WorldWideScience

Sample records for modeling net geochemical

  1. Geochemical modeling: a review

    International Nuclear Information System (INIS)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted

  2. Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated by net-alkaline coal-mine drainage, Pennsylvania, USA

    Science.gov (United States)

    Cravotta,, Charles A.

    2015-01-01

    Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the

  3. Status report on geochemical modelling

    International Nuclear Information System (INIS)

    Read, D.

    1991-12-01

    This report describes the findings of a review undertaken on behalf of the project management group of the programme 'Endlagersicherheit in der Nachbetriebsphase' based at GSF-IfT (Forschungszentrum fuer Umwelt und Gesundheit - Institut fuer Tieflagerung) to establish the current status of research into the simulation of geochemical processes relevant to radiological assessment. The review is intended to contribute to Stage 1 of a strategy formulated to enhance the use of geochemical models in Germany. Emphasis has been placed on processes deemed to be of greatest relevance to performance assessment for a HLW-repository in a salt dome principally, speciation-solubility in high salinity solutions, complexation by natural organics and generation-transport of colloids. For each of these and other topics covered, a summary is given of fundamental concepts, theoretical representations and their limitations, highlighting, where appropriate, the advantages and disadvantages of alternative approaches. The availability of data to quantify any given representation is addressed, taking into account the need for information at elevated temperatures and pressures. Mass transfer is considered in terms of aqueous, particulate and gas-mediated transport, respectively. (orig.) [de

  4. Proceedings of the workshop on geochemical modeling

    International Nuclear Information System (INIS)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices

  5. Basic principles of forward and inverse geochemical modelization

    International Nuclear Information System (INIS)

    Gimeno, M.J.; Pena, J.

    1994-01-01

    Geochemical modeling consists in the application of thermodynamic and physicochemical principles in the hydrogeochemical systems interpretation. It has been developed following two different approaches: a) inverse modeling (or mass balance calculations), which uses observed chemical and isotopic data from waters and rocks to identify geochemical reactions responsible of them, in a quantitative way; and b) forward modeling, which attempts to predict water compositions and mass transfer that can result from hypothesized reactions, from observed initial conditions on water-rock system compositions. Both of them have intrinsic uses and limitations which drive to their use in specific problems. For systems with adequate chemical, isotopic, and mineralogic data, the inverse modeling approach of speciation and mass-balance modeling provides the most direct means of determining quantitative geochemical reaction models. In contrast, for systems with missing or inadequate data, reaction-path modeling provides an a priori method of predicting geochemical reactions. In some cases it is useful to combine forward modeling with the results from inverse models. The mass-balance results determine the net mass transfer along the flow path, but these results are only partially constrained by thermodynamics. The forward modeling can be used both, to prove thermodynamic consistency for them, and to predict water quality at points where there are no enough data. Recent advances in geochemical modeling are focused on finding the most efficient numerical procedures for coupling geochemical reactions (both equilibrium and kinetic) with the hydrodynamic transport equations in compositionally-complex systems, on uncertainty analysis, and on model validation for actual geochemical systems

  6. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  7. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  8. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1985-01-01

    This contract stipulated separate pieces of work to consider mass transport in the far-field of a repository, and more detailed geochemical modelling of the groundwater in the near-field. It was envisaged that the far-field problem would be tackled by numerical solutions to the classical advection-diffusion equation obtained by the finite element method. For the near-field problem the feasibility of coupling existing geochemical equilibrium codes to the three dimensional groundwater flow codes was to be investigated. This report is divided into two sections with one part devoted to each aspect of this contract. (author)

  9. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  10. Predictions models with neural nets

    Directory of Open Access Journals (Sweden)

    Vladimír Konečný

    2008-01-01

    Full Text Available The contribution is oriented to basic problem trends solution of economic pointers, using neural networks. Problems include choice of the suitable model and consequently configuration of neural nets, choice computational function of neurons and the way prediction learning. The contribution contains two basic models that use structure of multilayer neural nets and way of determination their configuration. It is postulate a simple rule for teaching period of neural net, to get most credible prediction.Experiments are executed with really data evolution of exchange rate Kč/Euro. The main reason of choice this time series is their availability for sufficient long period. In carry out of experiments the both given basic kind of prediction models with most frequent use functions of neurons are verified. Achieve prediction results are presented as in numerical and so in graphical forms.

  11. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  12. Business Process Modelling based on Petri nets

    Directory of Open Access Journals (Sweden)

    Qin Jianglong

    2017-01-01

    Full Text Available Business process modelling is the way business processes are expressed. Business process modelling is the foundation of business process analysis, reengineering, reorganization and optimization. It can not only help enterprises to achieve internal information system integration and reuse, but also help enterprises to achieve with the external collaboration. Based on the prototype Petri net, this paper adds time and cost factors to form an extended generalized stochastic Petri net. It is a formal description of the business process. The semi-formalized business process modelling algorithm based on Petri nets is proposed. Finally, The case from a logistics company proved that the modelling algorithm is correct and effective.

  13. Uncertainty in reactive transport geochemical modelling

    International Nuclear Information System (INIS)

    Oedegaard-Jensen, A.; Ekberg, C.

    2005-01-01

    Full text of publication follows: Geochemical modelling is one way of predicting the transport of i.e. radionuclides in a rock formation. In a rock formation there will be fractures in which water and dissolved species can be transported. The composition of the water and the rock can either increase or decrease the mobility of the transported entities. When doing simulations on the mobility or transport of different species one has to know the exact water composition, the exact flow rates in the fracture and in the surrounding rock, the porosity and which minerals the rock is composed of. The problem with simulations on rocks is that the rock itself it not uniform i.e. larger fractures in some areas and smaller in other areas which can give different water flows. The rock composition can be different in different areas. In additions to this variance in the rock there are also problems with measuring the physical parameters used in a simulation. All measurements will perturb the rock and this perturbation will results in more or less correct values of the interesting parameters. The analytical methods used are also encumbered with uncertainties which in this case are added to the uncertainty from the perturbation of the analysed parameters. When doing simulation the effect of the uncertainties must be taken into account. As the computers are getting faster and faster the complexity of simulated systems are increased which also increase the uncertainty in the results from the simulations. In this paper we will show how the uncertainty in the different parameters will effect the solubility and mobility of different species. Small uncertainties in the input parameters can result in large uncertainties in the end. (authors)

  14. Coupling R and PHREEQC: Efficient Programming of Geochemical Models

    OpenAIRE

    De Lucia, Marco; Kühn, Michael

    2013-01-01

    We present a new interface between the geochemical simulator PHREEQC and the open source language R. It represents a tool to flexibly and efficiently program and automate every aspect of geochemical modelling. The interface helps particularly to setup and run large numbers of simulations and visualise the results. Also profiting of numberless high-quality R extension packages, performing sensitivity analysis or Monte Carlo simulations becomes straightforward. Further, an algorithm to speedup ...

  15. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  16. Geochemical Modeling of ILAW Lysimeter Water Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-22

    Geochemical modeling results of water extracts from simulated immobilized low-activity waste (ILAW) glasses, placed in lysimeters for eight years suggest that the secondary phase reaction network developed using product consistency test (PCT) results at 90°C may need to be modified for field conditions. For sediment samples that had been collected from near the glass samples, the impact of glass corrosion could be readily observed based upon the pH of their water extracts. For unimpacted sediments the pH ranged from 7.88 to 8.11 with an average of 8.04. Sediments that had observable impacts from glass corrosion exhibited elevated pH values (as high as 9.97). For lysimeter sediment samples that appear to have been impacted by glass corrosion to the greatest extent, saturation indices determined for analcime, calcite, and chalcedony in the 1:1 water extracts were near equilibrium and were consistent with the secondary phase reaction network developed using PCT results at 90°C. Fe(OH)3(s) also appears to be essentially at equilibrium in extracts impacted by glass corrosion, but with a solubility product (log Ksp) that is approximately 2.13 units lower than that used in the secondary phase reaction network developed using PCT results at 90°C. The solubilities of TiO2(am) and ZrO2(am) also appear to be much lower than that assumed in the secondary phase reaction network developed using PCT results at 90°C. The extent that the solubility of TiO2(am) and ZrO2(am) were reduced relative to that assumed in the secondary phase reaction network developed using PCT results at 90°C could not be quantified because the concentrations of Ti and Zr in the extracts were below the estimated quantification limit. Gibbsite was consistently highly oversaturated in the extract while dawsonite was at or near equilibrium. This suggests that dawsonite might be a more suitable phase for the secondary phase reaction network

  17. Numerical modeling of geochemical variations caused by crustal relamination

    NARCIS (Netherlands)

    Vogt, Katharina|info:eu-repo/dai/nl/370618947; Castro, Antonio; Gerya, Taras

    2013-01-01

    Geochemical consequences of composite diapirs formed in subduction zones have been studied using a thermomechanical numerical model of an ocean-continent subduction zone. This model includes dehydration of subducted crust, aqueous fluid transport, partial melting, and melt emplacement. Subduction of

  18. Comparison of thermodynamic databases used in geochemical modelling

    International Nuclear Information System (INIS)

    Chandratillake, M.R.; Newton, G.W.A.; Robinson, V.J.

    1988-05-01

    Four thermodynamic databases used by European groups for geochemical modelling have been compared. Thermodynamic data for both aqueous species and solid species have been listed. When the values are directly comparable any differences between them have been highlighted at two levels of significance. (author)

  19. Validation of the WATEQ4 geochemical model for uranium

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite [UO 2 (OH) 2 . H 2 O], UO 2 (OH) 2 , and rutherfordine ((UO 2 CO 3 ) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions

  20. A Petri Nets Model for Blockchain Analysis

    OpenAIRE

    Pinna, Andrea; Tonelli, Roberto; Orrú, Matteo; Marchesi, Michele

    2017-01-01

    A Blockchain is a global shared infrastructure where cryptocurrency transactions among addresses are recorded, validated and made publicly available in a peer- to-peer network. To date the best known and important cryptocurrency is the bitcoin. In this paper we focus on this cryptocurrency and in particular on the modeling of the Bitcoin Blockchain by using the Petri Nets formalism. The proposed model allows us to quickly collect information about identities owning Bitcoin addresses and to re...

  1. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  2. Overview of geochemical modeling needs for nuclear waste management

    International Nuclear Information System (INIS)

    Isherwood, D.; Wolery, T.

    1984-01-01

    Research needs include, but are not limited to: measurement of basic thermodynamic data at elevated temperatures for species identified by modelers as potentially important; evaluation of substances which control or limit precipitation and/or nucleation kinetics; sorption studies specifically designed to provide data needed for modeling. This includes the rate of sorption, desorption, and the characterization of the solid and aqueous phases; site-mixing models and thermodynamic data for secondary minerals that form solid solutions; the development of standard techniques for measuring rate laws for precipitation and dissolution kinetics; and measurement of rate laws describing redox kinetics, dissolution, and precipitation involving aqueous species and solid phases of interest to geochemical modelers

  3. Geochemical modelization of differentiation processes by crystallization

    International Nuclear Information System (INIS)

    Cebria, J.M.; Lopez Ruiz, J.

    1994-01-01

    During crystallization processes, major and trace elements and stable isotopes fractionate, whereas radiogenic isotopes do not change. The different equations proposed allow us to reproduce the variation in major and trace elements during these differentiation processes. In the case of simple fractional crystallization, the residual liquid is impoverished in compatible elements faster than it is enriched in incompatible elements as crystallization proceeds. During in situ crystallization the incompatible elements evolve in a similar way to the case of simple fractional crystallization but the enrichment rate of the moderately incompatible elements is slower and the compatible elements do not suffer a depletion as strong as the one observed during simple fractional crystallization, even for higher f values. In a periodically replenished magma chamber if all the liquid present is removed at the end of each cycle, the magma follows patterns similar to those generated by simple fractional crystallization. On the contrary, if the liquid fraction that crystallizes during each cycle and the one that is extruded at the end of the cycle are small, the residual liquid shows compositions similar to those that would be obtained by equilibrium crystallization. Crystallization processes modelling is in general less difficult than for partial melting. If a rock series is the result of simple fractional crystallization, a C''i L -C''i L plot in which i is a compatible element and j is highly incompatible, allows us to obtain a good approximation to the initial liquid composition. Additionally, long C''i L -log C''i L diagrams in which i is a highly incompatible element, allow us to identify steps in the process and to calculate the bulk distribution coefficients of the trace elements during each step

  4. Transactions on Petri Nets and Other Models of Concurrency V

    DEFF Research Database (Denmark)

    submission track of ToPNoC. The 12 papers cover a diverse range of topics including model checking and system verification, synthesis, foundational work on specific classes of Petri nets, and innovative applications of Petri nets and other models of concurrency. Thus, this volume gives a good view of ongoing...... concurrent systems and Petri nets research...

  5. Advantage of Chernobyl radionuclides at modelling of geochemical landscape

    International Nuclear Information System (INIS)

    Samsonenka, I.P.

    2002-01-01

    Any human activity causes a chemical alteration of environment. It occurs as a result of both the immediate emission of pollutants, and of violation of the ecosystems homeostasis. Under technogenic effect a geochemical field becomes still more variegated. This phenomenon is formed by subjective processes. In this case the unconditional application of statistical methods is not correct. Efficiently a contamination patchiness is scrutinised by method of a radioactive label, as some pollutants are allocated on a surface similarly artificial radionuclides. During 10 years the radioecological investigation like this was carried out in the moderate contamination area of Chernobyl zone. Nuclide 137Cs predominant on this terrain was used as a tracer. It turned out that the pollution field heterogeneity is depended on structure of landscape most intimately. The modelling of 137Cs allocation allowed to establish the attitude of background and anomalous zone. Principal premise of beginnings of an anomaly is the interplay of migration streams with geochemical barriers. Combination of these factors determines the radiological and geochemical parameters. The behaviour of other pollutants (Sr, Pb, Cu, Zn, Ni, Cr, Co) in discrete segments of elementary landscape also rather differs. Within test area six types of positive going local geochemical anomalies are being discovered. The detailed analysis of them has resulted in creation of new technique of account of pollutants total inventory. This parameter is computed with the use of correction for a natural patchiness. For example the stoichiometric relationship show that an average of 0.73 % of the total 137Cs inventory was involved in the processes of secondary redistribution. More than on third of this value (0.26 %) was fixed at local geochemical barriers within eluvial landscapes and formed radiogeochemical anomalies at the intra facies level. The other portion of 137Cs inventory (0.47 %) was removed outside the boundaries of

  6. Testing geochemical modeling codes using New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of selected portions of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will: (1) ensure that we are providing adequately for all significant processes occurring in natural systems; (2) determine the adequacy of the mathematical descriptions of the processes; (3) check the adequacy and completeness of thermodynamic data as a function of temperature for solids, aqueous species and gases; and (4) determine the sensitivity of model results to the manner in which the problem is conceptualized by the user and then translated into constraints in the code input. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions. The kinetics of silica precipitation in EQ6 will be tested using field data from silica-lined drain channels carrying hot water away from the Wairakei borefield

  7. The hydrogeologic-geochemical model of Cerro Prieto revisited

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Halfman, S.E.; Truesdell, A.H.; Manon M., A.

    1989-01-01

    As the exploitation of the Cerro Prieto, Mexico, geothermal field continues, there is increasing evidence that the hydrogeologic model developed by Halfman et al. (1984, 1986) presents the basic features controlling the movement of geothermal fluids in the system. At the present time the total installed capacity at Cerro Prieto is 620 MWe requiring the production of more than 10,500 tonnes/hr of a brine-steam mixture. This significant rate of fluid production has resulted in changes in reservoir thermodynamic conditions and in the chemistry of the produced fluids. After reviewing the hydrogeologic-geochemical model of Cerro Prieto, some of the changes observed in the field due to its exploitation are discussed and interpreted on the basis of the model. 21 refs., 11 figs., 1 tab.

  8. Numerical modelling of new rockfall interception nets

    Science.gov (United States)

    von Boetticher, Albrecht; Volkwein, Axel; Wendeler, Corinna

    2010-05-01

    The design and certification of effective rockfall protection barriers is mainly achieved through 1:1 prototype testing. In order to reduce development costs of a prototype it is recommended that pre-studies using numerical simulations are performed. A large component to modelling rockfall protection systems is the numerical simulation of the nets. To date there exist several approaches to model the different mesh types such as ring nets or diagonal meshes (Nicot 1999, Cazzani et al. 2002, Volkwein 2004). However, the consideration of chain link meshes has not yet been realised. Chain link meshes are normally found as standard fence structures. However, they also exist in setups using high-strength steel and wire bundles. These variants show an enormous capacity to retain loads e.g. rockfalls, and at the same time are very efficient due to their low demand of steel material. The increasing application of chain link mesh in barrier systems requires an accurate model is available to complete prototype studies. A new approach now aims to perform a Finite Element simulation of such chain link meshes. The main challenge herein is to achieve the net deformation behaviour that is observed in field tests also in the simulation. A simulation using simple truss elements would not work since it neglects the out-of-plane-height of the mesh construction providing important reserves for local and global high deformations. Thus addressing this, a specially developed Discrete Element is able to reconstruct the mechanical behaviour of the single chain wire (bundles). As input parameters it utilises typical properties such as longitudinal and transversal mesh widths, and break loads resulting from in-plane-tension tests and steel strength. The single chain elements then can be combined to a complete mesh (e.g. 130 x 65 mm, 3 - 4 mm wire with a strength of 1770 N-mm2). Combining these elements with a supporting structure consisting of posts, ropes and energy absorbers, enables the

  9. Geochemical modelling of groundwater chemistry in the Tono area

    International Nuclear Information System (INIS)

    Arthur, R.C.

    2003-03-01

    This report summarizes the research result about geochemical modelling of the groundwater during H14 financial year. JNC-TGC have built the geochemical conceptual models of groundwater by using the chemical data of the groundwater of the Mizunami group and Toki granite. Although this models are extremely useful as interpretive tools, they lack the quantitative basis necessary to evaluate coupled processes of fluid-flow and water-rock interaction driving the chemical evolution of groundwater systems. In this research, the following three items have been considered for the purpose of construction of the geochemical model which can express the chemical reaction in groundwater correctly. Evaluation of the quality of the previous analytical data in the Tono region. Grasp of the chemical character of groundwaters. Consideration about the influence between Eh, pH and CO 2 (g) parameter, and which the change has. Evaluation of the quality of the previous analytical data are important because deficiencies in sampling technique, sample-preservation procedures or analytical method may adversely affect the overall quality of groundwater chemical and isotopic analysis. In addition, the effects of borehole drilling and logging, hydraulic testing inappropriate sampling strategies or inadequate sampling tools may perturb groundwater compositions to such an extent that they are unrepresentative of in-situ conditions. The quality of water analysis is indicated by its charge balance. The charge balance of many of the analysis lies within the strictly acceptable range of 0±5%, but charge imbalances exceeding these limits are calculated for many other samples. These reasons are examined in the following. Analytical errors (e.q., of alkalinity). Errors arising from the use of IC values that are unrepresentative because CO 2 was gained by or lost from the sample during storage and (or) analysis. Errors arising from the invalid assumption that non-carbonate contributions to the

  10. WATEQ3 geochemical model: thermodynamic data for several additional solids

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.

    1982-09-01

    Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ΔG 0 /sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs

  11. Petri Net Modeling of Computer Virus Life Cycle | Ikekonwu ...

    African Journals Online (AJOL)

    Virus life cycle, which refers to the stages of development of a computer virus, is presented as a suitable area for the application of Petri nets. Petri nets a powerful modeling tool in the field of dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model is also presented. The intention of ...

  12. PETRI NET MODELING OF COMPUTER VIRUS LIFE CYCLE

    African Journals Online (AJOL)

    Dr Obe

    ABSTRACT. Virus life cycle, which refers to the stages of development of a computer virus, is presented as a suitable area for the application of Petri nets. Petri nets a powerful modeling tool in the field of dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model is also presented.

  13. Modeling of Biometric Identification System Using the Colored Petri Nets

    Science.gov (United States)

    Petrosyan, G. R.; Ter-Vardanyan, L. A.; Gaboutchian, A. V.

    2015-05-01

    In this paper we present a model of biometric identification system transformed into Petri Nets. Petri Nets, as a graphical and mathematical tool, provide a uniform environment for modelling, formal analysis, and design of discrete event systems. The main objective of this paper is to introduce the fundamental concepts of Petri Nets to the researchers and practitioners, both from identification systems, who are involved in the work in the areas of modelling and analysis of biometric identification types of systems, as well as those who may potentially be involved in these areas. In addition, the paper introduces high-level Petri Nets, as Colored Petri Nets (CPN). In this paper the model of Colored Petri Net describes the identification process much simpler.

  14. Geochemical isotope compartment model of the nitrogen cycle

    International Nuclear Information System (INIS)

    Weise, G.; Wetzel, K.; Stiehl, G.

    1981-01-01

    A model of the global cycle of nitrogen and its isotopes is described. It takes into account geochemical reservoirs (nitrogen in magmatic metamorphic, and sedimentary rocks and in the atmosphere) and the nitrogen exchange between magmatic rocks and the outer mantle, the transition of nitrogen exchange between sedimentary rocks and the atmosphere. With the aid of the mathematical formalisms of the compartment theory and on the basis of all available delta 11 N values assumptions regarding the isotope effects in forming these nitrogen fluxes data have been obtained on the degree of the nitrogen exchange between the earth crust and the outer mantle and on other nitrogen fluxes characterizing the global nitrogen cycle. (author)

  15. Modeling of water treatment plant using timed continuous Petri nets

    Science.gov (United States)

    Nurul Fuady Adhalia, H.; Subiono, Adzkiya, Dieky

    2017-08-01

    Petri nets represent graphically certain conditions and rules. In this paper, we construct a model of the Water Treatment Plant (WTP) using timed continuous Petri nets. Specifically, we consider that (1) the water pump always active and (2) the water source is always available. After obtaining the model, the flow through the transitions and token conservation laws are calculated.

  16. Structures and scan strategies of software net models

    International Nuclear Information System (INIS)

    Puhr-Westerheide, P.; Sandbaek, H.

    1984-01-01

    The present paper deals with some aspects of plant control and monitoring systems as used in nuclear power plants. These aspects concern executable net models to run on computers. A short survey on the nets' environment and on some net scan strategies is given. Among the strategies are the 'topologically ordered scan' and the 'signal propagation scan'. A combined method 'topologically ordered signal propagation (TOSIP) scan' will be outlined as well as a net model data structure that allows the definition of subsystems for the use of clear structuration and dischargement to distributed systems. (author)

  17. Petri Nets as Models of Linear Logic

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    1990-01-01

    The chief purpose of this paper is to appraise the feasibility of Girad's linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic......The chief purpose of this paper is to appraise the feasibility of Girad's linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic...

  18. How to model normative behavior in Petri nets

    OpenAIRE

    Raskin, J.-F.; Tan, Yao-Hua; Torre, L.W.N.

    1996-01-01

    textabstractIn this paper, we show how to extend the Petri net formalism to represent different types of behavior, in particular normative behavior. This extension is motivated by the use of Petri nets to model bureaucratic procedures, which contain normative aspects like obligations and permissions. We propose to extend Petri nets with a preference relation, a well-known mechanism from deontic logic to discriminate between ideal and varying sub-ideal states.

  19. SOFTWARE DESIGN MODELLING WITH FUNCTIONAL PETRI NETS

    African Journals Online (AJOL)

    Dr Obe

    Mathematics and Physics at the Technische. Universitat Darmstadt, Germany [9]. Since then the use and study .... to its output places by 1, in one multiple assignment. The iteration construct is adirect consequence of ... synchronization, parallelism, choice, and iteration. However, Petri nets describing real processes tend to ...

  20. Modeling Background Radiation in our Environment Using Geochemical Data

    Energy Technology Data Exchange (ETDEWEB)

    Malchow, Russell L.; Marsac, Kara [University of Nevada, Las Vegas; Burnley, Pamela [University of Nevada, Las Vegas; Hausrath, Elisabeth [Uniiversity of Nevada, Las Vegas; Haber, Daniel [University of Nevada, Las Vegas; Adcock, Christopher [University of Nevada, Las Vegas

    2015-02-01

    Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation: D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.

  1. A Fuzzy Petri Nets Model for Computing With Words

    OpenAIRE

    Cao, Yongzhi; Chen, Guoqing

    2009-01-01

    Motivated by Zadeh's paradigm of computing with words rather than numbers, several formal models of computing with words have recently been proposed. These models are based on automata and thus are not well-suited for concurrent computing. In this paper, we incorporate the well-known model of concurrent computing, Petri nets, together with fuzzy set theory and thereby establish a concurrency model of computing with words--fuzzy Petri nets for computing with words (FPNCWs). The new feature of ...

  2. Uranium(VI) transport modeling: geochemical data and submodels

    International Nuclear Information System (INIS)

    Tripathi, V.S.

    1984-01-01

    Understanding the geochemical mobility of U(VI) and modeling its transport is important in several contexts including ore genesis, uranium exploration, nuclear and mill-tailings waste management, and solution mining of uranium ores. Adsorption is a major control on partitioning of solutes at the mineral/solution interface. The effect of carbonate, fluoride, and phosphate complexing on adsorption of uranium was investigated. A critical compilation of stability constants of inorganic complexes and solid compounds of U(VI) necessary for proper design of experiment and for modeling transport of uranium was prepared. The general features of U(VI) adsorption in ligand-free systems are similar to those characteristic of other hydrolyzable metal ions. The adsorption processes studied were found to be reversible. The adsorption model developed in ligand-free systems, when solution complexing is taken into account, proved remarkably successful in describing adsorption of uranium in the presence of carbonate and fluoride. The presence of phosphate caused a much smaller decrease in the extent of adsorption than expected; however, a critical reassessment of the stability of UO 2 2+ .HPO 4 2- complexes, showed that phosphato complexes, if any, are extremely weak under experimental conditions. Removal of uranium may have occurred due to precipitation of sodium uranyl phosphates in addition to adsorption

  3. How to model normative behavior in Petri nets

    NARCIS (Netherlands)

    J.-F. Raskin; Y-H. Tan (Yao-Hua); L.W.N. van der Torre

    1996-01-01

    textabstractIn this paper, we show how to extend the Petri net formalism to represent different types of behavior, in particular normative behavior. This extension is motivated by the use of Petri nets to model bureaucratic procedures, which contain normative aspects like obligations and

  4. Evaporation of J13 water: laboratory experiments and geochemical modeling

    International Nuclear Information System (INIS)

    Dibley, M.J.; Knauss, K.G.; Rosenberg, N.D.

    1999-01-01

    We report results from experiments on the evaporative chemical evolution of synthetic J13 water, representative of water from well J13, a common reference water in the Yucca Mountain Project. Data include anion and cation analysis and qualitative mineral identification for a series of open system experiments, with and without crushed tuff present, conducted at sub-boiling temperatures. Ca and Mg precipitated readily as carbonates and anions Cl, F, NO 3 and SO 4 remained in solution in nearly identical ratios. The pH stabilized at about 10. After ∼ 1000x concentration, the minerals formed were amorphous silica, aragonite and calcite. The presence of tuff appears to have very little effect on the relative distribution of the anions in solution, except for possibly F, which had a relatively lower concentration ratio. The Si was lower in the solutions with tuff present suggesting that the tuff enhances SiO 2 precipitation. Even though the tools to model highly-concentrated salt solutions are limited, we compare our experimental results with the results of geochemical models, with (perhaps) surprising good results. In response to different assumed CO 2 levels, pH varied, but anion concentrations were not greatly affected

  5. SIMULATION MODELING OF IT PROJECTS BASED ON PETRI NETS

    Directory of Open Access Journals (Sweden)

    Александр Михайлович ВОЗНЫЙ

    2015-05-01

    Full Text Available An integrated simulation model of IT project based on a modified Petri net model that combines product and model of project tasks has been proposed. Substantive interpretation of the components of the simulation model has been presented, the process of simulation has been described. The conclusions about the integration of the product model and the model of works project were made.

  6. Geochemical Modeling Of F Area Seepage Basin Composition And Variability

    International Nuclear Information System (INIS)

    Millings, M.; Denham, M.; Looney, B.

    2012-01-01

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin

  7. Data Sources for NetZero Ft Carson Model

    Data.gov (United States)

    U.S. Environmental Protection Agency — Table of values used to parameterize and evaluate the Ft Carson NetZero integrated Model with published reference sources for each value. This dataset is associated...

  8. A framework for quantifying net benefits of alternative prognostic models

    OpenAIRE

    Rapsomaniki, E.; White, I.R.; Wood, A.M.; Thompson, S.G.; Ford, I.

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measure...

  9. A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media.

    Science.gov (United States)

    Sun, N; Elimelech, M; Sun, N Z; Ryan, J N

    2001-06-01

    A two-dimensional model for colloid transport in geochemically and physically heterogeneous porous media is presented. The model considers patchwise geochemical heterogeneity, which is suitable to describe the chemical variability of many surficial aquifers with ferric oxyhydroxide-coated porous matrix, as well as spatial variability of hydraulic conductivity, which results in heterogeneous flow field. The model is comprised of a transient fluid flow equation, a transient colloid transport equation, and an equation for the dynamics of colloid deposition and release. Numerical simulations were carried out with the model to investigate the colloid transport behavior in layered and randomly heterogeneous porous media. Results demonstrate that physical and geochemical heterogeneities markedly affect the colloid transport behavior. Layered physical or geochemical heterogeneity can result in distinct preferential flow paths of colloidal particles. Furthermore, the combined effect of layered physical and geochemical heterogeneity may result in enhanced or reduced preferential flow of colloids. Random distribution of physical heterogeneity (hydraulic conductivity) results in a random flow field and an irregularly distributed colloid concentration profile in the porous medium. Contrary to random physical heterogeneity, the effect of random patchwise geochemical heterogeneity on colloid transport behavior is not significant. It is mostly the mean value of geochemical heterogeneity rather than its distribution that governs the colloid transport behavior.

  10. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily....... The performance of the empirical models was nearly identical at all sites. Since the empirical models were easier to use and simpler to calibrate than the physically based models, the results indicate that the empirical models can be used as a good substitute for the physically based ones when available...

  11. Geochemical databases. Part 1. Pmatch: a program to manage thermochemical data. Part 2. The experimental validation of geochemical computer models

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.; Avis, J.D.; Nilsson, K.; Skytte Jensen, B.

    1993-01-01

    This work is carried out under cost-sharing contract with European Atomic Energy Community in the framework of its programme on Management and Storage of Radioactive Wastes. Part 1: PMATCH, A Program to Manage Thermochemical Data, describes the development and use of a computer program, by means of which new thermodynamic data from literature may be referenced to a common frame and thereby become internally consistent with an existing database. The report presents the relevant thermodynamic expressions and their use in the program is discussed. When there is not sufficient thermodynamic data available to describe a species behaviour under all conceivable conditions, the problems arising are thoroughly discussed and the available data is handled by approximating expressions. Part II: The Experimental Validation of Geochemical Computer models are the results of experimental investigations of the equilibria established in aqueous suspensions of mixtures of carbonate minerals (Calcium, magnesium, manganese and europium carbonates) compared with theoretical calculations made by means of the geochemical JENSEN program. The study revealed that the geochemical computer program worked well, and that its database was of sufficient validity. However, it was observed that experimental difficulties could hardly be avoided, when as here a gaseous component took part in the equilibria. Whereas the magnesium and calcium carbonates did not demonstrate mutual solid solubility, this produced abnormal effects when manganese and calcium carbonates were mixed resulting in a diminished solubility of both manganese and calcium. With tracer amounts of europium added to a suspension of calcite in sodium carbonate solutions long term experiments revealed a transition after 1-2 months, whereby the tracer became more strongly adsorbed onto calcite. The transition is interpreted as the nucleation and formation of a surface phase incorporating the 'species' NaEu(Co 3 ) 2

  12. Net Balanced Floorplanning Based on Elastic Energy Model

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    Floorplanning is becoming more and more important in VLSI design flows, especially for system-on-chip (SoC) designs where IP blocks dominate standard cells. Moreover, in deep sub-micron technologies, where process variations can introduce extra signal skew, it is desirable to have floorplans...... with balanced net delays to increase the safety margins of the design. In this paper, we investigate the properties of floorplanning based on the elastic energy model. The B*-tree, which is based on an ordered binary tree, is used for circuit representation and the elastic energy is used as the cost function....... To evaluate how well a net is balanced, we introduced a new metric 'unbalancing'. A more balanced net would have a smaller 'unbalancing' value. Experimental results show that our approach can not only meet fixed-outline constraints, but also achieve significant improvements in net balance for all the circuits...

  13. Applications of geochemical modeling to site characterization and radionuclide transport in the NNWSI project

    International Nuclear Information System (INIS)

    Kerrisk, J.F.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations project (NNWSI) is studying a site at Yucca Mountain, in southern Nevada, as a possible nuclear waste repository. Los Alamos National Laboratory is responsible for the geochemical aspects of site characterization at Yucca Mountain. Geochemical models are being used in site characterization to help understand (a) local water chemistry, (b) local mineralogy, (c) the relation between water chemistry and mineralogy, and (d) the effects of water chemistry and mineralogy on waste-element solubility and transport

  14. A framework for quantifying net benefits of alternative prognostic models

    NARCIS (Netherlands)

    Rapsomaniki, E.; White, I.R.; Wood, A.M.; Thompson, S.G.; Feskens, E.J.M.; Kromhout, D.

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit)

  15. Introduction of computational models to PhysioNet.

    Science.gov (United States)

    Mukkamala, R; Moody, G B; Mark, R G

    2001-01-01

    PhysioNet is a national research resource that provides experimental data sets and open-source software for their analysis. Computational modeling can complement studies of these experimental data sets so as to facilitate the advancement of physiologic research. Thus, in order to introduce computational models to PhysioNet, we have developed and posted a cardiovascular model designed for research that generates reasonable human pulsatile hemodynamic waveforms, cardiac output and venous return curves, and beat-to-beat variability. Some of the key features of the software include: 1) compatibility with PhysioNet's open-source data analysis software; 2) online viewing and parameter updating as the data are being calculated; 3) off-line viewing after completion of the simulation; 4) pre-compiled Linux binaries; 5) open-source code that may be compiled on other platforms; and 6) an extensive user's manual and software guide.

  16. Risk evaluation of uranium mining: A geochemical inverse modelling approach

    Science.gov (United States)

    Rillard, J.; Zuddas, P.; Scislewski, A.

