violation of time-reversal symmetry. The time reversal invariance implies violation of charge and parity symmetry through the CPT theorem. The predicted fundamental particle's EDMs are too small to be observed in the Standard Model. However, some models beyond the Standard Model produce much larger EDMs which may be observed in future. Thus, if we observe finite EDMs, we can conclude that we need a new extended model for the Standard Model and the specific value of an EDM gives a constraint on constructing a new model. Experimental efforts searching for atomic EDMs are now in progress. The EDM of a neutral atom is mainly induced by the nuclear Schiff moment, since the electron EDM is very small and the nuclear EDM is shielded by outside electrons owing to the Schiff theorem. In this work we estimate the Schiff moments for the lowest 1/2+ states of Xe isotopes around the mass 130. The nuclear wave functions beyond mean-field theories are calculated in terms of the nuclear shell model. We discuss influences of core excitations and over shell excitations on the Schiff moments.

  5. Principle Generalized Net Model of a Human Stress Reaction

    Directory of Open Access Journals (Sweden)

    Anthony Shannon

    2008-04-01

    Full Text Available The present study was aimed at investigating the mechanism of a human stress reaction by means of Generalized Nets (GNs. A principle GN-model of the main structures, organs and systems of the human body taking part in the acute and chronic reaction of the organism to a stress stimulus is generated. A possible application of the GN-model of the human stress reaction for testing the effect of known or newly synthesized pharmacological products as well as of food supplements is discussed.

  6. Characterization of specific nuclear reaction channels by deconvolution in the energy space of the total nuclear cross-section of protons - applications to proton therapy and technical problems

    CERN Document Server

    Ulmer, W

    2016-01-01

    The total nuclear cross-section Qtot(E) resulting from the interaction of protons with nuclei is decomposed in 3 different contributions: 1. elastic scatter at the complete nucleus, which adopts a part of the proton kinetic energy; 2. inelastic scatter at a nucleus, which changes its quantum numbers by vibrations, rotations, transition to highly excited states; 3. proper nuclear reactions with change of the mass and/or charge number. Then different particles leave the hit nucleus (neutrons, protons, etc.), which is now referred to as 'heavy recoil' nucleus. The scatter parts of Qtot(E) according to points 1 and 2 can be removed by a deconvolution acting at Qtot(E) in the energy space. The typical nuclear reaction channels are mainly characterized by resonances of a reduced cross-section function Qred(E). The procedure is applied to cross-sections of therapeutic protons and also to Cs55137 as an example with technical relevance (transmutations with the goal to drastically reduce its half-time).

  7. Nuclear structure of light exotic nuclei from break-up reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, D. [Universidade de Santiago de Compostela, 15706 Santiago de Compostela (Spain); Fernandez-Vazquez, J. [Universidade de Santiago de Compostela, 15706 Santiago de Compostela (Spain); Aumann, T. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany)] [and others

    2004-12-27

    One-nucleon removal reactions at relativistic energies have been used as a spectroscopic tool to characterise the ground state properties of several neutron-rich isotopes in the sd-shell. Using the FRS at GSI, the longitudinal momentum distributions of the emerging fragments after one-nucleon removal were measured. The relative contributions of the remaining fragments in their ground and excited states have been determined from measurements of {gamma} rays in coincidence with the longitudinal momentum distributions. In particular the breakup of {sup 23}O has been investigated. The interpretation of our measurements, in the framework of a simple theoretical model, favours a spin and parity assignment of 1/2{sup +} for the {sup 23}O ground state in agreement with shell model predictions.

  8. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...

