WorldWideScience

Sample records for modeling nitrate leaching

  1. Nitrate leaching index

    Science.gov (United States)

    The Nitrate Leaching Index is a rapid assessment tool that evaluates nitrate (NO3) leaching potential based on basic soil and climate information. It is the basis for many nutrient management planning efforts, but it has considerable limitations because of : 1) an oversimplification of the processes...

  2. Nitrate Leaching Management

    Science.gov (United States)

    Nitrate (NO3) leaching is a significant nitrogen (N) loss process for agriculture that must be managed to minimize NO3 enrichment of groundwater and surface waters. Managing NO3 leaching should involve the application of basic principles of understanding the site’s hydrologic cycle, avoiding excess ...

  3. Regional planning and modelling of nitrate leaching in Denmark using DaisyGIS

    DEFF Research Database (Denmark)

    Veihe, Anita; Jensen, Niels H.; Boegh, Eva

    Spatial deterministic simulation models such as DaisyGIS are increasingly being used for decision-making in European planning and there is a growing interest in using DaisyGIS as an administrative tool at the regional level in Denmark. This study evaluates the use of Daisy-GIS for nitrate leaching...... assessments based on nitrate leaching experiments carried out at the Marbjerg experimental site at Roskilde University....

  4. Integrated modelling of crop production and nitrate leaching with the Daisy model

    DEFF Research Database (Denmark)

    Manevski, Kiril; Børgesen, Christen Duus; Li, Xiaoxin

    2016-01-01

    An integrated modelling strategy was designed and applied to the Soil-Vegetation-Atmosphere Transfer model Daisy for simulation of crop production and nitrate leaching under pedo-climatic and agronomic environment different than that of model original parameterisation. The points of significance...

  5. Nitrate-Nitrogen Leaching and Modeling in Intensive Agriculture Farmland in China

    Science.gov (United States)

    Xu, Ligang; Xu, Jin

    2013-01-01

    Protecting water resources from nitrate-nitrogen (NO3-N) contamination is an important public health concern and a major national environmental issue in China. Loss of NO3-N in soils due to leaching is not only one of the most important problems in agriculture farming, but is also the main factor causing nitrogen pollution in aquatic environments. Three typical intensive agriculture farmlands in Jiangyin City in China are selected as a case study for NO3-N leaching and modeling in the soil profile. In this study, the transport and fate of NO3-N within the soil profile and nitrate leaching to drains were analyzed by comparing field data with the simulation results of the LEACHM model. Comparisons between measured and simulated data indicated that the NO3-N concentrations in the soil and nitrate leaching to drains are controlled by the fertilizer practice, the initial conditions and the rainfall depth and distribution. Moreover, the study reveals that the LEACHM model gives a fair description of the NO3-N dynamics in the soil and subsurface drainage at the field scale. It can also be concluded that the model after calibration is a useful tool to optimize as a function of the combination “climate-crop-soil-bottom boundary condition” the nitrogen application strategy resulting for the environment in an acceptable level of nitrate leaching. The findings in this paper help to demonstrate the distribution and migration of nitrogen in intensive agriculture farmlands, as well as to explore the mechanism of groundwater contamination resulting from agricultural activities. PMID:23983629

  6. Nitrate-Nitrogen Leaching and Modeling in Intensive Agriculture Farmland in China

    Directory of Open Access Journals (Sweden)

    Ligang Xu

    2013-01-01

    Full Text Available Protecting water resources from nitrate-nitrogen (NO3-N contamination is an important public health concern and a major national environmental issue in China. Loss of NO3-N in soils due to leaching is not only one of the most important problems in agriculture farming, but is also the main factor causing nitrogen pollution in aquatic environments. Three typical intensive agriculture farmlands in Jiangyin City in China are selected as a case study for NO3-N leaching and modeling in the soil profile. In this study, the transport and fate of NO3-N within the soil profile and nitrate leaching to drains were analyzed by comparing field data with the simulation results of the LEACHM model. Comparisons between measured and simulated data indicated that the NO3-N concentrations in the soil and nitrate leaching to drains are controlled by the fertilizer practice, the initial conditions and the rainfall depth and distribution. Moreover, the study reveals that the LEACHM model gives a fair description of the NO3-N dynamics in the soil and subsurface drainage at the field scale. It can also be concluded that the model after calibration is a useful tool to optimize as a function of the combination “climate-crop-soil-bottom boundary condition” the nitrogen application strategy resulting for the environment in an acceptable level of nitrate leaching. The findings in this paper help to demonstrate the distribution and migration of nitrogen in intensive agriculture farmlands, as well as to explore the mechanism of groundwater contamination resulting from agricultural activities.

  7. Modeling nitrate leaching and optimizing water and nitrogen management under irrigated maize in desert oases in Northwestern China.

    Science.gov (United States)

    Hu, Kelin; Li, Yong; Chen, Weiping; Chen, Deli; Wei, Yongping; Edis, Robert; Li, Baoguo; Huang, Yuanfang; Zhang, Yuanpei

    2010-01-01

    Understanding water and N transport through the soil profile is important for efficient irrigation and nutrient management to minimize nitrate leaching to the groundwater, and to promote agricultural sustainable development in desert oases. In this study, a process-based water and nitrogen management model (WNMM) was used to simulate soil water movement, nitrate transport, and crop growth (maize [Zea mays L.]) under desert oasis conditions in northwestern China. The model was calibrated and validated with a field experiment. The model simulation results showed that about 35% of total water input and 58% of the total N input were leached to <1.8 m depth under traditional management practice. Excessive irrigation and N fertilizer application, high nitrate concentration in the irrigation water, together with the sandy soil texture, resulted in large nitrate leaching. Nitrate leaching was significantly reduced under the improved management practice suggested by farm extension personnel; however, the water and nitrate inputs still far exceeded the crop requirements. More than 1700 scenarios combining various types of irrigation and fertilizer practices were simulated. Quantitative analysis was conducted to obtain the best management practices (BMPs) with simultaneous consideration of crop yield, water use efficiency, fertilizer N use efficiency, and nitrate leaching. The results indicated that the BMPs under the specific desert oasis conditions are to irrigate the maize with 600 mm of water in eight times with a single fertilizer application at a rate of 75 kg N ha(-1).

  8. Integrated modelling of crop production and nitrate leaching with the Daisy model.

    Science.gov (United States)

    Manevski, Kiril; Børgesen, Christen D; Li, Xiaoxin; Andersen, Mathias N; Abrahamsen, Per; Hu, Chunsheng; Hansen, Søren

    2016-01-01

    An integrated modelling strategy was designed and applied to the Soil-Vegetation-Atmosphere Transfer model Daisy for simulation of crop production and nitrate leaching under pedo-climatic and agronomic environment different than that of model original parameterisation. The points of significance and caution in the strategy are: •Model preparation should include field data in detail due to the high complexity of the soil and the crop processes simulated with process-based model, and should reflect the study objectives. Inclusion of interactions between parameters in a sensitivity analysis results in better account for impacts on outputs of measured variables.•Model evaluation on several independent data sets increases robustness, at least on coarser time scales such as month or year. It produces a valuable platform for adaptation of the model to new crops or for the improvement of the existing parameters set. On daily time scale, validation for highly dynamic variables such as soil water transport remains challenging. •Model application is demonstrated with relevance for scientists and regional managers. The integrated modelling strategy is applicable for other process-based models similar to Daisy. It is envisaged that the strategy establishes model capability as a useful research/decision-making, and it increases knowledge transferability, reproducibility and traceability.

  9. Identifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC model.

    Science.gov (United States)

    Zhang, Yitao; Wang, Hongyuan; Liu, Shen; Lei, Qiuliang; Liu, Jian; He, Jianqiang; Zhai, Limei; Ren, Tianzhi; Liu, Hongbin

    2015-05-01

    Identification of critical nitrogen (N) application rate can provide management supports for ensuring grain yield and reducing amount of nitrate leaching to ground water. A five-year (2008-2012) field lysimeter (1 m × 2 m × 1.2 m) experiment with three N treatments (0, 180 and 240 kg Nha(-1)) was conducted to quantify maize yields and amount of nitrate leaching from a Haplic Luvisol soil in the North China Plain. The experimental data were used to calibrate and validate the process-based model of Denitrification-Decomposition (DNDC). After this, the model was used to simulate maize yield production and amount of nitrate leaching under a series of N application rates and to identify critical N application rate based on acceptable yield and amount of nitrate leaching for this cropping system. The results of model calibration and validation indicated that the model could correctly simulate maize yield and amount of nitrate leaching, with satisfactory values of RMSE-observation standard deviation ratio, model efficiency and determination coefficient. The model simulations confirmed the measurements that N application increased maize yield compared with the control, but the high N rate (240 kg Nha(-1)) did not produce more yield than the low one (120 kg Nha(-1)), and that the amount of nitrate leaching increased with increasing N application rate. The simulation results suggested that the optimal N application rate was in a range between 150 and 240 kg ha(-1), which would keep the amount of nitrate leaching below 18.4 kg NO₃(-)-Nha(-1) and meanwhile maintain acceptable maize yield above 9410 kg ha(-1). Furthermore, 180 kg Nha(-1) produced the highest yields (9837 kg ha(-1)) and comparatively lower amount of nitrate leaching (10.0 kg NO₃(-)-Nha(-1)). This study will provide a valuable reference for determining optimal N application rate (or range) in other crop systems and regions in China. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Modeling of Nitrate Leaching from a Potato Field using HYDRUS-2D

    DEFF Research Database (Denmark)

    Shekofteh, Hosein; Afyuni, Majid; Hajabbasi, Mohammad Ali

    2013-01-01

    Excessive use of nitrogen (N) fertilizers is likely to be responsible for the increasing nitrate in groundwater. Thus, appropriate water and nutrient management is required to minimize groundwater pollution and to maximize the nutrient-use efficiency. In this study HYDRUS-2D software package...... was applied to simulate nitrate leaching from a drip-irrigated sandy agricultural soil for varying emitter discharges and various amounts of fertilizer. It was found that for small emitter discharge values free drainage increased significantly with increase in discharge, whereas the increase was leveled out...... at greater discharge values. Nitrate leaching increased with an increase in emitter discharge and amount of fertilizer, but the rate of increase was most significant for low emitter discharges. Based on the results, with regard to the selection of emitter discharge and the amount of appropriate fertilizer...

  11. Quantifying long-term responses of crop yield and nitrate leaching in an intensive farmland using agro-eco-environmental model.

    Science.gov (United States)

    Sun, Mei; Huo, Zailin; Zheng, Yanxia; Dai, Xiaoqin; Feng, Shaoyuan; Mao, Xiaomin

    2018-02-01

    Quantitatively ascertaining and analyzing long-term responses of crop yield and nitrate leaching on varying irrigation and fertilization treatments are focal points for guaranteeing crop yield and reducing nitrogen loss. The calibrated agricultural-hydrological RZWQM2 model was used to explore the long-term (2003-2013) transport processes of water and nitrogen and the nitrate leaching amount into groundwater in summer maize and winter wheat rotation field in typical intensive plant area in the North China Plain, Daxing district of Beijing. Simulation results showed that application rates of irrigation and nitrogen fertilizer have couple effects on crop yields and nitrogen leaching of root zone. When both the irrigation and fertilizer for summer maize and winter wheat were 400mm and 400kgNha -1 , respectively, nitrate leaching into groundwater accounted for 47.9% of application amount of nitrogen fertilizer. When application amount of irrigation is 200mm and fertilization is 200kgNha -1 , NUPE (nitrogen uptake efficiency), NUE (nitrogen use efficiency), NPFP (nitrogen partial factor productivity), and W pi (irrigation water productive efficiency) were in general higher than that under other irrigation and fertilization condition (irrigation from 104-400mm, fertilizer 104-400kgNha -1 ). Irrigation bigger than 200mm could shorten the response time of nitrate leaching in deeper soil layer in different irrigation treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Impact of weather variability on nitrate leaching

    Science.gov (United States)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine

    2016-04-01

    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  13. In what root-zone N concentration does nitrate start to leach significantly? A reasonable answer from modeling Mediterranean field data and closed root-zone experiments

    Science.gov (United States)

    Kurtzman, D.; Kanner, B.; Levy, Y.; Shapira, R. H.; Bar-Tal, A.

    2017-12-01

    Closed-root-zone experiments (e.g. pots, lyzimeters) reveal in many cases a mineral-nitrogen (N) concentration from which the root-N-uptake efficiency reduces significantly and nitrate leaching below the root-zone increases dramatically. A les-direct way to reveal this threshold concentration in agricultural fields is to calibrate N-transport models of the unsaturated zone to nitrate data of the deep samples (under the root-zone) by fitting the threshold concentration of the nitrate-uptake function. Independent research efforts of these two types in light soils where nitrate problems in underlying aquifers are common reviled: 1) that the threshold exists for most crops (filed, vegetables and orchards); 2) nice agreement on the threshold value between the two very different research methodologies; and 3) the threshold lies within 20-50 mg-N/L. Focusing on being below the threshold is a relatively simple aim in the way to maintain intensive agriculture with limited effects on the nitrate concentration in the underlying water resource. Our experience show that in some crops this threshold coincides with the end-of-rise of the N-yield curve (e.g. corn); in this case, it is relatively easy to convince farmers to fertilize below threshold. In other crops, although significant N is lost to leaching the crop can still use higher N concentration to increase yield (e.g. potato).

  14. Nitrate leaching and pesticide use in energy crops

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2006-01-01

    Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well.......Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well....

  15. Modeling the impact of nitrogen fertilizer application and tile drain configuration on nitrate leaching using SWAT

    Science.gov (United States)

    Recently, the Soil and Water Assessment Tool (SWAT) was revised to improve the partitioning of runoff and tile drainage in poorly drained soils by modifying the algorithm for computing the soil moisture retention parameter. In this study, the revised SWAT model was used to evaluate the sensitivity a...

  16. Nitrogen gas emissions and nitrate leaching dynamics under different tillage practices based on data synthesis and process-based modeling

    Science.gov (United States)

    Huang, Y.; Ren, W.; Tao, B.; Zhu, X.

    2017-12-01

    Nitrogen losses from the agroecosystems have been of great concern to global changes due to the effects on global warming and water pollution in the form of nitrogen gas emissions (e.g., N2O) and mineral nitrogen leaching (e.g., NO3-), respectively. Conservation tillage, particularly no-tillage (NT), may enhance soil carbon sequestration, soil aggregation and moisture; therefore it has the potential of promoting N2O emissions and reducing NO3- leaching, comparing with conventional tillage (CT). However, associated processes are significantly affected by various factors, such as soil properties, climate, and crop types. How tillage management practices affect nitrogen transformations and fluxes is still far from clear, with inconsistent even opposite results from previous studies. To fill this knowledge gap, we quantitatively investigated gaseous and leaching nitrogen losses from NT and CT agroecosystems based on data synthesis and an improved process-based agroecosystem model. Our preliminary results suggest that NT management is more efficient in reducing NO3- leaching, and meanwhile it simultaneously increases N2O emissions by approximately 10% compared with CT. The effects of NT on N2O emissions and NO3- leaching are highly influenced by the placement of nitrogen fertilizer and are more pronounced in humid climate conditions. The effect of crop types is a less dominant factor in determining N2O and NO3- losses. Both our data synthesis and process-based modeling suggest that the enhanced carbon sequestration capacity from NT could be largely compromised by relevant NT-induced increases in N2O emissions. This study provides the comprehensive quantitative assessment of NT on the nitrogen emissions and leaching in agroecosystems. It provides scientific information for identifying proper management practices for ensuring food security and minimizing the adverse environmental impacts. The results also underscore the importance of suitable nitrogen management in the NT

  17. Use of tensiometer for in situ measurement of nitrate leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Reddy, M.R.

    1999-07-01

    In order to monitor nitrate leaching from non-point source pollution, this study used tensiometers to measure in situ nitrate concentration and soil-moisture potential. Instead of filling the tensiometers with pure water, the study filled the tensiometers with nitrate ionic strength adjuster (ISA, 1 M (NH{sub 4}){sub 2}SO{sub 4}). After the installation of the tensiometers at various depths along soil profiles, a portable pressure transducer was used to measure the soil moisture potential, and a nitrate electrode attached to an ion analyzer was used to measure the nitrate concentration in situ. The measurement was continuous and non-destructive. To test this method in the laboratory, eight bottles filled with pure sand were treated with known nitrate solutions, and a tensiometer was placed in each bottle. Measurements were taken every day for 30 days. Laboratory test showed a linear relationship between the known nitrate concentration and the tensiometer readings (R{sup 2} = 0.9990). Then a field test was conducted in a watermelon field with green manure mulch. Field data indicated a potential of nitrate leaching below the soil depth of 100 cm when crop uptake of nutrients was low.

  18. Nitrate leaching from a potato field using adaptive network-based fuzzy inference system

    DEFF Research Database (Denmark)

    Shekofteh, Hosein; Afyuni, Majid M; Hajabbasi, Mohammad-Ali

    2013-01-01

    and to maximize nutrient use efficiency and production. Design and operation of a drip fertigation system requires understanding of nutrient leaching behavior in cases of shallow rooted crops such as potatoes which cannot extract nutrient from a lower soil depth. This study deals with neuro-fuzzy modeling......The conventional methods of application of nitrogen fertilizers might be responsible for the increased nitrate concentration in groundwater of areas dominated by irrigated agriculture. Appropriate water and nutrient management strategies are required to minimize groundwater pollution...... of nitrate (NO3) leaching from a potato field under a drip fertigation system. In the first part of the study, a two-dimensional solute transport model was used to simulate nitrate leaching from a sandy soil with varying emitter discharge rates and fertilizer doses. The results from the modeling were used...

  19. Impacts of management and climate change on nitrate leaching in a forested karst area.

    Science.gov (United States)

    Dirnböck, Thomas; Kobler, Johannes; Kraus, David; Grote, Rüdiger; Kiese, Ralf

    2016-01-01

    Forest management and climate change, directly or indirectly, affect drinking water resources, both in terms of quality and quantity. In this study in the Northern Limestone Alps in Austria we have chosen model calculations (LandscapeDNDC) in order to resolve the complex long-term interactions of management and climate change and their effect on nitrogen dynamics, and the consequences for nitrate leaching from forest soils into the karst groundwater. Our study highlights the dominant role of forest management in controlling nitrate leaching. Both clear-cut and shelterwood-cut disrupt the nitrogen cycle to an extent that causes peak concentrations and high fluxes into the seepage water. While this effect is well known, our modelling approach has revealed additional positive as well as negative impacts of the expected climatic changes on nitrate leaching. First, we show that peak nitrate concentrations during post-cutting periods were elevated under all climate scenarios. The maximal effects of climatic changes on nitrate concentration peaks were 20-24 mg L(-1) in 2090 with shelterwood or clear-cut management. Second, climate change significantly decreased the cumulative nitrate losses over full forest rotation periods (by 10-20%). The stronger the expected temperature increase and precipitation decrease (in summer), the lesser were the observed nitrate losses. However, mean annual seepage water nitrate concentrations and cumulative nitrate leaching were higher under continuous forest cover management than with shelterwood-cut and clear-cut systems. Watershed management can thus be adapted to climate change by either reducing peak concentrations or long-term loads of nitrate in the karst groundwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nitrate leaching from short-hydroperiod floodplain soils

    Directory of Open Access Journals (Sweden)

    B. Huber

    2012-11-01

    Full Text Available Numerous studies have shown the importance of riparian zones to reduce nitrate (NO3 contamination coming from adjacent agricultural land. Much less is known about nitrogen (N transformations and nitrate fluxes in riparian soils with short hydroperiods (1–3 days of inundation and there is no study that could show whether these soils are a N sink or source. Within a restored section of the Thur River in NE Switzerland, we measured nitrate concentrations in soil solutions as an indicator of the net nitrate production. Samples were collected along a quasi-successional gradient from frequently inundated gravel bars to an alluvial forest, at three different depths (10, 50 and 100 cm over a one-year period. Along this gradient we quantified N input (atmospheric deposition and sedimentation and N output (leaching to create a nitrogen balance and assess the risk of nitrate leaching from the unsaturated soil to the groundwater. Overall, the main factor explaining the differences in nitrate concentrations was the field capacity (FC. In subsoils with high FCs and VWC near FC, high nitrate concentrations were observed, often exceeding the Swiss and EU groundwater quality criterions of 400 and 800 μmol L−1, respectively. High sedimentation rates of river-derived nitrogen led to apparent N retention up to 200 kg N ha−1 yr−1 in the frequently inundated zones. By contrast, in the mature alluvial forest, nitrate leaching exceeded total N input most of the time. As a result of the large soil N pools, high amounts of nitrate were produced by nitrification and up to 94 kg N-NO3 ha−1 yr−1 were leached into the groundwater. Thus, during flooding when water fluxes are high, nitrate from soils can contribute up to 11% to the total nitrate load in groundwater.

  1. Influence of soil and climate heterogeneity on the performance of economic instruments for reducing nitrate leaching from agriculture.

    Science.gov (United States)

    Peña-Haro, Salvador; García-Prats, Alberto; Pulido-Velazquez, Manuel

    2014-11-15

    Economic instruments can be used to control groundwater nitrate pollution due to the intensive use of fertilizers in agriculture. In order to test their efficiency on the reduction of nitrate leaching, we propose an approach based on the combined use of production and pollution functions to derive the impacts on the expected farmer response of these instruments. Some of the most important factors influencing nitrate leaching and crop yield are the type of soil and the climatic conditions. Crop yield and nitrate leaching responses to different soil and climatic conditions were classified by means of a cluster analysis, and crops located in different areas but with similar response were grouped for the analysis. We use a spatial economic optimization model to evaluate the potential of taxes on nitrogen fertilizers, water prices, and taxes on nitrate emissions to reduce nitrate pollution, as well as their economic impact in terms of social welfare and farmers' net benefits. The method was applied to the Mancha Oriental System (MOS) in Spain, a large area with different soil types and climatic conditions. We divided the study area into zones of homogeneous crop production and nitrate leaching properties. Results show spatially different responses of crop growth and nitrate leaching, proving how the cost-effectiveness of pollution control instruments is contingent upon the spatial heterogeneities of the problem. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  3. Land cover changes as a result of environmental restrictions on nitrate leaching in diary farming

    NARCIS (Netherlands)

    Groeneveld, R.; Bouwman, L.; Kruitwagen, S.; Ierland, van E.

    2001-01-01

    Nitrate leaching forms an important environmental problem because it causes pollution of groundwater and surface water, and adds to already problematic eutrophication. This study analyses the impact of reductions in nitrate leaching on land cover decisions of dairy farms, of which the activities

  4. Comparing annual and perennial crops for bioenergy production - influence on nitrate leaching and energy balance

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Schelde, Kirsten; Ugilt Larsen, Søren

    2015-01-01

    Production of energy crops is promoted as a means to mitigate global warming by decreasing dependency on fossil energy. However, agricultural production of bioenergy can have various environmental effects depending on the crop and production system. In a field trial initiated in 2008, nitrate...... concentration in soil water was measured below winter wheat, grass-clover and willow during three growing seasons. Crop water balances were modelled to estimate the amount of nitrate leached per hectare. In addition, dry matter yields and nitrogen (N) yields were measured, and N balances and energy balances...... was also measured in an old willow crop established in 1996 from which N leaching ranged from 6 to 27 kg ha−1 yr−1. Dry matter yields ranged between 5.9 and 14.8 Mg yr−1 with lowest yield in the newly established willow and the highest yield harvested in grass-clover. Grass-clover gave the highest net...

  5. Kinetics and mechanism of sphalerite leaching by sodium nitrate in sulphuric acid solution

    Directory of Open Access Journals (Sweden)

    Sokić M.

    2012-01-01

    Full Text Available Interest for application of hydrometallurgical processes in a processing of complex sulphide ores and concentrates has increased in recent years. Their application provides better metal recoveries and reduced emission of gaseous and toxic ageneses in the environment. The kinetics and mechanism of sphalerite leaching from complex sulphide concentrate with sulphuric acid and sodium nitrate solution at standard conditions was presented in this paper. The influences of temperature and time on the leaching degree of zinc were investigated and kinetic analysis of the process was accomplished. With temperature increasing from 60 to 90°C, the zinc leaching increased from 25.23% to 71.66% after 2 hours, i.e. from 59.40% to 99.83% after 4 hours. The selected kinetic model indicated that the diffusion through the product layer was the rate-controlling step during the sphalerite leaching. The activation energy was determined to be 55 kJ/mol in the temperature range 60-90°C. XRD, light microscopy and SEM/EDX analyses of the complex concentrate and leach residue confirmed formation of elemental sulphur and diffusion-controlled leaching mechanism.

  6. A Unified Experimental Approach for Estimation of Irrigationwater and Nitrate Leaching in Tree Crops

    Science.gov (United States)

    Hopmans, J. W.; Kandelous, M. M.; Moradi, A. B.

    2014-12-01

    Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other(semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, as well as root growth and associated nitrate and water uptake, interact with soil properties and fertilizer source(s) in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modeling studies are required to allow for unraveling of the relevant complexities that result from typical field-wide spatial variations of soil texture and layering across farmer-managed fields. We present experimental approaches across a network of tree crop orchards in the San Joaquin Valley, that provide the necessary soil data of soil moisture, water potential and nitrate concentration to evaluate and optimize irrigation water management practices. Specifically, deep tensiometers were used to monitor in-situ continuous soil water potential gradients, for the purpose to compute leaching fluxes of water and nitrate at both the individual tree and field scale.

  7. Multiscale effects of management, environmental conditions, and land use on nitrate leaching in dairy farms.

    Science.gov (United States)

    Oenema, Jouke; Burgers, Saskia; Verloop, Koos; Hooijboer, Arno; Boumans, Leo; ten Berge, Hein

    2010-01-01

    Nitrate leaching in intensive grassland- and silage maize-based dairy farming systems on sandy soil is a main environmental concern. Here, statistical relationships are presented between management practices and environmental conditions and nitrate concentration in shallow groundwater (0.8 m depth) at farm, field, and point scales in The Netherlands, based on data collected in a participatory approach over a 7-yr period at one experimental and eight pilot commercial dairy farms on sandy soil. Farm milk production ranged from 10 to 24 Mg ha(-1). Soil and hydrological characteristics were derived from surveys and weather conditions from meteorological stations. Statistical analyses were performed with multiple regression models. Mean nitrate concentration at farm scale decreased from 79 mg L(-1) in 1999 to 63 in 2006, with average nitrate concentration in groundwater decreasing under grassland but increasing under maize land over the monitoring period. The effects of management practices on nitrate concentration varied with spatial scale. At farm scale, nitrogen surplus, grazing intensity, and the relative areas of grassland and maize land significantly contributed to explaining the variance in nitrate concentration in groundwater. Mean nitrate concentration was negatively correlated to the concentration of dissolved organic carbon in the shallow groundwater. At field scale, management practices and soil, hydrological, and climatic conditions significantly contributed to explaining the variance in nitrate concentration in groundwater under grassland and maize land. We conclude that, on these intensive dairy farms, additional measures are needed to comply with the European Union water quality standard in groundwater of 50 mg nitrate L(-1). The most promising measures are omitting fertilization of catch crops and reducing fertilization levels of first-year maize in the rotation.

  8. Evaluating Nitrogen Management Options for Reducing Nitrate Leaching from Northeast U.S. Pastures

    Directory of Open Access Journals (Sweden)

    William L. Stout

    2001-01-01

    Full Text Available Substantial amounts of nitrate nitrogen NO3-N can leach from intensively grazed pasture in the northeast U.S. where there is about 30 cm of groundwater recharge, annually. Management options for reducing NO3-N leaching were evaluated for this environment using the Cornell Net Carbohydrate and Protein System Model and a recently developed nitrogen leaching index. Management options utilizing energy supplementation of grazing dairy cows could improve nitrogen efficiency within the cow, but would not necessarily reduce NO3-N leaching at the pasture scale if stocking rate was not controlled. The management option of using white clover to supply nitrogen to the pasture decreased NO3-N leaching, but produced less dry matter yield, which in turn reduced stocking rate. The economic returns of reducing NO3-N with these options need to be evaluated in light of milk prices and commodity and fertilizer nitrogen costs. At current prices and costs, the economic benefit from the energy supplementation options is substantial.

  9. Nitrate leaching as a confounding factor in chemical recovery from acidification in UK upland waters

    International Nuclear Information System (INIS)

    Curtis, C.J.; Evans, C.D.; Helliwell, R.C.; Monteith, D.T.

    2005-01-01

    Over the period 1988-2002, data from 18 of the 22 lakes and streams in the UK Acid Waters Monitoring Network (AWMN) show clear trends of declining excess sulphate concentrations in response to reductions in sulphur deposition, but fewer trends in increasing pH or alkalinity. There has been no significant decline in the deposition of total nitrogen over the same period, and no sites show a trend in nitrate concentration. Peak nitrate concentrations have already surpassed excess sulphate on occasion in half of the AWMN sites. Furthermore, current understanding of terrestrial N saturation processes suggests that nitrate leaching from soils may increase, even under a constant N deposition load. Best-case projections indicate that nitrate will overtake sulphate as the major excess acid anion in many sites within 10 years, while worst-case predictions with steady-state models suggest that in the longer-term, nitrate could become the dominant excess acid anion in most of the UK. - With declining excess sulphate, nitrate will become the dominant agent of continued anthropogenic acidification in many UK upland waters within a decade

  10. Optimising crop production and nitrate leaching in China: Measured and simulated effects of straw incorporation and nitrogen fertilisation

    DEFF Research Database (Denmark)

    Manevski, Kiril; Børgesen, Christen Duus; Li, Xiaoxin

    2016-01-01

    model Daisy for estimating crop production and nitrate leaching from silty loam fields in the NCP. The main objectives were to: i) calibrate and validate Daisy for the NCP pedo-climate and field management conditions, and ii) use the calibrated model and the field data in a multi-response analyses...

  11. Tradeoffs between Maize Silage Yield and Nitrate Leaching in a Mediterranean Nitrate-Vulnerable Zone under Current and Projected Climate Scenarios

    Science.gov (United States)

    Basso, Bruno; Giola, Pietro; Dumont, Benjamin; Migliorati, Massimiliano De Antoni; Cammarano, Davide; Pruneddu, Giovanni; Giunta, Francesco

    2016-01-01

    Future climatic changes may have profound impacts on cropping systems and affect the agronomic and environmental sustainability of current N management practices. The objectives of this work were to i) evaluate the ability of the SALUS crop model to reproduce experimental crop yield and soil nitrate dynamics results under different N fertilizer treatments in a farmer’s field, ii) use the SALUS model to estimate the impacts of different N fertilizer treatments on NO3- leaching under future climate scenarios generated by twenty nine different global circulation models, and iii) identify the management system that best minimizes NO3- leaching and maximizes yield under projected future climate conditions. A field experiment (maize-triticale rotation) was conducted in a nitrate vulnerable zone on the west coast of Sardinia, Italy to evaluate N management strategies that include urea fertilization (NMIN), conventional fertilization with dairy slurry and urea (CONV), and no fertilization (N0). An ensemble of 29 global circulation models (GCM) was used to simulate different climate scenarios for two Representative Circulation Pathways (RCP6.0 and RCP8.5) and evaluate potential nitrate leaching and biomass production in this region over the next 50 years. Data collected from two growing seasons showed that the SALUS model adequately simulated both nitrate leaching and crop yield, with a relative error that ranged between 0.4% and 13%. Nitrate losses under RCP8.5 were lower than under RCP6.0 only for NMIN. Accordingly, levels of plant N uptake, N use efficiency and biomass production were higher under RCP8.5 than RCP6.0. Simulations under both RCP scenarios indicated that the NMIN treatment demonstrated both the highest biomass production and NO3- losses. The newly proposed best management practice (BMP), developed from crop N uptake data, was identified as the optimal N fertilizer management practice since it minimized NO3- leaching and maximized biomass production over

  12. Strategies to increase nitrogen use efficiency and reduce nitrate leaching in vegetable production in the Netherlands

    NARCIS (Netherlands)

    Ruijter, de F.J.; Berge, ten H.F.M.; Smit, A.L.

    2010-01-01

    Environmental concern and legislation of fertilization requires strategies to increase nitrogen use efficiency and reduce nitrate leaching. Strategies can be fertilizer choice, timing of N availability and fertilizer placement. Rainfall in the experimental year 2007 was moderate and different

  13. Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices

    Science.gov (United States)

    Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...

  14. Reducing nitrate leaching to groundwater in an intensive dairy farming system

    NARCIS (Netherlands)

    Verloop, J.; Boumans, L.J.M.; Keulen, van H.; Oenema, J.; Hilhorst, G.J.; Aarts, H.F.M.; Sebek, L.B.J.

    2006-01-01

    Dairy farming is one of the main contributors to nitrate leaching to groundwater, particularly on soils that are susceptible to leaching, such as light well-drained sandy soils. In the Netherlands, as in many other European countries, these soils are predominantly used for dairy farming. A prototype

  15. Nitrate Leaching, Yields and Carbon Sequestration after Noninversion Tillage, Catch Crops, and Straw Retention

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E

    2015-01-01

    retention did not significantly increase yields, nor did it reduce leaching, while fodder radish (Raphanus sativus L.) as a catch crop was capable of reducing nitrate leaching to a low level. Thus, YSL of winter wheat (Triticum aestivum L.) was higher than for spring barley (Hordeum vulgare L.) grown after...

  16. Multiscale Effects of Management, Environmental Conditions, and Land Use on Nitrate Leaching in Dairy Farms

    NARCIS (Netherlands)

    Oenema, J.; Burgers, S.L.G.E.; Verloop, J.; Hooijboer, A.; Boumans, L.; Berge, ten H.F.M.

    2010-01-01

    Nitrate leaching in intensive grassland- and silage maize-based dairy farming systems on sandy soil is a main environmental concern. Here, statistical relationships are presented between management practices and environmental conditions and nitrate concentration in shallow groundwater (0.8 m depth)

  17. Leaching of nitrate from temperate forests - effects of air pollution and forest management

    DEFF Research Database (Denmark)

    Gundersen, Per; Schmidt, Inger Kappel; Raulund-Rasmussen, Karsten

    2006-01-01

    deposition (> 8-10 kg ha(-1) a(-1)). We synthesized the current understanding of factors controlling N leaching in relation to three primary causes of N cycle disruption: (i) Increased N input (air pollution, fertilization, N-2 fixing plants). In European forests, elevated N deposition explains approximately...... half of the variability in N leaching, some of the remaining variability could be explained by differences in N availability or "N status". For coniferous forests, needle N content above 1.4% and (or) forest floor C:N ratio lower than 25 were thresholds for elevated nitrate leaching. At adjacent sites...... conifer forests receive higher N deposition and exhibit higher nitrate loss than deciduous forests; an exception is alder that shows substantial nitrate leaching through N fixation input. Fertilization with N poses limited risk to water quality, when applied to N-limited forests. (ii) Reduced plant uptake...

  18. Cover crops effect on farm benefits and nitrate leaching: linking economic and environmental analysis

    Science.gov (United States)

    Gabriel, José Luis; Vanclooster, Marnik; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Introducing cover crops interspersed with intensively fertilized crops in rotation has the potential to reduce nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of the technique is still limited because growing CC could lead to extra costs for the farm in three different forms: direct, indirect, and opportunity costs. Environmental studies are complex, and evaluating the indicators that are representative of the environmental impact of an agricultural system is a complicated task that is conducted by specialized groups and methodologies. Multidisciplinary studies may help to develop reliable approaches that would contribute to choosing the best agricultural strategies based on linking economic and environmental benefits. This study evaluates barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo) as cover crops between maize, leaving the residue in the ground or selling it for animal feeding, and compares the economic and environmental results with respect to a typical maize-fallow rotation. Nitrate leaching for different weather conditions was calculated using the mechanistic-deterministic WAVE model, using the Richards equation parameterised with a conceptual model for the soil hydraulic properties for describing the water flow in the vadose zone, combined with field observed data. The economic impact was evaluated through stochastic (Monte-Carlo) simulation models of farms' profits using probability distribution functions of maize yield and cover crop biomass developed fitted with data collected from various field trials (during more than 5 years) and probability distribution functions of maize and different cover crop forage prices fitted from statistical sources. Stochastic dominance relationships are obtained to rank the most profitable strategies from a farm financial perspective

  19. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark

    DEFF Research Database (Denmark)

    Jabloun, Mohamed; Schelde, Kirsten; Tao, F

    2015-01-01

    The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3single bondN) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop...... rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction......N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3single bondN leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop...

  20. Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management

    DEFF Research Database (Denmark)

    Askegaard, M; Olesen, Jørgen E; Rasmussen, Ilse Ankjær

    2011-01-01

    Two main challenges facing organic arable farming are the supply of nitrogen (N) to the crop and the control of perennial weeds. Nitrate leaching from different organic arable crop rotations was investigated over three consecutive four-year crop rotations in a field experiment at three locations....../volunteers had on avg. 30 kg N ha−1, and the largest N leaching losses were found after stubble cultivation (avg. 55 kg N ha−1). The N leaching losses increased with increasing number of autumn soil cultivations...

  1. Policy Incentives for Reducing Nitrate Leaching in Agricultural Lands: A Case Study of Irrigation and Drainage Dorudzan

    International Nuclear Information System (INIS)

    Sheikhzeinoddin, A.; Esmaeili, A.; Zibaei, M.

    2016-01-01

    Agricultural activities increasingly use water, fertilizers and pesticides, which may generate negative impacts on environment. Nowadays, nitrogen leaching from agricultural lands is a widespread global problem. Therefore, alternative land management practices such as nutrient management (rate, method and time of application), tillage operations (conservation and no-tillage), and irrigation management are routinely used to reduce non-point source pollution and improve water quality. In fact, a number of studies have illustrated the positive effects of best management practices on water and nutrient losses. The objective of this paper is to develop a bio-economic model and introducing the policy instrument for reducing nitrate from irrigation and drainage Dorudzan. We aim to identify ‘‘win–win’’ opportunities for improving farm profitability and reducing nitrate leaching.

  2. Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT

    Science.gov (United States)

    Malone, R. W.; Chu, X.; Ma, L.; Li, L.; Kaspar, T.; Jaynes, D.; Saseendran, S. A.; Thorp, K.; Yu, Q.

    2007-12-01

    Planting winter cover crops such as winter rye (Secale cereale L.) after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems without negatively affecting production. Because availability of replicated tile-drained field data is limited and because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and management conditions, estimating the impacts of cover crops under the range of expected conditions is difficult. If properly tested against observed data, models can objectively estimate the relative effects of different weather conditions and agronomic practices (e.g., various N fertilizer application rates in conjunction with winter cover crops). In this study, an optimized winter wheat cover crop growth component was integrated into the calibrated RZWQM-DSSAT hybrid model and then we compare the observed and simulated effects of a winter cover crop on nitrate leaching losses in subsurface drainage water for a corn-soybean rotation with N fertilizer application rates over 225 kg N ha-1 in corn years. Annual observed and simulated flow-weighted average nitrate concentration (FWANC) in drainage from 2002 to 2005 for the cover crop treatments (CC) were 8.7 and 9.3 mg L-1 compared to 21.3 and 18.2 mg L-1 for no cover crop (CON). The resulting observed and simulated FWANC reductions due to CC were 59% and 49%. Simulations with the optimized model at various N fertilizer rates resulted in average annual drainage N loss differences between CC and CON to increase exponentially from 12 to 34 kg N ha-1 for rates of 11 to 261 kg N ha-1. The results suggest that RZWQM-DSSAT is a promising tool to estimate the relative effects of a winter crop under different conditions on nitrate loss in tile drains and that a winter cover crop can effectively reduce nitrate losses over a range of N fertilizer levels.

  3. Nitrate leaching and nitrous oxide flux in urban forests and grasslands

    Science.gov (United States)

    Peter M. Groffman; Candiss O. Williams; Richard V. Pouyat; Lawrence E. Band; Ian D. Yesilonis

    2009-01-01

    Urban landscapes contain a mix of land-use types with different patterns of nitrogen (N) cycling and export. We measured nitrate (NO3-) leaching and soil:atmosphere nitrous oxide (N2O) flux in four urban grassland and eight forested long-term study plots in the Baltimore, Maryland metropolitan area....

  4. Irrigation management for optimizing crop production and nitrate leaching on grassland

    NARCIS (Netherlands)

    Hack-ten Broeke, M.J.D.

    2001-01-01

    Six supplementary irrigation management options for grazed grassland were defined and their effects on both agricultural production and nitrate leaching to the groundwater were studied. Data were available from the De Marke experimental farm for sustainable dairy farming. The calibrated and

  5. Effects of grazing strategy on limiting nitrate leaching in grazed grass-clover pastures on coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Eriksen, Jørgen; Søegaard, Karen

    2012-01-01

    -term mean. The experiment was initiated in a 4-yr-old grass-clover sward in south Denmark. Three treatments were as follows grazing only (G), spring cut followed by grazing (CG) and both spring and autumn cuts with summer grazing (CGC). Nitrate leaching was calculated by extracting water isolates from 80 cm......Urinations of ruminants on grazed pastures increase the risk of nitrate leaching. The study investigated the effect of reducing the length of the grazing season on nitrate leaching from a coarse sandy, irrigated soil during 2006–2007 and 2007–2008. In both years, precipitation was above the long...... depth using ceramic suction cups. Because of considerable variation in measured nitrate concentrations, the 32 installed suction cups per treatment were insufficient to reveal differences between treatments. However, weighted nitrate leaching estimations for G, CG and CGC showed estimated mean nitrate N...

  6. Nitrogen Fertilizer Rate and Crop Management Effects on Nitrate Leaching from an Agricultural Field in Central Pennsylvania

    Directory of Open Access Journals (Sweden)

    Richard H. Fox

    2001-01-01

    Full Text Available Eighteen pan lysimeters were installed at a depth of 1.2 m in a Hagerstown silt loam soil in a corn field in central Pennsylvania in 1988. In 1995, wick lysimeters were also installed at 1.2 m depth in the same access pits. Treatments have included N fertilizer rates, use of manure, crop rotation (continuous corn, corn-soybean, alfalfa-corn, and tillage (chisel plow-disk, no-till. The leachate data were used to evaluate a number of nitrate leaching models. Some of the highlights of the 11 years of results include the following: 1 growing corn without organic N inputs at the economic optimum N rate (EON resulted in NO3–-N concentrations of 15 to 20 mg l-1 in leachate; 2 use of manure or previous alfalfa crop as partial source of N also resulted in 15 to 20 mg l-1 of NO3–-N in leachate below corn at EON; 3 NO3–-N concentration in leachate below alfalfa was approximately 4 mg l-1; 4 NO3–-N concentration in leachate below soybeans following corn was influenced by fertilizer N rate applied to corn; 5 the mass of NO3–-N leached below corn at the EON rate averaged 90 kg N ha-1 (approx. 40% of fertilizer N applied at EON; 6 wick lysimeters collected approximately 100% of leachate vs. 40–50% collected by pan lysimeters. Coefficients of variation of the collected leachate volumes for both lysimeter types were similar; 7 tillage did not markedly affect nitrate leaching losses; 8 tested leaching models could accurately predict leachate volumes and could be calibrated to match nitrate leaching losses in calibration years, but only one model (SOILN accurately predicted nitrate leaching losses in the majority of validation treatment years. Apparent problems with tested models: there was difficulty estimating sizes of organic N pools and their transformation rates, and the models either did not include a macropore flow component or did not handle macropore flow well.

  7. Estimating subsoil resistance to nitrate leaching from easily measurable pedological properties

    Directory of Open Access Journals (Sweden)

    Fábio Keiti Nakagawa

    2012-11-01

    Full Text Available Leaching of nitrate (NO3- can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC, whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i low values of remaining phosphorus (Prem, (ii low soil pH values measured in water (pH H2O, and (iii high pH values measured in 1 moL L-1 KCl (pH KCl, the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.

  8. Passivation of chalcopyrite during the leaching with sulphuric acid solution in presence of sodium nitrate

    Directory of Open Access Journals (Sweden)

    Sokić Miroslav D.

    2010-01-01

    Full Text Available In this work, the process of the chalcopyrite leaching in sulphuric acid solution was investigated. Sodium nitrate was used as oxidant in the leaching process. Chemical reactions of leaching and their thermodynamic possibilities are predicted based on the calculated Gibbs energies and analysis of E−pH diagrams. The negative values of the Gibbs energy show that all chemical reactions are thermodynamically feasible at atmospheric pressure and in a temperature range 25-90°C. At high electrode potential and low pH values, Cu2+, Fe2+ and Fe3+ ions exist in water solutions. The increase of temperature reduces the probability of Fe3+ ion existence in the system. The chalcopyrite concentrate, enriched in the “Rudnik” flotation plant, with 27.08% Cu, 25.12% Fe, 4.15% Zn and 2.28% Pb was used in the work. XRD and DTA analysis of the concentrate reveals that the sample contains mainly the chalcopyrite with small amount of sphalerite. For the description of the reaction of leaching process the leach residuals, obtained at different conditions, were chosen for XRD, TG/DTA and SEM/EDX analyses. The elemental sulphur and chalcopyrite phases identified in leach residuals confirm our prediction that the elemental sulphur is formed during the leaching process. Accordingly, elemental sulphur is the main product of the reaction, while a minor amount of sulphide sulphur is oxidized to sulphate during the leaching. The sulphur formed during the reaction was precipitated at the particle surfaces, and slowed down the leaching rate in the final stage of leaching process. In the initial stage, the reaction rate was controlled by the surface reaction. The mechanism, latter has been changed into a diffusion controlled one.

  9. Nitrate leaching through soils and environmental considerations with special reference to recent work in the United Kingdom

    International Nuclear Information System (INIS)

    Wild, A.; Cameron, K.C.

    1980-01-01

    Results are given of field studies of leaching losses of nitrate from soils. Under normal climatic conditions most loss occurs during the winter months (October - March) when much of the residual nitrate is leached below the root zone. Following the use of recommended rates of fertilizer to arable crops, about 15% of the nitrogen is leached, but less than 10% is leached from grassland. There is no direct information on the losses after grassland has been ploughed, and very little on the variation of losses between years. The areas to be investigated before nitrate concentrations in drinking water can be predicted with any confidence are specified. After discussion of the possible health hazards from high nitrate concentrations in drinking water, a plea is made for a balance to be struck between the relatively small health hazard (in economic terms) and the substantially higher cost of keeping the nitrate concentration low. (author)

  10. Fertilizer source effects on phosphate and nitrate leaching through simulated golf greens

    International Nuclear Information System (INIS)

    Shuman, L.M.

    2003-01-01

    In general, more P than N leached from both field and greenhouse lysimeters. - Phosphorus and nitrogen leached from high-porosity golf greens can adversely affect surface water and groundwater quality. Greenhouse and field lysimeter experiments were carried out to determine the effects of eight fertilizer sources on P and N leaching from simulated golf greens. Phosphorus appeared in the leachate later than nitrate-N, and the highest concentrations were for the soluble 20-20-20 and the 16-25-12 starter fertilizers. The other six sources resulted in lower P concentrations. The soluble 20-20-20 and the 16-25-12 sources each resulted in 43% of the added P eluting in the leachate, whereas the others varied from 15 to 25%. For nitrate-N the lowest cumulative mass was for the controlled-release 13-13-13 and sulfur-coated urea. A higher percentage of applied P than applied N leached from both field and greenhouse lysimeters. However, the amounts of P leached for the field lysimeters were lower than for the greenhouse columns

  11. Nitrate Leaching from Winter Cereal Cover Crops Using Undisturbed Soil-Column Lysimeters.

    Science.gov (United States)

    Meisinger, John J; Ricigliano, Kristin A

    2017-05-01

    Cover crops are important management practices for reducing nitrogen (N) leaching, especially in the Chesapeake Bay watershed, which is under total maximum daily load (TMDL) restraints. Winter cereals are common cool-season crops in the Bay watershed, but studies have not directly compared nitrate-N (NO-N) leaching losses from these species. A 3-yr cover crop lysimeter study was conducted in Beltsville, MD, to directly compare NO-N leaching from a commonly grown cultivar of barley ( L.), rye ( L.), and wheat ( L.), along with a no-cover control, using eight tension-drained undisturbed soil column lysimeters in a completely randomized design with two replicates. The lysimeters were configured to exclude runoff and to estimate NO-N leaching and flow-weighted NO-N concentration (FWNC). The temporal pattern of NO-N leaching showed a consistent highly significant ( leaching with cover crops compared with no cover but showed only small and periodically significant ( leaching was more affected by the quantity of establishment-season (mid-October to mid-December) precipitation than by cover crop species. For example, compared with no cover, winter cereal covers reduced NO-N leaching 95% in a dry year and 50% in wet years, with corresponding reductions in FWNC of 92 and 43%, respectively. These results are important for scientists, nutrient managers, and policymakers because they directly compare NO-N leaching from winter cereal covers and expand knowledge for developing management practices for winter cereals that can improve water quality and increase N efficiency in cropping systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Leaching of saltstone: Laboratory and field testing and mathematical modeling

    International Nuclear Information System (INIS)

    Grant, M.W.; Langton, C.A.; Oblath, S.B.; Pepper, D.W.; Wallace, R.M.; Wilhite, E.L.; Yau, W.W.F.

    1987-01-01

    A low-level alkaline salt solution will be a byproduct in the processing of high-level waste at the Savannah River Plant (SRP). This solution will be incorporated into a wasteform, saltstone, and disposed of in surface vaults. Laboratory and field leach testing and mathematical modeling have demonstrated the predictability of contaminant release from cement wasteforms. Saltstone disposal in surface vaults will meet the design objective, which is to meet drinking water standards in shallow groundwater at the disposal area boundary. Diffusion is the predominant mechanism for release of contaminants to the environment. Leach testing in unsaturated soil, at soil moisture levels above 1 wt %, has shown no difference in leach rate compared to leaching in distilled water. Field leach testing of three thirty-ton blocks of saltstone in lysimeters has been underway since January 1984. Mathematical models were applied to assess design features for saltstone disposal. One dimensional infinite-composite and semi-infinite analytical models were developed for assessing diffusion of nitrate from saltstone through a cement barrier. Numerical models, both finite element and finite difference, were validated by comparison of model predictions with the saltstone lysimeter results. Validated models were used to assess the long-term performance of the saltstone stored in surface vaults. The maximum concentrations of all contaminants released from saltstone to shallow groundwater are predicted to be below drinking water standards at the disposal area boundary. 5 refs., 11 figs., 5 tabs

  13. The effects of large scale processing on caesium leaching from cemented simulant sodium nitrate waste

    International Nuclear Information System (INIS)

    Lee, D.J.; Brown, D.J.

    1982-01-01

    The effects of large scale processing on the properties of cemented simulant sodium nitrate waste have been investigated. Leach tests have been performed on full-size drums, cores and laboratory samples of cement formulations containing Ordinary Portland Cement (OPC), Sulphate Resisting Portland Cement (SRPC) and a blended cement (90% ground granulated blast furnace slag/10% OPC). In addition, development of the cement hydration exotherms with time and the temperature distribution in 220 dm 3 samples have been followed. (author)

  14. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth

    International Nuclear Information System (INIS)

    Malekian, Raheleh; Abedi-Koupai, Jahangir; Eslamian, Sayed Saeid

    2011-01-01

    The increasing demands for environmental protection and sustainable food production require an increase in the use of natural and non-toxic materials for agriculture. In this study, the feasibility of using surfactant-modified zeolite (SMZ) in comparison with zeolite clinoptilolite (Cp) application to reduce nitrate leaching and enhance crop growth was investigated. The effects of size (millimeter and nanometer) and application rate (20 g kg -1 and 60 g kg -1 ) of Cp and SMZ on nitrate leaching and crop response were also evaluated. Using soil lysimeters, it was determined that the maximum and mean nitrate concentration in the leachate of SMZ-amended soil were significantly (p 3 -N leached from SMZ- and Cp-amended lysimeters at the higher application rate (60 g kg -1 ) was approximately 26% and 22% lower, respectively, than that from the control system. The mean grain yield, grain nitrogen content, stover dry matter, and N uptake were significantly greater in Cp-amended than SMZ-amended lysimeters. There was no significant effect due to the particle size of the two soil amendments. The results implicitly suggest that plants may have a better response if Cp is used as a fertilizer carrier rather than SMZ when applied at a rate of 60 g kg -1 .

  15. Fertilizer Induced Nitrate Pollution in RCW: Calibration of the DNDC Model

    Science.gov (United States)

    El Hailouch, E.; Hornberger, G.; Crane, J. W.

    2012-12-01

    Fertilizer is widely used among urban and suburban households due to the socially driven attention of homeowners to lawn appearance. With high nitrogen content, fertilizer considerably impacts the environment through the emission of the highly potent greenhouse gas nitrous oxide and the leaching of nitrate. Nitrate leaching is significantly important because fertilizer sourced nitrate that is partially leached into soil causes groundwater pollution. In an effort to model the effect of fertilizer application on the environment, the geochemical DeNitrification-DeComposition model (DNDC) was previously developed to quantitatively measure the effects of fertilizer use. The purpose of this study is to use this model more effectively on a large scale through a measurement based calibration. For this reason, leaching was measured and studied on 12 sites in the Richland Creek Watershed (RCW). Information about the fertilization and irrigation regimes of these sites was collected, along with lysimeter readings that gave nitrate fluxes in the soil. A study of the amount and variation in nitrate leaching with respect to the varying geographical locations, time of the year, and fertilization and irrigation regimes has lead to a better understanding of the driving forces behind nitrate leaching. Quantifying the influence of each of these parameters allows for a more accurate calibration of the model thus permitting use that extends beyond the RCW. Measurement of nitrate leaching on a statewide or nationwide level in turn will help guide efforts in the reduction of groundwater pollution caused by fertilizer.

  16. Nitrate leaching in maize after cultivation of differently managed grass-clover leys on coarse sand in Denmark

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Eriksen, Jørgen

    2016-01-01

    When grass-clover leys have been ploughed nitrate leaching may increase. However, management of leys before or after ploughing may affect the leaching risk. We examined the effect of cultivating a six year ley, which the last two years had been treated differently (grazing only; spring cut follow...

  17. Nitrate leaching in an Andisol treated with different types of fertilizers

    International Nuclear Information System (INIS)

    Maeda, Morihiro; Zhao Bingzi; Ozaki, Yasuo; Yoneyama, Tadakatsu

    2003-01-01

    Nitrate leaching in upland fields under Japanese conditions may be reduced by substituting compost or slow-release fertilizer for readily available chemical fertilizer. - Nitrate (NO 3 ) leaching was studied in an Andisol treated with four N fertilizers (SC: swine compost, CU: coated urea, AN: ammonium N, or NF: no fertilizer) for 7 years. Sweet corn (Zea mays L.) was grown in summer, followed by Chinese cabbage (Brassica rapa L. var. amplexicaulis) or cabbage (Brassica oleracea L. var. capitata) in autumn each year. In chemical fertilizer plots treated with AN or CU, NO 3 -N concentrations in soil water at 1-m depth increased markedly in the summer of the second year and fluctuated between 30 and 60 mg l -1 . In the SC plot, NO 3 -N concentration started increasing in the fourth year, reaching the same level as in the AN and CU plots in the late period of the experiment. In the NF plot, NO 3 -N concentration was about 10 mg l -1 for the first 4 years and decreased to 5 mg l -1 . The potential NO 3 -N concentrations by an N and water balance equation satisfactorily predicted NO 3 -N concentration in the AN and CU plots, but substantially overestimated that in the SC plot, presumably because a large portion of N from SC first accumulated in soil in the organic form. Our results indicate that, under the Japanese climate (Asian monsoon), excessive N from chemical fertilizers applied to Andisols can cause substantial NO 3 leaching, while compost application is promising to establish high yields and low N leaching during a few years but would cause the same level of NO 3 leaching as in chemically fertilized plots over longer periods

  18. Ammonium, Nitrate, and Phosphate Sorption to and Solute Leaching from Biochars Prepared from Corn Stover ( L.) and Oak Wood ( spp.).