    2011-12-01

    It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the

  17. Compositional model checking of concurrent systems, with Petri nets

    Directory of Open Access Journals (Sweden)

    Paweł Sobociński

    2016-03-01

    Full Text Available Compositionality and process equivalence are both standard concepts of process algebra. Compositionality means that the behaviour of a compound system relies only on the behaviour of its components, i.e. there is no emergent behaviour. Process equivalence means that the explicit statespace of a system takes a back seat to its interaction patterns: the information that an environment can obtain though interaction. Petri nets are a classical, yet widely used and understood, model of concurrency. Nevertheless, they have often been described as a non-compositional model, and tools tend to deal with monolithic, globally-specified models. This tutorial paper concentrates on Petri Nets with Boundaries (PNB: a compositional, graphical algebra of 1-safe nets, and its applications to reachability checking within the tool Penrose. The algorithms feature the use of compositionality and process equivalence, a powerful combination that can be harnessed to improve the performance of checking reachability and coverability in several common examples where Petri nets model realistic concurrent systems.

  18. Transactions on Petri Nets and Other Models of Concurrency V

    DEFF Research Database (Denmark)

    The fifth volume of ToPNoC contains revised versions of selected papers from workshops and tutorials held in conjunction with the 31st International Conference on Application and Theory of Petri Nets and Other Models of Concurrency, as well as a contributed paper selected through the regular subm...

  19. Software Design Modelling with Functional Petri Nets | Bakpo ...

    African Journals Online (AJOL)

    In this paper, an equivalent functional Petri Net (FPN) model is developed for each of the three constructs of structured programs and a FPN Software prototype proposed for the conventional programming construct: if-then-else statement. The motivating idea is essentially to show that FPNs could be used as an alternative ...

  20. Transactions on Petri Nets and Other Models of Concurrency VII

    DEFF Research Database (Denmark)

    nets and other models of concurrency, ranging from theoretical work to tool support and industrial applications. ToPNoC issues are published as LNCS volumes, and hence are widely distributed and indexed. This Journal has its own Editorial Board which selects papers based on a rigorous two...

  1. A framework for quantifying net benefits of alternative prognostic models

    DEFF Research Database (Denmark)

    Rapsomaniki, Eleni; White, Ian R; Wood, Angela M

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit......) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measures and can be used in full health economic evaluations of prognostic models used for screening and allocating risk...... risk factors instead of a model with just age, gender and region. We explore methodological issues associated with the multistudy design and show that cost-effectiveness comparisons based on the proposed methodology are robust against a range of modelling assumptions, including adjusting for competing...

  2. Applications of geochemical modeling to high-level nuclear waste disposal at the Hanford site, Washington

    International Nuclear Information System (INIS)

    Early, T.O.; Myers, J.; Jenne, E.A.

    1985-01-01

    The current and projected uses of geochemical models by the Basalt Waste Isolation Project (BWIP) focus on two segments of the repository system and their associated long-term goals. These segments are the waste package and far-field environments. The long-term goals relative to the waste package environment are to: understand important solid/water reactions which control the waste package environment (Eh, pH, groundwater composition) during the thermal period; and to understand the controls on steady-state solution concentrations of key radionuclides to provide a source term for waste package radionuclide release modeling. The long-term goals relative to the far-field environment are to: understand important geochemical controls on dissolved constituents of the preemplacement groundwater flow system; provide geochemical support for conceptual groundwater flow models; and to obtain bounding information relative to the geochemical fate of radionuclides along likely flow paths to the accessible environment. Geochemical modeling applications in both areas are discussed

  3. Complex accident scenarios modelled and analysed by Stochastic Petri Nets

    International Nuclear Information System (INIS)

    Nývlt, Ondřej; Haugen, Stein; Ferkl, Lukáš

    2015-01-01

    This paper is focused on the usage of Petri nets for an effective modelling and simulation of complicated accident scenarios, where an order of events can vary and some events may occur anywhere in an event chain. These cases are hardly manageable by traditional methods as event trees – e.g. one pivotal event must be often inserted several times into one branch of the tree. Our approach is based on Stochastic Petri Nets with Predicates and Assertions and on an idea, which comes from the area of Programmable Logic Controllers: an accidental scenario is described as a net of interconnected blocks, which represent parts of the scenario. So the scenario is firstly divided into parts, which are then modelled by Petri nets. Every block can be easily interconnected with other blocks by input/output variables to create complex ones. In the presented approach, every event or a part of a scenario is modelled only once, independently on a number of its occurrences in the scenario. The final model is much more transparent then the corresponding event tree. The method is shown in two case studies, where the advanced one contains a dynamic behavior. - Highlights: • Event & Fault trees have problems with scenarios where an order of events can vary. • Paper presents a method for modelling and analysis of dynamic accident scenarios. • The presented method is based on Petri nets. • The proposed method solves mentioned problems of traditional approaches. • The method is shown in two case studies: simple and advanced (with dynamic behavior)

  4. An evaluation of geochemical models of bentonite pore water evolution

    International Nuclear Information System (INIS)

    Savage, D.; Watson, C.E.; Wilson, J.C.; Arthur, R.C.; Stroemberg, B.

    2010-01-01

    (Donnan exclusion?) which inhibited diffusion of solutes to greater depths in the experiments. In conclusion, the modelling does not support the view that because smectite dissolution is slow, it is a process of minor importance in the geochemical evolution of the EBS. The effects of smectite dissolution on the chemistry of bentonite pore waters would be essentially undetectable over time scales of a few years, but when both reaction kinetics and precipitation of secondary phases are included in the simulations, significant changes in solution chemistry and mineralogy are predicted to occur over time scales that are relevant to EBS evolution (hundreds to thousands of years). The simulations are of a scoping nature and do not fully account for uncertainties related to the variable chemistry of the smectite clays, the nature of porosity in compacted clays, the reactive surface area of smectite, and the thermodynamic properties of clay minerals. Studies of natural systems could provide a new perspective on these uncertainties, and provide approaches that could be used to resolve them. (authors)

  5. Modeling ion exchange in clinoptilolite using the EQ3/6 geochemical modeling code

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-06-01

    Assessing the suitability of Yucca Mtn., NV as a potential repository for high-level nuclear waste requires the means to simulate ion-exchange behavior of zeolites. Vanselow and Gapon convention cation-exchange models have been added to geochemical modeling codes EQ3NR/EQ6, allowing exchange to be modeled for up to three exchangers or a single exchanger with three independent sites. Solid-solution models that are numerically equivalent to the ion-exchange models were derived and also implemented in the code. The Gapon model is inconsistent with experimental adsorption isotherms of trace components in clinoptilolite. A one-site Vanselow model can describe adsorption of Cs or Sr on clinoptilolite, but a two-site Vanselow exchange model is necessary to describe K contents of natural clinoptilolites

  6. A framework for quantifying net benefits of alternative prognostic models.

    Science.gov (United States)

    Rapsomaniki, Eleni; White, Ian R; Wood, Angela M; Thompson, Simon G

    2012-01-30

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measures and can be used in full health economic evaluations of prognostic models used for screening and allocating risk reduction interventions. We extend previous work in this area by quantifying net benefits in life years, thus linking prognostic performance to health economic measures; by taking full account of the occurrence of events over time; and by considering estimation and cross-validation in a multiple-study setting. The method is illustrated in the context of cardiovascular disease risk prediction using an individual participant data meta-analysis. We estimate the number of cardiovascular-disease-free life years gained when statin treatment is allocated based on a risk prediction model with five established risk factors instead of a model with just age, gender and region. We explore methodological issues associated with the multistudy design and show that cost-effectiveness comparisons based on the proposed methodology are robust against a range of modelling assumptions, including adjusting for competing risks. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Basic concepts and formulations for isotope geochemical modelling of groundwater systems

    International Nuclear Information System (INIS)

    Kalin, R.M.

    1996-01-01

    This chapter describes the basic chemical principles and methodologies for geochemical models and their use in the field of isotope hydrology. Examples of calculation procedures are given on actual field data. Summary information on available PC software for geochemical modeling is included. The specific software, NETPATH, which can be used for chemical speciation, mass balance and isotope balance along a flow path in groundwater systems, is discussed at some length with an illustrative example of its application to field data. (author). Refs, 14 figs, 15 tabs

  8. Influence of ammonia on leaching behaviors of incineration fly ash and its geochemical modeling

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Guan, Zhen Zhen; Chen, De Zhen

    2013-01-01

    of dissolved organic carbon (DOC) and metals from incineration fly ash in the pH range of 3.66-12.44 with an active ammonia spike. A geochemical modeling software Visual MINTEQ was adopted to calculate the chemical speciation of metals under the leaching conditions to reveal the mechanism behind the impacts...

  9. Geochemical modeling of the nuclear-waste repository system. A status report

    International Nuclear Information System (INIS)

    Deutsch, W.J.

    1980-12-01

    The primary objective of the geochemical modeling task is to develop an understanding of the waste-repository geochemical system and provide a valuable tool for estimating future states of that system. There currently exists a variety of computer codes which can be used in geochemical modeling studies. Some available codes contain the framework for simulating a natural chemical system and estimating, within limits, the response of that system to environmental changes. By data-base enhancement and code development, this modeling technique can be even more usefully applied to a nuclear-waste repository. In particular, thermodynamic data on elements not presently in the data base but identified as being of particular hazard in the waste-repository system, need to be incorporated into the code to estimate the near-field as well as the far-field reactions during a hypothetical breach. A reaction-path-simulation code, which estimates the products of specific rock/water reactions, has been tested using basalt and ground water. Results show that the mass-transfer capabilities of the code will be useful in chemical-evolution studies and scenario analyses. The purpose of this report is to explain the status of geochemical modeling as it currently applies to the chemical system of a hypothetical nuclear-waste repository in basalt and to present the plan proposed for further developmet and application

  10. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  11. A Geochemical Reaction Model for Titration of Contaminated Soil and Groundwater at the Oak Ridge Reservation

    Science.gov (United States)

    Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.

    2007-12-01

    This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.

  12. Petri net modeling of encrypted information flow in federated cloud

    Science.gov (United States)

    Khushk, Abdul Rauf; Li, Xiaozhong

    2017-08-01

    Solutions proposed and developed for the cost-effective cloud systems suffer from a combination of secure private clouds and less secure public clouds. Need to locate applications within different clouds poses a security risk to the information flow of the entire system. This study addresses this by assigning security levels of a given lattice to the entities of a federated cloud system. A dynamic flow sensitive security model featuring Bell-LaPadula procedures is explored that tracks and authenticates the secure information flow in federated clouds. Additionally, a Petri net model is considered as a case study to represent the proposed system and further validate the performance of the said system.

  13. A Quantitative Geochemical Target for Modeling the Formation of the Earth and Moon

    Science.gov (United States)

    Boyce, Jeremy W.; Barnes, Jessica J.; McCubbin, Francis M.

    2017-01-01

    The past decade has been one of geochemical, isotopic, and computational advances that are bringing the laboratory measurements and computational modeling neighborhoods of the Earth-Moon community to ever closer proximity. We are now however in the position to become even better neighbors: modelers can generate testable hypthotheses for geochemists; and geochemists can provide quantitive targets for modelers. Here we present a robust example of the latter based on Cl isotope measurements of mare basalts.

  14. Field-based tests of geochemical modeling codes: New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions

  15. Field-based tests of geochemical modeling codes usign New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1994-06-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions

  16. Detection and Modeling of Cyber Attacks with Petri Nets

    Directory of Open Access Journals (Sweden)

    Bartosz Jasiul

    2014-12-01

    Full Text Available The aim of this article is to present an approach to develop and verify a method of formal modeling of cyber threats directed at computer systems. Moreover, the goal is to prove that the method enables one to create models resembling the behavior of malware that support the detection process of selected cyber attacks and facilitate the application of countermeasures. The most common cyber threats targeting end users and terminals are caused by malicious software, called malware. The malware detection process can be performed either by matching their digital signatures or analyzing their behavioral models. As the obfuscation techniques make the malware almost undetectable, the classic signature-based anti-virus tools must be supported with behavioral analysis. The proposed approach to modeling of malware behavior is based on colored Petri nets. This article is addressed to cyber defense researchers, security architects and developers solving up-to-date problems regarding the detection and prevention of advanced persistent threats.

  17. Development of thermodynamic databases and geochemical/transport models for prediction of long-term radionuclide migration (Germany)

    International Nuclear Information System (INIS)

    Kienzler, B.

    2000-01-01

    The isolation capacity of a repository system for radionuclides is described by geochemical modeling. The models for interpretation of experimental findings and for long-term extrapolation of experimental results are based on thermodynamic approaches. The geochemical models include dissolution reactions of waste forms, the evolution of the geochemical milieu, interactions of radionuclides with constituents of the groundwater (brines) and the precipitation of new solid phases. Reliable thermodynamic data, understanding of radionuclide complexation in aqueous multi-electrolyte solutions at the relevant ionic strength and knowledge on the formation of pure and mixed solids and on sorption processes are urgently needed for such model calculations. (author)

  18. Fault condition stress analysis of NET 16 TF coil model

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1992-04-01

    As part of the design process of the NET/ITER toroidal field coils (TFCs), the mechanical behaviour of the magnetic system under fault conditions has to be analysed in some detail. Under fault conditions, either electrical or mechanical, the magnetic loading of the coils becomes extreme and further mechanical failure of parts of the overall structure might occur (e.g. failure of the coil, gravitational support, intercoil structure). The mechanical behaviour of the magnetic system under fault conditions has been analysed with a finite element model of the complete TFC system. The analysed fault conditions consist of: a thermal fault, electrical faults and mechanical faults. The mechanical faults have been applied simultaneously with an electrical fault. This report described the work carried out to create the finite element model of 16 TFCs and contains an extensive presentation of the results, obtained with this model, of a normal operating condition analysis and 9 fault condition analyses. Chapter 2-5 contains a detailed description of the finite element model, boundary conditions and loading conditions of the analyses made. Chapters 2-4 can be skipped if the reader is only interested in results. To understand the results presented chapter 6 is recommended, which contains a detailed description of all analysed fault conditions. The dimensions and geometry of the model correspond to the status of the NET/ITER TFC design of May 1990. Compared with previous models of the complete magnetic system, the finite element model of 16 TFCs is 'detailed', and can be used for linear elastic analysis with faulted loads. (author). 8 refs.; 204 figs.; 134 tabs

  19. Relating soil geochemical properties to arsenic bioaccessibility through hierarchical modeling.

    Science.gov (United States)

    Interest in improved understanding of relationships among soil properties and arsenic (As) bioaccessibility has motivated the use of regression models for As bioaccessibility prediction. However, limits in the numbers and types of soils included in previous studies restrict the u...

  20. Geochemical Testing And Model Development - Residual Tank Waste Test Plan

    International Nuclear Information System (INIS)

    Cantrell, K.J.; Connelly, M.P.

    2010-01-01

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  1. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CANTRELL KJ; CONNELLY MP

    2010-03-09

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  2. Relating soil geochemical properties to arsenic bioaccessibility through hierarchical modeling.

    Science.gov (United States)

    Nelson, Clay M; Li, Kevin; Obenour, Daniel R; Miller, Jonathan; Misenheimer, John C; Scheckel, Kirk; Betts, Aaron; Juhasz, Albert; Thomas, David J; Bradham, Karen D

    2018-01-01

    Interest in improved understanding of relationships among soil properties and arsenic (As) bioaccessibility has motivated the use of regression models for As bioaccessibility prediction. However, limits in the numbers and types of soils included in previous studies restrict the usefulness of these models beyond the range of soil conditions evaluated, as evidenced by reduced predictive performance when applied to new data. In response, hierarchical models that consider variability in relationships among soil properties and As bioaccessibility across geographic locations and contaminant sources were developed to predict As bioaccessibility in 139 soils on both a mass fraction (mg/kg) and % basis. The hierarchical approach improved the estimation of As bioaccessibility in studied soils. In addition, the number of soil elements identified as statistically significant explanatory variables increased when compared to previous investigations. Specifically, total soil Fe, P, Ca, Co, and V were significant explanatory variables in both models, while total As, Cd, Cu, Ni, and Zn were also significant in the mass fraction model and Mg was significant in the % model. This developed hierarchical approach provides a novel tool to (1) explore relationships between soil properties and As bioaccessibility across a broad range of soil types and As contaminant sources encountered in the environment and (2) identify areas of future mechanistic research to better understand the complexity of interactions between soil properties and As bioaccessibility.

  3. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-01-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments

  4. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    Science.gov (United States)

    Ellefsen, Karl J.; Smith, David

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.

  5. Modelling the closure-related geochemical evolution of groundwater at a former uranium mine.

    Science.gov (United States)

    Bain, J G; Mayer, K U; Blowes, D W; Frind, E O; Molson, J W; Kahnt, R; Jenk, U

    2001-11-01

    A newly developed reactive transport model was used to evaluate the potential effects of mine closure on the geochemical evolution in the aquifer downgradient from a mine site. The simulations were conducted for the Königstein uranium mine located in Saxony, Germany. During decades of operation, uranium at the former mine site had been extracted by in situ acid leaching of the ore underground, while the mine was maintained in a dewatered condition. One option for decommissioning is to allow the groundwater level to rise to its natural level, flooding the mine workings. As a result, pore water containing high concentrations of dissolved metals, radionuclides, and sulfate may be released. Additional contamination may arise due to the dissolution of minerals contained in the aquifer downgradient of the mine. On the other hand, dissolved metals may be attenuated by reactions within the aquifer. The geochemical processes and interactions involved are highly non-linear and their impact on the quality of the groundwater and surface water downstream of the mine is not always intuitive. The multicomponent reactive transport model MIN3P, which can describe mineral dissolution-precipitation reactions, aqueous complexation, and oxidation-reduction reactions, is shown to be a powerful tool for investigating these processes. The predictive capabilities of the model are, however, limited by the availability of key geochemical parameters such as the presence and quantities of primary and secondary mineral phases. Under these conditions, the model can provide valuable insight by means of sensitivity analyses.

  6. Error Propagation in Equations for Geochemical Modeling of ...

    Indian Academy of Sciences (India)

    This paper presents error propagation equations for modeling of radiogenic isotopes during mixing of two components or end-members. These equations can be used to estimate errors on an isotopic ratio in the mixture of two components, as a function of the analytical errors or the total errors of geological field sampling ...

  7. GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling

    International Nuclear Information System (INIS)

    Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas

    2015-01-01

    Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and

  8. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  9. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration - Literature Review

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-01-01

    Permanent storage of anthropogenic CO 2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO 2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO 2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO 2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO 2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO 2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO 2 sequestration. A review of thermodynamic data for CO 2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO 2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO 2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO 2 and CH 4 gases, carbonate aqueous species, and carbonate minerals. Values of Δ f G 298 o and/or log K r,298 o are available for essentially all of these compounds. However, log K r,T o or heat capacity values at temperatures above 298 K exist

  10. GEM-SELEKTOR Geochemical Modeling Package: TSolMod library and data interface for multicomponent phase models

    OpenAIRE

    Wagner T.; Kulik D. A.; Hingerl F. F.; Dmytrieva S. V.

    2012-01-01

    The development of highly accurate and computationally efficient modeling software based on Gibbs energy minimization (GEM) makes it possible to thermodynamically simulate geochemically realistic subsurface fluid rock interaction processes. This involves consideration of non ideal multicomponent multiphase systems that include dilute to concentrated aqueous electrolyte solutions mineral solid solutions supercritical fluids silicate and metal melts and sorption and ion exchange phases. Predict...

  11. Modelling safety of gantry crane operations using Petri nets.

    Science.gov (United States)

    Singh, Karmveer; Raj, Navneet; Sahu, S K; Behera, R K; Sarkar, Sobhan; Maiti, J

    2017-03-01

    Being a powerful tool in modelling industrial and service operations, Petri net (PN) has been extremely used in different domains, but its application in safety study is limited. In this study, we model the gantry crane operations used for industrial activities using generalized stochastic PNs. The complete cycle of operations of the gantry crane is split into three parts namely inspection and loading, movement of load, and unloading of load. PN models are developed for all three parts and the whole system as well. The developed PN models have captured the safety issues through reachability tree. The hazardous states are identified and how they ultimately lead to some unwanted accidents is demonstrated. The possibility of falling of load and failure of hook, sling, attachment and hoist rope are identified. Possible suggestions based on the study are presented for redesign of the system. For example, mechanical stoppage of operations in case of loosely connected load, and warning system for use of wrong buttons is tested using modified models.

  12. Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Larsen, Flemming; Hue, N.T.M.

    2007-01-01

    chemistry over depth is homogeneous and a reactive transport model was constructed to quantify the geochemical processes along the vertical groundwater flow component. A redox zonation model was constructed using the partial equilibrium approach with organic carbon degradation in the sediment as the only...... rate controlling parameter. Apart from the upper meter a constant degradation rate of 0.15 C mmol/L/yr could explain the redox zonation throughout the aquifer. Modeling also indicates that the Fe-oxide being reduced is of a stable type like goethite or hematite. Arsenic is contained in the Fe...

  13. Modules based on the geochemical model PHREEQC for use in scripting and programming languages

    Science.gov (United States)

    Charlton, Scott R.; Parkhurst, David L.

    2011-01-01

    The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server—for example, Excel®, Visual Basic®, Python, or MATLAB". PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations.

  14. Modelling of dynamics through fuzzy enhanced high level petri net

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Peterson. 1981; Desrochers et al ... The various extensions of PNs include predicate/transition nets (P/T nets) (Generich &. Lautenbach 1979) ..... PCTLC is the set of control places; PTNLC is the set of transition places; PFZ is the set of fuzzy places.

  15. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC

    Science.gov (United States)

    Parkhurst, David L.; Wissmeier, Laurin

    2015-09-01

    PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst-Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants. PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.

  16. Colloid transport in a geochemically heterogeneous porous medium: aquifer tank experiment and modeling.

    Science.gov (United States)

    Loveland, Jonathan P; Bhattacharjee, Subir; Ryan, Joseph N; Elimelech, Menachem

    2003-09-01

    To examine colloid transport in geochemically heterogeneous porous media at a scale comparable to field experiments, we monitored the migration of silica-coated zirconia colloids in a two-dimensional layered porous media containing sand coated to three different extents by ferric oxyhydroxides. Transport of the colloids was measured over 1.65 m and 95 days. Colloid transport was modeled by an advection-dispersion-deposition equation incorporating geochemical heterogeneity and colloid deposition dynamics (blocking). Geochemical heterogeneity was represented as favorable (ferric oxyhydroxide-coated) and unfavorable (uncoated sand) deposition surface areas. Blocking was modeled as random sequential adsorption (RSA). Release of deposited colloids was negligible. The time to colloid breakthrough after the onset of blocking increased with increasing ferric oxyhydroxide-coated surface area. As the ferric oxyhydroxide surface area increased, the concentration of colloids in the breakthrough decreased. Model-fits to the experimental data were made by inverse solutions to determine the fraction of surface area favorable for deposition and the deposition rate coefficients for the favorable (ferric oxyhydroxide-coated) and unfavorable sites. The favorable deposition rate coefficient was also calculated by colloid filtration theory. The model described the time to colloid breakthrough and the blocking effect reasonably well and estimated the favorable surface area fraction very well for the two layers with more than 1% ferric oxyhydroxide coating. If mica edges in the uncoated sand were considered as favorable surface area in addition to the ferric oxyhydroxide coatings, the model predicted the favorable surface area fraction accurately for the layer with less than 1% ferric oxyhydroxide coating.

  17. Perceiving the Crust in 3-D: A Model Integrating Geological, Geochemical, and Geophysical Data

    Science.gov (United States)

    Strati, Virginia; Wipperfurth, Scott A.; Baldoncini, Marica; McDonough, William F.; Mantovani, Fabio

    2017-12-01

    Regional characterization of the continental crust has classically been performed through either geologic mapping, geochemical sampling, or geophysical surveys. Rarely are these techniques fully integrated, due to limits of data coverage, quality, and/or incompatible data sets. We combine geologic observations, geochemical sampling, and geophysical surveys to create a coherent 3-D geologic model of a 50 × 50 km upper crustal region surrounding the SNOLAB underground physics laboratory in Canada, which includes the Southern Province, the Superior Province, the Sudbury Structure, and the Grenville Front Tectonic Zone. Nine representative aggregate units of exposed lithologies are geologically characterized, geophysically constrained, and probed with 109 rock samples supported by compiled geochemical databases. A detailed study of the lognormal distributions of U and Th abundances and of their correlation permits a bivariate analysis for a robust treatment of the uncertainties. A downloadable 3-D numerical model of U and Th distribution defines an average heat production of 1.5-0.7+1.4 µW/m3, and predicts a contribution of 7.7-3.0+7.7 TNU (a Terrestrial Neutrino Unit is one geoneutrino event per 1032 target protons per year) out of a crustal geoneutrino signal of 31.1-4.5+8.0 TNU. The relatively high local crust geoneutrino signal together with its large variability strongly restrict the SNO+ capability of experimentally discriminating among BSE compositional models of the mantle. Future work to constrain the crustal heat production and the geoneutrino signal at SNO+ will be inefficient without more detailed geophysical characterization of the 3-D structure of the heterogeneous Huronian Supergroup, which contributes the largest uncertainty to the calculation.

  18. Geochemical modeling of groundwater in southern plain area of Pengyang County, Ningxia, China

    Directory of Open Access Journals (Sweden)

    Pei-yue Li

    2010-09-01

    Full Text Available The purpose of this paper is to examine the evolution mechanisms of a hydrochemical field and to promote its benefits to the living standards of local people and to the local economy in the southern plain area of Pengyang County, in Ningxia, China. Based on understanding of the hydrogeological conditions in Pengyang County, the chemical evolution characteristics of groundwater in the plain area were analyzed. PHREEQC geochemical modeling software was used to perform hydrochemical modeling of water-rock interaction and to quantitatively analyze the evolution processes and the formation mechanisms of the local groundwater. Geochemical modeling was performed for two groundwater paths. The results showed that, along path 1, Na+ adsorption played the leading role in the precipitation process and its amount was the largest, up to 6.08 mmol/L; cation exchange was significant along path 1, while along simulated path 2, albite accounted for the largest amount of dissolution, reaching 9.06 mmol/L, and the cation exchange was not significant. According to the modeling results, along the groundwater flow path, calcite and dolomite showed oversaturated status with a precipitation trend, while the fluorite and gypsum throughout the simulated path were not saturated and showed a dissolution trend. The total dissolved solids (TDS increased and water quality worsened along the flow path. The dissolution reactions of albite, CO2, and halite, the exchange adsorption reaction of Na+, and the precipitation of sodium montmorillonite and calcite were the primary hydrogeochemical reactions, resulting in changes of hydrochemical ingredients.

  19. Equilibrium geochemical modeling of a seasonal thermal energy storage aquifer field test

    Science.gov (United States)

    Stottlemyre, J. S.

    1980-01-01

    A geochemical mathematical modeling study designed to investigate the well plugging problems encountered at the Auburn University experimental field tests is summarized. The results, primarily of qualitative interest, include: (1) loss of injectivity was probably due to a combination of native particulate plugging and clay swelling and dispersion; (2) fluid-fluid incompatibilities, hydrothermal reactions, and oxidation reactions were of insignificant magnitude or too slow to have contributed markedly to the plugging; and (3) the potential for and contributions from temperature-induced dissolved gas solubility reductions, capillary boundary layer viscosity increases, and microstructural deformation cannot be deconvolved from the available data.

  20. Using multifractal modeling as a standard tool in geochemical exploration for predicting mineralized areas

    Science.gov (United States)

    Gonçalves, Mario A.

    2015-04-01

    It has been 20 years since the pioneering work of Cheng et al (1994) first proposed a quantitative relationship for the areas enclosing concentration values of an element above given thresholds and their distribution in the field, known as concentration-area (CA) method, which is based in multifractal theory. The method allows the definition of geochemical anomalies in wide set of geological backgrounds but it took nearly 15 years before it became a widely used methodology for mineral exploration. The method was also extended to 1D and 3D data sets. It is worth noting the variety of methods that spanned from the theory of fractals. Building on previous models, including multiplicative cascades and size-grade relationships, increasing evidence points to the powerful tools of fractal theory to describe and model ore deposit distribution and formation. However, while much of these approaches become complex and not easy to use, the CA method is remarkable for its utter simplicity and disarming results obtained when confronted with the geological reality in the field. This is most valued by companies and professionals undertaking geochemical exploration surveys for the characterization or refining of potential ore targets or known mineralized areas. Several approaches have combined the CA method with geostatistic modeling and simulation and other established statistical techniques in order to enhance anomalous threshold identification. Examples are not restricted to geochemical exploration alone, other applications being studies on environmental change. Some of these examples will be addressed as they have been applied to different regions in the world, but particular emphasis will be put on geochemical exploration surveys in different geotectonic units of the Variscan basement in the Iberian Peninsula. These include quartz-vein gold mineralization in Northern Portugal and several surveys for base metals over two wide areas, which served to re-evaluate much of the

  1. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling

    Directory of Open Access Journals (Sweden)

    Anđelković Darko H.

    2012-01-01

    Full Text Available Distribution of chromium between soil and leachate was monitored. A natural process of percolating rainwater through the soil was simulated in the laboratory conditions and studied with column leaching extraction. Migration of chromium in the soil is conditioned by the level of chromium soil contamination, the soil organic matter content, and rainwater acidity. Chromium (III and chromium(VI were determined by spectrophotometric method with diphenilcarbazide in acidic media. Comparing the results of chromium speciation in leachate obtained by experimental model systems and geochemical modelling calculations using Visual MINTEQ model, a correlation was observed regarding the influence of the tested parameters. Leachate solutions showed that the concentration of Cr depended on the organic matter content. The influence of pH and soil organic matter content is in compliance after its definition through experimental and theoretical way. The computer model - Stockholm Humic Model used to evaluate the leaching results corresponded rather well with the measured values.

  2. Simulation of reactive geochemical transport in groundwater using a semi-analytical screening model

    Science.gov (United States)

    McNab, Walt W.

    1997-10-01

    A reactive geochemical transport model, based on a semi-analytical solution to the advective-dispersive transport equation in two dimensions, is developed as a screening tool for evaluating the impact of reactive contaminants on aquifer hydrogeochemistry. Because the model utilizes an analytical solution to the transport equation, it is less computationally intensive than models based on numerical transport schemes, is faster, and it is not subject to numerical dispersion effects. Although the assumptions used to construct the model preclude consideration of reactions between the aqueous and solid phases, thermodynamic mineral saturation indices are calculated to provide qualitative insight into such reactions. Test problems involving acid mine drainage and hydrocarbon biodegradation signatures illustrate the utility of the model in simulating essential hydrogeochemical phenomena.

  3. Arsenic mobilization in an oxidizing alkaline groundwater: Experimental studies, comparison and optimization of geochemical modeling parameters

    International Nuclear Information System (INIS)

    Hafeznezami, Saeedreza; Lam, Jacquelyn R.; Xiang, Yang; Reynolds, Matthew D.; Davis, James A.; Lin, Tiffany; Jay, Jennifer A.

    2016-01-01

    Arsenic (As) mobilization and contamination of groundwater affects millions of people worldwide. Progress in developing effective in-situ remediation schemes requires the incorporation of data from laboratory experiments and field samples into calibrated geochemical models. In an oxidizing aquifer where leaching of high pH industrial waste from unlined surface impoundments led to mobilization of naturally occurring As up to 2 mg L −1 , sequential extractions of solid phase As as well as, batch sediment microcosm experiments were conducted to understand As partitioning and solid-phase sorptive and buffering capacity. These data were combined with field data to create a series of geochemical models of the system with modeling programs PHREEQC and FITEQL. Different surface complexation modeling approaches, including component additivity (CA), generalized composite (GC), and a hybrid method were developed, compared and fitted to data from batch acidification experiments to simulate potential remediation scenarios. Several parameters strongly influence the concentration of dissolved As including pH, presence of competing ions (particularly phosphate) and the number of available sorption sites on the aquifer solids. Lowering the pH of groundwater to 7 was found to have a variable, but limited impact (<63%) on decreasing the concentration of dissolved As. The models indicate that in addition to lowering pH, decreasing the concentration of dissolved phosphate and/or increasing the number of available sorption sites could significantly decrease the As solubility to levels below 10 μg L −1 . The hybrid and GC modeling results fit the experimental data well (NRMSE<10%) with reasonable effort and can be implemented in further studies for validation. - Highlights: • Samples were collected from an oxidizing aquifer where high pH waste has led to mobilization of naturally occurring As. • Three surface complexation modeling approaches were used in modeling adsorption

  4. Experimental study and numerical modelling of geochemical reactions occurring during uranium in situ recovery (ISR) mining

    International Nuclear Information System (INIS)

    Ben Simon, R.

    2011-09-01

    The in situ Recovery (ISR) method consists of ore mining by in situ chemical leaching with acid or alkaline solutions. ISR takes place underground and is therefore limited to the analysis of the pumped solutions, hence ISR mine management is still empirical. Numerical modelling has been considered to achieve more efficient management of this process. Three different phenomena have to be taken into account for numerical simulations of uranium ISR mining: (1) geochemical reactions; (2) the kinetics of these reactions, and (3) hydrodynamic transport with respect to the reaction kinetics. Leaching tests have been conducted on ore samples from an uranium mine in Tortkuduk (Kazakhstan) where ISR is conducted by acid leaching. Two types of leaching experiments were performed: (1) tests in batch reactors; and (2) extraction in flow through columns. The assumptions deduced from the leaching tests were tested and validated by modelling the laboratory experiments with the numerical codes CHESS and HYTEC, both developed at the Geosciences research center of Mines ParisTech. A well-constrained 1D hydrogeochemical transport model of the ISR process at laboratory-scale was proposed. It enables to translate the chemical release sequence that is observed during experiments into a geochemical reaction sequence. It was possible to highlight the controlling factors of uranium dissolution, and the precipitation of secondary mineral phase in the deposit, as well as the determination of the relative importance of these factors. (author)

  5. Hydro-geochemical modeling of the spatial and the temporal geochemical variations of the granitic Strengbach catchment springs (Vosges massif, France)

    Science.gov (United States)

    Ackerer, Julien; Chabaux, François; Lucas, Yann; Pierret, Marie Claire; Viville, Daniel; Fritz, Bertrand; Clement, Alain; Beaulieu, Emilie; Negrel, Philippe

    2017-04-01

    Regular analysis of the major element concentrations in waters from springs emerging on the Strengbach catchment is made for more than 20 years (OHGE, Observatoire Hydro-Géochimique de l'Environnement). These data confirm the spatial variability of geochemical characteristics of the Strengbach springs linked, at least partly, to the lithological variability of the substratum (Pierret et al., 2014). The data also indicate that at the first order, the geochemical fluxes exported from each spring are mainly linked to the spring discharges, without significant variations of the relationships linking these two parameters between 1990 and 2010. There is also no observation of significant variations for the dissolved silica and for most of the cationic concentrations with time. Only a significant decrease of the Ca concentrations is observed for the Strengbach springs from 1990 to 2010. Numerical simulations, performed with the KIRMAT hydro-geochemical code, show that such a decrease can be considered as the response in the "bedrock" of the water-rock interactions to the variations of the soil solution chemical compositions recorded over the last 20 years, marked by a significant increase of pH and decrease of Ca concentrations. In particular, the modeling results show that the Ca concentration decrease is controlled by the couple apatite/clays, and that significant modifications of the apatite dissolution rate and clay compositions occurred between 1990 and 2010. This study shows that the temporal evolution of the Strengbach spring chemistry cannot be explained by the only variations of the clay mineral compositions, i.e. a modification of the chemical composition of the precipitated clays or a modification of the ionic exchange capacity of the clay minerals, but that it is definitely the interrelations between the apatite and the clay minerals that are involved.