  9. Prediction of nuclear proteins using SVM and HMM models

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2009-01-01

    Full Text Available Abstract Background The nucleus, a highly organized organelle, plays important role in cellular homeostasis. The nuclear proteins are crucial for chromosomal maintenance/segregation, gene expression, RNA processing/export, and many other processes. Several methods have been developed for predicting the nuclear proteins in the past. The aim of the present study is to develop a new method for predicting nuclear proteins with higher accuracy. Results All modules were trained and tested on a non-redundant dataset and evaluated using five-fold cross-validation technique. Firstly, Support Vector Machines (SVM based modules have been developed using amino acid and dipeptide compositions and achieved a Mathews correlation coefficient (MCC of 0.59 and 0.61 respectively. Secondly, we have developed SVM modules using split amino acid compositions (SAAC and achieved the maximum MCC of 0.66. Thirdly, a hidden Markov model (HMM based module/profile was developed for searching exclusively nuclear and non-nuclear domains in a protein. Finally, a hybrid module was developed by combining SVM module and HMM profile and achieved a MCC of 0.87 with an accuracy of 94.61%. This method performs better than the existing methods when evaluated on blind/independent datasets. Our method estimated 31.51%, 21.89%, 26.31%, 25.72% and 24.95% of the proteins as nuclear proteins in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, mouse and human proteomes respectively. Based on the above modules, we have developed a web server NpPred for predicting nuclear proteins http://www.imtech.res.in/raghava/nppred/. Conclusion This study describes a highly accurate method for predicting nuclear proteins. SVM module has been developed for the first time using SAAC for predicting nuclear proteins, where amino acid composition of N-terminus and the remaining protein were computed separately. In addition, our study is a first documentation where exclusively nuclear

  10. Point kinetic model of the early phase of a spherically symmetric nuclear explosion

    CERN Document Server

    Aste, Andreas

    2016-01-01

    A concise point kinetic model of the explosion of a prompt supercritical sphere driven by a nuclear fission chain reaction is presented. The findings are in good agreement with the data available for Trinity, the first detonation of a nuclear weapon conducted by the United States Army as part of the Manhattan project. Results are presented for an implosion device containing pure plutonium-239, although the model can be easily applied to, e.g., uranium-235. The fizzle probability and corresponding yield of a fission bomb containing plutonium recovered from reactor fuel and therefore containing significant amounts of spontaneously fissioning plutonium-240 which can induce a predetonation of the device is illustrated by adding a corresponding source term in the presented model. Related questions whether a bomb could be made by developing countries or terrorist organizations can be tackled this way. Although the information needed to answer such questions is in the public domain, it is difficult to extract a cons...

  11. Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme

    Science.gov (United States)

    Li, Shanbing; Wu, Jianhua; Dong, Yaying

    2015-09-01

    In this paper, we consider a reaction-diffusion model with Degn-Harrison reaction scheme. Some fundamental analytic properties of nonconstant positive solutions are first investigated. We next study the stability of constant steady-state solution to both ODE and PDE models. Our result also indicates that if either the size of the reactor or the effective diffusion rate is large enough, then the system does not admit nonconstant positive solutions. Finally, we establish the global structure of steady-state bifurcations from simple eigenvalues by bifurcation theory and the local structure of the steady-state bifurcations from double eigenvalues by the techniques of space decomposition and implicit function theorem.

  12. International reactions after the resumption of nuclear tests: lot of noise for nothing?; Les reactions internationales a la reprise des essais nucleaires: beaucoup de bruit pour rien?

    Energy Technology Data Exchange (ETDEWEB)

    Montesquieu, E. de

    1996-07-01

    In 1995, the French President announced that France would perform an ultimate campaign of nuclear tests before a complete banishment as soon as spring 1996. The campaign effectively ended on time and six tests took place between September 5, 1995 and January 27, 1996. The disarmament process went on and the international negotiations in progress at that time were not affected by the French policy. However, this campaign has caused a strong emotion, if not in the entire World, at least in part of the planet and in particular in Western Europe. This report analyses the reactions from the different governments and from the public opinion and shows their impact on the French diplomacy. Content: Part 1 - general considerations: 1 - lot of noise for nothing?: the objectives of French diplomacy; the acts (a quasi lack of sanctions, a temporary degradation of our relations with a limited number of countries); the rhetoric (diplomatic regrets in first time, slip-ups in the second time, the public opinion weight); 2 - the lessons learnt: the opinion and the management of the foreign policy (the image of France, the communication fight); the geopolitical lessons (European Union: community solidarity and European defense; the South Pacific area); 3 - a case study: Japan: the time of uncertainties (domestic situation, external policy); the Japanese reactions after the tests resumption. Part 2 - synthesis of reactions after the resumption of nuclear tests by France: Pacific bordering countries (South Pacific, Latin America); Western Europe countries; non-European countries; Conclusions.