    Science.gov (United States)

    Hollister, C Colin; Bisogni, James J; Lehmann, Johannes

    2013-01-01

    Biochar (BC) was evaluated for nitrogen (N) and phosphorus (P) removal from aqueous solution to quantify its nutrient pollution mitigation potential in agroecosystems. Sorption isotherms were prepared for solutions of ammonium (NH), nitrate (NO), and phosphate (PO-P) using BC of corn ( L.) and oak ( spp.) feedstock, each pyrolyzed at 350 and 550°C highest treatment temperature (HTT). Sorption experiments were performed on original BC as well as on BC that went through a water extraction pretreatment (denoted WX-BC). Ammonium sorption was observed for WX-Oak-BC and WX-Corn-BC, and Freundlich model linearization showed that a 200°C increase in HTT resulted in a 55% decrease in * values for WX-Oak-BC and a 69% decrease in * for WX-Corn-BC. Nitrate sorption was not observed for any BC. Removing metals by water extraction from WX-Oak-350 and WX-Oak-550 resulted in a 25 to 100% decrease in phosphate removal efficiency relative to original Oak-350 and Oak-550, respectively. No PO-P sorption was observed using any Corn-BC. Calcium (Ca) leached from BC produced at 550°C was 63 and 104% higher than from BC produced at 350°C for corn and oak, respectively. Leaching of P was two orders of magnitude lower in WX-Oak-BC than in WX-Corn-BC, concurrent with similar difference in magnesium (Mg). Nitrate and NH leaching from consecutive water extractions of all tested BCs was mostly below detection limits. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Effect of irrigation and winery waste compost rates in nitrate leaching in vulnerable zones

    Science.gov (United States)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    The winery industry is widespread in Spain (3,610,000 tonnes of wine in 2010 (FAO, 2010)), and generates wastes characterized by a high content of organic matter, a notable content in macronutrients and low heavy-metals. These organic wastes could be used for agricultural purposes after a correct stabilization process (e.g. composting).The addition of these organic wastes requires a correct management, especially on semiarid cropped areas of central Spain where environmental degradation of water supplies with high N loads is observed. An integrated optimization of both applied compost dose and amount of irrigation is important to ensure optimum yields and minimum nitrate leaching losses. The purpose of this work was to study the effect of the application of winery waste compost as fertilizer in a melon crop cultivated with different drip irrigation rates. The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. Beside the control treatment (D0), three doses of compost were applied: 6.7 (D1), 13.3 (D2) and 20 T/ha(D3).Irrigation treatments consisted of applying a 100% ETc and an excess irrigation of 120% ETc. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 m depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Drainage and nitrate concentration on the soil solution were measured weekly to determine N leached during the crop period. Crop yield was also followed by harvesting plots when a significant number of fruits were fully matured. A comparison between nitrate leached and crop production among different treatments and irrigation rates are presented. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  20. Nitrate leaching affected by management options with respect to urine-affected areas and groundwater levels for grazed grassland

    NARCIS (Netherlands)

    Hack-ten Broeke, M.J.D.; Putten, van der A.H.J.

    1997-01-01

    Simulations were performed to quantify the effects of management options on nitrate leaching to the groundwater in grazed pastures. At the experimental farm for sustainable dairy farming ‘De Marke’, experimental data on soil water and nitrates were gathered for two fields during the years 1991–1995.

  1. Nitrate leaching beneath a containerized nursery crop receiving trickle or overhead irrigation.

    Science.gov (United States)

    Colangelo, D J; Brand, M H

    2001-01-01

    Container production of nursery crops is intensive and a potential source of nitrogen release to the environment. This study was conducted to determine if trickle irrigation could be used by container nursery producers as an alternative to standard overhead irrigation to reduce nitrogen release into the environment. The effect of overhead irrigation and trickle irrigation on leachate nitrate N concentration, flow-weighted nitrate N concentration, leachate volume, and plant growth was investigated using containerized rhododendron (Rhododendron catawbiense Michx. 'Album') supplied with a controlled-release fertilizer and grown outdoors on top of soil-monolith lysimeters. Leachate was collected over two growing seasons and overwinter periods, and natural precipitation was allowed as a component of the system. Precipitation accounted for 69% of the water entering the overhead-irrigated system and 80% of the water entering the trickle-irrigated system. Leachate from fertilized plants exceeded the USEPA limit of 10 mg L(-1) at several times and reached a maximum of 26 mg L(-1) with trickle irrigation. Average annual loss of nitrate N in leachate for fertilized treatments was 51.8 and 60.5 kg ha(-1) for the overhead and trickle treatments, respectively. Average annual flow-weighted concentration of nitrate N in leachate of fertilized plants was 7.2 mg L(-1) for overhead irrigation and 12.7 mg L(-1) for trickle irrigation. Trickle irrigation did not reduce the amount of nitrate N leached from nursery containers when compared with overhead irrigation because precipitation nullified the potential benefits of reduced leaching fractions and irrigation inputs provided under trickle irrigation.

  2. Nitrogen removal and nitrate leaching for two perennial, sod-based forage systems receiving dairy effluent.

    Science.gov (United States)

    Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Rymph, Stuart J; Wade, Brett L; Prine, Gordon M; Van Horn, Harold H

    2003-01-01

    In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.

  3. No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain

    Science.gov (United States)

    Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu

    2015-01-01

    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)–maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha−1 of urea for wheat and 225 kg N ha−1 of urea for maize (U), 180 kg N ha−1 of urea and 90 kg N ha−1 of straw for wheat and 180 kg N of urea and 45 kg N ha−1 of straw for maize (S), 180 kg N ha−1 of urea and 90 kg N ha−1 of manure for wheat and 180 kg N ha−1 of urea and 45 kg N ha−1 of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and -N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on -N leaching from the second year and thereafter interacted with N management regimes on -N loads during all maize seasons. The average yield-scaled -N leaching losses were in order of CTS leaching losses while sustaining crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled -N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat–maize double-cropping systems in the North China Plain. PMID:25859321

  4. Utilizing on-farm best management practices: Managing Nitrate Leaching Using Evapotranspiration Based Irrigation Methods

    Science.gov (United States)

    Zaragosa, I.; Melton, F. S.; Dexter, J.; Post, K.; Haffa, A.; Kortman, S.; Spellenberg, R.; Cahn, M.

    2017-12-01

    In efforts to provide tools to allow farmers to optimize and quantify water usage and fertilizer applications, University of California Cooperative Extension (UCCE) developed the CropManage irrigation and nitrogen scheduling tool that provides real time evapotranspiration (ETc) based irrigation recommendations and fertilizer recommendations on a per field basis. CropManage incorporates satellite based estimates of fractional cover from web data services from the Satellite Irrigation Management Information Support (SIMS) system developed by NASA Ames Research Center in collaboration with California State University Monterey Bay (CSUMB). In this study, we conducted field trials to quantify the benefits of using these tools to support best management practices (BMPs) for irrigation and nutrient management in strawberries and lettuce in the Salinas Valley, California. We applied two different irrigation treatments based on full replacement (100%) of crop evapotranspiration (ETc), and irrigation at 130% of ETc replacement to approximate irrigation under business as usual irrigation management. Both field studies used a randomized block design with four replicates each. We used CropManage to calculate the 100% and 130% ETc replacement requirements prior to each irrigation event. We collected drainage volume and samples and analyzed them for 8500 to nitrate as (NO3-) concentrations. Experimental results for both strawberries and lettuce showed a significant decrease in the percentage of applied nitrogen leached for the 100% ETc replacement treatment against the 130% ETc replacement treatment. For strawberries, we observed that 24% of applied nitrogen was leached under the 100% ETc replacement treatment, versus 51% of applied nitrogen that was leached under the 130% ETc replacement treatment. For lettuce, we observe that 2% of the applied nitrogen leached bellow the soil profile, versus 6% of the applied nitrogen for the 130%ETc replacement treatment. In both experiments

  5. Nitrate accumulation and leaching potential reduced by coupled water and nitrogen management in the Huang-Huai-Hai Plain.

    Science.gov (United States)

    Huang, Ping; Zhang, Jiabao; Zhu, Anning; Li, Xiaopeng; Ma, Donghao; Xin, Xiuli; Zhang, Congzhi; Wu, Shengjun; Garland, Gina; Pereira, Engil Isadora Pujol

    2018-01-01

    Irrigation and nitrogen (N) fertilization in excess of crop requirements are responsible for substantial nitrate accumulation in the soil profile and contamination of groundwater by nitrate leaching during intensive agricultural production. In this on-farm field trial, we compared 16 different water and N treatments on nitrate accumulation and its distribution in the soil profile (0-180cm), nitrate leaching potential, and groundwater nitrate concentration within a summer-maize (Zea mays L.) and winter-wheat (Triticum aestivum L.) rotation system in the Huang-Huai-Hai Plain over five cropping cycles (2006-2010). The results indicated that nitrate remaining in the soil profile after crop harvest and nitrate concentration of soil solutions at two depths (80cm and 180cm) declined with increasing irrigation amounts and increased greatly with increasing N application rates, especially for seasonal N application rates higher than 190kgNha -1 . During the experimental period, continuous torrential rainfall was the main cause for nitrate leaching beyond the root zone (180cm), which could pose potential risks for contamination of groundwater. Nitrate concentration of groundwater varied from 0.2 to 2.9mgL -1 , which was lower than the limit of 10mgL -1 as the maximum safe level for drinking water. In view of the balance between grain production and environmental consequences, seasonal N application rates of 190kgNha -1 and 150kgNha -1 were recommended for winter wheat and summer maize, respectively. Irrigation to the field capacity of 0-40cm and 0-60cm soil depth could be appropriate for maize and wheat, respectively. Therefore, taking grain yields, mineral N accumulation in the soil profile, nitrate leaching potential, and groundwater quality into account, coupled water and N management could provide an opportunity to promote grain production while reducing negative environmental impacts in this region. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nitrate Accumulation and Leaching in Surface and Ground Water Based on Simulated Rainfall Experiments

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie

    2015-01-01

    To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a

  7. Nitrate leaching, direct and indirect nitrous oxide fluxes from sloping cropland in the purple soil area, southwestern China

    International Nuclear Information System (INIS)

    Zhou Minghua; Zhu Bo; Butterbach-Bahl, Klaus; Wang Tao; Bergmann, Jessica; Brüggemann, Nicolas; Wang Zhenhua; Li Taikui; Kuang Fuhong

    2012-01-01

    This study provides a combined dataset on N loss pathways and fluxes from sloping cropland in the purple soil area, southwestern China. A lysimeter experiment was conducted to quantify nitrate leaching (May 2004–May 2010) and N 2 O emission (May 2009–May 2010) losses. Nitrate leaching was the dominant N loss pathway and annual leaching fluxes ranged from 19.2 to 53.4 kg N ha −1 , with significant differences between individual observation years (P 2 O emissions due to N fertilizer use were 1.72 ± 0.34 kg N ha −1 yr −1 , which corresponds to an emission factor of 0.58 ± 0.12%. However, indirect N 2 O emissions caused by nitrate leaching and surface runoff N losses, may contribute another 0.15–0.42 kg N ha −1 yr −1 . Our study shows that nitrate leaching lowered direct N 2 O emissions, highlighting the importance for a better understanding of the tradeoff between direct and indirect N 2 O emissions for the development of meaningful N 2 O emission strategies. - Highlights: ► High NO 3 − leaching losses lowered direct N 2 O emissions. ► Hydrological N losses induced un-neglected indirect N 2 O emissions. ► Considering both direct and indirect N 2 O emission is needed for reduction strategies. - High nitrate leaching losses from sloping croplands of purple soil are accompanied with reductions in direct N 2 O emissions and stimulations of indirect N 2 O emissions.

  8. Modelling the risk of nitrate leaching from two soils amended with five different biosolids Modelagem do risco de lixiviação de nitrato em dois solos tratados com cinco diferentes biossólidos

    Directory of Open Access Journals (Sweden)

    Rodrigo Studart Corrêa

    2005-07-01

    Full Text Available High N concentrations in biosolids are one of the strongest reasons for their agricultural use. However, it is essential to understand the fate of N in soils treated with biosolids for both plant nutrition and managing the environmental risk of NO3--N leaching. This work aimed at evaluating the risk of NO3--N leaching from a Spodosol and an Oxisol, each one treated with 0.5-8.0 dry Mg ha-1 of fresh tertiary sewage sludge, composted biosolids, limed biosolids, heat-dried biosolids and solar-irradiated biosolids. Results indicated that under similar application rates NO3--N accumulated up to three times more in the 20 cm topsoil of the Oxisol than the Spodosol. However, a higher water content held at field capacity in the Oxisol compensated for the greater nitrate concentrations. A 20 % NO3--N loss from the root zone in the amended Oxisol could be expected. Depending on the biosolids type, 42 to 76 % of the NO3--N accumulated in the Spodosol could be expected to leach down from the amended 20 cm topsoil. NO3--N expected to leach from the Spodosol ranged from 0.8 (composted sludge to 3.5 times (limed sludge the amounts leaching from the Oxisol treated alike. Nevertheless, the risk of NO3--N groundwater contamination as a result of a single biosolids land application at 0.5-8.0 dry Mg ha-1 could be considered low.Concentrações altas de nitrogênio (N em biossólidos são uma das maiores razões para a utilização agronômica deles. Entretanto, é essencial entender o destino do N em solos tratados com biossólidos, tanto por motivos de nutrição vegetal quanto para manejar o risco ambiental representado pela lixiviação de nitrato. Este trabalho teve como objetivo avaliar o risco de lixiviação de nitrato em um Espodossolo e em um Latossolo, cada um tratado com doses de 0,5 a 8,0 Mg ha-1 de biossólido fresco, biossólido compostado, biossólido caleado, biossólido seco a calor e biossólido irradiado por sol. Os resultados mostraram que

  9. Nitrate Leaching under Vegetable Fields above a Shallow Aquifer in Slovenia

    International Nuclear Information System (INIS)

    Zupanc, V.; Sturm, M.; Lojen, S.; Marsic-Kacjana, N.; Pintar, M.; Adu-Gyamfi, J.; Bracic-Zeleznik, B.; Urbanc, J.

    2012-01-01

    Shallow aquifers can be prone to nitrate pollution, especially in rural, high rainfall zones under intensive vegetable production, as well as in areas with urban and industrial pollution. Due to its mobility in the soil, nitrate is the most problematic pollutant in intensive agricultural production areas. The risk of nitrate leaching is closely related to the excessive application of organic and inorganic nitrogen (N) fertilizers and can occur at and after harvest, as well as during the crop cycle, because of excessive irrigation or heavy precipitation. The impact of agriculture on groundwater quality can be minimized through improved nitrogen and water management (irrigation) practices, which should be evaluated with regard to their production, polluting effects and cost effectiveness. Most of the Slovenian highly fertile arable lands occur on plains in the shallow groundwater recharge zones, and are used for intensive fresh vegetable production, an important source of income generation for the farmers. These shallow alluvial aquifers are, however, one of the country's most important sources of drinking water. This leads to a conflict of interest between drinking water resource protection and agricultural production. The common farming practice in Slovenia is to broadcast fertilizer applications which often results in extensive nitrate leaching. Thus nitrate management in agriculture is a contentious issue, as adequate nitrogen fertilization is required to ensure reasonable crop yields, yet excessive N fertilization can lead to groundwater pollution. Through an IAEA technical cooperation project SLO 5002 Protecting Groundwater and Soil Pollutants using Nuclear echniques, various irrigation, nitrogen and cropping system management strategies for the production of vegetables with a shorter growing period were assessed at a benchmark site in Slovenia during the years 2006 and 2007. Four irrigation and fertilization treatments were applied: (1) 50% drip irrigation of

  10. Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements.

    NARCIS (Netherlands)

    Trindade, H.; Coutinho, J.; Beusichem, van M.L.; Scholefield, D.; Moreira, N.

    1997-01-01

    Nitrate leaching from a double-cropping forage system was measured over a 2-year period (June 1994–May 1996) in the Northwest region of Portugal using ceramic cup samplers. The crops were grown for silage making and include maize (from May to September) and a winter crop (rest of the year)

  11. Nitrate Leaching From a Mountain Forest Ecosystem with Gleysols Subjected to Experimentally Increased N Deposition

    International Nuclear Information System (INIS)

    Schleppi, Patrick; Hagedorn, Frank; Providoli, Isabelle

    2004-01-01

    Nitrate leaching was measured over seven years of nitrogen (N) addition in a paired-catchment experiment in Alptal, central Switzerland (altitude: 1200 m, bulk N deposition: 12 kg ha -1 a -1 ). Two forested catchments (1500 m 2 each) dominated by Picea abies) were delimited by trenches in the Gleysols. NH 4 NO 3 was added to one of the catchments using sprinklers. During the first year, the N addition was labelled with 15 N. Additionally, soil N transformations were studied in replicated plots. Pre-treatment NO 3 - -N leaching was 4 kg ha -1 a -1 from both catchments, and remained between 2.5 and 4.8 kg ha -1 a -1 in the control catchment. The first year of treatment induced an additional leaching of 3.1 kg ha -1 , almost 90% of which was labelled with 15 N, indicating that it did not cycle through the large N pools of the ecosystem (soil organic matter and plants). These losses partly correspond to NO 3 - from precipitation bypassing the soil due to preferential flow. During rain or snowmelt events, NO 3 - concentration peaks as the water table is rising, indicating flushing from the soil. Nitrification occurs temporarily along the water flow paths in the soil and can be the source of NO 3 - flushing. Its isotopic signature however, shows that this release mainly affects recently applied N, stored only between runoff events or up to a few weeks. At first, the ecosystem retained 90% of the added N (2/3 in the soil), but NO 3 - losses increased from 10 to 30% within 7 yr, indicating that the ecosystem became progressively N saturated

  12. Consequences of nitrate leaching following stem-only harvesting of Swedish forests are dependent on spatial scale

    Energy Technology Data Exchange (ETDEWEB)

    Futter, M.N., E-mail: martyn.futter@vatten.slu.s [Swedish University of Agricultural Sciences, Department of Environmental Assessment, SE 750 07 Uppsala (Sweden); Ring, E., E-mail: eva.ring@skogforsk.s [Skogforsk, Uppsala Science Park, SE 751 83 Uppsala (Sweden); Hoegbom, L., E-mail: lars.hogbom@skogforsk.s [Skogforsk, Uppsala Science Park, SE 751 83 Uppsala (Sweden); Entenmann, S., E-mail: steffen.entenmann@landespflege.uni-freiburg.d [University of Freiburg, Institute for Landscape Management, D - 79085 Freiburg (Germany); Bishop, K.H., E-mail: kevin.bishop@vatten.slu.s [Swedish University of Agricultural Sciences, Department of Environmental Assessment, SE 750 07 Uppsala (Sweden)

    2010-12-15

    Short-term increases in soil solution nitrate (NO{sub 3}{sup -}) concentration are often observed after forest harvest, even in N-limited systems. We model NO{sub 3}{sup -} leaching below the rooting zone as a function of site productivity. Using national forest inventories and published estimates of N attenuation in rivers and the riparian zone, we estimate effects of stem-only harvesting on NO{sub 3}{sup -} leaching to groundwater, surface waters and the marine environment. Stem-only harvesting is a minor contributor to NO{sub 3}{sup -} pollution of Swedish waters. Effects in surface waters are rapidly diluted downstream, but can be locally important for shallow well-waters as well as for the total amount of N reaching the sea. Harvesting adds approximately 8 Gg NO{sub 3}-N to soil waters in Sweden, with local concentrations up to 7 mg NO{sub 3}-N l{sup -1}. Of that, {approx}3.3 Gg reaches the marine environment. This is {approx}3% of the overall Swedish N load to the Baltic. - Forest harvesting in Sweden is a minor contributor to N pollution in the Baltic.

  13. Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils

    International Nuclear Information System (INIS)

    Evans, Chris D.; Norris, Dave; Ostle, Nick; Grant, Helen; Rowe, Edwin C.; Curtis, Chris J.; Reynolds, Brian

    2008-01-01

    Nitrate (NO 3 - ) is often observed in surface waters draining terrestrial ecosystems that remain strongly nitrogen (N) limited. It has been suggested that this occurs due to hydrological bypassing of soil or vegetation N retention, particularly during high flows. To test this hypothesis, artificial rain events were applied to 12 replicate soil blocks on a Welsh podzolic acid grassland hillslope, labelled with 15 N-enriched NO 3 - and a conservative bromide (Br - ) tracer. On average, 31% of tracer-labelled water was recovered within 4 h, mostly as mineral horizon lateral flow, indicating rapid vertical water transfer through the organic horizon via preferential flowpaths. However, on average only 6% of 15 N-labelled NO 3 - was recovered. Around 80% of added NO 3 - was thus rapidly immobilised, probably by microbial communities present on the surfaces of preferential flowpaths. Transitory exceedance of microbial N-uptake capacity during periods of high water and N flux may therefore provide a mechanism for NO 3 - leaching. - Nitrate retention occurs rapidly in organic soils along preferential flowpaths

  14. Modeling of facade leaching in urban catchments

    Science.gov (United States)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

  15. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    Directory of Open Access Journals (Sweden)

    S. Kuo

    2001-01-01

    Full Text Available Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L., annual ryegrass (Lolium multiflorum, and hairy vetch (Vicia villosa, and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L. yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha-1, referred to as N0, N1, N2, and N3, respectively applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N0, N2, and N3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency’s drinking water standard of 10 mg N l�1 even at recommended N rate for corn in this region (coastal Pacific Northwest. In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake correlated well with average NO3

  16. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching.

    Science.gov (United States)

    Kuo, S; Huang, B; Bembenek, R

    2001-10-25

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during

  17. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management.

    Science.gov (United States)

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-02-08

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha -1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.

  18. Topsoil N-budget model in orchard farming to evaluate groundwater nitrate contamination

    Science.gov (United States)

    Wijayanti, Yureana; Budihardjo, Kadarwati; Sakamoto, Yasushi; Setyandito, Oki

    2017-12-01

    A small scale field research was conducted in an orchard farming area in Kofu, Japan, where nitrate contamination was found in groundwater. The purpose of assessing the leaching of nitrate in this study is to understand the transformation and transport process of N-source in topsoil that leads to nitrate contamination of groundwater. In order to calculate N-budget in the soil, the model was utilized to predict the nitrogen leaching. In this res earch, the N-budget model was modified to evaluate influence of precipitation and application pattern of fertilizer and manure compost. The result shows that at the time before the addition of manure compost and fertilizer, about 75% of fertilizer leach from topsoil. Every month, the average remaining nitrate in soil from fertilizer and manure compost are 22% and 50%, respectively. The accumulation of this monthly manure compost nitrate, which stored in soil, should be carefully monitored. It could become the potential source of nitrate leaching to groundwater in the future.

  19. Impact of irrigation-practices on nitrate-leaching to contaminate groundwater and its risk to rural community

    International Nuclear Information System (INIS)

    Latif, M.

    2003-01-01

    A study was conducted to investigate contamination of shallow groundwater by nitrogen fertilizers. Results of the study show that the concentration of nitrate-nitrogen varies from 0.03 to 3.25 mg/l in the water samples collected from the tile-drainage areas, which is much below the maximum permissible limit of 10 mg/l. The nitrate-nitrogen concentration exceeded the permissible limit in about 15% of the samples collected from outside the tile-drainage areas. In general, it is found that there is no danger of shallow groundwater pollution by nitrate if the agricultural drainage system (tile drains) is functioning well. In contrast to this, there are chances of groundwater pollution where there is no such drainage-system. Further, the analysis of the water-samples collected from hand pumps and tube wells indicates that nitrates accumulate in the top surface of groundwater, after their leaching with downward percolating water. For this reason, the concentration of nitrate was found a maximum in the shallower groundwater. It decreases rather sharply with increase in groundwater depth. Thus, it is safer to tap deeper groundwater to lesson the danger of pollution by nitrates for human health. Soil-samples were also collected from selected points, along with water samples. These results indicate that soil-texture has a significant impact on production of nitrates, as well as their leaching and subsequent pollution of groundwater. There is more risk of groundwater-pollution in areas occupied by coarse-textured material, containing more than 50 percent sand particles. (author)

  20. Nitrogen removal and nitrate leaching for forage systems receiving dairy effluent.

    Science.gov (United States)

    Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Wade, Brett L; Rymph, Stuart J; Prine, Gordon M; Van Horn, Harold H

    2002-01-01

    Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.

  1. Effects of cropping system and rates of nitrogen in animal slurry and mineral fertilizer on nitrate leaching from a sandy loam

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Hansen, Jørgen Frederik; Kjellerup, Viggo K.

    1993-01-01

    ammonium nitrate (CAN) or animal slurry according to recommended rates (1N) or 50% above recommended rates (1.5N). Compared with unfertilized crops, leaching of nitrate increased only slightly when 1N (CAN) was added. Successive annual additions of 1.5N (CAN) or IN and 1.5N (animal slurry) caused...

  2. Nitrate leaching from a potato field using fuzzy inference system combined with genetic algorithm

    DEFF Research Database (Denmark)

    Shekofteh, Hosein; Afyuni, Majid M; Hajabbasi, Mohammad-Ali

    2012-01-01

    in MFIS were tuned by Genetic Algorithm. The correlation coefficient, normalized root mean square error and relative mean absolute error percentage between the data obtained by HYDRUS-2D and the estimated values using MFIS model were 0.986, 0.086 and 2.38 respectively. It appears that MFIS can predict......The conventional application of nitrogen fertilizers via irrigation is likely to be responsible for the increased nitrate concentration in groundwater of areas dominated by irrigated agriculture. This requires appropriate water and nutrient management to minimize groundwater pollution...

  3. Effect of organic amendments on nitrate leaching mitigation in a sandy loam soil of Shkodra district, Albania

    Directory of Open Access Journals (Sweden)

    Erdona Demiraj

    2018-03-01

    Full Text Available European lacustrine systems are frequently exposed to nitrate (NO3– pollution causing eutrophication processes. An example of these lakes is Shkodra Lake, a large, shallow lake shared by Albania and Montenegro, in the Balkans Peninsula. Shkodra Lake is a natural sink that collects NO3– from agricultural activities, widely diffused in the surrounding area. The additions of wheat straw and biochar have been suggested to increase soil NO3– retention of agricultural lands. To better understand the role of these two organic soil amendments in mitigating NO3– leaching from arable lands, a pot experiment using a representative sandy loam soil of the Skodra Lake basin was performed. More specifically, a greenhouse experiment with Lolium multiflorum L. and Zea mays L., was carried out for three months, to evaluate the concentrations of NO3–-N in leachate and the cumulative leaching losses of NO3–-N, after wheat straw (10 Mg ha–1 and biochar (10 Mg ha–1 soil addition, under the same rate of NPK fertiliser (300 kg ha–1. The effect of the two organic amendments on nitrate retention, was evaluated according to two methods: i Soil NO3–-N leaching with distilled water; and ii Soil NO3–-N extraction with 2M KCl. The leached NO3–-N and the Potentially Leachable NO3–-N (2M KCl extraction were respectively determined. N uptake by plants, as well as the Nitrogen Use Efficiency were also calculated. A retention effect on nitrate was found in Lolium multiflorum L. and wheat straw treatments compared to control, by reducing leached NO3–-N almost to 35%. In SBFL (soil+biochar+fertiliser+Lolium treatment, biochar effectively reduced the total amount of nitrate in leachate of 27% and 26% compared to SFL (soil+fertiliser+Lolium and SSFL (soil+straw+fertiliser+Lolium treatments, respectively. The potentially leachable NO3–-N was two to four times higher than the leached NO3–-N. The amount of potentially leachable NO3–-N per hectare ranged

  4. Temporal and spatial variations in groundwater quality resulting from policy-induced reductions in nitrate leaching to the Rabis Creek aquifer, Denmark

    Science.gov (United States)

    Jessen, Søren; Engesgaard, Peter; Thorling, Lærke; Müller, Sascha; Leskelä, Jari; Postma, Dieke

    2016-04-01

    Twenty-five years of annual groundwater quality monitoring data from the sandy unconfined Rabis Creek aquifer were used to assess the effects of political actions aimed to reduce nitrate leaching to the aquifer. Data were collected from eight multilevel samplers along a ˜3 km transect, which follows the general direction of groundwater flow. Each multilevel sampler comprises 20 screens placed with a 1 m vertical distance from near the water table downwards. The transect covers areas of livestock, plantation & heath, and agriculture. The history of nitrate leaching to the aquifer was assessed using data from screens close to the water table of multilevel samplers placed within agricultural areas. According to these data, nitrate concentrations of infiltrating 'agricultural' water peaked at 2-3 mM (120-180 mg/L) in the year 1989, and then gradually decreased and stabilized at 0.25-1.0 mM (15-60 mg/L) from year 2000. Local farmers declare having used the maximum fertilization rate allowed during the period. The timing of the observed decrease therefore suggests a direct link to the political action plans implemented in the same period. Parallel to the development in nitrate leaching, although with a transport time lag, the average concentration of nitrate in the oxic zone of the aquifer was roughly halved between 2000 and 2013. As a response to political initiatives of the late 1980'ies, part of the area covering the aquifer was changed from agriculture to non-fertilized grass for livestock; the data shows that this effectively remediated the aquifer underneath in less than 20 years, to become nitrate-free and attain background sulfate levels. The oxidized and pyritic reduced zone of the aquifer is separated by a <1 m redoxcline. Denitrification by the pyrite releases sulfate that is retained down-gradient as a tracer for historical nitrate loading to the aquifer. Thus sulfate concentrations currently increase in the multilevel samplers positioned furthest down

  5. The role of Eh and pH in leaching Saskatchewan uranium ores with chloride and nitrate leaching systems

    International Nuclear Information System (INIS)

    Nirdosh, I.; Muthuswami, S.V.

    1992-01-01

    The effects of solution E h and pH on the extractions of U, 230 Th, 226 Ra, As and Ni from two typical uranium ores from the province of Saskatchewan in Canada are discussed for the leachants ferric chloride, ferric nitrate, nitric acid and hydrochloric acid. It is concluded that E h > 700 mV and pH 230 Th extraction is more sensitive to solution pH than to E h whereas Ni extraction is sensitive mainly to the solution E h . Arsenic extraction is very sensitive to solution E h , and for a given E h , is high at pH 1.3. (orig.) [de

  6. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?

    Science.gov (United States)

    Liang, Hao; Qi, Zhiming; Hu, Kelin; Prasher, Shiv O; Zhang, Yuanpei

    2016-10-01

    Nitrate contamination of groundwater is an environmental concern in intensively cultivated desert oases where this polluted groundwater is in turn used as a major irrigation water resource. However, nitrate fluxes from root zone to groundwater are difficult to monitor in this complex system. The objectives of this study were to validate and apply the WHCNS (soil Water Heat Carbon Nitrogen Simulator) model to simulate water drainage and nitrate leaching under different irrigation and nitrogen (N) management practices, and to assess the utilization of groundwater nitrate as an approach to remediate nitrate contaminated groundwater while maintain crop yield. A two-year field experiment was conducted in a corn field irrigated with high nitrate groundwater (20 mg N L(-1)) in Alxa, Inner Mongolia, China. The experiment consisted of two irrigation treatments (Istd, standard, 750 mm per season; Icsv, conservation, 570 mm per season) factorially combined with two N fertilization treatments (Nstd, standard, 138 kg ha(-1); Ncsv, conservation, 92 kg ha(-1)). The validated results showed that the WHCNS model simulated values of crop dry matter, yield, soil water content and soil N concentration in soil profile all agreed well with the observed values. Compared to the standard water management (Istd), the simulated drainage and nitrate leaching decreased about 65% and 59%, respectively, under the conservation water management (Icsv). Nearly 55% of input N was lost by leaching under the IstdNstd and IstdNcsv treatments, compared to only 26% under the IcsvNstd and IcsvNcsv treatments. Simulations with more than 240 scenarios combing different levels of irrigation and fertilization indicated that irrigation was the main reason leading to the high risk of nitrate leaching, and the nitrate in irrigation groundwater can be best utilized without corn yield loss when the total irrigation was reduced from the current 750 mm to 491 mm. This reduced irrigation rate facilitated

  7. Nitrate leaching and residual effect in dairy crop rotations with grass-clover leys as influenced by sward age, grazing, cutting and fertilizer regimes

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Askegaard, Margrethe; Rasmussen, Jim

    2015-01-01

    Intensive dairy farming, with grass-arable crop rotations is challenged by low N use efficiency that may have adverse environmental consequences. We investigated nitrate leaching and N fertility effects of grass–clover leys for five years in two organic crop rotations with different grassland...... with the 2-yr-old leaching the most (36–46 kg N ha−1), and (4) high leaching (>50 kg N ha−1) with lupin and maize, where especially maize was consistently high in all five years (average 81 kg N ha−1). Great care should be taken during all phases of the dairy crop rotation where grasslands cause considerable...... build-up of fertility. With due care and the best management practice, nitrate leaching losses may be reduced to low levels....

  8. Long-term leaching from MSWI air-pollution-control residues: Leaching characterization and modeling

    DEFF Research Database (Denmark)

    Hyks, Jiri; Astrup, Thomas; Christensen, Thomas Højlund

    2009-01-01

    Long-term leaching of Ca, Fe, Mg, K, Na, S, Al, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Mo, Sb, Si, Sri, Sr, Ti, V, P, Cl, and dissolved organic carbon from two different municipal solid waste incineration (MSWI) air-pollution-control residues was monitored during 24 months of column percolat......Long-term leaching of Ca, Fe, Mg, K, Na, S, Al, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Mo, Sb, Si, Sri, Sr, Ti, V, P, Cl, and dissolved organic carbon from two different municipal solid waste incineration (MSWI) air-pollution-control residues was monitored during 24 months of column...... percolation experiments; liquid-to-solid (L/S) ratios of 200-250 L/kg corresponding to more than 10,000 years in a conventional landfill were reached. Less than 2% of the initially present As, Cu, Pb, Zn, Cr, and Sb had leached during the Course of the experiments. Concentrations of Cd, Fe, Mg, Hg, Mn, Ni, Co......, Sn, Ti, and P were generally bellow 1 mu g/L; overall less than 1% of their mass leached. Column leaching data were further used in a two-step geochemical modeling in PHREEQC in order to (i) identify solubility controlling minerals and (ii) evaluate their interactions in a water-percolated column...

  9. Water Leakage and Nitrate Leaching Characteristics in the Winter Wheat–Summer Maize Rotation System in the North China Plain under Different Irrigation and Fertilization Management Practices

    Directory of Open Access Journals (Sweden)

    Shufeng Chen

    2017-02-01

    Full Text Available Field experiments were carried out in Huantai County from 2006 to 2008 to evaluate the effects of different nitrogen (N fertilization and irrigation management practices on water leakage and nitrate leaching in the dominant wheat–maize rotation system in the North China Plain (NCP. Two N fertilization (NF1, the traditional one; NF2, fertilization based on soil testing and two irrigation (IR1, the traditional one; IR2, irrigation based on real-time soil water content monitoring management practices were designed in the experiments. Water and nitrate amounts leaving the soil layer at a depth of 2.0 m below the soil surface were calculated and compared. Results showed that the IR2 effectively reduced water leakage and nitrate leaching amounts in the two-year period, especially in the winter wheat season. Less than 10 percent irrigation water could be saved in a dry winter wheat season, but about 60 percent could be saved in a wet winter wheat season. Besides, 58.8 percent nitrate under single NF2IR1 and 85.2 percent under NF2IR2 could be prevented from leaching. The IR2 should be considered as the best management practice to save groundwater resources and prevent nitrate from leaching. The amounts of N input play a great role in affecting nitrate concentrations in the soil solutions in the winter wheat–summer maize rotation system. The NF2 significantly reduced N inputs and should be encouraged in ordinary agricultural production. Thus, nitrate leaching and groundwater contamination could be alleviated, but timely N supplement might be needed under high precipitation condition.

  10. Leaching Behavior of Slags from AN Old Lead Smelter in Chihuahua, Mexico: Metals, Chlorides, Nitrates, Sulfates and Tds Analyses

    Science.gov (United States)

    Espejel-Garcia, D.; Wenglas-Lara, G.; Villalobos-Aragon, A.; Espejel-Garcia, V. V.

    2013-05-01

    Waste materials (such as, smelter slags, waste glass, tires, plastics, rubbish, ashes, etc.), have a large potential to substitute natural materials, reducing costs, especially for the construction industry. Smelter slags are resistant and have better compression strength values in comparison to natural aggregates, and generally are far beyond of what the standard ratios need to qualify a material as a good one for construction. But this material has a big problem within it: the existence of toxic elements and compounds in high concentrations, which means that water and soil contamination can be present after water infiltrates through this material; so we perform leaching experiments to characterize and measure the possible contamination under controlled conditions. To perform the slags-leaching experiments, we used an EA-NEN-7375-2004 tank test standard from Netherlands. This test was selected because to our knowledge it is the only one which allows the use of coarse material, as the one utilized in construction. The leaching experiments sampling was performed at different times: 6, 24, 168 and 360 hours, to compare the leachate concentration at the two different pH's values (5 and 8) selected to simulate real conditions. For the leaching experiments, the slags were mixed with natural road base material (gravel-sands from volcanic rocks) at different proportions of 30% and 50%. In order to understand the slags' leaching behavior, other experiments were carried out with the pure material, for both (slags and natural aggregates). After analyses by ICP-OES , the slags from this smelter in Chihuahua contain Pb (0.5 - 4 wt.%), Zn (15-35 wt.%) and As (0.6 wt.%), as well such as: bicarbonates, chlorides, nitrates, sulfates, Mg, K, Na, Ca and TDS. Based on the results of the leaching analyses, via atomic absorption technique, we conclude that Pb and As concentrations are provided by the slags, meanwhile, the bicarbonates, chlorides, Na and Ca are contributed by the road

  11. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    OpenAIRE

    Kuo, S.; Huang, B.; Bembenek, R.

    2001-01-01

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation sin...

  12. Nitrate leaching from winter cereal cover crops using undisturbed soil-column lysimeters

    Science.gov (United States)

    Cover crops are important management practices for reducing nitrogen (N) leaching in the Chesapeake Bay watershed, which is under Total Maximum Daily Load restraints. Cool-season annual grasses such as barley, rye, or wheat are common cover crops, but studies are needed to directly compare field ni...

  13. Nitrogen uptake, nitrate leaching and root development in winter-grown wheat and fodder radish

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Thomsen, Ingrid Kaag

    2017-01-01

    Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder...

  14. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Min; Sun, Xuecheng; Hu, Chengxiao; Tan, Qiling; Zhao, Changsheng [Huazhong Agricultural Univ., Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Di, Hong J. [Lincoln Univ., Christchurch (New Zealand). Center for Soil and Environment Research

    2011-07-15

    Vegetable production is one of the most intensive agricultural systems with high rates of nitrogen (N) fertilizer use and irrigation, conditions conducive for nitrate (NO{sub 3}{sup -}) leaching, and nitrous oxide (N{sub 2}O) emissions. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO{sub 3}{sup -} leaching and N{sub 2}O emissions in vegetable production systems. Twenty-four undisturbed soil monolith lysimeters (610 mm in diameter; 700 mm in depth; surface area, 0.29 m{sup 2}) with two different soils, Huangzongrang (alfisol) and Chaotu (fluvisols), were collected and installed in a field lysimeter facility in Central China under irrigated vegetable production conditions. Urea fertilizer was applied at 650 kg N ha{sup -1}, and DCD was applied at 10 kg ha{sup -1} to the lysimeters planted with three kinds of vegetables (capsicum, Capsicum annuum L.; amaranth, Amaranthus mangostanus L.; radish, Raphanus sativus L.). The results showed that DCD reduced NO3- leaching by 58.5% and 36.2% and N{sub 2}O emissions factor by 83.8% and 72.7% in the two soils. The average NO{sub 3}{sup -}-N concentration in the drainage water was decreased from 4.9 mg NL{sup -1} to 2.3 mg NL{sup -1} and from 4.4 mg NL{sup -1} to 3.3 mg NL{sup -1}, in the Huangzongrang and Chaotu soils, respectively. In addition to the environmental benefits, the use of DCD also increased the yields of capsicum and radish in alfisol soil significantly (P < 0.01); only the amaranth yield in fluvisol soil was declined (P < 0.01), and the other vegetables yields were not affected. Total N concentrations of the three vegetables were increased significantly (P < 0.01) with the application of DCD with urea compared with urea alone. These results showed that the nitrification inhibitor DCD has the potential to significantly reduce NO{sub 3}{sup -} leaching and N{sub 2}O emissions and to make vegetable farming more environmentally

  15. Nitrate Leaching From Grain Maize After Different Tillage Methods and Long/Short Term Cover Cropping

    DEFF Research Database (Denmark)

    Hansen, Elly Møller

    trial initiated in 1968 on a coarse sandy soil. The previous trial included spring sown crops undersown (with or without) perennial ryegrass (Lolium perenne L.) as cover crop, two N-rates (90 and 120 kg N ha-1) and different tillage methods (shallow tillage and ploughing autumn or spring). With maize......) previous history of long-term cover cropping, ii) soil tillage methods, iii) N rates and iv) present short-term use of cover cropping in maize. Preliminary results from 2009 – 2011 suggest that leaching after a history of cover cropping tended to be higher than after no history of cover cropping......, but the effect was insignificant. The effect of tillage and previous N rates were also insignificant but the present use of cover crops had a small but significant decreasing effect on leaching compared to no cover cropping. The cover crop was well established in both years but grew less vigorously during autumn...

  16. Mathematical modelling in leaching studies of radioactive waste

    International Nuclear Information System (INIS)

    Plecas, I.; Pavlovic, R.; Pavlovic, S.

    2001-01-01

    Transport phenomena involved in the leaching of a radioactive material from a composite matrix into surrounding water are investigated using three methods based on theoretical equations. These arc: diffusion equation derived for a plane source model, rate equation for diffusion coupled with a first-order reaction and an empirical method employing a polynomial equation. The obtained results are compared with respect to their applicability to the 60 Co and 137 Cs leaching data. (author)

  17. Investigation of disposal of nitrate-bearing effluent from in-situ leaching process by natural evaporation in Yining uranium mine

    International Nuclear Information System (INIS)

    Huang Chongyuan; Li Weicai; Zhang Yutai; Gao Xizhen

    2000-01-01

    Experiments indicated, after lime neutralization and precipitation of nitrate-bearing effluent from in-situ leaching process, uranium concentration increase with the increasing of nitrate concentration. Only when nitrate concentration is <0.5 mg/L, uranium concentration can drop from 1.5-2.0 mg/L to about 1.0 mg/L. The permeability coefficient of soil is about 1.0-1.1 m/d in the place which is scheduled for building natural evaporation pool. After lime neutralization of nitrate-bearing effluent, it can drop to 0.03-0.01 m/d. Setting up water-proof layer in natural evaporation pool can reduce pollution of underground water by uranium, nitrate and ammonium

  18. Controlled Drainage As Measure to Reduce Nitrate Leaching in a Wheat Cropping System

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Hvid, Søren Kolind; Thomsen, Ingrid Kaag

    2013-01-01

    for the growing crop, and nutrient exports are reduced. CD has been shown to diminish leaching losses of soluble nutrients. So far CD has only been tested for spring sown crops but widespread implementation on drained clayey soils would rely on its adaption to winter cereal production systems. A new project on CD...... applied at four winter cropped fields in Denmark investigates how effects of anaerobic conditions created by CD will affect chemical/biological processes in the submerged soil, root growth, crop production, and nutrient losses. Nitrification is expected to be retarded by wet soils during winter...

  19. Leaching of both calcium hydroxide and C-S-H from cement paste: Modeling the mechanical behavior

    International Nuclear Information System (INIS)

    Carde, C.; Torrenti, J.M.; Francois, R.

    1996-01-01

    This paper deals with the effect of the leaching process of cement based materials on their mechanical properties. This process induces mainly a total leaching of Ca(OH) 2 and a progressive decalcification of C-S-H which leads to a gradient of C/S ratio in the leaching zone. In a previous work, the authors venture the hypothesis that the dissolution of calcium hydroxide was the essential parameter governing both decrease in strength and increase in porosity in the case of a paste sample made with an OPC cement which leads to a 20% content of calcium. In order to quantify the effect of the decrease of C/S ratio in C-S-H, the authors have performed experiments on paste samples with the admixture of silica fume to reduce the content of calcium hydroxide and thus emphasize the effect of C/S ratio decrease of the C-S-H. The leaching process was achieved by the use of a 50% concentrate solution of ammonium nitrate. Compression tests were conducted on micro-cylinder samples (10, 12, 14, 20 and 30 mm of diameter) because of the slow kinetics of degradation due to the leaching. The deterioration of the cement paste and the mortar exposed to the action of the ammonium nitrate was indicated by a peripheral zone of less resistance. The experimental results allow the modeling of the mechanical behavior of cement pastes in relation to the ratio of degraded area over total area of the sample A d /A t . The model thus defined allows separation of the effect of calcium hydroxide leaching and C-S-H leaching, and shows the importance of the first one. The current research program tries to characterize the deterioration of the mechanical properties of the concrete surrounding radioactive wastes, due to the water flow during storage

  20. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    Science.gov (United States)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  1. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Science.gov (United States)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  2. Effects of structural and textural grain characteristics on leaching of sulphide minerals from a polymetallic concentrate by sodium nitrate and sulphuric acid solution

    Directory of Open Access Journals (Sweden)

    Sokić Miroslav D.

    2017-01-01

    Full Text Available In this paper, the influence of structural and textural characteristics of sulfide minerals on their leaching from a polymetallic concentrate by sulfuric acid and sodium nitrate solution is presented. The starting material was Pb–Zn–Cu sulphide polymetallic concentrate enriched during the flotation of a polymetallic ore in the "Rudnik" flotation plant (Rudnik – Serbia. Leaching experiments were carried out in a closed glass reactor, which provides stable hermetic conditions and allows heating at constant temperature. Chemical, XRD, qualitative and quantitative microscopic and SEM/EDX analyses were used to characterizes samples of the polymetallic concentrate and leach residue. It was determined that chalcopyrite, sphalerite, galena, pyrrhotite and quartz were present in the polymetallic concentrate. The content of sulphide minerals was 69.5%, of which 60.9% occurred as liberated grains: 88.3% of chalcopyrite, 59.3% of sphalerite, 25.1% of galena and 51.6% of pirrhotite. The rest of chalcopyrite, sphalerite, galena and pirrhotite grains were in the forms of inclusions, impregnations, and simple and complex intergrowths. During the leaching process by sodium nitrate and sulphuric acid solution, it was shown previously that the leaching rate of sulphide minerals decreased with time while a part of the sulphide minerals remained in the leach residue. After leaching at 80°C for 120 min, the yields were 69.8, 82.7 and 67.1% for Cu, Zn and Fe, respectively. Lead, in the form of insoluble anglesite, remained in the leach residue. In addition to the anglesite, unleached sulfide minerals and quartz, elemental sulfur was found in the solid residue. The content of sulphide minerals was 35% of which 33.7% minerals occur independently. In specific, 54.7% of chalcopyrite, 31.9% of sphalerite, 8.2% of galena and 37.6% of pyrrhotite appear as separate grains with highly corroded surfaces. Therefore, the structural assembly of sulphide grains in the

  3. Kinetics of steel slag leaching: Batch tests and modeling

    International Nuclear Information System (INIS)

    De Windt, Laurent; Chaurand, Perrine; Rose, Jerome

    2011-01-01

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.

  4. Pesticide Leaching Models in a Brazilian Agricultural Field Scenario

    NARCIS (Netherlands)

    Scorza, R.P.; Oliveira Rigitano, de R.L.; Boesten, J.J.T.I.

    2011-01-01

    The use of Pesticide Leaching Models (PLM) for risk assessment may be an efficient and attractive way of assessing solutions to some agricultural and environmental problems. Many countries of the European Union and the USA have been using PLM for risk assessment already for a few decades. This

  5. Modelling and simulation of concrete leaching under outdoor exposure conditions

    International Nuclear Information System (INIS)

    Schiopu, Nicoleta; Tiruta-Barna, Ligia; Jayr, Emmanuel; Mehu, Jacques; Moszkowicz, Pierre

    2009-01-01

    Recently, a demand regarding the assessment of release of dangerous substances from construction products was raised by European Commission which has issued the Mandate M/366 addressed to CEN. This action is in relation with the Essential Requirement No. 3 'Hygiene, Health and Environment' of the Construction Products Directive (89/106/EC). The potential hazard for environment and health may arise in different life cycle stages of a construction product. During the service life stage, the release of substances due to contact with the rain water is the main potential hazard source, as a consequence of the leaching phenomenon. The objective of this paper is to present the development of a coupled chemical-transport model for the case of a concrete based construction product, i.e. concrete paving slabs, exposed to rain water under outdoor exposure conditions. The development of the model is based on an iterative process of comparing the experimental results with the simulated results up to an acceptable fit. The experiments were conducted at laboratory scale (equilibrium and dynamic leaching tests) and field scale. The product was exposed for one year in two types of leaching scenarios under outdoor conditions, 'runoff' and 'stagnation', and the element release was monitored. The model was calibrated using the experimental data obtained at laboratory scale and validated against measured field data, by taking into account the specific rain water balance and the atmospheric CO 2 uptake as input parameters. The numerical tool used in order to model and simulate the leaching behaviour was PHREEQC, coupled with the Lawrence Livermore National Laboratory (LLNL) thermodynamic data base. The simulation results are satisfying and the paper demonstrates the feasibility of the modelling approach for the leaching behaviour assessment of concrete type construction materials

  6. Monetary valuation with impact pathway analysis: Benefits of reducing nitrate leaching in European Catchments

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Hansen, Morten Søes; Carstensen, Jacob

    2011-01-01

    Integrated assessment frameworks which can account comprehensively for the benefits related to water quality improvements have not yet been established. The main challenge is to link economic valuation with hydrological data in an appropriate way.We here explore the so-called ‘impact pathway...... approach’ as a novel analytical method in the area ofwater management. It can identify site- and catchment-specific benefits associated with management measures by linking economic and hydrological data through consecutive modelling stages, allowing for monetization of specific end point effects...

  7. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Shunli [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China)], E-mail: zhoushl@cau.edu.cn; Wu Yongcheng [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); College of Agronomy, Si Chuan Agricultural University, Yaan 625014 (China); Wang Zhimin [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); Lu Laiqing; Wang Runzheng [Wuqiao Experimental Station, China Agricultural University, Hebei 061802 (China)

    2008-04-15

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of {sup 15}N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system.

  8. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    International Nuclear Information System (INIS)

    Zhou Shunli; Wu Yongcheng; Wang Zhimin; Lu Laiqing; Wang Runzheng

    2008-01-01

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15 N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system

  9. An approximation method for diffusion based leaching models

    International Nuclear Information System (INIS)

    Shukla, B.S.; Dignam, M.J.

    1987-01-01

    In connection with the fixation of nuclear waste in a glassy matrix equations have been derived for leaching models based on a uniform concentration gradient approximation, and hence a uniform flux, therefore requiring the use of only Fick's first law. In this paper we improve on the uniform flux approximation, developing and justifying the approach. The resulting set of equations are solved to a satisfactory approximation for a matrix dissolving at a constant rate in a finite volume of leachant to give analytical expressions for the time dependence of the thickness of the leached layer, the diffusional and dissolutional contribution to the flux, and the leachant composition. Families of curves are presented which cover the full range of all the physical parameters for this system. The same procedure can be readily extended to more complex systems. (author)

  10. Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models

    DEFF Research Database (Denmark)

    Doltra, Jordi; Nuñoz, P

    2010-01-01

    to a higher nitrate concentration in percolated water. Comparison of the observed and predicted yield response to N applications with EU-Rotate_N demonstrated that the best fertigation strategy could be identified and the risk of nitrate leaching quantified with this model. The results showed......Two different modeling approaches were used to simulate the N leached during an intensively fertigated crop rotation: a recently developed crop-based simulation model (EU-Rotate_N) and a widely recognized solute transport model (Hydrus-2D). Model performance was evaluated using data from...... an experiment where four N fertigation levels were applied to a bell pepper-cauliflower-Swiss chard rotation in a sandy loam soil. All the input data were obtained from measurements, transfer functions or were included in the model databases. Model runs were without specific site calibration. The use of soil...

  11. Modelling the Long Term Leaching Behaviour of 137CS from Different Stabilized Waste Matrices

    International Nuclear Information System (INIS)

    El-Kamash, A.M.

    2013-01-01

    Leaching characteristics of ''1''3''7Cs from immobilized waste matrices in different cement-based grouts have been assessed to investigate the influence of the additives on the leaching behavior of the solid waste matrices. The International Atomic Energy's Agency (IAEA) standard leach method has been employed to study the leach pattern of 137 Cs radionuclide from the immobilized waste form. The examination of the leaching data revealed that clay additives reduces the leach rate for the studied radionuclide. The controlling leaching mechanism has been studied and the transport parameters were calculated for all studied waste matrices. Simplified analytical models have been derived to predict the Cumulative Leach Fraction (CLF) of radionuclides over the studied experimental period. These simplified research models could be used as a screening tool to assess the performance of the waste matrix under repository conditions. (author)

  12. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux

    Science.gov (United States)

    Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong

    2018-04-01

    Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.

  13. Variability of concrete properties: experimental characterisation and probabilistic modelling for calcium leaching

    International Nuclear Information System (INIS)

    De Larrard, Th.

    2010-09-01

    Evaluating structures durability requires taking into account the variability of material properties. The thesis has two main aspects: on the one hand, an experimental campaign aimed at quantifying the variability of many indicators of concrete behaviour; on the other hand, a simple numerical model for calcium leaching is developed in order to implement probabilistic methods so as to estimate the lifetime of structures such as those related to radioactive waste disposal. The experimental campaign consisted in following up two real building sites, and quantifying the variability of these indicators, studying their correlation, and characterising the random fields variability for the considered variables (especially the correlation length). To draw any conclusion from the accelerated leaching tests with ammonium nitrate by overcoming the effects of temperature, an inverse analysis tool based on the theory of artificial neural networks was developed. Simple numerical tools are presented to investigate the propagation of variability in durability issues, quantify the influence of this variability on the lifespan of structures and explain the variability of the input parameters of the numerical model and the physical measurable quantities of the material. (author)

  14. Rejuvenation of residual oil hydrotreating catalysts by leaching of foulant metals. Modelling of the metal leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Kam, E.K.T.; Stanislaus, A.; Absi-Halabi, M. [Petroleum Technology Department, Petroleum, Petrochemicals and Materials Division, Kuwait Institute for Scientific Research, Safat (Kuwait)

    1996-11-19

    Increasing emphasis has been paid in recent years on the development of processes for the rejuvenation of spent residual oil hydroprocessing catalysts, which are deactivated by deposition of metals (e.g. vanadium) and coke. As part of a research program on this subject, we have investigated selective removal of the major metal foulant from the spent catalyst by chemical leaching. In the present paper, we report the development of a model for foulant metals leaching from the spent catalyst. The leaching process is considered to involve two consecutive operations: (1) removal of metal foulants along the main mass transfer channels connected to the narrow pores until the pore structure begins to develop and (2) removal of metal foulants from the pore structure. Both kinetic and mass transfer aspects were considered in the model development, and a good agreement was noticed between experimental and simulated results

  15. Leaching of biocides from building facades: Upscaling of a local two-region leaching model to the city scale

    Science.gov (United States)

    Coutu, S.; Rota, C.; Rossi, L.; Barry, D. A.

    2011-12-01

    Facades are protected by paints that contain biocides as protection against degradation. These biocides are leached by rainfall (albeit at low concentrations). At the city scale, however, the surface area of building facades is significant, and leached biocides are a potential environmental risk to receiving waters. A city-scale biocide-leaching model was developed based on two main steps. In the first step, laboratory experiments on a single facade were used to calibrate and validate a 1D, two-region phenomenological model of biocide leaching. The same data set was analyzed independently by another research group who found empirically that biocide leachate breakthrough curves were well represented by a sum of two exponentials. Interestingly, the two-region model was found analytically to reproduce this functional form as a special case. The second step in the method is site-specific, and involves upscaling the validated single facade model to a particular city. In this step, (i) GIS-based estimates of facade heights and areas are deduced using the city's cadastral data, (ii) facade flow is estimated using local meteorological data (rainfall, wind direction) and (iii) paint application rates are modeled as a stochastic process based on manufacturers' recommendations. The methodology was applied to Lausanne, Switzerland, a city of about 200,000 inhabitants. Approximately 30% of the annually applied mass of biocides was estimated to be released to the environment.