  6. Geochemical modelling of bentonite porewater in high-level waste repositories

    Science.gov (United States)

    Wersin, Paul

    2003-03-01

    The description of the geochemical properties of the bentonite backfill that serves as engineered barrier for nuclear repositories is a central issue for perfomance assessment since these play a large role in determining the fate of contaminants released from the waste. In this study the porewater chemistry of bentonite was assessed with a thermodynamic modelling approach that includes ion exchange, surface complexation and mineral equilibrium reactions. The focus was to identify the geochemical reactions controlling the major ion chemistry and acid-base properties and to explore parameter uncertainties specifically at high compaction degrees. First, the adequacy of the approach was tested with two distinct surface complexation models by describing recent experimental data performed at highly varying solid/liquid ratios and ionic strengths. The results indicate adequate prediction of the entire experimental data set. Second, the modelling was extended to repository conditions, taking as an example the current Swiss concept for high-level waste where the compacted bentonite backfill is surrounded by argillaceous rock. The main reactions controlling major ion chemistry were found to be calcite equilibrium and concurrent Na-Ca exchange reactions and de-protonation of functional surface groups. Third, a sensitivity analysis of the main model parameters was performed. The results thereof indicate a remarkable robustness of the model with regard to parameter uncertainties. The bentonite system is characterised by a large acid-base buffering capacity which leads to stable pH-conditions. The uncertainty in pH was found to be mainly induced by the pCO 2 of the surrounding host rock. The results of a simple diffusion-reaction model indicate only minor changes of porewater composition with time, which is primarily due to the geochemical similarities of the bentonite and the argillaceous host rock. Overall, the results show the usefulness of simple thermodynamic models to

  7. Towards a consistent geochemical model for prediction of uranium(VI) removal from groundwater by ferrihydrite

    International Nuclear Information System (INIS)

    Gustafsson, Jon Petter; Daessman, Ellinor; Baeckstroem, Mattias

    2009-01-01

    Uranium(VI), which is often elevated in granitoidic groundwaters, is known to adsorb strongly to Fe (hydr)oxides under certain conditions. This process can be used in water treatment to remove U(VI). To develop a consistent geochemical model for U(VI) adsorption to ferrihydrite, batch experiments were performed and previous data sets reviewed to optimize a set of surface complexation constants using the 3-plane CD-MUSIC model. To consider the effect of dissolved organic matter (DOM) on U(VI) speciation, new parameters for the Stockholm Humic Model (SHM) were optimized using previously published data. The model, which was constrained from available X-ray absorption fine structure (EXAFS) spectroscopy evidence, fitted the data well when the surface sites were divided into low- and high-affinity binding sites. Application of the model concept to other published data sets revealed differences in the reactivity of different ferrihydrites towards U(VI). Use of the optimized SHM parameters for U(VI)-DOM complexation showed that this process is important for U(VI) speciation at low pH. However in neutral to alkaline waters with substantial carbonate present, Ca-U-CO 3 complexes predominate. The calibrated geochemical model was used to simulate U(VI) adsorption to ferrihydrite for a hypothetical groundwater in the presence of several competitive ions. The results showed that U(VI) adsorption was strong between pH 5 and 8. Also near the calcite saturation limit, where U(VI) adsorption was weakest according to the model, the adsorption percentage was predicted to be >80%. Hence U(VI) adsorption to ferrihydrite-containing sorbents may be used as a method to bring down U(VI) concentrations to acceptable levels in groundwater

  8. The EQ3/6 software package for geochemical modeling: Current status

    International Nuclear Information System (INIS)

    Worlery, T.J.; Jackson, K.J.; Bourcier, W.L.; Bruton, C.J.; Viani, B.E.; Knauss, K.G.; Delany, J.M.

    1988-07-01

    EQ3/6 is a software package for modeling chemical and mineralogic interactions in aqueous geochemical systems. The major components of the package are EQ3NR (a speciation-solubility code), EQ6 (a reaction path code), EQLIB (a supporting library), and a supporting thermodynamic data base. EQ3NR calculates aqueous speciation and saturation indices from analytical data. It can also be used to calculate compositions of buffer solutions for use in laboratory experiments. EQ6 computes reaction path models of both equilibrium step processes and kinetic reaction processes. These models can be computed for closed systems and relatively simple open systems. EQ3/6 is useful in making purely theoretical calculations, in designing, interpreting, and extrapolating laboratory experiments, and in testing and developing submodels and supporting data used in these codes. The thermodynamic data base supports calculations over the range 0-300 degree C. 60 refs., 2 figs

  9. Modeling Approach for Determining Equivalent Optical Constants of Plastic Shading Nets under Solar Radiation Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2012-01-01

    Full Text Available The radiative properties of several plastic shading nets were measured under natural solar radiation conditions. We found that the plastic nets behave as homogeneous translucent materials (e.g., plastic film, plastic sheets, and glass. Based on this behavior, we suggest that it is possible to treat plastic nets as translucent materials and to characterize them with equivalent optical constants (i.e., equivalent refractive indexes, neq, and equivalent extinction coefficients, σeq. Here a physical model to determine neq and σeq of plastic nets was described in analogy to homogeneous translucent materials. We examined three groups of nets based on their color (black, black-green, and beige. Each group consisted of nets with four or five different porosities. Nets of each group had almost the same texture structure. For each group, we derived an equation for neq as a function of the net porosity and determined an average value for σeq. Once values of neq and σeq were determined, the solar radiative properties of a net could then be calculated from neq and σeq for any incident angle of solar beam radiation without the need of measurements. The present model was validated by comparing the calculated with the measured radiative properties of three nets at different incident angle of solar beam radiation. The calculated radiative properties reasonably agreed with measured values.

  10. Estimating net present value variability for deterministic models

    NARCIS (Netherlands)

    van Groenendaal, W.J.H.

    1995-01-01

    For decision makers the variability in the net present value (NPV) of an investment project is an indication of the project's risk. So-called risk analysis is one way to estimate this variability. However, risk analysis requires knowledge about the stochastic character of the inputs. For large,

  11. Transactions on Petri Nets and Other Models of Concurrency VI

    DEFF Research Database (Denmark)

    The sixth volume of ToPNoC includes revised versions of selected papers from workshops and tutorials held at the 32nd International Conference on Application and Theory of Petri Nets and Concurrency. It also contains a special section on Networks, Protocols, and Services, as well as a contributed...

  12. Application of growing nested Petri nets for modeling robotic systems operating under risk

    Science.gov (United States)

    Sorokin, E. V.; Senkov, A. V.

    2017-10-01

    The paper studies the peculiarities of modeling robotic systems engaged in mining. Existing modeling mechanisms are considered, which are based on nested Petri nets, and a new formalism of growing Petri nets is presented that allows modeling robotic systems operating under risk. Modeling is provided both for the regular operation mode and for non-standard modes in which individual elements of the system can perform uncharacteristic functions. The example shows growing Petri nets that are used for modeling extraction of flat coal seams by a robotic system consisting of several different-type autonomous robots.

  13. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    International Nuclear Information System (INIS)

    Sena, Clara; Salas, Joaquin; Arcos, David

    2010-12-01

    The Swedish Nuclear Fuel and waste management company (SKB) is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL) to test the behaviour of the bentonite buffer under conditions similar to those expected in a KBS-3 deep geological repository for high level nuclear waste (HLNW). In the present work a numerical model is developed to simulate (i) the thermo-hydraulic, (ii) transport and (iii) geochemical processes that have been observed in the LOT A2 test parcel. The LOT A2 test lasted approximately 6 years, and consists of a 4 m long vertical borehole drilled in diorite rock, from the ground of the Aespoe HRL tunnel. The borehole is composed of a central heater, maintained at 130 deg C in the lower 2 m of the borehole, a copper tube surrounding the heater and a 100 mm thick ring of pre-compacted Wyoming MX-80 bentonite around the copper tube /Karnland et al. 2009/. The numerical model developed here is a 1D axis-symmetric model that simulates the water saturation of the bentonite under a constant thermal gradient; the transport of solutes; and, the geochemical reactions observed in the bentonite blocks. Two cases have been modelled, one considering the highest temperature reached by the bentonite (at 3 m depth in the borehole, where temperatures of 130 and 85 deg C have been recorded near the copper tube and near the granitic host rock, respectively) and the other case assuming a constant temperature of 25 deg C, representing the upper part of borehole, where the bentonite has not been heated. In the LOT A2 test, the initial partially saturated bentonite becomes progressively water saturated, due to the injection of Aespoe granitic groundwater at granite - bentonite interface. The transport of solutes during the bentonite water saturation stage is believed to be controlled by water uptake from the surrounding groundwater to the wetting front and, additionally, in the case of heated bentonite, by a cyclic evaporation

  14. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Salas, Joaquin; Arcos, David (Amphos 21 Consulting S.L., Barcelona (Spain))

    2010-12-15

    The Swedish Nuclear Fuel and waste management company (SKB) is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL) to test the behaviour of the bentonite buffer under conditions similar to those expected in a KBS-3 deep geological repository for high level nuclear waste (HLNW). In the present work a numerical model is developed to simulate (i) the thermo-hydraulic, (ii) transport and (iii) geochemical processes that have been observed in the LOT A2 test parcel. The LOT A2 test lasted approximately 6 years, and consists of a 4 m long vertical borehole drilled in diorite rock, from the ground of the Aespoe HRL tunnel. The borehole is composed of a central heater, maintained at 130 deg C in the lower 2 m of the borehole, a copper tube surrounding the heater and a 100 mm thick ring of pre-compacted Wyoming MX-80 bentonite around the copper tube /Karnland et al. 2009/. The numerical model developed here is a 1D axis-symmetric model that simulates the water saturation of the bentonite under a constant thermal gradient; the transport of solutes; and, the geochemical reactions observed in the bentonite blocks. Two cases have been modelled, one considering the highest temperature reached by the bentonite (at 3 m depth in the borehole, where temperatures of 130 and 85 deg C have been recorded near the copper tube and near the granitic host rock, respectively) and the other case assuming a constant temperature of 25 deg C, representing the upper part of borehole, where the bentonite has not been heated. In the LOT A2 test, the initial partially saturated bentonite becomes progressively water saturated, due to the injection of Aespoe granitic groundwater at granite - bentonite interface. The transport of solutes during the bentonite water saturation stage is believed to be controlled by water uptake from the surrounding groundwater to the wetting front and, additionally, in the case of heated bentonite, by a cyclic evaporation

  15. Fast and Flexible Modelling of Real-Time Systems with RTCP-Nets

    Directory of Open Access Journals (Sweden)

    Marcin Szpyrka

    2004-01-01

    Full Text Available A large number of formalisms has been proposed for real-time systems modelling. However, formal methods are not widely used in industrial software development. Such a situation could be treated as a result of a lack of suitable tools for fast designing of a model, its analysis and modification. RTCP-nets have been defined to facilitate fast modelling of embedded systems incorporating rule-based systems. Computer tools that are being developed for RTCP-nets, use a template mechanism to allow users to design models and manipulate its properties fast and effectively. Both theoretical and practical aspects of RTCP-nets are presented in the paper.

  16. Net-erosion profile model and simulation experiments

    International Nuclear Information System (INIS)

    Sagara, Akio

    2001-01-01

    Estimation of net-erosion profile is requisite for evaluating the lifetime of divertor plates under high heat and particle fluxes of fusion plasmas. As a reference in benchmark tests of numerical calculation codes, a self-consistent analytical solution is presented for a simplified divertor condition, wherein the magnetic field line is normal to the target plate and the ionization mean free path of sputtered particles is assumed constant. The primary flux profile of hydrogen and impurities are externally given as well as the return ratio of sputtered atoms to the target. In the direction along the divertor trace, all conditions are uniform. The analytical solution is compared with net-erosion experiments carried out using the Compact Helical System (CHS). The deposition profiles of Ti and O impurities are in very good agreement with the analytical predictions. Recent preliminary results observed on divertor plates in the Large Helical Device (LHD) are briefly presented. (author)

  17. Coloured Petri Nets and CPN Tools for Modelling and Validation of Concurrent Systems

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael; Wells, Lisa Marie

    2007-01-01

    Coloured Petri Nets (CPNs) is a language for the modeling and validation og systems in which concurrency, communication, and synchronisation play a major role. Coloured Petri Nets is a descrete-event modeling language combining Petri Nets with the funcitonal programming language Standard ML. Petri...... nets provide the doundation of the graphical notation and the basic primitives for modeling concurrency, communication, and synchronisation. Standard ML provides the primitives for the defintion of data types, describing data manipulation, and for creation compact and prarmeterisable models. A CPN...... taken to execute events in the modelled system. CPN Tolls is an industrial-strength computer tool for construction and analysing CPN models. Using CPN Tools, it is possible to investigate the behaviour of the modelled system using simulation, to verify properties by means of state sp0ece methods...

  18. Geophysical and geochemical models of the Earth's shields and rift zones

    International Nuclear Information System (INIS)

    Chung, D.H.

    1977-01-01

    This report summarizes a collection of, synthesis of, and speculation on the geophysical and geochemical models of the earth's stable shields and rift zones. Two basic crustal types, continental and oceanic, and two basic mantle types, stable and unstable, are described. It is pointed out that both the crust and upper mantle play a strongly interactive role with surface geological phenomena ranging from the occurrence of mountains, ocean trenches, oceanic and continental rifts to geographic distributions of earthquakes, faults, and volcanoes. On the composition of the mantle, there is little doubt regarding the view that olivine constitutes a major fraction of the mineralogy of the earth's upper mantle. Studies are suggested to simulate the elasticity and composition of the earth's lower crust and upper mantle

  19. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-01-01

    The key role of small-scale processes like molecular diffusion and electrochemical migration has been increasingly recognized in multicomponent reactive transport in saturated porous media. In this study, we propose a two-dimensional multicomponent reactive transport model taking into account...... is coupled with the geochemical code PHREEQC-3 by utilizing the IPhreeqc module, thus enabling to perform the geochemical calculations included in the PHREEQC's reaction package. The multicomponent reactive transport code is benchmarked with different 1-D and 2-D transport problems. Successively...

  20. Geochemical modelling of groundwater evolution and residence time at the Haestholmen site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy, Helsinki (Finland); Leino- Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    2001-01-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the geological final disposal of radioactive waste. The performance of technical barriers and migration of possibly released radionuclides depend on the geochemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions that control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors that control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the crystalline bedrock at Haestholmen has been created and the significance of geochemical reactions and groundwater mixing along different flow paths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on water samples (64 altogether) obtained from precipitation, the Baltic Sea, the soil layer, shallow wells in the bedrock, and 14 deep boreholes in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and their isotopic measurements were also utilised. The data covers the bedrock at Haestholmen to a depth of 1000 m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used to evaluate evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution ({delta}{sup 13}C and {delta}{sup 34}S) and mixing of palaeo-water types were approached by mass-balance calculations (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The interpretation and calculation of hydrochemical data from Haestholmen suggest that changes in external conditions, such as glaciation

  1. Implementing Network Common Data Form (netCDF) for the 3DWF Model

    Science.gov (United States)

    2016-02-01

    Form (netCDF) software package for Windows distributed by the Unidata Program Center at the University Corporation for Atmospheric Research (UCAR) in...standard ASCII format, while the provided WRF model results are often in netCDF format. Therefore, the 3DWF model and its GUI needed to be modified so...Garvey D, Chang S, Cogan J. Application of a multigrid method to a mass consistent diagnostic wind model. J. Appl . Meteorology. 2005;44:1078–1089

  2. A predictive regression model for the geochemical variability of iron and manganese in a coral reef ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinath, A.; Kumar, N.C.; Jayalakshmy, K.V.; Padmalal, D.; Nair, S.M.

    indicates selective removal of Fe/Mn or some other mechanisms operating with microbial assistance or both which may act in opposition to one another. In the first stage, in order to formulate a predictive regression model to assess the geochemical...

  3. Alligator Rivers Analogue project. Geochemical modelling of present-day groundwaters. Final Report - Volume 12

    International Nuclear Information System (INIS)

    Sverjensky, D. A.

    1992-01-01

    The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO 2 and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request

  4. Modelling of leaching and geochemical processes in an aged MSWIBA subbase layer

    Energy Technology Data Exchange (ETDEWEB)

    Bendz, David; Suer, Pascal; Sloot, Hans van der; Kosson, David; Flyhammar, Peter

    2009-07-15

    In a previous project, the accumulated effects of leaching and aging in a subbase layer of bottom ash in a test road were investigated. The test road were constructed in 1987 in Linkoeping, Sweden, and was in use until the start of the Vaendoera Q4-241 study in September 2003. The overall objective of the present study is to bring the evaluation of the previous project (Q4-241) further by taking advantage of the existing data, perform complementary laboratory experiments on four composite samples reflecting different degree of exposure to atmosphere and leaching. The specific objectives were to investigate: (i) what processes and mineral phases that govern leaching of macro- and trace elements and DOC in the bottom ash after 16 years (1987- 2003) of aging under field conditions. (ii) how the hydrologic conditions, infiltration of water and leachate production has evolved with time. The following tests were performed on the composite samples: pH-stat test, column test, Fe/Al oxide extraction and TOC fractioning. Geochemical and hydrological modelling where performed with LeachXS/Orchestra and Hydrus 2-D. Daily precipitation data from the Swedish Meteorological and Hydrological Institute (SMHI) from the Malmslaett (Linkoeping) measurement station was used in the hydrological modelling of January 1988 to the 1st of september 2003. The hydraulic modeling results show that the bottom ash subbase layer endure seasonal wet and dry cycles. The results confirm that, depending on the boundary conditions along the shoulders the capillary potential may drive moisture either in or out of the road body. The water retention parameters for bottom ash were crucial in the hydraulic modeling and the capillary forces in bottom ash were found to be significant with a water retention curve close to silt. This explains the observed depletion of easily soluble salts in the test road. The results showed that the accumulated LS ratio for the bottom ash subbase layer reached about LS:10 in

  5. Open critical area model and extraction algorithm based on the net flow-axis

    International Nuclear Information System (INIS)

    Wang Le; Wang Jun-Ping; Gao Yan-Hong; Xu Dan; Li Bo-Bo; Liu Shi-Gang

    2013-01-01

    In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area. (interdisciplinary physics and related areas of science and technology)

  6. Petri Nets

    Indian Academy of Sciences (India)

    Modeling is a central part of all activities that lead up to the design, implementation, and deployment ... The primary motivation behind. Petri's work was to model concurrency and ... Technology became a leading centre for Petri net research and from then on, Petri nets became an active research area in several universities, ...

  7. Decreasing DOC trends in soil solution along the hillslopes at two IM sites in southern Sweden--geochemical modeling of organic matter solubility during acidification recovery.

    Science.gov (United States)

    Löfgren, Stefan; Gustafsson, Jon Petter; Bringmark, Lage

    2010-12-01

    Numerous studies report increased concentrations of dissolved organic carbon (DOC) during the last two decades in boreal lakes and streams in Europe and North America. Recently, a hypothesis was presented on how various spatial and temporal factors affect the DOC dynamics. It was concluded that declining sulphur deposition and thereby increased DOC solubility, is the most important driver for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength declines due to the reduced input of SO(4)(2-) ions. In this project a geochemical model was set up to calculate the net humic charge and DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm Humic Model was used to investigate whether the observed DOC solubility is related to the humic charge and to examine how pH and ionic strength influence it. Soil water data from recharge and discharge areas, covering both podzols and riparian soils, were used. The model exercise showed that the increased net charge following the pH increase was in many cases counteracted by a decreased ionic strength, which acted to decrease the net charge and hence the DOC solubility. Thus, the recovery from acidification does not necessarily have to generate increasing DOC trends in soil solution. Depending on changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or indifferent. Due to the high hydraulic connectivity with the streams, the explanations to the DOC trends in surface waters should be searched for in discharge areas and peat lands. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. A Petri Net-Based Software Process Model for Developing Process-Oriented Information Systems

    Science.gov (United States)

    Li, Yu; Oberweis, Andreas

    Aiming at increasing flexibility, efficiency, effectiveness, and transparency of information processing and resource deployment in organizations to ensure customer satisfaction and high quality of products and services, process-oriented information systems (POIS) represent a promising realization form of computerized business information systems. Due to the complexity of POIS, explicit and specialized software process models are required to guide POIS development. In this chapter we characterize POIS with an architecture framework and present a Petri net-based software process model tailored for POIS development with consideration of organizational roles. As integrated parts of the software process model, we also introduce XML nets, a variant of high-level Petri nets as basic methodology for business processes modeling, and an XML net-based software toolset providing comprehensive functionalities for POIS development.

  9. Net-Proton Nonstatistical Moments in High-Energy pp Collisions in PACIAE Model

    International Nuclear Information System (INIS)

    Poonsawat, Wanchaloem; Limphirat, Ayut; Kobdaj, Chinorat; Yan, Yupeng; Zhou, Dai-Mei; Srisawad, Pornrad; Yan, Yu-Liang; Sa, Ben-Hao

    2014-01-01

    The parton and hadron cascade model, PACIAE 2.0, is employed to calculate the net-proton nonstatistical moments in pp collisions at RHIC and LHC energies. By analyzing the results in the full phase space, it is found that the nonstatistical moments and moments products are significantly dependent on the collision energy. It is suggested that the net-proton nonstatistical moments in pp collisions may be studied in partial phase spaces with the PACIAE model. (author)

  10. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    Science.gov (United States)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and

  11. A Geochemical Model of Fluids and Mineral Interactions for Deep Hydrocarbon Reservoirs

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-01-01

    Full Text Available A mutual solubility model for CO2-CH4-brine systems is constructed in this work as a fundamental research for applications of deep hydrocarbon exploration and production. The model is validated to be accurate for wide ranges of temperature (0–250°C, pressure (1–1500 bar, and salinity (NaCl molality from 0 to more than 6 mole/KgW. Combining this model with PHREEQC functionalities, CO2-CH4-brine-carbonate-sulfate equilibrium is calculated. From the calculations, we conclude that, for CO2-CH4-brine-carbonate systems, at deeper positions, magnesium is more likely to be dissolved in aqueous phase and calcite can be more stable than dolomite and, for CO2-CH4-brine-sulfate systems, with a presence of CH4, sulfate ions are likely to be reduced to S2− and H2S in gas phase could be released after S2− saturated in the solution. The hydrocarbon “souring” process could be reproduced from geochemical calculations in this work.

  12. Preliminary integrated calculation of radionuclide cation and anion transport at Yucca Mountain using a geochemical model

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Campbell, K.; Eggert, K.G.; Travis, B.J.

    1989-01-01

    This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain using preliminary data for mineral distributions, retardation parameter distributions, and hypothetical recharge scenarios. These calculations are not performance assessments, but are used to study the effectiveness of the geochemical barriers at the site at mechanistic level. The preliminary calculations presented have many shortcomings and should be viewed only as a demonstration of the modeling methodology. The simulations were run with TRACRN, a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 finite-difference nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Sorption ratios for the radionuclides modeled are assumed to be functions of mineralogic assemblages of the underlying rock. These transport calculations present a representative radionuclide cation, 135 Cs and anion, 99 Tc. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. The model provides a method for examining the integration of flow scenarios, transport, and retardation processes as currently understood for the site. It will also form the basis for estimates of the sensitivity of transport calculations to retardation processes. 11 refs., 17 figs., 1 tab

  13. The Role of Geochemical Modeling in Predicting Quality Evolution of Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Andrea Šlesárová

    2004-12-01

    Full Text Available In recent years the massive reduction of raw materials production brings a wide scale of problems. Among the most frequent exposes of mining activities belong besides old spoil heaps and sludge lagoons, also the drainage of acidic and highly mineralized mine waters known as “the Acid Mine Drainage” (thereinafter AMD from old mine workings. The acid mine drainage presents to the surrounding environment a massive problem. These waters are toxic to the plant and animal life, including fishes and aquatic insects. The primary control of the drainage pH and the metal content is the exposure of sulphide minerals to weathering, the availability of atmospheric oxygen, and the sensitivity of non-sulphide minerals to buffer acidity. A geochemical modeling software is increasingly used to solve evolution of the complex chemical systems such as the interaction of acid mine drainage with wall rocks, migration of AMD components. Beyond the better computer facilities it allows to study of thermodynamic properties substances and to enlarge thermodynamic databases. A model is a simplified version of reality based on its observation and experiments. A goal of the modeling process is the tendency to better understand processes taking place inside of the system, the attempt to assume the system’s behaviour in the future or to predict the effect of changed conditions in the system’s environment on the system itself.

  14. The use of geochemical speciation modelling to predict the impact of uranium to freshwater biota

    International Nuclear Information System (INIS)

    Markich, S.J.; Brown, P.L.; Jeffree, R.A.

    1996-01-01

    Uranium is the prime potential contaminant in mine waste waters that may be released from the Ranger Uranium Mine (RUM) into the receiving waters of the Magela Creek, Alligator Rivers Region, Northern Australia. The potential ecological impact of the migration of uranium, that would result from an elevation in its concentration above background, in the Magela Creek downstream of the RUM, has been experimentally investigated by integrating biomonitoring with geochemical speciation modelling. The freshwater bivalve Velesunio angasi, abundant throughout the Magela Creek catchment, was exposed to a variety of uranium concentrations in a synthetic Magela Creek water, at four pH levels (5.0, 5.3, 5.5 and 6.0), in the presence (3.05 and 7.50 mg l -1 ) and absence of a model fulvic acid (FA), and its behavioural response was measured. Speciation modelling, using the HARPHRQ code, provided evidence that UO 2+ 2 and UO 2 OH + are the uranium species most responsible (ca. 96%) for eliciting an adverse behavioural response when UO 2+ 2 is assigned twice the toxic effect of UO 2 OH + . This finding rejects the notion that biota respond specifically to the sum total of inorganic uranyl species. (orig.)

  15. Geochemical model of uranium and selenium in an aquifer disturbed by in situ uranium mining

    International Nuclear Information System (INIS)

    Johnson, K.; Neumann, M.R.

    1986-01-01

    Restoring ground water to baseline conditions proved to be very difficult, however, and led to the trial of a sodium carbonate/bicarbonate lixiviant. Results of this test indicated the basic lixiviant was unable to address uranium tied up in carbonaceous material. Subsequently, the decision was made to curtail development and restore all affected ground water to the extent achievable through the use of the best practicable technology, such as reverse osmosis. Restoration results, however, were not considered adequate for demonstration of commercial restoration feasibility. Following completion of the restoration effort, regulatory agencies expressed concern as to the long-term fate of certain parameters, such as uranium and selenium, remaining in solution at above baseline levels. Rocky Mountain Energy, through discussions with various consultants, determined that geochemical modeling would be the most appropriate tool for predicting the probable long-term effects. This paper summarizes the results of the subsequent evaluation which was conducted using the PHREEQE computer model. Significant conclusions of the investigation were: (1) the Eh in the ground water decreases regularly after mining activities, as shown by measured Eh values, and (2) the accompanying decrease in uranium and selenium can be predicted by thermodynamic modeling

  16. An assembly process model based on object-oriented hierarchical time Petri Nets

    Science.gov (United States)

    Wang, Jiapeng; Liu, Shaoli; Liu, Jianhua; Du, Zenghui

    2017-04-01

    In order to improve the versatility, accuracy and integrity of the assembly process model of complex products, an assembly process model based on object-oriented hierarchical time Petri Nets is presented. A complete assembly process information model including assembly resources, assembly inspection, time, structure and flexible parts is established, and this model describes the static and dynamic data involved in the assembly process. Through the analysis of three-dimensional assembly process information, the assembly information is hierarchically divided from the whole, the local to the details and the subnet model of different levels of object-oriented Petri Nets is established. The communication problem between Petri subnets is solved by using message database, and it reduces the complexity of system modeling effectively. Finally, the modeling process is presented, and a five layer Petri Nets model is established based on the hoisting process of the engine compartment of a wheeled armored vehicle.

  17. Predicting species' tolerance to salinity and alkalinity using distribution data and geochemical modelling: a case study using Australian grasses.

    Science.gov (United States)

    Saslis-Lagoudakis, C Haris; Hua, Xia; Bui, Elisabeth; Moray, Camile; Bromham, Lindell

    2015-02-01

    Salt tolerance has evolved many times independently in different plant groups. One possible explanation for this pattern is that it builds upon a general suite of stress-tolerance traits. If this is the case, then we might expect a correlation between salt tolerance and other tolerances to different environmental stresses. This association has been hypothesized for salt and alkalinity tolerance. However, a major limitation in investigating large-scale patterns of these tolerances is that lists of known tolerant species are incomplete. This study explores whether species' salt and alkalinity tolerance can be predicted using geochemical modelling for Australian grasses. The correlation between taxa found in conditions of high predicted salinity and alkalinity is then assessed. Extensive occurrence data for Australian grasses is used together with geochemical modelling to predict values of pH and electrical conductivity to which species are exposed in their natural distributions. Using parametric and phylogeny-corrected tests, the geochemical predictions are evaluated using a list of known halophytes as a control, and it is determined whether taxa that occur in conditions of high predicted salinity are also found in conditions of high predicted alkalinity. It is shown that genera containing known halophytes have higher predicted salinity conditions than those not containing known halophytes. Additionally, taxa occurring in high predicted salinity tend to also occur in high predicted alkalinity. Geochemical modelling using species' occurrence data is a potentially useful approach to predict species' relative natural tolerance to challenging environmental conditions. The findings also demonstrate a correlation between salinity tolerance and alkalinity tolerance. Further investigations can consider the phylogenetic distribution of specific traits involved in these ecophysiological strategies, ideally by incorporating more complete, finer-scale geochemical information, as

  18. Bigraphical Nets

    Directory of Open Access Journals (Sweden)

    Ian Mackie

    2013-02-01

    Full Text Available Interaction nets are a graphical model of computation, which has been used to define efficient evaluators for functional calculi, and specifically lambda calculi with patterns. However, the flat structure of interaction nets forces pattern matching and functional behaviour to be encoded at the same level, losing some potential parallelism. In this paper, we introduce bigraphical nets, or binets for short, as a generalisation of interaction nets using ideas from bigraphs and port graphs, and we present a formal notation and operational semantics for binets. We illustrate their expressive power by examples of applications.

  19. Geochemical modelling of groundwater evolution and residence time at the Kivetty site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy, Helsinki (Finland); Leino-Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    1998-12-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the final disposal of radioactive waste into the bedrock. The performance of technical barriers and migration of possibly released radionuclides depend on chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions which control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors which control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the bedrock at Kivetty has been created and the significance of chemical reactions along different flowpaths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on groundwater samples (38 altogether) obtained from the soil layer, shallow wells in the bedrock, and five deep multi-packered boreholes (KRI-KR5) in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and their isotopic measurements were also utilised. The data covers the bedrock at Kivetty to a depth of 850m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used in the evaluation of evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution and C-14 age calculations of groundwater was given a mass-balance approach (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The hydrogeochemistry of Kivetty is characterised by evolution from low-saline-carbonate-rich recharge water towards Na-Ca-Cl-type water. The salinity remains low. The most important changes in the chemistry of the

  20. Modelling of phase change materials in the Toronto SUI net zero energy house using TRNSYS

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, O.; Fung, A.; Zhang, D. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    In the context of building applications, phase change materials (PCM), can be defined as any heat storage material that can absorb a large amount of thermal energy while undergoing a change in phase, such as from a solid to a liquid phase. The incorporation of PCM into the building envelope can enhance occupant comfort through the reduction of indoor temperature fluctuations. It has also been shown to cause a decrease in the overall energy consumption associated with the heating and cooling of buildings. This paper extended the analysis of the impact of using PCM, which has traditionally focused on homes of ordinary construction, to incorporate low to zero energy homes using a model of the Toronto net zero energy house developed in TRNSYS. The paper provided a description of the TRNSYS model/methodology, with reference to the wall layer used in the net zero energy house, and model of the layout of the net zero energy house in TRYNSYS. The TRYNSYS/type 204 PCM component was also presented along with the simulation results in terms of the temperature profile of the third floor of the net zero energy house on a typical winter day with varying PCM concentrations; the temperature profile of the third floor of the net zero energy house on a typical summer day with varying PCM concentrations; yearly heating/cooling load requirements of the net zero energy house for a variety of thermal mass used; temperature profile of the third floor of the net zero energy house on a typical summer day when PCM and concrete slab was used; yearly temperature profile of the third floor of the net zero energy house, illustrating the impact of using PCM; and the yearly heating/cooling load of the net zero energy house as the concentration of PCM was varied. It was concluded that the use of building integrated PCM can reduce temperature fluctuations considerably in the summer but only slightly in the winter. 16 refs., 1 tab., 8 figs.

  1. Experimental Investigation and Simplistic Geochemical Modeling of CO₂ Mineral Carbonation Using the Mount Tawai Peridotite.

    Science.gov (United States)

    Rahmani, Omeid; Highfield, James; Junin, Radzuan; Tyrer, Mark; Pour, Amin Beiranvand

    2016-03-16

    In this work, the potential of CO₂ mineral carbonation of brucite (Mg(OH)2) derived from the Mount Tawai peridotite (forsterite based (Mg)₂SiO4) to produce thermodynamically stable magnesium carbonate (MgCO3) was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor) were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO₃ is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO₂ gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year) with the bulk of the carbon partitioning into magnesite and that very little remains in solution.

  2. Experimental Investigation and Simplistic Geochemical Modeling of CO2 Mineral Carbonation Using the Mount Tawai Peridotite

    Directory of Open Access Journals (Sweden)

    Omeid Rahmani

    2016-03-01

    Full Text Available In this work, the potential of CO2 mineral carbonation of brucite (Mg(OH2 derived from the Mount Tawai peridotite (forsterite based (Mg2SiO4 to produce thermodynamically stable magnesium carbonate (MgCO3 was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO3 is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO2 gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year with the bulk of the carbon partitioning into magnesite and that very little remains in solution.

  3. Genesis and evolution of the fumaroles of vulcano (Aeolian Islands, Italy): a geochemical model

    Science.gov (United States)

    Carapezza, M.; Nuccio, P. M.; Valenza, M.