  13. HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model

    Science.gov (United States)

    Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous

    1993-01-01

    Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.

  14. Nuclear chirality, a model and the data

    Science.gov (United States)

    Starosta, K.; Koike, T.

    2017-09-01

    In the last decade, the manifestation of chirality in atomic nuclei has become the subject of numerous experimental and theoretical studies. The common feature of current model calculations is that the chiral geometry of angular momentum coupling is extracted from expectation values of orientation operators, rather than being a starting point in construction of a model. However, using the particle-hole coupling model for triaxial odd-odd nuclei it is possible to construct a basis which contains right-handed, left-handed and planar states of angular momentum coupling. If this basis is used, the chirality is an explicit rather than an extracted feature as in any other models with non-chiral bases. The time-reversal symmetry, which relates the basis states of opposite handedness, can be used to reduce the dimension of matrices for diagonalization of the model Hamiltonian, proving the effectiveness of this approach. Moreover, the final model eigenstate wave functions show a concentration of amplitudes among a relatively small number (˜1%) of components compared to the full model space. In that sense, the ‘chiral’ basis provides a useful tool to examine model predictions providing direct insight into the structure of doublet states. In this work, similarities and differences between the rotational behaviour of an axial and triaxial body provide a starting point for derivation of the basis optimal for valence nucleon coupling to an axial and a triaxial core. The derived ‘chiral’ basis is optimal for coupling of a valence particle and hole to the triaxial core. Model predictions are presented and discussed. A comprehensive review of current experimental data on observed chiral band candidates is also provided.

  15. An Elastic Model of Blebbing in Nuclear Lamin Meshworks

    Science.gov (United States)

    Funkhouser, Chloe; Sknepnek, Rastko; Shimi, Takeshi; Goldman, Anne; Goldman, Robert; Olvera de La Cruz, Monica

    2013-03-01

    A two-component continuum elastic model is introduced to analyze a nuclear lamin meshwork, a structural element of the lamina of the nuclear envelope. The main component of the lamina is a meshwork of lamin protein filaments providing mechanical support to the nucleus and also playing a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford progeria syndrome, and are often characterized by protruding structures termed nuclear blebs. Nuclear blebs are rich in A-type lamins and may be related to pathological gene expression. We apply the two-dimensional elastic shell model to determine which characteristics of the meshwork could be responsible for blebbing, including heterogeneities in the meshwork thickness and mesh size. We find that if one component of the lamin meshwork, rich in A-type lamins, has a tendency to form a larger mesh size than that rich in B-type lamins, this is sufficient to cause segregation of the lamin components and also to form blebs rich in A-type lamins. The model produces structures with comparable morphologies and mesh size distributions as the lamin meshworks of real, pathological nuclei. Funded by US DoE Award DEFG02-08ER46539 and by the DDR&E and AFOSR under Award FA9550-10-1-0167; simulations performed on NU Quest cluster

  16. Nuclear astrophysics deep underground the case of the 15N(p,γ)16O reaction at LUNA

    CERN Document Server

    Mazzocchi, Chiara

    2010-01-01

    Measuring nuclear reactions of astrophysical interest at the relevant energies is not always possible on the Earth’s surface because of the cosmic-ray background that dominates the spectra. The LUNA collaboration exploits the lowbackground enviroment of Gran Sasso National Laboratory to study these reactions at or close to the Gamow peak. The latest experimental efforts included the measurement of the 15N(p,γ)16O at beam energies between 77 and 350 keV. The status of these measurements is summarised in this contribution.