  16. Nitrogen leaching from N limited forest ecosystems: the MERLIN model applied to Gårdsjön, Sweden

    Directory of Open Access Journals (Sweden)

    O. J. Kjønaas

    1998-01-01

    Full Text Available Chronic deposition of inorganic nitrogen (N compounds from the atmosphere to forested ecosystems can alter the status of a forest ecosystem from N-limited towards N-rich, which may cause, among other things, increased leaching of inorganic N below the rooting zone. To assess the time aspects of excess N leaching, a process-oriented dynamic model, MERLIN (Model of Ecosystem Retention and Loss of Inorganic Nitrogen, was tested on an N-manipulated catchment at Gårdsjön, Sweden (NITREX project. Naturally generated mature Norway spruce dominates the catchment with Scots pine in drier areas. Since 1991, ammonium nitrate (NH4NO3 solution at a rate of about 35 kg N ha-1 yr-1 (250 mmol m-2 yr-1 has been sprinkled weekly, to simulate increased atmospheric N deposition. MERLIN describes C and N cycles, where rates of uptake and cycling between pools are governed by the C/N ratios of plant and soil pools. The model is calibrated through a hindcast period and then used to predict future trends. A major source of uncertainty in model calibration and prediction is the paucity of good historical information on the specific site and stand history over the hindcast period 1930 to 1990. The model is constrained poorly in an N-limited system. The final calibration, therefore, made use of the results from the 6-year N addition experiment. No independent data set was available to provide a test for the model calibration. The model suggests that most N deposition goes to the labile (LOM and refractory (ROM organic matter pools. Significant leaching is predicted to start as the C/N ratio in LOM is reduced from the 1990 value of 35 to <28. At ambient deposition levels, the system is capable of retaining virtually all incoming N over the next 50 years. Increased decomposition rates, however, could simulate nitrate leaching losses. The rate and capacity of N assimilation as well as the change in carbon dynamics are keys to ecosystem changes. Because the knowledge of

  17. Modeling groundwater nitrate concentrations in private wells in Iowa.

    Science.gov (United States)

    Wheeler, David C; Nolan, Bernard T; Flory, Abigail R; DellaValle, Curt T; Ward, Mary H

    2015-12-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square=0.77) and was acceptable in the testing set (r-square=0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Modeling groundwater nitrate concentrations in private wells in Iowa

    Science.gov (United States)

    Wheeler, David C.; Nolan, Bernard T.; Flory, Abigail R.; DellaValle, Curt T.; Ward, Mary H.

    2015-01-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square = 0.77) and was acceptable in the testing set (r-square = 0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort.

  19. Effects of Mulching and Nitrogen on Soil Nitrate-N Distribution, Leaching and Nitrogen Use Efficiency of Maize (Zea mays L..

    Directory of Open Access Journals (Sweden)

    Xiukang Wang

    Full Text Available Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK, plastic film mulching with no basal fertilizer and no top dressing (MN0, basal fertilizer with no top dressing and no mulching (BN1, plastic film mulching and basal fertilizer with no top dressing (MN1, basal fertilizer and top dressing with no mulching (BN2 and plastic film mulching with basal fertilizer and top dressing (MN2. In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0-40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0-20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0-40-cm, and the mean soil nitrate-N content was increased nearly 50 mg kg-1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and

  20. A European test of pesticide-leaching models: methodology and major recommendations

    NARCIS (Netherlands)

    Vanclooster, M.; Boesten, J.J.T.I.; Trevisan, M.; Brown, C.D.; Capri, E.; Eklo, O.M.; Gottesbüren, B.; Gouy, V.; Linden, van der A.M.A.

    2000-01-01

    Testing of pesticide-leaching models is important in view of their increasing use in pesticide registration procedures in the European Union. This paper presents the methodology and major conclusions of a test of pesticide-leaching models. Twelve models simulating the vertical one-dimensional

  1. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA

    Science.gov (United States)

    Ransom, Katherine M.; Nolan, Bernard T.; Traum, Jonathan A.; Faunt, Claudia; Bell, Andrew M.; Gronberg, Jo Ann M.; Wheeler, David C.; Zamora, Celia; Jurgens, Bryant; Schwarz, Gregory E.; Belitz, Kenneth; Eberts, Sandra; Kourakos, George; Harter, Thomas

    2017-01-01

    Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative

  2. MODELLING CHALCOPYRITE LEACHING BY Fe+3 IONS WITH THE SHRINKING CORE MODEL

    Directory of Open Access Journals (Sweden)

    Rodrigo Rangel Porcaro

    2015-03-01

    Full Text Available Chalcopyrite leaching by ferric iron is considered a slow process with low copper recovery; a phenomenon ascribed to the passivation of the mineral surface during leaching. Thus, the current study investigated the leaching kinetics of a high purity chalcopyrite sample in the presence of ferric sulfate as oxidant. The effects of the stirring rate, temperature, Eh and Fe3+ concentration on copper extraction were assessed. The leaching data could be described by the shirking core model (SCM for particles of unchanging size and indicated diffusion in the ash layer as the rate-controlling step with a high activation energy (103.9±6.5kJ/mol; likely an outcome of neglecting the effect of particle size distribution (PSD on the kinetics equations. Both the application of the quasi-steady-state assumption to solid-liquid systems and the effect of the particle size distribution on the interpretation of kinetics data are also discussed.

  3. Streamline-concentration balance model for in-situ uranium leaching and site restoration

    International Nuclear Information System (INIS)

    Bommer, P.M.; Schechter, R.S.; Humenick, M.J.

    1981-03-01

    This work presents two computer models. One describes in-situ uranium leaching and the other describes post leaching site restoration. Both models use a streamline generator to set up the flow field over the reservoir. The leaching model then uses the flow data in a concentration balance along each streamline coupled with the appropriate reaction kinetics to calculate uranium production. The restoration model uses the same procedure except that binary cation exchange is used as the restoring mechanism along each streamline and leaching cation clean up is simulated. The mathematical basis for each model is shown in detail along with the computational schemes used. Finally, the two models have been used with several data sets to point out their capabilities and to illustrate important leaching and restoration parameters and schemes

  4. Streamline-concentration balance model for in situ uranium leaching and site restoration

    International Nuclear Information System (INIS)

    Bommer, P.M.

    1979-01-01

    This work presents two computer models. One describes in situ uranium leaching and the other describes post leaching site restoration. Both models use a streamline generator to set up the flow field over the reservoir. The leaching model then uses the flow data in a concentration balance along each streamline coupled with the appropriate reaction kinetics to calculate uranium production. The restoration model uses the same procedure ecept that binary cation exchange is used as the restoring mechanism along each streamline and leaching cation clean up is stimulated. The mathematical basis for each model is shown in detail along with the computational schemes used. Finally, the two models have been used with several data sets to point out their capabilities and to illustrate important leaching and restoration parameters and schemes

  5. Simulation of pesticide leaching in a cracking clay soil with the PEARL model

    NARCIS (Netherlands)

    Scorza, R.P.; Boesten, J.J.T.I.

    2005-01-01

    Testing of pesticide leaching models is important to increase confidence in their use in pesticide registration procedures world-wide. The chromatographic PEARL model was tested against the results of a field leaching study on a cracking clay soil with a tracer (bromide), a mobile pesticide

  6. A shrinking particle model at leaching of titanium in ilmenite use HCl

    International Nuclear Information System (INIS)

    MV Purwani; Suyanti

    2016-01-01

    The research of ilmenite leaching has conducted. Ilmenite was tailings of zircon sand processing. Zircon sand processing tailings containing Zr, Ti, Nb and Fe. This research will be conducted to determine the kinetic leaching of Ti in HCl based shrinking core models. From the research results ilmenite leaching of Ti in HCl wear, it can be concluded that the 50 grams of ilmenite leaching wear 11 M HCl leaching, the higher temperature was conducted the greater of the Ti conversion. The mechanism of the leaching process was controlled by Sphere Reaction with formula equation 1- (1-α)1/3 = "k"."C"/"r"_o"ρ t = klt, the relationship between temperature (T) with the reaction rate constant (k), k = 61.744.e- 4553.3 / T or ln k = - 4553.3 / T + 4.123, the frequency factor A = 61.744, the activation energy E = 37.856 kJ/mol. (author)

  7. Impact of broadcasting a cereal rye or oat cover crop before corn and soybean harvest on nitrate leaching

    Science.gov (United States)

    The corn and soybean rotation in Iowa has no living plants taking up water and nutrients from crop maturity until planting, a period of over six months in most years. In many fields, this results in losses of nitrate in effluent from artificial drainage systems during this time. In a long-term fiel...

  8. Leaching of heavy metals from contaminated soils: An experimental and modeling study

    NARCIS (Netherlands)

    Dijkstra, J.J.; Meeussen, J.C.L.; Comans, R.N.J.

    2004-01-01

    In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling.

  9. Ability of the MACRO Model to Predict Long-Term Leaching of Metribuzin and Diketometribuzin

    DEFF Research Database (Denmark)

    Rosenbom, Annette E; Kjær, Jeanne; Henriksen, Trine

    2009-01-01

    In a regulatory context, numerical models are increasingly employed to quantify leaching of pesticides and their metabolites. Although the ability of these models to accurately simulate leaching of pesticides has been evaluated, little is known about their ability to accurately simulate long...... alternative kinetics (a two-site approach), we captured the observed leaching scenario, thus underlining the necessity of accounting for the long-term sorption and dissipation characteristics when using models to predict the risk of groundwater contamination.......-term leaching of metabolites. A Danish study on the dissipation and sorption of metribuzin, involving both monitoring and batch experiments, concluded that desorption and degradation of metribuzin and leaching of its primary metabolite diketometribuzin continued for 5-6 years after application, posing a risk...

  10. Spatial and temporal changes in the structure of groundwater nitrate concentration time series (1935 1999) as demonstrated by autoregressive modelling

    Science.gov (United States)

    Jones, A. L.; Smart, P. L.

    2005-08-01

    Autoregressive modelling is used to investigate the internal structure of long-term (1935-1999) records of nitrate concentration for five karst springs in the Mendip Hills. There is a significant short term (1-2 months) positive autocorrelation at three of the five springs due to the availability of sufficient nitrate within the soil store to maintain concentrations in winter recharge for several months. The absence of short term (1-2 months) positive autocorrelation in the other two springs is due to the marked contrast in land use between the limestone and swallet parts of the catchment, rapid concentrated recharge from the latter causing short term switching in the dominant water source at the spring and thus fluctuating nitrate concentrations. Significant negative autocorrelation is evident at lags varying from 4 to 7 months through to 14-22 months for individual springs, with positive autocorrelation at 19-20 months at one site. This variable timing is explained by moderation of the exhaustion effect in the soil by groundwater storage, which gives longer residence times in large catchments and those with a dominance of diffuse flow. The lags derived from autoregressive modelling may therefore provide an indication of average groundwater residence times. Significant differences in the structure of the autocorrelation function for successive 10-year periods are evident at Cheddar Spring, and are explained by the effect the ploughing up of grasslands during the Second World War and increased fertiliser usage on available nitrogen in the soil store. This effect is moderated by the influence of summer temperatures on rates of mineralization, and of both summer and winter rainfall on the timing and magnitude of nitrate leaching. The pattern of nitrate leaching also appears to have been perturbed by the 1976 drought.

  11. Long term dynamics of nitrate concentrations and leaching losses in tile drainage water from cultivated clayey till at field scale

    DEFF Research Database (Denmark)

    Ernstsen, Vibeke; Olsen, Preben; Rosenbom, Annette Elisabeth

    2014-01-01

    of application). Furthermore, the standard climatic conditions (e.g. temperature, precipitation) as well as soil moisture and temperature to a depth of approx. 2 meter were measured. Concentrations of nitrate in the drainage and groundwater, recharge of water through the drainage system as well as depth......Since 1985, several political agreements have been adopted to protect the aquatic environment and nature in Denmark. The farmers have repeatedly been ordered to reduce the consumption of nitrogen in their agricultural production. The reductions have been imposed nation-wide regardless of e.......g. climate, soil type and local hydraulic conditions. By the end of 2013, the Danish Commission of Nature and Agriculture issued a report which recommend that for the future protection of surface nitrogen regulations should be locally adapted, and if possible, at the level of field scale. This kind...

  12. Review of Alternative Management Options of Vegetable Crop Residues to Reduce Nitrate Leaching in Intensive Vegetable Rotations

    Directory of Open Access Journals (Sweden)

    Laura Agneessens

    2014-12-01

    Full Text Available Vegetable crop residues take a particular position relative to arable crops due to often large amounts of biomass with a N content up to 200 kg N ha−1 left behind on the field. An important amount of vegetable crops are harvested during late autumn and despite decreasing soil temperatures during autumn, high rates of N mineralization and nitrification still occur. Vegetable crop residues may lead to considerable N losses through leaching during winter and pose a threat to meeting water quality objectives. However, at the same time vegetable crop residues are a vital link in closing the nutrient and organic matter cycle of soils. Appropriate and sustainable management is needed to harness the full potential of vegetable crop residues. Two fundamentally different crop residue management strategies to reduce N losses during winter in intensive vegetable rotations are reviewed, namely (i on-field management options and modifications to crop rotations and (ii removal of crop residues, followed by a useful and profitable application.

  13. Evaluation of field and lysimeter studies on the leaching of pesticides from soil using the PESTLA model

    NARCIS (Netherlands)

    Veen, van de J.R.; Boesten, J.J.T.I.

    1996-01-01

    The PESTLA model Version 2.4 is used to evaluate pesticide leaching from soil under Dutch agricultural conditions. A method is presented to translate the results of a leaching experiment into the standard scenario, using the ratio between measured andcomputed leaching for that experiment. An attempt

  14. Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling

    International Nuclear Information System (INIS)

    Wang Aijie; Liu Chunshuang; Ren Nanqi; Han Hongjun; Lee Duujong

    2010-01-01

    Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S 0 ), N 2 , and CO 2 , or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 1000 mg/L influent sulfide, however, the DSR system will break down.

  15. Model-Based Integration and Analysis of Biogeochemical and Isotopic Dynamics in a Nitrate-Polluted Pyritic Aquifer

    NARCIS (Netherlands)

    Zhang, Y.C.; Prommer, H.; Slomp, C.P.; Broers, H.P.; van der Grift, B.; Passier, H.F.; Greskowiak, J.; Boettcher, M.E.; van Capellen, P.

    2013-01-01

    Leaching of nitrate from agricultural land to groundwater and the resulting nitrate pollution are a major environmental problem worldwide. Its impact is often mitigated in aquifers hosting sufficiently reactive reductants that can promote autotrophic denitrification. In the case of pyrite acting as

  16. Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer

    NARCIS (Netherlands)

    Zhang, Y.-C.; Prommer, H.; Broers, H.P.; Slomp, C.P.; Greskowiak, J.; Van Der Grift, B.; Van Cappellen, P.

    2013-01-01

    Leaching of nitrate from agricultural land to groundwater and the resulting nitrate pollution are a major environmental problem worldwide. Its impact is often mitigated in aquifers hosting sufficiently reactive reductants that can promote autotrophic denitrification. In the case of pyrite acting as

  17. Modelling inorganic and organic biocide leaching from CBA-amine (Copper–Boron–Azole) treated wood based on characterisation leaching tests

    Energy Technology Data Exchange (ETDEWEB)

    Lupsea, Maria [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F–31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, DEE/Environment and Life Cycle Engineering Team, 24 Rue Joseph Fourier, F-38400 Saint Martin d' Hères (France); Tiruta-Barna, Ligia, E-mail: ligia.barna@insa-toulouse.fr [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F–31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, DEE/Environment and Life Cycle Engineering Team, 24 Rue Joseph Fourier, F-38400 Saint Martin d' Hères (France); Schoknecht, Ute [BAM — Federal Institute for Materials Research and Testing, Division 4.1, Unter den Eichen 87, 12205 Berlin (Germany)

    2013-09-01

    Numerical simulation of the leaching behaviour of treated wood is the most pertinent and less expensive method for the prediction of biocides' release in water. Few studies based on mechanistic leaching models have been carried out so far. In this work, a coupled chemistry-mass transport model is developed for simulating the leaching behaviour of inorganic (Cu, B) and organic (Tebuconazole) biocides from CBA-amine treated wood. The model is based on experimental investigations (lab-scale leaching tests coupled with chemical and structural analysis). It considers biocides' interactions with wood solid components and with extractives (literature confirmed reactions), as well as transport mechanisms (diffusion, convection) in different compartments. Simulation results helped at identifying the main fixation mechanisms, like (i) direct complexation of Cu by wood-phenolic and -carboxylic sites (and not via monoethanolamine; complex) on lignin and hemicellulose and strong dependence on extractives' nature, (ii) pH dependent binding of tebuconazole on polarized -OH moieties on wood. The role of monoethanolamine is to provide a pore-solution pH of about 7.5, when copper solubility is found to be weakest. The capability of the developed model to simulate the chemical and transport behaviour is the main result of this study. Moreover, it proved that characterization leaching tests (pH dependency and dynamic tests), combined with appropriate analytical methods are useful experimental tools. Due to its flexibility for representing and simulating various leaching conditions, chemical-transport model developed could be used to further simulate the leaching behaviour of CBA treated wood at larger scales. - Highlights: • Biocide and extractives leaching from ammonia-CBA treated wood were modelled. • The chemical-transport model identifies the main fixation/solubilisation mechanisms. • The model describes well the results of equilibrium and dynamic leaching

  18. Influence of ammonia on leaching behaviors of incineration fly ash and its geochemical modeling

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Guan, Zhen Zhen; Chen, De Zhen

    2013-01-01

    Incineration fly ash could be contaminated with NH3 that was slipped from the ammonia-based selective non-catalytic reduction(SNCR) process and from evaporation of municipal solid wastes' leachate involved in the wastes. This research was conducted to investigate the impacts of ammonia on leaching....... It was proved that at pH>9, the leaching of DOC increased significantly in the presence of high concentrations of ammonia (≥1357 mg·L-1), but there was little effect when the ammonia level in eluates was not higher than 537 mg·L-1. At pH12, for Cd, Cu, Ni and Zn, their leaching species were predominantly...... by precipitation/dissolution and surface complexation/precipitation processes; Visual MINTEQ modeling could well describe the leaching behaviors of Al, Cu, Pb and Zn from incineration fly ash....

  19. Modeling nitrate from land surface to wells' perforations under agricultural land: success, failure, and future scenarios in a Mediterranean case study

    Science.gov (United States)

    Levy, Yehuda; Shapira, Roi H.; Chefetz, Benny; Kurtzman, Daniel

    2017-07-01

    Contamination of groundwater resources by nitrate leaching under agricultural land is probably the most troublesome agriculture-related water contamination worldwide. Contaminated areas often show large spatial variability of nitrate concentration in wells. In this study, we tried to assess whether this spatial variability can be characterized on the basis of land use and standard agricultural practices. Deep soil sampling (10 m) was used to calibrate vertical flow and nitrogen-transport numerical models of the unsaturated zone under different agricultural land uses. Vegetable fields (potato and strawberry) and deciduous orchards (persimmon) in the Sharon area overlying the coastal aquifer of Israel were examined. Average nitrate-nitrogen fluxes below vegetable fields were 210-290 kg ha-1 yr-1 and under deciduous orchards were 110-140 kg ha-1 yr-1. The output water and nitrate-nitrogen fluxes of the unsaturated-zone models were used as input data for a three-dimensional flow and nitrate-transport model in the aquifer under an area of 13.3 km2 of agricultural land. The area was subdivided into four agricultural land uses: vegetables, deciduous orchards, citrus orchards, and non-cultivated. Fluxes of water and nitrate-nitrogen below citrus orchards were taken from a previous study in the area. The groundwater flow model was calibrated to well heads by changing the hydraulic conductivity. The nitrate-transport model, which was fed by the above-mentioned models of the unsaturated zone, succeeded in reconstructing the average nitrate concentration in the wells. However, this transport model failed in calculating the high concentrations in the most contaminated wells and the large spatial variability of nitrate concentrations in the aquifer. To reconstruct the spatial variability and enable predictions, nitrate fluxes from the unsaturated zone were multiplied by local multipliers. This action was rationalized by the fact that the high concentrations in some wells cannot

  20. A kinetics study of acetic acid on cobalt leaching of spent LIBs: Shrinking Core Model

    Directory of Open Access Journals (Sweden)

    Setiawan Hendrik

    2018-01-01

    Full Text Available Lithium-ion batteries (LIBs are secondary rechargeable power sources which increasing production also leads to large amount of waste. In order to environmentally friendly reduce the waste, this work aimed to use acetic acid as a substitute leaching agent to leach Co metals which constitutes about 72.39% wt of the battery cathode. The leaching process was done in a three-necked-flask where calcined LIB cathode powder was mixed with acetic acid solution. The variables of the leaching process under investigation were solution pH, concentration of H2O2 in the solution, S/L ratio, temperature and reaction time. Experimental results showed that only temperature significantly influenced the leaching rate of Co. Since the process was exothermic, the maximum recovery decreased as temperature increased. Conventional shrinking core model that considers diffusion and irreversible surface reaction resistances was found not sufficient to predict the kinetics of the Co leaching with acetic acid. A more representative kinetics model that considers a reversible reaction of Co complex formation needs to be further developed.

  1. Actualisering van model NLOAD voor de nitraatuitspoeling van landbouwgronden; beschrijving van model en GIS-omgeving

    NARCIS (Netherlands)

    Drecht G van; Scheper E; LBG; Adviesbureau ARIS, Utrecht

    1998-01-01

    Model NLOAD employs a simple, straightforward and empirical approach, describing the steady state nitrate_N leaching of agricultural soils on annual basis. NLOAD is used every year to assess the effects of environmental policy on nitrate leaching and exceedance of the standard for nitrate_N

  2. Modeling the long-term fate of agricultural nitrate in groundwater in the San Joaquin Valley, California

    Science.gov (United States)

    Chapelle, Francis H.; Campbell, Bruce G.; Widdowson, Mark A.; Landon, Mathew K.

    2013-01-01

    Nitrate contamination of groundwater systems used for human water supplies is a major environmental problem in many parts of the world. Fertilizers containing a variety of reduced nitrogen compounds are commonly added to soils to increase agricultural yields. But the amount of nitrogen added during fertilization typically exceeds the amount of nitrogen taken up by crops. Oxidation of reduced nitrogen compounds present in residual fertilizers can produce substantial amounts of nitrate which can be transported to the underlying water table. Because nitrate concentrations exceeding 10 mg/L in drinking water can have a variety of deleterious effects for humans, agriculturally derived nitrate contamination of groundwater can be a serious public health issue. The Central Valley aquifer of California accounts for 13 percent of all the groundwater withdrawals in the United States. The Central Valley, which includes the San Joaquin Valley, is one of the most productive agricultural areas in the world and much of this groundwater is used for crop irrigation. However, rapid urbanization has led to increasing groundwater withdrawals for municipal public water supplies. That, in turn, has led to concern about how contaminants associated with agricultural practices will affect the chemical quality of groundwater in the San Joaquin Valley. Crop fertilization with various forms of nitrogen-containing compounds can greatly increase agricultural yields. However, leaching of nitrate from soils due to irrigation has led to substantial nitrate contamination of shallow groundwater. That shallow nitrate-contaminated groundwater has been moving deeper into the Central Valley aquifer since the 1960s. Denitrification can be an important process limiting the mobility of nitrate in groundwater systems. However, substantial denitrification requires adequate sources of electron donors in order to drive the process. In many cases, dissolved organic carbon (DOC) and particulate organic carbon

  3. Geochemical modeling of leaching from MSVI air-pollution-control residues

    DEFF Research Database (Denmark)

    Astrup, Thomas; Dijkstra, J.J.; Comans, R.N.J.

    2006-01-01

    This paper provides an improved understanding of the leaching behavior of waste incineration air-pollution-control (APC) residues in a long-term perspective. Leaching was investigated by a series of batch experiments reflecting leaching conditions after initial washout of highly soluble salts from...... residues. Leaching experiments were performed at a range of pH-values using carbonated and noncarbonated versions of two APC residues. The leaching data were evaluated by geochemical speciation modeling and discussed with respect to possible solubility control. The leaching of major elements as well...... of Al, Ba, Ca, Cr, Pb, S, Si, V, and Zn was found influenced by solubility control from Al2O3, Al(OH)3, Ba(S,Cr)O4 solid solutions, BaSO4, Ca6Al2(SO4)3(OH)12â26H2O, CaAl2Si4O12â2H2O, Ca-(OH)2, CaSiO3, CaSO4â2H2O, CaZn2(OH)6â2H2O, KAlSi2O6, PbCO3, PbCrO4, Pb2O3, Pb2V2O7, Pb3(VO4)2, ZnO, Zn2SiO4, and Zn...

  4. Modeling the current and future role of particulate organic nitrates in the southeastern United States

    Science.gov (United States)

    Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate ...

  5. Nitrate reduction in geologically heterogeneous catchments — A framework for assessing the scale of predictive capability of hydrological models

    International Nuclear Information System (INIS)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, Charlotte A.; Christensen, Britt S.B.; Clausen, Thomas; Dalgaard, Esben; Effersø, Flemming; Ernstsen, Vibeke; Gertz, Flemming; Hansen, Anne Lausten; He, Xin; Jacobsen, Brian H.; Jensen, Karsten Høgh; Jørgensen, Flemming; Jørgensen, Lisbeth Flindt; Koch, Julian; Nilsson, Bertel; Petersen, Christian; De Schepper, Guillaume; Schamper, Cyril

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30–50 m and 2 m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the

  6. Nitrate reduction in geologically heterogeneous catchments — A framework for assessing the scale of predictive capability of hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Refsgaard, Jens Christian, E-mail: jcr@geus.dk [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Auken, Esben [Department of Earth Sciences, Aarhus University (Denmark); Bamberg, Charlotte A. [City of Aarhus (Denmark); Christensen, Britt S.B. [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Clausen, Thomas [DHI, Hørsholm (Denmark); Dalgaard, Esben [Department of Earth Sciences, Aarhus University (Denmark); Effersø, Flemming [SkyTEM Aps, Beder (Denmark); Ernstsen, Vibeke [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Gertz, Flemming [Knowledge Center for Agriculture, Skejby (Denmark); Hansen, Anne Lausten [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); He, Xin [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Jacobsen, Brian H. [Department of Food and Resource Economics, University of Copenhagen (Denmark); Jensen, Karsten Høgh [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); Jørgensen, Flemming; Jørgensen, Lisbeth Flindt [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Koch, Julian [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); Nilsson, Bertel [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Petersen, Christian [City of Odder (Denmark); De Schepper, Guillaume [Université Laval, Québec (Canada); Schamper, Cyril [Department of Earth Sciences, Aarhus University (Denmark); and others

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30–50 m and 2 m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the

  7. Nitrate reduction in geologically heterogeneous catchments

    DEFF Research Database (Denmark)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, Charlotte A.

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface...... conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root...... the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface...

  8. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation.

    Science.gov (United States)

    Cornelis, Geert; Van Gerven, Tom; Vandecasteele, Carlo

    2012-02-01

    Development of treatment methods to reduce Sb leaching from municipal solid waste incinerator (MSWI) bottom ash, such as accelerated carbonation, is being complicated by insufficient understanding of Sb geochemistry. The leaching of antimonate (Sb(V)) and antimonite (Sb(III)) in MSWI bottom was studied as a function of pH and degree of carbonation. While total (Sb(V)+Sb(III)) leaching was lowest (1.2 mg kg(-1)) at the natural pH (i.e. 10.6) of uncarbonated bottom ash, HPLC-ICP-MS analysis showed that acidification and carbonation increased Sb(V) leaching, but decreased Sb(III) leaching, probably because Sb(III)(OH)(4)(-) became less stable. PHREEQC geochemical modelling suggested that Sb(V) concentrations approached equilibrium with the romeites, i.e. calcium antimonates, Ca(1.13)Sb(2)(OH)(0.26)·0.74H(2)O at pH=10.6 and Ca[Sb(OH)(6)](2) at pH=8. It is hypothesised that not interaction with ettringite but dissolution of romeite controls antimonate leaching in the pH range 8-11 in MSWI bottom ash, because while Ca is preferentially leached from romeite, the mineral structures containing more Ca at higher pH are less soluble. A model was proposed where acidification and carbonation both lead to lower Ca(2+) and/or hydroxyl concentration, which removes Ca(2+) and hydroxyls from the romeite structure and leads to comparably higher Sb(V) concentration in equilibrium with romeite. Sb solubility depends on pH and Ca(2+) availability in this model, which has implications for bottom ash valorisation and risk assessment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Nitrogen leaching from natural ecosystems under global change: a modelling study

    Science.gov (United States)

    Braakhekke, Maarten C.; Rebel, Karin T.; Dekker, Stefan C.; Smith, Benjamin; Beusen, Arthur H. W.; Wassen, Martin J.

    2017-12-01

    To study global nitrogen (N) leaching from natural ecosystems under changing N deposition, climate, and atmospheric CO2, we performed a factorial model experiment for the period 1901-2006 with the N-enabled global terrestrial ecosystem model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). In eight global simulations, we used either the true transient time series of N deposition, climate, and atmospheric CO2 as input or kept combinations of these drivers constant at initial values. The results show that N deposition is globally the strongest driver of simulated N leaching, individually causing an increase of 88 % by 1997-2006 relative to pre-industrial conditions. Climate change led globally to a 31 % increase in N leaching, but the size and direction of change varied among global regions: leaching generally increased in regions with high soil organic carbon storage and high initial N status, and decreased in regions with a positive trend in vegetation productivity or decreasing precipitation. Rising atmospheric CO2 generally caused decreased N leaching (33 % globally), with strongest effects in regions with high productivity and N availability. All drivers combined resulted in a rise of N leaching by 73 % with strongest increases in Europe, eastern North America and South-East Asia, where N deposition rates are highest. Decreases in N leaching were predicted for the Amazon and northern India. We further found that N loss by fire regionally is a large term in the N budget, associated with lower N leaching, particularly in semi-arid biomes. Predicted global N leaching from natural lands rose from 13.6 Tg N yr-1 in 1901-1911 to 18.5 Tg N yr-1 in 1997-2006, accounting for reductions of natural land cover. Ecosystem N status (quantified as the reduction of vegetation productivity due to N limitation) shows a similar positive temporal trend but large spatial variability. Interestingly, this variability is more strongly related to vegetation type than N input

  10. Leaching mechanisms

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Colombo, P.

    1984-01-01

    Sufficient data are lacking to provide a basis for adequately assessing the long term leaching behavior of solidified low level radioactive waste forms in their disposal environment. Although the release of radioactivity from a waste form to an aqueous environment is recognized to be due to one or more mechanisms such as diffusion, dissolution, corrosion or ion exchange, the leaching mechanisms and the factors which control the leaching behavior of waste forms are not fully understood. This study will determine the prevailing mechanisms for a variety of selected LLW solidification agents which are being considered for use by defense and commercial generators and which will cover the broadest possible number of mechanisms. The investigation will proceed by the postulation of mathematical models representative of the prevailing mechanism(s) and the use of statistically designed experiments to test the actual leaching behavior of laborattory samples against the postulated representations. Maximum use of existing leach data in the literature will be made by incorporating literature results into a computerized data base along with the experimental results generated in this task

  11. Nitrate source apportionment in a subtropical watershed using Bayesian model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Han, Jiangpei; Xue, Jianlong; Zeng, Lingzao [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Shi, Jiachun, E-mail: jcshi@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Wu, Laosheng, E-mail: laowu@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Jiang, Yonghai [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012 (China)

    2013-10-01

    Nitrate (NO{sub 3}{sup −}) pollution in aquatic system is a worldwide problem. The temporal distribution pattern and sources of nitrate are of great concern for water quality. The nitrogen (N) cycling processes in a subtropical watershed located in Changxing County, Zhejiang Province, China were greatly influenced by the temporal variations of precipitation and temperature during the study period (September 2011 to July 2012). The highest NO{sub 3}{sup −} concentration in water was in May (wet season, mean ± SD = 17.45 ± 9.50 mg L{sup −1}) and the lowest concentration occurred in December (dry season, mean ± SD = 10.54 ± 6.28 mg L{sup −1}). Nevertheless, no water sample in the study area exceeds the WHO drinking water limit of 50 mg L{sup −1} NO{sub 3}{sup −}. Four sources of NO{sub 3}{sup −} (atmospheric deposition, AD; soil N, SN; synthetic fertilizer, SF; manure and sewage, M and S) were identified using both hydrochemical characteristics [Cl{sup −}, NO{sub 3}{sup −}, HCO{sub 3}{sup −}, SO{sub 4}{sup 2−}, Ca{sup 2+}, K{sup +}, Mg{sup 2+}, Na{sup +}, dissolved oxygen (DO)] and dual isotope approach (δ{sup 15}N–NO{sub 3}{sup −} and δ{sup 18}O–NO{sub 3}{sup −}). Both chemical and isotopic characteristics indicated that denitrification was not the main N cycling process in the study area. Using a Bayesian model (stable isotope analysis in R, SIAR), the contribution of each source was apportioned. Source apportionment results showed that source contributions differed significantly between the dry and wet season, AD and M and S contributed more in December than in May. In contrast, SN and SF contributed more NO{sub 3}{sup −} to water in May than that in December. M and S and SF were the major contributors in December and May, respectively. Moreover, the shortcomings and uncertainties of SIAR were discussed to provide implications for future works. With the assessment of temporal variation and sources of NO{sub 3}{sup −}, better

  12. Nitrate source apportionment in a subtropical watershed using Bayesian model

    International Nuclear Information System (INIS)

    Yang, Liping; Han, Jiangpei; Xue, Jianlong; Zeng, Lingzao; Shi, Jiachun; Wu, Laosheng; Jiang, Yonghai

    2013-01-01

    Nitrate (NO 3 − ) pollution in aquatic system is a worldwide problem. The temporal distribution pattern and sources of nitrate are of great concern for water quality. The nitrogen (N) cycling processes in a subtropical watershed located in Changxing County, Zhejiang Province, China were greatly influenced by the temporal variations of precipitation and temperature during the study period (September 2011 to July 2012). The highest NO 3 − concentration in water was in May (wet season, mean ± SD = 17.45 ± 9.50 mg L −1 ) and the lowest concentration occurred in December (dry season, mean ± SD = 10.54 ± 6.28 mg L −1 ). Nevertheless, no water sample in the study area exceeds the WHO drinking water limit of 50 mg L −1 NO 3 − . Four sources of NO 3 − (atmospheric deposition, AD; soil N, SN; synthetic fertilizer, SF; manure and sewage, M and S) were identified using both hydrochemical characteristics [Cl − , NO 3 − , HCO 3 − , SO 4 2− , Ca 2+ , K + , Mg 2+ , Na + , dissolved oxygen (DO)] and dual isotope approach (δ 15 N–NO 3 − and δ 18 O–NO 3 − ). Both chemical and isotopic characteristics indicated that denitrification was not the main N cycling process in the study area. Using a Bayesian model (stable isotope analysis in R, SIAR), the contribution of each source was apportioned. Source apportionment results showed that source contributions differed significantly between the dry and wet season, AD and M and S contributed more in December than in May. In contrast, SN and SF contributed more NO 3 − to water in May than that in December. M and S and SF were the major contributors in December and May, respectively. Moreover, the shortcomings and uncertainties of SIAR were discussed to provide implications for future works. With the assessment of temporal variation and sources of NO 3 − , better agricultural management practices and sewage disposal programs can be implemented to sustain water quality in subtropical watersheds

  13. Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wang Aijie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Liu Chunshuang; Ren Nanqi; Han Hongjun [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Lee Duujong [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2010-06-15

    Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S{sup 0}), N{sub 2}, and CO{sub 2}, or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 < C/S < 3.0 with influent sulfide concentration of 400-1000 mg/L. At >1000 mg/L influent sulfide, however, the DSR system will break down.

  14. A novel modelling approach for spatial and temporal variations in nitrate concentrations in an N-impacted UK small upland river basin

    International Nuclear Information System (INIS)

    Smart, Richard P.; Cresser, Malcolm S.; Calver, Louise J.; Clark, Matthew; Chapman, Pippa J.

    2005-01-01

    Monthly data for 11 moorland streams displaying marked seasonality and spatial variation in nitrate concentrations have been used with readily available catchment characteristics to develop a method for predicting stream water nitrate concentrations throughout an upland river network in the Lake District, UK. Over a 12-month period, a simple asymmetric truncated cosine function of day number is used to describe seasonality effects on stream water nitrate concentrations. This is then adjusted to compensate for differences in seasonality effects with catchment elevation. Occurrence of greater proportions of steeper slopes (>20 deg. -40 deg. ) in individual catchments facilitated nitrate leaching, as did increased extent of occurrence of outcropping rocks. It is shown that the spatial and temporal variation in nitrate concentration through the river network studied may therefore be effectively represented by an equation which is a function of day number, % outcropping rock and % of catchment area with a >20 deg. -40 deg. slope. - A novel model of spatial and temporal variations in stream water nitrate concentration throughout an N-impacted upland catchment is described

  15. Parsimonious Hydrologic and Nitrate Response Models For Silver Springs, Florida

    Science.gov (United States)

    Klammler, Harald; Yaquian-Luna, Jose Antonio; Jawitz, James W.; Annable, Michael D.; Hatfield, Kirk

    2014-05-01

    Silver Springs with an approximate discharge of 25 m3/sec is one of Florida's first magnitude springs and among the largest springs worldwide. Its 2500-km2 springshed overlies the mostly unconfined Upper Floridan Aquifer. The aquifer is approximately 100 m thick and predominantly consists of porous, fractured and cavernous limestone, which leads to excellent surface drainage properties (no major stream network other than Silver Springs run) and complex groundwater flow patterns through both rock matrix and fast conduits. Over the past few decades, discharge from Silver Springs has been observed to slowly but continuously decline, while nitrate concentrations in the spring water have enormously increased from a background level of 0.05 mg/l to over 1 mg/l. In combination with concurrent increases in algae growth and turbidity, for example, and despite an otherwise relatively stable water quality, this has given rise to concerns about the ecological equilibrium in and near the spring run as well as possible impacts on tourism. The purpose of the present work is to elaborate parsimonious lumped parameter models that may be used by resource managers for evaluating the springshed's hydrologic and nitrate transport responses. Instead of attempting to explicitly consider the complex hydrogeologic features of the aquifer in a typically numerical and / or stochastic approach, we use a transfer function approach wherein input signals (i.e., time series of groundwater recharge and nitrate loading) are transformed into output signals (i.e., time series of spring discharge and spring nitrate concentrations) by some linear and time-invariant law. The dynamic response types and parameters are inferred from comparing input and output time series in frequency domain (e.g., after Fourier transformation). Results are converted into impulse (or step) response functions, which describe at what time and to what magnitude a unitary change in input manifests at the output. For the

  16. Pesticide leaching in polders : field and model studies on cracked clays and loamy sand

    NARCIS (Netherlands)

    Groen, K.P.

    1997-01-01

    This thesis reports on a study of pesticide leaching in polder areas. The study comprises two aspects: a data collection program and the development, calibration and application of the model SWACRO for the simulation of pesticide transport.

    Field data were

  17. A mathematical model, and code LIXY, for leaching of radionuclides from containment

    International Nuclear Information System (INIS)

    Fraser, J.L.; Jarvis, R.G.

    1985-06-01

    A mathematical model has been developed to describe the leaching of a radionuclide from an inner region into an outer region, by diffusion processes. Answers have been obtained for the whole range of time values, and have been written into a code LIXY, to calculate the concentration of nuclide at the outer face of the outer region

  18. Modeling nitrate from land surface to wells' perforations under agricultural land: success, failure, and future scenarios in a Mediterranean case study

    Directory of Open Access Journals (Sweden)

    Y. Levy

    2017-07-01

    Full Text Available Contamination of groundwater resources by nitrate leaching under agricultural land is probably the most troublesome agriculture-related water contamination worldwide. Contaminated areas often show large spatial variability of nitrate concentration in wells. In this study, we tried to assess whether this spatial variability can be characterized on the basis of land use and standard agricultural practices. Deep soil sampling (10 m was used to calibrate vertical flow and nitrogen-transport numerical models of the unsaturated zone under different agricultural land uses. Vegetable fields (potato and strawberry and deciduous orchards (persimmon in the Sharon area overlying the coastal aquifer of Israel were examined. Average nitrate–nitrogen fluxes below vegetable fields were 210–290 kg ha−1 yr−1 and under deciduous orchards were 110–140 kg ha−1 yr−1. The output water and nitrate–nitrogen fluxes of the unsaturated-zone models were used as input data for a three-dimensional flow and nitrate-transport model in the aquifer under an area of 13.3 km2 of agricultural land. The area was subdivided into four agricultural land uses: vegetables, deciduous orchards, citrus orchards, and non-cultivated. Fluxes of water and nitrate–nitrogen below citrus orchards were taken from a previous study in the area. The groundwater flow model was calibrated to well heads by changing the hydraulic conductivity. The nitrate-transport model, which was fed by the above-mentioned models of the unsaturated zone, succeeded in reconstructing the average nitrate concentration in the wells. However, this transport model failed in calculating the high concentrations in the most contaminated wells and the large spatial variability of nitrate concentrations in the aquifer. To reconstruct the spatial variability and enable predictions, nitrate fluxes from the unsaturated zone were multiplied by local multipliers. This action was rationalized by the fact

  19. Monitoring and Modeling the Fate and Transport of Nitrate in the Vadose Zone beneath a Suwannee River Basin Vegetable Farm

    Science.gov (United States)

    Albert, M. A.; Graham, W. D.; Graetz, D.

    2002-05-01

    The Suwannee River basin has received much attention in recent years due to increased nitrogen levels in the groundwater-fed rivers of the basin that could seriously affect the welfare of this ecosystem. Nitrogen levels have increased from 0.1mg/l NO3-N to more than 5 mg/L NO3-N in many springs in the Suwannee Basin over the past 40 years. Nitrate concentrations in the Suwannee River itself have been increasing at the rate of .02 mg/L per year over the past 20 years. Suwannee River nitrate loads increase from 2300 kg/day to 6000 kg/day over a 33 mile stretch of the river between Dowling Park and Branford, Florida. Within this stretch of river, 89% of the nitrate loading appeared to come from the lower two-thirds, where agriculture is the dominant land use. The objective of this research is to monitor and model the impacts of alternative nutrient and water management practices on soil water quality, groundwater quality and crop yield at a commercial vegetable farm in the Suwannee River Basin. Groundwater monitoring wells, suction lysimeters, soil cores and TDR probes are used to monitor water and nitrogen transport at the site. Periodic plant biomass sampling is conducted to determine nitrogen uptake by the plants and to estimate crop yield. Field data show that two-thirds of the nitrogen applied to the spring 2001 potato crop leached to groundwater due to excessive irrigation and poor nitrogen uptake efficiency by the potatoes. The DSSAT35-Potato Crop model and the LEACHM vadose-zone model were calibrated for the spring 2001 potato crop and used to predict nitrogen leaching and crop yield for alternative management practices. Simulation results show that by reducing the duration of irrigation, reducing the fertilizer application rate, and improving the timing of fertilizer applications, nitrogen leaching can be reduced by approximately 50% while maintaining acceptable crop yields. Results of this project will ultimately be used to develop best management practices

  20. Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method provides procedures for measuring the leach rates of elements from a solidified matrix material, determining if the releases are controlled by mass diffusion, computing values of diffusion constants based on models, and verifying projected long-term diffusive releases. This test method is applicable to any material that does not degrade or deform during the test. 1.1.1 If mass diffusion is the dominant step in the leaching mechanism, then the results of this test can be used to calculate diffusion coefficients using mathematical diffusion models. A computer program developed for that purpose is available as a companion to this test method (Note 1). 1.1.2 It should be verified that leaching is controlled by diffusion by a means other than analysis of the leach test solution data. Analysis of concentration profiles of species of interest near the surface of the solid waste form after the test is recommended for this purpose. 1.1.3 Potential effects of partitioning on the test results can...

  1. The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone.

    Science.gov (United States)

    Wang, L; Butcher, A S; Stuart, M E; Gooddy, D C; Bloomfield, J P

    2013-10-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the 'store' of nitrate and its potentially long travel time in the unsaturated and saturated zones. However, this time lag is rarely considered in current water nitrate management and policy development. The aim of this study was to develop a catchment-scale integrated numerical method to investigate the nitrate lag time in the groundwater system, and the Eden Valley, UK, was selected as a case study area. The method involves three models, namely the nitrate time bomb-a process-based model to simulate the nitrate transport in the unsaturated zone (USZ), GISGroundwater--a GISGroundwater flow model, and N-FM--a model to simulate the nitrate transport in the saturated zone. This study answers the scientific questions of when the nitrate currently in the groundwater was loaded into the unsaturated zones and eventually reached the water table; is the rising groundwater nitrate concentration in the study area caused by historic nitrate load; what caused the uneven distribution of groundwater nitrate concentration in the study area; and whether the historic peak nitrate loading has reached the water table in the area. The groundwater nitrate in the area was mainly from the 1980s to 2000s, whilst the groundwater nitrate in most of the source protection zones leached into the system during 1940s-1970s; the large and spatially variable thickness of the USZ is one of the major reasons for unevenly distributed groundwater nitrate concentrations in the study area; the peak nitrate loading around 1983 has affected most of the study area. For areas around the Bowscar, Beacon Edge, Low Plains, Nord Vue

  2. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling

    Directory of Open Access Journals (Sweden)

    Anđelković Darko H.

    2012-01-01

    Full Text Available Distribution of chromium between soil and leachate was monitored. A natural process of percolating rainwater through the soil was simulated in the laboratory conditions and studied with column leaching extraction. Migration of chromium in the soil is conditioned by the level of chromium soil contamination, the soil organic matter content, and rainwater acidity. Chromium (III and chromium(VI were determined by spectrophotometric method with diphenilcarbazide in acidic media. Comparing the results of chromium speciation in leachate obtained by experimental model systems and geochemical modelling calculations using Visual MINTEQ model, a correlation was observed regarding the influence of the tested parameters. Leachate solutions showed that the concentration of Cr depended on the organic matter content. The influence of pH and soil organic matter content is in compliance after its definition through experimental and theoretical way. The computer model - Stockholm Humic Model used to evaluate the leaching results corresponded rather well with the measured values.

  3. An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow–force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx

    Science.gov (United States)

    Le Deunff, Erwan; Malagoli, Philippe

    2014-01-01

    Background and Aims In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. Methods A cross-combination of a Flow–Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to ‘Enzyme–Substrate’ interpretations, a Flow–Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. Key Results and Conclusions Use of a Flow–Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure–function mechanistic model of N uptake. PMID:24638820

  4. Extent and causes of 3D spatial variations in potential N mineralization and the risk of ammonium and nitrate leaching from an N-impacted permanent grassland near York, UK

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, Muhammad [Environment Department, University of York, Heslington Road, York, North Yorkshire YO10 5DD (United Kingdom)], E-mail: mr548@york.ac.uk; Mian, Ishaq A. [Environment Department, University of York, Heslington Road, York, North Yorkshire YO10 5DD (United Kingdom)], E-mail: iam501@york.ac.uk; Cresser, Malcolm S. [Environment Department, University of York, Heslington Road, York, North Yorkshire YO10 5DD (United Kingdom)], E-mail: msc5@york.ac.uk

    2008-12-15

    Changes in the dynamics of inorganic N species transformations with depth have been investigated for seven soil profiles from a nitrogen-impacted ancient grassland on a nature reserve outside York in the UK, using incubation experiments. In five of the profiles, both ammonification and nitrification are occurring below the rooting zone, probably partly in response to the low C:N ratio in the soils. This contributes to elevated nitrate concentrations found in an adjacent stream. Accumulation of ammonium during incubation in the sub-soils of these five profiles suggests a high probability of ammonium leaching down the profiles as ammonium inputs and outputs at a given depth approach equilibrium. This ammonium may also be nitrified at depth. However, in the two profiles with the most acidic surface horizons, net mineralization was negligible or negative; some initial ammonium-N and ammonium-N produced during incubation were nitrified, so the loss in ammonium-N was closely balanced by nitrate-N production. - Inorganic N species transformations in sub-soils of N-impacted acid grassland contribute to N leaching.

  5. Conducting field studies for testing pesticide leaching models

    Science.gov (United States)

    Smith, Charles N.; Parrish, Rudolph S.; Brown, David S.

    1990-01-01

    A variety of predictive models are being applied to evaluate the transport and transformation of pesticides in the environment. These include well known models such as the Pesticide Root Zone Model (PRZM), the Risk of Unsaturated-Saturated Transport and Transformation Interactions for Chemical Concentrations Model (RUSTIC) and the Groundwater Loading Effects of Agricultural Management Systems Model (GLEAMS). The potentially large impacts of using these models as tools for developing pesticide management strategies and regulatory decisions necessitates development of sound model validation protocols. This paper offers guidance on many of the theoretical and practical problems encountered in the design and implementation of field-scale model validation studies. Recommendations are provided for site selection and characterization, test compound selection, data needs, measurement techniques, statistical design considerations and sampling techniques. A strategy is provided for quantitatively testing models using field measurements.

  6. Deforestation and leaching of nitrogen as nitrates into underground water in intertropical zones: The example of Cote d'Ivoire (the Ivory Coast)

    International Nuclear Information System (INIS)

    Faillat, J.P.; Rambaud, A.

    1991-01-01

    High nitrate contents (up to 200 mgl) has been observed in wells drilled into fractured aquifers lying beneath layers of weathered and decayed rock in the humid tropics where annual rainfall is over 1,000 mm and where there is no notable pollution. The source of the nitrates is linked mainly with localized deforestation by man

  7. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends.

    Science.gov (United States)

    Onori, Roberta; Polettini, Alessandra; Pomi, Raffaella

    2011-02-01

    In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl(2) or CaSO(4), which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl(2) exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect on mechanical strength was also observed when CaSO(4) was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Application of the new ICRP respiratory tract model to inhaled plutonium nitrate using experimental biokinetic data

    Energy Technology Data Exchange (ETDEWEB)

    Birchall, A.; Bailey, M.R.; Jarvis, N.S. [National Radiological Protection Board, Chilton (United Kingdom)

    1995-12-31

    This paper describes the new ICRP respiratory tract model with particular reference to inhaled plutonium nitrate. The model is used to determine the absorption rates to blood for plutonium nitrate which when combined with the plutonium excretion functions were used to predict urinary excretion in man. The implications of the new model for radiological protection are discussed. (UK).

  9. Long-term behaviour of bituminized waste: modelling self-irradiation and leaching

    International Nuclear Information System (INIS)

    Simondi-Teisseire, B.; Vistoli, P.P.; Libert, M.; Gilardi, T.; Chaix, P.; Blanc, V.

    2001-01-01

    During interim storage, the main evolution factor of bituminized wastes is radiolysis, due to self-irradiation. In deep disposal conditions, after site re-saturation and corrosion of the containers, the main evolution will be due to leaching. This paper deals with two models designed to describe respectively radiolytic gas evacuation (JACOB- 2) and bituminized waste leaching (COLONBO), and some of the typical results obtained from these two models. The first model describes radiolytic gas production, diffusive transport of gas, bubble nucleation and ripening and movement under buoyancy. The second one is based on descriptions of water sorption, solubilization, and diffusion into the matrix, water uptake by the most soluble salts leading to alteration of the matrix and finally to diffusive transport of the salts outside the bitumenisate. (author)

  10. A globally applicable location-specific screening model for assessing the relative risk of pesticide leaching

    International Nuclear Information System (INIS)

    Whelan, M.J.; Davenport, E.J.; Smith, B.G.

    2007-01-01

    A screening model of pesticide leaching loss is described which forms part of a multi-criteria risk-based indicator system called PRoMPT (Pesticide Risk Management and Profiling Tool). The leaching model evaluates pesticide fate in soil for any application rate and time of application (including multiple applications), for any land-based location in the world. It considers a generic evaluative environment with fixed dimensions and soil properties. The soil profile is conceptualised as a number of discrete layers. Equilibrium partitioning between adsorbed and dissolved chemical (based on the organic carbon-water partition coefficient [K OC ]) is assumed in each time step, in each layer. Non-leaching losses are described using first order kinetics. Drainage is assumed to be uniform throughout the soil profile but varies temporally. The drainage rate, which can be augmented by evapotranspiration-adjusted irrigation, is derived from long-term mean monthly water balance model calculations performed for 30 arc-minute grid cells across the entire ice-free land surface of the earth. Although, such predictions are approximate, they do capture the seasonality and relative magnitude of drainage and allow the model to be applied anywhere, without the need for extensive data compilation. PRoMPT predictions are shown to be consistent with those made by more sophisticated models (PRZM, PELMO and PEARL) for the FOCUS groundwater scenarios

  11. A globally applicable location-specific screening model for assessing the relative risk of pesticide leaching

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, M.J. [Unilever Safety and Environmental Assurance Centre, Colworth House, Sharnbrook, Bedfordshire, MK44 1LQ (United Kingdom)]. E-mail: mick.whelan@unilever.com; Davenport, E.J. [Unilever Safety and Environmental Assurance Centre, Colworth House, Sharnbrook, Bedfordshire, MK44 1LQ (United Kingdom); Smith, B.G. [Unilever Sustainable Agriculture Team, Colworth House, Sharnbrook, Bedfordshire, MK44 1LQ (United Kingdom)

    2007-05-15

    A screening model of pesticide leaching loss is described which forms part of a multi-criteria risk-based indicator system called PRoMPT (Pesticide Risk Management and Profiling Tool). The leaching model evaluates pesticide fate in soil for any application rate and time of application (including multiple applications), for any land-based location in the world. It considers a generic evaluative environment with fixed dimensions and soil properties. The soil profile is conceptualised as a number of discrete layers. Equilibrium partitioning between adsorbed and dissolved chemical (based on the organic carbon-water partition coefficient [K {sub OC}]) is assumed in each time step, in each layer. Non-leaching losses are described using first order kinetics. Drainage is assumed to be uniform throughout the soil profile but varies temporally. The drainage rate, which can be augmented by evapotranspiration-adjusted irrigation, is derived from long-term mean monthly water balance model calculations performed for 30 arc-minute grid cells across the entire ice-free land surface of the earth. Although, such predictions are approximate, they do capture the seasonality and relative magnitude of drainage and allow the model to be applied anywhere, without the need for extensive data compilation. PRoMPT predictions are shown to be consistent with those made by more sophisticated models (PRZM, PELMO and PEARL) for the FOCUS groundwater scenarios.

  12. Modeling the migration of radioactive contaminants in groundwater of in situ leaching uranium mine

    International Nuclear Information System (INIS)

    Li Chunguang; Tai Kaixuan

    2011-01-01

    The radioactive contamination of groundwater from in situ leaching (ISL) of uranium mining is a widespread environmental problem. This paper analyzed the monitor results of groundwater contaminations for a in situ leaching uranium mine. A dynamic model of contaminants transport in groundwater in ISL well field was established. The processes and mechanisms of contaminant transport in groundwater were simulated numerically for a ISL well field. A small quantity of U and SO 4 2- migrate to outside of well field during ISL production stage. But the migration velocity and distance of contaminations is small, and the concentration is low. Contaminants migrate as anomalistic tooth-shape. The migration trend of U and SO 4 2- is consistent. Numerical modeling can provide an effective approach to analyse the transport mechanism, and forecast and control the migration of contaminants in groundwater in ISL well field. (authors)

  13. Verifiable metamodels for nitrate losses to drains and groundwater in the Corn Belt, USA

    Science.gov (United States)

    Nolan, Bernard T.; Malone, Robert W.; Gronberg, Jo Ann M.; Thorp, K.R.; Ma, Liwang

    2012-01-01

    Nitrate leaching in the unsaturated zone poses a risk to groundwater, whereas nitrate in tile drainage is conveyed directly to streams. We developed metamodels (MMs) consisting of artificial neural networks to simplify and upscale mechanistic fate and transport models for prediction of nitrate losses by drains and leaching in the Corn Belt, USA. The two final MMs predicted nitrate concentration and flux, respectively, in the shallow subsurface. Because each MM considered both tile drainage and leaching, they represent an integrated approach to vulnerability assessment. The MMs used readily available data comprising farm fertilizer nitrogen (N), weather data, and soil properties as inputs; therefore, they were well suited for regional extrapolation. The MMs effectively related the outputs of the underlying mechanistic model (Root Zone Water Quality Model) to the inputs (R2 = 0.986 for the nitrate concentration MM). Predicted nitrate concentration was compared with measured nitrate in 38 samples of recently recharged groundwater, yielding a Pearson’s r of 0.466 (p = 0.003). Predicted nitrate generally was higher than that measured in groundwater, possibly as a result of the time-lag for modern recharge to reach well screens, denitrification in groundwater, or interception of recharge by tile drains. In a qualitative comparison, predicted nitrate concentration also compared favorably with results from a previous regression model that predicted total N in streams.