    1981-09-01

    A geochemical model explaining the presence of fumaroles having different gas composition and temperature at the top of the crater and along the northeastern coast of Vulcano island is proposed. A pressurized biphase (liquid-vapor) reservoir at the depth of about 2 km is hypothesized. Energy and mass balance sheets control P-T conditions in the system. P-T must vary along a boiling curve of brine as liquid is present. The CO2 content in the steam is governed by the thermodynamic properties of the fluids in the H2-NaCl-CO2 system. On the assumption that oxygen fugacity in the system is between the HM-FMQ oxygen buffers, observed SO2/H2S, CO2/CO, CO/CH4 ratios in the fumarolic gases at the Fossa crater appear in equilibrium with a temperature higher than that observed, such as may exist at depth. The more reduced gas phases present on the sea-side may result from re-equilibrium processes in shallower aquifers. The suggested model would help in monitoring changes in volcanic activity by analyzing fumarolic gases.

  4. Flow and geochemical modeling of drainage from Tomitaka mine, Miyazaki, Japan.

    Science.gov (United States)

    Yamaguchi, Kohei; Tomiyama, Shingo; Metugi, Hideya; Ii, Hiroyuki; Ueda, Akira

    2015-10-01

    The chemistry and flow of water in the abandoned Tomitaka mine of Miyazaki, western Japan were investigated. This mine is located in a non-ferrous metal deposit and acid mine drainage issues from it. The study was undertaken to estimate the quantities of mine drainage that needs to be treated in order to avoid acidification of local rivers, taking into account seasonal variations in rainfall. Numerical models aimed to reproduce observed water levels and fluxes and chemical variations of groundwater and mine drainage. Rock-water interactions that may explain the observed variations in water chemistry are proposed. The results show that: (1) rain water infiltrates into the deeper bedrock through a highly permeable zone formed largely by stopes that are partially filled with spoil from excavations (ore minerals and host rocks); (2) the water becomes acidic (pH from 3 to 4) as dissolved oxygen oxidizes pyrite; (3) along the flow path through the rocks, the redox potential of the water becomes reducing, such that pyrite becomes stable and pH of the mine drainage becomes neutral; and (4) upon leaving the mine, the drainage becomes acidic again due to oxidation of pyrite in the rocks. The present numerical model with considering of the geochemical characteristics can simulate the main variations in groundwater flow and water levels in and around the Tomitaka mine, and apply to the future treatment of the mine drainage. Copyright © 2015. Published by Elsevier B.V.

  5. Reliability modelling of repairable systems using Petri nets and fuzzy Lambda-Tau methodology

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, J.; Odoom, E.R

    2001-07-01

    A methodology is developed which uses Petri nets instead of the fault tree methodology and solves for reliability indices utilising fuzzy Lambda-Tau method. Fuzzy set theory is used for representing the failure rate and repair time instead of the classical (crisp) set theory because fuzzy numbers allow expert opinions, linguistic variables, operating conditions, uncertainty and imprecision in reliability information to be incorporated into the system model. Petri nets are used because unlike the fault tree methodology, the use of Petri nets allows efficient simultaneous generation of minimal cut and path sets.

  6. Coupling R and PHREEQC: an interactive and extensible environment for efficient programming of geochemical models

    Science.gov (United States)

    De Lucia, Marco; Kühn, Michael

    2013-04-01

    manipulations and visualization in a powerful high level language, and benefiting from an enormous amount of third-party open source R extensions. The possibility to rapidly prototype complex algorithms involving geochemical modelling is in our opinion a huge advantage. A demonstration is given by the successful evaluation of a strategy to reduce the CPU-time needed to perform reactive transport simulations in a sequential coupling scheme. The idea is the "reduction" of the number of actual chemical simulations to perform at every time step, by searching for "duplicates" of each chemical simulations in the grid: such comparison involves typically a huge number of elements (one chemical simulation for grid element for time step) and a quite large number of variables (concentrations and mineral abundances). However, through the straightforward implementation of the prototype algorithm through the R/PHREEQC interface, we found out that the scan is extremely cost-effective in terms of CPU-time and typically allows a relevant speedup for simulations starting from a homogeneous or zone-homogeneous state. This speedup can even greatily exceed that of parallelization in some favorable but not unfrequent case. This feature should therefore be implemented in reactive transport simulators. References [1] Parkhurst D, Appelo C (1999) Users guide to PHREEQC (version 2). Tech. rep, U.S. Geological Survey. [2] Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012): Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ. Earth Sci., 67, 2, 573-588. [3] R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. [4] Kühn M, Münch U (2012) CLEAN: CO2 Large-Scale Enhanced Gas Recovery. GEOTECHNOLOGIEN Science Report No. 19. Series: Advanced. Technologies in Earth Sciences, 199 p, ISBN 978-3-642-31676-0.

  7. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  8. Modeling of the geochemical behaviour and of the radionuclide transport in the presence of colloids

    International Nuclear Information System (INIS)

    Van der Lee, Jan

    1997-01-01

    Over the past ten years, colloids have been introduced in the already complex subject of waste storage safety analysis. They are indeed often considered as rapid carriers for otherwise insoluble radioactive elements, and therefore potentially decrease the effective barrier function of the geological rock surrounding the waste. The problem is therefore to understand colloid behaviour and quantify their stability and reactivity with respect to the radionuclides. The subject reveals three different levels of phenomena: the geochemical mechanisms, the micro-physical and electrostatic behaviour of colloids and the transport mechanisms. The topics of this thesis therefore cover a wide range of disciplines, such as geochemistry, radiochemistry, physics, hydrogeology, mathematics and computer science. Given the complexity of the subject, only strongly simplified models are used for safety assessment including the impact of colloids. Henceforth, the objective of this study is to provide a comprehensive theoretical basis for modelling the impact of colloids according to a deterministic approach, in the hope to pave the road towards predictive modelling of a waste repository performance. This thesis is the result of work carried out in different European Community projects in the framework of the fourth R and D program on 'Management and Storage of Radioactive Waste'. part A, task 4, 'Disposal of Radioactive Waste'. Grateful use has been made of many chemical and hydrogeological experiments carried out by many different laboratories all over Europe. The main results can be classified according to three principal topics: - geochemistry and the chemical behaviour of actinides, lanthanides and fission products; - retention mechanisms of colloidal particles; - transport mechanism in geological medium. The first topic is fundamental: geochemistry forms the basis of e.g. the retention model for aqueous and colloidal species. The principal result of this topic is

  9. Release of major elements from recycled concrete aggregates and geochemical modelling

    International Nuclear Information System (INIS)

    Engelsen, Christian J.; Sloot, Hans A. van der; Wibetoe, Grethe; Petkovic, Gordana; Stoltenberg-Hansson, Erik; Lund, Walter

    2009-01-01

    The pH dependent leaching characteristics were assessed for different types of recycled concrete aggregates, including real construction debris and crushed fresh concrete samples prepared in laboratory. Carbonation effects were identified from the characteristic pH dependent leaching patterns for the major constituents Al, Ca, Fe, Mg, Si and SO 4 2- . The original particle size ranges were different for the samples investigated and this factor influenced the cement paste content in the samples which in turn controlled the leachable contents. Cement paste contents for concrete samples with fine particle size fractions (0-4 mm) were found to be higher than the originally present amount in the hardened concrete. Geochemical speciation modelling was applied over the entire pH range using the speciation and transport modelling framework ORCHESTRA, for which mineral saturation, solution speciation and sorption processes can be calculated based on equilibrium models and thermodynamic data. The simulated equilibrium concentrations by this model agreed well with the respective measured concentrations. The main differences between the fresh and aged materials were quantified, described and predicted by the ORCHESTRA. Solubility controlling mineral phase assemblages were calculated by the model as function of pH. Cement hydrate phases such as calcium silicate hydrate, calcium aluminate hydrate (AFm and AFt) and hydrogarnet were predominating at the material pH. The concentration of carboaluminates was found to be strongly dependent on the available carbonates in the samples. As the pH was decreased these phases decomposed to more soluble species or precipitates were formed including iron- and aluminium hydroxides, wairakite and amorphous silica. In the most acid region most phases dissolved, and the major elements were approaching maximum leachability, which was determined by the amount of cement paste.

  10. An Extensible NetLogo Model for Visualizing Message Routing Protocols

    Science.gov (United States)

    2017-08-01

    Extensible NetLogo Model for Visualizing Message Routing Protocols by Robert P Winkler and Somiya Metu Computational and Information Sciences ...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...ranging from fields as diverse as games to the hard sciences to the social sciences to computer-generated art. NetLogo represents the world as a set of

  11. Generic Procedure for Coupling the PHREEQC Geochemical Modeling Framework with Flow and Solute Transport Simulators

    Science.gov (United States)

    Wissmeier, L. C.; Barry, D. A.

    2009-12-01

    Computer simulations of water availability and quality play an important role in state-of-the-art water resources management. However, many of the most utilized software programs focus either on physical flow and transport phenomena (e.g., MODFLOW, MT3DMS, FEFLOW, HYDRUS) or on geochemical reactions (e.g., MINTEQ, PHREEQC, CHESS, ORCHESTRA). In recent years, several couplings between both genres of programs evolved in order to consider interactions between flow and biogeochemical reactivity (e.g., HP1, PHWAT). Software coupling procedures can be categorized as ‘close couplings’, where programs pass information via the memory stack at runtime, and ‘remote couplings’, where the information is exchanged at each time step via input/output files. The former generally involves modifications of software codes and therefore expert programming skills are required. We present a generic recipe for remotely coupling the PHREEQC geochemical modeling framework and flow and solute transport (FST) simulators. The iterative scheme relies on operator splitting with continuous re-initialization of PHREEQC and the FST of choice at each time step. Since PHREEQC calculates the geochemistry of aqueous solutions in contact with soil minerals, the procedure is primarily designed for couplings to FST’s for liquid phase flow in natural environments. It requires the accessibility of initial conditions and numerical parameters such as time and space discretization in the input text file for the FST and control of the FST via commands to the operating system (batch on Windows; bash/shell on Unix/Linux). The coupling procedure is based on PHREEQC’s capability to save the state of a simulation with all solid, liquid and gaseous species as a PHREEQC input file by making use of the dump file option in the TRANSPORT keyword. The output from one reaction calculation step is therefore reused as input for the following reaction step where changes in element amounts due to advection

  12. NCWin — A Component Object Model (COM) for processing and visualizing NetCDF data

    Science.gov (United States)

    Liu, Jinxun; Chen, J.M.; Price, D.T.; Liu, S.

    2005-01-01

    NetCDF (Network Common Data Form) is a data sharing protocol and library that is commonly used in large-scale atmospheric and environmental data archiving and modeling. The NetCDF tool described here, named NCWin and coded with Borland C + + Builder, was built as a standard executable as well as a COM (component object model) for the Microsoft Windows environment. COM is a powerful technology that enhances the reuse of applications (as components). Environmental model developers from different modeling environments, such as Python, JAVA, VISUAL FORTRAN, VISUAL BASIC, VISUAL C + +, and DELPHI, can reuse NCWin in their models to read, write and visualize NetCDF data. Some Windows applications, such as ArcGIS and Microsoft PowerPoint, can also call NCWin within the application. NCWin has three major components: 1) The data conversion part is designed to convert binary raw data to and from NetCDF data. It can process six data types (unsigned char, signed char, short, int, float, double) and three spatial data formats (BIP, BIL, BSQ); 2) The visualization part is designed for displaying grid map series (playing forward or backward) with simple map legend, and displaying temporal trend curves for data on individual map pixels; and 3) The modeling interface is designed for environmental model development by which a set of integrated NetCDF functions is provided for processing NetCDF data. To demonstrate that the NCWin can easily extend the functions of some current GIS software and the Office applications, examples of calling NCWin within ArcGIS and MS PowerPoint for showing NetCDF map animations are given.

  13. Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash.

    Science.gov (United States)

    Wang, Lei; Chen, Qi; Jamro, Imtiaz Ali; Li, Rundong; Li, Yanlong; Li, Shaobai; Luan, Jingde

    2016-06-01

    Municipal solid waste incinerator (MSWI) fly ashes are characterized by high calcium oxide (CaO) content. Carbon dioxide (CO2) adsorption by MSWI fly ash was discussed based on thermogravimetry (TG)/differential thermal analysis (DTA), minerology analysis, and adapting the Stenoir equation. TG/DTA analysis showed that the weight gain of the fly ash below 440 °C was as high as 5.70 %. An adapted Stenoir equation for MSWI fly ash was discussed. The chloride in MSWI fly ash has a major impact on CO2 adsorption by MSWI fly ash or air pollution control (APC) residues. Geochemical modeling of the critical trace elements copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), and antimony (Sb) before and after carbonation was performed using a thermodynamic equilibrium model for solubility and a surface complexation model for metal sorption. Leaching of critical trace elements was generally found to be strongly dependent on the degree of carbonation attained, and their solubility appeared to be controlled by several minerals. Adsorption on ferrum (Fe) and aluminum (Al) colloids was also responsible for removal of the trace elements Cd, Pb, and Sb. We used Hakanson's potential ecological risk index (HPERI) to evaluate the risk of trace element leaching in general. The results demonstrate that the ecological risk showed a V-shaped dependency on pH; the optimum pH of the carbonated fly ash was found to be 10.3-11, resulting from the optimum carbonation (liquid-to-solid (L/S) ratio = 0.25, carbonation duration = ∼30-48 h). The dataset and modeling results presented here provide a contribution to assessing the leaching behavior of MSWI fly ash under a wide range of conditions.

  14. Geochemical modelling of grout-groundwater-rock interactions at the seal-rock interface

    International Nuclear Information System (INIS)

    Alcorn, S.; Christian-Frear, T.

    1992-02-01

    Theoretical investigations into the longevity of repository seals have dealt primarily with the development of a methodology to evaluate interactions between portland cement-based grout and groundwater. Evaluation of chemical thermodynamic equilibria among grout, groundwater, and granitic host rock phases using the geochemical codes EQ3NR/EQ6 suggests that a fracture filled with grout and saturated with groundwater will tend to fill and 'tighten' with time. These calculations predict that some grout and rock phases will dissolve, and that there will be precipitation of secondary phases which collectively have a larger overall volume than that of the material dissolved. Model assumptions include sealing of the fracture in a sluggish hydrologic regime (low gradient) characterized by a saline groundwater environment. The results of the calculations suggest that buffering of the fracture seals chemical system by the granitic rock may be important in determining the long-term fate of grout seals and the resulting phase assemblage in the fracture. The similarity of the predicted reaction product phases to those observed in naturally filled fractures suggests that with time equilibrium will be approached and grouted fractures subject to low hydrologic gradients will continue to seal. If grout injected into fractures materially reduces groundwater flux, the approach to chemical equilibrium will likely be accelerated. In light of this, even very thin or imperfectly grouted fractures would tighten in suitable hydrogeologic environments. In order to determine the period of time necessary to approach equilibrium, data on reaction rates are required. (au)

  15. Hydro-geochemical modeling of subalpine urbanized area: geochemical characterization of the shallow and deep aquifers of the urban district of Como (first results).

    Science.gov (United States)

    Terrana, Silvia; Brunamonte, Fabio; Frascoli, Francesca; Ferrario, Maria Francesca; Michetti, Alessandro Maria; Pozzi, Andrea; Gambillara, Roberto; Binda, Gilberto

    2016-04-01

    One of the greatest environmental and social-economics threats is climate change. This topic, in the next few years, will have a significant impact on the availability of water resources of many regions. This is compounded by the strong anthropization of water systems that shows an intensification of conflicts for water resource exploitation. Therefore, it is necessary a sustainable manage of natural resources thorough knowledge of the hosting territories. The development of investigation and data processing methods are essential to reduce costs for the suitable use and protection of resources. Identify a sample area for testing the best approach is crucial. This research aims to find a valid methodology for the characterization, modeling and management of subalpine urban aquifers, and the urban district of Como appears perfect. The city of Como is located at the southern end of the western sector of Lake Como (N Italy). It is a coastal town, placed on a small alluvial plain, therefore in close communication with the lake. The plain is drained by two streams, which are presently artificially buried, and have an underground flow path in the urban section till the mouth. This city area, so, is suitable for this project as it is intensely urbanized, its dimensions is not too extensive and it is characterized by two aquifers very important and little known. These are a shallow aquifer and a deep aquifer, which are important not only for any water supply, but also for the stability of the ground subsidence in the city. This research is also the opportunity to work in a particular well-known area with high scientific significance; however, there is complete absence of information regarding the deep aquifer. Great importance has also the chosen and used of the more powerful open source software for this type of area, such as PHREEQC, EnvironInsite, PHREEQE etc., used for geological and geochemical data processing. The main goal of this preliminary work is the

  16. Net Acid Production, Acid Neutralizing Capacity, and Associated Mineralogical and Geochemical Characteristics of Animas River Watershed Igneous Rocks Near Silverton, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Choate, LaDonna; Stanton, Mark R.

    2008-01-01

    This report presents results from laboratory and field studies involving the net acid production (NAP), acid neutralizing capacity (ANC), and magnetic mineralogy of 27 samples collected in altered volcanic terrain in the upper Animas River watershed near Silverton, Colo., during the summer of 2005. Sampling focused mainly on the volumetrically important, Tertiary-age volcanic and plutonic rocks that host base- and precious-metal mineralization in the study area. These rocks were analyzed to determine their potential for neutralization of acid-rock drainage. Rocks in the study area have been subjected to a regional propylitic alteration event, which introduced calcite, chlorite (clinochlore), and epidote that have varying amounts and rates of acid neutralizing capacity (ANC). Locally, hydrothermal alteration has consumed any ANC and introduced minerals, mainly pyrite, that have a high net acid production (NAP). Laboratory studies included hydrogen pyroxide (H2O2) acid digestion and subsequent sodium hydroxide (NaOH) titration to determine NAP, and sulfuric acid (H2SO4) acid titration experiments to determine ANC. In addition to these environmental rock-property determinations, mineralogical, chemical, and petrographic characteristics of each sample were determined through semiquantitative X-ray diffractometry (Rietveld method), optical mineralogy, wavelength dispersive X-ray fluorescence, total carbon-carbonate, and inductively coupled plasma?mass spectrometric analysis. An ANC ranking was assigned to rock samples based on calculated ANC quantity in kilograms/ton (kg/t) calcium carbonate equivalent and ratios of ANC to NAP. Results show that talus near the southeast Silverton caldera margin, composed of andesite clasts of the Burns Member of the Silverton Volcanics, has the highest ANC (>100 kg/t calcium carbonate equivalent) with little to no NAP. The other units found to have moderate to high ANC include (a) andesite lavas and volcaniclastic rocks of the San Juan

  17. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    Science.gov (United States)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15 concentration of NaCl up to 6 mol/kgH2O. The EoS allows us to predict equilibrium composition in both liquid and vapor phases, fugacity coefficients of components, and phase densities. Predictions show that inclusion of H2S in CO2 streams may lead to two-phase flow in pipelines. For H2S-CO2 mixtures at a given temperature the bubble and dew pressures decrease with increasing H2S content, while the mass density increases at low pressures and decreases at high pressures. Furthermore, the EoS can be incorporated into reservoir simulators so that the dynamic development of mixed fluid plumes in the reservoir can be simulated. Accurate modeling of fluid-mineral interactions must confront unresolved uncertainties of silicate dissolution - precipitation reaction kinetics. Most prominent among these uncertainties is the well-known lab-field apparent discrepancy in dissolution rates. Although reactive transport models that simulate the interactions between reservoir rocks and brine, and their attendant effects on porosity and permeability changes, have proliferated, whether these results have acceptable uncertainties are unknown. We have conducted a series of batch experiments at elevated temperatures and numerical simulations of coupled dissolution and precipitation reactions. The results show that taking into account of reaction coupling is able

  18. Quantitative study of Portland cement hydration by X-Ray diffraction/Rietveld analysis and geochemical modeling

    Science.gov (United States)

    Coutelot, F.; Seaman, J. C.; Simner, S.

    2017-12-01

    In this study the hydration of Portland cements containing blast-furnace slag and type V fly ash were investigated during cement curing using X-ray diffraction, with geochemical modeling used to calculate the total volume of hydrates. The goal was to evaluate the relationship between the starting component levels and the hydrate assemblages that develop during the curing process. Blast furnace-slag levels of 60, 45 and 30 wt.% were studied in blends containing fly ash and Portland cement. Geochemical modelling described the dissolution of the clinker, and predicted quantitatively the amount of hydrates. In all cases the experiments showed the presence of C-S-H, portlandite and ettringite. The quantities of ettringite, portlandite and the amorphous phases as determined by XRD agreed well with the calculated amounts of these phases after different periods of time. These findings show that changes in the bulk composition of hydrating cements can be described by geochemical models. Such a comparison between experimental and modelled data helps to understand in more detail the active processes occurring during cement hydration.

  19. OtagoNet: One Region's Model for Virtual Schooling

    Science.gov (United States)

    Pratt, Keryn; Pullar, Ken

    2013-01-01

    Virtual schools are increasingly common in New Zealand and internationally as schools are challenged to meet the needs of their students. This article presents a description of the distance-learning model used by a group of schools in rural Otago for the last decade. The leadership team and roles are described, and the funding model, which is…

  20. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fujita, Yoshiko [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Carl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoir temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.

  1. Modelling of Biometric Identification System with Given Parameters Using Colored Petri Nets

    Science.gov (United States)

    Petrosyan, G.; Ter-Vardanyan, L.; Gaboutchian, A.

    2017-05-01

    Biometric identification systems use given parameters and function on the basis of Colored Petri Nets as a modelling language developed for systems in which communication, synchronization and distributed resources play an important role. Colored Petri Nets combine the strengths of Classical Petri Nets with the power of a high-level programming language. Coloured Petri Nets have both, formal intuitive and graphical presentations. Graphical CPN model consists of a set of interacting modules which include a network of places, transitions and arcs. Mathematical representation has a well-defined syntax and semantics, as well as defines system behavioural properties. One of the best known features used in biometric is the human finger print pattern. During the last decade other human features have become of interest, such as iris-based or face recognition. The objective of this paper is to introduce the fundamental concepts of Petri Nets in relation to tooth shape analysis. Biometric identification systems functioning has two phases: data enrollment phase and identification phase. During the data enrollment phase images of teeth are added to database. This record contains enrollment data as a noisy version of the biometrical data corresponding to the individual. During the identification phase an unknown individual is observed again and is compared to the enrollment data in the database and then system estimates the individual. The purpose of modeling biometric identification system by means of Petri Nets is to reveal the following aspects of the functioning model: the efficiency of the model, behavior of the model, mistakes and accidents in the model, feasibility of the model simplification or substitution of its separate components for more effective components without interfering system functioning. The results of biometric identification system modeling and evaluating are presented and discussed.

  2. Formal and Executable Specification of Random Waypoint Mobility Model Using Timed Coloured Petri Nets for WMN

    Directory of Open Access Journals (Sweden)

    Naeem Akhtar Khan

    2014-01-01

    Full Text Available The wireless mesh network (WMN is an emerging and cost-effective alternative paradigm for the next generation wireless networks in many diverse applications. In the performance evaluation of routing protocol for the WMN, it is essential that it should be evaluated under realistic conditions. The usefulness of specific mobility protocol can be determined by selection of mobility model. This paper introduces a coloured Petri nets (CP-nets based formal model for implementation, simulation, and analysis of most widely used random waypoint (RWP mobility model for WMNs. The formal semantics of hierarchical timed CP-nets allow us to investigate the terminating behavior of the transitions using state space analysis techniques. The proposed implementation improves the RWP mobility model by removing the “border effect” and resolves the “speed decay” problem.

  3. Evaluating predictive modeling's potential to improve teleretinal screening participation in urban safety net clinics.

    Science.gov (United States)

    Ogunyemi, Omolola; Teklehaimanot, Senait; Patty, Lauren; Moran, Erin; George, Sheba

    2013-01-01

    Screening guidelines for diabetic patients recommend yearly eye examinations to detect diabetic retinopathy and other forms of diabetic eye disease. However, annual screening rates for retinopathy in US urban safety net settings remain low. Using data gathered from a study of teleretinal screening in six urban safety net clinics, we assessed whether predictive modeling could be of value in identifying patients at risk of developing retinopathy. We developed and examined the accuracy of two predictive modeling approaches for diabetic retinopathy in a sample of 513 diabetic individuals, using routinely available clinical variables from retrospective medical record reviews. Bayesian networks and radial basis function (neural) networks were learned using ten-fold cross-validation. The predictive models were modestly predictive with the best model having an AUC of 0.71. Using routinely available clinical variables to predict patients at risk of developing retinopathy and to target them for annual eye screenings may be of some usefulness to safety net clinics.

  4. Evaluating the uncertainty in geochemical modelling for CO2 storage. The example of Ketzin.

    Science.gov (United States)

    De Lucia, Marco; Audigane, Pascal; Jacquemet, Nicolas; Kühn, Michael

    2010-05-01

    Several sources of uncertainty are associated with geochemical modelling of reservoirs considered for CO2 storage : on one hand only few available data are generally available for a particular reservoir, which are affected by measure errors, and whose representativity is in most cases questionable; on the other hand, the phenomenological description itself of the chemical fluid-rock interactions relies heavily on experimental determination of physical observables, which are summarized in a thermodynamical and chemical databases used by the numerical simulators. The latter is for example the case of the CO2 disposal in saline aquifer, where the high ionic strength of the formation fluid requires a Pitzer ion interaction model to evaluate with sufficient accuracy the activities of the considered species. Typically, parameters for Pitzer model are discordant following different authors and data related to a conspicous number of relevant ions are often unavailable or unreliable -i.e. derived for different P/T conditions or ionic strength of the solution -, which makes very difficult to estimate the accuracy of the predictions. This contribution presents our effort in evaluating the reliability of chemical simulations in the case of Ketzin on-shore CO2 storage project. Based on available fluid and mineralogic analysis, an initial equilibrium model was determined, i.e. matching both the observed fluid composition and the saturation with the mineral phases present in the sandstone layer of the Stuttgart formation which constitutes the reservoir. A sensitivity analisys based on small perturbations of such initial model was then performed, in order to assess the influence of measurement errors and possibly define a compositional range which can be assumed in spatially variable simulations. This step is then followed by the sensitivity to the Pitzer parameters that are collected in the chemical database used throughout this study; both the parameters themselves and their

  5. METHOD OF DISPLAYING AN EXECUTABLE BUSINESS PROCESS MODELS INTO PETRI NETS

    Directory of Open Access Journals (Sweden)

    Igor G. Fedorov

    2013-01-01

    Full Text Available Executable business process models, as well as programs, require evidence of a defect-free finish. The methods based on the formalism of Petri nets are widely used. A business process is a network of dishes, and its properties are set by the analysis of the properties of the network. The aim is to study the methods of displaying an executable business process model in a Petri net. Analysis of the properties of the resulting model allows us to prove a number of important properties: it is a network of free choice and clean without looping.

  6. Geochemical modeling research related to the surface disposal of processed oil shale solid waste. [Elements and compounds in oil shale wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, K. J.; Drever, J. I.

    1987-10-01

    Several geochemical codes are available in the literature to model chemical processes such as oxidation-reduction, precipitation-dissolution, formation of solution complex, adsorption, and ion exchange. However, these models differ in the environments to which they apply. The objective of this research was to evaluate the applicability of existing geochemical codes to predict water quality from an oil shale solid waste environment. We selected EQ3/EQ6, GEOCHEM, MINTEQ, PHREEQE, SOLMNEQ, and WATEQFC geochemical models for further evaluation. We concluded that all these models lack thermodynamic data for minerals and solution complexes which are important for oil shale solid waste studies. Selection of any one of the models would require development of a more reliable thermodynamic database, and this report describes the initiation of that work. So far, critical evaluation of thermodynamic data has been completed for Sr, F, Mo, and Se. 64 refs., 15 tabs.

  7. Geochemical modeling (EQ3/6) plan: Office of Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    McKenzie, W.F.; Wolery, T.J.; Delany, J.M.; Silva, R.J.; Jackson, K.J.; Bourcier, W.L.; Emerson, D.O.

    1986-01-01

    This plan replaces an earlier plan for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. It includes activities for all repository projects in the Office of Geologic Repositories: NNWSI, the Basalt Waste Isolation Project, the Salt Repository Project, and the Crystalline Project. Each of these projects is part of the Office of Civilian Radioactive Waste Management (OCRWM) Program. The scope of work for fiscal years 1986 to 1992 includes the work required to upgrade the geochemical codes and supporting data bases, to permit modeling of chemical processes associated with nuclear waste repositories in four geological environments: tuff, salt, basalt, and crystalline rock. Planned tasks include theoretical studies and code development to take account of the effects of precipitation kinetics, sorption, solid solutions, glass/water interactions, variable gas fugacities, and simple mass transport. Recent progress has been made in the ability of the codes to account for precipitation kinetics, highly-saline solutions, and solid solutions. Transition state theory was re-examined resulting in new insights that will provide the foundation for further improvements necessary to model chemical kinetics. Currently there is an increased effort that is concentrated on the supporting data base. For aqueous species and solid phases, specific to nuclear waste, requisite thermodynamic values reported in the literature are being evaluated and for cases where essential data is lacking, laboratory measurements will be carried out. Significant modifications and expansions have been made to the data base. During FY86, the total number of species in the data base has almost doubled and many improvements have been made with regard to consistency, organization, user applications, and documentation. Two Ridge computers using a RISC implementation of UNIX were installed; they are completely dedicated EQ3/6 machines

  8. Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2011-06-01

    Full Text Available

    In the past, variations in the chemical contents (SO42−, Cl−, cations of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes, taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area, lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf- kg/s –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.

  9. Geochemical modelling for predicting the long-term performance of zeolite-PRB to treat lead contaminated groundwater

    Science.gov (United States)

    Obiri-Nyarko, Franklin; Kwiatkowska-Malina, Jolanta; Malina, Grzegorz; Kasela, Tomasz

    2015-06-01

    The feasibility of using geochemical modelling to predict the performance of a zeolite-permeable reactive barrier (PRB) for treating lead (Pb2 +) contaminated water was investigated in this study. A short-term laboratory column experiment was first performed with the zeolite (clinoptilolite) until the elution of 50 PV (1 PV = ca. 283 mL). Geochemical simulations of the one-dimensional transport of the Pb2+, considering removal processes including: ion-exchange, adsorption and complexation; the concomitant release of exchangeable cations (Ca2 +, Mg2 +, Na+, and K+) and the changes in pH were subsequently performed using the geochemical model PHREEQC. The results showed a reasonable agreement between the experimental results and the numerical simulations, with the exception of Ca2 + for which a great discrepancy was observed. The model also indicated the formation of secondary mineral precipitates such as goethite and hematite throughout the experiment, of which the effect on the hydraulic conductivity was found to be negligible. The results were further used to extrapolate the long-term performance of the zeolite. We found the capacity would be completely exhausted at PV = 250 (ca. 3 days). The study, thus, generally demonstrates the applicability of PHREEQC to predict the short and long-term performance of zeolite-PRBs. Therefore, it can be used to assist in the design and for management purposes of such barriers.

  10. Formal Requirements Modeling for Reactive Systems with Coloured Petri Nets

    DEFF Research Database (Denmark)

    Tjell, Simon

    . This is important because it represents the identi cation of what is being designed (the reactive system), and what is given and being made assumptions about (the environment). The representation of the environment is further partitioned to distinguish human actors from non-human actors. This allows the modeler...... to addressing the problem of validating formal requirements models through interactive graphical animations is presented. Executable Use Cases (EUCs) provide a framework for integrating three tiers of descriptions of specifications and environment assumptions: the lower tier is an informal description...... to distinguish the modeling artifacts describing the environment from those describing the specifications for a reactive system. The formalization allows for clear identi cation of interfaces between interacting domains, where the interaction takes place through an abstraction of possibly parameterized states...

  11. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    Directory of Open Access Journals (Sweden)

    Wei Yan

    Full Text Available Estimate of net ecosystem carbon exchange (NEE between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP and ecosystem respiration (Reco has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  12. Geochemical modelling of groundwater evolution and residence time at the Olkiluoto site

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Luukkonen, A.; Ruotsalainen, P.; Leino-Forsman, H.; Vuorinen, U.

    1999-05-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the final disposal of radioactive waste into the bedrock. The performance of technical barriers and migration of possibly released radionuclides depend on chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions which control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors which control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the crystalline bedrock at Olkiluoto has been created and the significance of chemical reactions and groundwater mixing along different flowpaths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on water samples (63 altogether) obtained from precipitation, Baltic Sea, soil layer, shallow wells in the bedrock, and eight deep boreholes in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and fracture calcite and their isotopic measurements were also utilised. The data covers the bedrock at Olkiluoto to a depth of 1000 m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used in the evaluation of evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution and mixing of palaeo water types were approached by mass-balance calculations (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The interpretation and calculation of hydrochemical data from Olkiluoto reveals the complex nature of hydrogeochemical evolution at the site. Changes in

  13. Geochemical modelling of groundwater evolution and residence time at the Olkiluoto site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy (Finland); Leino-Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    1999-05-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the final disposal of radioactive waste into the bedrock. The performance of technical barriers and migration of possibly released radionuclides depend on chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions which control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors which control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the crystalline bedrock at Olkiluoto has been created and the significance of chemical reactions and groundwater mixing along different flowpaths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on water samples (63 altogether) obtained from precipitation, Baltic Sea, soil layer, shallow wells in the bedrock, and eight deep boreholes in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and fracture calcite and their isotopic measurements were also utilised. The data covers the bedrock at Olkiluoto to a depth of 1000 m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used in the evaluation of evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution and mixing of palaeo water types were approached by mass-balance calculations (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The interpretation and calculation of hydrochemical data from Olkiluoto reveals the complex nature of hydrogeochemical evolution at the site. Changes in

  14. The Knowledge Building Paradigm: A Model of Learning for Net Generation Students

    Science.gov (United States)

    Philip, Donald

    2005-01-01

    In this article Donald Philip describes Knowledge Building, a pedagogy based on the way research organizations function. The global economy, Philip argues, is driving a shift from older, industrial models to the model of the business as a learning organization. The cognitive patterns of today's Net Generation students, formed by lifetime exposure…

  15. Model-Based Testing of a Reactive System with Coloured Petri Nets

    DEFF Research Database (Denmark)

    Tjell, Simon

    2006-01-01

    In this paper, a reactive and nondeterministic system is tested. This is doneby applying a generic model that has been specified as a configurable Coloured PetriNet. In this way, model-based testing is possible for a wide class of reactive system atthe level of discrete events. Concurrently...

  16. Mathematical-statistical model for analysis of Ulva algal net photosynthesis in Venice lagoon

    International Nuclear Information System (INIS)

    Izzo, G.; Rizzo, V.; Bella, A.; Picci, M.; Giordano, P.