  17. Proton-induced cross-sections of nuclear reactions on lead up to 37 MeV

    CERN Document Server

    Ditrói, F; Takács, S; Hermanne, A

    2014-01-01

    Excitation function of proton induced nuclear reactions on lead for production of $^{206,205,204,203,202,201g}$Bi, $^{203cum,202m,201cum}$Pb and $^{202cum,201cum,200cum,199cum}$Tl radionuclides were measured up to 36 MeV by using activation method, stacked foil irradiation technique and $\\gamma$-ray spectrometry. The new experimental data were compared with the few earlier experimental results and with the predictions of the EMPIRE3.1, ALICE-IPPE (MENDL2p) and TALYS (TENDL-2012) theoretical reaction codes.

  18. The Effect of Nuclear Reaction Rates & Convective Mixing on the Evolution of a 6M$_{\\odot}$ Star

    CERN Document Server

    Halabi, Ghina M

    2014-01-01

    We present the evolution of a 6M$_{\\odot}$ star, of solar-like initial metallicity, and investigate the effects of key nuclear reaction rates, as well as the treatment of the convective mixing on its evolution along the Cepheid instability strip. In particular, we study the effect of recent estimates of the $^{14}$N(p,{\\gamma})$^{15}$O reaction on the formation and extension of the blue loop during core helium burning. We also investigate the effects induced on this blue loop by the adoption of non-standard convective mixing prescriptions, as well as the implications of modifying the Mixing Length Theory.

  19. Breakup reaction models for two- and three-cluster projectiles

    CERN Document Server

    Baye, D

    2010-01-01

    Breakup reactions are one of the main tools for the study of exotic nuclei, and in particular of their continuum. In order to get valuable information from measurements, a precise reaction model coupled to a fair description of the projectile is needed. We assume that the projectile initially possesses a cluster structure, which is revealed by the dissociation process. This structure is described by a few-body Hamiltonian involving effective forces between the clusters. Within this assumption, we review various reaction models. In semiclassical models, the projectile-target relative motion is described by a classical trajectory and the reaction properties are deduced by solving a time-dependent Schroedinger equation. We then describe the principle and variants of the eikonal approximation: the dynamical eikonal approximation, the standard eikonal approximation, and a corrected version avoiding Coulomb divergence. Finally, we present the continuum-discretized coupled-channel method (CDCC), in which the Schroed...

  20. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models.

    Science.gov (United States)

    Liberman, M A; Kiverin, A D; Ivanov, M F

    2012-05-01

    Regimes of chemical reaction wave propagation initiated by initial temperature nonuniformity in gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied using a multispecies transport model and a detailed chemical model. Possible regimes of reaction wave propagation are identified for stoichiometric hydrogen-oxygen and hydrogen-air mixtures in a wide range of initial pressures and temperature levels, depending on the initial non-uniformity steepness. The limits of the regimes of reaction wave propagation depend upon the values of the spontaneous wave speed and the characteristic velocities of the problem. It is shown that one-step kinetics cannot reproduce either quantitative neither qualitative features of the ignition process in real gaseous mixtures because the difference between the induction time and the time when the exothermic reaction begins significantly affects the ignition, evolution, and coupling of the spontaneous reaction wave and the pressure wave, especially at lower temperatures. We show that all the regimes initiated by the temperature gradient occur for much shallower temperature gradients than predicted by a one-step model. The difference is very large for lower initial pressures and for slowly reacting mixtures. In this way the paper provides an answer to questions, important in practice, about the ignition energy, its distribution, and the scale of the initial nonuniformity required for ignition in one or another regime of combustion wave propagation.

  1. Lattice location of O18 in ion implanted Fe crystals by Rutherford backscattering spectrometry, channeling and nuclear reaction analysis

    Science.gov (United States)

    Vairavel, Mathayan; Sundaravel, Balakrishnan; Panigrahi, Binaykumar

    2016-09-01

    There are contradictory theoretical predictions of lattice location of oxygen interstitial atom at tetrahedral and octahedral interstices in bcc Fe. For validating these predictions, 300 keV O18 ions with fluence of 5 × 1015 ions/cm2 are implanted into bcc Fe single crystals at room temperature and annealed at 400 °C. The Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA)/channeling measurements are carried out with 850 keV protons. The lattice location of implanted O18 is analysed using the α-particles yield from O18(p,α)N15 nuclear reaction. The tilt angular scans of α-particle yield along and axial directions are performed at room temperature. Lattice location of O18 is found to be at tetrahedral interstitial site by comparing the experimental scan with simulated scans using FLUX7 software.