  14. MODELING NITRATE CONCENTRATION IN GROUND WATER USING REGRESSION AND NEURAL NETWORKS

    OpenAIRE

    Ramasamy, Nacha; Krishnan, Palaniappa; Bernard, John C.; Ritter, William F.

    2003-01-01

    Nitrate concentration in ground water is a major problem in specific agricultural areas. Using regression and neural networks, this study models nitrate concentration in ground water as a function of iron concentration in ground water, season and distance of the well from a poultry house. Results from both techniques are comparable and show that the distance of the well from a poultry house has a significant effect on nitrate concentration in groundwater.

  15. Predicting Cyanide Consumption in Gold Leaching: A Kinetic and Thermodynamic Modeling Approach

    Directory of Open Access Journals (Sweden)

    Yaser Kianinia

    2018-03-01

    Full Text Available The consumption of cyanide during processing operations is a major economic cost in the extraction of gold from its ores, while the discharge of cyanide wastes may result in significant environmental pollution. Many factors influence the levels of consumption and discharge of cyanide, including ore mineralogy and lixiviant solution chemistry. This paper proposes a robust methodology to estimate leaching cyanide consumption due to oxidation and reactions with gold, chalcopyrite and pyrite minerals forming various cyanide complexes, cyanate, thiocyanate and hydroxide precipitates of copper and iron. The method involves concurrent modelling of both the oxidation and leaching kinetics of minerals and the chemical speciation of the lixiviant solutions. The model was calibrated by conducting cyanide leaching experiments on pyrite, chalcopyrite, pyrite + chalcopyrite, pyrite + chalcopyrite + gold and pyrite + chalcopyrite + gold + quartz systems and determining the total Cu, Fe, Au and CN− concentrations in solution. We show that this model can successfully estimate the formation of cyanide complexes and, hence, the consumption of cyanide.

  16. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations.

    Science.gov (United States)

    Li, Jinlong; Shi, Xilin; Yang, Chunhe; Li, Yinping; Wang, Tongtao; Ma, Hongling

    2018-01-10

    A mathematical model is established to predict the salt cavern development during leaching in high-insoluble salt formations. The salt-brine mass transfer rate is introduced, and the effects of the insoluble sediments on the development of the cavern are included. Considering the salt mass conservation in the cavern, the couple equations of the cavern shape, brine concentration and brine velocity are derived. According to the falling and accumulating rules of the insoluble particles, the governing equations of the insoluble sediments are deduced. A computer program using VC++ language is developed to obtain the numerical solution of these equations. To verify the proposed model, the leaching processes of two salt caverns of Jintan underground gas storage are simulated by the program, using the actual geological and technological parameters. The same simulation is performed by the current mainstream leaching software in China. The simulation results of the two programs are compared with the available field data. It shows that the proposed software is more accurate on the shape prediction of the cavern bottom and roof, which demonstrates the reliability and applicability of the model.

  17. Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals.

    Science.gov (United States)

    Alquier, Marjorie; Kassim, Caroline; Bertron, Alexandra; Sablayrolles, Caroline; Rafrafi, Yan; Albrecht, Achim; Erable, Benjamin

    2014-01-01

    After closure of a waste disposal cell in a repository for radioactive waste, resaturation is likely to cause the release of soluble species contained in cement and bituminous matrices, such as ionic species (nitrates, sulfates, calcium and alkaline ions, etc.), organic matter (mainly organic acids), or gases (from steel containers and reinforced concrete structures as well as from radiolysis within the waste packages). However, in the presence of nitrates in the near-field of waste, the waste cell can initiate oxidative conditions leading to enhanced mobility of redox-sensitive radionuclides (RN). In biotic conditions and in the presence of organic matter and/or hydrogen as electron donors, nitrates may be microbiologically reduced, allowing a return to reducing conditions that promote the safety of storage. Our work aims to analyze the possible microbial reactivity of nitrates at the bitumen - concrete interface in conditions as close as possible to radioactive waste storage conditions in order (i) to evaluate the nitrate reaction kinetics; (ii) to identify the by-products (NO2(-), NH4(+), N2, N2O, etc.); and (iii) to discriminate between the roles of planktonic bacteria and those adhering as a biofilm structure in the denitrifying activity. Leaching experiments on solid matrices (bitumen and cement pastes) were first implemented to define the physicochemical conditions that microorganisms are likely to meet at the bitumen-concrete interface, e.g. highly alkaline pH conditions (10 < pH < 11) imposed by the cement matrix. The screening of a range of anaerobic denitrifying bacterial strains led us to select Halomonas desiderata as a model bacterium capable of catalyzing the reaction of nitrate reduction in these particular conditions of pH. The denitrifying activity of H. desiderata was quantified in a batch bioreactor in the presence of solid matrices and/or leachate from bitumen and cement matrices. Denitrification was relatively fast in the presence of cement

  18. Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT

    Science.gov (United States)

    Schilling, K.E.; Wolter, C.F.

    2009-01-01

    The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.

  19. Modeling nitrate-nitrogen load reduction strategies for the Des Moines River, Iowa using SWAT.

    Science.gov (United States)

    Schilling, Keith E; Wolter, Calvin F

    2009-10-01

    The Des Moines River that drains a watershed of 16,175 km(2) in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed.

  20. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    Directory of Open Access Journals (Sweden)

    Chiang K.-T. K.

    2013-07-01

    Full Text Available Borated water leakage through spent fuel pools (SFPs at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  1. A mechanistic model for leaching from low-level radioactive waste packages

    International Nuclear Information System (INIS)

    Kempf, C.R.

    1988-01-01

    The development of a waste leaching model to predict radionuclide releases from porous wastes in corrodible outer containers in unsaturated conditions and/or conditions of intermittent water flow is summarized in this paper. Three major processes have been conceptualized as necessarily participating in waste leaching: infiltration of water to the waste package; interaction of this water with the waste; and exit of radionuclide-laden water from the waste package. Through the exit point, the main features of the whole leaching process ware held in common. The departure occurs in two main ways: 1) the method of entrance of the radionuclides to leachant (i.e. part of the waste-water interaction phase outlined earlier); and 2) the mode of exit from waste form/waste package (i.e., the exit of radionuclide-laden water phase). The first branching point, which occurs in relation to 1), leads to either readily soluble species directly entering leachant on contact, or to other processes - mainly expected to be diffusion, dissolution or ion exchange, or some combination thereof

  2. Comparative modelling and molecular docking of nitrate reductase from Bacillus weihenstephanensis (DS45

    Directory of Open Access Journals (Sweden)

    R. Seenivasagan

    2016-07-01

    Full Text Available Nitrate reductase catalyses the oxidation of NAD(PH and the reduction of nitrate to nitrite. NR serves as a central point for the integration of metabolic pathways by governing the flux of reduced nitrogen through several regulatory mechanisms in plants, algae and fungi. Bacteria express nitrate reductases that convert nitrate to nitrite, but mammals lack these specific enzymes. The microbial nitrate reductase reduces toxic compounds to nontoxic compounds with the help of NAD(PH. In the present study, our results revealed that Bacillus weihenstephanensis expresses a nitrate reductase enzyme, which was made to generate the 3D structure of the enzyme. Six different modelling servers, namely Phyre2, RaptorX, M4T Server, HHpred, SWISS MODEL and Mod Web, were used for comparative modelling of the structure. The model was validated with standard parameters (PROCHECK and Verify 3D. This study will be useful in the functional characterization of the nitrate reductase enzyme and its docking with nitrate molecules, as well as for use with autodocking.

  3. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  4. Using StorAge Selection Functions to Improve Simulation of Groundwater Nitrate Lag Times in the SWAT Modeling Framework.

    Science.gov (United States)

    Wilusz, D. C.; Fuka, D.; Cho, C.; Ball, W. P.; Easton, Z. M.; Harman, C. J.

    2017-12-01

    Intensive agriculture and atmospheric deposition have dramatically increased the input of reactive nitrogen into many watersheds worldwide. Reactive nitrogen can leach as nitrate into groundwater, which is stored and eventually released over years to decades into surface waters, potentially degrading water quality. To simulate the fate and transport of groundwater nitrate, many researchers and practitioners use the Soil and Water Assessment Tool (SWAT) or an enhanced version of SWAT that accounts for topographically-driven variable source areas (TopoSWAT). Both SWAT and TopoSWAT effectively assume that nitrate in the groundwater reservoir is well-mixed, which is known to be a poor assumption at many sites. In this study, we describe modifications to TopoSWAT that (1) relax the assumption of groundwater well-mixedness, (2) more flexibly parameterize groundwater transport as a time-varying distribution of travel times using the recently developed theory of rank StorAge Selection (rSAS) functions, and (3) allow for groundwater age to be represented by position on the hillslope or hydrological distance from the stream. The approach conceptualizes the groundwater aquifer as a population of water parcels entering as recharge with a particular nitrate concentration, aging as they move through storage, and eventually exiting as baseflow. The rSAS function selects the distribution of parcel ages that exit as baseflow based on a parameterized probability distribution; this distribution can be adjusted to preferentially select different distributions of young and old parcels in storage so as to reproduce (in principle) any form of transport. The modified TopoSWAT model (TopoSWAT+rSAS) is tested at a small agricultural catchment in the Eastern Shore, MD with an extensive hydrologic and hydrochemical data record for calibration and evaluation. The results examine (1) the sensitivity of TopoSWAT+rSAS modeling of nitrate transport to assumptions about the distribution of travel

  5. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC

    International Nuclear Information System (INIS)

    Halim, Cheryl E.; Short, Stephen A.; Scott, Jason A.; Amal, Rose; Low, Gary

    2005-01-01

    A leaching model was developed using the United States Geological Survey public domain PHREEQC geochemical package to simulate the leaching of Pb, Cd, As, and Cr from cementitious wastes. The model utilises both kinetic terms and equilibrium thermodynamics of key compounds and provides information on leachate and precipitate speciation. The model was able to predict the leaching of Pb, Cd, As, and Cr from cement in the presence of both simple (0.1 and 0.6 M acetic acid) and complex municipal landfill leachates. Heavy metal complexation by the municipal landfill leachate was accounted for by the introduction of a monoprotic organic species into the model. The model indicated Pb and As were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd was seen to exist as discrete particles in the cement pores and Cr (VI) existed mostly as free CrO 4 2- ions. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. At high pH values, the concentration of As in the leachate was governed by the solubility of Ca 3 (AsO 4 ) 2 with the presence of carbonate alkalinity competing with arsenate for Ca ions. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution. The reduction of As and Cr in municipal landfill leachate was crucial for determining aqueous speciation, with typical municipal landfill conditions providing the reduced forms of As and Cr

  6. Nitrate leaching, water-use efficiency and yield of corn with different irrigation and nitrogen management systems in coastal plains, USA

    Science.gov (United States)

    Irrigation management for corn (Zea mays L.) production on the typical low water holding capacity soil of the southeastern USA needs to be improved to increase irrigation efficiency and reduce losses of nitrate from fields. A three-year (2012-2014) field study was conducted to compare the effects of...

  7. Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash.

    Science.gov (United States)

    Wang, Lei; Chen, Qi; Jamro, Imtiaz Ali; Li, Rundong; Li, Yanlong; Li, Shaobai; Luan, Jingde

    2016-06-01

    Municipal solid waste incinerator (MSWI) fly ashes are characterized by high calcium oxide (CaO) content. Carbon dioxide (CO2) adsorption by MSWI fly ash was discussed based on thermogravimetry (TG)/differential thermal analysis (DTA), minerology analysis, and adapting the Stenoir equation. TG/DTA analysis showed that the weight gain of the fly ash below 440 °C was as high as 5.70 %. An adapted Stenoir equation for MSWI fly ash was discussed. The chloride in MSWI fly ash has a major impact on CO2 adsorption by MSWI fly ash or air pollution control (APC) residues. Geochemical modeling of the critical trace elements copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), and antimony (Sb) before and after carbonation was performed using a thermodynamic equilibrium model for solubility and a surface complexation model for metal sorption. Leaching of critical trace elements was generally found to be strongly dependent on the degree of carbonation attained, and their solubility appeared to be controlled by several minerals. Adsorption on ferrum (Fe) and aluminum (Al) colloids was also responsible for removal of the trace elements Cd, Pb, and Sb. We used Hakanson's potential ecological risk index (HPERI) to evaluate the risk of trace element leaching in general. The results demonstrate that the ecological risk showed a V-shaped dependency on pH; the optimum pH of the carbonated fly ash was found to be 10.3-11, resulting from the optimum carbonation (liquid-to-solid (L/S) ratio = 0.25, carbonation duration = ∼30-48 h). The dataset and modeling results presented here provide a contribution to assessing the leaching behavior of MSWI fly ash under a wide range of conditions.

  8. Modeling the Current and Future Roles of Particulate Organic Nitrates in the Southeastern United States.

    Science.gov (United States)

    Pye, Havala O T; Luecken, Deborah J; Xu, Lu; Boyd, Christopher M; Ng, Nga L; Baker, Kirk R; Ayres, Benjamin R; Bash, Jesse O; Baumann, Karsten; Carter, William P L; Edgerton, Eric; Fry, Juliane L; Hutzell, William T; Schwede, Donna B; Shepson, Paul B

    2015-12-15

    Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate radicals (the primary source of particle-phase organic nitrates in the Southeast United States), secondary organic aerosol (SOA) models can underestimate yields. Furthermore, SOA parametrizations do not explicitly take into account organic nitrate compounds produced in the gas phase. In this work, we developed a coupled gas and aerosol system to describe the formation and subsequent aerosol-phase partitioning of organic nitrates from isoprene and monoterpenes with a focus on the Southeast United States. The concentrations of organic aerosol and gas-phase organic nitrates were improved when particulate organic nitrates were assumed to undergo rapid (τ = 3 h) pseudohydrolysis resulting in nitric acid and nonvolatile secondary organic aerosol. In addition, up to 60% of less oxidized-oxygenated organic aerosol (LO-OOA) could be accounted for via organic nitrate mediated chemistry during the Southern Oxidants and Aerosol Study (SOAS). A 25% reduction in nitrogen oxide (NO + NO2) emissions was predicted to cause a 9% reduction in organic aerosol for June 2013 SOAS conditions at Centreville, Alabama.

  9. Geochemical modeling of leaching from MSWI air-pollution control residues

    NARCIS (Netherlands)

    Astrup, T.; Dijkstra, J.J.; Comans, R.N.J.; Sloot, van der H.A.; Christensen, T.H.

    2006-01-01

    This paper provides an improved understanding of the leaching behavior of waste incineration air-pollution-control (APC) residues in a long-term perspective. Leaching was investigated by a series of batch experiments reflecting leaching conditions after initial washout of highly soluble salts from

  10. Water leaching of borosilicate glasses: experiments, modeling and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Ledieu, A.

    2004-10-01

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  11. Immobilized waste leaching

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1989-01-01

    The main mechanism by which the immobilized radioactive materials can return to biosphere is the leaching due to the intrusion of water into the repositories. Some mathematical models and experiments utilized to evaluate the leaching rates in different immobilization matrices are described. (author) [pt

  12. A dynamic uranium-leaching model for process-control studies

    International Nuclear Information System (INIS)

    Vetter, D.A.; Barker, I.J.; Turner, G.A.

    1989-01-01

    The modelling of the uranium-leaching process, and the logging of data from a plant for the evaluation of the model, are reported. A phenomenological approach was adopted in the development of the model. A set of eight chemical reactions was chosen to represent the complex chemistry of the process, and kinetic expressions for these reactions were incorporated in differential equations representing mass and energy balances. These equations were coded in FORTRAN to form a program that simulated the process, and that allowed averaged and continuous data from the plant to be compared with the model. This allowed the model to be 'tuned', and to reveal a number of minor problems with the control infrastructure on the plant. 7 figs., 21 refs

  13. Accelerated leach test development program

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Pietrzak, R.F.; Heiser, J.; Franz, E.M.; Colombo, P.

    1990-11-01

    In FY 1989, a draft accelerated leach test for solidified waste was written. Combined test conditions that accelerate leaching were validated through experimental and modeling efforts. A computer program was developed that calculates test results and models leaching mechanisms. This program allows the user to determine if diffusion controls leaching and, if this is the case, to make projections of releases. Leaching mechanisms other than diffusion (diffusion plus source term partitioning and solubility limited leaching) are included in the program is indicators of other processes that may control leaching. Leach test data are presented and modeling results are discussed for laboratory scale waste forms composed of portland cement containing sodium sulfate salt, portland cement containing incinerator ash, and vinyl ester-styrene containing sodium sulfate. 16 refs., 38 figs., 5 tabs

  14. Three model systems measure oxidation/nitration damage caused ...

    Indian Academy of Sciences (India)

    Unknown

    caused by peroxynitrite ... (OONO–) or its carbon dioxide derivatives cause oxidation/nitration and hence mutation to various body poly- mers e.g. .... The work described in this paper is quite brief due to ex- ... exact way to balance the dose of antioxidants in mixtures ... tralizing conditions the half-life of OONO– is less than.

  15. Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments

    International Nuclear Information System (INIS)

    Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Casas, I.; Clarens, F.; Gimenez, J.; Pablo, J. de; Rovira, M.; Martinez-Esparza, A.

    2005-01-01

    Calibration and testing are inherent aspects of any modelling exercise and consequently they are key issues in developing a model for the oxidative dissolution of spent fuel. In the present work we present the outcome of the calibration process for the kinetic constants of a UO 2 oxidative dissolution mechanism developed for using in a radiolytic model. Experimental data obtained in dynamic leaching experiments of unirradiated UO 2 has been used for this purpose. The iterative calibration process has provided some insight into the detailed mechanism taking place in the alteration of UO 2 , particularly the role of · OH radicals and their interaction with the carbonate system. The results show that, although more simulations are needed for testing in different experimental systems, the calibrated oxidative dissolution mechanism could be included in radiolytic models to gain confidence in the prediction of the long-term alteration rate of the spent fuel under repository conditions

  16. Management of Nitrate m Groundwater: A Simulation Study

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2001-01-01

    Full Text Available Agriculture may cause nitrate and other chemicals to enter into groundwater systems. Nitrate in drinking water is considered a health hazard. A study was conducted to assess the extent of nitrate pollution of groundwater caused by agriculture and to evaluate the possibility of using the LEACHN model to manage nitrate entry into groundwater of agricultural areas of Al-Batinah, which is the most important agricultural region of Oman. Groundwater samples were collected and analyzed to assess the problem and to detect possible trends. Soil sampling and analyses were done to demonstrate the difference in the nitrate concentration in agricultural and non-agricultural soils. A questionnaire survey was conducted to gather information on agricultural practices, fertilizer input, and other possible sources of nitrate pollution. Results from the study show that 23% of groundwater samples have a concentration of nitrate-N concentration of 10 mg/l and 34% samples exceed 8 mg/l. Agricultural soils have higher levels of nitrate compared to non- agricultural soils. Results also demonstrate that nitrate levels in groundwater in Al-Batinah are rising. Application of the ‘LEACHN’ model demonstrated its suitability for use as a management tool to reduce nitrate leaching to groundwater by controlling fertilizer and water input.

  17. Modeled aerosol nitrate formation pathways during wintertime in the Great Lakes region of North America

    Science.gov (United States)

    Kim, Yoo Jung; Spak, Scott N.; Carmichael, Gregory R.; Riemer, Nicole; Stanier, Charles O.

    2014-11-01

    Episodic wintertime particle pollution by ammonium nitrate is an important air quality concern across the Midwest U.S. Understanding and accurately forecasting PM2.5 episodes are complicated by multiple pathways for aerosol nitrate formation, each with uncertain rate parameters. Here, the Community Multiscale Air Quality model (CMAQ) simulated regional atmospheric nitrate budgets during the 2009 LADCO Winter Nitrate Study, using integrated process rate (IPR) and integrated reaction rate (IRR) tools to quantify relevant processes. Total nitrate production contributing to PM2.5 episodes is a regional phenomenon, with peak production over the Ohio River Valley and southern Great Lakes. Total nitrate production in the lower troposphere is attributed to three pathways, with 57% from heterogeneous conversion of N2O5, 28% from the reaction of OH and NO2, and 15% from homogeneous conversion of N2O5. TNO3 formation rates varied day-to-day and on synoptic timescales. Rate-limited production does not follow urban-rural gradients and NOx emissions due, to counterbalancing of urban enhancement in daytime HNO3 production with nocturnal reductions. Concentrations of HNO3 and N2O5 and nighttime TNO3 formation rates have maxima aloft (100-500 m), leading to net total nitrate vertical flux during episodes, with substantial vertical gradients in nitrate partitioning. Uncertainties in all three pathways are relevant to wintertime aerosol modeling and highlight the importance of interacting transport and chemistry processes during ammonium nitrate episodes, as well as the need for additional constraint on the system through field and laboratory experiments.

  18. Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by N-urea flux

    Directory of Open Access Journals (Sweden)

    Sang Hyun Park

    2018-03-01

    Full Text Available Objective The present study aimed to assess the nitrogen (N use efficiency of acidified pig slurry for regrowth yield and its environmental impacts on perennial ryegrass swards. Methods The pH of digested pig slurry was adjusted to 5.0 or 7.0 by the addition of sulfuric acid and untreated as a control. The pig slurry urea of each treatment was labeled with 15N urea and applied at a rate of 200 kg N/ha immediately after cutting. Soil and herbage samples were collected at 7, 14, and 56 d of regrowth. The flux of pig slurry-N to regrowth yield and soil N mineralization were analyzed, and N losses via NH3, N2O emission and NO3− leaching were also estimated. Results The pH level of the applied slurry did not have a significant effect on herbage yield or N content of herbage at the end of regrowth, whereas the amount of N derived from pig slurry urea (NdfSU was higher in both herbage and soils in pH-controlled plots. The NH4+-N content and the amount of N derived from slurry urea into soil NH4+ fraction (NdfSU-NH4+ was significantly higher in in the pH 5 plot, whereas NO3− and NdfSU-NO3− were lower than in control plots over the entire regrowth period. Nitrification of NH4+-N was delayed in soil amended with acidified slurry. Compared to non-pH-controlled pig slurry (i.e. control plots, application of acidified slurry reduced NH3 emissions by 78.1%, N2O emissions by 78.9% and NO3− leaching by 17.81% over the course of the experiment. Conclusion Our results suggest that pig slurry acidification may represent an effective means of minimizing hazardous environmental impacts without depressing regrowth yield.

  19. A phenomenological model for improving understanding of the ammonium nitrate agglomeration process

    Directory of Open Access Journals (Sweden)

    Videla Leiva Alvaro

    2016-01-01

    Full Text Available Ammonium nitrate is intensively used as explosive in the mining industry as the main component of ANFO. The ammonium nitrate is known to be a strong hygroscopic crystal matter which generates problems due to the creation of water bridges between crystals leading later to nucleation and crystallization forming an agglomerated solid cake. The agglomeration process damages the ammonium nitrate performance and is undesirable. Usually either organic or inorganic coatings are used to control agglomeration. In the present work a characterization method of humidity adsorption of the ammonium nitrate crystal was performed under laboratory conditions. Several samples were exposed into a defined humidity in a controlled chamber during 5 hours after which the samples were tested to measure agglomeration as the resistance force to compression. A clear relation was found between coating protection level, humidity and agglomeration. Agglomeration can be then predicted by a phenomenological model based of combination of the mono-layer BET adsorption and CNT nucleation models.

  20. Adopting adequate leaching requirement for practical response models of basil to salinity

    Science.gov (United States)

    Babazadeh, Hossein; Tabrizi, Mahdi Sarai; Darvishi, Hossein Hassanpour

    2016-07-01

    Several mathematical models are being used for assessing plant response to salinity of the root zone. Objectives of this study included quantifying the yield salinity threshold value of basil plants to irrigation water salinity and investigating the possibilities of using irrigation water salinity instead of saturated extract salinity in the available mathematical models for estimating yield. To achieve the above objectives, an extensive greenhouse experiment was conducted with 13 irrigation water salinity levels, namely 1.175 dS m-1 (control treatment) and 1.8 to 10 dS m-1. The result indicated that, among these models, the modified discount model (one of the most famous root water uptake model which is based on statistics) produced more accurate results in simulating the basil yield reduction function using irrigation water salinities. Overall the statistical model of Steppuhn et al. on the modified discount model and the math-empirical model of van Genuchten and Hoffman provided the best results. In general, all of the statistical models produced very similar results and their results were better than math-empirical models. It was also concluded that if enough leaching was present, there was no significant difference between the soil salinity saturated extract models and the models using irrigation water salinity.

  1. Modelling of leaching and geochemical processes in an aged MSWIBA subbase layer

    Energy Technology Data Exchange (ETDEWEB)

    Bendz, David; Suer, Pascal; Sloot, Hans van der; Kosson, David; Flyhammar, Peter

    2009-07-15

    In a previous project, the accumulated effects of leaching and aging in a subbase layer of bottom ash in a test road were investigated. The test road were constructed in 1987 in Linkoeping, Sweden, and was in use until the start of the Vaendoera Q4-241 study in September 2003. The overall objective of the present study is to bring the evaluation of the previous project (Q4-241) further by taking advantage of the existing data, perform complementary laboratory experiments on four composite samples reflecting different degree of exposure to atmosphere and leaching. The specific objectives were to investigate: (i) what processes and mineral phases that govern leaching of macro- and trace elements and DOC in the bottom ash after 16 years (1987- 2003) of aging under field conditions. (ii) how the hydrologic conditions, infiltration of water and leachate production has evolved with time. The following tests were performed on the composite samples: pH-stat test, column test, Fe/Al oxide extraction and TOC fractioning. Geochemical and hydrological modelling where performed with LeachXS/Orchestra and Hydrus 2-D. Daily precipitation data from the Swedish Meteorological and Hydrological Institute (SMHI) from the Malmslaett (Linkoeping) measurement station was used in the hydrological modelling of January 1988 to the 1st of september 2003. The hydraulic modeling results show that the bottom ash subbase layer endure seasonal wet and dry cycles. The results confirm that, depending on the boundary conditions along the shoulders the capillary potential may drive moisture either in or out of the road body. The water retention parameters for bottom ash were crucial in the hydraulic modeling and the capillary forces in bottom ash were found to be significant with a water retention curve close to silt. This explains the observed depletion of easily soluble salts in the test road. The results showed that the accumulated LS ratio for the bottom ash subbase layer reached about LS:10 in

  2. Development of Operation Management Model of Groundwater According to Nitrate Contamination

    Directory of Open Access Journals (Sweden)

    Elahe Pourfarahabadi

    2014-10-01

    Full Text Available Nitrate is one of the most important groundwater pollutants with such different sources as chemical fertilizers, pesticides, or domestic and industrial wastewater. In this research, the optimal operation of groundwater wells in aquifers with nitrate pollution is investigated using simulation and optimization techniques. For the simulation part, an artificial neural network (ANN model is developed, and for the optimization model, the particle swarm optimization (PSO is used. Considering the high nitrate concentration in Karaj area and its increase in recent years, the northern part of this aquifer is selected as a case study to apply the proposed methodology. A seasonal ANN model is developed with input layers including well discharge in the current and previous seasons, nitrate concentration in the previous season, aquifer thickness, and well coordinates, all selected based on sensitivity analysis. The results of PSO algorithm shows that nitrate concentration can be controlled by increasing or decreasing well discharge in different zones. Therefore, it is possible to reduce nitrate concentration in critical areas by changing the spatial distribution of groundwater extractions in different zones keeping the total discharge constant.

  3. Profitability of Nitrification Inhibitors for Abatement of Nitrate Leaching on a Representative Dairy Farm in the Waikato Region of New Zealand

    Directory of Open Access Journals (Sweden)

    Upa H. Paragahawewa

    2011-11-01

    Full Text Available Direct policies for the management of nonpoint source pollution are difficult to apply given asymmetric information, spatial and temporal variability, and uncertainty. There is increasing awareness that these limitations may be overcome where profitable mitigation practices are broadly adopted by polluters. Nitrification inhibitors (chemicals applied to paddocks that retard the nitrification process in soils are a rare example of a mitigation practice that reduces pollutant loads and potentially increases farm profit through promoting pasture production. This study investigates their capacity to achieve both goals to inform policy makers and producers of their potential for simultaneously improving farm profit and water quality. With an assumed 10 percent increase in pasture production in response to nitrification inhibitor application, nitrification inhibitors are a profitable innovation because greater pasture production supports higher stocking rates. Nonetheless, their overall impact on farm profit is low, even when the cost of inhibitors or their impact on subsequent pasture production is substantially altered. However, inhibitors are found to be a critical mitigation practice for farmers posed with decreasing leaching loads to satisfy regulatory requirements. These findings suggest that, despite their shortcomings for nonpoint pollution regulation, direct policies appear to be the only way to motivate producers to account for their impact on environmental values given the current lack of profitable mitigations.

  4. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

    International Nuclear Information System (INIS)

    Grimm, J.W.; Lynch, J.A.

    2005-01-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8 km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8 km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate. - A linear least-squares regression approach was used to develop daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

  5. Leaching of hazardous substances from a composite construction product – An experimental and modelling approach for fibre-cement sheets

    Energy Technology Data Exchange (ETDEWEB)

    Lupsea, Maria [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Paris–Est University, CSTB–Scientific and Technical Centre for the Building Industry, DEE/Environmentand Life Cycle Engineering Team, 24 rue Joseph Fourier, F–38400 Saint Martin d’Hères (France); Tiruta-Barna, Ligia, E-mail: ligia.barna@insa-toulouse.fr [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Paris–Est University, CSTB–Scientific and Technical Centre for the Building Industry, DEE/Environmentand Life Cycle Engineering Team, 24 rue Joseph Fourier, F–38400 Saint Martin d’Hères (France)

    2014-01-15

    Highlights: • Biocide and heavy metals leaching from fibre-cement sheet was investigated. • Equilibrium and dynamic leaching tests were used as modelling support. • The chemical-transport model identifies the main fixation/solubilisation mechanisms. • Biocides as terbutryn and boron were released by the commercial product. • FCS exhibit a cement-like leaching behaviour with high organic carbon release. -- Abstract: The leaching behaviour of a commercial fibre-cement sheet (FCS) product has been investigated. A static pH dependency test and a dynamic surface leaching test have been performed at lab scale. These tests allowed the development of a chemical-transport model capable to predict the release of major and trace elements over the entire pH range, in function of time. FCS exhibits a cement-type leaching behaviour with respect to the mineral species. Potentially hazardous species are released in significant quantities when compared to their total content. These are mainly heavy metals commonly encountered in cement matrixes and boron (probably added as biocide). Organic compounds considered as global dissolved carbon are released in significant concentrations, originating probably from the partial degradation of the organic fibres. The pesticide terbutryn (probably added during the preservative treatment of the organic fibres) was systematically identified in the leachates. The simulation of an upscaled runoff scenario allowed the evaluation of the cumulative release over long periods and the distribution of the released quantities in time, in function of the local exposure conditions. After 10 years of exposure the release reaches significant fractions of the species’ total content – going from 4% for Cu to near 100% for B.

  6. An integrated modelling and multicriteria analysis approach to managing nitrate diffuse pollution: 2. A case study for a chalk catchment in England.

    Science.gov (United States)

    Koo, B K; O'Connell, P E

    2006-04-01

    The site-specific land use optimisation methodology, suggested by the authors in the first part of this two-part paper, has been applied to the River Kennet catchment at Marlborough, Wiltshire, UK, for a case study. The Marlborough catchment (143 km(2)) is an agriculture-dominated rural area over a deep chalk aquifer that is vulnerable to nitrate pollution from agricultural diffuse sources. For evaluation purposes, the catchment was discretised into a network of 1 kmx1 km grid cells. For each of the arable-land grid cells, seven land use alternatives (four arable-land alternatives and three grassland alternatives) were evaluated for their environmental and economic potential. For environmental evaluation, nitrate leaching rates of land use alternatives were estimated using SHETRAN simulations and groundwater pollution potential was evaluated using the DRASTIC index. For economic evaluation, economic gross margins were estimated using a simple agronomic model based on nitrogen response functions and agricultural land classification grades. In order to see whether the site-specific optimisation is efficient at the catchment scale, land use optimisation was carried out for four optimisation schemes (i.e. using four sets of criterion weights). Consequently, four land use scenarios were generated and the site-specifically optimised land use scenario was evaluated as the best compromise solution between long term nitrate pollution and agronomy at the catchment scale.

  7. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain

    International Nuclear Information System (INIS)

    Ledoux, E.; Gomez, E.; Monget, J.M.; Viavattene, C.; Viennot, P.; Ducharne, A.; Benoit, M.; Mignolet, C.; Schott, C.; Mary, B.

    2007-01-01

    A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management

  8. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, E. [Centre de Geosciences, ENSMP, UMR Sisyphe, Fontainebleau (France)]. E-mail: emmanuel.ledoux@ensmp.fr; Gomez, E. [Centre de Geosciences, ENSMP, UMR Sisyphe, Fontainebleau (France); Monget, J.M. [Centre de Geosciences, ENSMP, UMR Sisyphe, Fontainebleau (France); Viavattene, C. [Centre de Geosciences, ENSMP, UMR Sisyphe, Fontainebleau (France); Viennot, P. [Centre de Geosciences, ENSMP, UMR Sisyphe, Fontainebleau (France); Ducharne, A. [Laboratoire Sisyphe, CNRS/Universite Pierre et Marie Curie, Paris (France); Benoit, M. [INRA, Station de Recherche SAD, 662 avenue Louis Buffet, 88500 Mirecourt (France); Mignolet, C. [INRA, Station de Recherche SAD, 662 avenue Louis Buffet, 88500 Mirecourt (France); Schott, C. [INRA, Station de Recherche SAD, 662 avenue Louis Buffet, 88500 Mirecourt (France); Mary, B. [INRA, Unite d' Agronomie Laon-Reims-Mons, Laon (France)

    2007-04-01

    A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management

  9. Modeling long-term leaching experiments of full scale cemented wastes: effect of solution composition on diffusion

    International Nuclear Information System (INIS)

    Borkel, C.; Montoya, V.; Kienzler, B.

    2015-01-01

    The code PHREECQ V3.1 has been used to simulate leaching experiments performed with cemented simulated waste products in tap water for more than 30 years. In this work the main focus is related with the leaching of Cs explained by diffusion processes. A simplifying model using the code PHREECQ V3.1 was used to investigate the influence of different parameters on the release of Cs from the cement solid to the leaching solution. The model setup bases on four main assumptions: a) the solid as well as the distribution of Cs is homogeneous and of isotropic texture, b) there is no preferential direction regarding cement degradation or water intrusion into the solid, c) the pore space is entirely connected and d) Cs adsorption to the cement or container is negligible. In the modeling the constraint of charge balance was stressed. Effective diffusion coefficients (D e ) were obtained analytically and from modeling the diffusive release of Cs from cemented waste simulates. The obtained values D e for Cs leaching are in perfect agreement with the values published in literature. Contradictory results to diffusive release were obtained from XRD analysis of the solids, suggesting that water may not have penetrated the cement monoliths entirely, but only to some centimeters depth. XRD analysis have been done to determine the solid phases present in cement and are used to help outlining strength and weaknesses of the different models

  10. Leaching models for multiple immersed materials and for granular materials flushed in a column

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    1997-01-01

    The present paper addresses the leaching of hazardous contaminants from immersed and replenished materials and from granular materials flushed in a column. First, the leaching of an immersed material in contact with a limited volume of leachant is studied. The mass transfer from material to leachant

  11. Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching

    Directory of Open Access Journals (Sweden)

    Yiqian Ma

    2018-04-01

    Full Text Available Eudialyte is a promising mineral for rare earth elements (REE extraction due to its good solubility in acid, low radioactive, and relatively high content of REE. In this paper, a two stage hydrometallurgical treatment of eudialyte concentrate was studied: dry digestion with hydrochloric acid and leaching with water. The hydrochloric acid for dry digestion to eudialyte concentrate ratio, mass of water for leaching to mass of eudialyte concentrate ratio, leaching temperature and leaching time as the predictor variables, and the total rare earth elements (TREE extraction efficiency as the response were considered. After experimental work in laboratory conditions, according to design of experiment theory (DoE, the modeling process was performed using Multiple Linear Regression (MLR, Stepwise Regression (SWR, and Artificial Neural Network (ANN. The ANN model of REE extraction was adopted. Additional tests showed that values predicted by the neural network model were in very good agreement with the experimental results. Finally, the experiments were performed on a scaled up system under optimal conditions that were predicted by the adopted ANN model. Results at the scale-up plant confirmed the results that were obtained in the laboratory.

  12. Multi-coupling dynamic model and 3d simulation program for in-situ leaching of uranium mining

    International Nuclear Information System (INIS)

    Tan Kaixuan; Zeng Sheng; Sang Xiao; Sun Bing

    2010-01-01

    The in-situ leaching of uranium mining is a very complicated non-linear dynamic system, which involves couplings and positive/negative feedback among many factors and processes. A comprehensive, coupled multi-factors and processes dynamic model and simulation method was established to study the in-situ leaching of uranium mining. The model accounts for most coupling among various processes as following: (1) rock texture mechanics and its evolution, (2)the incremental stress rheology of rock deformation, (3) 3-D viscoelastic/ plastic multi-deformation processes, (4) hydrofracturing, (5) tensorial (anisotropic) fracture and rock permeability, (6) water-rock interactions and mass-transport (both advective and diffusive), (7) dissolution-induced chemical compaction, (8) multi-phase fluid flow. A 3-D simulation program was compiled based on Fortran and C++. An example illustrating the application of this model to simulating acidification, production and terminal stage of in situ leaching of uranium mining is presented for the some mine in Xinjiang, China. This model and program can be used for theoretical study, mine design, production management, the study of contaminant transport and restoration in groundwater of in-situ leaching of uranium mining. (authors)

  13. Bacterial Leaching

    Indian Academy of Sciences (India)

    and studies microbial biotechnology and ... foundation for subsequent research into the role of microorgan- ... are more readily accesible, for example those in solution, rather .... Vat leaching as currently applied to oxide ores involves the.

  14. Toxicity assessment and geochemical model of chromium leaching from AOD slag.

    Science.gov (United States)

    Liu, Bao; Li, Junguo; Zeng, Yanan; Wang, Ziming

    2016-02-01

    AOD (Argon Oxygen Decarburization) slag is a by-product of the stainless steel refining process. The leaching toxicity of chromium from AOD slag cannot be ignored in the recycling process of the AOD slag. To assess the leaching toxicity of the AOD slag, batch leaching tests have been performed. PHREEQC simulations combined with FactSage were carried out based on the detailed mineralogical analysis and petrophysical data. Moreover, Pourbaix diagram of the Cr-H2O system was protracted by HSC 5.0 software to explore the chromium speciation in leachates. It was found that AOD slag leachate is an alkaline and reductive solution. The Pourbaix diagram of the Cr-H2O system indicated that trivalent chromium, such as Cr(OH)4(-), is the major chromium species in the experimental Eh-pH region considered. However, toxic hexavalent chromium was released with maximum concentrations of 30 µg L(-1) and 18 µg L(-1) at L/S 10 and 100, respectively, during the earlier leaching stage. It concluded that the AOD slag possessed a certain leaching toxicity. After 10 d of leaching, trivalent chromium was the dominant species in the leachates, which corresponded to the results of PHREEQC simulation. Leaching toxicity of AOD slag is based on the chromium speciation and its transformation. Great attention should be focused on such factors as aging, crystal form of chromium-enriched minerals, and electrochemical characteristics of the leachates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Factoring uncertainty into restoration modeling of in-situ leach uranium mines

    Science.gov (United States)

    Johnson, Raymond H.; Friedel, Michael J.

    2009-01-01

    Postmining restoration is one of the greatest concerns for uranium in-situ leach (ISL) mining operations. The ISL-affected aquifer needs to be returned to conditions specified in the mining permit (either premining or other specified conditions). When uranium ISL operations are completed, postmining restoration is usually achieved by injecting reducing agents into the mined zone. The objective of this process is to restore the aquifer to premining conditions by reducing the solubility of uranium and other metals in the ground water. Reactive transport modeling is a potentially useful method for simulating the effectiveness of proposed restoration techniques. While reactive transport models can be useful, they are a simplification of reality that introduces uncertainty through the model conceptualization, parameterization, and calibration processes. For this reason, quantifying the uncertainty in simulated temporal and spatial hydrogeochemistry is important for postremedial risk evaluation of metal concentrations and mobility. Quantifying the range of uncertainty in key predictions (such as uranium concentrations at a specific location) can be achieved using forward Monte Carlo or other inverse modeling techniques (trial-and-error parameter sensitivity, calibration constrained Monte Carlo). These techniques provide simulated values of metal concentrations at specified locations that can be presented as nonlinear uncertainty limits or probability density functions. Decisionmakers can use these results to better evaluate environmental risk as future metal concentrations with a limited range of possibilities, based on a scientific evaluation of uncertainty.

  16. Leaching Mechanisms Program. Annual report

    International Nuclear Information System (INIS)

    Dougherty, D.; Colombo, P.; Doty, R.; Fuhrmann, M.

    1984-09-01

    The primary goal of this work is to determine the leaching mechanisms of a variety of matrix materials either in use or being considered for the solidification of low-level radioactive wastes by defense and commercial waste generators. Since this program is new and did not formally begin until May of FY 84, the results reported here are few and preliminary. Efforts were concentrated in the following activities: (1) The literature search for leaching data and proposed leaching models and mechanisms for low-level waste. (2) Data base development for leaching data being compiled from the literature and from the leaching experiments in this program. (3) The selection of solidification agents for the experimental part of the program. (4) Fabrication of leach samples and initiation of leach testing. 28 references, 9 figures, 4 tables

  17. Comparison of Four Nitrate Removal Kinetic Models in Two Distinct Wetland Restoration Mesocosm Systems

    Directory of Open Access Journals (Sweden)

    Tiffany L. Messer

    2017-07-01

    Full Text Available The objective of the study was to determine the kinetic model that best fit observed nitrate removal rates at the mesocosm scale in order to determine ideal loading rates for two future wetland restorations slated to receive pulse flow agricultural drainage water. Four nitrate removal models were investigated: zero order, first order decay, efficiency loss, and Monod. Wetland mesocosms were constructed using the primary soil type (in triplicate at each of the future wetland restoration sites. Eighteen mesocosm experiments were conducted over two years across seasons. Simulated drainage water was loaded into wetlands as batches, with target nitrate-N levels typically observed in agricultural drainage water (between 2.5 and 10 mg L−1. Nitrate-N removal observed during the experiments provided the basis for calibration and validation of the models. When the predictive strength of each of the four models was assessed, results indicated that the efficiency loss and first order decay models provided the strongest agreement between predicted and measured NO3-N removal rates, and the fit between the two models were comparable. Since the predictive power of these two models were similar, the less complicated first order decay model appeared to be the best choice in predicting appropriate loading rates for the future full-scale wetland restorations.

  18. Modeling of critical experiments employing Raschig rings in uranyl nitrate solution

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1989-01-01

    Four critical experiments employing borated glass rings in concentrated uranyl nitrate solution yielded k eff higher by 0. 04 when modeled with a flux-weighted, homogenized cross section set than when modeled with discrete rings. k eff varied by 0.014 for a 10% boron uncertainty and by up to 0.04 for a 10% packing fraction uncertainty

  19. Dynamic Characteristics and Model for Centralization Reaction of Acidic Tailings From Heap Leaching of Uranium Ore

    International Nuclear Information System (INIS)

    Ding Dexin; Liu Yulong; Li Guangyue; Wang Youtuan

    2010-01-01

    Centralization tests were carried out on acidic tailings from heap leaching of uranium ore by using CaO, NaOH and NH 4 OH. The variations of pH with time were measured for the three centralization systems and the dynamic models for the systems were set up by regressing the measured data. The centralization process consists of the fast reaction phase representing the reaction between the centralization agent and the acid on the surface of the tailing's particles and the slow diffusion-reaction phase representing the diffusion-reaction between the centralization agent and the acid within the tailing's particles. The non-linear coupling and feedback function model for the diffusion-reaction of the centralization agent can reflect the process and mode of the centralization reaction. There is a non-linear oscillation in the variation of pH within the centralization systems. The dynamic model for the tailing's centralization reaction can fit the pH variation within the centralization systems. (authors)

  20. Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    2004-01-01

    The Nitrate Directive of the European Union (EU) forces agriculture to reduce nitrate emission. The current study addressed nitrate emission and nitrate-N concentrations in leachate from cropping systems with and without the cultivation of catch crops (winter rye: Secale cereale L. and forage rape:

  1. Simulated Leaching (Migration) Study for a Model Container-Closure System Applicable to Parenteral and Ophthalmic Drug Products.

    Science.gov (United States)

    Jenke, Dennis; Egert, Thomas; Hendricker, Alan; Castner, James; Feinberg, Tom; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank; Markovic, Ingrid

    2017-01-01

    A simulating leaching (migration) study was performed on a model container-closure system relevant to parenteral and ophthalmic drug products. This container-closure system consisted of a linear low-density polyethylene bottle (primary container), a polypropylene cap and an elastomeric cap liner (closure), an adhesive label (labeling), and a foil overpouch (secondary container). The bottles were filled with simulating solvents (aqueous salt/acid mixture at pH 2.5, aqueous buffer at pH 9.5, and 1/1 v/v isopropanol/water), a label was affixed to the filled and capped bottles, the filled bottles were placed into the foil overpouch, and the filled and pouched units were stored either upright or inverted for up to 6 months at 40 °C. After storage, the leaching solutions were tested for leached substances using multiple complementary analytical techniques to address volatile, semi-volatile, and non-volatile organic and inorganic extractables as potential leachables.The leaching data generated supported several conclusions, including that (1) the extractables (leachables) profile revealed by a simulating leaching study can qualitatively be correlated with compositional information for materials of construction, (2) the chemical nature of both the extracting medium and the individual extractables (leachables) can markedly affect the resulting profile, and (3) while direct contact between a drug product and a system's material of construction may exacerbate the leaching of substances from that material by the drug product, direct contact is not a prerequisite for migration and leaching to occur. LAY ABSTRACT: The migration of container-related extractables from a model pharmaceutical container-closure system and into simulated drug product solutions was studied, focusing on circumstances relevant to parenteral and ophthalmic drug products. The model system was constructed specifically to address the migration of extractables from labels applied to the outside of the

  2. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    International Nuclear Information System (INIS)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region dominated by dairy farming. No data from this area were used for calibrating the regression models. The model was validated by additional probability sampling. This sample was used to estimate errors in 1) the predicted areal fractions where the EU standard of 50 mg l -1 is exceeded for farms with low N surpluses (ALT) and farms with higher N surpluses (REF); 2) predicted cumulative frequency distributions of nitrate concentration for both groups of farms. Both the errors in the predicted areal fractions as well as the errors in the predicted cumulative frequency distributions indicate that the regression models are invalid for the sandy soils of this study area. - This study indicates that linear regression models that predict nitrate concentrations in the upper groundwater using residual soil N contents should be applied with care.

  3. A moni-modelling approach to manage groundwater risk to pesticide leaching at regional scale.

    Science.gov (United States)

    Di Guardo, Andrea; Finizio, Antonio

    2016-03-01

    Historically, the approach used to manage risk of chemical contamination of water bodies is based on the use of monitoring programmes, which provide a snapshot of the presence/absence of chemicals in water bodies. Monitoring is required in the current EU regulations, such as the Water Framework Directive (WFD), as a tool to record temporal variation in the chemical status of water bodies. More recently, a number of models have been developed and used to forecast chemical contamination of water bodies. These models combine information of chemical properties, their use, and environmental scenarios. Both approaches are useful for risk assessors in decision processes. However, in our opinion, both show flaws and strengths when taken alone. This paper proposes an integrated approach (moni-modelling approach) where monitoring data and modelling simulations work together in order to provide a common decision framework for the risk assessor. This approach would be very useful, particularly for the risk management of pesticides at a territorial level. It fulfils the requirement of the recent Sustainable Use of Pesticides Directive. In fact, the moni-modelling approach could be used to identify sensible areas where implement mitigation measures or limitation of use of pesticides, but even to effectively re-design future monitoring networks or to better calibrate the pedo-climatic input data for the environmental fate models. A case study is presented, where the moni-modelling approach is applied in Lombardy region (North of Italy) to identify groundwater vulnerable areas to pesticides. The approach has been applied to six active substances with different leaching behaviour, in order to highlight the advantages in using the proposed methodology. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison of policies for controlling groundwater nitrate pollution from agriculture in the Eastern Mancha aquifer (Spain).

    Science.gov (United States)

    Peña-Haro, S.; Llopis-Albert, C.; Pulido-Velazquez, M.; Stalder, A.; Garcia-Prats, A.; Henriquez-Dole, L.

    2012-04-01

    Groundwater nitrate pollution from agriculture has given rise to different legal frameworks. The European Water Framework Directive (WFD) is the most recent one. This work aims to help in the definition of the most cost-efficient policy to control non-point groundwater to attain the objectives established in the WFD. In this study we performed a cost-effectiveness analysis of different policies for controlling groundwater nitrate pollution from agriculture. The policies considered were taxes on nitrogen fertilizers, water price, taxes on emissions and fertilizer standards. We used a hydro-economic model, where we maximized the farmer's benefits. The benefits were calculated as sum of crop revenue minus variable and fixed cost per hectare minus the damage costs from nitrogen leaching. In the cost-effectiveness analysis we considered the costs as the reduction on benefits due to the application of a policy and the effectiveness the reduction on nitrate leaching. The methodology was applied to Eastern Mancha aquifer in Spain. The aquifer is part of the Júcar River Basin, which was declared as EU Pilot Basin in 2002 for the implementation of the WFD. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has provoked a steady decline of groundwater levels and a reduction of groundwater discharged into the Júcar River, as well as nitrate concentrations higher than those allowed by the WFD at certain locations (above 100 mg/l.). Crop revenue was calculated using production functions and the amount of nitrate leached was estimated by calibrated leaching functions. These functions were obtained by using an agronomic model (a GIS version of EPIC, GEPIC), and they depend on the water and the fertilizer use. The Eastern Mancha System was divided into zones of homogeneous crop production and nitrate leaching properties. Given the different soil types and climatic

  5. Determination of timescales of nitrate contamination by groundwater age models in a complex aquifer system

    Science.gov (United States)

    Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.

    2017-12-01

    Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.

  6. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

    Science.gov (United States)

    Grimm, J W; Lynch, J A

    2005-06-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.

  7. Modeling of 1-D nitrate transport in single layer soils | Dike | Journal ...

    African Journals Online (AJOL)

    The transport of nitrate in laboratory single soil columns of sand, laterite and clay were investigated after 21 days. The 1-D contaminant transport model by Notodarmojo et al (1991) for single layer soils were calibrated and verified using field data collected from a refuse dump site at avu, owerri, Imo state. The experimental ...

  8. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150

    International Nuclear Information System (INIS)

    Wang, L.; Stuart, M.E.; Lewis, M.A.; Ward, R.S.; Skirvin, D.; Naden, P.S.; Collins, A.L.; Ascott, M.J.

    2016-01-01

    Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses. - Highlights: • An approach to modelling groundwater nitrate at the national scale is presented. • The long time-lag for nitrate in the

  9. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L., E-mail: lei.wang@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Stuart, M.E.; Lewis, M.A. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Ward, R.S. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Skirvin, D. [ADAS UK Ltd., Pendeford House, Pendeford Business Park, Wobaston Road, Wolverhampton WV9 5AP (United Kingdom); Naden, P.S. [Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Collins, A.L. [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton EX20 2SB (United Kingdom); Ascott, M.J. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2016-01-15

    Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses. - Highlights: • An approach to modelling groundwater nitrate at the national scale is presented. • The long time-lag for nitrate in the

  10. Spatial assessment of animal manure spreading and groundwater nitrate pollution

    Directory of Open Access Journals (Sweden)

    Roberta Infascelli

    2009-11-01

    Full Text Available Nitrate concentration in groundwater has frequently been linked to non-point pollution. At the same time the existence of intensive agriculture and extremely intensive livestock activity increases the potential for nitrate pollution in shallow groundwater. Nitrate used in agriculture could cause adverse effects on human and animal health. In order to evaluate the groundwater nitrate pollution, and how it might evolve in time, it is essential to develop control systems and to improve policies and incentives aimed at controlling the amount of nitrate entering downstream water systems. The province of Caserta in southern Italy is characterized by high levels of animal manure loading. A comparison between manure nitrogen production and nitrate concentration in groundwater was carried out in this area, using geostatistical tools and spatial statistics. The results show a discrepancy between modelling of nitrate leaching and monitoring of the groundwater and, moreover, no spatial correlation between nitrogen production in livestock farms and nitrate concentration in groundwater, suggesting that producers are not following the regulatory procedures for the agronomic use of manure. The methodology developed in this paper could be applied also in other regions in which European Union fertilization plans are not adequately followed.

  11. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California

    Science.gov (United States)

    Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken

    2014-01-01

    Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p < 0.0001) in logistic regression.

  12. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California

    Science.gov (United States)

    Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken

    2014-01-01

    Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p in logistic regression.

  13. Leaching process

    International Nuclear Information System (INIS)

    Heinen, H.J.; McClelland, G.E.; Lindstrom, R.E.

    1982-01-01

    A gold and uranium ore is heap leached in accordance with the process comprising initial agglomeration of fines in the feed by means of a binding agent and cyanide solution. The lixiviant comprises a compatible mixture of sodium cyanide and sodium bicarbonate

  14. Leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, H J; McClelland, G E; Lindstrom, R E

    1982-10-18

    A gold and uranium ore is heap leached in accordance with the process comprising initial agglomeration of fines in the feed by means of a binding agent and cyanide solution. The lixiviant comprises a compatible mixture of sodium cyanide and sodium bicarbonate.

  15. Glass leaching performance

    International Nuclear Information System (INIS)

    Chick, L.A.; Turcotte, R.P.

    1983-05-01

    Current understanding of the leaching performance of high-level nuclear waste (HLW) glass is summarized. The empirical model of waste glass leaching behavior developed shows that at high water flow rates the glass leach rate is kinetically limited to a maximum value. At intermediate water flow rates, leaching is limited by the solution concentration of silica and decreases with decreasing water flow rates. Release of soluble elements is controlled by silica dissolution because silica forms the binding network of the glass. At low water flow rates, mass loss rates reach values controlled by formation rates of alteration minerals, or by diffusion of dissolution products through essentially stagnant water. The parameters reviewed with respect to their quantifiable influence on leaching behavior include temperature, pH, leachant composition, glass composition, thermal history, and radiation. Of these, temperature is most important since the rate of mass loss approximately doubles with each 10 0 C increase in dilute solutions. The pH has small effects within the 4 to 10 range. The chemical composition of the leachant is most important with regard to its influence on alteration product formation. Glass composition exhibits the largest effects at high flow rates where improved glasses leach from ten to thirty times slower than glass 76 to 68. The effects of the thermal history (devitrification) of the glass are not likely to be significant. Radiation effects are important primarily in that radiolysis can potentially drive pH values to less than 4. Radiation damage to the glass causes insignificant changes in leaching performance

  16. Regional modeling of cadmium leaching to groundwater in the Kempen region, The Netherlands

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.

    2003-01-01

    Sandy soils in the border area of Belgium and the Netherlands (the Kempen region), are heavily contaminated with cadmium and zinc by atmospheric deposition from nearby smelters. Leaching of heavy metals from the topsoil is a major risk for groundwater contamination. The sandy soils in the Kempen

  17. Simulation of Soil Water content and Nitrate under Different Fertigation Strategies for Sweet Pepper in Isfahan by EU-ROTATE-N Model.