    1996-08-01

    The algal net photosynthesis, an important factor for the characterization of water quality in Venice lagoon, has been studied experimentally providing a mathematical model, validated by using statistical methods. This model relates oxygen production with irradiance, according to a well known law in biological literature. Its observed an inverted proportion between algal oxygen production and temperature, thus seasonality

  17. Distinguishing Environment and System in Coloured Petri Net Models of Reactive Systems

    DEFF Research Database (Denmark)

    Tjell, Simon

    2007-01-01

    code-generation from models. A prototypical tool has been implemented for performing the structural analysis of Coloured Petri Net models and the principles of this tool is described. The aim of the paper is to make the guidelines and their formalized definitions along with a proof-of-concept...

  18. Extension of Petri Nets by Aspects to Apply the Model Driven Architecture Approach

    NARCIS (Netherlands)

    Roubtsova, E.E.; Aksit, Mehmet

    2005-01-01

    Within MDA models are usually created in the UML. However, one may prefer to use different notations such as Petri-nets, for example, for modelling concurrency and synchronization properties of systems. This paper claims that techniques that are adopted within the context of MDA can also be

  19. Modelling an Interactive Road Signs System, Using Petri Nets

    Directory of Open Access Journals (Sweden)

    Kombe Timothee

    2017-03-01

    Full Text Available This paper is a contribution to the problems of road insecurity in Africa. Due to non-respect of road sign and to the lack of signing, roads have become places of all dangers. It becomes imperative to establish an interaction between the authorities and the offending drivers. To reach this goal, we modelled an interactive road-vehicle-signage system, who locally informs the driver on the requirements of traffic signs. This model having interest only in the event of driving by bad weather or deterioration of panels, we are amending by inserting functions aimed to warn and punish the driver in the event of maintenance of an offense. Indeed, when the driver is about to commit a fault, firstly the system issues a warming (visual, audible or mechanical. Then, a message (SMS is sent to the authorities. We include the concept of floating process engaged by devices other than the signage. We show that, with a few considerations, from the functional point of view, they are identical to the process engaged by the signage. Furthermore, in terms of performance, the model renewed warnings that occurred just before the end panel of prohibitions. It stores messages of offenses occurred without the network, then notifies them when a network is detected. We propose algorithms for incremental design and analysis of the model, whose processes are activated and / or are extinguished, according to the type of sign or tag encountered. We show by simulation and by linear algebra that, the model retains its properties of absence of blocking and boundedness during the evolution of the system, hence its validation.

  20. Assessment of the expected construction company’s net profit using neural network and multiple regression models

    OpenAIRE

    Mohamad, H.H.; Ibrahim, A.H.; Massoud, H.H.

    2013-01-01

    Net profit is an important financial performance indicator for any construction firm. Firm financial managers should strive to maximize this net profit. Modeling company’s net profit helps to investigate the serious effects of the different financial conditions on the expected net profit for the construction companies working in the Egyptian market. It simply helps financial managers to make sure that their companies business operations are running in a profitable manner. This research aim...

  1. Evaluation and prediction of oil biodegradation: a novel approach integrating geochemical and basin modeling techniques in offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Baudino, Roger [YPF S.A. (Argentina); Santos, Glauce Figueiredo dos; Losilla, Carlos; Cabrera, Ricardo; Loncarich, Ariel; Gavarrino, Alejandro [RepsolYPF do Brasil, Sao Paulo, SP (Brazil)

    2008-07-01

    Oil fields accounting for a large portion of the world reserves are severely affected by biological degradation. In Brazil, giant fields of the Campos Basin are producing biodegraded oils with widely variable fluid characteristics (10 to 40 deg API) and no apparent logical distribution nor predictability. Modern geochemical techniques allow defining the level of biodegradation. When original (non-degraded) oil samples and other with varying degradation level are available it might be possible to define a distribution trend and to relate it to present day geological factors such as temperature and reservoir geometry. However, other critical factors must be taken into account. But most of all, it is fundamental to have a vision in time of their evolution. This can only be achieved through 3D Basin Models coupled with modern visualization tools. The multi-disciplinary work-flow described here integrates three-dimensional numerical simulations with modern geochemical analyses. (author)

  2. Modeling injection molding of net-shape active ceramic components.

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Tomas (Gram Inc.); Cote, Raymond O.; Grillet, Anne Mary; Yang, Pin; Hopkins, Matthew Morgan; Noble, David R.; Notz, Patrick K.; Rao, Rekha Ranjana; Halbleib, Laura L.; Castaneda, Jaime N.; Burns, George Robert; Mondy, Lisa Ann; Brooks, Carlton, F.

    2006-11-01

    To reduce costs and hazardous wastes associated with the production of lead-based active ceramic components, an injection molding process is being investigated to replace the current machining process. Here, lead zirconate titanate (PZT) ceramic particles are suspended in a thermoplastic resin and are injected into a mold and allowed to cool. The part is then bisque fired and sintered to complete the densification process. To help design this new process we use a finite element model to describe the injection molding of the ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-Raphson numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. Thermal, rheological, and wetting properties of the PZT paste are measured for use as input to the model. The viscosity of the PZT is highly dependent both on temperature and shear rate. One challenge in modeling the injection process is coming up with appropriate constitutive equations that capture relevant phenomenology without being too computationally complex. For this reason we model the material as a Carreau fluid and a WLF temperature dependence. Two-dimensional (2D) modeling is performed to explore the effects of the shear in isothermal conditions. Results indicate that very low viscosity regions exist near walls and that these results look similar in terms of meniscus shape and fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the paste. These results allow us to pick a representative viscosity to use in fully three-dimensional (3D) simulation, which because of numerical complexities are restricted to using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions shows that the choice of

  3. A model of airport security work flow based on petri net

    Science.gov (United States)

    Dong, Xinming

    2017-09-01

    Extremely long lines at airports in the United States have been sharply criticized. In order to find out the bottleneck in the existing security system and put forward reasonable improvement plans and proposal, the Petri net model and the Markov Chain are introduced in this paper. This paper uses data collected by transportation Security Agency (TSA), assuming the data can represent the average level of all airports in the Unites States, to analysis the performance of security check system. By calculating the busy probabilities and the utilization probabilities, the bottleneck is found. Moreover, recommendation is given based on the parameters’ modification in Petri net model.

  4. A reformulation of the Cost Plus Net Value Change (C+NVC) model of wildfire economics

    Science.gov (United States)

    Geoffrey H. Donovan; Douglas B. Rideout

    2003-01-01

    The Cost plus Net Value Change (C+NVC) model provides the theoretical foundation for wildland fire economics and provides the basis for the National Fire Management Analysis System (NFMAS). The C+NVC model is based on the earlier least Cost plus Loss model (LC+L) expressed by Sparhawk (1925). Mathematical and graphical analysis of the LC+L model illustrates two errors...

  5. Research on user behavior authentication model based on stochastic Petri nets

    Science.gov (United States)

    Zhang, Chengyuan; Xu, Haishui

    2017-08-01

    A behavioural authentication model based on stochastic Petri net is proposed to meet the randomness, uncertainty and concurrency characteristics of user behaviour. The use of random models in the location, changes, arc and logo to describe the characteristics of a variety of authentication and game relationships, so as to effectively implement the graphical user behaviour authentication model analysis method, according to the corresponding proof to verify the model is valuable.

  6. Modeling and Simulation of Multi-scale Environmental Systems with Generalized Hybrid Petri Nets

    Directory of Open Access Journals (Sweden)

    Mostafa eHerajy

    2015-07-01

    Full Text Available Predicting and studying the dynamics and properties of environmental systems necessitates the construction and simulation of mathematical models entailing different levels of complexities. Such type of computational experiments often require the combination of discrete and continuous variables as well as processes operating at different time scales. Furthermore, the iterative steps of constructing and analyzing environmental models might involve researchers with different background. Hybrid Petri nets may contribute in overcoming such challenges as they facilitate the implementation of systems integrating discrete and continuous dynamics. Additionally, the visual depiction of model components will inevitably help to bridge the gap between scientists with distinct expertise working on the same problem. Thus, modeling environmental systems with hybrid Petri nets enables the construction of complex processes while keeping the models comprehensible for researchers working on the same project with significantly divergent education path. In this paper we propose the utilization of a special class of hybrid Petri nets, Generalized Hybrid Petri Nets (GHPN, to model and simulate environmental systems exposing processes interacting at different time-scales. GHPN integrate stochastic and deterministic semantics as well as other types of special basic events. Moreover, a case study is presented to illustrate the use of GHPN in constructing and simulating multi-timescale environmental scenarios.

  7. Hydrogeochemical Processes of Groundwater Using Multivariate Statistical Analyses and Inverse Geochemical Modeling in Samrak Park of Nakdong River Basin, Korea

    Science.gov (United States)

    Chung, Sang Yong

    2015-04-01

    Multivariate statistical methods and inverse geochemical modelling were used to assess the hydrogeochemical processes of groundwater in Nakdong River basin. The study area is located in a part of Nakdong River basin, the Busan Metropolitan City, Kora. Quaternary deposits forms Samrak Park region and are underlain by intrusive rocks of Bulkuksa group and sedimentary rocks of Yucheon group in the Cretaceous Period. The Samrak park region is acting as two aquifer systems of unconfined aquifer and confined aquifer. The unconfined aquifer consists of upper sand, and confined aquifer is comprised of clay, lower sand, gravel, weathered rock. Porosity and hydraulic conductivity of the area is 37 to 59% and 1.7 to 200m/day, respectively. Depth of the wells ranges from 9 to 77m. Piper's trilinear diagram, CaCl2 type was useful for unconfined aquifer and NaCl type was dominant for confined aquifer. By hierarchical cluster analysis (HCA), Group 1 and Group 2 are fully composed of unconfined aquifer and confined aquifer, respectively. In factor analysis (FA), Factor 1 is described by the strong loadings of EC, Na, K, Ca, Mg, Cl, HCO3, SO4 and Si, and Factor 2 represents the strong loadings of pH and Al. Base on the Gibbs diagram, the unconfined and confined aquifer samples are scattered discretely in the rock and evaporation areas. The principal hydrogeochemical processes occurring in the confined and unconfined aquifers are the ion exchange due to the phenomena of freshening under natural recharge and water-rock interactions followed by evaporation and dissolution. The saturation index of minerals such as Ca-montmorillonite, dolomite and calcite represents oversaturated, and the albite, gypsum and halite show undersaturated. Inverse geochemical modeling using PHREEQC code demonstrated that relatively few phases were required to derive the differences in groundwater chemistry along the flow path in the area. It also suggested that dissolution of carbonate and ion exchange

  8. Studying uranium migration in natural environment: experimental approach and geochemical modeling

    International Nuclear Information System (INIS)

    Phrommavanh, V.

    2008-10-01

    The present study deals with characterizing uranium migration in a limited zone of Le Bouchet site, a former uranium ore treatment facility, which is dismantled and the rehabilitation of which is under process. Some wastes are packed in a rehabilitated disposal nearby, called the Itteville site. In the framework of the monitoring of the deposit environment (air, water, sediment) set by prefectorial decrees, a piezometer (PZPK) located downstream to the latter, has shown total dissolved uranium peaks each winter since the 1990's. PZPK collects both the interstitial water of a calcareous peat formation, between the surface and 3 m, and an alluvial aquifer near 6 m of depth. Firstly, a hydrogeochemical characterization of the site has evidenced the uranium source term, which is present in the peat soil near 0.8 m, hence excluding any leaching from the waste disposal. Actually, a few microparticles of uranium oxide and mixed uranium-thorium oxide have been detected, but they do not represent the major part of the source term. Secondly, water chemistry of the peat soil water and PZPK has been monitored every two months from 2004 to 2007 in order to understand the reasons of the seasonal fluctuations of [U]tot.diss.. Completed with geochemical modeling and a bacterial identification by 16S rDNA sequence analysis, water chemistry data showed an important sulfate-reducing bacterial activity in summertime, leading to reducing conditions and therefore, a total dissolved uranium content limited by the low solubility of uraninite U IV O 2 (s). In wintertime, the latter bacterial activity being minimal and the effective pluviometry more important, conditions are more oxidant, which favors U(VI), more soluble, notably as the Ca 2 UO 2 (CO 3 ) 3 (aq) complex, evidenced by TRLFS. Finally, bacterial activity has been reproduced in laboratory in order to better characterize its impact on uranium solubility in the peat soil. Various parameters were tested (C sources, temperature

  9. Assessment of the expected construction company’s net profit using neural network and multiple regression models

    Directory of Open Access Journals (Sweden)

    H.H. Mohamad

    2013-09-01

    This research aims to develop a mathematical model for assessing the expected net profit of any construction company. To achieve the research objective, four steps were performed. First, the main factors affecting firms’ net profit were identified. Second, pertinent data regarding the net profit factors were collected. Third, two different net profit models were developed using the Multiple Regression (MR and the Neural Network (NN techniques. The validity of the proposed models was also investigated. Finally, the results of both MR and NN models were compared to investigate the predictive capabilities of the two models.

  10. Accounting for geochemical alterations of caprock fracture permeability in basin-scale models of leakage from geologic CO2 reservoirs

    Science.gov (United States)

    Guo, B.; Fitts, J. P.; Dobossy, M.; Bielicki, J. M.; Peters, C. A.

    2012-12-01

    Climate mitigation, public acceptance and energy, markets demand that the potential CO2 leakage rates from geologic storage reservoirs are predicted to be low and are known to a high level of certainty. Current approaches to predict CO2 leakage rates assume constant permeability of leakage pathways (e.g., wellbores, faults, fractures). A reactive transport model was developed to account for geochemical alterations that result in permeability evolution of leakage pathways. The one-dimensional reactive transport model was coupled with the basin-scale Estimating Leakage Semi-Analytical (ELSA) model to simulate CO2 and brine leakage through vertical caprock pathways for different CO2 storage reservoir sites and injection scenarios within the Mt. Simon and St. Peter sandstone formations of the Michigan basin. Mineral dissolution in the numerical reactive transport model expands leakage pathways and increases permeability as a result of calcite dissolution by reactions driven by CO2-acidified brine. A geochemical model compared kinetic and equilibrium treatments of calcite dissolution within each grid block for each time step. For a single fracture, we investigated the effect of the reactions on leakage by performing sensitivity analyses of fracture geometry, CO2 concentration, calcite abundance, initial permeability, and pressure gradient. Assuming that calcite dissolution reaches equilibrium at each time step produces unrealistic scenarios of buffering and permeability evolution within fractures. Therefore, the reactive transport model with a kinetic treatment of calcite dissolution was coupled to the ELSA model and used to compare brine and CO2 leakage rates at a variety of potential geologic storage sites within the Michigan basin. The results are used to construct maps based on the susceptibility to geochemically driven increases in leakage rates. These maps should provide useful and easily communicated inputs into decision-making processes for siting geologic CO2

  11. Study of the coupling of geochemical models based on thermodynamic equilibrium with models of component transfer as solutions in porous media or fractures

    International Nuclear Information System (INIS)

    Coudrain-Ribstein, A.

    1985-01-01

    This study is a contribution of analyses possibilities of modelling the transfer of components in the underground taking into account complexes geochemical phenomena. In the first part, the aim and the methodology of existing codes are presented. The transfer codes describe with a great precision the physical phenomena of transport but they are based on a very simple conceptualisation of the geochemical phenomena of retention by the rock. The geochemical models are interested by a stable unity of volume. They allow to compute the equilibrium distribution of the components between the chemical species of the solution, and the solid and gaseous phases. They use important thermodynamic data bases corresponding to each possible reaction. To sum up the situation about the geochemical codes in Europe and United States, a list of about thirty codes describe their method and potentialities. The mathematical analysis of the different methods used in both types of codes is presented. Then, the principles of a modelisation associating the potentialities of the transport codes and the geochemical codes are discussed. It is not possible to think of a simple coupling. A general code must be established on the bases of the existing codes but also on new concepts and under new constraints. In such studies one must always deal with the problem of the reactions kinetics. When the velocity of the reactions is big enough versus the velocity of transport processes, the assumption of local geochemical equilibrium can be retained. A general code would be very cumbersome, expensive and difficult to use. The results would be difficult to analyse and exploit. On the other hand, for each case study, a detailed analysis can point out many computing simplifications without simplifying the concepts [fr

  12. Modeling coupled thermal, flow, transport and geochemical processes controlling near field long-term evolution

    International Nuclear Information System (INIS)

    Zhou, W.; Arthur, R.; Xu, T.; Pruess, K.

    2005-01-01

    precipitation/dissolution and solute transport. Preliminary results show that during the early heating phase, reactions strongly depend on the magnitude of the temperature gradient across the buffer. As the temperature gradient diminishes, reactions are increasingly dominated by groundwater solutes diffusing into the bentonite pore water from the host rock. Bentonite effective diffusion coefficient plays an important role to long-term solute transport. [1] Arthur, R., W. Zhou, and B. Stromberg, (2003), 'THC modeling of the non-isothermal phase of near-field evolution' in Proceedings of the 10. International High-Level Radioactive Waste Management Conference, March 30-April 2, 2003, Las Vegas, Nevada, USA. [2] Hoekmark, H. and B. Faelth, (2003), Thermal dimensioning of the deep repository, SKB TR-03- 09, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. [3] Bruno, J. D. Arcos, and L. Duro, (1999), Processes and features affecting the near field hydro-chemistry, SKB TR-99-29, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. [4] Xu, T., E. Sonnenthal, N. Spycher, and K. Pruess, (2003), TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, LBNL-55460, Lawrence Berkeley National Laboratory, Berkeley, California, USA. (authors)

  13. Pan-Arctic modelling of net ecosystem exchange of CO2

    OpenAIRE

    Shaver, G. R.; Rastetter, E. B.; Salmon, V.; Street, L. E.; van de Weg, M. J.; Rocha, A.; van Wijk, M. T.; Williams, M.

    2013-01-01

    Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data...

  14. Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Y., E-mail: yann.lucas@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Schmitt, A.D., E-mail: anne-desiree.schmitt@univ-fcomte.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)] [Universite de Franche-Comte et CNRS-UMR 6249, Chrono-Environnement, 16, Route de Gray, 25030 Besancon Cedex (France); Chabaux, F., E-mail: francois.chabaux@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Clement, A.; Fritz, B. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Elsass, Ph. [BRGM, GEODERIS, 1, rue Claude Chappe, 57070 Metz (France); Durand, S. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)

    2010-11-15

    Research highlights: {yields} Major and trace elements along with strontium and uranium isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect a conservative mixing. {yields} A coupled hydrogeochemical model demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process. {yields} The model requires only a small amount of montmorillonite. {yields} It is necessary to consider the pollution history to explain the important chloride, sodium and calcium concentration modifications. {yields} The model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer. - Abstract: In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves

  15. Pan-Arctic modelling of net ecosystem exchange of CO2

    NARCIS (Netherlands)

    Shaver, G.R.; Rastetter, E.B.; Salmon, V.; Street, L.E.; Weg, van de M.J.; Rocha, A.; Wijk, van M.T.; Williams, M.

    2013-01-01

    Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation

  16. Model-Based Requirements Analysis for Reactive Systems with UML Sequence Diagrams and Coloured Petri Nets

    DEFF Research Database (Denmark)

    Tjell, Simon; Lassen, Kristian Bisgaard

    2008-01-01

    In this paper, we describe a formal foundation for a specialized approach to automatically checking traces against real-time requirements. The traces are obtained from simulation of Coloured Petri Net (CPN) models of reactive systems. The real-time requirements are expressed in terms of a derivat...

  17. Coupling of Petri Net Models of the Mycobacterial Infection Process and Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Rafael V. Carvalho

    2015-04-01

    Full Text Available Computational and mathematical modeling is important in support of a better understanding of complex behavior in biology. For the investigation of biological systems, researchers have used computers to construct, verify, and validate models that describe the mechanisms behind biological processes in multi-scale representations. In this paper we combine Petri net models that represent the mycobacterial infection process and innate immune response at various levels of organization, from molecular interaction to granuloma dissemination. In addition to the conventional graphical representation of the Petri net, the outcome of the model is projected onto a 3D model representing the zebrafish embryo. In this manner we provide a visualization of the process in a simulation framework that portrays the infection in the living system.

  18. Modelling of water-gas-rock geo-chemical interactions. Application to mineral diagenesis in geological reservoirs

    International Nuclear Information System (INIS)

    Bildstein, Olivier

    1998-01-01

    Mineral diagenesis in tanks results from interactions between minerals, water, and possibly gases, over geological periods of time. The associated phenomena may have a crucial importance for reservoir characterization because of their impact on petrophysical properties. The objective of this research thesis is thus to develop a model which integrates geochemical functions necessary to simulate diagenetic reactions, and which is numerically efficient enough to perform the coupling with a transport model. After a recall of thermodynamic and kinetic backgrounds, the author discusses how the nature of available analytic and experimental data influenced choices made for the formalization of physical-chemical phenomena and for behaviour laws to be considered. Numerical and computational aspects are presented in the second part. The model is validated by using simple examples. The different possible steps during the kinetic competition between two mineral are highlighted, as well the competition between mineral reaction kinetics and water flow rate across the rock. Redox reactions are also considered. In the third part, the author reports the application of new model functions, and highlights the contribution of the modelling to the understanding of some complex geochemical phenomena and to the prediction of reservoir quality. The model is applied to several diagenetic transformations: cementation of dolomitic limestone by anhydride, illite precipitation, and thermal reduction of sulphates [fr

  19. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1987-01-01

    The author describes a Petri net model, called coloured Petri nets (CP-nets), by means of which it is possible to describe large systems without having to cope with unnecessary details. The author introduces CP-nets and provide a first impression of their modeling power and the suitability...

  20. MetNet: Software to Build and Model the Biogenetic Lattice of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Heike Hofmann

    2006-04-01

    Full Text Available MetNet (http://www.botany.iastate.edu/∼mash/metnetex/metabolicnetex.html is publicly available software in development for analysis of genome-wide RNA, protein and metabolite profiling data. The software is designed to enable the biologist to visualize, statistically analyse and model a metabolic and regulatory network map of Arabidopsis, combined with gene expression profiling data. It contains a JAVA interface to an interactions database (MetNetDB containing information on regulatory and metabolic interactions derived from a combination of web databases (TAIR, KEGG, BRENDA and input from biologists in their area of expertise. FCModeler captures input from MetNetDB in a graphical form. Sub-networks can be identified and interpreted using simple fuzzy cognitive maps. FCModeler is intended to develop and evaluate hypotheses, and provide a modelling framework for assessing the large amounts of data captured by high-throughput gene expression experiments. FCModeler and MetNetDB are currently being extended to three-dimensional virtual reality display. The MetNet map, together with gene expression data, can be viewed using multivariate graphics tools in GGobi linked with the data analytic tools in R. Users can highlight different parts of the metabolic network and see the relevant expression data highlighted in other data plots. Multi-dimensional expression data can be rotated through different dimensions. Statistical analysis can be computed alongside the visual. MetNet is designed to provide a framework for the formulation of testable hypotheses regarding the function of specific genes, and in the long term provide the basis for identification of metabolic and regulatory networks that control plant composition and development.

  1. Geochemical modeling of orogenic gold deposit using PCANN hybrid method in the Alut, Kurdistan province, Iran

    Science.gov (United States)

    Mohammadzadeh, Mohammadjafar; Nasseri, Aynur

    2018-03-01

    In this paper stream sediments based geochemical exploration program with the aim of delineating potentially promising areas by a comprehensive stepwise optimization approach from univariate statistics, PCA, ANN, and fusion method PCANN were under taken for an orogenic gold deposit located in the Alut, Kurdistan province, NW of Iran. At first the data were preprocessed and then PCA were applied to determine the maximum variability directions of elements in the area. Subsequently the artificial neural network (ANN) was used for quick estimation of elemental concentration, as well as discriminating anomalous populations and intelligent determination of internal structure among the data. However, both the methods revealed constraints for modeling. To overcome the deficiency and shortcoming of each individual method a new methodology is presented by integration of both "PCA & ANN" referred as PCANN method. For integrating purpose, the detected PCs pertinent to ore mineralization selected and intruded to neural network structure, as a result different MLPs with various algorithms and structures were produced. The resulting PCANN maps suggest that the gold mineralization and its pathfinder elements (Au, Mo, W, Bi, Sb, Cu, Pb, Ag & As) are associated with metamorphic host rocks intruded by granite bodies in the Alut area. In addition, more concealed and distinct Au anomalies with higher intensity were detected, confirming the privileges of the method in evaluating susceptibility of the area in delineating new hidden potential zones. The proposed method demonstrates simpler network architecture, easy computational implementation, faster training speed, as well as no need to consider any primary assumption about the behavior of data and their probability distribution type, with more satisfactory predicting performance for generating gold potential map of the area. Comparing the results of three methods (PCA, ANN and PCANN), representing the higher efficiency and more

  2. Speciation of magnesium in monohydrocalcite: XANES, ab initio and geochemical modeling

    Science.gov (United States)

    Fukushi, Keisuke; Suzuki, Yuma; Kawano, Jun; Ohno, Takeshi; Ogawa, Masahiro; Yaji, Toyonari; Takahashi, Yoshio

    2017-09-01

    Monohydrocalcite (MHC: CaCO3·H2O), a rare carbonate mineral formed under surface conditions, is usually observed in nature as containing a variable amount of Mg, with a 0.007-0.45 Mg/Ca mole ratio. The variable Mg composition in MHC is anticipated as a promising proxy to assess paleo-hydrochemistry especially in saline lakes. Although the roles of Mg on the formation and stability of MHC have been studied intensively, the Mg speciation in MHC has remained unclear and controversial. This study examined Mg speciation in MHC using X-ray absorption near edge structure (XANES), ab initio molecular simulation, and geochemical modeling. Mg-XANES spectra of MHC with different Mg/Ca ratios prepared from mixing solutions of Na2CO3, CaCl2 and MgCl2 revealed that the Mg in MHC is a mixture of amorphous Mg carbonate (AMC) and other Mg containing phase. The contribution of AMC to total Mg is negatively correlated to the crystallinity of MHC. Results show that AMC might play a protective role in the crystallization and the transformation to stable calcium carbonates. Ab initio calculation of Mg2+ substitution into MHC showed that a limited amount of Mg2+ can be incorporated into the MHC structure. Six-fold coordination of Mg2+ is substituted for eight-fold coordination of Ca2+ in the MHC structure. The other type of Mg in MHC revealed from the XANES analyses most likely corresponds to the structural Mg in MHC. The contribution of the structural Mg is almost constant at 0.06 in Mg/Ca, representing the limit of solid solubility of Mg in MHC. The solubility products of the MHC with the limit of solid solubility of Mg and the AMC associated with MHC were estimated from the reacted solution compositions. Prediction of the Mg/Ca ratio as a function of the initial solution conditions using solubility reasonably reproduces the observed apparent Mg/Ca ratios in MHC from the present study and earlier studies. The apparent Mg/Ca ratio of MHC is useful to elucidate water chemistry

  3. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    Science.gov (United States)

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  4. Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters.

    Science.gov (United States)

    Liu, Fei; Heiner, Monika; Yang, Ming

    2016-01-01

    Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information.

  5. Robust modelling and simulation integration of SIMIO with coloured petri nets

    CERN Document Server

    De La Mota, Idalia Flores; Mujica Mota, Miguel; Angel Piera, Miquel

    2017-01-01

    This book presents for the first time a methodology that combines the power of a modelling formalism such as colored petri nets with the flexibility of a discrete event program such as SIMIO. Industrial practitioners have seen the growth of simulation as a methodology for tacking problems in which variability is the common denominator. Practically all industrial systems, from manufacturing to aviation are considered stochastic systems. Different modelling techniques have been developed as well as mathematical techniques for formalizing the cause-effect relationships in industrial and complex systems. The methodology in this book illustrates how complexity in modelling can be tackled by the use of coloured petri nets, while at the same time the variability present in systems is integrated in a robust fashion. The book can be used as a concise guide for developing robust models, which are able to efficiently simulate the cause-effect relationships present in complex industrial systems without losing the simulat...

  6. Threat driven modeling framework using petri nets for e-learning system.

    Science.gov (United States)

    Khamparia, Aditya; Pandey, Babita

    2016-01-01

    Vulnerabilities at various levels are main cause of security risks in e-learning system. This paper presents a modified threat driven modeling framework, to identify the threats after risk assessment which requires mitigation and how to mitigate those threats. To model those threat mitigations aspects oriented stochastic petri nets are used. This paper included security metrics based on vulnerabilities present in e-learning system. The Common Vulnerability Scoring System designed to provide a normalized method for rating vulnerabilities which will be used as basis in metric definitions and calculations. A case study has been also proposed which shows the need and feasibility of using aspect oriented stochastic petri net models for threat modeling which improves reliability, consistency and robustness of the e-learning system.

  7. Enabling Grid Computing resources within the KM3NeT computing model

    Directory of Open Access Journals (Sweden)

    Filippidis Christos

    2016-01-01

    Full Text Available KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that – located at the bottom of the Mediterranean Sea – will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.

  8. Petri Nets

    Indian Academy of Sciences (India)

    Institute of Science,. Bangalore. His research interests are broadly in the areas .... Qualitative Analysis: The Petri net model can be sub- jected to qualitative analysis to check system .... Performance evaluation of complex manufacturing architectures, leading to the design of optimal manufacturing strategies. • Modeling and ...

  9. Net-baryon number fluctuations in the hybrid quark-meson-nucleon model at finite density

    Science.gov (United States)

    Marczenko, Michał; Sasaki, Chihiro

    2018-02-01

    We study the mean-field thermodynamics and the characteristics of the net-baryon number fluctuations at the phase boundaries for the chiral and deconfinement transitions in the hybrid quark-meson-nucleon model. The chiral dynamics is described in the linear sigma model, whereas the quark confinement is manipulated by a medium-dependent modification of the particle distribution functions, where an additional scalar field is introduced. At low temperature and finite baryon density, the model predicts a first-, second-order chiral phase transition, or a crossover, depending on the expectation value of the scalar field, and a first-order deconfinement phase transition. We focus on the influence of the confinement over higher-order cumulants of the net-baryon number density. We find that the cumulants show a substantial enhancement around the chiral phase transition; they are not as sensitive to the deconfinement transition.

  10. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions.

    Science.gov (United States)

    Ogutu, Joseph O; Schulz-Streeck, Torben; Piepho, Hans-Peter

    2012-05-21

    Genomic selection (GS) is emerging as an efficient and cost-effective method for estimating breeding values using molecular markers distributed over the entire genome. In essence, it involves estimating the simultaneous effects of all genes or chromosomal segments and combining the estimates to predict the total genomic breeding value (GEBV). Accurate prediction of GEBVs is a central and recurring challenge in plant and animal breeding. The existence of a bewildering array of approaches for predicting breeding values using markers underscores the importance of identifying approaches able to efficiently and accurately predict breeding values. Here, we comparatively evaluate the predictive performance of six regularized linear regression methods-- ridge regression, ridge regression BLUP, lasso, adaptive lasso, elastic net and adaptive elastic net-- for predicting GEBV using dense SNP markers. We predicted GEBVs for a quantitative trait using a dataset on 3000 progenies of 20 sires and 200 dams and an accompanying genome consisting of five chromosomes with 9990 biallelic SNP-marker loci simulated for the QTL-MAS 2011 workshop. We applied all the six methods that use penalty-based (regularization) shrinkage to handle datasets with far more predictors than observations. The lasso, elastic net and their adaptive extensions further possess the desirable property that they simultaneously select relevant predictive markers and optimally estimate their effects. The regression models were trained with a subset of 2000 phenotyped and genotyped individuals and used to predict GEBVs for the remaining 1000 progenies without phenotypes. Predictive accuracy was assessed using the root mean squared error, the Pearson correlation between predicted GEBVs and (1) the true genomic value (TGV), (2) the true breeding value (TBV) and (3) the simulated phenotypic values based on fivefold cross-validation (CV). The elastic net, lasso, adaptive lasso and the adaptive elastic net all had

  11. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    Science.gov (United States)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    High CO2 partial pressure (pCO2) in deep rock reservoirs causes acidification of the porefluid. Such conditions occur during injection and subsurface storage of CO2 (to prevent the release of greenhouse gas) but also naturally in zones of strong methanogenic microbial activity in organic matter-rich ocean margin sediments. The acidic fluids are corrosive to carbonates and bear the risk of leakage of CO2 gas to the surface. Porefluid acidification may be moderated by processes that increase the alkalinity, i.e. that produce weak acid anions capable of buffering the acidification imposed by the CO2. Often, alkalinity increases as a result of anaerobic microbial activity, such as anaerobic oxidation of methane. However, on a long term the alteration of silicates, in particular, clay minerals, may be a more efficient mechanism of alkalinity production. Under altered temperature, pressure and porefluid composition at depth, clay minerals may change to thermodynamically more stable states, thereby increasing the alkalinity of the porefluid by partial leaching of Mg-(OH)2 and Ca-(OH)2 (e.g. Wallmann et al., 2008; Mavromatis et al., 2014). This alteration may even be enhanced by a high pCO2. Thus, silicate alteration can be essential for a long-term stabilization of volatile CO2 in the form of bicarbonate or may even induce precipitation of carbonate minerals, but these processes are not fully understood yet. The goal of this study is to simulate the alkalinity effect of silicate alteration under diagenetic conditions and high pCO2 by geochemical modeling. We are using the program PHREEQC (Parkhurst and Appelo, 2013) to generate high rock/fluid ratio characteristics for deep subsurface rock reservoirs. Since we are interested in the long-term evolution of diagenetic processes, over millions of years, we do not consider kinetics but calculate the theoretically possible equilibrium conditions. In a first step we are calculating the saturation state of different clay minerals

  12. Tools and data for the geochemical modeling. Thermodynamic data for sulfur species and background salts and tools for the uncertainty analysis; WEDA. Werkzeuge und Daten fuer die Geochemische Modellierung. Thermodynamische Daten fuer Schwefelspezies und Hintergrundsalze sowie Tools zur Unsicherheitsanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven; Schoenwiese, Dagmar; Scharge, Tina

    2015-07-15

    The report on tools and data for the geochemical modeling covers the following issues: experimental methods and theoretical models, design of a thermodynamic model for reduced sulfur species, thermodynamic models for background salts, tools for the uncertainty and sensitivity analyses of geochemical equilibrium modeling.

  13. Spatial distribution and leaching behavior of pollutants from phosphogypsum stocked in a gypstack: Geochemical characterization and modeling.