  2. Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.; Rodriguez, Carmen P.; Schweiger, Michael J.

    2014-04-30

    In the vitrification of nuclear wastes, the melter feed (a mixture of nuclear waste and glass-forming and modifying additives) experiences multiple gas-evolving reactions in an electrical glass-melting furnace. We employed the thermogravimetry-gas chromatography-mass spectrometry (TGA-GC-MS) combination to perform evolved gas analysis (EGA). Apart from identifying the gases evolved, we performed quantitative analysis relating the weighed sum of intensities of individual gases linearly proportional with the differential themogravimetry. The proportionality coefficients were obtained by three methods based on the stoichiometry, least squares, and calibration. The linearity was shown to be a good first-order approximation, in spite of the complicated overlapping reactions.

  3. Biomass torrefaction: modeling of reaction thermochemistry.

    Science.gov (United States)

    Bates, Richard B; Ghoniem, Ahmed F

    2013-04-01

    Based on the evolution of volatile and solid products predicted by a previous model for willow torrefaction (Bates and Ghoniem, 2012) a thermochemical model has been developed to describe their thermal, chemical, and physical properties as well as the rates of heat release. The first stage of torrefaction, associated with hemicellulose decomposition, is exothermic releasing between 40 and 280 kJ/kginitial. The second stage is associated with the decomposition of the remaining lignocellulosic components, completes over a longer period, and is predicted to be either endothermic or exothermic depending on the temperature and assumed solid properties. Cumulative heat release increases with the degree of torrefaction quantified by the mass loss. The rate of mass loss and rate of heat release increase with higher temperatures. The higher heating value of volatiles produced during torrefaction was estimated to be between 4.4 and 16 MJ/kg increasing with the level of mass loss.

  4. Modelling Nuclear Effects in Neutrino Scattering

    CERN Document Server

    Leitner, T; Mosel, U

    2006-01-01

    We have developed a model to describe the interactions of neutrinos with nucleons and nuclei via charged and neutral currents, focusing on the region of the quasielastic and Delta(1232) peaks. For neutrino nucleon collisions a fully relativistic formalism is used. The extension to finite nuclei has been done in the framework of a coupled-channel BUU transport model where we have studied exclusive channels taking into account in-medium effects and final state interactions.

  5. Biogeochemical Transport and Reaction Model (BeTR) v1

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-18

    The Biogeochemical Transport and Reaction Model (BeTR) is a F90 code that enables reactive transport modeling in land modules of earth system models (e.g. CESM, ACME). The code adopts the Objective-Oriented-Design, and allows users to plug in their own biogeochemical (BGC) formulations/codes, and compare them to other existing BGC codes in those ESMs. The code takes information of soil physics variables, such as variables, such as temperature, moisture, soil density profile; water flow, etc., from a land model to track the movement of different chemicals in presence of biogeochemical reactions.

  6. Transmutation of nuclear wastes using photonuclear reactions triggered by Compton backscattering photons at the Shanghai laser electrongamma source

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-Gen; YUAN Ren-Yong; XU Jia-Qiang; YAN Zhe; FAN Gong-Tao; SHEN Wen-Qing; XU Wang; WANG Hong-Wei; GUO Wei; MA Yu-Gang; CAI Xiang-Zhou; LU Guang-Cheng; XU Yi; PAN Qiang-Yan

    2008-01-01

    Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS),the transmutation for nuclear wastes such as 137Cs and 129I is investigated.It is found that nuclear waste can be transmuted efficiently via photonuclear reaction triggered by gamma photons generated from Compton backscattering between CO2 laser photons and 3.5 GeV electrons.The nuclear activities of 137Cs and 129I are evaluated and compared with the results of transmutation triggered by bremsstrahlung gamma photons driven by ultra intense laser.Due to the better character of gamma photon spectrum as well as the high brightness of gamma photons,the transmutation rate of Compton backscattering method is much higher than that of the bremsstrahlung method.