    Directory of Open Access Journals (Sweden)

    forough fazel

    2017-06-01

    Full Text Available Introduction: World's population growth and limited water resources and needing to more food production led to interest farmers to use nitrogen fertilizer more than soil requires and subsequently Nitrate leaching causes groundwater and environmental pollution. Therefore, researches has concentrated on improvement of nitrogen use efficiency, which numerical simulation is the effective solutions to optimize the management of water and fertilizer in the field in order to achieve the maximal yield and minimal nitrate pollution of soil, groundwater and drainage in water deficiency crisis condition. For this reason, the evaluation of new user friendly models in correct estimation of soil moisture and nitrogen content distribution and recognition of water and solutes movement in the soil and choosing the best management option for increasing productivity and economic performance and also reduction of nitrate pollution of soil and ground water source with the least limitations and high accuracy is necessary. The Eu-Rotate-N model has been developed for simulation of nitrogen use and specifically for optimization of nitrogen use in variation of vegetables in a wide range of conditions, which without the need to calibration has presented satisfactory results in many areas. So this study was conducted to evaluate the efficiency of Eu-Rate-N model in assessment of moisture and nitrogen distribution and yield under different nitrogen fertigation management for pepper plant. Materials and Methods: Sweet pepper was planted at density of 8.33plant per m2 in a row planting method. 150kg per hectare per year of fertilizer was used during the season. Crop yield, soil water and nitrogen content were measured on a regular basis. The treatments consisted of three fertilizer level: zero (N0, the ratio of ammonium to nitrate 20:80 (N1 and 40:60 (N2, which was conducted in a completely randomized block with three replications in Isfahan. Irrigation based on daily

  18. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    However, the effects of potassium nitrate were higher than sodium nitrate, which was due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism. In conclusion, potassium nitrate has better effect on the nitrate assimilatory ...

  19. Modeled nitrate levels in well water supplies and prevalence of abnormal thyroid conditions among the Old Order Amish in Pennsylvania

    Directory of Open Access Journals (Sweden)

    Aschebrook-Kilfoy Briseis

    2012-02-01

    Full Text Available Abstract Background Nitrate is a widespread contaminant of drinking water supplies, especially in agricultural areas. Nitrate intake from drinking water and dietary sources can interfere with the uptake of iodide by the thyroid, thus potentially impacting thyroid function. Methods We assessed the relation of estimated nitrate levels in well water supplies with thyroid health in a cohort of 2,543 Old Order Amish residing in Lancaster, Chester, and Lebanon counties in Pennsylvania for whom thyroid stimulating hormone (TSH levels were measured during 1995-2008. Nitrate measurement data (1976-2006 for 3,613 wells in the study area were obtained from the U.S. Geological Survey and we used these data to estimate concentrations at study participants' residences using a standard linear mixed effects model that included hydrogeological covariates and kriging of the wells' residuals. Nitrate levels estimated by the model ranged from 0.35 mg/L to 16.4 mg/L N-NO3-, with a median value of 6.5 mg/L, which was used as the cutpoint to define high and low nitrate exposure. In a validation analysis of the model, we calculated that the sensitivity of the model was 67% and the specificity was 93%. TSH levels were used to define the following outcomes: clinical hyperthyroidism (n = 10, clinical hypothyroidism (n = 56, subclinical hyperthyroidism (n = 25, and subclinical hypothyroidism (n = 228. Results In women, high nitrate exposure was significantly associated with subclinical hypothyroidism (OR = 1.60; 95% CI: 1.11-2.32. Nitrate was not associated with subclinical thyroid disease in men or with clinical thyroid disease in men or women. Conclusions Although these data do not provide strong support for an association between nitrate in drinking water and thyroid health, our results do suggest that further exploration of this hypothesis is warranted using studies that incorporate individual measures of both dietary and drinking water nitrate intake.

  20. Modeled nitrate levels in well water supplies and prevalence of abnormal thyroid conditions among the Old Order Amish in Pennsylvania.

    Science.gov (United States)

    Aschebrook-Kilfoy, Briseis; Heltshe, Sonya L; Nuckols, John R; Sabra, Mona M; Shuldiner, Alan R; Mitchell, Braxton D; Airola, Matt; Holford, Theodore R; Zhang, Yawei; Ward, Mary H

    2012-02-17

    Nitrate is a widespread contaminant of drinking water supplies, especially in agricultural areas. Nitrate intake from drinking water and dietary sources can interfere with the uptake of iodide by the thyroid, thus potentially impacting thyroid function. We assessed the relation of estimated nitrate levels in well water supplies with thyroid health in a cohort of 2,543 Old Order Amish residing in Lancaster, Chester, and Lebanon counties in Pennsylvania for whom thyroid stimulating hormone (TSH) levels were measured during 1995-2008. Nitrate measurement data (1976-2006) for 3,613 wells in the study area were obtained from the U.S. Geological Survey and we used these data to estimate concentrations at study participants' residences using a standard linear mixed effects model that included hydrogeological covariates and kriging of the wells' residuals. Nitrate levels estimated by the model ranged from 0.35 mg/L to 16.4 mg/L N-NO3(-), with a median value of 6.5 mg/L, which was used as the cutpoint to define high and low nitrate exposure. In a validation analysis of the model, we calculated that the sensitivity of the model was 67% and the specificity was 93%. TSH levels were used to define the following outcomes: clinical hyperthyroidism (n = 10), clinical hypothyroidism (n = 56), subclinical hyperthyroidism (n = 25), and subclinical hypothyroidism (n = 228). In women, high nitrate exposure was significantly associated with subclinical hypothyroidism (OR = 1.60; 95% CI: 1.11-2.32). Nitrate was not associated with subclinical thyroid disease in men or with clinical thyroid disease in men or women. Although these data do not provide strong support for an association between nitrate in drinking water and thyroid health, our results do suggest that further exploration of this hypothesis is warranted using studies that incorporate individual measures of both dietary and drinking water nitrate intake.

  1. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions (3) (Summary)

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Kubo, Hiroshi

    2004-02-01

    This report is the summary of JNC-TJ--8400-2005-002. 1) Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Consolidation test and permeability test are carried out in order to as. exchanged with nitrate. It is noted that permeability of bentonite increased at from 40 to 200 times by cation exchange. 2) Permeability of hyper alkaline solution is almost same to water. Permeability of hyper alkaline solution with nitrates increased corresponding to rising ion strength. 3) The results of batch of column test were simulated. The model can explain clearly the results in short period. This can estimate leaching ratio and secondary minerals. The model can simulate the experimental results by two types of velocity theory on altering bentonite. (author)

  2. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and Pu released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution

  3. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and plutonium released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution. 5 figures, 3 tables

  4. Modeling the Response of Primary Production and Sedimentation to Variable Nitrate Loading in the Mississippi River Plume

    National Research Council Canada - National Science Library

    Green, Rebecca E; Breed, Greg A; Dagg, Michael J; Lohrenz, Steven E

    2008-01-01

    ...% reduction in annual nitrogen discharge into the Gulf of Mexico. We developed an ecosystem model for the Mississippi River plume to investigate the response of organic matter production and sedimentation to variable nitrate loading...

  5. Implementation of the Leaching Environmental Assessment Framework

    Science.gov (United States)

    New leaching tests are available in the U.S. for developing more accurate source terms for use in fate and transport models. For beneficial use or disposal, the use of the leaching environmental assessment framework (LEAF) will provide leaching results that reflect field condit...

  6. Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching

    OpenAIRE

    Yiqian Ma; Srecko Stopic; Lars Gronen; Milovan Milivojevic; Srdjan Obradovic; Bernd Friedrich

    2018-01-01

    Eudialyte is a promising mineral for rare earth elements (REE) extraction due to its good solubility in acid, low radioactive, and relatively high content of REE. In this paper, a two stage hydrometallurgical treatment of eudialyte concentrate was studied: dry digestion with hydrochloric acid and leaching with water. The hydrochloric acid for dry digestion to eudialyte concentrate ratio, mass of water for leaching to mass of eudialyte concentrate ratio, leaching temperature and leaching time ...

  7. Nitrate Sources, Supply, and Phytoplankton Growth in the Great Australian Bight: An Eulerian-Lagrangian Modeling Approach

    Science.gov (United States)

    Cetina-Heredia, Paulina; van Sebille, Erik; Matear, Richard J.; Roughan, Moninya

    2018-02-01

    The Great Australian Bight (GAB), a coastal sea bordered by the Pacific, Southern, and Indian Oceans, sustains one of the largest fisheries in Australia but the geographical origin of nutrients that maintain its productivity is not fully known. We use 12 years of modeled data from a coupled hydrodynamic and biogeochemical model and an Eulerian-Lagrangian approach to quantify nitrate supply to the GAB and the region between the GAB and the Subantarctic Australian Front (GAB-SAFn), identify phytoplankton growth within the GAB, and ascertain the source of nitrate that fuels it. We find that nitrate concentrations have a decorrelation timescale of ˜60 days; since most of the water from surrounding oceans takes longer than 60 days to reach the GAB, 23% and 75% of nitrate used by phytoplankton to grow are sourced within the GAB and from the GAB-SAFn, respectively. Thus, most of the nitrate is recycled locally. Although nitrate concentrations and fluxes into the GAB are greater below 100 m than above, 79% of the nitrate fueling phytoplankton growth is sourced from above 100 m. Our findings suggest that topographical uplift and stratification erosion are key mechanisms delivering nutrients from below the nutricline into the euphotic zone and triggering large phytoplankton growth. We find annual and semiannual periodicities in phytoplankton growth, peaking in the austral spring and autumn when the mixed layer deepens leading to a subsurface maximum of phytoplankton growth. This study highlights the importance of examining phytoplankton growth at depth and the utility of Lagrangian approaches.

  8. Identifying nitrate sources and transformations in surface water by combining dual isotopes of nitrate and stable isotope mixing model in a watershed with different land uses and multi-tributaries

    Science.gov (United States)

    Wang, Meng; Lu, Baohong

    2017-04-01

    Nitrate is essential for the growth and survival of plants, animals and humans. However, excess nitrate in drinking water is regarded as a health hazard as it is linked to infant methemoglobinemia and esophageal cancer. Revealing nitrate characteristics and identifying its sources are fundamental for making effective water management strategies, but nitrate sources in multi-tributaries and mixed land covered watersheds remain unclear. It is difficult to determine the predominant NO3- sources using conventional water quality monitoring techniques. In our study, based on 20 surface water sampling sites for more than two years' monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3- and δ18O-NO3-) were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, East China. The results demonstrated that nitrate content in surface water was relatively low in the downstream (nitrate was observed at the source of the river in one of the sub-watersheds, which exhibited an exponential decline along the stream due to dilution, absorption by aquatic plants, and high forest cover. Although dramatically decline of nitrate occurred along the stream, denitrification was not found in surface water by analyzing δ15N-NO3- and δ18O-NO3- relationship. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage; soil nitrogen; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall) were estimated using a Bayesian isotope mixing model. Model results indicated nitrate sources varied significantly among different rainfall conditions, land use types, as well as anthropologic activities. In summary, coupling dual isotopes of nitrate (δ15N-NO3- and δ18O-NO3-, simultaneously) with a Bayesian isotope mixing model offers a useful and practical way to qualitatively analyze nitrate sources and transformations as well as

  9. Rapid nutrient leaching to groundwater and surface water in clay soil areas

    NARCIS (Netherlands)

    Bronswijk, J.J.B.; Hamminga, W.; Oostindie, K.

    1995-01-01

    Nitrate leaching from agricultural soils has frequently led to concentrations above the EU drinking-water standard. Most data originate from sandy soils. In this experiment the mechanism and magnitude of nitrate leaching from grassland on a heavy claysoil were investigated. In an experimental field,

  10. Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically based modeling

    Energy Technology Data Exchange (ETDEWEB)

    Flipo, Nicolas [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France)]. E-mail: nicolas.flipo@ensmp.fr; Jeannee, Nicolas [Geovariances, 49 bis, avenue Franklin Roosevelt, F-77212 Avon (France); Poulin, Michel [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France); Even, Stephanie [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France); Ledoux, Emmanuel [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France)

    2007-03-15

    The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km{sup 2}), part of the Seine basin. CAWAQS results from the coupling of the hydrogeological model NEWSAM with the hydrodynamic and biogeochemical model of river PROSE. CAWAQS is coupled with the agronomic model STICS in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate CAWAQS results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then CAWAQS is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L{sup -1} yr{sup -1}, resulting from an average infiltration flux of 3500 kgN.km{sup -2} yr{sup -1}. - Combined use of geostatistics and physically based modeling allows assessment of nitrate concentrations in aquifer systems.

  11. Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically based modeling

    International Nuclear Information System (INIS)

    Flipo, Nicolas; Jeannee, Nicolas; Poulin, Michel; Even, Stephanie; Ledoux, Emmanuel

    2007-01-01

    The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km 2 ), part of the Seine basin. CAWAQS results from the coupling of the hydrogeological model NEWSAM with the hydrodynamic and biogeochemical model of river PROSE. CAWAQS is coupled with the agronomic model STICS in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate CAWAQS results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then CAWAQS is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L -1 yr -1 , resulting from an average infiltration flux of 3500 kgN.km -2 yr -1 . - Combined use of geostatistics and physically based modeling allows assessment of nitrate concentrations in aquifer systems

  12. Lateral spread affects nitrogen leaching from urine patches.

    Science.gov (United States)

    Cichota, Rogerio; Vogeler, Iris; Snow, Val; Shepherd, Mark; McAuliffe, Russell; Welten, Brendon

    2018-09-01

    Nitrate leaching from urine deposited by grazing animals is a critical constraint for sustainable dairy farming in New Zealand. While considerable progress has been made to understand the fate of nitrogen (N) under urine patches, little consideration has been given to the spread of urinary N beyond the wetted area. In this study, we modelled the lateral spread of nitrogen from the wetted area of a urine patch to the soil outside the patch using a combination of two process-based models (HYDRUS and APSIM). The simulations provided insights on the extent and temporal pattern for the redistribution of N in the soil following a urine deposition and enabled investigating the effect of lateral spread of urinary N on plant growth and N leaching. The APSIM simulation, using an implementation of a dispersion-diffusion function, was tested against experimental data from a field experiment conducted in spring on a well-drained soil. Depending on the geometry considered for the dispersion-diffusion function (plate or cylindrical) the area-averaged N leaching decreased by 8 and 37% compared with simulations without lateral N spread; this was due to additional N uptake from pasture on the edge area. A sensitivity analysis showed that area-averaged pasture growth was not greatly affected by the value of the dispersion factor used in the model, whereas N leaching was very sensitive. Thus, the need to account for the edge effect may depend on the objective of the simulations. The modelling results also showed that considering lateral spread of urinary N was sufficient to describe the experimental data, but plant root uptake across urine patch zones may still be relevant in other conditions. Although further work is needed for improving accuracy, the simulated and experimental results demonstrate that accounting for the edge effect is important for determining N leaching from urine-affected areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany

    Directory of Open Access Journals (Sweden)

    N. Fohrer

    2009-08-01

    Full Text Available The aims of this study are to identify the capacities of applying an ecohydrological model for simulating flow and to assess the impact of point and non-point source pollution on nitrate loads in a complex lowland catchment, which has special hydrological characteristics in comparison with those of other catchments. The study area Kielstau catchment has a size of approximately 50 km2 and is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants.

    Ecohydrological models like the SWAT model (Soil and Water Assessment Tool are useful tools for simulating nutrient loads in river catchments. Diffuse entries from the agriculture resulting from fertilizers as well as punctual entries from the wastewater treatment plants are implemented in the model set-up.

    The results of this study show good agreement between simulated and measured daily discharges with a Nash-Sutcliffe efficiency and a correlation coefficient of 0.76 and 0.88 for the calibration period (November 1998 to October 2004; 0.75 and 0.92 for the validation period (November 2004 to December 2007. The model efficiency for daily nitrate loads is 0.64 and 0.5 for the calibration period (June 2005 to May 2007 and the validation period (June 2007 to December 2007, respectively. The study revealed that SWAT performed satisfactorily in simulating daily flow and nitrate loads at the lowland catchment in Northern Germany.

  14. Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching

    Directory of Open Access Journals (Sweden)

    S. Olin

    2015-11-01

    levels, assessment of how these different services will vary in space and time, especially in response to cropland management, are scarce. We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land-use-enabled dynamic vegetation model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator. Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us to investigate trade-offs between these ecosystem services that can be provided from agricultural fields. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP (Representative Concentration Pathway 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till management and cover crops proposed in previous studies is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C–N interactions in agricultural ecosystems under future environmental change and the effects these have on terrestrial biogeochemical cycles.

  15. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin

    International Nuclear Information System (INIS)

    Narula, Kapil K.; Gosain, A.K.

    2013-01-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11 600 km 2 with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO 3 ) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO 3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash–Sutcliffe and R 2 correlations greater than + 0.7). Nitrate loading obtained after nitrification, denitrification, and NO 3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO 3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates

  16. Assessment and control of the gold leaching parameters at Kiena Mines

    Energy Technology Data Exchange (ETDEWEB)

    Deschenes, G.; Fulton, M. [CANMET, Mining and Mineral Sciences Labs., Ottawa, Ontario (Canada); Lafontaine, M. [Kiena Mines, McWatters Mines Inc., Operation Val d' Or, Val d' Or, PQ (Canada)

    1999-07-01

    Kiena Mines process a free milling gold ore containing 4.21 g/t Au, 3.1% pyrite and 0.4% pyrrhotite. The throughput has been increased by 40% by tight control of the leaching parameters. The limiting factor of the process is the retention time in the leach circuit. A study was initiated to evaluate the level of control of parameters (grinding size, dissolved oxygen, pH, free cyanide and lead nitrate) to optimize the circuit efficiency. It was found that oxygen and lead nitrate addition are important to maintain gold extraction, while decreasing processing costs. The results indicated that some control levels could be modified. Some results are discussed in relation to models developed. An implementation strategy was elaborated. A decrease of reagent costs is expected after implementation of these changes. (author)

  17. Assessment and control of the gold leaching parameters at Kiena Mines

    International Nuclear Information System (INIS)

    Deschenes, G.; Fulton, M.; Lafontaine, M.

    1999-01-01

    Kiena Mines process a free milling gold ore containing 4.21 g/t Au, 3.1% pyrite and 0.4% pyrrhotite. The throughput has been increased by 40% by tight control of the leaching parameters. The limiting factor of the process is the retention time in the leach circuit. A study was initiated to evaluate the level of control of parameters (grinding size, dissolved oxygen, pH, free cyanide and lead nitrate) to optimize the circuit efficiency. It was found that oxygen and lead nitrate addition are important to maintain gold extraction, while decreasing processing costs. The results indicated that some control levels could be modified. Some results are discussed in relation to models developed. An implementation strategy was elaborated. A decrease of reagent costs is expected after implementation of these changes. (author)

  18. Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds

    Science.gov (United States)

    Nourani, Vahid; Andalib, Gholamreza; Dąbrowska, Dominika

    2017-05-01

    Accurate nitrate load predictions can elevate decision management of water quality of watersheds which affects to environment and drinking water. In this paper, two scenarios were considered for Multi-Station (MS) nitrate load modeling of the Little River watershed. In the first scenario, Markovian characteristics of streamflow-nitrate time series were proposed for the MS modeling. For this purpose, feature extraction criterion of Mutual Information (MI) was employed for input selection of artificial intelligence models (Feed Forward Neural Network, FFNN and least square support vector machine). In the second scenario for considering seasonality-based characteristics of the time series, wavelet transform was used to extract multi-scale features of streamflow-nitrate time series of the watershed's sub-basins to model MS nitrate loads. Self-Organizing Map (SOM) clustering technique which finds homogeneous sub-series clusters was also linked to MI for proper cluster agent choice to be imposed into the models for predicting the nitrate loads of the watershed's sub-basins. The proposed MS method not only considers the prediction of the outlet nitrate but also covers predictions of interior sub-basins nitrate load values. The results indicated that the proposed FFNN model coupled with the SOM-MI improved the performance of MS nitrate predictions compared to the Markovian-based models up to 39%. Overall, accurate selection of dominant inputs which consider seasonality-based characteristics of streamflow-nitrate process could enhance the efficiency of nitrate load predictions.

  19. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.

    Science.gov (United States)

    Narula, Kapil K; Gosain, A K

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11,600 km(2) with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO3) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash-Sutcliffe and R(2) correlations greater than +0.7). Nitrate loading obtained after nitrification, denitrification, and NO3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates under

  20. The modelling of the uranium-leaching and ion-exchange processes of the Hartebeestfontein Gold Mine and its role in economic plant operation

    International Nuclear Information System (INIS)

    Broekman, B.R.; Ward, B.

    1985-01-01

    Computer facilities available in the Metallurgical Department at Hartebeestfontein Gold Mine have enabled the research staff to develope complex, practical mathematical models of their uranium hydrometallurgical processes. Empirical models of uranium leaching, uranium loading on resin and redox potential in leach liquors are discussed. These models, developed with non-linear regression techniques, form the basis of an over all mathematical model for a uranium plant. The most economic operating conditions can be predicted for specific prices of uranium and reagents. Substantial profit improvements have been achieved as a result of the changes in the process and equipment that have been made

  1. Extended sorption partitioning models for pesticide leaching risk assessments: Can we improve upon the k{sub oc} concept?

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Nicholas, E-mail: nicholas.jarvis@slu.se

    2016-01-01

    Models used to assess leaching of pesticides to groundwater still rely on the sorption k{sub oc} value, even though its limitations have been known for several decades, especially for soils of low organic carbon content (i.e. subsoils). This is mainly because the general applicability of any improved model approach that is also simple enough to use for regulatory purposes has not been demonstrated. The objective of this study was to test and compare alternative models of sorption that could be useful in pesticide risk assessment and management. To this end, a database containing the results of batch sorption experiments for pesticides was compiled from published studies in the literature, which placed at least as much emphasis on measurements in subsoil horizons as in topsoil. The database includes 785 data entries from 34 different published studies and for 21 different active substances. Overall, the apparent k{sub oc} value, k{sub oc(app)}, roughly doubled as the soil organic carbon content decreased by a factor of ten. Nevertheless, in nearly half of the individual datasets, a constant k{sub oc} value proved to be an adequate model. Further analysis showed that significant increases in k{sub oc(app)} in subsoil were found primarily for the more weakly adsorbing compounds (k{sub oc} values < ca. 100–200 L kg{sup −1}) and that sorption to clay in loamy and clayey-textured subsoil horizons was the main cause. Tests with the MACRO model demonstrated that sorption to clay minerals may significantly affect the outcome of regulatory exposure and risk assessments for leaching to groundwater. The k{sub oc} concept currently used in leaching models should therefore be replaced by an alternative approach that gives a more realistic representation of pesticide sorption in subsoil. The two alternative models tested in this study appear to have widespread applicability and are also simple enough to parameterize for this purpose. - Highlights: • A database was collated

  2. Effect of biochar amendment on nitrate retention in a silty clay loam soil

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2016-08-01

    Full Text Available Biochar incorporation into agricultural soils has been proposed as a strategy to decrease nutrient leaching. The present study was designed to assess the effect of biochar on nitrate retention in a silty clay loam soil. Biochar obtained from the pyrogasification of fir wood chips was applied to soil and tested in a range of laboratory sorption experiments. Four soil treatments were considered: soil only (control, soil with 2, 4 and 8% of biochar by mass. The Freundlich sorption isotherm model was used to fit the adsorbed amount of nitrate in the soil-biochar mixtures. The model performed very well in interpreting the experimental data according to a general linear regression (analysis of co-variance statistical approach. Nitrate retention in the soilbiochar mixtures was always higher than control, regardless the NO3 – concentration in the range of 0-400 mg L–1. Different sorption capacities and intensities were detected depending on the biochar application rate. The highest adsorption capacity was observed in the soils added with 2 and 4% of biochar, respectively. From the results obtained is possible to infer that nitrate retention is higher at lower biochar addition rate to soil (2 and 4% and at lower nitrate concentration in the soil water solution. These preliminary laboratory results suggest that biochar addition to a typical Mediterranean agricultural soil could be an effective management option to mitigate nitrate leaching.

  3. Coupling between chemical degradation and mechanical behaviour of leached concrete

    International Nuclear Information System (INIS)

    Nguyen, V.H.

    2005-10-01

    This work is in the context of the long term behavior of concrete employed in radioactive waste disposal. The objective is to study the coupled chemo-mechanical modelling of concrete. In the first part of this contribution, experimental investigations are described where the effects of the calcium leaching process of concrete on its mechanical properties are highlighted. An accelerated method has been chosen to perform this leaching process by using an ammonium nitrate solution. In the second part, we present a coupled phenomenological chemo-mechanical model that represents the degradation of concrete materials. On one hand, the chemical behavior is described by the simplified calcium leaching approach of cement paste and mortar. Then a homogenization approach using the asymptotic development is presented to take into account the influence of the presence of aggregates in concrete. And on the other hand, the mechanical part of the modelling is given. Here continuum damage mechanics is used to describe the mechanical degradation of concrete. The growth of inelastic strains observed during the mechanical tests is describes by means of a plastic like model. The model is established on the basis of the thermodynamics of irreversible processes framework. The coupled nonlinear problem at hand is addressed within the context of the finite element method. Finally, numerical simulations are compared with the experimental results for validation. (author)

  4. Comparison of leach results from field and laboratory prepared samples

    International Nuclear Information System (INIS)

    Oblath, S.B.; Langton, C.A.

    1985-01-01

    The leach behavior of saltstone prepared in the laboratory agrees well with that from samples mixed in the field using the Littleford mixer. Leach rates of nitrates and cesium from the current reference formulation saltstone were compared. The laboratory samples were prepared using simulated salt solution; those in the field used Tank 50 decontaminated supernate. For both nitrate and cesium, the field and laboratory samples showed nearly identical leach rates for the first 30 to 50 days. For the remaining period of the test, the field samples showed higher leach rates with the maximum difference being less than a factor of three. Ruthenium and antimony were present in the Tank 50 supernate in known amounts. Antimony-125 was observed in the leachate and a fractional leach rate was calculated to be at least a factor of ten less than that of 137 Cs. No 106 Ru was observed in the leachate, and the release rate was not calculated. However, based on the detection limits for the analysis, the ruthenium leach rate must also be at least a factor of ten less than cesium. These data are the first measurements of the leach rates of Ru and Sb from saltstone. The nitrate leach rates for these samples were 5 x 10 -5 grams of nitrate per square cm per day after 100 days for the laboratory samples and after 200 days for the field samples. These values are consistent with the previously measured leach rates for reference formulation saltstone. The relative standard deviation in the leach rate is about 15% for the field samples, which all were produced from one batch of saltstone, and about 35% for the laboratory samples, which came from different batches. These are the first recorded estimates of the error in leach rates for saltstone

  5. Spatial risk modelling for water shortage and nitrate pollution in the lower Jordan valley

    International Nuclear Information System (INIS)

    Loibl, W.; Orthofer, R.

    2002-02-01

    This report summarizes the results of the spatial risk modeling activities (work package WP-4.4, 'GIS Risk Modeling') of the INCO-DC project 'Developing Sustainable Water Management in the Jordan Valley'. The project was funded by European Commission's INCO-DC research program. The main objective of the project was to develop the scientific basis for an integral management plan of water resources and their use in the Lower Jordan Valley. The outputs of the project were expected to allow a better understanding of the water management situation, and to provide a sound basis for a better future water management - not only separately in the three countries, but in the overall valley region. The risk modeling was done by the ARCS Seibersdorf research (ARCS), based on information and data provided by the regional partners from Israel (Hebrew University, Jerusalem, HUJ), Palestine (Applied Research Institute, Jerusalem, Bethlehem, ARIJ) and Jordan (EnviroConsult Office, Amman, ECO). The land use classification has been established through a cooperation between ARCS and the Yale University Center for Earth Observation (YUCEO). As a result of the work, the spatial patterns of agricultural and domestic water demand in the Lower Jordan Valley were established, and the spatial dimension of driving forces for water usage and water supply was analyzed. Furthermore, a conceptual model for nitrate leakage (established by HUJ) was translated into a GIS system, and the risks for nitrate pollution of groundwater were quantified. (author)

  6. Comparison of three pesticide fate models for two herbicides leaching under field conditions in a maize cropping system

    Science.gov (United States)

    Marin-Benito, Jesus Maria; Pot, Valérie; Alletto, Lionel; Mamy, Laure; Bedos, Carole; van den Berg, Erik; Barriuso, Enrique; Benoit, Pierre

    2014-05-01

    Losses of pesticides from agricultural soils may influence the quality of groundwater. Therefore, numerous models were developed to assess the transfer of pesticides from the soil surface to groundwater after their application to an agricultural field. Our objective was thus to compare the ability of three pesticide fate models to describe the behavior of water, and S-metolachlor (SMOC) and mesotrione (MES) herbicides as observed under field conditions in a maize monoculture system. Simulations were based on field experimentations set up in Toulouse area (France). The tested scenario focused on a conventional maize monoculture and included two irrigated cropping periods with a fallow period managed with bare soil. SMOC was sprayed annually at 1.25 and 1.52 kg a.i./ha in 2011 and 2012, respectively, while MES was only applied in 2012 but twice, at 0.150 kg a.i./ha. Simulations were performed with the PRZM, PEARL and MACRO models parameterized with field, laboratory, and literature data, and pedotransfer functions. The results of simulations were compared with soil tension, water content and percolation data monitored at different depths in 2011-2012. The comparison of the results obtained by the three models indicated that PRZM was not able to simulate properly the water dynamic in the soil profile and for example, it predicted that microporosity was always saturated at 1 m-depth. On the contrary, PEARL and MACRO simulated quite well the observed water behavior (water pressure head and volumetric water content) at 20 and 50 cm-depth during the irrigated cropping period of 2012. However, simulated soil moisture and water pressure were overestimated before the rainfall event of 20 May 2012. MACRO and PEARL simulations generally showed similar water flow dynamics for the whole period at the three depths. Neither the dynamic nor the total amount of percolated water was correctly simulated by any model. The three models overestimated the total water volume leached at 1 m

  7. Reactivity of nitrate and organic acids at the concrete–bitumen interface of a nuclear waste repository cell

    Energy Technology Data Exchange (ETDEWEB)

    Bertron, A., E-mail: bertron@insa-toulouse.fr [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Jacquemet, N. [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Erable, B. [Université de Toulouse (France); INPT, UPS (France); CNRS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, F-31030 Toulouse (France); Sablayrolles, C. [Université de Toulouse (France); INP (France); LCA (Laboratoire de Chimie Agro-Industrielle), ENSIACET, 4 allée Emile Monso, BP 44 362, 31432 Toulouse Cedex 4 (France); INRA (France); LCA (Laboratoire de Chimie Agro-Industrielle), F-31029 Toulouse (France); Escadeillas, G. [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Albrecht, A. [Andra, 1-7, rue Jean-Monnet, 92298 Châtenay-Malabry (France)

    2014-03-01

    Highlights: • Interactions of cement paste and organic acid–nitrate solutions were investigated. • Cement leaching imposed alkaline pH (>10) very rapidly in the liquid media. • Acetic acid action on cement paste was similar to that of classical leaching. • Oxalic acid attack formed Ca-oxalate salts; organic matter in solution decreased. • Nitrate was stable under abiotic conditions and with organic matter. - Abstract: This study investigates the fate of nitrate and organic acids at the bitumen–concrete interface within repository cell for long-lived, intermediate-level, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V cement paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the abiotic conditions of the experiments. The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching in the absence of organic acids (i.e. carried out with water or strong acids); no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.

  8. GYY4137, an H2S Slow-Releasing Donor, Prevents Nitrative Stress and α-Synuclein Nitration in an MPTP Mouse Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Xiaoou Hou

    2017-10-01

    Full Text Available The neuromodulator hydrogen sulfide (H2S was shown to exert neuroprotection in different models of Parkinson’s disease (PD via its anti-inflammatory and anti-apoptotic properties. In this study, we evaluated the effect of an H2S slow-releasing compound GYY4137 (GYY on a mouse PD model induced by acute injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. GYY was intraperitoneally (i.p. injected once daily into male C57BL/6J mice 3 days before and 2 weeks after MPTP (14 mg/kg, four times at 2-h intervals, i.p. administration. Saline was given as a control. Behavioral tests (rotarod, balance beam, and grid walking showed that 50 mg/kg GYY significantly ameliorated MPTP-caused motor impairments. At lower doses (12.5 and 25 mg/kg GYY exhibited a less obvious effect. Consistent with this, immunohistochemistry and western blot analysis demonstrated that 50 mg/kg GYY attenuated the loss of tyrosine hydroxylase (TH positive neurons in the substantia nigra and the decrease of TH expression in the striatum of MPTP-treated mice. Moreover, at this regimen GYY relieved the nitrative stress, as indicated by the decreases in nitric oxide (NO generation and neuronal NO synthase (nNOS upregulation elicited by MPTP in the striatum. The suppression of GYY on nNOS expression was verified in vitro, and the results further revealed that Akt activation may participate in the inhibition by GYY on nNOS upregulation. More important, GYY reduced the nitrated modification of α-synuclein, a PD-related protein, in MPTP-induced mice. Overall, our findings suggest that GYY attenuated dopaminergic neuron degeneration and reduced α-synuclein nitration in the midbrain, thus exerting neuroprotection in MPTP-induced mouse model of PD.

  9. GYY4137, an H2S Slow-Releasing Donor, Prevents Nitrative Stress and α-Synuclein Nitration in an MPTP Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Hou, Xiaoou; Yuan, Yuqing; Sheng, Yulan; Yuan, Baoshi; Wang, Yali; Zheng, Jiyue; Liu, Chun-Feng; Zhang, Xiaohu; Hu, Li-Fang

    2017-01-01

    The neuromodulator hydrogen sulfide (H 2 S) was shown to exert neuroprotection in different models of Parkinson's disease (PD) via its anti-inflammatory and anti-apoptotic properties. In this study, we evaluated the effect of an H 2 S slow-releasing compound GYY4137 (GYY) on a mouse PD model induced by acute injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). GYY was intraperitoneally (i.p.) injected once daily into male C57BL/6J mice 3 days before and 2 weeks after MPTP (14 mg/kg, four times at 2-h intervals, i.p.) administration. Saline was given as a control. Behavioral tests (rotarod, balance beam, and grid walking) showed that 50 mg/kg GYY significantly ameliorated MPTP-caused motor impairments. At lower doses (12.5 and 25 mg/kg) GYY exhibited a less obvious effect. Consistent with this, immunohistochemistry and western blot analysis demonstrated that 50 mg/kg GYY attenuated the loss of tyrosine hydroxylase (TH) positive neurons in the substantia nigra and the decrease of TH expression in the striatum of MPTP-treated mice. Moreover, at this regimen GYY relieved the nitrative stress, as indicated by the decreases in nitric oxide (NO) generation and neuronal NO synthase (nNOS) upregulation elicited by MPTP in the striatum. The suppression of GYY on nNOS expression was verified in vitro , and the results further revealed that Akt activation may participate in the inhibition by GYY on nNOS upregulation. More important, GYY reduced the nitrated modification of α-synuclein, a PD-related protein, in MPTP-induced mice. Overall, our findings suggest that GYY attenuated dopaminergic neuron degeneration and reduced α-synuclein nitration in the midbrain, thus exerting neuroprotection in MPTP-induced mouse model of PD.

  10. Re-evaluation of the sorption behaviour of Bromide and Sulfamethazine under field conditions using leaching data and modelling methods

    Science.gov (United States)

    Gassmann, Matthias; Olsson, Oliver; Höper, Heinrich; Hamscher, Gerd; Kümmerer, Klaus

    2016-04-01

    The simulation of reactive transport in the aquatic environment is hampered by the ambiguity of environmental fate process conceptualizations for a specific substance in the literature. Concepts are usually identified by experimental studies and inverse modelling under controlled lab conditions in order to reduce environmental uncertainties such as uncertain boundary conditions and input data. However, since environmental conditions affect substance behaviour, a re-evaluation might be necessary under environmental conditions which might, in turn, be affected by uncertainties. Using a combination of experimental data and simulations of the leaching behaviour of the veterinary antibiotic Sulfamethazine (SMZ; synonym: sulfadimidine) and the hydrological tracer Bromide (Br) in a field lysimeter, we re-evaluated the sorption concepts of both substances under uncertain field conditions. Sampling data of a field lysimeter experiment in which both substances were applied twice a year with manure and sampled at the bottom of two lysimeters during three subsequent years was used for model set-up and evaluation. The total amount of leached SMZ and Br were 22 μg and 129 mg, respectively. A reactive transport model was parameterized to the conditions of the two lysimeters filled with monoliths (depth 2 m, area 1 m²) of a sandy soil showing a low pH value under which Bromide is sorptive. We used different sorption concepts such as constant and organic-carbon dependent sorption coefficients and instantaneous and kinetic sorption equilibrium. Combining the sorption concepts resulted in four scenarios per substance with different equations for sorption equilibrium and sorption kinetics. The GLUE (Generalized Likelihood Uncertainty Estimation) method was applied to each scenario using parameter ranges found in experimental and modelling studies. The parameter spaces for each scenario were sampled using a Latin Hypercube method which was refined around local model efficiency maxima

  11. Experimental study on oral sulfhydryl as an adjuvant for improving nitrate ester tolerance in an animal model.

    Science.gov (United States)

    Chen, L; Jiang, J-Q; Zhang, Y; Feng, H

    2018-03-01

    As an initial step in exploring the feasibility of oral sulfhydryl as an adjuvant for improving nitrate ester tolerance, this study was designed to experimentally test the adjuvant therapy in a rabbit model of atherosclerosis (AS). New Zealand white rabbits with induced AS were randomly divided into four groups: AS group, AS + nitrate ester group, AS + nitrate ester tolerance group, and AS + drug combination group. Additionally, four equivalent groups with healthy New Zealand white rabbits without AS were also conformed. After feeding the animals for 5 days, the concentrations of superoxide anion (•O2-), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO), and endothelin-1 (ET-1) in blood and the relaxation response of the aortic ring were determined in each subject. The vascular plaques in different treatment groups were assessed by Hematoxylin and eosin (HE) staining to investigate the therapeutic value of sulfhydryl as coadjuvant for improving nitrate ester tolerance, and changes in blood vessels in different treatment groups were studied by immunohistochemical assays. Our results showed no significant differences through time in the concentrations of •O2-, SOD, MDA, NO, ET-1 between the healthy control and the nitrate ester groups (p > 0.05). The levels of SOD and MDA in the nitrate ester tolerance group increased with time, however, the levels of •O2-, NO and ET-1 decreased gradually (p tolerance groups were significantly decreased, but SOD and MDA were significantly increased (p tolerance, and this strategy was safe and looks promising for humans.

  12. A GIS-based groundwater travel time model to evaluate stream nitrate concentration reductions from land use change

    Science.gov (United States)

    Schilling, K.E.; Wolter, C.F.

    2007-01-01

    Excessive nitrate-nitrogen (nitrate) loss from agricultural watersheds is an environmental concern. A common conservation practice to improve stream water quality is to retire vulnerable row croplands to grass. In this paper, a groundwater travel time model based on a geographic information system (GIS) analysis of readily available soil and topographic variables was used to evaluate the time needed to observe stream nitrate concentration reductions from conversion of row crop land to native prairie in Walnut Creek watershed, Iowa. Average linear groundwater velocity in 5-m cells was estimated by overlaying GIS layers of soil permeability, land slope (surrogates for hydraulic conductivity and gradient, respectively) and porosity. Cells were summed backwards from the stream network to watershed divide to develop a travel time distribution map. Results suggested that groundwater from half of the land planted in prairie has reached the stream network during the 10 years of ongoing water quality monitoring. The mean travel time for the watershed was estimated to be 10.1 years, consistent with results from a simple analytical model. The proportion of land in the watershed and subbasins with prairie groundwater reaching the stream (10-22%) was similar to the measured reduction of stream nitrate (11-36%). Results provide encouragement that additional nitrate reductions in Walnut Creek are probable in the future as reduced nitrate groundwater from distal locations discharges to the stream network in the coming years. The high spatial resolution of the model (5-m cells) and its simplicity may make it potentially applicable for land managers interested in communicating lag time issues to the public, particularly related to nitrate concentration reductions over time. ?? 2007 Springer-Verlag.

  13. Comparison of leaching tests and study of leaching mechanisms

    International Nuclear Information System (INIS)

    Amarantos, S.G.; Papadokostaki, K.G.; Petropoulos, J.H.

    1985-10-01

    The present work is concerned first with the study of certain aspects of the leaching kinetics of Cs + and Sr ++ embedded in cement, as Cs 2 SO 4 and SrSO 4 , and in particular: (a) the comparative evaluation of leaching in (i) stagnant, (ii) stirred and (iii) continuously flowing (modified Soxhlet) water, (b) the effect of atmospheric CO 2 on elution, (c) the effect of temperature changes during leaching. Secondly, model kinetic studies were carried out using cellulose acetate incorporating SrSO 4 , CaSO 4 or NaCl. The main results obtained were: (1) Cs leaching rates were not significantly affected by the leaching method or by the presence of atmospheric CO 2 . The embedded Cs exists in relatively easily leachable and less rapidly leachable (most probably located within the gel regions) forms. (2) Elution of Sr is retarded by stagnant and infrequently renewed leachant (method (i)) and by the presence of atmospheric CO 2 ; leaching method (iii), which tends to minimize both of these effects, gave the highest elution rates. (3) The observed elution kinetics in the case of cellulose acetate-CaSO 4 or SrSO 4 conform to the Higuchi model, but a more elaborate theory is needed for the cellulose acetate-NaCl system. (author)

  14. Behavior of uranium and thorium isotopes in soils of the Boreon area, Mercantour Massif (S.E. France). Leaching and weathering rate modeling

    International Nuclear Information System (INIS)

    Rezzoug, S.; Michel, H.; Barci-Funel, G.; Barci, V.; Fernex, F.

    2009-01-01

    Four cores were collected in weathered rocks and soils in the Boreon forest area (1765 m, Mercantour Massif, France). The samples were analyzed for the isotopes 230 Th, 232 Th, 234 U and 238 U. The activity and isotopic ratio profiles suggest that uranium was mobilized (leaching and precipitation) during the weathering process, as well as thorium but in a much less proportion. A model was drawn up to evaluate the U leaching rate and the time that some levels of the weathered rocks have been subjected to weathering. It utilizes LATHAM and SCHWARCZ's two equations,15 expressed as 234 U/ 238 U and 230 Th/ 238 U activity ratios, which assume that the alpha recoil effect allows easier leaching for 234 U than 238 U and no Th mobility. But this last assumption does not correspond to the observations made in the Boreon area, since it appears that in some soil deeper layers 230 Th and 228 Th are in radioactive deficit relatively to their parents. As there are four unknown quantities (the time, the leaching rates of 238 U, 234 U, 230 Th), the problem to be solved requires two more equations; these can be obtained utilizing the U activity ratio in water, and taking into account the 232 Th behavior. In some sites the 238 U leaching rate is high in deeper soil levels (near the fresh rocks); this would correspond to a loss of half the U amount in less than 24 000 years. (author)

  15. [Effects of silver nitrate on the phase state of model multibilayer membranes].

    Science.gov (United States)

    Vashchenko, O V; Iermak, Yu L; Krasnikova, A O; Lisetski, L N

    2015-01-01

    In order to study the effects caused by silver nitrate (AgNO3) on model lipid membranes, we studied multibilayer membranes based on L-α-dipalmitoylphosphatidylcholine (DPPC) and AgNO3 aqueous soluitions in a wide concentration range (up to 30 wt%) by means of differential scanning calorimetry. It has been shown that the presence of AgNO3 leads both to an increase in the main phase transition temperature (T(m)) and appearance of an additional phase transition peak (T(m)), suggesting increasing of both density and heterogeneity of the lipid membrane. The effect of nitrate ions (NO ) was shown to be of the opposite nature (bilayer fluidizing), so the integral densifying effect of AgNO3 can be referred solely to the action of silver ions (Ag(+)). With increasing AgNO3 concentration, the tendency was observed to opposite changes in T(m) and T'(m) peaks intensity, thereby at about 26. wt% of AgNO3 the initial peak (T(m)) disappeared. In the range of Ag+ therapeutic concentrations (up to 2 wt%) no significant changes in the DPPC membrane were revealed. This can be one of the reasons of the absence of a damaging effect of silver drugs on a host organism with simultaneous pronounced bactericidal effect.

  16. Model investigations for trace analysis of iodine, uranium, and technetium in saturated sodium chloride leaching solutions of stored radioactive waste

    International Nuclear Information System (INIS)

    Jegle, U.

    1989-02-01

    This paper describes the development of a time and cost saving chromatographic technique, which allows the matrix to be separated and the most important species to be analyzed in a leaching solution of vitrified radioactive waste. Uranium, iodine, and technetium were chosen for the model technique to be elaborated. In a first step, iodide and pertechnetate were separated from the matrix by the strongly basic AG 1X 8 anion exchange resin and then separated from each other by selective elution. The uranyl ions eluted with the sodium chloride matrix were separated from the excess of sodium chloride in a second step, again by adsorption to the strongly basic resin. The ion-selective electrode was found to be a suitable tool for iodide analysis. Pertechnetate was analysed by means of liquid scintillation. Uranium was determined by ICP-AES. (orig./RB) [de

  17. Salt and N leaching and soil accumulation due to cover cropping practices

    Science.gov (United States)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  18. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    Science.gov (United States)

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is

  19. Rapid nutrient leaching to groundwater and surface water in clay soil areas

    NARCIS (Netherlands)

    Bronswijk, J.J.B.; Hamminga, W.; Oostindie, K.

    1995-01-01

    The mechanism and magnitude of nitrate leaching from grassland on a heavy clay soil were investigated by measuring nitrogen input, and nitrate concentrations in groundwater and drain discharge for two years. A bromide tracer was applied to study solute transport mechanisms. Nitrate transport in the

  20. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Kapil K., E-mail: kkn2104@columbia.edu [Columbia Water Center (India Office), Columbia University, New Delhi 110 016 (India); Gosain, A.K. [Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016 (India)

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11 600 km{sup 2} with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO{sub 3}) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO{sub 3} transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash–Sutcliffe and R{sup 2} correlations greater than + 0.7). Nitrate loading obtained after nitrification, denitrification, and NO{sub 3} removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO{sub 3} concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the

  1. Application of the GRAAL model to leaching experiments with SON68 nuclear glass in initially pure water

    International Nuclear Information System (INIS)

    Frugier, P.; Chave, T.; Gin, S.; Lartigue, J.-E.

    2009-01-01

    Based on a review of the current state of knowledge concerning the aqueous alteration of SON68 nuclear glass we have proposed a mechanistic model, GRAAL (Glass Reactivity with Allowance for the Alteration Layer) [P. Frugier, S. Gin, Y. Minet, T. Chave, B. Bonin, N. Godon, J.E. Lartigue, P. Jollivet, A. Ayral, L. De Windt, G. Santarini, J. Nucl. Mater. 380 (2008) 8]. This article describes how the GRAAL model hypotheses are solved using a calculation code coupling chemistry and transport. The geochemical solution of this model combines three major phenomena: chemical equilibria in solution, water and ion transport by convection or diffusion, and element diffusion through the passivating reactive interphase. The model results are compared with experimental data for SON68 glass leached in initially pure water both in a closed system and in renewed media. The comparison shows the model very satisfactorily accounts for variations in the pH and the element concentrations in solution as a function of time, the glass surface area in contact with solution, and the solution renewal rate. This success is due to the fact that the diffusion of elements through the alteration gel is taken into account in the model. This mechanism cannot be disregarded under most experimental conditions - if only to predict the solution pH - and must therefore be an integral part of the geochemical model.

  2. Numerical simulation of vertical infiltration for leaching fluid in situ

    International Nuclear Information System (INIS)

    Li Jinxuan; Shi Weijun; Zhang Weimin

    1998-01-01

    Based on the analysis of movement law of leaching fluid in breaking and leaching experiment in situ, the movement of leaching fluid can be divided into two main stages in the leaching process in situ: Vertical Infiltration in unsaturation zone and horizontal runoff in saturation zone. The corresponding mathematics models are sep up, and the process of vertical infiltration of leaching fluid is numerically simulated

  3. The nitrate time bomb : a numerical way to investigate nitrate storage and lag time in the unsaturated zone

    OpenAIRE

    Wang, L.; Butcher, A.S.; Stuart, M.E.; Gooddy, D.C.; Bloomfield, J.P.

    2013-01-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the ‘store’ of nitrate and its potentially long travel time in the unsaturated and satura...

  4. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA

    Science.gov (United States)

    Nolan, Bernard T.; Fienen, Michael N.; Lorenz, David L.

    2015-01-01

    We used a statistical learning framework to evaluate the ability of three machine-learning methods to predict nitrate concentration in shallow groundwater of the Central Valley, California: boosted regression trees (BRT), artificial neural networks (ANN), and Bayesian networks (BN). Machine learning methods can learn complex patterns in the data but because of overfitting may not generalize well to new data. The statistical learning framework involves cross-validation (CV) training and testing data and a separate hold-out data set for model evaluation, with the goal of optimizing predictive performance by controlling for model overfit. The order of prediction performance according to both CV testing R2 and that for the hold-out data set was BRT > BN > ANN. For each method we identified two models based on CV testing results: that with maximum testing R2 and a version with R2 within one standard error of the maximum (the 1SE model). The former yielded CV training R2 values of 0.94–1.0. Cross-validation testing R2 values indicate predictive performance, and these were 0.22–0.39 for the maximum R2 models and 0.19–0.36 for the 1SE models. Evaluation with hold-out data suggested that the 1SE BRT and ANN models predicted better for an independent data set compared with the maximum R2 versions, which is relevant to extrapolation by mapping. Scatterplots of predicted vs. observed hold-out data obtained for final models helped identify prediction bias, which was fairly pronounced for ANN and BN. Lastly, the models were compared with multiple linear regression (MLR) and a previous random forest regression (RFR) model. Whereas BRT results were comparable to RFR, MLR had low hold-out R2 (0.07) and explained less than half the variation in the training data. Spatial patterns of predictions by the final, 1SE BRT model agreed reasonably well with previously observed patterns of nitrate occurrence in groundwater of the Central Valley.

  5. The use of biochar to reduce nitrogen and potassium leaching from soil cultivated with maize

    Directory of Open Access Journals (Sweden)

    W Widowati

    2014-10-01

    Full Text Available Nutrient leaching is often a problem especially in tropical areas with soil fertility constraints. This study aims to reveal the effect of biochars on leaching and uptake of nitrogen and potassium from degraded soils cultivated with maize. Each of three types of biochar originated from rice husk, wood, and coconut shell, was applied to the soil placed in PVC tube at four rates (0, 15, 30, and 45 t/ha. Maize was then planted in each pot. All pots received urea (135 kg N/ha, SP36 (36 kg P2O5/ha, and KCl (110 kg K2O/ha. Twelve treatments (three biochars and four application rates were arranged in a factorial randomized block design with three replicates. Results of the study showed interaction effects of biochar materials and biochar rates on nitrate leaching (except on day 1 to 30 and potassium, N uptake, and plant growth. On day 1-30, leaching of nitrate and potassium was reduced by biochar application. The lowest nitrate leaching was observed at rate of 45 t /ha of wood biochar, while application of 45 t coconut shell biochar / ha resulted in the highest K leaching. Beside, wood biochar resulted in a similar nitrate leaching with that of coconut shell biochar, but nitrate leaching increased with increasing rate of rice husk biochar on day 30-60. All biochar materials yielded similar potassium leaching at all rates. Application of 45 t rice husk biochar /ha resulted in the best maize growth.

  6. Residence time as a key for comprehensive assessment of the relationship between changing land use and nitrates in regional groundwater systems.

    Science.gov (United States)

    Cao, Yingjie; Tang, Changyuan; Song, Xianfang; Liu, Changming; Zhang, Yinghua

    2013-04-01

    In this study, an approach is put forward to study the relationship between changing land use and groundwater nitrate contamination in the Sanjiang Plain. This approach emphasizes the importance of groundwater residence time when relating the nitrates to the changing land use. The principles underlying the approach involve the assessment of groundwater residence time by CFCs and the Vogel age model and the reconstruction of the land use at the groundwater recharge time by interpolation. Nitrate trend analysis shows that nitrates have begun to leach into the aquifers since agricultural activities boomed after the 1950s. Hydrochemical analysis implies that the possible process relating to the nitrate reduction in the groundwater is the oxidation of Fe(ii)-silicates. However, the chemical kinetics of the oxidation of Fe(ii)-silicates is slow, so this denitrification process contributes little to the nitrate variations. Stepwise regression shows that the nitrate concentrations of samples had no direct relationship with the land use at the groundwater sampling time, but had a relatively strong relationship with the land use at the groundwater recharge time. Dry land is recognized as the dominant factor contributing to the elevated concentration of nitrates. The nitrogen isotope for nitrate (δ(15)N-NO3) gives a more direct result of the identification of nitrate sources: the use of manure in agricultural activities. Principle component (PC) regression shows that the process of the dry land exploitation is the major process that controls the nitrate contamination in the Sanjiang Plain.

  7. Leaching of major and trace elements from paper-plastic gasification chars. An experimental and modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Fuente-Cuesta, A.; Lopez-Anton, M.A.; Diaz-Somoano, M.; Martinez-Tarazona, M.R. [Instituto Nacional del Carbon CSIC, C/Francisco Pintado Fe No 26, 33011, Oviedo (Spain); Van Zomeren, A.; Cieplik, M. [Energy research Centre of the Netherlands ECN, Biomass, P.O. Box 1, 1755 ZG, Petten (Netherlands)

    2013-01-15

    The control of soluble metal species in the sub-product leachate generated in electricity production processes is of great concern from an environmental and health point of view. Unlike fly ash, the leaching behaviour of char materials has received little attention. Yet, these solids are captured together with fly ashes in the particle control devices of power plants and are emitted in the same way as by-products. The present study was carried out using two char samples: (1) a raw char and (2) the same type of char employed in a previous study so that it could serve as a sorbent for mercury species in gas phase. The char samples were by-products (residues) that had been generated during the gasification of plastic and paper waste. The leachates were analyzed for the following elements: Al, Ca, Si, Mg, Ba, Cu, Ni, Pb, Zn, Mo and Hg. In addition, geochemical modelling of the leaching test results was employed to identify the underlying chemical processes that led to the release of toxic elements. The results showed that at alkaline pH values, sorption on the solid surfaces of the char was negligible due to the inorganic complexation of cations in the solution. When the char was used as mercury sorbent slight changes occurred on the reactive surface resulting in the modification of the binding of some elements. As the pH increased, complexation with dissolved organic matter played a more important role in the case of some elements such as Cu because of the greater concentration of dissolved organic matter in solution.

  8. Nitrate variability in groundwater of North Carolina using monitoring and private well data models.

    Science.gov (United States)

    Messier, Kyle P; Kane, Evan; Bolich, Rick; Serre, Marc L

    2014-09-16

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.

  9. Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Windt, Laurent de [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)]. E-mail: laurent.dewindt@ensmp.fr; Badreddine, Rabia [INERIS, Direction des Risques Chroniques, Unite Dechets et Sites Pollues, Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte (France); Lagneau, Vincent [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)

    2007-01-31

    Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example. The reactive transport model developed in a previous study to simulate the initial state of the waste as well as laboratory batch and dynamic tests is first summarized. Using the same numerical code (HYTEC), this model is then integrated to a simplified waste disposal scenario assuming a defective cover and rain water infiltration. The coupled evolution of the S/S waste chemistry and the pollutant plume migration are modelled assessing the importance of the cracking state of the monolithic waste. The studied configurations correspond to an undamaged and fully sealed system, a few main fractures between undamaged monoliths and, finally, a dense crack-network in the monoliths. The model considers the potential effects of cracking, first the increase of rain water and carbon dioxide infiltration and, secondly, the increase of L/S ratio and reactive surfaces, using either explicit fracture representation or dual porosity approaches.

  10. Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada

    Science.gov (United States)

    Jiang, Yefang; Somers, George

    2009-05-01

    Intensification of potato farming has contaminated groundwater with nitrate in many cases in Prince Edward Island, Canada, which raises concerns for drinking water quality and associated ecosystem protection. Numerical models were developed to simulate nitrate-N transport in groundwater and enhance understanding of the impacts of farming on water quality in the Wilmot River watershed. Nitrate is assumed non-reactive based on δ15N and δ18O in nitrate and geochemical information. The source functions were reconstructed from tile drain measurements, N budget and historical land-use information. The transport model was calibrated to long-term nitrate-N observations in the Wilmot River and verified against nitrate-N measurements in two rivers from watersheds with similar physical conditions. Simulations show groundwater flow is stratified and vertical flux decreases exponentially with depth. While it would take several years to reduce the nitrate-N in the shallow portion of the aquifer, it would take several decades or even longer to restore water quality in the deeper portions of the aquifer. Elevated nitrate-N concentrations in base flow are positively correlated with potato cropping intensity and significant reductions in nitrate-N loading are required if the nitrate level of surface water is to recover to the standard in the Canadian Water Quality Guidelines.