    Science.gov (United States)

    Bisone, Sara; Gautier, Mathieu; Chatain, Vincent; Blanc, Denise

    2017-05-15

    Phosphogypsum (PPG) is the byproduct of the production of phosphoric acid and phosphate fertilizers from phosphate rocks (PR) by acid digestion. Despite the technical feasibility, the impurities present in this waste make its reuse critical and large amounts of PPG are stockpiled, resulting in the production of polluted acid leachates. The aim of the present study was to characterize the spatial variability and evolution in time of a 20-year-old gypstack and to study the geochemical behavior of the waste in order to assess the best management options. Chemical and mineralogical analyses were performed on core samples taken from 4 different depths of the stack down to 13.5 m. Despite the high homogeneity shown by chemical and mineral characterization, leaching tests revealed a different chemical behavior with depth. pH-dependent leaching tests were also performed to measure the acid neutralization capacity of the studied matrices and to determine the leachability of the elements or pollutants of concern as a function of pH. The study was focused on Ca, Fe Na, Si, Cd and Sr and on F - , PO 4 3- and SO 4 2- anions. The geochemical modeling of these tests with PHREEQC enabled the identification of the minor phases controlling the solubilization of the elements analyzed. Validation of the model by the simulation of a column leaching test suggested that the model could be used as a predictive tool to assess different management scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Modeling geochemical stability of cement formulations for use as shaft liner and sealing components at Yucca Mountain

    International Nuclear Information System (INIS)

    Gardiner, M.A.; Myers, J.; Hinkebein, T.E.

    1990-01-01

    The geochemical modeling codes EQ3NR/EQ6 were used to model the interaction of cementitious materials with ground water from the Yucca Mountain proposed nuclear waste repository site in Nevada. This paper presents a preliminary estimate of the compositional changes caused by these interactions in the ground water and in the cement-based compounds proposed for use as sealing and shaft liner materials at the Yucca Mountain site. The geochemical speciation/solubility/reaction path codes EQ3NR/EQ6 were used to model the interaction of cementitious materials and water. Interaction of water with a cementitious material will result in dissolution of certain cement phases and changes in the water chemistry. These changes in the water chemistry may further lead to the precipitation of minerals either in the concrete or in the surrounding tuff at the Yucca Mountain Site (YMS). As part of a larger scoping study, a range of water, cement, and tuff compositions, temperatures, and reaction path modes were used. This paper presents a subset of that study by considering the interaction of three different cement formulations at 25 degree C with J-13 water using the ''closed'' reaction path mode. This subset was chosen as a base case to answer important questions in selecting the compositions of cementitious materials for use in the proposed repository. 8 refs., 1 fig., 3 tabs

  15. Evaluation of Cyber Security and Modelling of Risk Propagation with Petri Nets

    Directory of Open Access Journals (Sweden)

    Marcin Szpyrka

    2017-02-01

    Full Text Available This article presents a new method of risk propagation among associated elements. On thebasis of coloured Petri nets, a new class called propagation nets is defined. This class providesa formal model of a risk propagation. The proposed method allows for model relations betweennodes forming the network structure. Additionally, it takes into account the bidirectional relationsbetween components as well as relations between isomorphic, symmetrical components in variousbranches of the network. This method is agnostic in terms of use in various systems and it canbe adapted to the propagation model of any systems’ characteristics; however, it is intentionallyproposed to assess the risk of critical infrastructures. In this paper, as a proof of concept example, weshow the formal model of risk propagation proposed within the project Cyberspace Security ThreatsEvaluation System of the Republic of Poland. In the article, the idea of the method is presented aswell as its use case for evaluation of risk for cyber threats. With the adaptation of Petri nets, it ispossible to evaluate the risk for the particular node and assess the impact of this risk for all relatednodes including hierarchic relations of components as well as isomorphism of elements.

  16. Hierarchical Colored Petri Nets for Modeling and Analysis of Transit Signal Priority Control Systems

    Directory of Open Access Journals (Sweden)

    Yisheng An

    2018-01-01

    Full Text Available In this paper, we consider the problem of developing a model for traffic signal control with transit priority using Hierarchical Colored Petri nets (HCPN. Petri nets (PN are useful for state analysis of discrete event systems due to their powerful modeling capability and mathematical formalism. This paper focuses on their use to formalize the transit signal priority (TSP control model. In a four-phase traffic signal control model, the transit detection and two kinds of transit priority strategies are integrated to obtain the HCPN-based TSP control models. One of the advantages to use these models is the clear presentation of traffic light behaviors in terms of conditions and events that cause the detection of a priority request by a transit vehicle. Another advantage of the resulting models is that the correctness and reliability of the proposed strategies are easily analyzed. After their full reachable states are generated, the boundness, liveness, and fairness of the proposed models are verified. Experimental results show that the proposed control model provides transit vehicles with better effectiveness at intersections. This work helps advance the state of the art in the design of signal control models related to the intersection of roadways.

  17. BiomeNet: a Bayesian model for inference of metabolic divergence among microbial communities.

    OpenAIRE

    Mahdi Shafiei; Katherine A Dunn; Hugh Chipman; Hong Gu; Joseph P Bielawski

    2014-01-01

    Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions...

  18. Cost and cost effectiveness of long-lasting insecticide-treated bed nets - a model-based analysis

    Directory of Open Access Journals (Sweden)

    Pulkki-Brännström Anni-Maria

    2012-04-01

    Full Text Available Abstract Background The World Health Organization recommends that national malaria programmes universally distribute long-lasting insecticide-treated bed nets (LLINs. LLINs provide effective insecticide protection for at least three years while conventional nets must be retreated every 6-12 months. LLINs may also promise longer physical durability (lifespan, but at a higher unit price. No prospective data currently available is sufficient to calculate the comparative cost effectiveness of different net types. We thus constructed a model to explore the cost effectiveness of LLINs, asking how a longer lifespan affects the relative cost effectiveness of nets, and if, when and why LLINs might be preferred to conventional insecticide-treated nets. An innovation of our model is that we also considered the replenishment need i.e. loss of nets over time. Methods We modelled the choice of net over a 10-year period to facilitate the comparison of nets with different lifespan (and/or price and replenishment need over time. Our base case represents a large-scale programme which achieves high coverage and usage throughout the population by distributing either LLINs or conventional nets through existing health services, and retreats a large proportion of conventional nets regularly at low cost. We identified the determinants of bed net programme cost effectiveness and parameter values for usage rate, delivery and retreatment cost from the literature. One-way sensitivity analysis was conducted to explicitly compare the differential effect of changing parameters such as price, lifespan, usage and replenishment need. Results If conventional and long-lasting bed nets have the same physical lifespan (3 years, LLINs are more cost effective unless they are priced at more than USD 1.5 above the price of conventional nets. Because a longer lifespan brings delivery cost savings, each one year increase in lifespan can be accompanied by a USD 1 or more increase in price

  19. Quasi-discreted dynamics of a neural net: The lighthouse model

    Directory of Open Access Journals (Sweden)

    Hermann Haken

    2000-01-01

    Full Text Available This paper studies the features of a net of pulse-coupled model neurons, taking into account the dynamics of dendrites and axons. The axonal pulses are modelled by δ-functions. In the case of small damping of dendritic currents, the model can be treated exactly and explicitly. Because of the δ-functions, the phase-equations can be converted into algebraic equations at discrete times. We first exemplify our procedure by two neurons, and then present the results for N neurons. We admit a general dependence of input and coupling strengths on the neuronal indices. In detail, the results are

  20. The Perspective on Data and Control Flow Analysis in Topological Functioning Models by Petri Nets

    Directory of Open Access Journals (Sweden)

    Asnina Erika

    2014-12-01

    Full Text Available The perspective on integration of two mathematical formalisms, i.e., Colored Petri Nets (CPNs and Topological Functioning Model (TFM, is discussed in the paper. The roots of CPNs are in modeling system functionality. The TFM joins principles of system theory and algebraic topology, and formally bridges the solution domain with the problem domain. It is a base for further automated construction of software design models. The paper discusses a perspective on check of control and data flows in the TFM by CPNs formalism. The research result is definition of mappings from TFMs to CPNs.

  1. Measure of Uncertainty in Process Models Using Stochastic Petri Nets and Shannon Entropy

    Directory of Open Access Journals (Sweden)

    Martin Ibl

    2016-01-01

    Full Text Available When modelling and analysing business processes, the main emphasis is usually put on model validity and accuracy, i.e., the model meets the formal specification and also models the relevant system. In recent years, a series of metrics has begun to develop, which allows the quantification of the specific properties of process models. These characteristics are, for instance, complexity, comprehensibility, cohesion, and uncertainty. This work is focused on defining a method that allows us to measure the uncertainty of a process model, which was modelled by using stochastic Petri nets (SPN. The principle of this method consists of mapping of all reachable marking of SPN into the continuous-time Markov chain and then calculating its stationary probabilities. The uncertainty is then measured as the entropy of the Markov chain (it is possible to calculate the uncertainty of the specific subset of places as well as of whole net. Alternatively, the uncertainty index is quantified as a percentage of the calculated entropy against maximum entropy (the resulting value is normalized to the interval <0,1>. The calculated entropy can also be used as a measure of the model complexity.

  2. Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: A multi-isotope approach and geochemical modeling

    International Nuclear Information System (INIS)

    Carucci, Valentina; Petitta, Marco; Aravena, Ramon

    2012-01-01

    In the Tivoli Plain (Rome, Central Italy) the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using isotopic and chemical tracers. A conceptual model of the groundwater flowpaths has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as DIC/Cl − , Ca/(Ca + Mg)/SO 4 /(SO 4 + HCO 3 ), and environmental isotopes (δ 18 O, δ 2 H, 87 Sr/ 86 Sr, δ 34 S and δ 13 C) was carried out in order to determine the sources of recharge of the aquifer, the origin of solutes and the mixing processes in groundwater of Tivoli Plain. Multivariate statistical methods such as principal component analysis and Cluster analyses have confirmed the existence of different geochemical facies and the role of mixing in the chemical composition of the groundwater. Results indicate that the hydrochemistry of groundwater is characterized by mixing between end-members coming directly from carbonate recharge areas and to groundwater circulating in a deeply buried Meso-Cenozoic carbonate sequence. The travertine aquifer is fed by both flow systems, but a local contribution by direct input in the Plain has also been recognized. The stable isotope data ( 18 O, 2 H, 13 C and 34 S) supports the flow system conceptual model inferred from the geochemical data and represents key data to quantify the geochemical mixing in the different groundwaters of the Plain. The results of numerical modeling (PHREEQC) are consistent with the flowpaths derived from the hydrogeochemical conceptual model. The inverse models performed generated the main geochemical processes occurring in the groundwater flow system, which also included mixing. Geochemical and isotope modeling demonstrate an increasing influence of groundwater from the deeply buried aquifer in the travertine aquifer, enhanced by lowering of the travertine aquifer water table due to quarry pumping.

  3. Geochemical models of melting and magma storage conditions for basalt lava from Santorini Volcano, Greece

    Science.gov (United States)

    Baziotis, Ioannis; Kimura, Jun-Ichi; Pantazidis, Avgoustinos; Klemme, Stephan; Berndt, Jasper; Asimow, Paul

    2017-04-01

    Santorini volcano sits ˜150 km above the Wadati-Benioff zone of the Aegean arc, where the African plate subducts northward beneath the Eurasian continent (Papazachos et al. 2000). Santorini volcano has a long history: activity started ca. 650 ka (mainly rhyolites and rhyodacites), with active pulses following ca. 550 ka (basalt to rhyodacite) and ca. 360 ka (large explosive eruptions of andesite to rhyodacite and minor basalt), culminating in the caldera-forming Bronze-age Minoan event (Druitt et al. 1999). As in many arc volcanoes, scenarios of fractional crystallization with or without mixing between felsic and mafic magmas have been proposed to explain the compositions, textures, and eruptive styles of Santorini products (e.g., Huijsmans & Barton 1989; Montazavi & Sparks 2004; Andújar et al. 2015). Here we focus on a basalt lava from the southern part of Santorini volcano (Balos cove, 36˚ 21.7'N, 25˚ 23.8'E), one of the few basaltic localities in the Aegean arc. The goals are to infer constraints on the magma chamber conditions which lead to mafic eruption at Santorini Volcano and to evaluate the slab and mantle wedge conditions via geochemical and petrological mass balance modelling. We collected and characterised 20 samples for texture (SEM), mineral chemistry (FE-EPMA) and whole-rock chemistry (XRF). The basalts contain phenocrystic olivine (Ol) and clinopyroxene (Cpx) (<600 μm diameter) in a fine groundmass (<100 μm diameter) of Ol, Cpx, plagioclase (Pl) and magnetite (Mt) with minor glass and rare xenocrystic quartz. Santorini basalts exhibit a pilotaxitic to trachytic texture defined by randomly to flow-oriented tabular Pl, respectively. The predominant minerals are calcic Pl (core An78-85 and rim An60-76; 45-50 vol.%), Cpx (En36-48Wo41-44Fs11-21; 10-15 vol.%) and Ol (Fo74-88; 10-12 vol.%). Idiomorphic to subidiomorphic Mt (<10μm diameter) with variable TiO2 contents (1.9-16.5 wt%) is a minor constituent (˜1-2 vol.%) in the less mafic samples

  4. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    Science.gov (United States)

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  5. The geothermal area of El Pilar-Casanay, State of Sucre, Venezuela: Geochemical exploration and model

    Energy Technology Data Exchange (ETDEWEB)

    D' Amore, F.; Gianelli, G.; Corazza, E. (CNR, Pisa (Italy). Istituto Internazionale Ricerche Geotermiche)

    1994-06-01

    A geochemical survey was carried out in the El Pilar-Casanay area, State of Sucre, Venezuela, in order to ascertain its geothermoelectric potential. The area is characterized by many natural manifestations with temperatures in the range 80--100 C. The area investigated seems capable of producing high-enthalpy geothermal fluids; a deep reservoir is inferred, composed of a medium salinity (< 5,000 ppm) and neutral brine, with computed temperatures between 250 and 300 C, and with a high CO[sub 2] partial pressure. Second shallower reservoir is assumed to exist, with a temperature of the order of 200--220 C. The deep reservoir is shown to be liquid-dominated, while water and steam occupy the shallow one. The piezometric level (elevation 150 m) regulates the areal distribution of water springs and fumaroles. A partial self-sealing (mineral alteration) along outflows allows accumulation of hot fluids, while recharge is from local meteoric water.

  6. Kinetic and thermodynamic modelling of geochemical effects of a nuclear waste storage in granitic environment

    International Nuclear Information System (INIS)

    Made, B.; Fritz, B.

    1993-01-01

    In the world, various experimental sites are selected to study the behavior of different types of source rocks under nuclear waste storage influence. The surrounding rock tested to receive the waste storage must be a stable geological formation. In France, four geological formations are preselected for the feasibility study of repository for spent nuclear fuel at long term: shale, salt, clay and granite. At present time, numerous studies are carried out in Europe (Germany, Belgium, Sweden, Switzerland, United-Kingdom...), in North America (U.S.A. and Canada) and in Japan. Water-rock interactions control the most of rock transformations near the surface of the earth. The rock forming minerals react with the aqueous solutions, the primary minerals dissolution releases ionic species in solution and secondary minerals precipitate if equilibrium or oversaturation is reached. The weathering processes (hydrothermal or not) are always very complicated thus, geochemical codes has been developed to simulate the water-rock interactions. The first generation of codes is based on purely thermodynamic laws without reference to the time dependence of chemical reactions and then the dissolution path calculation refer to the irreversible dissolution of reactants and reversible precipitation of products ([1] to [4]). The system evolution is followed according to the reaction progress ξ which has been introduced in chemical system by Gibbs. Since few years, the experimental studies on the kinetics of minerals dissolution have allowed to take into account of dissolution rates data for the major minerals (silicates, carbonates...). More recently, a new geochemical codes generation appears based on thermodynamic potential and kinetic laws ([5] to [8]). The system evolution is followed according to the reaction time. (authors). 8 figs., 4 tabs., 24 refs

  7. Actualistic and Geochemical Modeling of Reservoir Rock, CO2 and Formation Fluid Interaction, Citronelle Oil Field, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Weislogel, Amy [West Virginia Univ., Morgantown, WV (United States)

    2014-01-31

    This report includes description of the Citronelle field study area and the work carried out in the project to characterize the geology and composition of reservoir rock material and to collect an analyze the geochemical composition of produced fluid waters from the Citronelle field. Reservoir rock samples collected from well bore core were made into thin-sections and assessed for textural properties, including pore types and porosity distribution. Compositional framework grain modal data were collected via point-counting, and grain and cement mineralogy was assessed using SEM-EDS. Geochemistry of fluid samples is described and modeled using PHREEQC. Composition of rock and produced fluids were used as inputs for TOUGHREACT reactive transport modeling, which determined the rock-fluid system was in disequilibrium.

  8. Modelling the protocol stack in NCS with deterministic and stochastic petri net

    Science.gov (United States)

    Hui, Chen; Chunjie, Zhou; Weifeng, Zhu

    2011-06-01

    Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.

  9. Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Smith, Benjamin; Løfgren, Anders

    2009-01-01

    and the Beer-Lambert law. LAI estimates were compared with satellite-extrapolated field estimates of LAI, and the results were generally acceptable. NPP estimates directly from the dynamic vegetation model and estimates obtained by combining the model estimates with remote sensing information were, on average......The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with processbased vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs...... in a dynamic vegetation model, the Lund Potsdam Jena-General Ecosystem Simulator. Model estimates of net primary production (NPP) and the fraction of absorbed photosynthetic active radiation were constrained by combining them with satellite-based LAI images using a general light use efficiency (LUE) model...

  10. INEEL Subregional Conceptual Model Report Volume 2: Summary of Existing Knowledge of Geochemical Influences on the Fate and Transport of Contaminants in the Subsurface at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Paul L. Wichlacz; Robert C. Starr; Brennon Orr

    2003-09-01

    This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants in the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually searched

  11. Smart Kd-values, their uncertainties and sensitivities - Applying a new approach for realistic distribution coefficients in geochemical modeling of complex systems.

    Science.gov (United States)

    Stockmann, M; Schikora, J; Becker, D-A; Flügge, J; Noseck, U; Brendler, V

    2017-11-01

    One natural retardation process to be considered in risk assessment for contaminants in the environment is sorption on mineral surfaces. A realistic geochemical modeling is of high relevance in many application areas such as groundwater protection, environmental remediation, or disposal of hazardous waste. Most often concepts with constant distribution coefficients (K d -values) are applied in geochemical modeling with the advantage to be simple and computationally fast, but not reflecting changes in geochemical conditions. In this paper, we describe an innovative and efficient method, where the smart K d -concept, a mechanistic approach mainly based on surface complexation modeling, is used (and modified for complex geochemical models) to calculate and apply realistic distribution coefficients. Using the geochemical speciation code PHREEQC, multidimensional smart K d -matrices are computed as a function of varying (or uncertain) environmental conditions. On the one hand, sensitivity and uncertainty statements for the distribution coefficients can be derived. On the other hand, smart K d -matrices can be used in reactive transport (or migration) codes (not shown here). This strategy has various benefits: (1) rapid computation of K d -values for large numbers of environmental parameter combinations; (2) variable geochemistry is taken into account more realistically; (3) efficiency in computing time is ensured, and (4) uncertainty and sensitivity analysis are accessible. Results are presented exemplarily for the sorption of uranium(VI) onto a natural sandy aquifer material and are compared to results based on the conventional K d -concept. In general, the sorption behavior of U(VI) in dependence of changing geochemical conditions is described quite well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Urbanization has a positive net effect on soil carbon stocks: modelling outcomes for the Moscow region

    Science.gov (United States)

    Vasenev, Viacheslav; Stoorvogel, Jetse; Leemans, Rik; Valentini, Riccardo

    2016-04-01

    Urbanization is responsible for large environmental changes worldwide. Urbanization was traditionally related to negative environmental impacts, but recent research highlights the potential to store soil carbon (C) in urban areas. The net effect of urbanization on soil C is, however, poorly understood. Negative influences of construction and soil sealing can be compensated by establishing of green areas. We explored possible net effects of future urbanization on soil C-stocks in the Moscow Region. Urbanization was modelled as a function of environmental, socio-economic and neighbourhood factors. This yielded three alternative scenarios: i) including neighbourhood factors; ii) excluding neighbourhood factors and focusing on environmental drivers; and iii) considering the New Moscow Project, establishing 1500km2 of new urbanized area following governmental regulation. All three scenarios showed substantial urbanization on 500 to 2000km2 former forests and arable lands. Our analysis shows a positive net effect on SOC stocks of 5 to 11 TgC. The highest increase occurred on the less fertile Orthic Podzols and Eutric Podzoluvisols, whereas C-storage in Orthic Luvisols, Luvic Chernozems, Dystric Histosols and Eutric Fluvisols increased less. Subsoil C-stocks were much more affected with an extra 4 to 10 TgC than those in the topsoils. The highest increase of both topsoil and subsoil C stocks occurred in the New Moscow scenario with the highest urbanization. Even when the relatively high uncertainties of the absolute C-values are considered, a clear positive net effect of urbanization on C-stocks is apparent. This highlights the potential of cities to enhance C-storage. This will progressively become more important in the future following the increasing world-wide urbanization.

  13. Geochemical modeling and multivariate statistical evaluation of trace elements in arsenic contaminated groundwater systems of Viterbo Area, (Central Italy).

    Science.gov (United States)

    Sappa, Giuseppe; Ergul, Sibel; Ferranti, Flavia

    2014-01-01

    Contamination of groundwater by naturally occurring arsenic has recently become a disturbing environmental problem in Viterbo area, Central Italy. Arsenic concentrations in most of the public supply networks exceed the maximum allowable limit of 10 μg/l (WHO) for drinking water. The primary purpose of this paper is to obtain a better understanding of the factors contributing to the high levels of As in water supply networks. This study focuses on (a) the determination of basic hydrochemical characteristics of groundwater, (b) the identification of the major sources and processes controlling the As contamination in public supply networks, (c) to find out possible relationships among the As and other trace elements through principal component analysis (PCA). Groundwater samples from public water supply wells and springs were collected and analysed for physico-chemical parameters and trace elements. Springs and well water samples are predominantly of the Na-HCO3, Na -Ca-HCO3 and Ca-HCO3 types and the highest arsenic concentrations were observed in Na-HCO3 type water. Eh-pH diagrams reveal that H2AsO4 (-) and HAsO4 (2-), As(V) arsenate, are the dominating As species highlighting slightly to moderately oxidizing conditions. Geochemical modeling indicates that arsenic-bearing phases were undersaturated in the groundwater, however most of the samples were saturated with respect to Fe (i.e. magnetite, hematite and goethite) and Al (diaspore and boehmite) oxide and hydroxide minerals. Concentrations of As, Li, B, Co, Sr, Mo, U and Se are highly correlated (r > 0.7) with each other, however in some groundwater samples As show also good correlations (r > 0.5) with Fe and Mn elements reflecting the relationships among the trace elements result from different geochemical processes. Evaluation of the principal component (PCA) analysis and geochemical modeling suggest that the occurrence of As and other trace element concentrations in groundwater are probably derived

  14. Modeling and Optimizing Energy Utilization of Steel Production Process: A Hybrid Petri Net Approach

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2013-01-01

    Full Text Available The steel industry is responsible for nearly 9% of anthropogenic energy utilization in the world. It is urgent to reduce the total energy utilization of steel industry under the huge pressures on reducing energy consumption and CO2 emission. Meanwhile, the steel manufacturing is a typical continuous-discrete process with multiprocedures, multiobjects, multiconstraints, and multimachines coupled, which makes energy management rather difficult. In order to study the energy flow within the real steel production process, this paper presents a new modeling and optimization method for the process based on Hybrid Petri Nets (HPN in consideration of the situation above. Firstly, we introduce the detailed description of HPN. Then the real steel production process from one typical integrated steel plant is transformed into Hybrid Petri Net model as a case. Furthermore, we obtain a series of constraints of our optimization model from this model. In consideration of the real process situation, we pick the steel production, energy efficiency and self-made gas surplus as the main optimized goals in this paper. Afterwards, a fuzzy linear programming method is conducted to obtain the multiobjective optimization results. Finally, some measures are suggested to improve this low efficiency and high whole cost process structure.

  15. Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets.

    Science.gov (United States)

    Zhang, Jian-Hua; Xia, Jia-Jun; Garibaldi, Jonathan M; Groumpos, Petros P; Wang, Ru-Bin

    2017-06-01

    In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable. Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy. Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%). The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN

  16. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, L.M.; Markussen, B.; Nielsen, N.I.

    2016-01-01

    Previously, a linear relationship has been found between net energy intake (NEI) and dietary chewing index (CI) of the diet for different types of cattle. Therefore, we propose to generalize and calibrate this relationship into a new model for direct prediction of NEI by dairy cows from CI values...... (CINE; min/MJ of NE). Furthermore, we studied the forage-to-concentrate substitution rate in this new NEI model. To calibrate the model on a diverse set of situations, we built a database of mean intake from 14 production experiments with a total of 986 primi- and multiparous lactating dairy cows......, and disturbance, across and within experiments on independent data from 19 experiments including 812 primi- and multiparous lactating dairy cows of different breeds fed 80 different diets ad libitum. The NEI model predicted NEI with an MSPE of 8% of observed, and across the 19 experiments the error central...

  17. Modelling Feature Interaction Patterns in Nokia Mobile Phones using Coloured Petri Nets and Design/CPN

    DEFF Research Database (Denmark)

    Lorentsen, Louise; Tuovinen, Antti-Pekka; Xu, Jianli

    2002-01-01

    This paper describes the first results of a project on modelling of important feature interaction patterns of Nokia mobile phones using Coloured Petri Nets. A modern mobile phone supports many features: voice and data calls, text messaging, personal information management (phonebook and calendar......), WAP browsing, games, etc. All these features are packaged into a handset with a small screen and a special purpose keypad. The limited user interface and the seamless intertwining of logically separate features cause many problems in the software development of the user interface of mobile phones...

  18. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model

    International Nuclear Information System (INIS)

    Veroustraete, F.; Patyn, J.; Myneni, R.B.

    1996-01-01

    The evaluation and prediction of changes in carbon dynamics at the ecosystem level is a key issue in studies of global change. An operational concept for the determination of carbon fluxes for the Belgian territory is the goal of the presented study. The approach is based on the integration of remotely sensed data into ecosystem models in order to evaluate photosynthetic assimilation and net ecosystem exchange (NEE). Remote sensing can be developed as an operational tool to determine the fraction of absorbed photosynthetically active radiation (feAR). A review of the methodological approach of mapping fPAR dynamics at the regional scale by means of NOAA11-A VHRR / 2 data for the year 1990 is given. The processing sequence from raw radiance values to fPAR is presented. An interesting aspect of incorporating remote sensing derived fPAR in ecosystem models is the potential for modeling actual as opposed to potential vegetation. Further work should prove whether the concepts presented and the assumptions made in this study are valid. (NEE). Complex ecosystem models with a highly predictive value for a specific ecosystem are generally not suitable for global or regional applications, since they require a substantial set of ancillary data becoming increasingly larger with increasing complexity of the model. The ideal model for our purpose is one that is simple enough to be used in global scale modeling, and which can be adapted for different ecosystems or vegetation types. The fraction of absorbed photosynthetically active radiation (fPAR) during the growing season determines in part net photosynthesis and phytomass production (Ruimy, 1995). Remotely measured red and near-infrared spectral reflectances can be used to estimate fPAR. Therefore, a possible approach is to estimate net photosynthesis, phytomass, and NEE from a combination of satellite data and an ecosystem model that includes carbon dynamics. It has to be stated that some parts of the work presented in this

  19. Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases

    International Nuclear Information System (INIS)

    Haase, Christoph; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2013-01-01

    Highlights: • CO 2 and calcite dissolution is calculated. • The codes PHREEQC, Geochemist’s Workbench, EQ3/6, and FactSage are used. • Comparison with Duan and Li (2008) shows lowest deviation using phreeqc.dat and wateq4f.dat. • Using Pitzer databases does not improve accurate calculations. • Uncertainty in dissolved CO 2 is largest using the geochemical models. - Abstract: A prognosis of the geochemical effects of CO 2 storage induced by the injection of CO 2 into geologic reservoirs or by CO 2 leakage into the overlaying formations can be performed by numerical modelling (non-invasive) and field experiments. Until now the research has been focused on the geochemical processes of the CO 2 reacting with the minerals of the storage formation, which mostly consists of quartzitic sandstones. Regarding the safety assessment the reactions between the CO 2 and the overlaying formations in the case of a CO 2 leakage are of equal importance as the reactions in the storage formation. In particular, limestone formations can react very sensitively to CO 2 intrusion. The thermodynamic parameters necessary to model these reactions are not determined explicitly through experiments at the total range of temperature and pressure conditions and are thus extrapolated by the simulation code. The differences in the calculated results lead to different calcite and CO 2 solubilities and can influence the safety issues. This uncertainty study is performed by comparing the computed results, applying the geochemical modelling software codes The Geochemist’s Workbench, EQ3/6, PHREEQC and FactSage/ChemApp and their thermodynamic databases. The input parameters (1) total concentration of the solution, (2) temperature and (3) fugacity are varied within typical values for CO 2 reservoirs, overlaying formations and close-to-surface aquifers. The most sensitive input parameter in the system H 2 O–CO 2 –NaCl–CaCO 3 for the calculated range of dissolved calcite and CO 2 is the

  20. Petri Nets Based Modelling of Control Flow for Memory-Aid Interactive Programs in Telemedicine

    CERN Document Server

    Khoromskaia, V K

    2004-01-01

    Petri Nets (PN) based modelling of the control flow for the interactive memory assistance programs designed for personal pocket computers and having special requirements for robustness is considered. The proposed concept allows one to elaborate the programs which can give users a variety of possibilities for a day-time planning in the presence of environmental and time restrictions. First, a PN model for a known simple algorithm is constructed and analyzed using the corresponding state equations and incidence matrix. Then a PN graph for a complicated algorithm with overlapping actions and choice possibilities is designed, supplemented by an example of its analysis. Dynamic behaviour of this graph is tested by tracing of all possible paths of the flow of control using the PN simulator. It is shown that PN based modelling provides reliably predictable performance of interactive algorithms with branched structures and concurrency requirements.

  1. Modelling and analysis of the feeding regimen induced entrainment of hepatocyte circadian oscillators using petri nets.

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    Full Text Available Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system.

  2. Modelling and Analysis of the Feeding Regimen Induced Entrainment of Hepatocyte Circadian Oscillators Using Petri Nets

    Science.gov (United States)

    Tareen, Samar Hayat Khan; Ahmad, Jamil

    2015-01-01

    Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system. PMID:25789928

  3. A Petri net-based modelling of replacement strategies under technological obsolescence

    Energy Technology Data Exchange (ETDEWEB)

    Clavareau, Julien [Universite Libre de Bruxelles (U.L.B.), Service de Metrologie Nucleaire, Av. F.D. Roosevelt, 50 (CP165/84), Bruxelles B-1050 (Belgium)], E-mail: jclavare@ulb.ac.be; Labeau, Pierre-Etienne [Universite Libre de Bruxelles (U.L.B.), Service de Metrologie Nucleaire, Av. F.D. Roosevelt, 50 (CP165/84), Bruxelles B-1050 (Belgium)

    2009-02-15

    The technological obsolescence of a unit is characterised by the existence of challenger units displaying identical functionalities, but with higher performances. Though this issue is commonly encountered in practice, it has received little consideration in the literature. Previous exploratory works have treated the problem of replacing old-technology items by new ones, for identical components facing a unique new generation of items. This paper aims to define, in a realistic way, possible replacement policies when several types of challenger units are available and when the performances of these newly available units improve with time. Since no fully generic model can exist in maintenance optimisation, a modular modelling of the problem, allowing easy adaptations to features corresponding to specific applications is highly desirable. This work therefore proposes a modular Petri net model for this problem, underlying a Monte Carlo (MC) estimation of the costs incurred by the different possible replacement strategies under consideration.

  4. Estimating the carrying capacity of green mussel cultivation by using net nutrient removal model.

    Science.gov (United States)

    Srisunont, Chayarat; Babel, Sandhya

    2016-11-15

    This study aims to evaluate the nutrient removal potential and carrying capacity of green mussel cultivation by using the mass balance model. The developed model takes into consideration the green mussel growth rate, density and chlorophyll a concentration. The data employed in this study were based on culture conditions at Sriracha Fisheries Research Station, Thailand. Results show that net nutrient removal by green mussel is 3302, 380, and 124mg/year/indv for carbon, nitrogen, and phosphorus respectively. The carrying capacity of green mussel cultivation was found to be 300indv/m 2 based on chlorophyll a concentration which will not release phosphorus in the water environment beyond the standard (45μg-PO 4 -3 -P/L). Higher chlorophyll a concentration results in lowered green mussel carrying capacity. This model can assist farm operators with possible management strategies for a sustainable mussel cultivation and protection of the marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Development of a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage

    DEFF Research Database (Denmark)

    Chen, Hao; Christensen, Erik Damgaard

    2017-01-01

    In the present work, we developed a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage. The numerical model is based on the coupling between the porous media model and the lumped mass structural model. A novel interface was implemented...

  6. Development of a Model of Geophysical and Geochemical Controls on Abiotic Carbon Cycling on Earth-Like Planets

    Science.gov (United States)

    Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.

    2017-12-01

    About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water

  7. Hydrogeological modeling constraints provided by geophysical and geochemical mapping of a chlorinated ethenes plume in northern France

    Science.gov (United States)

    Razafindratsima, Stephen; Guérin, Roger; Bendjoudi, Hocine; de Marsily, Ghislain

    2014-09-01

    A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants' migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent-daughter chain reaction and the RT3D aerobic-anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.

  8. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  9. The Consolidated Net Worth of Private Colleges. Recommendation of a Model.

    Science.gov (United States)

    Jenny, Hans H.

    One of several essential tools for assessing how the financial health of educational institutions is evolving is the Consolidated Net Worth Statement. This essay explores various aspects of conventional "funds" balance sheets and compares them with the Consolidated Net Worth. Emphasis is placed on how the Consolidated Net Worth Statement…

  10. Numerical modelling of the geochemical evolution of the near field under the hydrothermal conditions expected for a KBS-3 repository

    International Nuclear Information System (INIS)

    Arcos, D.; Sena, C.; Salas, J.