  7. Constraining the equation of state of nuclear matter from fusion hindrance in reactions leading to the production of superheavy elements

    Science.gov (United States)

    Veselsky, M.; Klimo, J.; Ma, Yu-Gang; Souliotis, G. A.

    2016-12-01

    The mechanism of fusion hindrance, an effect preventing the synthesis of superheavy elements in the reactions of cold and hot fusion, is investigated using the Boltzmann-Uehling-Uhlenbeck equation, where Coulomb interaction is introduced. A strong sensitivity is observed both to the modulus of incompressibility of symmetric nuclear matter, controlling the competition of surface tension and Coulomb repulsion, and to the stiffness of the density-dependence of symmetry energy, influencing the formation of the neck prior to scission. The experimental fusion probabilities were for the first time used to derive constraints on the nuclear equation of state. A strict constraint on the modulus of incompressibility of nuclear matter K0=240 -260 MeV is obtained while the stiff density-dependences of the symmetry energy (γ >1 ) are rejected.

  8. Radiation induced dissolution of UO 2 based nuclear fuel - A critical review of predictive modelling approaches

    Science.gov (United States)

    Eriksen, Trygve E.; Shoesmith, David W.; Jonsson, Mats

    2012-01-01

    Radiation induced dissolution of uranium dioxide (UO 2) nuclear fuel and the consequent release of radionuclides to intruding groundwater are key-processes in the safety analysis of future deep geological repositories for spent nuclear fuel. For several decades, these processes have been studied experimentally using both spent fuel and various types of simulated spent fuels. The latter have been employed since it is difficult to draw mechanistic conclusions from real spent nuclear fuel experiments. Several predictive modelling approaches have been developed over the last two decades. These models are largely based on experimental observations. In this work we have performed a critical review of the modelling approaches developed based on the large body of chemical and electrochemical experimental data. The main conclusions are: (1) the use of measured interfacial rate constants give results in generally good agreement with experimental results compared to simulations where homogeneous rate constants are used; (2) the use of spatial dose rate distributions is particularly important when simulating the behaviour over short time periods; and (3) the steady-state approach (the rate of oxidant consumption is equal to the rate of oxidant production) provides a simple but fairly accurate alternative, but errors in the reaction mechanism and in the kinetic parameters used may not be revealed by simple benchmarking. It is essential to use experimentally determined rate constants and verified reaction mechanisms, irrespective of whether the approach is chemical or electrochemical.

  9. The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium); Hilaire, S.; Girod, M.; Peru, S. [CEA, DAM, DIF, Arpajon (France)

    2016-07-15

    We present the Gogny-Hartree-Fock-Bogoliubov model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast to the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies is included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2353 measured masses is 789 keV in the 2012 atomic mass evaluation. In addition, the D1M Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces. The D1M properties and its predictions of various observables are compared with those of D1S and D1N. (orig.)

  10. Kinetic model for hydroisomerization reaction of C8-aromatics

    Institute of Scientific and Technical Information of China (English)

    Ouguan XU; Hongye SU; Xiaoming JIN; Jian CHU

    2008-01-01

    Based on the reported reaction networks, a novel six-component hydroisomerization reaction net-work with a new lumped species including C8-naphthenes and Cs-paraffins is proposed and a kinetic model for a commercial unit is also developed. An empirical catalyst deactivation function is incorporated into the model accounting for the loss in activity because of coke forma-tion on the catalyst surface during the long-term opera-tion. The Runge-Kutta method is used to solve the ordinary differential equations of the model. The reaction kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential vari-able metric optimization method (BFGS). The kinetic model is validated by an industrial unit with sets of plant data under different operating conditions and simulation results show a good agreement between the model predic-tions and the plant observations.