  11. Use of long-term monitoring data to derive a relationship between nitrogen surplus and nitrate leaching for grassland and arable land on well-drained sandy soils in the Netherlands

    NARCIS (Netherlands)

    Fraters, Dico; Leeuwen, van Ton; Boumans, Leo; Reijs, Joan

    2015-01-01

    The decrease in nitrogen (N) use in agriculture led to improvement of upper groundwater quality in the Sand region of the Netherlands in the 1991–2009 period. However, still half of the farms exceeded the European nitrate standard for groundwater of 50 mg/l in the 2008–2011 period. To assure that

  12. Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.

    Science.gov (United States)

    Horne, Gregory P; Donoclift, Thomas A; Sims, Howard E; Orr, Robin M; Pimblott, Simon M

    2016-11-17

    A multiscale modeling approach has been developed for the extended time scale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages: radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modeling. The first three components model the physical and chemical evolution of an isolated radiation chemical track and provide radiolysis yields, within the extremely low dose isolated track paradigm, as the input parameters for a bulk deterministic chemistry model. This approach to radiation chemical modeling has been tested by comparison with the experimentally observed yield of nitrite from the gamma radiolysis of sodium nitrate solutions. This is a complex radiation chemical system which is strongly dependent on secondary reaction processes. The concentration of nitrite is not just dependent upon the evolution of radiation track chemistry and the scavenging of the hydrated electron and its precursors but also on the subsequent reactions of the products of these scavenging reactions with other water radiolysis products. Without the inclusion of intratrack chemistry, the deterministic component of the multiscale model is unable to correctly predict experimental data, highlighting the importance of intratrack radiation chemistry in the chemical evolution of the irradiated system.

  13. Study of radionuclide leaching from the residues of K Basin sludge dissolution

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1998-01-01

    The sludges remaining in the K Basins after removal of the spent N Reactor nuclear fuel will be conditioned for disposal. After conditioning, an acid-insoluble residue will remain that may require further leaching to properly condition it for disposal. This document presents a literature study to identify and recommend one or more chemical leaching treatments for laboratory testing, based on the likely compositions of the residues. The processes identified are a nitric acid cerate leach, a silver-catalyzed persulfate leach, a nitric hydrofluoric acid leach, an oxalic citric acid reactor decontamination leach, a nitric hydrochloric acid leach, a ammonium fluoride nitrate leach, and a HEOPA formate dehydesulfoxylate leach. All processes except the last two are recommended for testing in that order

  14. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  15. Quantifying Nitrate Leaching in Irrigated Wheat with Different Nitrogen Fertilization Strategies in an Alfisol Cuantificación de la Lixiviación de Nitratos en Trigo Regado con Diferentes Estrategias de Fertilización Nitrogenada en un Alfisol

    Directory of Open Access Journals (Sweden)

    Marcelino Claret M

    2011-03-01

    Full Text Available Consumption of water contaminated with nitrates is associated with important health effects such as methemoglobinemia and gastric cancer. Intensive agriculture, which uses large quantities of N fertilizer, is the main source of nitrates in water systems. There are several strategies to reduce leaching and increase Nitrogen Use Efficiency (NUE. An experiment was conducted with spring wheat (Triticum aestivum L. under sprinkler irrigation (center pivot to determine if adjusted N applications using precision agriculture tools and plant demand resulted in a lower groundwater nitrate load. Evaluated treatments were: produced fertilization (Pr, precision agriculture (Pa, chlorophyll meter (Sm, and control without N (W/N. The ceramic capsule methodology was used to evaluate N leaching losses that were sampled after each irrigation (six and drainage water was also estimated. Differences among treatments in terms of N loss and grain yield were not significant (p > 0.05. However, N balance showed significant differences (p El consumo de agua contaminada con nitratos produce importantes efectos en la salud tales como metahemoglobinemia y cáncer gástrico. La agricultura intensiva es la principal fuente de nitratos en aguas superficiales y subterráneas. Hay varias estrategias para reducir lixiviación y aumentar la eficiencia de uso de N (NUE. Se realizó un experimento en trigo de primavera (Triticum aestivum L. bajo pivote central, con el objetivo de determinar si las aplicaciones ajustadas de N, mediante el uso de herramientas de agricultura de precisión y considerando la demanda de la planta, resultaban en una menor carga de nitratos para el agua subterránea. Se evaluaron los siguientes tratamientos: productor (Pr; agricultura de precisión (Pa, medidor de clorofila (Sm y sin N (W/N. Se utilizaron lisímetros para evaluar las pérdidas de N; se tomaron muestreas seis veces durante la temporada, evaluando además el agua de drenaje en cada riego. Las

  16. Modeling the impact of the nitrate contamination on groundwater at the groundwater body scale : The Geer basin case study (Invited)

    Science.gov (United States)

    Brouyere, S.; Orban, P.; Hérivaux, C.

    2009-12-01

    In the next decades, groundwater managers will have to face regional degradation of the quantity and quality of groundwater under pressure of land-use and socio-economic changes. In this context, the objectives of the European Water Framework Directive require that groundwater be managed at the scale of the groundwater body, taking into account not only all components of the water cycle but also the socio-economic impact of these changes. One of the main challenges remains to develop robust and efficient numerical modeling applications at such a scale and to couple them with economic models, as a support for decision support in groundwater management. An integrated approach between hydrogeologists and economists has been developed by coupling the hydrogeological model SUFT3D and a cost-benefit economic analysis to study the impact of agricultural practices on groundwater quality and to design cost-effective mitigation measures to decrease nitrate pressure on groundwater so as to ensure the highest benefit to the society. A new modeling technique, the ‘Hybrid Finite Element Mixing Cell’ approach has been developed for large scale modeling purposes. The principle of this method is to fully couple different mathematical and numerical approaches to solve groundwater flow and solute transport problems. The mathematical and numerical approaches proposed allows an adaptation to the level of local hydrogeological knowledge and the amount of available data. In combination with long time series of nitrate concentrations and tritium data, the regional scale modelling approach has been used to develop a 3D spatially distributed groundwater flow and solute transport model for the Geer basin (Belgium) of about 480 km2. The model is able to reproduce the spatial patterns of nitrate concentrations together nitrate trends with time. The model has then been used to predict the future evolution of nitrate trends for two types of scenarios: (i) a “business as usual scenario

  17. Modeling of cumulative release on long term leaching behaviour of selected oil sludge from crude oil terminal and petroleum refining plant

    International Nuclear Information System (INIS)

    Mohd Fadzil, S.; Khoo, K.S.; Sarmani, S.; Majid, A.Ab.; Hamzah, A.

    2013-01-01

    Management of oil sludge containing environmentally toxic elements is a major problem in crude oil processing industry. Oil sludge samples from the petroleum refinery plant in Melaka and crude oil terminal in Sarawak were analysed. The aim of present work is to study long term leaching behaviour of arsenic (As), cobalt (Co), chromium (Cr) and zinc (Zn) from oil sludge. Tank leaching test was carried out and the samples were analysed using inductively coupled plasma-mass spectrometry (ICP-MS). The results were studied using LeachXS software to plot the graphs of elements concentration in order to study the leaching behaviour of toxic elements in oil sludge. The long term leaching (100 years) modeling was calculated using equations referred to National Institute of Public Health and the Environment Bilthoven (RIVM) and the results were plotted for cumulative release in different areas of oil sludge. Tank leaching test of the oil sludge samples from petroleum refinery plant in Melaka showed concentrations of As, Co, Cr and Zn ranging from 0.205 to 1.102, 0.031-0.454, 0.016-0.086 and 0.409-8.238 mg/l, respectively while the concentrations of As, Co, Cr and Zn in oil sludge samples from crude oil terminal in Sarawak were in the range of 0.002-0.089, 0.001-0.033, 0.006-1.016 and 0.100-2.744 mg/l, respectively. On the other hand, results on cumulative release from the modeling of long term leaching (100 years) showed that As, Co, Cr and Zn concentrations were proportional to the quantity of oil sludge. In conclusion, during extrapolation of release of toxic elements using the data in the laboratory, several other factors were taken into account to suit environmental conditions such as soil moisture, the negative logarithm of the effective diffusion coefficient (pD e ) and temperature, while the long-term behaviour of As, Co, Cr and Zn was proportional to the quantity of oil sludge to be disposed off. (author)

  18. Using Dual Isotopes and a Bayesian Isotope Mixing Model to Evaluate Nitrate Sources of Surface Water in a Drinking Water Source Watershed, East China

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-08-01

    Full Text Available A high concentration of nitrate (NO3− in surface water threatens aquatic systems and human health. Revealing nitrate characteristics and identifying its sources are fundamental to making effective water management strategies. However, nitrate sources in multi-tributaries and mix land use watersheds remain unclear. In this study, based on 20 surface water sampling sites for more than two years’ monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3− and δ18O-NO3− were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, China. Nitrate-nitrogen concentrations (ranging from 0.02 to 8.57 mg/L were spatially heterogeneous that were influenced by hydrogeological and land use conditions. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage, M & S; soil nitrogen, NS; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall were estimated by using a Bayesian isotope mixing model. The results showed that nitrate sources contributions varied significantly among different rainfall conditions and land use types. As for the whole watershed, M & S (manure and sewage and NS (soil nitrogen were major nitrate sources in both wet and dry seasons (from 28% to 36% for manure and sewage and from 24% to 27% for soil nitrogen, respectively. Overall, combining a dual isotopes method with a Bayesian isotope mixing model offered a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in drinking water source watersheds, Jianghuai hilly region, eastern China.

  19. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water

    International Nuclear Information System (INIS)

    Xue Dongmei; De Baets, Bernard; Van Cleemput, Oswald; Hennessy, Carmel; Berglund, Michael; Boeckx, Pascal

    2012-01-01

    To identify different NO 3 − sources in surface water and to estimate their proportional contribution to the nitrate mixture in surface water, a dual isotope and a Bayesian isotope mixing model have been applied for six different surface waters affected by agriculture, greenhouses in an agricultural area, and households. Annual mean δ 15 N–NO 3 − were between 8.0 and 19.4‰, while annual mean δ 18 O–NO 3 − were given by 4.5–30.7‰. SIAR was used to estimate the proportional contribution of five potential NO 3 − sources (NO 3 − in precipitation, NO 3 − fertilizer, NH 4 + in fertilizer and rain, soil N, and manure and sewage). SIAR showed that “manure and sewage” contributed highest, “soil N”, “NO 3 − fertilizer” and “NH 4 + in fertilizer and rain” contributed middle, and “NO 3 − in precipitation” contributed least. The SIAR output can be considered as a “fingerprint” for the NO 3 − source contributions. However, the wide range of isotope values observed in surface water and of the NO 3 − sources limit its applicability. - Highlights: ► The dual isotope approach (δ 15 N- and δ 18 O–NO 3 − ) identify dominant nitrate sources in 6 surface waters. ► The SIAR model estimate proportional contributions for 5 nitrate sources. ► SIAR is a reliable approach to assess temporal and spatial variations of different NO 3 − sources. ► The wide range of isotope values observed in surface water and of the nitrate sources limit its applicability. - This paper successfully applied a dual isotope approach and Bayesian isotopic mixing model to identify and quantify 5 potential nitrate sources in surface water.

  20. Fabrication of BCP/Silica Scaffolds with Dual-Pore by Combining Fused Deposition Modeling and the Particle Leaching Method

    International Nuclear Information System (INIS)

    Sa, Min-Woo; Kim, Jong Young

    2016-01-01

    In recent years, traditional scaffold fabrication techniques such as gas foaming, salt leaching, sponge replica, and freeze casting in tissue engineering have significantly limited sufficient mechanical property and cell interaction effect due to only random pores. Fused deposition modeling is the most apposite technology for fabricating the 3D scaffolds using the polymeric materials in tissue engineering application. In this study, 3D slurry mould was fabricated with a blended biphasic calcium phosphate (BCP)/Silica/Alginic acid sodium salt slurry in PCL mould and heated for two hours at 100 .deg. C to harden the blended slurry. 3D dual-pore BCP/Silica scaffold, composed of macro pores interconnected with micro pores, was successfully fabricated by sintering at furnace of 1100 .deg. C. Surface morphology and 3D shape of dual-pore BCP/Silica scaffold from scanning electron microscopy were observed. Also, the mechanical properties of 3D BCP/Silica scaffold, according to blending ratio of alginic acid sodium salt, were evaluated through compression test

  1. Fabrication of BCP/Silica Scaffolds with Dual-Pore by Combining Fused Deposition Modeling and the Particle Leaching Method

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Min-Woo; Kim, Jong Young [Andong National Univ., Andong (Korea, Republic of)

    2016-10-15

    In recent years, traditional scaffold fabrication techniques such as gas foaming, salt leaching, sponge replica, and freeze casting in tissue engineering have significantly limited sufficient mechanical property and cell interaction effect due to only random pores. Fused deposition modeling is the most apposite technology for fabricating the 3D scaffolds using the polymeric materials in tissue engineering application. In this study, 3D slurry mould was fabricated with a blended biphasic calcium phosphate (BCP)/Silica/Alginic acid sodium salt slurry in PCL mould and heated for two hours at 100 .deg. C to harden the blended slurry. 3D dual-pore BCP/Silica scaffold, composed of macro pores interconnected with micro pores, was successfully fabricated by sintering at furnace of 1100 .deg. C. Surface morphology and 3D shape of dual-pore BCP/Silica scaffold from scanning electron microscopy were observed. Also, the mechanical properties of 3D BCP/Silica scaffold, according to blending ratio of alginic acid sodium salt, were evaluated through compression test.

  2. Modeling the long-term effect of winter cover crops on nitrate transport in artificially drained fields across the Midwest U.S.

    Science.gov (United States)

    A fall-planted cover crop is a management practice with multiple benefits including reducing nitrate losses from artificially drained fields. We used the Root Zone Water Quality Model (RZWQM) to simulate the impact of a cereal rye cover crop on reducing nitrate losses from drained fields across five...

  3. The study on the pH behavior of the HFSC leached solution. The development of model considering the pozzolanic reaction

    International Nuclear Information System (INIS)

    Yoshida, Yasushi; Mihara, Morihiro

    2005-09-01

    The development of low alkalinity cement (high fly-ash contained silica-fume cement, HFSC) has been carried out in JNC. Low alkalinity for this cement is achieved by adding pozzolan materials to ordinary portland cement and Ca ion attributed to high alkalinity is consumed by forming CHS gel. This report shows the calculation model to predict the composition for HFSC reacted solution which considers cement mineral dissolution/precipitation as equilibrium reactions and dissolution for pozzolan material as a kinetic reaction. The dissolution kinetic equation for pozzolan material is also derived from leaching experiment. This calculation model is applied to the leaching experiment where powdered HFSC was reacted with distilled water. As a result of comparison between calculation and experimental measurement at the early stage for leaching the tendency for pH, pH decrease from 12.5 to 11.5 drastically, could be interpreted by this calculation model, however, after this drastic pH decreasing pH predicted by calculation model also shows drastic decrease whereas pH for experiment decreased mildly around pH 11.5. It could be thought that this difference between experiment and calculation is caused by inappropriate modelling for CSH gel dissolution/precipitation of C/S value lower than 1.0. For this C/S range thermodynamic data for intermediate and end member for solid solution for CSH gel and in addition the reaction kinetic for CSH gel should be examined in detail. (author)

  4. Unsaturated zone leaching models for assessing risk to groundwater of contaminated sites

    DEFF Research Database (Denmark)

    Troldborg, Mads; Binning, Philip John; Nielsen, Signe

    2009-01-01

    and aqueous phase contaminant transport equation. The equation has the same general form as the standard advection-diffusion equation for which many analytical solutions have been derived. Four new analytical solutions are developed using this approach: a three-dimensional solution accounting for infiltration......, lateral gas diffusion, sorption and degradation; a simple one-dimensional screening model, and two one-dimensional radial gas diffusion models for use in simulating volatile organic contaminant diffusion in unsaturated soils with an impermeable cover. The models show that both degradation and diffusion...

  5. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions (3)

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Kubo, Hiroshi

    2004-02-01

    Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Consolidation test and permeability test are carried out in order to assess quantitatively permeability of bentonite altered by hyper alkaline and nitrate. Modeling is progressed based on experimental results. The following results are obtained. 1) Consolidation test was carried out in 3 types of bentonite and 30 % sand mixture in which cation exchanged with nitrate. It is noted that permeability of bentonite increased at from 40 to 200 times by cation exchange. 2) Permeability of hyper alkaline solution is almost same to water. Permeability of hyper alkaline solution with nitrates increased corresponding to rising ion strength. 3) The results of batch of column test were simulated. The model can explain clearly the results in short period. This can estimate leaching ratio and secondary minerals. The model can simulate the experimental results by two types of velocity theory on altering bentonite. (author)

  6. Modeling interactions of agriculture and groundwater nitrate contaminants: application of The STICS-Eau-Dyssée coupled models over the Seine River Basin

    Science.gov (United States)

    Tavakoly, A. A.; Habets, F.; Saleh, F.; Yang, Z. L.

    2017-12-01

    Human activities such as the cultivation of N-fixing crops, burning of fossil fuels, discharging of industrial and domestic effluents, and extensive usage of fertilizers have recently accelerated the nitrogen loading to watersheds worldwide. Increasing nitrate concentration in surface water and groundwater is a major concern in watersheds with extensive agricultural activities. Nutrient enrichment is one of the major environmental problems in the French coastal zone. To understand and predict interactions between agriculture, surface water and groundwater nitrate contaminants, this study presents a modeling framework that couples the agronomic STICS model with Eau-Dyssée, a distributed hydrologic modeling system to simulate groundwater-surface water interaction. The coupled system is implemented on the Seine River Basin with an area of 88,000 km2 to compute daily nitrate contaminants. Representing a sophisticated hydrosystem with several aquifers and including the megalopolis of Paris, the Seine River Basin is well-known as one of the most productive agricultural areas in France. The STICS-EauDyssée framework is evaluated for a long-term simulation covering 39 years (1971-2010). Model results show that the simulated nitrate highly depends on the inflow produced by surface and subsurface waters. Daily simulation shows that the model captures the seasonal variation of observations and that the overall long-term simulation of nitrate contaminant is satisfactory at the regional scale.

  7. Simulation of a Hydrometallurgical Leaching Reactor modeled as a DAE system

    Directory of Open Access Journals (Sweden)

    Marta Duenas Diez

    2002-04-01

    Full Text Available An existing dynamic model of the main reactor in the Silgrain process for the production of Si from FeSi has been extended here in order to resemble more closely the behavior of the real reactor. The previous model was based on the application of macroscopic mass conservation law, the population balance equation and the assumptions of complete mixing and isothermic conditions. The major modifications are the inclusion of the condition governing the entrainment of particles in the outflow, and the formulation of the energy balance. The extended model consists of 1 integrodifferential equation, 4 implicit ordinary differential equations, 7 algebraic equations and 3 integral equations. After discretization in the particle size space, a system of differential and algebraic equations (DAE is obtained. DAEs are not ODEs and they require analysis and characterization and may require reformulation. After such analysis, it was concluded that the system is implicit index-one for the usual range of operation and that a method based on the Backward Differentiation formulas (BDF can be used for its solution. The model was implemented in Matlab and the ode15s code was used for solving the system of equations. The simulation results are satisfactory and seem to match qualitatively with the known operation of the reactor. The model is suitable for further use in designing a model-based control scheme.

  8. A method for testing whether model predictions fall within a prescribed factor of true values, with an application to pesticide leaching

    Science.gov (United States)

    Parrish, Rudolph S.; Smith, Charles N.

    1990-01-01

    A quantitative method is described for testing whether model predictions fall within a specified factor of true values. The technique is based on classical theory for confidence regions on unknown population parameters and can be related to hypothesis testing in both univariate and multivariate situations. A capability index is defined that can be used as a measure of predictive capability of a model, and its properties are discussed. The testing approach and the capability index should facilitate model validation efforts and permit comparisons among competing models. An example is given for a pesticide leaching model that predicts chemical concentrations in the soil profile.

  9. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  10. Nitrate-Mediated Microbially Enhanced Oil Recovery (N-MEOR) from model upflow bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Voordouw, Gerrit

    2017-02-15

    Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N 2 -CO 2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Modeling riverine nitrate export from an East-Central Illinois watershed using SWAT.

    Science.gov (United States)

    Hu, X; McIsaac, G F; David, M B; Louwers, C A L

    2007-01-01

    Reliable water quality models are needed to forecast the water quality consequences of different agricultural nutrient management scenarios. In this study, the Soil and Water Assessment Tool (SWAT), version 2000, was applied to simulate streamflow, riverine nitrate (NO(3)) export, crop yield, and watershed nitrogen (N) budgets in the upper Embarras River (UER) watershed in east-central Illinois, which has extensive maize-soybean cultivation, large N fertilizer input, and extensive tile drainage. During the calibration (1994-2002) and validation (1985-1993) periods, SWAT simulated monthly and annual stream flows with Nash-Sutcliffe coefficients (E) ranging from 0.67 to 0.94 and R(2) from 0.75 to 0.95. For monthly and annual NO(3) loads, E ranged from -0.16 to 0.45 and R(2) from 0.36 to 0.74. Annual maize and soybean yields were simulated with relative errors ranging from -10 to 6%. The model was then used to predict the changes in NO(3) output with N fertilizer application rates 10 to 50% lower than original application rates in UER. The calibrated SWAT predicted a 10 to 43% decrease in NO(3) export from UER and a 6 to 38% reduction in maize yield in response to the reduction in N fertilizer. The SWAT model markedly overestimated NO(3) export during major wet periods. Moreover, SWAT estimated soybean N fixation rates considerably greater than literature values, and some simulated changes in the N cycle in response to fertilizer reduction seemed to be unrealistic. Improving these aspects of SWAT could lead to more reliable predictions in the water quality outcomes of nutrient management practices in tile-drained watersheds.

  12. Estimation of Polishing and Leaching Behaviour of Antifouling Paints Using Mathematical Modelling

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim; Erik Weinell, Claus

    2003-01-01

    The development of chemically active antifouling paints has traditionally been based on an empirical approach. Optimisation and evaluation of novel and existing products are frequently conducted by means of, for example, systematic paint rotary tests in the laboratory or at sea sites. In this rev......The development of chemically active antifouling paints has traditionally been based on an empirical approach. Optimisation and evaluation of novel and existing products are frequently conducted by means of, for example, systematic paint rotary tests in the laboratory or at sea sites....... In this review, the usefulness of combining rotary experiments with the development of detailed mathematical models of paint behaviour will be discussed with reference to the relevant literature. Mathematical models can generally be used in the design of suitable release systems for various active components...

  13. Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xijun; Chen, Chuan; Wang, Aijie; Guo, Wanqian; Zhou, Xu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ren, Nanqi, E-mail: rnq@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Chang, Jo-Shu [Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2014-01-15

    Graphical abstract: Model evaluation applied to case study 1: (A-G) S{sup 2−}, NO{sub 3}{sup −}-N, NO{sub 2}{sup −}-N, and Ac{sup −}-C profiles under initial sulfide concentrations of 156.2 (A), 539 (B), 964 (C), 1490 (D), 342.7 (E), 718 (F), and 1140.7 (G) mg L{sup −1}. The solid line represents simulated result and scatter represents experimental result. -- Highlights: • This work developed a mathematical model for DSR process. • Kinetics of sulfur–nitrogen–carbon and interactions between denitrifiers were studied. • Kinetic parameters of the model were estimated via data fitting. • The model described kinetic behaviors of DSR processes over wide parametric range. -- Abstract: Simultaneous removal of sulfide (S{sup 2−}), nitrate (NO{sub 3}{sup −}) and acetate (Ac{sup −}) under denitrifying sulfide removal process (DSR) is a novel biological wastewater treatment process. This work developed a mathematical model to describe the kinetic behavior of sulfur–nitrogen–carbon and interactions between autotrophic denitrifiers and heterotrophic denitrifiers. The kinetic parameters of the model were estimated via data fitting considering the effects of initial S{sup 2−} concentration, S{sup 2−}/NO{sub 3}{sup −}-N ratio and Ac{sup −}-C/NO{sub 3}{sup −}-N ratio. Simulation supported that the heterotrophic denitratation step (NO{sub 3}{sup −} reduction to NO{sub 2}{sup −}) was inhibited by S{sup 2−} compared with the denitritation step (NO{sub 2}{sup −} reduction to N{sub 2}). Also, the S{sup 2−} oxidation by autotrophic denitrifiers was shown two times lower in rate with NO{sub 2}{sup −} as electron acceptor than that with NO{sub 3}{sup −} as electron acceptor. NO{sub 3}{sup −} reduction by autotrophic denitrifiers occurs 3–10 times slower when S{sup 0} participates as final electron donor compared to the S{sup 2−}-driven pathway. Model simulation on continuous-flow DSR reactor suggested that the adjustment of

  14. Assessing the ammonium nitrate formation regime in the Paris megacity and its representation in the CHIMERE model

    Directory of Open Access Journals (Sweden)

    H. Petetin

    2016-08-01

    Full Text Available Secondary inorganic compounds represent a major fraction of fine aerosol in the Paris megacity. The thermodynamics behind their formation is now relatively well constrained but, due to sparse direct measurements of their precursors (in particular NH3 and HNO3, uncertainties remain on their concentrations and variability as well as the formation regime of ammonium nitrate (in terms of limited species among NH3 and HNO3 in urban environments such as Paris. This study presents the first urban background measurements of both inorganic aerosol compounds and their gaseous precursors during several months within the city of Paris. Intense agriculture-related NH3 episodes are observed in spring/summer while HNO3 concentrations remain relatively low, even during summer, which leads to a NH3-rich regime in Paris. The local formation of ammonium nitrate within the city appears low, despite high NOx emissions. The data set also allows evaluating the CHIMERE chemistry-transport model (CTM. Interestingly, the rather good results obtained on ammonium nitrates hide significant errors on gaseous precursors (e.g., mean bias of −75 and +195 % for NH3 and HNO3, respectively. This leads to a misrepresentation of the nitrate formation regime through a highly underestimated gas ratio metric (introduced by Ansari and Pandis, 1998 and a much higher sensitivity of nitrate concentrations to ammonia changes. Several uncertainty sources are investigated, pointing out the importance of better assessing both NH3 agricultural emissions and OH concentrations in the future. These results remind us of the caution required when using of CTMs for emission scenario analysis, highlighting the importance of prior diagnostic and dynamic evaluations.

  15. A hybrid machine learning model to estimate nitrate contamination of production zone groundwater in the Central Valley, California

    Science.gov (United States)

    Ransom, K.; Nolan, B. T.; Faunt, C. C.; Bell, A.; Gronberg, J.; Traum, J.; Wheeler, D. C.; Rosecrans, C.; Belitz, K.; Eberts, S.; Harter, T.

    2016-12-01

    A hybrid, non-linear, machine learning statistical model was developed within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface in the Central Valley, California. A database of 213 predictor variables representing well characteristics, historical and current field and county scale nitrogen mass balance, historical and current landuse, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6,000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The machine learning method, gradient boosting machine (GBM) was used to screen predictor variables and rank them in order of importance in relation to the groundwater nitrate measurements. The top five most important predictor variables included oxidation/reduction characteristics, historical field scale nitrogen mass balance, climate, and depth to 60 year old water. Twenty-two variables were selected for the final model and final model errors for log-transformed hold-out data were R squared of 0.45 and root mean square error (RMSE) of 1.124. Modeled mean groundwater age was tested separately for error improvement in the model and when included decreased model RMSE by 0.5% compared to the same model without age and by 0.20% compared to the model with all 213 variables. 1D and 2D partial plots were examined to determine how variables behave individually and interact in the model. Some variables behaved as expected: log nitrate decreased with increasing probability of anoxic conditions and depth to 60 year old water, generally decreased with increasing natural landuse surrounding wells and increasing mean groundwater age, generally increased with increased minimum depth to high water table and with increased base flow index value. Other variables exhibited much more erratic or noisy behavior in

  16. Fate of acetone in an outdoor model stream with a nitrate supplement, southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1991-01-01

    The fate of acetone in an outdoor model stream to which nitrate was added as a nutrient supplement was determined. The stream, in southern Mississippi, U.S.A. was 234 m long. Water was supplied to the stream by an artesian well at about 1.21 s-1, resulting in a mean water velocity of about 0.5 m min-1. Acetone was injected continuously for 26 days resulting in concentrations of 20-40 mg l-1. A nitrate solution was injected for 21 days resulting in an instream concentration of about 1.7 mg l-1 at the upstream end of the stream. Rhodamine-WT dye was used to determine the travel time and dispersion characteristics of the stream, and t-butyl alcohol was used to determine the volatilization characteristics. Volatilization controlled the fate of acetone in the model stream. The lack of substantial bacterial degradation of acetone was contrary to expectations based on the results of laboratory degradation studies using model stream water enriched with nitrate. A possible explanation for the lack of significant degradation in the model stream may be the limited 6-h residence time of the acetone in the stream. ?? 1991.

  17. Agricultural Recharge Practices for Managing Nitrate in Regional Groundwater: Time-Resolution Assessment of Numerical Modeling Approach

    Science.gov (United States)

    Bastani, M.; Harter, T.

    2017-12-01

    Intentional recharge practices in irrigated landscapes are promising options to control and remediate groundwater quality degradation with respect to nitrate. To better understand the effect of these practices, a fully 3D transient heterogeneous transport model simulation is developed using MODFLOW and MT3D. The model is developed for a long-term study of nitrate improvements in an alluvial groundwater basin in Eastern San Joaquin Valley, CA. Different scenarios of agricultural recharge strategies including crop type change and winter flood flows are investigated. Transient simulations with high spatio-temporal resolutions are performed. We then consider upscaling strategies that would allow us to simplify the modeling process such that it can be applied at a very large basin-scale (1000s of square kilometers) for scenario analysis. We specifically consider upscaling of time-variant boundary conditions (both internal and external) that have significant influence on calculation cost of the model. We compare monthly transient stresses to upscaled annual and further upscaled average steady-state stresses on nitrate transport in groundwater under recharge scenarios.

  18. Upscaling of lysimeter measurements to regional groundwater nitrate distribution

    Science.gov (United States)

    Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Rock, Gerhard

    2015-04-01

    For many European countries nitrate leaching from the soil zone into the aquifer due to surplus application of mineral fertilizer and animal manure by farmers constitutes the most important threat to groundwater quality. This is a diffuse pollution situation and measures to change agricultural production have to be investigated at the aquifer scale to safeguard drinking water supply from shallow groundwater resources Lysimeters are state-of-the-art measurements for water and solute fluxes through the unsaturated zone towards groundwater at the point scale, but due to regional heterogeneities (especially concerning soil conditions) lysimeters cannot provide aquifer-wide groundwater recharge and solute leaching. Thus, in this work the numerical simulation model SIMWASER/STOTRASIM (Stenitzer, 1988; Feichtinger, 1998) for quantifying groundwater recharge and nitrate leaching at aquifer scale is applied. Nevertheless, according to Groenendijk et al. (2014) a model calibration by means of lysimeter measurements is essential, since uncalibrated models are generally far from acceptable. Thus, a lysimeter provides the basis for the parameterization of numerical simulation models. To quantify also the impact on regional nitrate distribution in the groundwater, we couple the unsaturated zone model SIMWASER/STOTRASIM with the saturated groundwater flow and solute transport model FELOW (Diersch, 2009) sequentially. In principal, the problem could be solved by the 3 dimensional equation describing variable saturated groundwater flow and solute transport. However, this is computationally prohibitive due to the temporal and spatial scope of the task, particularly in the framework of running numerous simulations to compromise between conflicting interests (i.e. good groundwater status and high agricultural yield). To account for the unknown regional distribution of crops grown and amount, timing and kind of fertilizers used a stochastic tool (Klammler et al, 2011) is developed that

  19. Mathematical Modelling of Nitrate Removal from Water Using a Submerged Membrane Adsorption Hybrid System with Four Adsorbents

    Directory of Open Access Journals (Sweden)

    Mahatheva Kalaruban

    2018-01-01

    Full Text Available Excessive concentrations of nitrate in ground water are known to cause human health hazards. A submerged membrane adsorption hybrid system that includes a microfilter membrane and four different adsorbents (Dowex 21K XLT ion exchange resin (Dowex, Fe-coated Dowex, amine-grafted (AG corn cob and AG coconut copra operated at four different fluxes was used to continuously remove nitrate. The experimental data obtained in this study was simulated mathematically with a homogeneous surface diffusion model that incorporated membrane packing density and membrane correlation coefficient, and applied the concept of continuous flow stirred tank reactor. The model fit with experimental data was good. The surface diffusion coefficient was constant for all adsorbents and for all fluxes. The mass transfer coefficient increased with flux for all adsorbents and generally increased with the adsorption capacity of the adsorbents.

  20. Optimizing conditions for an accelerated leach test

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Fuhrmann, M.; Heiser, J.; Franz, E.M.; Colombo, P.

    1988-01-01

    An accelerated leach test for low-level radioactive waste forms is being developed to provide, in a short time, data that can be extrapolated to long time periods. The approach is to provide experimental conditions that will accelerate leaching without changing the dominant release mechanism. Experimental efforts have focused on combining individual factors that have been observed to accelerate leaching. These include elevated temperature, increased leachant volume, and reduced specimen size. The response of diffusion coefficients to various acceleration factors have been evaluated and provide information on experimental parameters that need to be optimized to increase leach rates. Preliminary modeling using a diffusion mechanism (allowing for depletion) of a finite cylinder geometry indicates that during early portions of experiments (daily sampling intervals), leaching is diffusion controlled and more rapid than later in the same experiments (weekly or greater sampling intervals). For cement waste forms, this reduction in rate may be partially controlled by changes in physical structure and chemistry (sometimes related to environmental influences such as CO 2 ), but it is more likely associated with the duration of the sampling interval. By using a combination of mathematical modeling and by experimentally investigating various leach rate controlling factors, a more complete understanding of leaching processes is being developed. This, in turn, is leading to optimized accelerating conditions for a leach test

  1. Heap leaching for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    Denison Mines Ltd. is using two bacterial leaching processes to combat the high cost of extracting uranium from low grade ore in thin reefs. Both processes use thiobacillus ferro-oxidans, a bacterium that employs the oxidation of ferrous iron and sulphur as its source of energy for growth. The first method is flood leaching, in which ore is subjected to successive flood, drain and rest cycles. The second, trickle leaching, uses sprinklers to douse the broken muck continuously with leaching solution. In areas where grades are too low to justify the expense of hauling the ore to the surface, the company is using this biological process underground to recover uranium. In 1987 Denison recovered 840 000 lb of uranium through bacterial heap leaching. It plans to have biological in-place leaching contribute 25% of the total uranium production by 1990. (fig.)

  2. Nitration of soluble proteins in organotypic culture models of Parkinson's disease

    DEFF Research Database (Denmark)

    Larsen, Trine R; Söderling, Ann-Sofi; Caidahl, Kenneth

    2008-01-01

    Protein nitration due to oxidative and nitrative stress has been linked to the pathogenesis of Parkinson's disease (PD), but its relationship to the loss of dopamine (DA) or tyrosine hydroxylase (TH) activity is not clear. Here we quantified protein-bound 3-nitrotyrosine (3-NT) by a novel gas...... chromatography/negative chemical ionization tandem mass spectrometry technique and DA and 3,4-dihydroxyphenylalanine (DOPA) by HPLC in tissues or medium of organotypic, mouse mesencephalon cultures after acute or chronic treatments with the peroxynitrite donor 3-morpholino-sydnonimine (SIN-1), the dopaminergic...

  3. Using environmental tracers to determine the relative importance of travel times in the unsaturated and saturated zones for the delay of nitrate reduction measures

    Science.gov (United States)

    Gerber, Christoph; Purtschert, Roland; Hunkeler, Daniel; Hug, Rainer; Sültenfuss, Jürgen

    2018-06-01

    Groundwater quality in many regions with intense agriculture has deteriorated due to the leaching of nitrate and other agricultural pollutants. Modified agricultural practices can reduce the input of nitrate to groundwater bodies, but it is crucial to determine the time span over which these measures become effective at reducing nitrate levels in pumping wells. Such estimates can be obtained from hydrogeological modeling or lumped-parameter models (LPM) in combination with environmental tracer data. Two challenges in such tracer-based estimates are (i) accounting for the different modes of transport in the unsaturated zone (USZ), and (ii) assessing uncertainties. Here we extend a recently published Bayesian inference scheme for simple LPMs to include an explicit USZ model and apply it to the Dünnerngäu aquifer, Switzerland. Compared to a previous estimate of travel times in the aquifer based on a 2D hydrogeological model, our approach provides a more accurate assessment of the dynamics of nitrate concentrations in the aquifer. We find that including tracer measurements (3H/3He, 85Kr, 39Ar, 4He) reduces uncertainty in nitrate predictions if nitrate time series at wells are not available or short, but does not necessarily lead to better predictions if long nitrate time series are available. Additionally, the combination of tracer data with nitrate time series allows for a separation of the travel times in the unsaturated and saturated zone.

  4. Evaluation of a spatialized agronomic model in predicting yield and N leaching at the scale of the Seine-Normandie Basin.

    Science.gov (United States)

    Beaudoin, N; Gallois, N; Viennot, P; Le Bas, C; Puech, T; Schott, C; Buis, S; Mary, B

    2016-09-22

    The EU directive has addressed ambitious targets concerning the quality of water bodies. Predicting water quality as affected by land use and management requires using dynamic agro-hydrogeological models. In this study, an agronomic model (STICS) and a hydrogeological model (MODCOU) have been associated in order to simulate nitrogen fluxes in the Seine-Normandie Basin, which is affected by nitrate pollution of groundwater due to intensive farming systems. This modeling platform was used to predict and understand the spatial and temporal evolution of water quality over the 1971-2013 period. A quality assurance protocol (Refsgaard et al. Environ Model Softw 20: 1201-1215, 2005) was used to qualify the reliability of STICS outputs. Four iterative runs of the model were carried out with improved parameterization of soils and crop management without any change in the model. Improving model inputs changed much more the spatial distribution of simulated N losses than their mean values. STICS slightly underestimated the crop yields compared to the observed values at the administrative district scale. The platform also slightly underestimated the nitrate concentration at the outlet level with a mean difference ranging from -1.4 to -9.2 mg NO 3  L -1 according to the aquifer during the last decade. This outcome should help the stakeholders in decision-making to prevent nitrate pollution and provide new specifications for STICS development.

  5. Manipulation of nitrogen leaching from tea field soil using a Trichoderma viride biofertilizer.

    Science.gov (United States)

    Xu, Shengjun; Zhou, Sining; Ma, Shuanglong; Jiang, Cancan; Wu, Shanghua; Bai, Zhihui; Zhuang, Guoqiang; Zhuang, Xuliang

    2017-12-01

    With the increasing use of chemical fertilizers, negative environmental impacts have greatly increased as a result from agricultural fields. The fungus Trichoderma viride used as a biofertilizer can efficiently reduce nitrous oxide (N 2 O) emissions from subtropical tea fields in southern China. In this paper, it was further found that T. viride biofertilizer could alleviate nitrogen (N) leaching in tea fields. Gross N leaching was 1.51 kg ha -1  year -1 with no external fertilizer input, but when 225 kg N ha -1  year -1 was applied, it increased to 12.38 kg ha -1  year -1 using T. viride biofertilizer but 53.46 kg ha -1  year -1 using urea. Stepwise linear regression analysis identified the factors responsible for N leaching to be soil nitrate concentration and soil interflow, simulated here using the water balance simulation model (WaSiM-ETH). Finally, mass-scale production of T. viride biofertilizer from waste reutilization using sweet potato starch wastewater and rice straw was found to be cost-effective and feasible. These procedures could be considered a best management practice to reduce N leaching from tea fields in subtropical areas of central China and to reduce pollution from other agricultural waste products.

  6. Optimizing conditions for an accelerated leach test

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Fuhrmann, M.; Heiser, J.; Franz, E.M.; Colombo, P.

    1988-01-01

    An accelerated leach test for low-level radioactive waste forms is being developed to provide, in a short time, data that can be extrapolated to long time periods. The approach is to provide experimental conditions that will accelerate leaching without changing the dominant release mechanism. Experimental efforts have focused on combining individual factors that have been observed to accelerate leaching. These include elevated temperature, increased leachant volume, and reduced specimen size. The response of diffusion coefficients to various acceleration factors have been evaluated and provide information on experimental parameters that need to be optimized to increase leach rates. For example, these data show that large volumes of leachant are required when leaching portland cement waste forms at elevated temperatures because of high concentrations of dissolved species. Sr-85 leaching is particularly susceptible to suppression due to concentration effects while Cs-137 leaching is less so. Preliminary modeling using a diffusion mechanism (allowing for depletion) of a finite cylinder geometry indicates that during early portions of experiments (daily sampling intervals), leaching is diffusion controlled and more rapid than later in the same experiments (weekly or greater sampling intervals). For cement waste forms, this reduction in rate may be partially controlled by changes in physical structure and chemistry (sometimes related to environmental influences such as CO 2 ), but it is more likely associated with the duration of the sampling interval. 9 refs., 6 figs

  7. N-15 tracing helps explaining N leaching losses from contrasting forest ecosystems

    Science.gov (United States)

    Staelens, J.; Rütting, T.; Huygens, D.; Müller, C.; Verheyen, K.; Boeckx, P.

    2009-04-01

    Despite chronically enhanced nitrogen (N) deposition to forest ecosystems in Europe and NE America, considerable N retention by forests has been observed, reducing N leaching losses. Organic and mineral soil layers typically immobilize more N than the aboveground biomass, but it is unclear which factors determine N retention in forest ecoystems. However, this knowledge is crucial to assess the impact of changing anthropogenic N emissions on future N cycling and N loss of forests. For coniferous and deciduous forest stands at comparable sites, it is known that both N deposition onto the forest floor as well as N loss by leaching below the rooting zone are significantly higher in coniferous stands. In addition, the N loss in coniferous stands is often more enhanced than can be explained by the higher N input only. This suggests lower N retention by coniferous stands, and may be related to differences in litter and soil characteristics, microbial activity, and N uptake by plant roots. To test this hypothesis, we studied the effect of forest type on N retention using 15N tracing techniques: a field tracer experiment and a combination of in situ isotope pool dilution and a tracing model. The N dynamics were examined for two adjacent forest stands (pedunculate oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.)) on a well-drained sandy soil and with a similar stand history, located in a region with high N deposition (Belgium). Input-output N budgets were established by quantifying atmospheric deposition and leaching below the rooting zone, and confirmed the above finding of higher N deposition and disproportionately higher N loss for the pine stand compared to the oak stand. First, the fate of inorganic N within the ecosystems was studied by spraying three pulses of dissolved 15N, either as ammonium or as nitrate, onto the forest floor in 12 plots of 25 m2. The organic and mineral soil layers, tree roots, soil water percolate, ferns, and tree foliage were sampled

  8. On the importance of aerosol nitrate over Europe : data analysis and modelling

    NARCIS (Netherlands)

    Schaap, M.

    2003-01-01

    The central theme of this thesis is the nitrate content of aerosols (or particulate matter (PM)). Aerosols play an important role in the climate system by scattering and/or absorbing solar radiation. In the last decades research has been devoted to quantify the radiative forcing of aerosols

  9. Nitrate glass

    International Nuclear Information System (INIS)

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  10. In situ leaching of uranium

    International Nuclear Information System (INIS)

    Martin, B.

    1980-01-01

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  11. Chlorination leaching of cadmium

    International Nuclear Information System (INIS)

    Lach, E.; Pajak, I.; Bojanowska, A.

    1978-01-01

    The results of the investigations on chlorination leaching of cadmium from dust coming from dry dust collector of sinter belt, that is leaching with water saturated with gaseous chlorine and leaching with solutions of ammonium chloride and sodium chloride were given. The optimum conditions for these processes were established. It was found, that the method of leaching in the presence of gaseous chlorine is more effective, as it allows to report into the solution over 90% cadmium contained in dust. Owing to technical difficulties, environmental protection and safety conditions more advantageous seems to be the use as leaching agent of the ammonium chloride solutions. When applying 20% NH 4 Cl and temperature of 60 0 C, the time of 2 hours and the ratio of solid to liquid of 1:5, 70% cadmium contained in the dust can be reported into the solution. (auth.)

  12. Assessment of nitrate export from a high elevation watershed

    International Nuclear Information System (INIS)

    Williams, E.M.; Nodvin, S.C.

    1991-01-01

    Nitrate leaching from forest soils can be detrimental to both the forest ecosystems and stream water quality. Nitrate moving through the soil transports plant nutrients and acidifying agents, hydrogen and aluminum, and can export them to streams. In the high elevation spruce-fir forests in the Great Smoky Mountains National Park (GRSM) nitrate has been found to be leaching from the rooting zone. Streams associated with these ecosystems are poorly buffered. Therefore rapid export of nitrate from the soils to the streams could lead to episodic acidification. The purpose of the Noland Divide watershed study is to assess the levels of nitrate export from the watershed to the streams and the potential impacts of the export to the ecosystem

  13. MITIGASI PELINDIAN NITRAT PADA TANAH INCEPTISOL MELALUI PEMANFAATAN BAHAN NITRAT INHIBITOR ALAMI

    Directory of Open Access Journals (Sweden)

    Joko Pramono

    2012-05-01

    Full Text Available Mitigation of Nitrate Leaching in Inceptisol Soil Through the Use of Natural Nitrate Inhibitor ABSTRAK Pelindian NO3- merupakan salah satu mekanisme kehilangan N dalam aktivitas pertanian, yang dapat berdampak terhadap pencemaran lingkungan. Tujuan dari penelitian adalah untuk mengetahui penggunaan bahan alami sebagai nitrat inhibitor terhadap pelindian nitrat pada tanah Inceptisol. Pada penelitian ini diuji tiga jenis bahan nitrat inhibitor (NI alami yang berasal dari; serbuk biji Mimba (SBM, serbuk kulit kayu bakau (SKKB, dan serbuk daun kopi (SDK,yang dikombinasikan dengan tiga taraf dosis NI, yaitu: 20 %, 30 % dan 40 % dari urea yang diberikan, dan ditambah satu perlakuan kontrol tanpa NI. Bahan nitrat inhibitor diberikan bersama urea pada permukaan tanah dalam pot percobaan yang telah dibasahi dengan air suling. Hasil penelitian menunjukkan bahwa bahan NI yang berbeda memberikan respon terhadap penghambatan nitrifi kasi yang berbeda. Bahan NI yang berasal dari serbuk biji mimba memberikan tingkat penghambatan tertinggi sebesar (25,6 %, serbuk kulit kayu bakau sebesar (19,1 %, dan serbuk daun kopi sebesar 11,8 %. Bahan NI alami mampu menghambat nitrifi kasi melalui penghambatan pertumbuhan bakteri nitrifi kasi (pengoksida ammonium yang bersifat sementara pada kisaran 7-14 hari setelah aplikasi. Perlakuan berbagai bahan dan dosis NI mampu menekan pelindian nitrat rata-rata pada kisaran antara 56,6 sampai 62,8 % dan berbeda sangat nyata terhadap perlakuan kontrol tanpa NI. Bahan NI yang mampu menurunkan rata-rata pelindian nitrat pada pengamatan 14 hari setelah aplikasi tertinggi adalah SBM sebesar 74,15 %. Dosis optimal dua bahan NI terpilih yang menunjukkan kinerja penghambatan nitrifi kasi terbaik (SBM dan SKKB pada 7 hsa, masing-masing 18,30 % (R2 = 0,694 dan 21,67 % (R2=0.691 dari dosis urea yang diberikan. Kata kunci: Nitrifi kasi, nitrat inhibitor, pelindian nitrat ABSTRACT NO3 - leaching is one mechanism of N reduction in agricultural

  14. Analysis of nitrate in near-surface aquifers in the midcontinental United States: An application of the inverse hyperbolic sine Tobit model

    Science.gov (United States)

    Yen, Steven T.; Liu, Shiping; Kolpin, Dana W.

    1996-01-01

    A nonnormal and heteroscedastic Tobit model is used to determine the primary factors that affect nitrate concentrations in near-surface aquifers, using data from the U.S. Geological Survey collected in 1991. Both normality and homoscedasticity of errors are rejected, justifying the use of a nonnormal and heteroscedastic model. The following factors are found to have significant impacts on nitrate concentrations in groundwater: well screen interval, depth to top of aquifers, percentages of urban residential, forest land, and pasture within 3.2 km, dissolved oxygen concentration level, and presence of a chemical facility and feedlot. The effects of explanatory variables on nitrate concentration are explored further by calculating elasticities. Dissolved oxygen concentration level has more notable effects on nitrate concentrations in groundwater than other variables.

  15. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000-2008.

    Science.gov (United States)

    Velthof, G L; Lesschen, J P; Webb, J; Pietrzak, S; Miatkowski, Z; Pinto, M; Kros, J; Oenema, O

    2014-01-15

    A series of environmental policies have been implemented in the European Union (EU) to decrease nitrogen (N) emissions from agriculture. The Nitrates Directive (ND) is one of the main policies; it aims to reduce nitrate leaching from agriculture through a number of measures. A study was carried out to quantify the effects of the ND in the EU-27 on the leaching and runoff of nitrate (NO3(-)) to groundwater and surface waters, and on the emissions of ammonia (NH3), nitrous oxide (N2O), nitrogen oxides (NO(x)) and dinitrogen (N2) to the atmosphere. We formulated a scenario with and a scenario without implementation of the ND. The model MITERRA-Europe was used to calculate N emissions on a regional level in the EU-27 for the period 2000-2008. The calculated total N loss from agriculture in the EU-27 was 13 Mton N in 2008, with 53% as N2, 22% as NO3, 21% as NH3, 3% as N2O, and 1% as NO(x). The N emissions and leaching in the EU-27 slightly decreased in the period 2000-2008. Total emissions in the EU in 2008 were smaller with implementation of the ND than without the ND, by 3% for NH3, 6% for N2O, 9% for NO(x), and 16% for N leaching and runoff in 2008. However, regional differences were large. The lower emissions with ND were mainly due to the lower N inputs by fertilizers and manures. In conclusion, implementation of the ND decreased both N leaching losses to ground and surface waters, and gaseous emissions to the atmosphere. It is expected that the ND will result in a further decrease in N emissions in EU-27 in the near future, because the implementation of the measures for the ND is expected to become more strict. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Leaching of saltstones containing fly ash

    International Nuclear Information System (INIS)

    Barnes, M.W.; Roy, D.M.; Langton, C.A.

    1985-01-01

    Two types of fly ash were incorporated in saltstones designed for potential encapsulation of Savannah River Plant low level defense waste. These fly ashes have some cementitious properties while at the same time their presence in substitution for cement slows early hydration. Class C fly ash has a high calcium content and is considered cementitious; Class F fly ash has a low calcium content and is not classified as cementitious. Leach tests were performed and physical properties were measured for saltstones containing each class, to see the differences in the effect of the fly ashes. The four waste ions nitrate, nitrite, sodium and sulfate were shown to leach by diffusion. Effective diffusivities were determined for these ions. Data for nitrate, the most important species from the environmental point of view, are shown in Table A. Saltstones made with Class C fly ash have substantially lower leach rates than those made with Class F fly ash. The leach rates, and therefore the square roots of the effective diffusivities, have been found to be proportional to the pore surface area per unit volume (or the ratio of pore volume to pore radius), to the fraction of waste containing solution, and to the inverse of the fraction of calcium in the saltstone. Rates and diffusivities are not proportional to the water to cement ratio, because this number depends on whether the fly ash is counted as cementitious, as in Class C cement, or not cementitious, as in Class F cement. In fact the relatively small amount of calcium in Class F cement contributes to the cementitious properties overall, though not so much as Class C cement. 4 refs., 2 figs., 6 tabs

  17. Leaching from municipal solid waste incineration residues

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.

    2008-02-15

    Leaching of pollutants from Municipal Solid Waste Incineration (MSWI) residues has been investigated combining a range of laboratory leaching experiments with geochemical modeling. Special attention was paid to assessing the applicability of laboratory data for subsequent modeling with respect to presumed full-scale conditions; both sample pretreatment and actual influence of leaching conditions on the results of laboratory experiments were considered. It was shown that sample pretreatment may have large impact on leaching test data. In particular, a significant fraction of Pb was shown mobile during the washing of residues with water. In addition, drying of residues (i.e. slow oxidation) prior to leaching experiments increased the leaching of Cr significantly. Significant differences regarding the leaching behavior of individual elements with respect to (non)equilibrium conditions in column percolation experiments were observed in the study. As a result, three groups of elements were identified based on the predominant leaching control and the influence of (non)equilibrium on the results of the laboratory column experiments: I. Predominantly availability-controlled elements (e.g. Na, K, Cl) II. Solubility-controlled elements (e.g. Ca, S, Si, Al, Ba, and Zn) III. Complexation-controlled elements (e.g. Cu and Ni) With respect to the above groups it was suggested that results of laboratory column experiments can, with consideration, be used to estimate full-scale leaching of elements from Group I and II. However, in order to avoid large underestimations in the assessment of leaching from Group III, it is imperative to describe the time-dependent transport of dissolved organic carbon (DOC) in the tested system or to minimize the physical non-equilibrium during laboratory experiments (e.g. bigger column, slower flow velocity). Forward geochemical modeling was applied to simulate long-term release of elements from a MSWI air-pollution-control residue. Leaching of a

  18. Climatic and physiographic controls on catchment-scale nitrate loss at different spatial scales: insights from a top-down model development approach

    Science.gov (United States)

    Shafii, Mahyar; Basu, Nandita; Schiff, Sherry; Van Cappellen, Philippe

    2017-04-01

    Dramatic increase in nitrogen circulating in the biosphere due to anthropogenic activities has resulted in impairment of water quality in groundwater and surface water causing eutrophication in coastal regions. Understanding the fate and transport of nitrogen from landscape to coastal areas requires exploring the drivers of nitrogen processes in both time and space, as well as the identification of appropriate flow pathways. Conceptual models can be used as diagnostic tools to provide insights into such controls. However, diagnostic evaluation of coupled hydrological-biogeochemical models is challenging. This research proposes a top-down methodology utilizing hydrochemical signatures to develop conceptual models for simulating the integrated streamflow and nitrate responses while taking into account dominant controls on nitrate variability (e.g., climate, soil water content, etc.). Our main objective is to seek appropriate model complexity that sufficiently reproduces multiple hydrological and nitrate signatures. Having developed a suitable conceptual model for a given watershed, we employ it in sensitivity studies to demonstrate the dominant process controls that contribute to the nitrate response at scales of interest. We apply the proposed approach to nitrate simulation in a range of small to large sub-watersheds in the Grand River Watershed (GRW) located in Ontario. Such multi-basin modeling experiment will enable us to address process scaling and investigate the consequences of lumping processes in terms of models' predictive capability. The proposed methodology can be applied to the development of large-scale models that can help decision-making associated with nutrients management at regional scale.

  19. Water leaching of borosilicate glasses: experiments, modeling and Monte Carlo simulations; Alteration par l'eau des verres borosilicates: experiences, modelisation et simulations Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, A

    2004-10-15

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  20. Water leaching of borosilicate glasses: experiments, modeling and Monte Carlo simulations; Alteration par l'eau des verres borosilicates: experiences, modelisation et simulations Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, A

    2004-10-15

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  1. Probabilistic risk assessment of nitrate groundwater contamination from greenhouses in Albenga plain (Liguria, Italy) using lysimeters.