    2010-01-01

    Document available in extended abstract form only. In the KBS-3 concept for the nuclear waste repository, designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB), the bentonite buffer is placed around the copper canisters that contain the spent nuclear fuel, isolating it of the host rock. In order to check - hypotheses for the evolution of the bentonite buffer under the thermo-hydraulic conditions expected in a KBS-3 repository, SKB is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL). In the present work, numerical simulations are developed to simulate: i) thermo-hydraulic processes; ii) geochemical reactions and; iii) transport of solutes, that have been measured in the LOT A2 test, and, that are expected in the near-field of a KBS-3 repository. The numerical model for the LOT A2 test is based on analytical results and on field-scale experiments. The validation of this model allows us to implement it for the thermal period of the near field of the KBS-3 repository, based on previous modelling exercises. During the operation of a KBS-3 repository (after deposition of the copper canisters), the unsaturated bentonite will be submitted to a relatively high thermal gradient, induced by the radioactive decay of the spent nuclear fuel. On the other hand, the saturated host rock will provide aqueous solution to the unsaturated bentonite, induced by differential hydraulic pressures, under specific thermal and mechanic conditions. In this context, the bentonite will gradually become fully water saturated. Experimental results indicate that during the saturation period, the transport of solutes in the bentonite buffer will be influenced by water uptake from the surrounding host rock towards the wetting front, and also by a cyclic evaporation/condensation process, induced by the thermal gradient. Our numerical models take into account the transport of solutes and geochemical reactions under nonisothermal

  11. Free-fermion descriptions of parafermion chains and string-net models

    Science.gov (United States)

    Meichanetzidis, Konstantinos; Turner, Christopher J.; Farjami, Ashk; Papić, Zlatko; Pachos, Jiannis K.

    2018-03-01

    Topological phases of matter remain a focus of interest due to their unique properties: fractionalization, ground-state degeneracy, and exotic excitations. While some of these properties can occur in systems of free fermions, their emergence is generally associated with interactions between particles. Here, we quantify the role of interactions in general classes of topological states of matter in one and two spatial dimensions, including parafermion chains and string-net models. Surprisingly, we find that certain topological states can be exactly described by free fermions, while others saturate the maximum possible distance from their optimal free-fermion description [C. J. Turner et al., Nat. Commun. 8, 14926 (2017), 10.1038/ncomms14926]. Our work opens the door to understanding the complexity of topological models by establishing new types of fermionization procedures to describe their low-energy physics, thus making them amenable to experimental realizations.

  12. Modeling and Application of Vehicular Cyber Physical System Based Petri Nets

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2014-11-01

    Full Text Available Mobile cyber physical system (MCPS has been a hot research area, where mobile nodes can mobile, and communicate with each other. As a typical MCPS, vehicular cyber physical system (VCPS plays an important role in intelligent transportation, especially in collision avoidance. There is no, however, a formal modeling and analysis method for VCPS. In the paper, the modeling method based Petri nets (PN is presented. Furthermore, the behavior expression analysis method is also presented which can deal with arbitrary distribution timed transitions. Finally, a case is introduced to verify the effectiveness about proposed method, and the results show that VCPS can greatly reduce the reaction time of vehicles behind when emergent accident occurs and then enhance the traffic safety.

  13. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  14. Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Dontsova, K.; Steefel, C.I.; Desilets, S.; Thompson, A.; Chorover, J.

    2009-07-15

    A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled to reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.

  15. Modelling of long term geochemical evolution and study of mechanical perturbation of bentonite buffer of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Marsal, Francois; Pellegrini, Delphine; Deleruyelle, Frederic; Serres, Christophe (French Institute for Radiological Protection and Nuclear Safety (IRSN) (FR)); Windt, Laurent de (Paris School of Mines (ENSMP) (FR))

    2008-03-15

    The Swedish Nuclear Fuel and Waste Management Co. (SKB) has recently completed a safety assessment project named SR-Can, related to the KBS-3 disposal concept. In this concept, the waste packages are surrounded by a buffer made of either MX-80 or Deponit CA-N bentonite. Interactions between the buffer and groundwater may modify the buffer composition and thus its containment properties. The Swedish Radiation Protection Authorities (SSI) requested the French Institute for Radiological Protection and Nuclear Safety (IRSN) to perform the present study in support of SSI review of the SR-Can report. The purpose is to assess the geochemical evolution of both potential buffer materials due to the intrusion of different types of groundwater, with a similar modelling layout to that reported in SR-Can. Three main categories of water inflows via a fracture intersecting a deposition hole are considered: the Forsmark reference groundwater, a high-salinity groundwater to account for up-rise of deep-seated brines and a diluted water representing ice-melting derived groundwater. In addition to this, the redox buffering capacity of Deponit CA-N bentonite and the thermal effect on MX-80 bentonite geochemistry have been assessed. This modelling work has been performed using the reactive transport modelling code HYTEC. The main outcome of the present study is that the intrusion of the considered groundwaters should not affect drastically the geochemistry of neither the Deponit CA-N nor the MX-80 bentonite on the long-term (100,000 y). Bentonite pH may reach high values (up to 10.5) in some cases but does not reach SKB criterion value related to bentonite chemical stability. Dissolution-precipitation of accessory minerals is not significant enough to induce important porosity changes (rise by maximum 2 %). Globally, the montmorillonite exchanger undergoes Na by Ca partial replacement, which may decrease the swelling pressure of the bentonite. The simulated intrusion of oxidizing waters

  16. Modelling of long term geochemical evolution and study of mechanical perturbation of bentonite buffer of a KBS-3 repository

    International Nuclear Information System (INIS)

    Marsal, Francois; Pellegrini, Delphine; Deleruyelle, Frederic; Serres, Chris tophe; Windt, Laurent de

    2008-03-01

    The Swedish Nuclear Fuel and Waste Management Co. (SKB) has recently completed a safety assessment project named SR-Can, related to the KBS-3 disposal concept. In this concept, the waste packages are surrounded by a buffer made of either MX-80 or Deponit CA-N bentonite. Interactions between the buffer and groundwater may modify the buffer composition and thus its containment properties. The Swedish Radiation Protection Authorities (SSI) requested the French Institute for Radiological Protection and Nuclear Safety (IRSN) to perform the present study in support of SSI review of the SR-Can report. The purpose is to assess the geochemical evolution of both potential buffer materials due to the intrusion of different types of groundwater, with a similar modelling layout to that reported in SR-Can. Three main categories of water inflows via a fracture intersecting a deposition hole are considered: the Forsmark reference groundwater, a high-salinity groundwater to account for up-rise of deep-seated brines and a diluted water representing ice-melting derived groundwater. In addition to this, the redox buffering capacity of Deponit CA-N bentonite and the thermal effect on MX-80 bentonite geochemistry have been assessed. This modelling work has been performed using the reactive transport modelling code HYTEC. The main outcome of the present study is that the intrusion of the considered groundwaters should not affect drastically the geochemistry of neither the Deponit CA-N nor the MX-80 bentonite on the long-term (100,000 y). Bentonite pH may reach high values (up to 10.5) in some cases but does not reach SKB criterion value related to bentonite chemical stability. Dissolution-precipitation of accessory minerals is not significant enough to induce important porosity changes (rise by maximum 2 %). Globally, the montmorillonite exchanger undergoes Na by Ca partial replacement, which may decrease the swelling pressure of the bentonite. The simulated intrusion of oxidizing waters

  17. Uncertainty estimation of the velocity model for stations of the TrigNet GPS network

    Science.gov (United States)

    Hackl, M.; Malservisi, R.; Hugentobler, U.

    2010-12-01

    Satellite based geodetic techniques - above all GPS - provide an outstanding tool to measure crustal motions. They are widely used to derive geodetic velocity models that are applied in geodynamics to determine rotations of tectonic blocks, to localize active geological features, and to estimate rheological properties of the crust and the underlying asthenosphere. However, it is not a trivial task to derive GPS velocities and their uncertainties from positioning time series. In general time series are assumed to be represented by linear models (sometimes offsets, annual, and semi-annual signals are included) and noise. It has been shown that error models accounting only for white noise tend to underestimate the uncertainties of rates derived from long time series and that different colored noise components (flicker noise, random walk, etc.) need to be considered. However, a thorough error analysis including power spectra analyses and maximum likelihood estimates is computationally expensive and is usually not carried out for every site, but the uncertainties are scaled by latitude dependent factors. Analyses of the South Africa continuous GPS network TrigNet indicate that the scaled uncertainties overestimate the velocity errors. So we applied a method similar to the Allan Variance that is commonly used in the estimation of clock uncertainties and is able to account for time dependent probability density functions (colored noise) to the TrigNet time series. Comparisons with synthetic data show that the noise can be represented quite well by a power law model in combination with a seasonal signal in agreement with previous studies, which allows for a reliable estimation of the velocity error. Finally, we compared these estimates to the results obtained by spectral analyses using CATS. Small differences may originate from non-normal distribution of the noise.

  18. Uncertainty estimation of the velocity model for the TrigNet GPS network

    Science.gov (United States)

    Hackl, Matthias; Malservisi, Rocco; Hugentobler, Urs; Wonnacott, Richard

    2010-05-01

    Satellite based geodetic techniques - above all GPS - provide an outstanding tool to measure crustal motions. They are widely used to derive geodetic velocity models that are applied in geodynamics to determine rotations of tectonic blocks, to localize active geological features, and to estimate rheological properties of the crust and the underlying asthenosphere. However, it is not a trivial task to derive GPS velocities and their uncertainties from positioning time series. In general time series are assumed to be represented by linear models (sometimes offsets, annual, and semi-annual signals are included) and noise. It has been shown that models accounting only for white noise tend to underestimate the uncertainties of rates derived from long time series and that different colored noise components (flicker noise, random walk, etc.) need to be considered. However, a thorough error analysis including power spectra analyses and maximum likelihood estimates is quite demanding and are usually not carried out for every site, but the uncertainties are scaled by latitude dependent factors. Analyses of the South Africa continuous GPS network TrigNet indicate that the scaled uncertainties overestimate the velocity errors. So we applied a method similar to the Allan Variance that is commonly used in the estimation of clock uncertainties and is able to account for time dependent probability density functions (colored noise) to the TrigNet time series. Finally, we compared these estimates to the results obtained by spectral analyses using CATS. Comparisons with synthetic data show that the noise can be represented quite well by a power law model in combination with a seasonal signal in agreement with previous studies.

  19. netCDF Operators for Rapid Analysis of Measured and Modeled Swath-like Data

    Science.gov (United States)

    Zender, C. S.

    2015-12-01

    Swath-like data (hereafter SLD) are defined by non-rectangular and/or time-varying spatial grids in which one or more coordinates are multi-dimensional. It is often challenging and time-consuming to work with SLD, including all Level 2 satellite-retrieved data, non-rectangular subsets of Level 3 data, and model data on curvilinear grids. Researchers and data centers want user-friendly, fast, and powerful methods to specify, extract, serve, manipulate, and thus analyze, SLD. To meet these needs, large research-oriented agencies and modeling center such as NASA, DOE, and NOAA increasingly employ the netCDF Operators (NCO), an open-source scientific data analysis software package applicable to netCDF and HDF data. NCO includes extensive, fast, parallelized regridding features to facilitate analysis and intercomparison of SLD and model data. Remote sensing, weather and climate modeling and analysis communities face similar problems in handling SLD including how to easily: 1. Specify and mask irregular regions such as ocean basins and political boundaries in SLD (and rectangular) grids. 2. Bin, interpolate, average, or re-map SLD to regular grids. 3. Derive secondary data from given quality levels of SLD. These common tasks require a data extraction and analysis toolkit that is SLD-friendly and, like NCO, familiar in all these communities. With NCO users can 1. Quickly project SLD onto the most useful regular grids for intercomparison. 2. Access sophisticated statistical and regridding functions that are robust to missing data and allow easy specification of quality control metrics. These capabilities improve interoperability, software-reuse, and, because they apply to SLD, minimize transmission, storage, and handling of unwanted data. While SLD analysis still poses many challenges compared to regularly gridded, rectangular data, the custom analyses scripts SLD once required are now shorter, more powerful, and user-friendly.

  20. Geochemical studies in watersheds expanded

    Science.gov (United States)

    Church, M. Robbins

    In the past, geochemical research in forested watersheds has focused on understanding the basic processes that occur in soils and rocks. Watershed geochemical processes, however, are greatly influenced by, and in turn, greatly influence, both organisms and biological process in soils, and hydrologic responses of catchments. To date, geochemical research has dealt principally with basic chemical processes in soils and rocks, and much less with questions concerning hydrologic routing through catchments and the effects such routing has on temporal variation in chemical composition of surface waters.Research on flow generation in catchments has focused on intensive field studies on plots, hillslope sections, and small catchments, with extension to larger scales necessarily involving the application of conceptual models that might (or might not) be valid. The acquisition of direct experimental evidence (for example, verifying flow generation mechanisms) on larger-scale watersheds has always been problematic. Although geochemists understand that the explanation of some geochemical observations requires that flow pathways be explicitly identified, and hydrologists understand that flow generation can be better elucidated if the geochemical history of waters is known, critical integrated communication between the disciplines is often lacking. In turn, biologists require physical and geochemical information to interpret biological effects in watersheds, and hydrologists and geochemists need to be aware of the effects of biological processes on hydrochemical response of catchments.

  1. Applying and Individual-Based Model to Simultaneously Evaluate Net Ecosystem Production and Tree Diameter Increment

    Science.gov (United States)

    Fang, F. J.

    2017-12-01

    Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.

  2. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.

    Science.gov (United States)

    Sweet, Shannan K; Griffin, Kevin L; Steltzer, Heidi; Gough, Laura; Boelman, Natalie T

    2015-06-01

    Satellite studies of the terrestrial Arctic report increased summer greening and longer overall growing and peak seasons since the 1980s, which increases productivity and the period of carbon uptake. These trends are attributed to increasing air temperatures and reduced snow cover duration in spring and fall. Concurrently, deciduous shrubs are becoming increasingly abundant in tundra landscapes, which may also impact canopy phenology and productivity. Our aim was to determine the influence of greater deciduous shrub abundance on tundra canopy phenology and subsequent impacts on net ecosystem carbon exchange (NEE) during the growing and peak seasons in the arctic foothills region of Alaska. We compared deciduous shrub-dominated and evergreen/graminoid-dominated community-level canopy phenology throughout the growing season using the normalized difference vegetation index (NDVI). We used a tundra plant-community-specific leaf area index (LAI) model to estimate LAI throughout the green season and a tundra-specific NEE model to estimate the impact of greater deciduous shrub abundance and associated shifts in both leaf area and canopy phenology on tundra carbon flux. We found that deciduous shrub canopies reached the onset of peak greenness 13 days earlier and the onset of senescence 3 days earlier compared to evergreen/graminoid canopies, resulting in a 10-day extension of the peak season. The combined effect of the longer peak season and greater leaf area of deciduous shrub canopies almost tripled the modeled net carbon uptake of deciduous shrub communities compared to evergreen/graminoid communities, while the longer peak season alone resulted in 84% greater carbon uptake in deciduous shrub communities. These results suggest that greater deciduous shrub abundance increases carbon uptake not only due to greater leaf area, but also due to an extension of the period of peak greenness, which extends the period of maximum carbon uptake. © 2015 John Wiley & Sons Ltd.

  3. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    Energy Technology Data Exchange (ETDEWEB)

    Chew, S.P.; Dunnett, S.J. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom); Andrews, J.D. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom)], E-mail: j.d.andrews@lboro.ac.uk

    2008-07-15

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically.

  4. Evaluation of modelled net primary production using MODIS and landsat satellite data fusion

    Directory of Open Access Journals (Sweden)

    Steven Jay

    2016-06-01

    Full Text Available Abstract Background To improve estimates of net primary production for terrestrial ecosystems of the continental United States, we evaluated a new image fusion technique to incorporate high resolution Landsat land cover data into a modified version of the CASA ecosystem model. The proportion of each Landsat land cover type within each 0.004 degree resolution CASA pixel was used to influence the ecosystem model result by a pure-pixel interpolation method. Results Seventeen Ameriflux tower flux records spread across the country were combined to evaluate monthly NPP estimates from the modified CASA model. Monthly measured NPP data values plotted against the revised CASA model outputs resulted in an overall R2 of 0.72, mainly due to cropland locations where irrigation and crop rotation were not accounted for by the CASA model. When managed and disturbed locations are removed from the validation, the R2 increases to 0.82. Conclusions The revised CASA model with pure-pixel interpolated vegetation index performed well at tower sites where vegetation was not manipulated or managed and had not been recently disturbed. Tower locations that showed relatively low correlations with CASA-estimated NPP were regularly disturbed by either human or natural forces.

  5. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    International Nuclear Information System (INIS)

    Chew, S.P.; Dunnett, S.J.; Andrews, J.D.

    2008-01-01

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically

  6. Fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite: Complimenting experimental results with a geochemical model

    CSIR Research Space (South Africa)

    Masindi, V

    2016-03-01

    Full Text Available This study assessed the fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite. To accomplish that, neutralization and metal attenuation were evaluated and complemented with simulations using geochemical...

  7. Hydrogeochemical processes and geochemical modeling in a coastal aquifer: Case study of the Marathon coastal plain, Greece

    Science.gov (United States)

    Papazotos, Panagiotis; Koumantakis, Ioannis; Kallioras, Andreas; Vasileiou, Eleni; Perraki, Maria

    2017-04-01

    Determining the hydrogeochemical processes has always been a challenge for scientists. The aim of this work is the study of the principal hydrogeochemical processes controlling groundwater quality in the Marathon coastal plain, Greece, with emphasis on the origin of the solutes. Various physicochemical parameters and major ions of twenty-five groundwater samples were analyzed. The hydrogeochemical data of groundwater were studied in order to determine the major factors controlling the chemical composition and hydrogeochemical evolution. In the Marathon coastal plain, three different zones of the alluvial granular aquifer system have been detected, considering the geochemical processes and recharge, which affect its hydrochemical characteristics. The alluvial granular aquifer system is divided eastwards into three zones: a) the natural recharge zone, b) the reverse ion exchange zone and c) the diffusion sea water zone. Cl-is the dominant anion and Na+and Ca2+ are the dominant cations, as determined by plotting the analyses on the respective Piper diagram. Near the coastline high concentrations of Na+ and Cl- were observed indicating a zone of seawater intrusion. On the other hand, westward there is increasing concentration of HCO3- with simultaneous decrease of Na+is indication of a recharge zone from karstic aquifers of the study area. Between the aforementioned zones there is an intermediate one, where reverse ion exchange takes place due to high concentrations of dissolved Na+ and Ca2+ adsorption. The saturation indices (SI) were calculated using the geochemical modeling software PHREEQC. Mineral phases of halite, sylvite, gypsum and anhydrite were estimated to be undersaturated in the water samples, suggesting these phases are minor or absent in the host rock. On the other hand, calcite, aragonite and dolomite are close to equilibrium; these minerals are present in the host rocks or in the unsaturated zone, possibly increasing the Ca2+, Mg2+ and HCO3

  8. Invariant visual object and face recognition: neural and computational bases, and a model, VisNet

    Directory of Open Access Journals (Sweden)

    Edmund T eRolls

    2012-06-01

    Full Text Available Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy modelin which invariant representations can be built by self-organizing learning based on the temporal and spatialstatistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associativesynaptic learning rule with a short term memory trace, and/or it can use spatialcontinuity in Continuous Spatial Transformation learning which does not require a temporal trace. The model of visual processing in theventral cortical stream can build representations of objects that are invariant withrespect to translation, view, size, and also lighting. The modelhas been extended to provide an account of invariant representations in the dorsal visualsystem of the global motion produced by objects such as looming, rotation, and objectbased movement. The model has been extended to incorporate top-down feedback connectionsto model the control of attention by biased competition in for example spatial and objectsearch tasks. The model has also been extended to account for how the visual system canselect single objects in complex visual scenes, and how multiple objects can berepresented in a scene. The model has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  9. Geochemical modelling study on the age and evolution of the groundwater at the Romuvaara site

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Vuorinen, U.; Leino-Forsman, H.; Snellman, M.

    1996-09-01

    The objective of the study was to interpret the processes and factors which control the hydrogeochemistry (e.g. pH and redox conditions) in the radioactive waste disposal environment. A model of the hydrogeochemical evolution and the chemical flowpaths in different parts of the bedrock at the Romuvaara (in Finland) site has been created. The significance of chemical reactions along different flowpaths is calculated. Furthermore, the consistency of the hydrogeochemical model and the hydrogeological model is examined. (107 refs.)

  10. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peijuan; Xie, Donghui; Zhou, Yuyu; E, Youhao; Zhu, Qijiang

    2014-01-16

    The ecological structure in the arid and semi-arid region of Northwest China with forest, grassland, agriculture, Gobi, and desert, is complex, vulnerable, and unstable. It is a challenging and sustaining job to keep the ecological structure and improve its ecological function. Net primary productivity (NPP) modeling can help to improve the understanding of the ecosystem, and therefore, improve ecological efficiency. The boreal ecosystem productivity simulator (BEPS) model provides the possibility of NPP modeling in terrestrial ecosystem, but it has some limitations for application in arid and semi-arid regions. In this paper we improve the BEPS model, in terms of its water cycle by adding the processes of infiltration and surface runoff, to be applicable in arid and semi-arid regions. We model the NPP of forest, grass, and crop in Gansu Province as an experimental area in Northwest China in 2003 using the improved BEPS model, parameterized with moderate resolution remote sensing imageries and meteorological data. The modeled NPP using improved BEPS agrees better with the ground measurements in Qilian Mountain than that with original BEPS, with a higher R2 of 0.746 and lower root mean square error (RMSE) of 46.53 gC/m2 compared to R2 of 0.662 and RMSE of 60.19 gC/m2 from original BEPS. The modeled NPP of three vegetation types using improved BEPS show evident differences compared to that using original BEPS, with the highest difference ratio of 9.21% in forest and the lowest value of 4.29% in crop. The difference ratios between different vegetation types lie on the dependence on natural water sources. The modeled NPP in five geographic zones using improved BEPS are higher than those with original BEPS, with higher difference ratio in dry zones and lower value in wet zones.

  11. Compositional data analysis and geochemical modeling of CO2-water-rock interactions in three provinces of Korea.

    Science.gov (United States)

    Kim, Seong Hee; Choi, Byoung-Young; Lee, Gyemin; Yun, Seong-Taek; Kim, Soon-Oh

    2017-12-20

    The CO 2 -rich spring water (CSW) occurring naturally in three provinces, Kangwon (KW), Chungbuk (CB), and Gyeongbuk (GB) of South Korea was classified based on its hydrochemical properties using compositional data analysis. Additionally, the geochemical evolution pathways of various CSW were simulated via equilibrium phase modeling (EPM) incorporated in the PHREEQC code. Most of the CSW in the study areas grouped into the Ca-HCO 3 water type, but some samples from the KW area were classified as Na-HCO 3 water. Interaction with anorthite is likely to be more important than interaction with carbonate minerals for the hydrochemical properties of the CSW in the three areas, indicating that the CSW originated from interactions among magmatic CO 2 , deep groundwater, and bedrock-forming minerals. Based on the simulation results of PHREEQC EPM, the formation temperatures of the CSW within each area were estimated as 77.8 and 150 °C for the Ca-HCO 3 and Na-HCO 3 types of CSW, respectively, in the KW area; 138.9 °C for the CB CSW; and 93.0 °C for the GB CSW. Additionally, the mixing ratios between simulated carbonate water and shallow groundwater were adjusted to 1:9-9:1 for the CSW of the GB area and the Ca-HCO 3 -type CSW of the KW area, indicating that these CSWs were more affected by carbonate water than by shallow groundwater. On the other hand, mixing ratios of 1:9-5:5 and 1:9-3:7 were found for the Na-HCO 3 -type CSW of the KW area and for the CSW of the CB area, respectively, suggesting a relatively small contribution of carbonate water to these CSWs. This study proposes a systematic, but relatively simple, methodology to simulate the formation of carbonate water in deep environments and the geochemical evolution of CSW. Moreover, the proposed methodology could be applied to predict the behavior of CO 2 after its geological storage and to estimate the stability and security of geologically stored CO 2 .

  12. Lattice Boltzmann based multicomponent reactive transport model coupled with geochemical solver for scale simulations

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.

    2013-01-01

    A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the

  13. A Method of Sample Models of Program Construction in Terms of Petri Nets

    Directory of Open Access Journals (Sweden)

    D. I. Kharitonov

    2015-01-01

    Full Text Available In the article a method of automated construction of Petri nets simulating the behaviour of imperative programs is considered from the formal point of view. Petri net samples with certain characteristics are necessary in programming new algorithms for program analysis; in particular, they can be used for developing or optimizing algorithms of Petri nets compositions and decompositions, building the reachability tree, checking invariants and so on. The generation process consists of two stages. At the first stage, construction templates for a resulting net and parameters for construction are described. With the help of these parameters it is possible to regulate the final size and the absolute or relative amount of certain structures in the resulting net. At the second stage, iterative process of automated net construction is used for Petri net generation of any size, limited only by an available computer memory. In the first section of the article the minimum necessary definitions are given and a new version of Petri nets composition operation by places is introduced. Commutative and associative properties of introduced binary operation allow to synchronize any number of Petri nets in arbitrary order. Then construction template is defined as a marked Petri net with input and output interfaces and rules for templates composition using this interfaces. A number of construction templates can be united in a collection, for which the evolution rules are defined. The completeness property of a collection guarantees that the collection evolution results in a Petri net that simulates the imperative program behavior. The article provides a version of the construction templates complete collection and an example of Petri net simulating sequential imperative program construction.

  14. Evaluation and inversion of a net ecosystem carbon exchange model for grasslands and croplands

    Science.gov (United States)

    Herbst, M.; Klosterhalfen, A.; Weihermueller, L.; Graf, A.; Schmidt, M.; Huisman, J. A.; Vereecken, H.

    2017-12-01

    A one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) was coupled to predict the net ecosystem exchange (NEE) of carbon. This model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was acceptable with a model efficiency >0.78 for NEE. In a second step, AgroC was optimized with the eddy covariance NEE measurements to examine the effect of various objective functions, constraints, and data-transformations on estimated NEE, which showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. Both, day and nighttime fluxes, were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting annual NEE differed substantially. We conclude that data-transformation, definition of objective functions, and data sources have to be considered cautiously when using a terrestrial ecosystem model to determine carbon balances by means of eddy covariance measurements.

  15. Regional differences in modelled net production and shallow remineralization in the North Atlantic subtropical gyre

    Directory of Open Access Journals (Sweden)

    B. Fernández-Castro

    2012-08-01

    Full Text Available We used 5-yr concomitant data of tracer distribution from the BATS (Bermuda Time-series Study and ESTOC (European Station for Time-Series in the Ocean, Canary Islands sites to build a 1-D tracer model conservation including horizontal advection, and then compute net production and shallow remineralization rates for both sites. Our main goal was to verify if differences in these rates are consistent with the lower export rates of particulate organic carbon observed at ESTOC. Net production rates computed below the mixed layer to 110 m from April to December for oxygen, dissolved inorganic carbon and nitrate at BATS (1.34±0.79 mol O2 m−2, −1.73±0.52 mol C m−2 and −125±36 mmol N m−2 were slightly higher for oxygen and carbon compared to ESTOC (1.03±0.62 mol O2 m−2, −1.42±0.30 mol C m−2 and −213±56 mmol N m−2, although the differences were not statistically significant. Shallow remineralization rates between 110 and 250 m computed at ESTOC (−3.9±1.0 mol O2 m−2, 1.53±0.43 mol C m−2 and 38±155 mmol N m−2 were statistically higher for oxygen compared to BATS (−1.81±0.37 mol O2 m−2, 1.52±0.30 mol C m−2 and 147±43 mmol N m−2. The lateral advective flux divergence of tracers, which was more significant at ESTOC, was responsible for the differences in estimated oxygen remineralization rates between both stations. According to these results, the differences in net production and shallow remineralization cannot fully explain the differences in the flux of sinking organic matter observed between both stations, suggesting an additional consumption of non-sinking organic matter at ESTOC.

  16. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling

    National Research Council Canada - National Science Library

    Palandri, James L; Kharaka, Yousif K

    2004-01-01

    .... Modeling of some systems, such as those at low temperature with relatively high hydrologic flow rates, or those perturbed by the subsurface injection of industrial waste such as CO2 or H2S, must...

  17. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...... a certain use of the CP-net. We define the semantics of annotations by describing a translation from a CP-net and the corresponding annotation layers to another CP-net where the annotations are an integrated part of the CP-net....

  18. Optimization of end-members used in multiple linear regression geochemical mixing models

    Science.gov (United States)

    Dunlea, Ann G.; Murray, Richard W.

    2015-11-01

    Tracking marine sediment provenance (e.g., of dust, ash, hydrothermal material, etc.) provides insight into contemporary ocean processes and helps construct paleoceanographic records. In a simple system with only a few end-members that can be easily quantified by a unique chemical or isotopic signal, chemical ratios and normative calculations can help quantify the flux of sediment from the few sources. In a more complex system (e.g., each element comes from multiple sources), more sophisticated mixing models are required. MATLAB codes published in Pisias et al. solidified the foundation for application of a Constrained Least Squares (CLS) multiple linear regression technique that can use many elements and several end-members in a mixing model. However, rigorous sensitivity testing to check the robustness of the CLS model is time and labor intensive. MATLAB codes provided in this paper reduce the time and labor involved and facilitate finding a robust and stable CLS model. By quickly comparing the goodness of fit between thousands of different end-member combinations, users are able to identify trends in the results that reveal the CLS solution uniqueness and the end-member composition precision required for a good fit. Users can also rapidly check that they have the appropriate number and type of end-members in their model. In the end, these codes improve the user's confidence that the final CLS model(s) they select are the most reliable solutions. These advantages are demonstrated by application of the codes in two case studies of well-studied datasets (Nazca Plate and South Pacific Gyre).

  19. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA)

    Science.gov (United States)

    Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Kresse, T.M.; Fazio, J.A.

    2008-01-01

    Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater with emphasis on arsenic (As) release under reducing conditions in the shallow (25-30 m) Mississippi River Valley Alluvial aquifer, Arkansas, USA. The modeling was based on flow paths defined by high-precision (??2 cm) water level contour map; X-ray diffraction (XRD), scanning electron microscopic (SEM), and chemical analysis of boring-sediments for minerals; and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in chemical analyses data of groundwater and sediments, and saturation indices data (MINTEQA2) of minerals in groundwater. Modeling results show that calcite, halite, fluorite, Fe oxyhydroxide, organic matter, H2S (gas) were dissolving with mole transfers of 1.40E - 03, 2.13E - 04, 4.15E - 06, 1.25E + 01, 3.11, and 9.34, respectively along the dominant flow line. Along the same flow line, FeS, siderite, and vivianite were precipitating with mole transfers of 9.34, 3.11, and 2.64E - 07, respectively. Cation exchange reactions of Ca2+ (4.93E - 04 mol) for Na+ (2.51E - 04 mol) on exchange sites occurred along the dominant flow line. Gypsum dissolution reactions were dominant over calcite dissolution in some of the flow lines due to the common ion effect. The concentration of As in groundwater ranged from rate of reduction of Fe oxyhydroxide over SO42 - with co-precipitation of As into sulfide is the limiting factor controlling dissolved As in groundwater. ?? 2007 Elsevier B.V. All rights reserved.

  20. Magnetic forward models of Cement oil field, Oklahoma, based on rock magnetic, geochemical, and petrologic constraints

    Science.gov (United States)

    Reynolds, R.L.; Webring, M.; Grauch, V.J.S.; Tuttle, M.

    1990-01-01

    Magnetic forward models of the Cement oil field, Oklahoma, were generated to assess the possibility that ferrimagnetic pyrrhotite related to hydrocarbon seepage in the upper 1 km of Permian strata contributes to aeromagnetic anomalies at Cement. Six bodies having different magnetizations were constructed for the magnetic models. Total magnetizations of the bodies of highest pyrrhotite content range from about 3 ?? 10-3 to 56 ?? 10-3 A/m in the present field direction and yield magnetic anomalies (at 120 m altitude) having amplitudes of less than 1 nT to ~6 to 7 nT, respectively. Numerous assumptions were made in the generation of the models, but nevertheless, the results suggest that pyrrhotite, formed via hydrocarbon reactions and within a range of concentrations estimated at Cement, is capable of causing magnetic anomalies. -from Authors

  1. MININR: a geochemical computer program for inclusion in water flow models - an application study

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, A.R.; Reisenauer, A.E.; Zachara, J.M.; Gee, G.W.

    1984-02-01

    MININR is a reduced form of the computer program MINTEQ which calculates equilibrium precipitation/dissolution of solid phases, aqueous speciation, adsorption, and gas phase equilibrium. The user-oriented features in MINTEQ were removed to reduce the size and increase the computational speed. MININR closely resembles the MINEQL computer program developed by Westall (1976). The main differences between MININR and MINEQL involve modifications to accept an initial starting mass of solid and necessary changes for linking with a water flow model. MININR in combination with a simple water flow model which considers only dilution was applied to a laboratory column packed with retorted oil shale and percolated with distilled water. Experimental and preliminary model simulation results are presented for the constituents K/sup +/, Na/sup +/, SO/sub 4//sup 2 -/, Mg/sup 2 +/, Ca/sup 2 +/, CO/sub 3//sup 2 -/ and pH.

  2. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  3. Building and analyzing timed influence net models with internet-enabled pythia

    Science.gov (United States)

    Pachowicz, Peter W.; Wagenhals, Lee W.; Pham, John; Levis, Alexander H.

    2007-04-01

    The most recent client-server version of Pythia modeling software is presented. Pythia is a software implementation of a Bayesian Net framework and is used for course of action development, evaluation, and selection in the context of effects-based planning. A new version, Pythia 1.5, is a part of a larger suite of tools for behavioral influence analysis, brought into the state-of-the-art client-server computing environment. This server application for multi-user and multiprocess computing relies on the Citrix Presentation Server for integration, security and maintenance. While Pythia's process is run on a server, the input/output services are controlled and displayed through a client PC. Example use of Pythia is illustrated through its application to a suppression of IED activity in an Iraqi province. This case study demonstrates how analysts can create executable (probabilistic) models that link potential actions to effects, based on knowledge about the cultural and social environment. Both the tool and the process for creating and analyzing the model are described as well as the benefits of using the new server based version of the tool.