  11. Formation of the isomeric pairs 139m,gNd and 141m,gNd in proton and 3He-particle induced nuclear reactions

    OpenAIRE

    Hilgers, K.; Sudár, S.; Qaim, S. M.

    2007-01-01

    Cross sections were measured by the activation technique for the nuclear reactions Pr-141(p,n)Nd-141(m),Pr-141(p,3n)Nd-139(m),Ce-nat(He-3,xn)Nd-141(m), and Ce-nat(He-3,xn)Nd-139(m) up to proton energies of 44 MeV and He-3-particle energies of 35 MeV. Using the present data and some of our earlier experimental results the isomeric cross-section ratios for the nuclide pairs Nd-139(m,g) and Nd-141(m,g) were calculated. The experimental data were compared with the results of nuclear model calcula...

  12. Contribution to the modelling of gas-solid reactions and reactors; Contribution a la modelisation des reactions et des reacteurs gaz-solide

    Energy Technology Data Exchange (ETDEWEB)

    Patisson, F

    2005-09-15

    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  13. Stochastic modeling of deterioration in nuclear power plant components

    Science.gov (United States)

    Yuan, Xianxun

    2007-12-01

    The risk-based life-cycle management of engineering systems in a nuclear power plant is intended to ensure safe and economically efficient operation of energy generation infrastructure over its entire service life. An important element of life-cycle management is to understand, model and forecast the effect of various degradation mechanisms affecting the performance of engineering systems, structures and components. The modeling of degradation in nuclear plant components is confounded by large sampling and temporal uncertainties. The reason is that nuclear systems are not readily accessible for inspections due to high level of radiation and large costs associated with remote data collection methods. The models of degradation used by industry are largely derived from ordinary linear regression methods. The main objective of this thesis is to develop more advanced techniques based on stochastic process theory to model deterioration in engineering components with the purpose of providing more scientific basis to life-cycle management of aging nuclear power plants. This thesis proposes a stochastic gamma process (GP) model for deterioration and develops a suite of statistical techniques for calibrating the model parameters. The gamma process is a versatile and mathematically tractable stochastic model for a wide variety of degradation phenomena, and another desirable property is its nonnegative, monotonically increasing sample paths. In the thesis, the GP model is extended by including additional covariates and also modeling for random effects. The optimization of age-based replacement and condition-based maintenance strategies is also presented. The thesis also investigates improved regression techniques for modeling deterioration. A linear mixed-effects (LME) regression model is presented to resolve an inconsistency of the traditional regression models. The proposed LME model assumes that the randomness in deterioration is decomposed into two parts: the unobserved

  14. An efficient nonclassical quadrature for the calculation of nonresonant nuclear fusion reaction rate coefficients from cross section data

    Science.gov (United States)

    Shizgal, Bernie D.

    2016-08-01

    Nonclassical quadratures based on a new set of half-range polynomials, Tn(x) , orthogonal with respect to w(x) =e - x - b /√{ x } for x ∈ [ 0 , ∞) are employed in the efficient calculation of the nuclear fusion reaction rate coefficients from cross section data. The parameter b = B /√{kB T } in the weight function is temperature dependent and B is the Gamow factor. The polynomials Tn(x) satisfy a three term recurrence relation defined by two sets of recurrence coefficients, αn and βn. These recurrence coefficients define in turn the tridiagonal Jacobi matrix whose eigenvalues are the quadrature points and the weights are calculated from the first components of the eigenfunctions. For nonresonant nuclear reactions for which the astrophysical function can be expressed as a lower order polynomial in the relative energy, the convergence of the thermal average of the reactive cross section with this nonclassical quadrature is extremely rapid requiring in many cases 2-4 quadrature points. The results are compared with other libraries of nuclear reaction rate coefficient data reported in the literature.

  15. nuclear bound states in a dynamical model

    Science.gov (United States)

    Mareš, J.; Friedman, E.; Gal, A.