    Science.gov (United States)

    Paladino, Ombretta; Seyedsalehi, Mahdi; Massabò, Marco

    2018-04-05

    The use of fertilizers in greenhouse-grown crops can pose a threat to groundwater quality and, consequently, to human beings and subterranean ecosystem, where intensive farming produces pollutants leaching. Albenga plain (Liguria, Italy) is an alluvial area of about 45km 2 historically devoted to farming. Recently the crops have evolved to greenhouses horticulture and floriculture production. In the area high levels of nitrates in groundwater have been detected. Lysimeters with three types of reconstituted soils (loamy sand, sandy clay loam and sandy loam) collected from different areas of Albenga plain were used in this study to evaluate the leaching loss of nitrate (NO 3 - ) over a period of 12weeks. Leaf lettuce (Lactuca sativa L.) was selected as a representative green-grown crop. Each of the soil samples was treated with a slow release fertilizer, simulating the real fertilizing strategy of the tillage. In order to estimate the potential risk for aquifers as well as for organisms exposed via pore water, nitrate concentrations in groundwater were evaluated by applying a simplified attenuation model to the experimental data. Results were refined and extended from comparison of single effects and exposure values (Tier I level) up to the evaluation of probabilistic distributions of exposure and related effects (Tier II, III IV levels). HHRA suggested HI >1 and about 20% probability of exceeding RfD for all the greenhouses, regardless of the soil. ERA suggested HQ>100 for all the greenhouses; 93% probability of PNEC exceedance for greenhouses containing sand clay loam. The probability of exceeding LC50 for 5% of the species was about 40% and the probability corresponding to DBQ of DEC/EC50>0.001 was >90% for all the greenhouses. The significantly high risk, related to the detected nitrate leaching loss, can be attributed to excessive and inappropriate fertigation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. 2

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Fujii, Kensuke; Kubo, Hiroshi

    2003-02-01

    Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Several experimental studies have been carried out in this study in order to assess quantitatively water conductivity of bentonite which is altered by hyper alkaline and nitrate. Modeling for previous results is carried out and several requirements to be defined are proposed. The conclusion of this study is summarized as below. Secondary minerals of bentonite alteration due to hyper alkaline with nitrate: 1) CSH and CAH were observed corresponding to solving montmorillonite in AWN solution. 2) Na 2 O Al 2 O 3 1.68SiO 2 generated from 90 days in batch experiment and it was observed in 360 days. Assessment of swelling and water conductivity changing by hyper alkaline with nitrate: 1) Little changing of water conductivity of bentonite was observed by saturated Ca(OH) 2 solution and hyper alkaline solution. The conductivity significantly increased by penetrating sodium nitrate solution. 2) Water conductivity of ion exchanged bentonite by hyper alkaline solution significantly increased. It increased more by penetrating AWN solution. Modeling of tuff alteration by hyper alkaline solution: 1) Flow through test is proposed since soluble velocity to hyper alkaline solution should be defined. (author)

  3. The use of process models to inform and improve statistical models of nitrate occurrence, Great Miami River Basin, southwestern Ohio

    Science.gov (United States)

    Walter, Donald A.; Starn, J. Jeffrey

    2013-01-01

    Statistical models of nitrate occurrence in the glacial aquifer system of the northern United States, developed by the U.S. Geological Survey, use observed relations between nitrate concentrations and sets of explanatory variables—representing well-construction, environmental, and source characteristics— to predict the probability that nitrate, as nitrogen, will exceed a threshold concentration. However, the models do not explicitly account for the processes that control the transport of nitrogen from surface sources to a pumped well and use area-weighted mean spatial variables computed from within a circular buffer around the well as a simplified source-area conceptualization. The use of models that explicitly represent physical-transport processes can inform and, potentially, improve these statistical models. Specifically, groundwater-flow models simulate advective transport—predominant in many surficial aquifers— and can contribute to the refinement of the statistical models by (1) providing for improved, physically based representations of a source area to a well, and (2) allowing for more detailed estimates of environmental variables. A source area to a well, known as a contributing recharge area, represents the area at the water table that contributes recharge to a pumped well; a well pumped at a volumetric rate equal to the amount of recharge through a circular buffer will result in a contributing recharge area that is the same size as the buffer but has a shape that is a function of the hydrologic setting. These volume-equivalent contributing recharge areas will approximate circular buffers in areas of relatively flat hydraulic gradients, such as near groundwater divides, but in areas with steep hydraulic gradients will be elongated in the upgradient direction and agree less with the corresponding circular buffers. The degree to which process-model-estimated contributing recharge areas, which simulate advective transport and therefore account for

  4. Bicarbonate leaching of uranium

    International Nuclear Information System (INIS)

    Mason, C.

    1998-01-01

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented

  5. Bicarbonate leaching of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.

    1998-12-31

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented.

  6. Median nitrate concentrations in groundwater in the New Jersey Highlands Region estimated using regression models and land-surface characteristics

    Science.gov (United States)

    Baker, Ronald J.; Chepiga, Mary M.; Cauller, Stephen J.

    2015-01-01

    Nitrate-concentration data are used in conjunction with land-use and land-cover data to estimate median nitrate concentrations in groundwater underlying the New Jersey (NJ) Highlands Region. Sources of data on nitrate in 19,670 groundwater samples are from the U.S. Geological Survey (USGS) National Water Information System (NWIS) and the NJ Private Well Testing Act (PWTA).

  7. A theoretical model for explaining the effect of physical manipulation on nitrate uptake in spinach (Spinacia oleracea L)

    NARCIS (Netherlands)

    terSteege, MW; Stulen, [No Value

    1997-01-01

    Experiments with spinach (Spinacia oleracea L., cv. Subito) plants in which net nitrate uptake rate (NNUR) and nitrate influx and efflux were measured showed that handling the plants affected the results considerably. Both nitrate influx and efflux changed after physical manipulation of the plants,

  8. Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Moeys, Julien; Barriuso, Enrique; Larsbo, Mats; Marín-Benito, Jesús-María; Justes, Eric; Alletto, Lionel; Ubertosi, Marjorie; Nicolardot, Bernard; Munier-Jolain, Nicolas; Mamy, Laure

    2017-03-01

    The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.

  9. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment scale water management

    DEFF Research Database (Denmark)

    Jacosen, T.; Refsgaard, A.; Jacobsen, Brian H.

    Abstract The EU WFD requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive agricultu...... in comprehensive, integrated modelling tools.......Abstract The EU WFD requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive...... agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied...

  10. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment-scale water management

    DEFF Research Database (Denmark)

    Refsgaard, A.; Jacobsen, T.; Jacobsen, Brian H.

    2007-01-01

    The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by ...... the potential and limitations of comprehensive, integrated modelling tools.  ......The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized...... by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling...

  11. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watershed using SWAT model

    Science.gov (United States)

    Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean

    2017-01-01

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e

  12. Method for accelerated leaching of solidified waste

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Heiser, J.H.; Pietrzak, R.F.; Franz, E.M.; Colombo, P.

    1990-11-01

    An accelerated leach test method has been developed to determine the maximum leachability of solidified waste. The approach we have taken is to use a semi-dynamic leach test; that is, the leachant is sampled and replaced periodically. Parameters such as temperature, leachant volume, and specimen size are used to obtain releases that are accelerated relative to other standard leach tests and to the leaching of full-scale waste forms. The data obtained with this test can be used to model releases from waste forms, or to extrapolate from laboratory-scale to full-scale waste forms if diffusion is the dominant leaching mechanism. Diffusion can be confirmed as the leaching mechanism by using a computerized mathematical model for diffusion from a finite cylinder. We have written a computer program containing several models including diffusion to accompany this test. The program and a Users' Guide that gives screen-by-screen instructions on the use of the program are available from the authors. 14 refs., 4 figs., 1 tab

  13. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    Science.gov (United States)

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  14. Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue

    International Nuclear Information System (INIS)

    Cabidoche, Y.-M.; Achard, R.; Cattan, P.; Clermont-Dauphin, C.; Massat, F.; Sansoulet, J.

    2009-01-01

    Chlordecone was applied between 1972 and 1993 in banana fields of the French West Indies. This resulted in long-term pollution of soils and contamination of waters, aquatic biota, and crops. To assess pollution level and duration according to soil type, WISORCH, a leaching model based on first-order desorption kinetics, was developed and run. Its input parameters are soil organic carbon content (SOC) and SOC/water partitioning coefficient (K oc ). It accounts for current chlordecone soil contents and drainage water concentrations. The model was valid for andosol, which indicates that neither physico-chemical nor microbial degradation occurred. Dilution by previous deep tillages makes soil scrapping unrealistic. Lixiviation appeared the main way to reduce pollution. Besides the SOC and rainfall increases, K oc increased from nitisol to ferralsol and then andosol while lixiviation efficiency decreased. Consequently, pollution is bound to last for several decades for nitisol, centuries for ferralsol, and half a millennium for andosol. - Soil and water contamination by chlordecone will persist for several centuries in the French West Indies, because the only decontamination is through leaching by drainage water.

  15. Studies on the effect of quercetin and nitrates on the redox homeostasis using in vitro model.

    Science.gov (United States)

    Kurzeja, Ewa; Stec, Małgorzata; Synowiec-Wojtarowicz, Agnieszka; Jowsa, Andrzej; Pawłowska-Góral, Katarzyna

    2014-07-01

    Antioxidants are widely considered to be a preventive measure for many diseases and beneficial for health. However, an increasing number of reports suggest a lack of any influence by antioxidants on health or even harmful pro-oxidative effects of antioxidants. In most cases, the research was conducted with respect to a chosen antioxidant, without considering the presence of other chemical substances present in food, with which these compounds may react. The aim of this work was to determine whether and to what extent the simultaneous presence of quercetin and sodium nitrate influences oxidative-reductive homeostasis in fibroblast cultures. Superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and nitric oxide synthase (NOS) activities were measured together with nitric oxide (NO) concentration and total antioxidant status (TAS). An increase in the activity of all the enzymes measured and in the NO concentration was determined compared with the control culture. The most prominent changes were observed at the highest quercetin concentration. These results indicate that the simultaneous presence of quercetin and sodium nitrate disrupts the oxidative-reductive homeostasis in fibroblasts. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model

    Science.gov (United States)

    Mano, Camila M.; Cardozo, Karina H. M.; Colepicolo, Pio; Bechara, Etelvino J. H.

    2018-01-01

    Astaxanthin (ASTA) is a ketocarotenoid found in many marine organisms and that affords many benefits to human health. ASTA is particularly effective against radical-mediated lipid peroxidation, and recent findings hypothesize a “mitochondrial-targeted” action of ASTA in cells. Therefore, we examined the protective effects of ASTA against lipid peroxidation in zwitterionic phosphatidylcholine liposomes (PCLs) and anionic phosphatidylcholine: phosphatidylglycerol liposomes (PCPGLs), at different pHs (6.2 to 8.0), which were challenged by oxidizing/nitrating conditions that mimic the regular and preapoptotic redox environment of active mitochondria. Pre-apoptotic conditions were created by oxidized/nitr(osyl)ated cytochrome c and resulted in the highest levels of lipoperoxidation in both PCL and PCPGLs (pH 7.4). ASTA was less protective at acidic conditions, especially in anionic PCPGLs. Our data demonstrated the ability of ASTA to hamper oxidative and nitrative events that lead to cytochrome c-peroxidase apoptosis and lipid peroxidation, although its efficiency changes with pH and lipid composition of membranes. PMID:29649159

  17. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  18. Leaching from waste incineration bottom ashes treated in a rotary kiln

    DEFF Research Database (Denmark)

    Hyks, Jiri; Nesterov, Igor; Mogensen, Erhardt

    2011-01-01

    Leaching from municipal solid waste incineration bottom ash treated in a rotary kiln was quantified using a combination of lab-scale leaching experiments and geochemical modelling. Thermal treatment in the rotary kiln had no significant effect on the leaching of Al, Ba, Ca, Mg, Si, Sr, Zn, sulfate...... the thermal treatment. Overall, rotary kiln thermal treatment of bottom ashes can be recommended to reduce the leaching of Cu, Pb, Cl and DOC; however, increased leaching of Cr and Mo should be expected....

  19. Leaching of sodium carbonate cakes by nitric acid

    International Nuclear Information System (INIS)

    Troyanker, L.S.; Nikonov, V.N.

    1977-01-01

    The interaction has been studied of soda cakes of fluorite-rare-earth concentrate with nitric acid. The effect of a number of factors on extraction of REE into a nitric solution has been considered: the final acidity of the pulp, the duration of leaching, and the ratio between solid and liquid phases. The effect of adding aluminium nitrate into the pulp has also been studied. It has been shown that three-stage counterflow leaching of soda cakes with nitric acid increases REE extraction approximately by 10%

  20. Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops

    DEFF Research Database (Denmark)

    De Notaris, Chiara; Rasmussen, Jim; Sørensen, Peter

    2018-01-01

    Components of the field nitrogen (N) balance (input and surplus) are often used to predict nitrate leaching from agricultural lands. However, management factors, such as use of catch crops, greatly affect the actual loss and are a key to reduce N leaching. The present study is based on the 4th cy...

  1. Using lumped modelling for providing simple metrics and associated uncertainties of catchment response to agricultural-derived nitrates pollutions

    Science.gov (United States)

    RUIZ, L.; Fovet, O.; Faucheux, M.; Molenat, J.; Sekhar, M.; Aquilina, L.; Gascuel-odoux, C.

    2013-12-01

    The development of simple and easily accessible metrics is required for characterizing and comparing catchment response to external forcings (climate or anthropogenic) and for managing water resources. The hydrological and geochemical signatures in the stream represent the integration of the various processes controlling this response. The complexity of these signatures over several time scales from sub-daily to several decades [Kirchner et al., 2001] makes their deconvolution very difficult. A large range of modeling approaches intent to represent this complexity by accounting for the spatial and/or temporal variability of the processes involved. However, simple metrics are not easily retrieved from these approaches, mostly because of over-parametrization issues. We hypothesize that to obtain relevant metrics, we need to use models that are able to simulate the observed variability of river signatures at different time scales, while being as parsimonious as possible. The lumped model ETNA (modified from[Ruiz et al., 2002]) is able to simulate adequately the seasonal and inter-annual patterns of stream NO3 concentration. Shallow groundwater is represented by two linear stores with double porosity and riparian processes are represented by a constant nitrogen removal function. Our objective was to identify simple metrics of catchment response by calibrating this lumped model on two paired agricultural catchments where both N inputs and outputs were monitored for a period of 20 years. These catchments, belonging to ORE AgrHys, although underlain by the same granitic bedrock are displaying contrasted chemical signatures. The model was able to simulate the two contrasted observed patterns in stream and groundwater, both on hydrology and chemistry, and at the seasonal and pluri-annual scales. It was also compatible with the expected trends of nitrate concentration since 1960. The output variables of the model were used to compute the nitrate residence time in both the

  2. Air–snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    J. Bock

    2016-10-01

    Full Text Available Snowpack is a multiphase (photochemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis in the snow before being permanently buried in the ice. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photochemical reactions inside snow grains, but these have relied on strong assumptions to characterise snow reactive properties, which are not well defined. Air–snow exchange processes such as adsorption, solid-state diffusion, or co-condensation also affect snow chemical composition. Here, we present a physically based model of these processes for nitrate. Using as input a 1-year-long time series of atmospheric nitrate concentration measured at Dome C, Antarctica, our model reproduces with good agreement the nitrate measurements in the surface snow. By investigating the relative importance of the main exchange processes, this study shows that, on the one hand, the combination of bulk diffusion and co-condensation allows a good reproduction of the measurements (correlation coefficient r = 0.95, with a correct amplitude and timing of summer peak concentration of nitrate in snow. During winter, nitrate concentration in surface snow is mainly driven by thermodynamic equilibrium, whilst the peak observed in summer is explained by the kinetic process of co-condensation. On the other hand, the adsorption of nitric acid on the surface of the snow grains, constrained by an already existing parameterisation for the isotherm, fails to fit the observed variations. During winter and spring, the modelled concentration of adsorbed nitrate is respectively 2.5 and 8.3-fold higher than the measured one. A strong diurnal variation driven by the temperature cycle and a peak occurring in early

  3. Accounting for the Decreasing Denitrification Potential of Aquifers in Travel-Time Based Reactive-Transport Models of Nitrate

    Science.gov (United States)

    Cirpka, O. A.; Loschko, M.; Wöhling, T.; Rudolph, D. L.

    2017-12-01

    Excess nitrate concentrations pose a threat to drinking-water production from groundwater in all regions of intensive agriculture worldwide. Natural organic matter, pyrite, and other reduced constituents of the aquifer matrix can be oxidized by aerobic and denitrifying bacteria, leading to self-cleaning of groundwater. Various studies have shown that the heterogeneity of both hydraulic and chemical aquifer properties influence the reactive behavior. Since the exact spatial distributions of these properties are not known, predictions on the temporal evolution of nitrate should be probabilistic. However, the computational effort of pde-based, spatially explicit multi-component reactive-transport simulations are so high that multiple model runs become impossible. Conversely, simplistic models that treat denitrification as first-order decay process miss important controls on denitrification. We have proposed a Lagrangian framework of nonlinear reactive transport, in which the electron-donor supply by the aquifer matrix is parameterized by a relative reactivity, that is the reaction rate relative to a standard reaction rate for identical solute concentrations (Loschko et al., 2016). We could show that reactive transport simplifies to solving a single ordinary dfferential equation in terms of the cumulative relative reactivity for a given combination of inflow concentrations. Simulating 3-D flow and reactive transport are computationally so inexpensive that Monte Carlo simulation become feasible. The original scheme did not consider a change of the relative reactivity over time, implying that the electron-donor pool in the matrix is infinite. We have modified the scheme to address the consumption of the reducing aquifer constituents upon the reactions. We also analyzed how a minimally complex model of aerobic respiration and denitrification could look like. With the revised scheme, we performed Monte Carlo simulations in 3-D domains, confirming that the uncertainty in

  4. Optimization of the factors that accelerate leaching

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Pietrzak, R.F.; Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1989-03-01

    The prediction of long-term leachability of low-level radioactive waste forms is an essential element of disposal-site performance assessment. This report describes experiments and modeling techniques used to develop an accelerated leach test that meets this need. The acceleration in leaching rates caused by the combinations of two or more factors were experimentally determined. These factors were identified earlier as being able to individually accelerate leaching. They are: elevated temperature, the size of the waste form, the ratio of the volume of leachant to the surface area of the waste form, and the frequency of replacement of the leachant. The solidification agents employed were ones that are currently used to treat low-level radioactive wastes, namely portland type I cement, bitumen, and vinyl ester-styrene. The simulated wastes, sodium sulfate, sodium tetraborate, and incinerator ash, are simplified representatives of typical low-level waste streams. Experiments determined the leaching behavior of the radionuclides of cesium (Cs-137), strontium (Sr-85), and cobalt (Co-60 or Co-57) from several different formulations of solidification agents and waste types. Leaching results were based upon radiochemical and elemental analyses of aliquots of the leachate, and on its total alkalinity and pH at various times during the experiment (up to 120 days). Solid phase analyses were carried out by Scanning/Electron Microscopy and Energy Dispersive Spectroscopy on the waste forms before and after some leaching experiments. 43 refs., 96 figs., 16 tabs

  5. Zinc Leaching from Tire Crumb Rubber

    Science.gov (United States)

    Rhodes, E. P.; Ren, J.; Mays, D. C.

    2010-12-01

    Recent estimates indicate that more than 2 billion scrap tires are currently stockpiled in the United States and approximately 280 million more tires are added annually. Various engineering applications utilize recycled tires in the form of shredded tire crumb rubber. However, the use of tire crumb rubber may have negative environmental impacts, especially when the rubber comes into contact with water. A review of the literature indicates that leaching of zinc from tire crumb rubber is the most significant water quality concern associated with using this material. Zinc is generally used in tire manufacturing, representing approximately 1.3% of the final product by mass. This study will report results from the U.S. Environmental Protection Agency’s (EPA’s) Synthetic Precipitation Leaching Procedure, batch leaching tests, and column leaching tests performed to quantify the process by which zinc leaches from tire crumb rubber into water. Results are interpreted with a first-order kinetic attachment/detachment model, implemented with the U.S. Agricultural Research Service software HYDRUS-1D, in order to determine the circumstances when zinc leaching from tire crumb rubber would be expected to comply with the applicable discharge limits. One potential application for recycled tires is replacing sand with tire crumb rubber in granular media filters used for stormwater pollution control. For this to be a viable application, the total zinc in the stormwater discharge must be below the EPA’s benchmark value of 0.117 mg/L.

  6. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    Science.gov (United States)

    Jurgens, Bryant; Böhlke, John Karl; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-01-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  7. Elucidating the impact of nitrate and labile carbon application on spatial heterogeneity of denitrification by 15N modelling

    Science.gov (United States)

    Cardenas, Laura; Loick, Nadine; Dixon, Liz; Matthews, Peter; Gilsanz, Claudia; Bol, Roland; Lewicka-Szczebak, Dominika; Well, Reinhard

    2016-04-01

    N2O is considered to be an important GHG with soils representing its major source and accounting for approximately 6% of the current global warming and is also implicated in the depletion of stratospheric ozone. The atmospheric N2O concentration has been increasing since the Industrial Revolution making the understanding of its sources and removal processes very important for development of mitigation strategies. Bergstermann et al. (2011) found evidence of the existence of more than one pool of nitrate undergoing denitrification in a silty clay loam arable soil amended with glucose/nitrate solution. The Rayleigh type model was used to simulate d15N of N2O using process rates and associated fractionation factors, but assumptions for some of the model parameters had to be made due to lack of available data. In this study we carried out 2 incubation experiments in order to parameterise the model. To restrict the volume of soil reached by the amendment, we used blocks containing 3 soil cores that were incubated in one vessel to measure emissions of NO, N2O, N2 and CO2 from a clay grassland soil amended with KNO3 (N) and glucose (C) in three treatments: '1C' only 1 core received N and C (the other 2 received water), '3C' 3 cores received N and C, and 'Control' (received water only). The results showed changes in the d15Nbulk trends after day 6 post amendment application, coinciding with the decrease of N2O fluxes. We also report the results in the 15N site preference (SP) and d18O. We will show the results from the model validation based on this data.

  8. Measurement of leached hulls

    International Nuclear Information System (INIS)

    Reilly, T.D.

    1979-07-01

    Leached hulls are the short lengths of fuel rod cladding and fuel element hardware which constitute a major waste product of a reprocessing plant employing a chop-and-leach head-end process. The small, undissolved fuel residue (0.1 to 1.0% of original fuel content) which is discarded with this waste must be measured for safeguards, material accountability, and process control reasons. This report gives a critical analysis of hull measurement techniques involving the analysis of fission product gamma rays, spontaneous fission neutrons from curium, and delayed neutron activation. Major emphasis is given to the measurement of 2186-keV gamma rays from 144 Ce-- 144 Pr. A detailed description of typical leached hull characteristics is presented at the beginning of the report. An extensive review of experience gained from existing hull measurement systems in the United Kingdom, France, Japan, Germany, Italy, and the United States is presented

  9. Aminoethyl nitrate – the novel super nitrate?

    Science.gov (United States)

    Bauersachs, Johann

    2009-01-01

    Long-term use of most organic nitrates is limited by development of tolerance, induction of oxidative stress and endothelial dysfunction. In this issue of the BJP, Schuhmacher et al. characterized a novel class of organic nitrates with amino moieties (aminoalkyl nitrates). Aminoethyl nitrate was identified as a novel organic mononitrate with high potency but devoid of induction of mitochondrial oxidative stress. Cross-tolerance to nitroglycerin or the endothelium-dependent agonist acetylcholine after in vivo treatment was not observed. Like all nitrates, aminoethyl nitrate induced vasorelaxation by activation of soluble guanylate cyclase. Thus, in contrast to the prevailing view, high potency in an organic nitrate is not necessarily accompanied by induction of oxidative stress or endothelial dysfunction. This work from Daiber's group is an important step forward in the understanding of nitrate bioactivation, tolerance phenomena and towards the development of better organic nitrates for clinical use. PMID:19732062

  10. Accelerated Leach Test(s) Program. Annual report

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1985-09-01

    This report summarizes the work performed for the Accelerated Leach Test(s) Program at Brookhaven National Laboratory in Fiscal Year 1985 under the sponsorship of the US Department of Energy's Low-Level Waste Management Program (LLWMP). Programmatic activities were concentrated in three areas, as listed and described in the following paragraphs. (1) A literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. Available mathematical models are based on diffusion as the predominant mechanism. Although numerous factors that affect leaching have been identified, they have been conveniently categorized as factors related to the entire leaching system, to the leachant or to the waste form. A report has been published on the results of this literature survey. (2) A computerized data base of LLW leaching data and mathematical models is being developed. The data are being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. (3) Long-term tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected

  11. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    Directory of Open Access Journals (Sweden)

    C. D. Børgesen

    2011-09-01

    Full Text Available Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled wheat yields and nitrate leaching from arable land in Denmark. The probabilistic projections describe a range of possible changes in temperature and precipitation. Two methodologies to apply climate projections in impact models were tested. Method A was a straightforward correction of temperature and precipitation, where the same correction was applied to the baseline weather data for all days in the year, and method B used seasonal changes in precipitation and temperature to correct the baseline weather data. Based on climate change projections for the time span 2000 to 2100 and two soil types, the mean impact and the uncertainty of the climate change projections were analysed. Combining probability density functions of climate change projections with crop model simulations, the uncertainty and trends in nitrogen (N leaching and grain yields with climate change were quantified. The uncertainty of climate change projections was the dominating source of uncertainty in the projections of yield and N leaching, whereas the methodology to seasonally apply climate change projections had a minor effect. For most conditions, the probability of large yield reductions and large N leaching losses tracked trends in mean yields and mean N leaching. The impacts of the uncertainty in climate change were higher for loamy sandy soil than for sandy soils due to generally higher yield levels for loamy sandy soils. There were large differences between soil types in response to climate change, illustrating the importance of including soil information for regional studies of climate change impacts on cropping systems.

  12. Coupling between chemical degradation and mechanical behaviour of leached concrete; Couplage degradation chimique - comportement en compression du beton

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V H

    2005-10-15

    This work is in the context of the long term behavior of concrete employed in radioactive waste disposal. The objective is to study the coupled chemo-mechanical modelling of concrete. In the first part of this contribution, experimental investigations are described where the effects of the calcium leaching process of concrete on its mechanical properties are highlighted. An accelerated method has been chosen to perform this leaching process by using an ammonium nitrate solution. In the second part, we present a coupled phenomenological chemo-mechanical model that represents the degradation of concrete materials. On one hand, the chemical behavior is described by the simplified calcium leaching approach of cement paste and mortar. Then a homogenization approach using the asymptotic development is presented to take into account the influence of the presence of aggregates in concrete. And on the other hand, the mechanical part of the modelling is given. Here continuum damage mechanics is used to describe the mechanical degradation of concrete. The growth of inelastic strains observed during the mechanical tests is describes by means of a plastic like model. The model is established on the basis of the thermodynamics of irreversible processes framework. The coupled nonlinear problem at hand is addressed within the context of the finite element method. Finally, numerical simulations are compared with the experimental results for validation. (author)

  13. Urananite leaching: literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, G.F.; Bryant, E.A.; Williams, K.E.

    1979-04-01

    A literature survey was undertaken to provide background materials for a series of experiments involving the interaction of spent uranium dioxide fuel with various environments. Notes and references pertaining to the basic properties of UO/sub 2/ as produced and after reactor exposure are presented. The use of computerized literature searches is illustrated with specific topics related to leaching experiments. 57 references.

  14. Urananite leaching: literature survey

    International Nuclear Information System (INIS)

    Grisham, G.F.; Bryant, E.A.; Williams, K.E.

    1979-04-01

    A literature survey was undertaken to provide background materials for a series of experiments involving the interaction of spent uranium dioxide fuel with various environments. Notes and references pertaining to the basic properties of UO 2 as produced and after reactor exposure are presented. The use of computerized literature searches is illustrated with specific topics related to leaching experiments. 57 references

  15. UO2 leaching and radionuclide release modelling under high and low ionic strength solution and oxidation conditions

    International Nuclear Information System (INIS)

    1995-01-01

    In this work, the UO 2 dissolution under oxidizing conditions has been studied in order to compare these results to those obtained with spent fuel. Two different leaching solutions have been used, one with a high ionic strength trying to simulate the conditions expected in a saline repository and the other at low ionic strength much appropriate to granitic environments. In both cases, the dissolution has been studied studied as a function of pH, redox potential, oxidants, complexing agents, particle size as well as the experimental methodology. Results can be summarized as follows: a) The UO 2 dissolution is rather independent on ionic strength. b) Dissolution rates can be explained in general independent on the oxidant as: Log R=3DK [oxidant] Surface solid evolution is very important to understand the dissolution/oxidation mechanism of UO 2 . d) Under oxidizing conditions, the dissolution is H+ and HCO 3 promoted. e) In carbonate medium, both UO 2 and spent fuel dissolution rates are very similar, while in a non-complexing medium, spent fuel dissolution rate is much higher than the UO 2 one. This fact seems to indicate that radiolysis is much important non-complexing media. (Author)

  16. Life cycle assessment and residue leaching: The importance of parameter, scenario and leaching data selection

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, E., E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Butera, S. [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Kosson, D.S. [Vanderbilt University, Department of Civil and Environmental Engineering, Box 1831 Station B, Nashville, TN 37235 (United States); Van Zomeren, A. [Energy Research Centre of the Netherlands (ECN), Department of Environmental Risk Assessment, P.O. Box 1, 1755 ZG Petten (Netherlands); Van der Sloot, H.A. [Hans van der Sloot Consultancy, Dorpsstraat 216, 1721 BV Langedijk (Netherlands); Astrup, T.F. [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark)

    2015-04-15

    Highlights: • Relevance of metal leaching in waste management system LCAs was assessed. • Toxic impacts from leaching could not be disregarded. • Uncertainty of toxicity, due to background activities, determines LCA outcomes. • Parameters such as pH and L/S affect LCA results. • Data modelling consistency and coverage within an LCA are crucial. - Abstract: Residues from industrial processes and waste management systems (WMSs) have been increasingly reutilised, leading to landfilling rate reductions and the optimisation of mineral resource utilisation in society. Life cycle assessment (LCA) is a holistic methodology allowing for the analysis of systems and products and can be applied to waste management systems to identify environmental benefits and critical aspects thereof. From an LCA perspective, residue utilisation provides benefits such as avoiding the production and depletion of primary materials, but it can lead to environmental burdens, due to the potential leaching of toxic substances. In waste LCA studies where residue utilisation is included, leaching has generally been neglected. In this study, municipal solid waste incineration bottom ash (MSWI BA) was used as a case study into three LCA scenarios having different system boundaries. The importance of data quality and parameter selection in the overall LCA results was evaluated, and an innovative method to assess metal transport into the environment was applied, in order to determine emissions to the soil and water compartments for use in an LCA. It was found that toxic impacts as a result of leaching were dominant in systems including only MSWI BA utilisation, while leaching appeared negligible in larger scenarios including the entire waste system. However, leaching could not be disregarded a priori, due to large uncertainties characterising other activities in the scenario (e.g. electricity production). Based on the analysis of relevant parameters relative to leaching, and on general results

  17. Nitrate leaching from organic and conventional crop production farms

    OpenAIRE

    Olesen, J.E.; Berntsen, J.; Petersen, B.M.; Kristensen, I.S.

    2004-01-01

    Farm accounting data from the Institute of Food Economics and from Central Agricultural Registers in Denmark were used to define the import of nitrogen (N) to farmed fields on conventional and organic arable farms to 129 and 51 kg N ha-1 yr-1, respectively. Based on the recorded distribution of crops, a generalised crop rotation was defined for each of the two farming systems. The crop rotation for the organic farm had a high share of spring cereals and additionally 20% grass-clover in the ro...

  18. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    Science.gov (United States)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  19. INTEGRATED BIOREACTOR SYSTEM FOR THE TREATMENT OF CYANIDE, METALS AND NITRATES IN MINE PROCESS WATER

    Science.gov (United States)

    An innovative biological process is described for the tratment of cyanide-, metals- and nitrate-contaminated mine process water. The technology was tested for its ability to detoxify cyanide and nitrate and to immobilize metals in wastewater from agitation cyanide leaching. A pil...

  20. Conservation of nitrate during the fallow; Conservacion del nitrogeno durante el barbecho

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Aguilar, M.

    2004-07-01

    We study the possibility to use the waste-water from olive oil mills, or woom to reduce the leaching, of nitrate during the fallow. The blocking in time that practice the woom about the nitrogen of soil we are suggest this study. We make use of woom dilute in water and we study the influence,as soon as the contained potassium, on the nitrogen leaching of two soils, loam and silt-clay loam. The irrigation of soils with woom dilute in water from ten to forty times prior to the autumnal rains to be worth for reducing the leaching of nitrate during the fallow. (Author) 21 refs.

  1. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: Observations, calibrated models, simulations and agro-hydrological conclusions

    Science.gov (United States)

    Kurtzman, Daniel; Shapira, Roi H.; Bar-Tal, Asher; Fine, Pinchas; Russo, David

    2013-08-01

    Nitrate contamination of groundwater under land used for intensive-agriculture is probably the most worrisome agro-hydrological sustainability problem worldwide. Vadose-zone samples from 0 to 9 m depth under citrus orchards overlying an unconfined aquifer were analyzed for variables controlling water flow and the fate and transport of nitrogen fertilizers. Steady-state estimates of water and NO3-N fluxes to groundwater were found to vary spatially in the ranges of 90-330 mm yr- 1 and 50-220 kg ha- 1 yr- 1, respectively. Calibration of transient models to two selected vadose-zone profiles required limiting the concentration of NO3-N in the solution that is taken up by the roots to 30 mg L- 1. Results of an independent lysimeter experiment showed a similar nitrogen-uptake regime. Simulations of past conditions revealed a significant correlation between NO3-N flux to groundwater and the previous year's precipitation. Simulations of different nitrogen-application rates showed that using half of the nitrogen fertilizer added to the irrigation water by farmers would reduce average NO3-N flux to groundwater by 70%, decrease root nitrogen uptake by 20% and reduce the average pore water NO3-N concentration in the deep vadose zone to below the Israeli drinking water standard; hence this rate of nitrogen application was found to be agro-hydrologically sustainable. Beyond the investigation of nitrate fluxes to groundwater under citrus orchards and the interesting case-study aspects, this work demonstrates a methodology that enables skillful decisions concerning joint sustainability of both the water resource and agricultural production in a common environmental setting.

  2. In-situ uranium leaching

    International Nuclear Information System (INIS)

    Dotson, B.J.

    1986-01-01

    This invention provides a method for improving the recovery of mineral values from ore bodies subjected to in-situ leaching by controlling the flow behaviour of the leaching solution. In particular, the invention relates to an in-situ leaching operation employing a foam for mobility control of the leaching solution. A foam bank is either introduced into the ore bed or developed in-situ in the ore bed. The foam then becomes a diverting agent forcing the leaching fluid through the previously non-contacted regions of the deposit

  3. Nitrate transport and transformation processes in unsaturated porous media

    Science.gov (United States)

    Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.

    1995-01-01

    A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil

  4. Leach tests on grouts made with actual and trace metal-spiked synthetic phosphate/sulfate waste

    International Nuclear Information System (INIS)

    Serne, R.J.; Martin, W.J.; LeGore, V.L.; Lindenmeier, C.W.; McLaurine, S.B.; Martin, P.F.C.; Lokken, R.O.

    1989-10-01

    Pacific Northwest Laboratory conducted experiments to produce empirical leach rate data for phosphate-sulfate waste (PSW) grout. Effective diffusivities were measured for various radionuclides ( 90 Sr, 99 Tc, 14 C, 129 I, 137 Cs, 60 Co, 54 Mn, and U), stable major components (NO 3 - , SO 4 2- , H 3 BO 3 , K and Na) and the trace constituents Ag, As, Cd, Hg, Pb, and Se. Two types of leach tests were used on samples of actual PSW grout and synthetic PSW grout: the American Nuclear Society (ANS) 16.1 intermittent replacement leach test and a static leach test. Grout produced from both synthetic and real PSW showed low leach rates for the trace metal constituents and most of the waste radionuclides. Many of the spiked trace metals and radionuclides were not detected in any leachates. None of the effluents contained measurable quantities of 137 Cs, 60 Co, 54 Mn, 109 Cd, 51 Cr, 210 Pb, 203 Hg, or As. For those trace species with detectable leach rates, 125 I appeared to have the greatest leach rate, followed by 99 Tc, 75 Se, and finally U, 14 C, and 110m Ag. Leach rates for nitrate are between those for I and Tc, but there is much scatter in the nitrate data because of the very low nitrate inventory. 32 refs., 6 figs., 15 tabs

  5. Vadose Zone Nitrate Transport Dynamics Resulting from Agricultural Groundwater Banking

    Science.gov (United States)

    Murphy, N. P.; McLaughlin, S.; Dahlke, H. E.

    2017-12-01

    In recent years, California's increased reliance on groundwater resources to meet agricultural and municipal demands has resulted in significant overdraft and water quality issues. Agricultural groundwater banking (AGB) has emerged as a promising groundwater replenishment opportunity in California; AGB is a form of managed aquifer recharge where farmland is flooded during the winter using excess surface water in order to recharge the underlying groundwater. Suitable farmland that is connected to water delivery systems is available for AGB throughout the Central Valley. However, questions remain how AGB could be implemented on fertilized agricultural fields such that nitrate leaching from the root zone is minimized. Here, we present results from field and soil column studies that investigate the transport dynamics of nitrogen in the root and deeper vadose zone during flooding events. We are specifically interested in estimating how timing and duration of flooding events affect percolation rates, leaching and nitrification/denitrification processes in three soil types within the Central Valley. Laboratory and field measurements include nitrogen (NO3-, NH4+, NO2-, N2O), redox potentials, total organic carbon, dissolved oxygen, moisture content and EC. Soil cores are collected in the field before and after recharge events up to a depth of 4m, while other sensors monitor field conditions continuously. Preliminary results from the three field sites show that significant portions of the applied floodwater (12-62 cm) infiltrated below the root zone: 96.1% (Delhi), 88.6% (Modesto) and 76.8% (Orland). Analysis of the soil cores indicate that 70% of the residual nitrate was flushed from the sandy soil, while the fine sandy loam showed only a 5% loss and in some cores even an increase in soil nitrate (in the upper 20cm). Column experiments support these trends and indicate that increases in soil nitrate in the upper root zone might be due to organic nitrogen mineralization and

  6. Leaching materials from cavities

    International Nuclear Information System (INIS)

    Hodgson, T.D.; Jordan, T.W.J.

    1980-01-01

    A material is leached from a cavity by contacting the material with a liquid and subjecting the liquid to a number of pressure cycles, each pressure cycle involving a decrease in pressure to cause boiling of the liquid, followed by a rise in pressure to inhibit the boiling. The method may include the step of heating the liquid to a temperature near to its boiling point. The material may be nuclear fuel pellets or calcium carbonate pellets. (author)

  7. Nitrates of rare earths

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Pushkina, L.Ya.

    1984-01-01

    The systematization of experimental data with account of the last achievements in the field of studying the RE nitrate properties is realized. The methods of production, solubility in aqueous solutions structure, thermodynamic characteristics and thermal stability of nitrate hydrates, RE anhydrous and basic nitrates are considered. The data on RE nirtrate complexing in aqueous solutions are given. Binary nitrates, nitrate solvates and RE nitrate adducts with organic compounds are described. The use of RE nitrates in the course of RE production, in the processes of separation and fine cleaning of RE preparations is considered

  8. Nitrate pollution in intensively farmed regions: What are the prospects for sustaining high-quality groundwater?

    Science.gov (United States)

    Howden, Nicholas J. K.; Burt, Tim P.; Worrall, Fred; Mathias, Simon; Whelan, Mick J.

    2011-06-01

    Widespread pollution of groundwater by nutrients due to 20th century agricultural intensification has been of major concern in the developed world for several decades. This paper considers the River Thames catchment (UK), where water-quality monitoring at Hampton (just upstream of London) has produced continuous records for nitrate for the last 140 years, the longest continuous record of water chemistry anywhere in the world. For the same period, data are available to characterize changes in both land use and land management at an annual scale. A modeling approach is used that combines two elements: an estimate of nitrate available for leaching due to land use and land management; and, an algorithm to route this leachable nitrate through to surface or groundwaters. Prior to agricultural intensification at the start of World War II, annual average inputs were around 50 kg ha-1, and river concentrations were stable at 1 to 2 mg l-1, suggesting in-stream denitrification capable of removing 35 (±15) kt N yr-1. Postintensification data suggest an accumulation of 100 (±40) kt N yr-1 in the catchment, most of which is stored in the aquifer. This build up of reactive N species within the catchments means that restoration of surface nitrate concentrations typical of the preintensification period would require massive basin-wide changes in land use and management that would compromise food security and take decades to be effective. Policy solutions need to embrace long-term management strategies as an urgent priority.

  9. Multi-Scale Modelling of the Gamma Radiolysis of Nitrate Solutions

    OpenAIRE

    Horne, Gregory; Donoclift, Thomas; Sims, Howard E.; M. Orr, Robin; Pimblott, Simon

    2016-01-01

    A multi-scale modelling approach has been developed for the extended timescale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages; radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modelling. The first three components model...

  10. BLT-EC (Breach, Leach Transport, and Equilibrium Chemistry), a finite-element model for assessing the release of radionuclides from low-level waste disposal units: Background, theory, and model description

    International Nuclear Information System (INIS)

    MacKinnon, R.J.; Sullivan, T.M.; Simonson, S.A.; Suen, C.J.

    1995-08-01

    Performance assessment models typically account for the processes of sorption and dissolution-precipitation by using an empirical distribution coefficient, commonly referred to as K d that combines the effects of all chemical reactions between solid and aqueous phases. In recent years, however, there has been an increasing awareness that performance assessments based solely on empirically based K d models may be incomplete, particularly for applications involving radionuclides having sorption and solubility properties that are sensitive to variations in the in-situ chemical environment. To accommodate variations in the in-situ chemical environment, and to assess its impact on radionuclide mobility, it is necessary to model radionuclide release, transport, and chemical processes in a coupled fashion. This modeling has been done and incorporated into the two-dimensional, finite-element, computer code BLT-EC (Breach, Leach, Transport, Equilibrium Chemistry). BLT-EC is capable of predicting container degradation, waste-form leaching, and advective-dispersive, multispecies, solute transport. BLT-EC accounts for retardation directly by modeling the chemical processes of complexation, sorption, dissolution-precipitation, ion-exchange, and oxidation-reduction reactions. In this report we: (1) present a detailed description of the various physical and chemical processes that control the release and migration of radionuclides from shallow land LLW disposal facilities; (2) formulate the mathematical models that represent these processes; (3) outline how these models are incorporated and implemented in BLT-EC; and (4) demonstrate the application of BLT-EC on a set of example problems

  11. A simple model of the batch electrochemical reduction of nitrate/nitrite waste

    International Nuclear Information System (INIS)

    Wingard, D.A.; Weidner, J.W.; Van Zee, J.W.

    1994-01-01

    A model of a divided parallel plate electrochemical cell operated in a batch mode for the destruction of NO 3 - /NO 2 - in alkaline waste streams is presented. The model uses boundary layer approximations at each electrode and at the separator to minimize computation time. Five competing electrochemical reactions are included at the cathode. The model uses either an explicit Runge-Kutta routine with empirically determined current efficiencies or an implicit stepping routine for each electrode if the current efficiencies are to be predicted. Tim dependent changes of the concentration, temperature, and cell voltage are predicted for constant current operation. Model predictions are compared with experimental data

  12. Modelo para simulação da dinâmica de nitrato em colunas verticais de solo não saturado A simulation model of nitrate displacement in vertical columns in a non-saturated soil

    Directory of Open Access Journals (Sweden)

    Jarbas H. de Miranda

    2002-01-01

    Full Text Available A agricultura intensiva está sempre em busca de incrementos de produtividade mas, em contrapartida, pouca atenção é dedicada a possíveis impactos ambientais. Portanto, o entendimento sobre processos de transporte de solutos no solo auxilia na redução da sua lixiviação para as camadas subsuperficiais. Neste sentido, objetivou-se, com o presente trabalho, desenvolver e avaliar um modelo computacional aplicado para simulação da dinâmica de solutos no solo por meio de soluções numéricas de equações diferenciais que descrevam esse transporte. Pelos resultados obtidos, o modelo apresentou bom ajuste das concentrações de nitrato e dos perfis de umidade, simulados com relação aos medidos em condições de laboratório em coluna vertical de solo não saturado.Intensive agriculture always aims at increased productivity, with limited or no attention dedicated to possible impacts on the environment. Therefore, the understanding of processes of solute transport in the soil contributes to reduction of leaching to the deep layers. In this connection, the present study had the objective of developing and evaluating a computational model for solute displacement simulation in the soil based on numerical solutions of differential equations describing this displacement. From the results obtained, the model presented a good agreement of nitrate concentrations as well as soil moisture profile when compared with the results obtained on a vertical column of non-saturated soil under laboratory conditions.

  13. Leaching of Plastic Additives to Marine Organisms

    NARCIS (Netherlands)

    Koelmans, A.A.; Besseling, E.; Foekema, E.M.

    2014-01-01

    It is often assumed that ingestion of microplastics by aquatic species leads to increased exposure to plastic additives. However, experimental data or model based evidence is lacking. Here we assess the potential of leaching of nonylphenol (NP) and bisphenol A (BPA) in the intestinal tracts of

  14. Modeling the current and future roles of particulate organic nitrates in the southeastern US

    Data.gov (United States)

    U.S. Environmental Protection Agency — Links point to the NOAA data archive of observational data and the supplement of the article which this data supports. No model data was uploaded due to its size....

  15. Urban trees reduce nutrient leaching to groundwater.

    Science.gov (United States)

    Nidzgorski, Daniel A; Hobbie, Sarah E

    2016-07-01

    Many urban waterways suffer from excess nitrogen (N) and phosphorus (P), feeding algal blooms, which cause lower water clarity and oxygen levels, bad odor and taste, and the loss of desirable species. Nutrient movement from land to water is likely to be influenced by urban vegetation, but there are few empirical studies addressing this. In this study, we examined whether or not urban trees can reduce nutrient leaching to groundwater, an important nutrient export pathway that has received less attention than stormwater. We characterized leaching beneath 33 trees of 14 species, and seven open turfgrass areas, across three city parks in Saint Paul, Minnesota, USA. We installed lysimeters at 60 cm depth to collect soil water approximately biweekly from July 2011 through October 2013, except during winter and drought periods, measured dissolved organic carbon (C), N, and P in soil water, and modeled water fluxes using the BROOK90 hydrologic model. We also measured soil nutrient pools (bulk C and N, KCl-extractable inorganic N, Brays-P), tree tissue nutrient concentrations (C, N, and P of green leaves, leaf litter, and roots), and canopy size parameters (leaf biomass, leaf area index) to explore correlations with nutrient leaching. Trees had similar or lower N leaching than turfgrass in 2012 but higher N leaching in 2013; trees reduced P leaching compared with turfgrass in both 2012 and 2013, with lower leaching under deciduous than evergreen trees. Scaling up our measurements to an urban subwatershed of the Mississippi River (~17 400 ha, containing ~1.5 million trees), we estimated that trees reduced P leaching to groundwater by 533 kg in 2012 (0.031 kg/ha or 3.1 kg/km 2 ) and 1201 kg in 2013 (0.069 kg/ha or 6.9 kg/km 2 ). Removing these same amounts of P using stormwater infrastructure would cost $2.2 million and $5.0 million per year (2012 and 2013 removal amounts, respectively). © 2016 by the Ecological Society of America.

  16. Study of the relation between hydrated portland cement composition and leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1998-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  17. Study of hydrated Portland cement composition in regard to leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1997-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  18. Field scale heterogeneity of redox conditions in till-upscaling to a catchment nitrate model

    DEFF Research Database (Denmark)

    Hansen, J.R.; Erntsen, V.; Refsgaard, J.C.

    2008-01-01

    Point scale studies in different settings of glacial geology show a large local variation of redox conditions. There is a need to develop an upscaling methodology for catchment scale models. This paper describes a study of field-scale heterogeneity of redox-interfaces in a till aquitard within an...

  19. Modeling the Effects of Onsite Wastewater Treatment Systems on Nitrate Loads Using SWAT in an Urban Watershed of Metropolitan Atlanta.

    Science.gov (United States)

    Hoghooghi, Nahal; Radcliffe, David E; Habteselassie, Mussie Y; Jeong, Jaehak

    2017-05-01

    Onsite wastewater treatment systems (OWTSs) can be a source of nitrogen (N) pollution in both surface and ground waters. In metropolitan Atlanta, GA, >26% of homes are on OWTSs. In a previous article, we used the Soil Water Assessment Tool to model the effect of OWTSs on stream flow in the Big Haynes Creek Watershed in metropolitan Atlanta. The objective of this study was to estimate the effect of OWTSs, including failing systems, on nitrate as N (NO-N) load in the same watershed. Big Haynes Creek has a drainage area of 44 km with mainly urban land use (67%), and most of the homes use OWTSs. A USGS gauge station where stream flow was measured daily and NO-N concentrations were measured monthly was used as the outlet. The model was simulated for 12 yr. Overall, the model showed satisfactory daily stream flow and NO-N loads with Nash-Sutcliffe coefficients of 0.62 and 0.58 for the calibration period and 0.67 and 0.33 for the validation period at the outlet of the Big Haynes Watershed. Onsite wastewater treatment systems caused an average increase in NO-N load of 23% at the watershed scale and 29% at the outlet of a subbasin with the highest density of OWTSs. Failing OWTSs were estimated to be 1% of the total systems and did not have a large impact on stream flow or NO-N load. The NO-N load was 74% of the total N load in the watershed, indicating the important effect of OWTSs on stream loads in this urban watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Leaching From Biomass Gasification Residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Polletini, A.

    2011-01-01

    The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled with geoche......The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled...

  1. On the possibility of determining rates of removal of uranium from crystalline igneous rocks using U - series disequilibria - 1: a U-leach model, and its applicability to whole-rock data

    International Nuclear Information System (INIS)

    Latham, A.G.; Schwarcz, H.P.

    1987-01-01

    The removal of U from granitic rocks is characterised by 234 U/ 238 U 230 Th/ 234 U > 1. It is notable, from weathered Eye-Dashwa lakes (Canada) granite samples and from the published data, that 230 Th/ 234 U ratios seldom exceed a limiting value of about 2. A U-leach model is discussed in detail which may account for these observations. The model assumes that 230 Th is practically immobile and that the removal of U can then be measured against the decay rate of the unsupported 230 Th. A property of the model is that the isotope ratios reach constant values reflecting a kind of ''secular equilibrium'', and this implies that U is seldom removed faster than the decay of 230 Th. If the limited 230 Th/ 234 U ratios from the data correspond to ''secular equilibrium'' ratios then this allows simple calculation of U-leach rates from any given subsurface sample. (author)

  2. Endothelial relaxation mechanisms and nitrative stress are partly restored by Vitamin D3 therapy in a rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Masszi, Gabriella; Benko, Rita; Csibi, Noemi; Horvath, Eszter M; Tokes, Anna-Maria; Novak, Agnes; Beres, Nora Judit; Tarszabo, Robert; Buday, Anna; Repas, Csaba; Bekesi, Gabor; Patocs, Attila; Nadasy, Gyorgy L; Hamar, Peter; Benyo, Zoltan; Varbiro, Szabolcs

    2013-08-06

    In polycystic ovary syndrome (PCOS), metabolic and cardiovascular dysfunction is related to hyperandrogenic status and insulin resistance, however, Vitamin D3 has a beneficial effect partly due to its anti-oxidant capacity. Nitrative stress is a major factor in the development of cardiovascular dysfunction and insulin resistance in various diseases. Our aim was to determine the effects of vitamin D3 in a rat model of PCOS, particularly the pathogenic role of nitrative stress. Female Wistar rats weighing 100-140g were administered vehicle (C), dihydrotestosterone (DHT) or dihydrotestosterone plus vitamin D3 (DHT+D) (n=10 per group). On the 10th week, acetylcholine (Ach) induced relaxation ability of the isolated thoracic aorta rings was determined. In order to examine the possible role of endothelial nitric oxide synthase (eNOS) and cyclooxygenase-2 (COX-2) pathways in the impaired endothelial function, immunohistochemical labeling of aortas with anti-eNOS and anti-COX-2 antibodies was performed. Leukocyte smears, aorta and ovary tissue sections were also immunostained with anti-nitrotyrosine antibody to determine nitrative stress. Relaxation ability of aorta was reduced in group DHT, and vitamin D3 partly restored Ach induced relaxation. eNOS labeling was significantly lower in DHT rats compared to the other two groups, however COX-2 staining showed an increment. Nitrative stress showed a significant increase in response to dihydrotestosterone, while vitamin D3 treatment, in case of the ovaries, was able to reverse this effect. Nitrative stress may play a role in the pathogenesis of PCOS and in the development of the therapeutic effect of vitamin D3. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) or nitrate to ammonia and glass (NAG) process: Phase 2 report

    International Nuclear Information System (INIS)

    Mattus, A.J.; Walker, J.F. Jr.; Youngblood, E.L.; Farr, L.L.; Lee, D.D.; Dillow, T.A.; Tiegs, T.N.

    1994-12-01

    Continuing benchtop studies using Hanford single-shell tank (SST) simulants and actual Oak Ridge National Laboratory (ORNL) low-level waste (LLW), employing a new denitration process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 and 99% of the nitrate can be readily converted to gaseous ammonia. In this process, aluminum powders can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid. The process may be able to use contaminated aluminum scrap metal from DOE sites to effect the conversion. The final, nitrate-free ceramic product can be pressed and sintered like other ceramics or silica and/or fluxing agents can be added to form a glassy ceramic or a flowable glass product. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 70% were obtained for the waste form produced. Sintered pellets produced from supernate from Melton Valley Storage Tanks (MVSTs) have been leached in accordance with the 16.1 leach test for the radioelements 85 Sr and 137 Cs. Despite lengthy counting times, 85 Sr could not be detected in the leachates. 137 Cs was only slightly above background and corresponded to a leach index of 12.2 to 13.7 after 8 months of leaching. Leach testing of unsintered and sintered reactor product spiked with hazardous metals proved that both sintered and unsintered product passed the Toxicity Characteristic Leaching Procedure (TCLP) test. Design of the equipment and flowsheet for a pilot demonstration-scale system to prove the nitrate destruction portion of the NAC process and product formation is under way

  4. Source oriented modeling of the nitrat pollution of surface waters - application of the immission method for the reporting according to the EC nitrat guideline; Verursacherbezogene Modellierung der Nitratbelastung der Oberflaechengewaesser - Anwendung des Immissionsverfahrens zur Berichterstattung zur EU-Nitratrichtlinie

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, H.; Opitz, D. [Institut fuer Gewaesseroekologie und Binnenfischerei im Forschungsverbund Berlin e.V. (Germany); Bach, M. [Gesellschaft fuer Boden- und Gewaesserschutz e.V. (Germany); Pagenkopf, W.G. [Geodaten Integration und Analyse, Berlin (Germany)

    2000-09-20

    The observation of 152 monitoring stations of the German countries does not exceed the 50 mg/l target for nitrate. But a good water quality in relation to nitrate can be observed at only 14% of these monitoring stations. If variations in the nitrate concentrations caused by variation of runoff are neglected unique trends of the nitrate pollution from agriculture can not be detected since the mid of 80's. More detailed analysis were carried out for 15 EU monitoring stations. The average winter concentration of nitrate is for the half of these stations constant and a low reduction can be observed for the other half. A similar result shows the average winter concentrations at low flow conditions. The separation of the nitrogen sources into diffuse and point sources using the immission approach shows for both a small decrease for the period 1996-1999 in comparison with the previous period. In contrast to the situation in the mid of 80's the discharges from point sources are decreased and contribute to the total load only in a range of 9-24% in the different river basins. The immission method shows similar results as the emission model. In the mid of the nineties about 67% of the N-inputs into the surface waters of Germany are caused by agricultural activities. The dominant pathway was groundwater with about 48%. The total emissions were reduced by 24% mainly caused by point source reduction. The nitrogen surplus (area related balance) in the agricultural soils were estimated for Germany and for the German countries to show the causes of the nitrogen problem in agriculture. Since 1990 the N-surpluses are reduced and are at present in a range between 70 and 80 kg/ha agricultural area. For the new German countries the N-surplus showed a dramatic decrease in 1990/91 followed by a continuous increase. Contrary the N-surplus in the old German countries is characterised by a slow decrease over the whole time period since 1990. The influence of the order for the

  5. distributed parameter model of spiral-wound sepralator for treatment of uranyl nitrate effluents

    International Nuclear Information System (INIS)

    El-Bialy, S.H; Elsherbiny, A.E.

    2004-01-01

    in this paper, mathematical formulation of spiral-wound sepralator was derived and applied for the treatment of effluent stream which is produced during nuclear fuel processing stage. the concentration of the stream has a value up to 200 ppm . cross-flow characteristic of both feed and permeate streams was taken into account and their mutual effects on the values of system variables were investigated. of course, such a flow pattern leads to a heterogeneous system which leads-in turn-to six partial differential equations, beside a set of algebraic equations. those were solved numerically and the results were used to estimate the average values of both permeate flux and percent solute rejection. then, these were compared with both experimental data in addition to the results of lumped parameter model. the study showed that distributed parameter model gives better results than lumped parameter one compared with experimental data

  6. Using Simulation and Budget Models to Scale-Up Nitrogen Leaching from Field to Region in Canada

    Directory of Open Access Journals (Sweden)

    E.C. Huffman

    2001-01-01

    Full Text Available Efforts are underway at Agriculture and Agri-Food Canada (AAFC to develop an integrated, nationally applicable, socioeconomic/biophysical modeling capability in order to predict the environmental impacts of policy and program scenarios. This paper outlines our Decision Support System (DSS, which integrates the IROWCN (Indicator of the Risk of Water Contamination by Nitrogen index with the agricultural policy model CRAM (Canadian Regional Agricultural Model and presents an outline of our methodology to provide independent assessments of the IROWCN results through the use of nitrogen (N simulation models in select, data-rich areas. Three field-level models — DSSAT, N_ABLE, and EPIC — were evaluated using local measured data. The results show that all three dynamic models can be used to simulate biomass, grain yield, and soil N dynamics at the field level; but the accuracy of the models differ, suggesting that models need to be calibrated using local measured data before they are used in Canada. Further simulation of IROWCN in a maize field using N_ABLE showed that soil-mineral N levels are highly affected by the amount of fertilizer N applied and the time of year, meaning that fertilizer and manure N applications and weather data are crucial for improving IROWCN. Methods of scaling-up simulated IROWCN from field-level to soil-landscape polygons and CRAM regions are discussed.

  7. Geopolymerization at moderate temperatures in the presence of nitrate anion

    International Nuclear Information System (INIS)

    Ofer-Rozovsky, E.; Katz, A.; Borojovich, E.J.C.; Nikolski, A.; Binyamini, A.; Arbel-Haddad, M.; Bar-Nes, G.

    2015-01-01

    In recent years, geo-polymers generated by alkali-activation of amorphous aluminosilicate sources are considered as an alternative immobilizing matrix for low-level radioactive wastes. Although such waste streams contain low concentration of radioactive species, they are often highly saline. The aim of the research project presented here was to study the effect of the high salt content on the formation and evolution of meta-kaolin-based geo-polymeric systems cured at moderate temperatures, i.e. at 40 Celsius degrees. Meta-kaolin was alkali-activated using NaOH solutions of varying concentrations, yielding H 2 O:OH - ratios of 5.5, 9.15, 13.75 and 27.5. Sodium nitrate, which is often found at high concentrations in radioactive waste streams, was added to the activation solutions. The geo-polymeric mixtures were designed so that the Na 2 O:Al 2 O 3 ratio obtained was 1.00 in nitrate-free systems, and 1.25 in nitrate-containing systems. The ratio between nitrate and hydroxide ions, [NO 3 - ]: [OH - ], was adjusted to 0.25. The samples were cured in sealed containers at 40 C. degrees for periods ranging from one week to 3 months. The products were characterized by X-Ray diffractometry and Fourier Transform Mid-Infrared spectroscopy (FTIR). Leaching tests were performed according to the American Nuclear Society procedure ANS-16.1. Ion Chromatography was used to determine the concentration of leached Na + and NO 3 - ions. The results demonstrate the influence of composition and curing times on the mineralogy of the geo-polymeric matrix. Various crystalline phases such as zeolite A, faujasite, and nitrate bearing phases, nitrate sodalite and nitrate cancrinite, were identified among the reaction products. The sequence of phase evolution in these geo-polymeric systems was elucidated. The fraction of sodium ions released from samples containing sodium nitrate during the leaching test was found to be lower than that from reference samples prepared without the nitrate salt

  8. Studies on mathematical modeling of the leaching process in order to efficiently recover lead from the sulfate/oxide lead paste.

    Science.gov (United States)

    Buzatu, Traian; Ghica, Gabriel Valeriu; Petrescu, Ionuţ Mircea; Iacob, Gheorghe; Buzatu, Mihai; Niculescu, Florentina

    2017-02-01

    Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries. The results of the mathematical modeling compare well with the experimental data. The experimental method applied consists in the solubilisation of the sulfate/oxide paste with sodium hydroxide solutions followed by electrolytic processing for lead recovery. The parameters taken into considerations were NaOH molarity (4M, 6M and 8M), solid/liquid ratio - S/L (1/10, 1/30 and 1/50) and temperature (40°C, 60°C and 80°C). The optimal conditions resulted by mathematical modeling of the electrolytic process of lead deposition from alkaline solutions have been established by using a second-order orthogonal program, in order to obtain a maximum efficiency of current without exceeding an imposed energy specific consumption. The optimum value for the leaching recovery efficiency, obtained through mathematical modeling, was 89.647%, with an error of δ y =3.623 which leads to a maximum recovery efficiency of 86.024%. The optimum values for each variable that ensure the lead extraction efficiency equal to 89.647% are the following: 3M - NaOH, 1/35 - S/L, 70°C - temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evidence for Legacy Contamination of Nitrate in Groundwater of North Carolina Using Monitoring and Private Well Data Models

    Science.gov (United States)

    Messier, K. P.; Kane, E.; Bolich, R.; Serre, M. L.

    2014-12-01

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. Legacy contamination, or past releases of NO3-, is thought to be impacting current groundwater and surface water of North Carolina. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure known as constrained forward nonlinear regression and hyperparameter optimization (CFN-RHO) is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is then used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. The major finding regarding legacy sources NO3- in this study is that the LUR-BME models show the geographical extent of low-level contamination of deeper drinking-water aquifers is beyond that of the shallower monitoring well. Groundwater NO3- in monitoring wells is highly variable with many areas predicted above the current Environmental Protection Agency standard of 10 mg/L. Contrarily, the private well results depict widespread, low-level NO3-concentrations. This evidence supports that in addition to downward transport, there is also a significant outward transport of groundwater NO3- in the drinking water aquifer to areas outside the range of sources. Results indicate that the deeper aquifers are potentially acting as a reservoir that is not only deeper, but also covers a larger geographical area, than the reservoir formed by the shallow aquifers. Results are of interest to agencies that regulate surface water and drinking water sources impacted by the effects of

  10. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems

    Science.gov (United States)

    Xia, Yongqiu; Li, Yuefei; Zhang, Xinyu; Yan, Xiaoyuan

    2017-01-01

    Nitrate (NO3-) pollution is a serious problem worldwide, particularly in countries with intensive agricultural and population activities. Previous studies have used δ15N-NO3- and δ18O-NO3- to determine the NO3- sources in rivers. However, this approach is subject to substantial uncertainties and limitations because of the numerous NO3- sources, the wide isotopic ranges, and the existing isotopic fractionations. In this study, we outline a combined procedure for improving the determination of NO3- sources in a paddy agriculture-urban gradient watershed in eastern China. First, the main sources of NO3- in the Qinhuai River were examined by the dual-isotope biplot approach, in which we narrowed the isotope ranges using site-specific isotopic results. Next, the bacterial groups and chemical properties of the river water were analyzed to verify these sources. Finally, we introduced a Bayesian model to apportion the spatiotemporal variations of the NO3- sources. Denitrification was first incorporated into the Bayesian model because denitrification plays an important role in the nitrogen pathway. The results showed that fertilizer contributed large amounts of NO3- to the surface water in traditional agricultural regions, whereas manure effluents were the dominant NO3- source in intensified agricultural regions, especially during the wet seasons. Sewage effluents were important in all three land uses and exhibited great differences between the dry season and the wet season. This combined analysis quantitatively delineates the proportion of NO3- sources from paddy agriculture to urban river water for both dry and wet seasons and incorporates isotopic fractionation and uncertainties in the source compositions.

  11. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    International Nuclear Information System (INIS)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-01-01

    formulations. Disposal of the resulting aluminum and chromium-rich streams are different at the two sites, with vitrification into Low Activity Waste (LAW) glass at Hanford, and solidification in Saltstone at SRS. Prior to disposal, the leachate solutions must be treated to remove radionuclides, resulting in increased operating costs and extended facility processing schedules. Interim storage of leachate can also add costs and delay tank closure. Recent projections at Hanford indicate that up to 40,000 metric tons of sodium would be needed to dissolve the aluminum and maintain it in solution, which nearly doubles the amount of sodium in the entire current waste tank inventory. This underscores the dramatic impact that the aluminum leaching can have on the entire system. A comprehensive view of leaching and the downstream impacts must therefore be considered prior to implementation. Many laboratory scale tests for aluminum and chromium dissolution have been run on Hanford wastes, with samples from 46 tanks tested. Three samples from SRS tanks have been tested, out of seven tanks containing high aluminum sludge. One full-scale aluminum dissolution was successfully performed on waste at SRS in 1982, but generated a very large quantity of liquid waste (∼3,000,000 gallons). No large-scale tests have been done on Hanford wastes. Although the data to date give a generally positive indication that aluminum dissolution will work, many issues remain, predominantly because of variable waste compositions and changes in process conditions, downstream processing, or storage limitations. Better approaches are needed to deal with the waste volumes and limitations on disposal methods. To develop a better approach requires a more extensive understanding of the kinetics of dissolution, as well as the factors that effect rates, effectiveness, and secondary species. Models of the dissolution rate that have been developed are useful, but suffer from limitations on applicable compositional ranges

  12. Leaching Test Relationships, Laboratory-to-Field Comparisons and Recommendations for Leaching Evaluation using the Leaching Environmental Assessment Framework (LEAF)

    Science.gov (United States)

    This report presents examples of the relationships between the results of laboratory leaching tests, as defined by the Leaching Environmental Assessment Framework (LEAF) or analogous international test methods, and leaching of constituents from a broad range of materials under di...

  13. Winter cover crops as a best management practice for reducing nitrogen leaching

    Science.gov (United States)

    Ritter, W. F.; Scarborough, R. W.; Chirnside, A. E. M.

    1998-10-01

    The role of rye as a winter cover crop to reduce nitrate leaching was investigated over a three-year period on a loamy sand soil. A cover crop was planted after corn in the early fall and killed in late March or early April the following spring. No-tillage and conventional tillage systems were compared on large plots with irrigated corn. A replicated randomized block design experiment was conducted on small plots to evaluate a rye cover crop under no-tillage and conventional tillage and with commercial fertilizer, poultry manure and composted poultry manure as nitrogen fertilizer sources. Nitrogen uptake by the cover crop along with nitrate concentrations in groundwater and the soil profile (0-150 cm) were measured on the large plots. Soil nitrate concentrations and nitrogen uptake by the cover crop were measured on the small plots. There was no significant difference in nitrate concentrations in the groundwater or soil profile with and without a cover crop in either no-tillage or conventional tillage. Annual amounts of nitrate-N leached to the water-table varied from 136.0 to 190.1 kg/ha in 1989 and from 82.4 to 116.2 kg/ha in 1991. Nitrate leaching rates were somewhat lower with a cover crop in 1989, but not in 1990. There was no statistically significant difference in corn grain yields between the cover crop and non-cover crop treatments. The planting date and adequate rainfall are very important in maximizing nitrogen uptake in the fall with a rye cover crop. On the Delmarva Peninsula, the cover crop should probably be planted by October 1 to maximize nitrogen uptake rates in the fall. On loamy sand soils, rye winter cover crops cannot be counted on as a best management practice for reducing nitrate leaching in the Mid-Atlantic states.

  14. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran.

    Science.gov (United States)

    Baghapour, Mohammad Ali; Fadaei Nobandegani, Amir; Talebbeydokhti, Nasser; Bagherzadeh, Somayeh; Nadiri, Ata Allah; Gharekhani, Maryam; Chitsazan, Nima

    2016-01-01

    Extensive human activities and unplanned land uses have put groundwater resources of Shiraz plain at a high risk of nitrate pollution, causing several environmental and human health issues. To address these issues, water resources managers utilize groundwater vulnerability assessment and determination of protection. This study aimed to prepare the vulnerability maps of Shiraz aquifer by using Composite DRASTIC index, Nitrate Vulnerability index, and artificial neural network and also to compare their efficiency. The parameters of the indexes that were employed in this study are: depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone, hydraulic conductivity, and land use. These parameters were rated, weighted, and integrated using GIS, and then, used to develop the risk maps of Shiraz aquifer. The results indicated that the southeastern part of the aquifer was at the highest potential risk. Given the distribution of groundwater nitrate concentrations from the wells in the underlying aquifer, the artificial neural network model offered greater accuracy compared to the other two indexes. The study concluded that the artificial neural network model is an effective model to improve the DRASTIC index and provides a confident estimate of the pollution risk. As intensive agricultural activities are the dominant land use and water table is shallow in the vulnerable zones, optimized irrigation techniques and a lower rate of fertilizers are suggested. The findings of our study could be used as a scientific basis in future for sustainable groundwater management in Shiraz plain.

  15. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.

    Science.gov (United States)

    Krause, Stefan; Jacobs, Joerg; Voss, Anja; Bronstert, Axel; Zehe, Erwin

    2008-01-15

    In many European lowland rivers and riparian floodplains diffuse nutrient pollution is causing a major risk for the surface waters and groundwater to not achieve a good status as demanded by the European Water Framework Directive. In order to delimit the impact of diffuse nutrient pollution substantial and often controversial changes in landuse and management are under discussion. In this study we investigate the impact of two complex scenarios considering changes in landuse and land management practices on the nitrate loads of a typical lowland stream and the riparian groundwater in the North German Plains. Therefore the impacts of both scenarios on the nitrate dynamics, the attenuation efficiency and the nitrate exchange between groundwater and surface water were investigated for a 998.1 km(2) riparian floodplain of the Lower and Central Havel River and compared with the current conditions. Both scenarios target a substantial improvement of the ecological conditions and the water quality in the research area but promote different typical riparian landscape functions and consider a different grade of economical and legal feasibility of the proposed measures. Scenario 1 focuses on the optimisation of conservation measures for all natural resources of the riparian floodplain, scenario 2 considers measures in order to restore a good status of the water bodies mainly. The IWAN model was setup for the simulation of water balance and nitrate dynamics of the floodplain for a perennial simulation period of the current landuse and management conditions and of the scenario assumptions. The proposed landuse and management changes result in reduced rates of nitrate leaching from the root zone into the riparian groundwater (85% for scenario 1, 43% for scenario 2). The net contributions of nitrate from the floodplain can be reduced substantially for both scenarios. In case of scenario 2 a decrease by 70% can be obtained. For scenario 1 the nitrate exfiltration rates to the

  16. Prediction of nitrogen and phosphorus leaching to groundwater and surface waters; process descriptions of the animo4.0 model

    NARCIS (Netherlands)

    Groenendijk, P.; Renaud, L.V.; Roelsma, J.

    2005-01-01

    The fertilization reduction policy intended to pursue environmental objects and regional water management strategies to meet Water Framework Directive objectives justify a thorough evaluation of the effectiveness of measures and reconnaissance of adverse impacts. The model aims at the evaluation and

  17. Some ideas about the modeling of experimental data obtained during spent fuel leaching in the presence of dissolved hydrogen

    International Nuclear Information System (INIS)

    Spahiu, K.

    2003-01-01

    Lately several experimental data have been collected or published on the dissolution of spent fuel in solutions saturated with dissolved hydrogen. In the SFS project there are also several planned experiments of this type with different solids (alpha-doped UO 2 , high burnup spent fuel or MOX) or solution compositions (distilled water, low ionic strength carbonated solutions, concentrated NaCl solutions). There have been already also different hypothesis forwarded to explain the data as well as full models proposed including the influence of the dissolved Fe(II) on the fuel dissolution. Some ideas towards the main lines of modeling spent fuel dissolution under such conditions will be presented. The hydrogen effect on spent fuel dissolution is relatively recent and experiments are still carried out to confirm or rule it out for different spent fuels and conditions. For this reason it would be too ambitious at the present level of knowledge to present a full modeling of such data. This is because a spent fuel dissolution model should be valid for predictions of geological time scales based on relatively short time experiments. This is possible only with a very good understanding of the dissolution process and of the mechanisms underlying the hydrogen effect, while a simple extrapolation of experimental data for repository time scales would not be reliable. (Author)

  18. Leach and EP [extraction procedure] toxicity tests on grouted waste from Tank 106-AN

    International Nuclear Information System (INIS)

    Serne, R.J.; Martin, W.J.; Lokken, R.O.; LeGore, V.L.; Lindenmeier, C.W.; Martin, P.F.C.

    1989-09-01

    Pacific Northwest Laboratory is conducting laboratory experiments to produce leach rate data for various waste species that will be contained in grout at Hanford. In the work reported here, grout made from Tank 106-AN liquid waste was used to produce empirical leach rate data for several radionuclides ( 60 Co, 90 Sr, 99Tc, 129I, 137Cs, and 241 Am), stable major components (NO 3 - , NO 2 - , F, Cl, and Na), and trace metals (Cr, Mo, and Ni). Two types of tests were used to produce leach rate data: an intermittent replacement leach test (ANS 16.1 leach test) and a static leach test. Measured effective diffusivities of key species are as follows: 4 to 6 x 10 -8 cm 2 /sec for 99 Tc, 3 to 7 x 10 -8 cm 2 /sec for 129 I, 4 to 6 x 10 -9 cm 2 /sec for nitrate, and 6 to 7 x 10 -9 cm 2 /sec for nitrite. The leach indices of all species studied are above (more favorable than) the waste form criteria. The leach indices for 99 Tc and 129 I are 7.4 ± 1.2 and 7.6 ± 0.4, respectively, and are being further investigated in continuing studies of double-shell slurry feed grouts. An Extraction Procedure (EP) toxicity test was also conducted and the grouted water is considered nontoxic per this test protocol. 19 refs., 9 figs., 8 tabs

  19. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  20. Nitrate accumulation in spinach

    NARCIS (Netherlands)

    Steingröver, Eveliene Geertruda

    1986-01-01

    Leafy vegetables, like spinach, may contain high concentrations of nitrate. In the Netherlands, about 75% of mean daily intake of nitrate orginates from the consumption of vegatables. Hazards to human health are associated with the reduction of nitrate to nitrite. Acute nitrite poisoning causes

  1. Defining Effective Salt Leaching Regions Between Drains

    OpenAIRE

    ANAPALI, Ömer; ŞAHİN, Üstün; ÖZTAŞ, Taşkın; HANAY, Abdurrahman

    2014-01-01

    The application of sufficient amounts of leaching water by means of an effective method is very important in the management and reclamation of saline and sodic soils. Reclamation cannot be achieved with insufficient leaching water application, while excess water application may cause severe problems in soil. Knowledge of the leaching regions and intensities may help to control the amounts of leaching water through effective leaching methods in areas of limited leaching. This study was und...

  2. Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties

    International Nuclear Information System (INIS)

    Carde, C.; Francois, R.

    1997-01-01

    This paper deals with the effect of the leaching process of cement based materials on their mechanical and physical properties. In order to characterize this effect, the authors have performed experiments on cement paste samples. The leaching process was achieved by the use of a 50% concentrate solution of ammonium nitrate. Both compression tests and water porosity tests were conducted on micro-cylinder samples (10, 12, 14 and 20 mm of diameter) because of the slow kinetics of degradation due to the leaching. The deterioration of the cement paste and the mortar exposed to the action of the ammonium nitrate was manifested by a peripheral zone of less resistance. This process induces mainly a total leaching of Ca(OH) 2 and a progressive decalcification of C-S-H which leads to a gradient of C/S ratio in the leaching zone. Both mechanical tests and water porosity tests show that there is a linear variation of the loss of strength and the increase in porosity in relation to the ratio of degraded area over total area of the sample A d /A t . It means that both compressive resistance and water porosity of the leaching zone are constant whatever the size of the degraded zone and then whatever the time of exposure to the chemical attack. So the authors could venture the hypothesis that the dissolution of calcium hydroxide is the essential parameter governing both decrease in strength and increase in porosity

  3. Kinetics of molybdenite oxidizing leaching in alkali medium by ozone

    International Nuclear Information System (INIS)

    Medvedev, A.S.; Sokratova, N.B.; Litman, I.V.; Zelikman, A.N.

    1985-01-01

    On the basis of investigation of the process kinetics proposed is a model of oxidizing leaching of molybdenite in alkali medium while ozonization of the solution by ozoneair mixture. A kinetic equation is derived, that describes experimental data satisfactorily

  4. Leaching of uranium and thorium from monazite: III. Leaching of radiogenic daughters

    International Nuclear Information System (INIS)

    Olander, D.; Eyal, Y.

    1990-01-01

    The solid-state diffusion model of actinide leaching developed in Part II of this series is applied to leaching of radiogenic daughters of the actinide decay chains. For an untreated natural monazite, the direct leaching component of 228 Th release is larger than that for 232 Th because of enhanced solid-state mobility for 228 Th provided by 228 Ra-recoil tracks. A significant portion of the 228 Th which appears in the leachate, however, is attributed to decay of insoluble 228 Ra which is continually released from the mineral by matrix dissolution and recoil ejection. For a monazite sample that was annealed at 800 degree C prior to leaching, the bulk of the 228 Th in solution was supplied by decay of 228 Ra rejected from the mineral matrix during annealing. The radiogenic 234 U daughter of the 238 U decay chain did not exhibit similarly enhanced leaching because the long half-life of 234 U permitted local radiation damage to be annealed out at ambient temperature prior to 234 U decay

  5. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations.

    Science.gov (United States)

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-02-15

    Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe 2 O 3 ) and alumina (α-Al 2 O 3 ) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe 2+ to Fe 3+ by dissolved O 2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Volatiles in a sausage surface model-influence of Penicillium nalgiovense, Pediococcus pentosaceus, ascorbate, nitrate and temperature

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Trihaas, Jeorgos; Stahnke, Louise Heller

    2003-01-01

    ,4-dimethyl-furan from casing and seemed to liberate chloroform and 1,2-dimethyl benzene from meat. Both 2-methyl-1-propanol and 2-methyl-1-butanol decreased significantly with increasing temperature - this indicated a shift in metabolic pathway. No effects were seen for addition of nitrate....

  7. Thermal decomposition of gaseous ammonium nitrate at low pressure: kinetic modeling of product formation and heterogeneous decomposition of nitric acid.

    Science.gov (United States)

    Park, J; Lin, M C

    2009-12-03

    The thermal decomposition of ammonium nitrate, NH(4)NO(3) (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH(4)NO(3) at 423 K was proposed to produce equal amounts of NH(3) and HNO(3), followed by the decomposition reaction of HNO(3), HNO(3) + M --> OH + NO(2) + M (where M = third-body and reactor surface). The absolute yields of N(2), N(2)O, H(2)O, and NH(3), which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH(3)-NO(2) (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO(3) itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO(3) in our kinetic modeling. The heterogeneous decomposition rate of HNO(3), HNO(3) + (B(2)O(3)/SiO(2)) --> OH + NO(2) + (B(2)O(3)/SiO(2)), was determined by varying its rate to match the modeled result to the measured concentrations of NH(3) and H(2)O; the rate could be represented by k(2b) = 7.91 x 10(7) exp(-12 600/T) s(-1), which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO(3) decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  8. Thermal Decomposition of Gaseous Ammonium Nitrate at Low Pressure: Kinetic Modeling of Product Formation and Heterogeneous Decomposition of Nitric Acid

    Science.gov (United States)

    Park, J.; Lin, M. C.

    2009-10-01

    The thermal decomposition of ammonium nitrate, NH4NO3 (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH4NO3 at 423 K was proposed to produce equal amounts of NH3 and HNO3, followed by the decomposition reaction of HNO3, HNO3 + M → OH + NO2 + M (where M = third-body and reactor surface). The absolute yields of N2, N2O, H2O, and NH3, which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH3-NO2 (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO3 itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO3 in our kinetic modeling. The heterogeneous decomposition rate of HNO3, HNO3 + (B2O3/SiO2) → OH + NO2 + (B2O3/SiO2), was determined by varying its rate to match the modeled result to the measured concentrations of NH3 and H2O; the rate could be represented by k2b = 7.91 × 107 exp(-12 600/T) s-1, which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO3 decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  9. To accelerate technology of in situ leaching and heap leaching for mining mineral resources of China

    International Nuclear Information System (INIS)

    Luo Mei

    1999-01-01

    Recently, in situ leaching and heap leaching are the most advanced technology for mining low-grade mineral resources in the world. The author briefly expounds the basic concept and advantages of in situ leaching and heap leaching and deals with the main research content of the hydrometallurgical technology of in situ leaching and heap leaching, its development and present application at home and abroad. Having expounded the gap existing between China's technology of in situ leaching and heap leaching and the foreign technology, the author forecasts the prospects of accelerating the mining of China's mineral resources by using the technology of in situ leaching and heap leaching

  10. Determining leach rates of monolithic waste forms

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Dole, L.R.

    1986-01-01

    The ANS 16.1 Leach Procedure provides a conservative means of predicting long-term release from monolithic waste forms, offering a simple and relatively quick means of determining effective solid diffusion coefficients. As presented here, these coefficients can be used in a simple model to predict maximum release rates or be used in more complex site-specific models to predict actual site performance. For waste forms that pass the structural integrity test, this model also allows the prediction of EP-Tox leachate concentrations from these coefficients. Thus, the results of the ANS 16.1 Leach Procedure provide a powerful tool that can be used to predict the waste concentration limits in order to comply with the EP-Toxicity criteria for characteristically nonhazardous waste. 12 refs., 3 figs

  11. Use of geomorphic, hydrologic, and nitrogen mass balance data to model ecosystem nitrate retention in tidal freshwater wetlands

    Directory of Open Access Journals (Sweden)

    E. D. Seldomridge

    2012-07-01

    Full Text Available Geomorphic characteristics have been used as scaling parameters to predict water and other fluxes in many systems. In this study, we combined geomorphic analysis with in-situ mass balance studies of nitrate retention (NR to evaluate which geomorphic scaling parameters best predicted NR in a tidal freshwater wetland ecosystem. Geomorphic characteristics were measured for 267 individual marshes that constitute the freshwater tidal wetland ecosystem of the Patuxent River, Maryland. Nitrate retention was determined from mass balance measurements conducted at the inlets of marshes of varying size (671, 5705, and 536 873 m2 over a period of several years. Mass balance measurements indicate that NR is proportional to total water flux over the tidal cycle. Relationships between estimated tidal prism (calculated water volume for spring tides and various geomorphic parameters (marsh area, total channel length, and inlet width were defined using measurements from air photos and compared to field data. From these data, NR equations were determined for each geomorphic parameter, and used to estimate NR for all marshes in the ecosystem for a reference spring (high tide. The resulting ecosystem NR estimates were evaluated for (a accuracy and completeness of geomorphic data, (b relationship between the geomorphic parameters and hydrologic flux, and (c the ability to adapt the geomorphic parameter to varying tidal conditions. This analysis indicated that inlet width data were the most complete and provided the best estimate of ecosystem nitrate retention. Predictions based on marsh area were significantly lower than the inlet width-based predictions. Cumulative probability distributions of nitrate retention indicate that the largest 3–4% of the marshes retained half of the total nitrate for the ecosystem.

  12. Do nitrates differ?

    Science.gov (United States)

    Fung, H.-L.

    1992-01-01

    1 The organic nitrates all share a common biochemical and physiological mechanism of action. 2 The organic nitrates differ substantially in their pharmacologic potency and pharmacokinetics. In vitro potency differences appear larger than the corresponding in vivo activities. 3 The duration of action of organic nitrates, after a single immediate-release dose, is governed by the pharmacokinetics of the drug. However, the duration of action of available sustained-release preparations, whatever the nitrate or formulation, is limited to about 12 h, due to the development of pharmacologic tolerance. 4 Nitrates do not appear to differ in their production of undesirable effects. PMID:1633079

  13. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1986-01-01

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  14. Evaluation of nitrate pollution of groundwater in Mnasra region

    International Nuclear Information System (INIS)

    Marouane, B.; El hajjaji, S.; Dahchour, A.; Dousset, S.

    2012-01-01

    Gharb area is one of the most important agricultural regions in Morocco, where the application of fertilizers is conducted in many cases without any respect of standards. This situation may generate negative environmental impact in vulnerable areas such as Mnasra groundwater. Our study tends to evaluate the level of contamination by nitrate of groundwater in a Mnasra area. The results show that 80% of the sampled wells are highly concentrated in nitrates in comparison with the standard of WHO. Intensification of agriculture in the area associated to excessive fertilizer application, repeated applications, irrigation and rainfall are reasons for an increasing nitrates pollution of water resources. Leaching of nitrate to the groundwater should receive more attention for its potential high mobile propriety which could cause serious damages for the environment and negative impact to the health of population.

  15. Leaching properties and chemical compositions of calcines produced at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Staples, B.A.; Paige, B.E.; Rhodes, D.W.; Wilding, M.W.

    1980-01-01

    No significant chemical differences were determined between retrieved and fresh calcine based on chemical and spectrochemical analyses. Little can be derived from the amounts of the radioisotopes present in the retrieved calcine samples other than the ratios of strontium-90 to cesium-137 are typical of aged fission product. The variations in concentrations of radionuclides within the composite samples of each bin also reflect the differences in compositions of waste solutions calcined. In general the leaching characteristics of both calcines by distilled water are similar. In both materials the radionuclides of cesium and strontium were selectively leached at significant rates, although cesium leached much more completely from the alumina calcine than from the zirconia calcine. Cesium and strontium are probably contained in both calcines as nitrate salts and also as fluoride salts in zirconia calcine, all of which are at least slightly soluble in water. Radionuclides of cerium, ruthenium, and plutonium in both calcines were highly resistant to leaching and leached at rates similar to or less than those of the matrix elements. These elements exist as polyvalent metal ions in the waste solutions before calcination and they probably form insoluble oxides and fluorides in the calcine. The relatively slow leaching of nitrate ion from zirconia calcine and radiocesium from both calcines suggests that the calcine matrix in some manner prevents complete or immediate contact of the soluble ions with water. Whether radiostrontium forms slightly fluoride salts or forms nitrate salts which are protected in the same manner as radiocesium is unknown. Nevertheless, selective leaching of cesium and strontim is retarded in some manner by the calcine matrix

  16. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  17. Leaching of Carbothermic Reduced Titanium-bearing Blast Furnace Slag by Acid

    Institute of Scientific and Technical Information of China (English)

    ZHEN Yulan; ZHANG Guohua; CHOU Kuochih

    2016-01-01

    The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by ac-id. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 kJ/mol. Fur-thermore, the main products are TiC and SiO2 after leaching.

  18. Uranium extraction from high content chlorine leach liquor

    International Nuclear Information System (INIS)

    Fatemi, K.

    1998-01-01

    In this work uranium solution has been leached out by leaching process of uranium ores from Bandar-Ab bass port using sea water, since fresh water could not be available when it is processed in large scale. Two samples of different batches containing 11 and 20 gr./lit chlorine underwent two stages of precipitation by lead nitrate. As the result of this treatment the chlorine removed and its final concentration reduced to 530 p.p.m. which is well below allowances. Then, the uranium of this recent dechlorinated solu ton has been extracted by T.B.P. Uranium in organic phase was stripped out into inorganic phase by sodium carbonate and precipitated in a form of yellow cake and converted to U3o8. The total recovery of U, was well above 90% and the purity of the conc. U was better than 94%. The lead used at the beginning of the process was recovered for next use

  19. Sensibility analysis of the pearl model for pesticide leaching in the State of Mato Grosso do Sul, Brazil Análise de sensibilidade do simulador pearl para lixiviação de pesticidas no estado de Mato Grosso do Sul, Brasil

    OpenAIRE

    Rômulo P. Scorza Júnior; João P. da Silva

    2011-01-01

    For an accurate use of pesticide leaching models it is necessary to assess the sensitivity of input parameters. The aim of this work was to carry out sensitivity analysis of the pesticide leaching model PEARL for contrasting soil types of Dourados river watershed in the state of Mato Grosso do Sul, Brazil. Sensitivity analysis was done by carrying out many simulations with different input parameters and calculating their influence on the output values. The approach used was called one-at-a-ti...

  20. Disposal of leached residual in heap leaching by neutralization

    International Nuclear Information System (INIS)

    Wang Jingmin

    1993-01-01

    The disposal results of leached residual with lime are described. Using the ratio of residual to lime being 100 : 1 the ideal disposal results were obtained with the effluent of the neutralized residual close to neutral

  1. Mechanism for elevated temperature leaching

    International Nuclear Information System (INIS)

    Kenna, B.T.; Murphy, K.D.

    1979-01-01

    Long-term, elevated temperature leaching and subsequent electron microprobe analysis of simulated waste glass and ceramic materials have been completed. A cyclic leaching pattern was found in all systems over a 20-month period. It appears that the leaching of mobile ions by simple diffusional processes is modified by more complex chemical interactions. The release of immobile ions is primarily a function of their chemical interactions in the matrix which suggests that these ions may be complex species when released into solution. A mechanism is proposed which incorporates these ideas and the cyclic phenomenon observed

  2. Leaching of concrete : the leaching process : extrapolation of deterioration : effect on the structural stability

    OpenAIRE

    Fagerlund, Göran

    2000-01-01

    The leaching process when water attacks concrete, and the effect of leaching on the strength and durability of a concrete structure, is analysed theoretically. Technique for prediction of the future leaching and structural stability is outlined. The analysis is to a certain extent supported by data from literature. The leaching process is divided in five different types: 1: Pure surface leaching 2: Surface leaching involving erosion 3: Homogeneous leaching over the entire structure 4...

  3. Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.

    Science.gov (United States)

    Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G

    2014-02-01

    There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.

  4. Modelling the coupled chemico-osmotic and advective-diffusive transport of nitrate salts in the Callovo-Oxfordian clay

    International Nuclear Information System (INIS)

    Baechler, S.; Croise, J.; Altmann, S.

    2010-01-01

    Document available in extended abstract form only. Fine-grained saturated porous materials can act as a semi-permeable osmotic membrane when exposed to a solute concentration gradient. The ions diffusion is hindered while water movement towards higher concentrations takes place in the semi-permeable membrane. The capacity of the fine-grained porous material to act as a semi permeable osmotic membrane is referred to as the osmotic efficiency (its value is 1 when the membranes is ideal, less than 1 when the membrane is leaky, allowing diffusion). The efficiency to retain ions in solution is dependent on the thickness of the diffuse double layer which itself depends on the solution concentration in the membrane. Clay rich formations have been shown to act as non-ideal semi-permeable membrane. Andra is investigating the Callovo-Oxfordian clay as a host rock for intermediate-level to high-level radioactive waste. In this context, it has been feared that osmotic water flows generated by the release of sodium nitrate salt in high concentrations, out of intermediate radioactive bituminous waste, could induce important over-pressures. The latest would eventually lead to fracturing of the host rock around the waste disposal drifts. The purpose of the present study was to develop a simulation code with the capacity to assess the potential impact of osmosis on: the re-saturation of the waste disposal drifts, the pressure evolution and the solute transport in and around a waste disposal drift. A chemo-osmotic coupled flow and transport model was implemented using the FlexPDE-finite element library. Our model is based on the chemo-osmotic formulation developed by Bader and Kooi, 2005. The model has been extended to highly concentrated solutions based on Pitzer's equation. In order to assess the impact of osmotic flow on the re-saturation time, the model was also designed to allow unsaturated flow modelling. The model configuration consists of an initially unsaturated 2D

  5. A comparative study of two approaches to analyse groundwater recharge, travel times and nitrate storage distribution at a regional scale

    Science.gov (United States)

    Turkeltaub, T.; Ascott, M.; Gooddy, D.; Jia, X.; Shao, M.; Binley, A. M.

    2017-12-01

    Understanding deep percolation, travel time processes and nitrate storage in the unsaturated zone at a regional scale is crucial for sustainable management of many groundwater systems. Recently, global hydrological models have been developed to quantify the water balance at such scales and beyond. However, the coarse spatial resolution of the global hydrological models can be a limiting factor when analysing regional processes. This study compares simulations of water flow and nitrate storage based on regional and global scale approaches. The first approach was applied over the Loess Plateau of China (LPC) to investigate the water fluxes and nitrate storage and travel time to the LPC groundwater system. Using raster maps of climate variables, land use data and soil parameters enabled us to determine fluxes by employing Richards' equation and the advection - dispersion equation. These calculations were conducted for each cell on the raster map in a multiple 1-D column approach. In the second approach, vadose zone travel times and nitrate storage were estimated by coupling groundwater recharge (PCR-GLOBWB) and nitrate leaching (IMAGE) models with estimates of water table depth and unsaturated zone porosity. The simulation results of the two methods indicate similar spatial groundwater recharge, nitrate storage and travel time distribution. Intensive recharge rates are located mainly at the south central and south west parts of the aquifer's outcrops. Particularly low recharge rates were simulated in the top central area of the outcrops. However, there are significant discrepancies between the simulated absolute recharge values, which might be related to the coarse scale that is used in the PCR-GLOBWB model, leading to smoothing of the recharge estimations. Both models indicated large nitrate inventories in the south central and south west parts of the aquifer's outcrops and the shortest travel times in the vadose zone are in the south central and east parts of the

  6. Kinetics of acid leaching of ilmenite decomposed by KOH part 1: decomposition by KOH and leaching by HCl

    International Nuclear Information System (INIS)

    Nayl, A.A; Aly, H.F.

    2010-01-01

    Decomposition of ilmenite by KOH solutions, to convert titanium to potassium titanate, was first studied . This was followed by leaching titanium from the ilmenite paste using HCl solutions in the temperature range 50-150 degree C for different periods up to 3 hr. The significant factors affecting the leaching process were studied. The experimental data of the decomposition rate of ilmenite by KOH and of the formed KOH paste by HCl under the relevant operating variables were interpreted with the shrinking core model under chemically controlled process. The apparent activation energy for leaching of titanium in both cases bas been evaluated and discussed.

  7. LEACH-A: An Adaptive Method for Improving LEACH Protocol

    Directory of Open Access Journals (Sweden)

    Jianli ZHAO

    2014-01-01

    Full Text Available Energy has become one of the most important constraints on wireless sensor networks. Hence, many researchers in this field focus on how to design a routing protocol to prolong the lifetime of the network. The classical hierarchical protocols such as LEACH and LEACH-C have better performance in saving the energy consumption. However, the choosing strategy only based on the largest residue energy or shortest distance will still consume more energy. In this paper an adaptive routing protocol named “LEACH-A” which has an energy threshold E0 is proposed. If there are cluster nodes whose residual energy are greater than E0, the node of largest residual energy is selected to communicated with the base station; When all the cluster nodes energy are less than E0, the node nearest to the base station is select to communication with the base station. Simulations show that our improved protocol LEACH-A performs better than the LEACH and the LEACH-C.

  8. Effects of increased deposition of atmospheric nitrogen on an upland moor: leaching of N species and soil solution chemistry.

    Science.gov (United States)

    Pilkington, M G; Caporn, S J M; Carroll, J A; Cresswell, N; Lee, J A; Ashenden, T W; Brittain, S A; Reynolds, B; Emmett, B A

    2005-05-01

    This study was designed to investigate the leaching response of an upland moorland to long-term (10 yr) ammonium nitrate additions of 40, 80 and 120 kg N ha(-1) yr(-1) and to relate this response to other indications of potential system damage, such as acidification and cation displacement. Results showed increases in nitrate leaching only in response to high rates of N input, in excess of 96 and 136 kg total N input ha(-1) yr(-1) for the organic Oh horizon and mineral Eag horizon, respectively. Individual N additions did not alter ammonium leaching from either horizon and ammonium was completely retained by the mineral horizon. Leaching of dissolved organic nitrogen (DON) from the Oh horizon was increased by the addition of 40 kg N ha(-1) yr(-1), but in spite of increases, retention of total dissolved nitrogen reached a maximum of 92% and 95% of 80 kg added N ha(-1) yr(-1) in the Oh and Eag horizons, respectively. Calcium concentrations and calcium/aluminium ratios were decreased in the Eag horizon solution with significant acidification mainly in the Oh horizon leachate. Nitrate leaching is currently regarded as an early indication of N saturation in forest systems. Litter C:N ratios were significantly lowered but values remained above a threshold predicted to increase leaching of N in forests.

  9. Assessment of groundwater vulnerability to nitrates from agricultural sources using a GIS-compatible logic multicriteria model.

    Science.gov (United States)

    Rebolledo, Boris; Gil, Antonia; Flotats, Xavier; Sánchez, José Ángel

    2016-04-15

    In the present study an overlay method to assess groundwater vulnerability is proposed. This new method based on multicriteria decision analysis (MCDA) was developed and validated using an appropriate case study in Aragon area (NE Spain). The Vulnerability Index to Nitrates from Agricultural Sources (VINAS) incorporates a novel Logic Scoring of Preferences (LSP) approach, and it has been developed using public geographic information from the European Union. VINAS-LSP identifies areas with five categories of vulnerability, taking into account the hydrogeological and environmental characteristics of the territory as a whole. The resulting LSP map is a regional screening tool that can provide guidance on the potential risk of nitrate pollution, as well as highlight areas where specific research and farming planning policies are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nitrate concentrations in soil solutions below Danish forests

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per

    1999-01-01

    leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7x7 km grid including 111 points in forests. During winters of 1986-1993, soil samples were obtained from a depth of 0-25, 25-50, 50-75 and 75-100 cm. Nitrate concentrations in soil solutions were...... species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution...

  11. A data mining approach to improve multiple regression models of soil nitrate concentration predictions in Quercus rotundifolia montados (Portugal)

    OpenAIRE

    Nunes, Jorge; Madeira, Manuel; Gazarini, Luiz; Neves, José; Vicente, Henrique

    2012-01-01

    The changes in the soil nitrate concentration were studied during 2 years in a ‘‘montado’’ ecosystem, in the South of Portugal. Total rainfall, air and soil temperature and soil water content under and outside Quercus rotundifolia canopy were also evaluated. A cluster analysis was carried out using climatic and microclimatic parameters in order to maximize the intraclass similarity and minimize the interclass similarity. It was used the k-Means Clustering Method. Se...

  12. Use of geomorphic, hydrologic, and nitrogen mass balance data to model ecosystem nitrate retention in tidal freshwater wetlands

    OpenAIRE

    E. D. Seldomridge; K. L. Prestegaard

    2012-01-01

    Geomorphic characteristics have been used as scaling parameters to predict water and other fluxes in many systems. In this study, we combined geomorphic analysis with in-situ mass balance studies of nitrate retention (NR) to evaluate which geomorphic scaling parameters best predicted NR in a tidal freshwater wetland ecosystem. Geomorphic characteristics were measured for 267 individual marshes that constitute the freshwater tidal wetland ecosystem of the Patuxent River...

  13. Next Generation of Leaching Tests

    Science.gov (United States)

    A corresponding abstract has been cleared for this presentation. The four methods comprising the Leaching Environmental Assessment Framework are described along with the tools to support implementation of the more rigorous and accurate source terms that are developed using LEAF ...

  14. Forecasting the effects of EU policy measures on the nitrate pollution of groundwater based on a coupled agroeconomic - hydro(geo)logic model (Invited)

    Science.gov (United States)

    Wendland, F.

    2010-12-01

    The fundamental objectives of the European Union-Water Framework Directive and the EU Groundwater Directive are to attain a good status of water and groundwater resources in the member states of the EU by 2015. For river basins, whose good status cannot be guaranteed by 2015, catchment wide operational plans and measurement programs have to be drafted and implemented until 2009. In the river basin district Weser, Germany, which comprises a catchment area of ca. 49.000 km2, the achievement of the good status is unclear, or rather unlikely for 63% of the groundwater bodies. Inputs from diffuse sources and most of all nitrate losses from agriculturally used land have been identified as the main reasons for exceeding the groundwater threshold value for nitrate (50 mg/l) and for failing the good qualitative status of groundwater. The achievement of good qualitative status of groundwater bodies entails a particular challenge as the complex ecological, hydrological, hydrogeological and agro-economic relationships have to be considered simultaneously. We used an interdisciplinary model network to predict the nitrogen intakes into groundwater at the regional scale using an area differentiated approach. The model system combines the agro-economic model RAUMIS for estimating nitrogen surpluses from agriculture and the hydrological models GROWA/DENUZ/WEKU for describing the reactive nitrate transport in the soil-groundwater system. In a first step the model is used to analyze the present situation using N surpluses from agriculture for the year 2003. In many region of the Weser basin, particularly in the northwestern part which is characterized by high livestock densities, predicted nitrate concentrations in percolation water exceed the EU groundwater quality standard of 50 mg/L by far. In a second step the temporal and spatial impacts of the common agricultural policy (CAP) of the EU, already implemented agri-environmental measures of the Federal States and the expected

  15. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes 15N/14N and 18O/16O in dissolved nitrate during microbial dentrification in groundwater

    International Nuclear Information System (INIS)

    Wunderlich, Anja A.L.

    2012-01-01

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  16. Pressure leaching of chalcopyrite concentrate

    Science.gov (United States)

    Aleksei, Kritskii; Kirill, Karimov; Stanislav, Naboichenko

    2018-05-01

    The results of chalcopyrite concentrate processing using low-temperature and high-temperature sulfuric acid pressure leaching are presented. A material of the following composition was used, 21.5 Cu, 0.1 Zn, 0.05 Pb, 0.04 Ni, 26.59 S, 24.52 Fe, 16.28 SiO2 (in wt.%). The influence of technological parameters on the degree of copper and iron extraction into the leach solution was studied in the wide range of values. The following conditions were suggested as the optimal for the high-temperature pressure leaching: t = 190 °C, PO2 = 0.5 MPa, CH2SO4 = 15 g/L, L:S = 6:1. At the mentioned parameters, it is possible to extract at least 98% Cu from concentrate into the leaching solution during 100 minutes. The following conditions were suggested as optimal for the low-temperature pressure leaching: t = 105 °C, PO2 = 1.3-1.5 MPa, CH2SO4 = 90 g/L, L:S = 10:1. At the mentioned parameters, it is possible to extract up to 83% Cu from the concentrate into the leach solution during 300-360 minutes.

  17. Assessing aquifer vulnerability from lumped parameter modeling of modern water proportions in groundwater mixtures - Application to nitrate pollution in California's South Coast Range

    Science.gov (United States)

    Hagedorn, B.; Ruane, M.; Clark, N.

    2017-12-01

    In California, the overuse of synthetic fertilizers and manure in agriculture have caused nitrate (NO3) to be one of the state's most widespread groundwater pollutants. Given that nitrogen fertilizer applications have steadily increased since the 1950s and given that soil percolation and recharge transit times in California can exceed timescales of decades, the nitrate impact on groundwater resources is likely a legacy for years and even decades to come. This study presents a methodology for groundwater vulnerability assessment that operates independently of difficult-to-constrain soil and aquifer property data (i.e., saturated thickness, texture, porosity, conductivity, etc.), but rather utilizes groundwater age and, more importantly, groundwater mixing information to illustrate actual vulnerability at the water table. To accomplish this, the modern (i.e., less than 60-year old) water proportion (MWP) in groundwater mixtures is computed via lumped parameter modeling of chemical tracer (i.e., 3H, 14C and 3Hetrit) data. These MWPs are then linked to groundwater dissolved oxygen (DO) values to describe the risk for soil zone-derived nitrate to accumulate in the saturated zone. Preliminary studies carried out for 71 wells in California's South Coast Range-Coastal (SCRC) study unit reveal MWP values derived from binary dispersion models of 3.24% to 21.8%. The fact that high MWPs generally coincide with oxic (DO ≥1.5 mg/L) groundwater conditions underscores the risk towards increased groundwater NO3 pollution for many of the tested wells. These results support the conclusion that best agricultural management and policy objectives should incorporate groundwater vulnerability models that are developed at the same spatial scale as the decision making.

  18. Global Patterns of Legacy Nitrate Storage in the Vadose Zone

    Science.gov (United States)

    Ascott, M.; Gooddy, D.; Wang, L.; Stuart, M.; Lewis, M.; Ward, R.; Binley, A. M.

    2017-12-01

    Global-scale nitrogen (N) budgets have been developed to quantify the impact of man's influence on the nitrogen cycle. However, these budgets often do not consider legacy effects such as accumulation of nitrate in the deep vadose zone. In this presentation we show that the vadose zone is an important store of nitrate which should be considered in future nitrogen budgets for effective policymaking. Using estimates of depth to groundwater and nitrate leaching for 1900-2000, we quantify for the first time the peak global storage of nitrate in the vadose zone, estimated as 605 - 1814 Teragrams (Tg). Estimates of nitrate storage are validated using previous national and basin scale estimates of N storage and observed groundwater nitrate data for North America and Europe. Nitrate accumulation per unit area is greatest in North America, China and Central and Eastern Europe where thick vadose zones are present and there is an extensive history of agriculture. In these areas the long solute travel time in the vadose zone means that the anticipated impact of changes in agricultural practices on groundwater quality may be substantially delayed. We argue that in these areas use of conventional nitrogen budget approaches is inappropriate and their continued use will lead to significant errors.

  19. Circuit Design for Sensor Detection Signal Conditioner Nitrate Content

    Directory of Open Access Journals (Sweden)

    Robeth Manurung

    2011-09-01

    Full Text Available Nitrate is one of macro nutrients very important for agriculture. The availability of nitrate in soil is limited because it is very easy to leaching by rain, therefore nitrate could be contaminated ground water by  over-process of fertilizer. This process could also produce inefficiency in agriculture if it happened continuesly without pre-analysis of farm field. The answer those problems, it is need to develop the ion sensor system to measure concentrations of nitrat in soil. The system is consist of nitrate ion sensor device, signal conditioning and data acquisition circuit. The design and fabrications of signal conditioning circuit which integrated into ion nitrate sensor system and will apply for agriculture. This sensor has been used amperometric with three electrodes configuration: working, reference  and auxiliarry; the ion senstive membrane has use conductive polymer. The screen printing technique has been choosen to fabricate electrodes and deposition technique for ion sensitive membrane is electropolymerization. The characterization of sensor has been conducted using nitrate standard solution with range of concentration between 1 µM–1 mM. The characterization has shown that sensor has a good response with cureent output between 2.8–4.71 µA, liniearity factor is 99.65% and time response 250 second.

  20. Multiphase modeling of nitrate photochemistry in the quasi-liquid layer (QLL: implications for NOx release from the Arctic and coastal Antarctic snowpack

    Directory of Open Access Journals (Sweden)

    A. Saiz-Lopez

    2008-08-01

    Full Text Available We utilize a multiphase model, CON-AIR (Condensed Phase to Air Transfer Model, to show that the photochemistry of nitrate (NO3− in and on ice and snow surfaces, specifically the quasi-liquid layer (QLL, can account for NOx volume fluxes, concentrations, and [NO]/[NO2] (γ=[NO]/[NO2] measured just above the Arctic and coastal Antarctic snowpack. Maximum gas phase NOx volume fluxes, concentrations and γ simulated for spring and summer range from 5.0×104 to 6.4×105 molecules cm−3 s−1, 5.7×108 to 4.8×109 molecules cm−3, and ~0.8 to 2.2, respectively, which are comparable to gas phase NOx volume fluxes, concentrations and γ measured in the field. The model incorporates the appropriate actinic solar spectrum, thereby properly weighting the different rates of photolysis of NO3− and NO2−. This is important since the immediate precursor for NO, for example, NO2−, absorbs at wavelengths longer than nitrate itself. Finally, one-dimensional model simulations indicate that both gas phase boundary layer NO and NO2 exhibit a negative concentration gradient as a function of height although [NO]/[NO2] are approximately constant. This gradient is primarily attributed to gas phase reactions of NOx with halogens oxides (i.e. as BrO and IO, HOx, and hydrocarbons, such as CH3O2.

  1. Groundwater restoration with in situ uranium leach mining

    International Nuclear Information System (INIS)

    Charbeneau, R.J.

    1984-01-01

    In situ leach mining of uranium has developed into a major mining technology. Since 1975, when the first commercial mine was licensed in the United States, the percentage or uranium produced by in situ mining has steadily grown from 0.6 to 10 percent in 1980. Part of the reason for this growth is that in situ mining offers less initial capital investment, shorter start-up times, greater safety, and less labor than conventional mining methods. There is little disturbance of the surface terrain or surface waters, no mill tailings piles, and no large open pits, but in situ leaching mining does have environmental disadvantages. During the mining, large amounts of ground water are cirulated and there is some withdrawal from an area where aquifers constitute a major portion of the water supply for other purposes. When an ammonia-based leach system is used, the ammonium ion is introduced into an area where cation exchange on clays (and some production of nitrate) may occur. Also, injection of an oxidant with the leach solution causes valence and phase changes of indigenous elements such as As, Cu, Fe, Mo, Se, S, and V as well as U. Furthermore, the surrounding ground water can become contaminated by escape of the leach solution from the mining zone. This chapter presents an overview of the in situ mining technology, including uranium deposition, mining techniques, and ground water restoration alternatives. The latter part of the chapter covers the situation in South Texas. Economics and development of the industry, groundwater resources, regulation, and restoration activities are also reviewed

  2. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    where pH remains neutral. The "low-acid" oxidation of sulfides with nitrate as an electron acceptor has been demonstrated at the laboratory scale. In 90-day microcosm respirometry experiments, we exposed a mixture of pulverized quartz and pyrite -rich ore to natural, high-nitrate groundwater and inoculated the microcosms with a culture of aerobic and anaerobic nitrate-dependent iron and sulfur-oxidising microorganisms, which were enriched from ore, groundwater and activated waste water. Incubations were performed under both oxic and anoxic conditions, in addition to abiotic controls. Initial results show that oxidation of the sulfides under nitrate-rich and microbially enhanced conditions does produce less acid than the same material under oxic conditions, and to some degree can match the models as long as oxygen ingress can be controlled. These results are the focus of further research into how this process can be enhanced and whether it can be applied in the field. Nitrate-driven oxidation of sulfides could potentially be used as a new approach to reduce acid generation and leaching of contaminants from waste dumps, in a passive or actively managed process designed to deplete and/or ameliorate (i.e. through surface passivation) the mineralogical hazard. Developing our understanding of biological aspects of these processes may also allow testing of longer-term "bio-caps" for various tailings and dump materials.

  3. Evaluation and selection of in-situ leaching mining method using analytic hierarchy process

    International Nuclear Information System (INIS)

    Zhao Heyong; Tan Kaixuan; Liu Huizhen

    2007-01-01

    According to the complicated conditions and main influence factors of in-situ leaching min- ing, a model and processes of analytic hierarchy are established for evaluation and selection of in-situ leaching mining methods based on analytic hierarchy process. Taking a uranium mine in Xinjiang of China for example, the application of this model is presented. The results of analyses and calculation indicate that the acid leaching is the optimum project. (authors)

  4. High temperature interaction studies on equimolar nitrate mixture of uranyl nitrate hexahydrate and gadolinium nitrate hexahydrate

    International Nuclear Information System (INIS)

    Kalekar, Bhupesh B.; Raje, Naina; Reddy, A.V.R.

    2015-01-01

    Rare earths including gadolinium form a sizeable fraction of the fission products in the nuclear fission of fissile material in the reactor. These fission products can interact with uranium dioxide fuel and can form various compounds which can alter the thermal behavior of the fuel. The mixed oxide formed due to the high temperature interactions of mixture of uranyl nitrate hexahydrate (UNH) and gadolinium nitrate hexahydrate (GdNH) has been studied using thermal and X- ray diffraction techniques. The equimolar mixture of UNH and GdNH was prepared by mixing the weighed amount of individual nitrates and grinding gently with mortar and pestle. Thermogravimetry (TG) measurements were carried out by separately heating 100 mg of mixture and individual nitrates at heating rate of 10°C min -1 using Netzsch thermal analyzer (Model No.: STA 409 PC Luxx) in high purity nitrogen atmosphere with a flow rate of 120 mL min -1 . The XRD measurement was carried out on a Philips X-ray diffractometer (Model PW1710) using nickel-filtered Cu-Kα radiation

  5. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  6. Ecosystem and human health impacts from increased corn production: vulnerability assessment of exposure to high nitrate concentrations in groundw