    2006-05-01

    A comprehensive data base of K-atom level shifts and widths is re-analyzed in order to study the density dependence of the K¯-nuclear optical potential. Significant departure from a tρ form is found only for ρ(r)/ρ ≲ 0.2 and extrapolation to nuclear-matter density ρ yields an attractive potential, about 170 MeV deep. Partial restoration of chiral symmetry compatible with pionic atoms and low-energy pion-nuclear data plays no role at the relevant low-density regime, but this effect is not ruled out at densities of order ρ and beyond. K¯-nuclear bound states are generated across the periodic table self consistently, using a relativistic mean-field model Lagrangian which couples the K¯ to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for K¯ absorption from these bound states is taken into account by adding an energy-dependent imaginary term which underlies the corresponding K¯-nuclear level widths, with a strength required by fits to the atomic data. Substantial polarization of the core nucleus is found for light nuclei, and the binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. A wide range of binding energies is spanned by varying the K¯ couplings to the meson fields. Our calculations provide a lower limit of Γ=50±10 MeV on the width of nuclear bound states for K¯-binding energy in the range B˜100-200 MeV. Comments are made on the interpretation of the FINUDA experiment at DAΦNE which claimed evidence for deeply bound Kpp states in light nuclei.

  16. Radioactive target needs for nuclear reactor physics and nuclear astrophysics

    OpenAIRE

    Jurado, B.; Barreau, G.; Bacri, C. O.

    2010-01-01

    Nuclear Instruments and Methods in Physics Research Section A - In press.; Nuclear reaction cross sections of short-lived nuclei are key inputs for new generation nuclear reactor simulations and for models describing the nucleosynthesis of elements. After discussing various topics of nuclear astrophysics and reactor physics where the demand of nuclear data on unstable nuclei is strong, we describe the general characteristics of the targets needed to measure the requested data. In some cases t...

  17. Dependence of Two-proton Radioactivity on Nuclear Pairing Models

    CERN Document Server

    Oishi, Tomohiro; Pastore, Alessandro

    2016-01-01

    The sensitivity of two-proton emitting decays to the nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the $^6$Be nucleus assuming $\\alpha + p + p$ configuration, and its decay process is described as a time-evolution of the three-body resonance state. A noticeable model-dependence of two-proton decay width is found by utilizing schematic density-dependent contact (SDDC) and the finite-range Minnesota pairing models. The model-dependence with the SDDC pairing interaction can be understood from the density distribution of the resonance state, which reflects a synergy of participating interactions. Our result suggests that two-proton decay width may be a suitable reference quantity to sophisticate the nuclear pairing model beyond the nucleon driplines.

  18. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald [Colorado State Univ., Fort Collins, CO (United States); El-Azab, Anter [Florida State Univ., Tallahassee, FL (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Polyakov, Peter [Univ. of Wyoming, Laramie, WY (United States); Tavener, Simon [Colorado State Univ., Fort Collins, CO (United States); Xiu, Dongbin [Purdue Univ., West Lafayette, IN (United States); Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis for computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.

  19. (Nuclear theory: Annual report)

    Energy Technology Data Exchange (ETDEWEB)

    Iachello, F.; Alhassid, Y.; Kusnezov, D.

    1991-01-01

    This report discusses topics on : nuclear structure models; algebraic models of hadronic structure; nuclear reactions; hot rotating nuclei; chaos in nuclei; signatures of the quark-gluon plasma; hadronic spectroscopy; octupole collectivity in nuclei; finite-temperature methods for the many-body problem; and classical limit of algebraic hamiltonians. (LSP)

  20. [Nuclear theory: Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Iachello, F.; Alhassid, Y.; Kusnezov, D.

    1991-12-31

    This report discusses topics on : nuclear structure models; algebraic models of hadronic structure; nuclear reactions; hot rotating nuclei; chaos in nuclei; signatures of the quark-gluon plasma; hadronic spectroscopy; octupole collectivity in nuclei; finite-temperature methods for the many-body problem; and classical limit of algebraic hamiltonians. (LSP)