  4. Status of geochemical modeling of groundwater evolution at the Tono in-situ tests site, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sasamoto, Hiroshi; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Arthur, R.C. [Monitor Scientific, L.L.C., Denver, Colorado (United States)

    1999-12-01

    Hydrochemical investigation of Tertiary sedimentary rocks at JNC's Tono in-situ tests site indicate the groundwaters are: meteoric in origin, chemically reducing at depths greater than a few tens of meters in the sedimentary rock, relatively old [carbon-14 ages of groundwaters collected from the lower part of the sedimentary sequence range from 13,000 to 15,000 years BP (before present)]. Ca-Na-HCO{sub 3} type solutions near the surface, changing to Na-HCO{sub 3} type groundwaters with increasing depth. The chemical evolution of the groundwaters is modeled assuming local equilibrium for selected mineral-fluid reactions, taking into account the rainwater origin of these solutions. Results suggest it is possible to interpret approximately the 'real' groundwater chemistry (i.e., pH, Eh, total dissolved concentrations of Si, Na, Ca, K, Al, carbonate and sulfate) if the following assumptions are adopted: CO{sub 2} concentration in the gas phase contacting pore solutions in the overlying soil zone=10{sup -1} bar, minerals in the rock zone that control the solubility of respective elements in the groundwater include; chalcedony (Si), albite (Na), kaolinite (Al), calcite (Ca and carbonate), muscovite (K) and pyrite (Eh and sulfate). It is noted, however, that the available field data may not be sufficient to adequately constrain parameters in the groundwater evolution model. In particular, more detailed information characterizing certain site properties (e.g., the actual mineralogy of 'plagioclase', 'clay' and 'zeolite') are needed to improve the model. Alternative conceptual models of key reactions may also be necessary. For this reason, a model that accounts for ion-exchange reactions among clay minerals, and which is based on the results of laboratory experiments, has also been evaluated in the present study. Further improvements of model considering ion-exchange reactions are needed in future, however. (author)

  5. Discussion on geochemical characteristics, mechanism and prospecting model of gluey type sandstone uranium mineralization--taking Redwell uranium deposit as an example

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    Redwell uranium deposit hosted in the red clastic rock formation, is a typical example of gluey type uranium mineralization, which has not been reported so far in China. Based on the study of geochemical characteristics of Redwell deposit, the author discusses the genetic mechanism of this type deposits, and proposes the prospecting model of 4 in 1 of red bed-fault-oil gas-uranium source

  6. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling

    Directory of Open Access Journals (Sweden)

    A. Ridgwell

    2007-01-01

    Full Text Available We have extended the 3-D ocean based "Grid ENabled Integrated Earth system model" (GENIE-1 to help understand the role of ocean biogeochemistry and marine sediments in the long-term (~100 to 100 000 year regulation of atmospheric CO2, and the importance of feedbacks between CO2 and climate. Here we describe the ocean carbon cycle, which in its first incarnation is based around a simple single nutrient (phosphate control on biological productivity. The addition of calcium carbonate preservation in deep-sea sediments and its role in regulating atmospheric CO2 is presented elsewhere (Ridgwell and Hargreaves, 2007. We have calibrated the model parameters controlling ocean carbon cycling in GENIE-1 by assimilating 3-D observational datasets of phosphate and alkalinity using an ensemble Kalman filter method. The calibrated (mean model predicts a global export production of particulate organic carbon (POC of 8.9 PgC yr−1, and reproduces the main features of dissolved oxygen distributions in the ocean. For estimating biogenic calcium carbonate (CaCO3 production, we have devised a parameterization in which the CaCO3:POC export ratio is related directly to ambient saturation state. Calibrated global CaCO3 export production (1.2 PgC yr-1 is close to recent marine carbonate budget estimates. The GENIE-1 Earth system model is capable of simulating a wide variety of dissolved and isotopic species of relevance to the study of modern global biogeochemical cycles as well as past global environmental changes recorded in paleoceanographic proxies. Importantly, even with 12 active biogeochemical tracers in the ocean and including the calculation of feedbacks between atmospheric CO2 and climate, we achieve better than 1000 years per (2.4 GHz CPU hour on a desktop PC. The GENIE-1 model thus provides a viable alternative to box and zonally-averaged models for studying global biogeochemical cycling over all but the very longest (>1 000 000 year time-scales.

  7. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra; Lopano, Christina L.; Rimstidt, J. Donald; Brantley, Susan L.

    2013-03-01

    One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rock + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of the

  8. Adding geochemical and isotope tracers to models of hillslope evolution: valuable constraints or monumental headache?

    Science.gov (United States)

    Mudd, S. M.; Yoo, K.; Hurst, M. D.; Weinman, B. A.; Maher, K.

    2011-12-01

    Landscapes evolve through time, both in terms of their geomorphology and their geochemistry. Past studies have highlighted that topography suffers from the problem of equifinality: the topographic configuration of landscapes can be the result of many different, yet equally plausible, erosion histories. In hillslope soils the properties and chemistry of the soils themselves could provide additional constraints on landscape evolution. Here we present results from a combination of modelling and field studies that seek to quantify the co-evolution of hillslope morphology and the solid state chemistry of hillslope soils. The models follow large numbers of individual particles as they are entrained into a physically mobile soil layer, weathered, and accumulate isotopes such as 10Be and 21Ne. We demonstrate that multiple hillslope properties mitigate (but do not eliminate) the problem of equifinality and demonstrate the importance of accounting for individual particle residence times and ages in interpretation of both isotope and weathering data.

  9. The Dynamics of Oceanic Transform Faults: Constraints from Geophysical, Geochemical and Geodynamical Modeling

    Science.gov (United States)

    2008-06-01

    magma chain- of 2,550 kg m -3 of the mantle where temperatures are <Sl5t0 -(2 Iter riLav exist beostth the enitire segnent and feed dvkcN front the...best explain the gravity-derived crustal thickness variations observed at the Siqueiros transform. Furthermore, a mantle potential temperature of...excess magma supply and increasing crustal production within the transform fault domain. These findings directly contradict the classic models of crustal

  10. Application of Thermal Modelling for Geochemical Characterization of Gadvan Formation, Persian Gulf, Iran

    Directory of Open Access Journals (Sweden)

    Ahmad Vaezian

    2014-12-01

    Full Text Available In the this research, the hydrocarbon generation potential of the Gadvan Formation as a probable source rock was investigated in the central part of the Persian Gulf at the borders of Iran. Type and maturity level of kerogen were investigated in six wells using the results of Rock-Eval pyrolysis and compared with results yielded by the modelling software program known as Pars Basin Modeler (PBM. The cross-plot of hydrogen index (HI versus maximum temperature suggests that the Gadvan Formation reached early to mid-maturity stages in the studied area, which means that it could act as a gas prone source rock. Furthermore, the burial and thermal history of the Gadvan Formation was determined in one well. Two methods, Easy %Ro and time-temperature index (TTI were used for the reconstruction of thermal modelling and studying the thermal maturity level in all of the drilled wells reaching the Gadvan Formation. The results of the TTI and Easy %Ro methods were in good agreement and both of confirmed the results of Rock Eval analysis. An integrated approach using different techniques showed that the Gadvan Formation can be classified as a poor gas bearing source rock in the studied area, while its maturity increases towards the southern parts of the Persian Gulf.

  11. Geochemical modelling of the long-term dissolution behaviour of the French nuclear glass R7T7

    International Nuclear Information System (INIS)

    Michaux, L.; Mouche, E.; Petit, J.-C.; Fritz, B.

    1992-01-01

    The long-term dissolution behaviour of the French nuclear reference glass R7T7 was studied by means of the geochemical code DISSOL. New experimental data which support some of the assumptions of DISSOL are presented: namely, that the dissolution is congruent and that the altered layer can be considered as an assemblage of secondary phases. At 100 o C the main results of modelling are that the altered layer is essentially formed of a pure siliceous phase (amorphous silica or chalcedony) associated with smectites and zeolites. This sequence of secondary minerals is closely linked to the chemical composition of the glass. For high degrees of reaction, corresponding to high B concentration, the ionic strength reaches 1 and the pH varies from 9 to 10 depending on the CO 2 fugacity; B,Li and Na are essentially found in solution and their concentrations depend on the amount of dissolved glass. By contrast Fe,Al and Zn have low solution concentrations which are controlled by solubility products of secondary minerals. Silicon and Ca have an intermediate behaviour which depends on the choice of selected secondary minerals. The total volume of the secondary phases is always lower than that of the corresponding dissolved glass. The results of modelling compared to static leaching experimental results show only minor differences which can be explained by kinetic control or colloid formation. It is concluded that the altered layer is not a barrier to diffusion. The consequences of this work for actinide solubility are also discussed. (author)

  12. Net modelling of energy mix among European Countries: A proposal for ruling new scenarios

    International Nuclear Information System (INIS)

    Dassisti, M.; Carnimeo, L.

    2012-01-01

    European energy policy pursues the objective of a sustainable, competitive and secure supply of energy. In 2007, the European Commission adopted an energy policy for Europe, which was supported by several documents on different aspects of energy and included an action plan to meet the major energy challenges Europe has to face. A farsighted diversified yearly mix of energies was suggested to countries, aiming at increasing security of supply and efficiency, but a wide and contemporary view of energy interchanges between states was not available. In a previous work of the same authors, energy import/export interchanges between European States were used to develop a geographic overview at one-glance. In this paper, the enhanced Interchange Energy Network (IEN) is investigated from a modelling point of view, as a Small-World Net, by supposing that connections can exist between States with a probability depending also on economic/political relations between countries. -- Highlights: ► Different view of the imports and exports of electric energy flows between European for potential use in ruling exchanges. ► Panel data from 1996 to 2008 as part of a network of exchanges was considered from Eurostat official database. ► The European import/export energy flows modelled as a network with Small-World phenomena, interpreting the evolution over the years. ► Interesting behavioural features as outcome derived, as shown for the case example of the Germany.

  13. [Simulating net primary production of rice and wheat crops: model validation and scenario prediction].

    Science.gov (United States)

    Yang, Zhao-fang; Yu, Yong-qiang; Huang, Yao

    2005-03-01

    A model developed by the authors was validated against a total of 98 independent data sets to simulate net primary production (NPP) of rice and wheat crops. These data sets come from literature review and include field measurements conducted in different regions of China with various rates of N application. Model validation indicates that NPP of rice and wheat crops in main cultivated-area of China can be well simulated from weather, soil and N fertilization. A comparison between the simulated (y) and the observed NPP (x) resulted in a regression of y = 1.05x- 16.8 (r2= 0.771,p carbon fixation, while the increase of air temperature will reduce carbon fixation by rice and wheat crops. Effect of global warming on the wheat carbon fixation is less than on the rice. Under present and future scenario with atmospheric CO2 concentration of 540 micromol x mol(-1) and temperature increment of 1-4 degrees C, N fertilization will enhance carbon fixation of rice and wheat crops. The enhancement for wheat is more significant than that for rice crop. However, the application of N will not significantly improve the carbon fixation, even reduce rice NPP when the N application rate is higher than 150 kg x hm(-2).

  14. Communication Modeling and Mobile Object Monitoring by Using Colored Petri Nets

    Directory of Open Access Journals (Sweden)

    Ramunas Dzindzalieta

    2011-08-01

    Full Text Available Summary. Monitoring moving objects and analyzing their statuses are the best opportunities currently offered by mobile technology. The methods and software for wireless systems allow the exchange of many possible data formats (e.g., text, visual or audio communication and provide information about the state of the object’s geographical coordinates in real time. The necessary information is received from the sensors and mobile device’s contextual information. Information is sent to remote servers whenever applicable, and, after some calculation, more accurate data is obtained. Software to identify different situations has been designed and implemented. The software and therefore the identification of the situations of technical equipment can send data, warnings or reminders to a given situation. Colored Petri nets (CPN allowed to more precisely model complex situations of scenarios and to capture the information any time, anywhere provided in advance of a moving object. Mobile devices detect the necessary data via the external or internal physical environment through sensors. The mobile device components are interacting with internal or external physical environment and have the sensor detectors’ parameters. Such information is stored into data-warehouses in which the knowledge discovery is made by CPN models, which represent rules of analysis.

  15. Communication Modeling and Mobile Object Monitoring by Using Colored Petri Nets

    Directory of Open Access Journals (Sweden)

    Dalė Dzemydienė

    2013-08-01

    Full Text Available Monitoring moving objects and analyzing their statuses are the best opportunities currently offered by mobile technology. The methods and software for wireless systems allow the exchange of many possible data formats (e.g., text, visual or audio communication and provide information about the state of the object’s geographical coordinates in real time. The necessary information is received from the sensors and mobile device’s contextual information. Information is sent to remote servers whenever applicable, and, after some calculation, more accurate data is obtained. Software to identify different situations has been designed and implemented. The software and therefore the identification of the situations of technical equipment can send data, warnings or reminders to a given situation. Colored Petri nets (CPN allowed to more precisely model complex situations of scenarios and to capture the information any time, anywhere provided in advance of a moving object. Mobile devices detect the necessary data via the external or internal physical environment through sensors. The mobile device components are interacting with internal or external physical environment and have the sensor detectors’ parameters. Such information is stored into data-warehouses in which the knowledge discovery is made by CPN models, which represent rules of analysis.

  16. A Petri-Nets Based Unified Modeling Approach for Zachman Framework Cells

    Science.gov (United States)

    Ostadzadeh, S. Shervin; Nekoui, Mohammad Ali

    With a trend toward becoming more and more information based, enterprises constantly attempt to surpass the accomplishments of each other by improving their information activities. In this respect, Enterprise Architecture (EA) has proven to serve as a fundamental concept to accomplish this goal. Enterprise architecture clearly provides a thorough outline of the whole enterprise applications and systems with their relationships to enterprise business goals. To establish such an outline, a logical framework needs to be laid upon the entire information system called Enterprise Architecture Framework (EAF). Among various proposed EAF, Zachman Framework (ZF) has been widely accepted as a standard scheme for identifying and organizing descriptive representations that have critical roles in enterprise management and development. One of the problems faced in using ZF is the lack of formal and verifiable models for its cells. In this paper, we proposed a formal language based on Petri nets in order to obtain verifiable models for all cells in ZF. The presented method helps developers to validate and verify completely integrated business and IT systems which results in improve the effectiveness or efficiency of the enterprise itself.

  17. Geochemical modelling and speciation studies of metal pollutants present in selected water systems in South Africa

    Science.gov (United States)

    Magu, M. M.; Govender, P. P.; Ngila, J. C.

    2016-04-01

    Metal pollutants in water poses great threats to living beings and hence requires to be monitored regularly to avoid loss of lives. Various analytical methods are available to monitor these pollutants in water and can be improved with time. Modelling of metal pollutants in any water system helps chemists, engineers and environmentalists to greatly understand the various chemical processes in such systems. Water samples were collected from waste water treatment plant and river from highlands close to its source all the way to the ocean as it passing through areas with high anthropogenic activities. Pre-concentration of pollutants in the samples was done through acid digestion and metal pollutants were analysed using inductively coupled plasma-optical emission spectra (ICP-OES) to determine the concentration levels. Metal concentrations ranged between 0.1356-0.4658 mg/L for Al; 0.0031-0.0050 mg/L for Co, 0.0019-0.0956 mg/L for Cr; 0.0028-0.3484 mg/L for Cu; 0.0489-0.3474 mg/L for Fe; 0.0033-0.0285 mg/L for Mn; 0.0056-0.0222 mg/L for Ni; 0.0265-0.4753 mg/L for Pb and 0.0052-0.5594 mg/L for Zn. Modelling work was performed using PHREEQC couple with Geochemist's workbench (GWB) to determine speciation dynamics and bioavailability of these pollutants. Modelling thus adds value to analytical methods and hence a better complementary tool to laboratory-based experimental studies.

  18. Use of stratigraphic, petrographic, hydrogeologic and geochemical information for hydrogeologic modelling based on geostatistical simulation

    International Nuclear Information System (INIS)

    Rohlig, K.J.; Fischer, H.; Poltl, B.

    2004-01-01

    This paper describes the stepwise utilization of geologic information from various sources for the construction of hydrogeological models of a sedimentary site by means of geostatistical simulation. It presents a practical application of aquifer characterisation by firstly simulating hydrogeological units and then the hydrogeological parameters. Due to the availability of a large amount of hydrogeological, geophysical and other data and information, the Gorleben site (Northern Germany) has been used for a case study in order to demonstrate the approach. The study, which has not yet been completed, tries to incorporate as much as possible of the available information and to characterise the remaining uncertainties. (author)

  19. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Iskra, G.A. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil Engineering; Szecsody, J.E.; Zachara, J.M.; Streile, G.P. [Pacific Northwest Lab., Richland, WA (United States)

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.

  20. Modelling of long term geochemical evolution and study of mechanical perturbation of bentonite buffer of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Marsal, Francois; Pellegrini, Delphine; Deleruyelle, Frederic; Serres, Christophe (French Inst. for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (FR)); Windt, Laurent de (Ecole des Mines de Paris, Paris (FR))

    2008-03-15

    PART I: The Swedish Nuclear Fuel and Waste Management Co. (SKB) has recently completed a safety assessment project named SR-Can, related to the KBS-3 disposal concept. In this concept, the waste packages are surrounded by a buffer made of either MX-80 or Deponit CA-N bentonite. Interactions between the buffer and groundwater may modify the buffer composition and thus its containment properties. The Swedish Radiation Protection Authorities (SSI) requested the French Institute for Radiological Protection and Nuclear Safety (IRSN) to perform the present study in support of SSI review of the SR-Can report. The purpose is to assess the geochemical evolution of both potential buffer materials due to the intrusion of different types of groundwater, with a similar modelling layout to that reported in SR-Can and detailed in Arcos et al. Three main categories of water inflows via a fracture intersecting a deposition hole are considered: the Forsmark reference groundwater, a high-salinity groundwater to account for up-rise of deep-seated brines and a diluted water representing ice-melting derived-groundwater. In addition to this, the redox buffering capacity of Deponit CA-N bentonite and the thermal effect on MX-80 bentonite geochemistry have been assessed. This modelling work has been performed using the reactive transport modelling code HYTEC. The main outcome of the present study is that the intrusion of the considered groundwaters should not affect drastically the geochemistry of neither the Deponit CA-N nor the MX-80 bentonite on the longterm (100,000 y). Bentonite pH may reach high values (up to 10.5) in some cases but does not reach SKB criterion value related to bentonite chemical stability. Dissolution-precipitation of accessory minerals is not significant enough to induce important porosity changes (rise by maximum 2 %). Globally, the montmorillonite exchanger undergoes Na by Ca partial replacement, which may decrease the swelling pressure of the bentonite. The

  1. Metal availability in a highly contaminated, dredged-sediment disposal site: field measurements and geochemical modeling.

    Science.gov (United States)

    Lions, Julie; Guérin, Valérie; Bataillard, Philippe; van der Lee, Jan; Laboudigue, Agnès

    2010-09-01

    Two complementary approaches were used to characterize arsenic and metal mobilizations from a dredged-sediment disposal site: a detailed field study combined with hydrogeochemical modeling. Contaminants in sediments were found to be mainly present as sulfides subject to oxidation. Secondary phases (carbonates, sulfates, (hydr)oxides) were also observed. Oxidative processes occurred at different rates depending on physicochemical conditions and contaminant contents in the sediment. Two distinct areas were identified on the site, each corresponding to a specific contaminant mobility behavior. In a reducing area, Fe and As were highly soluble and illustrated anoxic behavior. In well-oxygenated material, groundwater was highly contaminated in Zn, Cd and Pb. A third zone in which sediments and groundwater were less contaminated was also characterized. This study enabled us to prioritize remediation work, which should aim to limit infiltration and long-term environmental impact. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Biochemical behaviour of plutonium and americium and geochemical modelling of the soil solution

    International Nuclear Information System (INIS)

    Bryan, N.D.; Livens, F.R.; Horrill, A.D.

    1994-01-01

    Field observations suggest that plutonium and americium in the environment are present in very different chemical forms in the interstitial waters of an intertidal sediment. Thermodynamic modelling using the PHREEQE code predicts that plutonium is present entirely in oxidation state (V) as the PuO 2 CO 3 - ion, whereas americium is present entirely in oxidation state (III), largely as the uncharged Am(OH)CO 3 species, but with significant concentrations of the Am 3+ and the AmSO 4 + ions. There are, however, differences between these predictions and others published for a very similar system which apparently arise from uncertainties in the thermodynamic data. Field data cannot resolve these differences unambiguously. (author) 29 refs.; 3 tabs

  3. Intercomparison of Cement Solid-Solution Models. Issues Affecting the Geochemical Evolution of Repositories for Radioactive Waste

    International Nuclear Information System (INIS)

    Benbow, Steven; Savage, David; Walker, Colin

    2007-05-01

    Many concepts for the geological storage of radioactive waste incorporate cement based materials, which act to provide a chemical barrier, impede groundwater flow or provide structural integrity of the underground structures. Thus, it is important to understand the long-term behaviour of these materials when modelling scenarios for the potential release and migration of radionuclides. In the presence of invasive groundwater, the chemical and physical properties of cement, such as its pH buffering capacity, resistance to flow, and its mechanical properties, are expected to evolve with time. Modelling the degradation of cement is complicated by the fact that the long term pH buffer is controlled by the incongruent dissolution behaviour of calcium-silicate-hydrate (C-S-H) gel. It has been previously shown (SKI Report 2005:64) that it is possible to simulate the long term evolution of both the physical and chemical properties of cement based materials in an invasive groundwater using a fully coupled geochemical transport model. The description of the incongruent dissolution of C-S-H gel was based on a binary solid solution aqueous solution (SSAS) between end-member components portlandite (Ca(OH) 2 ) and a C-S-H gel composition expressed by its component oxides (CaH 2 SiO 4 ). The models considered a range of uncertainties including different groundwater compositions, parameterised couplings between the evolution of porosity with permeability and diffusivity and alternative secondary mineral assemblages. The results of the modelling suggested that alternative evolutions were possible under these different conditions. The focus of this report is to address the uncertainty regarding the choice of model for the C-S-H gel dissolution. We compare two alternative C-S-H SSAS models with the one that was used in the previous report, with an emphasis on a direct comparison of the model predictions. Thus we have chosen one simple simulated experimental model based on those in the

  4. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    International Nuclear Information System (INIS)

    Grandia, Fidel; Domenech, Cristina; Arcos, David; Duro, Lara

    2006-11-01

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS 2 ) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in

  5. Geochemical and geo-electrical study of mud pools at the Mutnovsky volcano (South Kamchatka, Russia): Behavior of elements, structures of feeding channels and a model of origin

    International Nuclear Information System (INIS)

    Bessonova, E.P.; Bortnikova, S.B.; Gora, M.P.; Manstein, Yu.A.; Shevko, A.Ya.; Panin, G.L.; Manstein, A.K.

    2012-01-01

    This study presents data on the geochemical composition of boiling mud pools at the Mutnovsky volcano. The physicochemical characteristics of the pools and the concentrations of major, minor and trace elements in pool solutions vary widely. A comparison of the geochemical compositions of host rocks and solutions indicates that leaching from rocks is not the only source of chemicals in thermal solutions. Geophysical studies reveal the inner structure of thermal fields, which reflect the shapes of the underground reservoirs and feed channels. Using geophysical methods (electrical resistivity tomography and frequency domain investigations), it was shown that the vertical structure and complex geochemical zonation of the feed channels leads to a high contrast in the compositions of the mud solutions. These findings answer questions about the origin and composition of surface manifestations. To elucidate the mechanisms of solution formation, an attempt was made to describe the magmatic fluid evolution and the resulting mixing of waters by physical and mathematical models. The model illustrates fluid migration from a magma chamber to the surface. It is shown that the formation of brines corresponding to the mud pool composition is possible during secondary boiling.

  6. Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine

    International Nuclear Information System (INIS)

    Gomez, P.; Garralon, A.; Buil, B.; Turrero, Ma.J.; Sanchez, L.; Cruz, B. de la

    2006-01-01

    This paper describes the processes leading to uranium distribution in the groundwater of five boreholes near a restored uranium mine (dug in granite), and the environmental impact of restoration work in the discharge area. The groundwater uranium content varied from < 1 μg/L in reduced water far from the area of influence of the uranium ore-containing dyke, to 104 μg/L in a borehole hydraulically connected to the mine. These values, however, fail to reflect a chemical equilibrium between the water and the pure mineral phases. A model for the mobilization of uranium in this groundwater is therefore proposed. This involves the percolation of oxidized waters through the fractured granite, leading to the oxidation of pyrite and arsenopyrite and the precipitation of iron oxyhydroxides. This in turn leads to the dissolution of the primary pitchblende and, subsequently, the release of U(VI) species to the groundwater. These U(VI) species are retained by iron hydroxides. Secondary uranium species are eventually formed as reducing conditions are re-established due to water-rock interactions

  7. Study of (U,Pu)O2 spent fuel matrix alteration under geological disposal conditions: Experimental approach and geochemical modeling

    International Nuclear Information System (INIS)

    Odorowski, Melina

    2015-01-01

    To assess the performance of direct disposal of spent fuel in a nuclear waste repository, researches are performed on the long-term behavior of spent fuel (UO x and MO x ) under environmental conditions close to those of the French disposal site. The objective of this study is to determine whether the geochemistry of the Callovian-Oxfordian (CO x ) clay geological formation and the steel overpack corrosion (producing iron and hydrogen) have an impact on the oxidative dissolution of the (U,Pu)O 2 matrix under alpha radiolysis of water. Leaching experiments have been performed with UO 2 pellets doped with alpha emitters (Pu) and MIMAS MO x fuel (un-irradiated or spent fuel) to study the effect of the CO x groundwater and of the presence of metallic iron upon the oxidative dissolution of these materials induced by the radiolysis of water. Results indicate an inhibiting effect of the CO x water on the oxidative dissolution. In the presence of iron, two different behaviors are observed. Under alpha irradiation as the one expected in the geological disposal, the alteration of UO 2 matrix and MO x fuel is very strongly inhibited because of the consumption of radiolytic oxidative species by iron in solution leading to the precipitation of Fe(III)-hydroxides on the pellets surface. On the contrary, under a strong beta/gamma irradiation field, alteration tracers indicate that the oxidative dissolution goes on and that uranium concentration in solution is controlled by the solubility of UO 2 (am,hyd). This is explained by the shifting of the redox front from the fuel surface to the bulk solution not protecting the fuel anymore. The developed geochemical (CHESS) and reactive transport (HYTEC) models correctly represent the main results and occurring mechanisms. (author) [fr

  8. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.

    Science.gov (United States)

    Montes-H, G; Fritz, B; Clement, A; Michau, N

    2005-10-01

    Bentonites are widely used for waste repository systems because of their hydrodynamic, surface and chemical-retention properties. MX 80 bentonite (bentonite of Wyoming) contains approximately 85% Na/Ca-montmorillonite and 15% accessory minerals. The dominant presence of Na/Ca-montmorillonite in this clay mineral could cause it to perform exceptionally well as an engineered barrier for a radioactive waste repository because this buffer material is expected to fill up by swelling the void between canisters containing waste and the surrounding ground. However, the Na/Ca-montmorillonite could be transformed to other clay minerals as a function of time under repository conditions. Previous modelling studies based on the hydrolysis reactions have shown that the Na/Ca-montmorillonite-to-Ca-montmorillonite conversion is the most significant chemical transformation. In fact, this chemical process appears to be a simple cation exchange into the engineered barrier. The purpose of the present study was two-fold. Firstly, it was hoped to predict the newly formed products of bentonite-fluid reactions under repository conditions by applying a thermokinetic hydrochemical code (KIRMAT: Kinetic Reactions and Mass Transport). The system modelled herein was considered to consist of a 1-m thick zone of water-saturated engineered barrier. This non-equilibrated system was placed in contact with a geological fluid on one side, which was then allowed to diffuse into the barrier, while the other side was kept in contact with iron-charged water. Reducing initial conditions ( [P(O)2 approximately equals 0] ; Eh=-200 mV) and a constant reaction temperature (100 degrees C) were considered. Secondly, it was hoped to estimate the influence of inter-layer cations (Ca and Na) on the swelling behaviour of the MX 80 bentonite by using an isothermal system of water vapour adsorption and an environmental scanning electron microscope (ESEM) coupled with a digital image analysis (DIA) program. Here, the

  9. Alligator Rivers Analogue project. Geochemical modelling of secondary uranium ore formation. Final Report - Volume 11

    International Nuclear Information System (INIS)

    Sverjensky, D.; Bennett, D.G.; Read, D.

    1992-01-01

    The purpose of the present study was to establish how the uranyl phosphate zone at the Koongarra site was formed. The overall approach taken in the present study employed theoretical chemical mass transfer calculations and models that permit investigation and reconstruction of the kinds of waters that could produce the uranyl phosphate zone. These calculations have used the geological and mineralogical data for the Koongarra weathered zone (Volumes 2, 8, and 9 of this series), to constrain the initial compositions and reactions undergone by groundwater during the formation of the uranyl phosphate zone. In carrying out these calculations the present-day analyses of Koongarra waters are used only as a guide to the possible initial composition of the fluids associated with the formation of the phosphate zone. Aqueous speciation, saturation state and chemical mass transfer calculations were carried out using the computer programs EQ3NR and EQ6 (Wolery, 1983; Wolery et al., 1984) and a thermodynamic database generated at The Johns Hopkins University over the last eight years which is tabulated in the Appendix 1 to Volume 12 of this series. Despite uncertainties in the thermodynamic characterisation of species, all the above calculations suggest that the uranyl phosphate zone at Koongarra has not formed from present-day groundwaters (Volume 12 of this series). The present-day groundwaters in the weathered zone (eg. at 13 m depth) appear to be undersaturated with respect to saleeite. Furthermore, as present-day groundwaters descend below the water table they rapidly lose their atmospheric oxygen imprint, as is typical of most groundwaters, and become even more reducing in character. Under these circumstances, the groundwaters become more undersaturated with respect to saleeite than the shallow groundwaters. Because much of the phosphate zone is currently below the water table, under saturated zone conditions, it is suggested in the present study that the uranyl phosphate

  10. ThinTool: a spreadsheet model to evaluate fuel reduction thinning cost, net energy output, and nutrient impacts

    Science.gov (United States)

    Sang-Kyun Han; Han-Sup Han; William J. Elliot; Edward M. Bilek

    2017-01-01

    We developed a spreadsheet-based model, named ThinTool, to evaluate the cost of mechanical fuel reduction thinning including biomass removal, to predict net energy output, and to assess nutrient impacts from thinning treatments in northern California and southern Oregon. A combination of literature reviews, field-based studies, and contractor surveys was used to...

  11. A model for net photosynthesis of rose leaves as a function of photosynthetically active radiation, leaf temperature, and leaf age

    International Nuclear Information System (INIS)

    Lieth, J.H.; Pasian, C.C.

    1990-01-01

    A mathematical description for the relationship between the rate of rose (Rosa hybrida L.) leaf net photosynthesis and photosynthetically active radiation, leaf temperature, and leaf age is developed. The model provides a tool for the prediction of these rates for leaves growing in a rose crop canopy. (author)

  12. Transparency about net neutrality : A translation of the new European rules into a multi-stakeholder model

    NARCIS (Netherlands)

    Nooren, P.; Prins, M.J.

    2011-01-01

    The new European framework directive contains a number of policy objectives in the area of net neutrality. In support of these objectives, the universal service directive includes a transparency obligation for ISPs. This paper proposes a multi-stakeholder model for the implementation of this

  13. Modelling and Analysing Deadlock in Flexible Manufacturing System using Timed Petri Net

    Directory of Open Access Journals (Sweden)

    Assem Hatem Taha

    2017-03-01

    Full Text Available Flexible manufacturing system (FMS has several advantages compared to conventional systems such as higher machine utilization, higher efficiency, less inventory, and less production time. On the other hand, FMS is expensive and complicated. One of the main problems that may happen is the deadlock. Deadlock is a case that happens when one operation or more are unable to complete their tasks because of waiting of resources that are used by other processes. This may occur due to inappropriate sharing of the resources or improper resource allocation logic which may lead to deadlock occurrence due to the complexity of assigning shared resources to different tasks in an efficient way. One of the most effective tools to model and detect the deadlocks is the petri net. In this research the Matlab software has been used to detect the deadlock in two parallel lines with one shared machines. The analysis shows that deadlock exists at transition with high utilization and place with high waiting time

  14. A comparative study on entrepreneurial attitudes modeled with logistic regression and Bayes nets.

    Science.gov (United States)

    López Puga, Jorge; García García, Juan

    2012-11-01

    Entrepreneurship research is receiving increasing attention in our context, as entrepreneurs are key social agents involved in economic development. We compare the success of the dichotomic logistic regression model and the Bayes simple classifier to predict entrepreneurship, after manipulating the percentage of missing data and the level of categorization in predictors. A sample of undergraduate university students (N = 1230) completed five scales (motivation, attitude towards business creation, obstacles, deficiencies, and training needs) and we found that each of them predicted different aspects of the tendency to business creation. Additionally, our results show that the receiver operating characteristic (ROC) curve is affected by the rate of missing data in both techniques, but logistic regression seems to be more vulnerable when faced with missing data, whereas Bayes nets underperform slightly when categorization has been manipulated. Our study sheds light on the potential entrepreneur profile and we propose to use Bayesian networks as an additional alternative to overcome the weaknesses of logistic regression when missing data are present in applied research.

  15. Average atom model based on Quantum Hyper-Netted Chain method

    Science.gov (United States)

    Chihara, Junzo

    2016-06-01

    The study shows how to define, without any ad hoc assumption, the average ion charge ZI in the electron-ion model for plasmas and liquid metals: this definition comes out of the condition that a plasma consisting of electrons and nuclei can be described as an electron-ion mixture. Based on this definition of the average ion charge, the Quantum Hyper-Netted Chain (QHNC) method takes account of the thermal ionization and the resonant-state contribution to the bound electrons forming an ion. On the other hand, Blenski and Cichocki (2007) have derived a formula to determine the uniform electron density in a plasma as an electron-ion mixture by using the variational method with the help of the local density approximation. Without use of any approximation, we derived the formula determining the electron density in an extended form on the basis of the density functional theory. This formula is shown to be valid also for the QHNC method.

  16. Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment.

    Science.gov (United States)

    Dorber, Martin; May, Roel; Verones, Francesca

    2018-02-20

    Increasing hydropower electricity production constitutes a unique opportunity to mitigate climate change impacts. However, hydropower electricity production also impacts aquatic and terrestrial biodiversity through freshwater habitat alteration, water quality degradation, and land use and land use change (LULUC). Today, no operational model exists that covers any of these cause-effect pathways within life cycle assessment (LCA). This paper contributes to the assessment of LULUC impacts of hydropower electricity production in Norway in LCA. We quantified the inundated land area associated with 107 hydropower reservoirs with remote sensing data and related it to yearly electricity production. Therewith, we calculated an average net land occupation of 0.027 m 2 ·yr/kWh of Norwegian storage hydropower plants for the life cycle inventory. Further, we calculated an adjusted average land occupation of 0.007 m 2 ·yr/kWh, accounting for an underestimation of water area in the performed maximum likelihood classification. The calculated land occupation values are the basis to support the development of methods for assessing the land occupation impacts of hydropower on biodiversity in LCA at a damage level.

  17. Estimating Net Primary Productivity Beneath Snowpack Using Snowpack Radiative Transfer Modeling and Global Satellite Data

    Science.gov (United States)

    Barber, D. E.; Peterson, M. C.

    2002-05-01

    Sufficient photosynthetically active radiation (PAR) penetrates snow for plants to grow beneath snowpack during late winter or early spring in tundra ecosystems. During the spring in this ecosystem, the snowpack creates an environment with higher humidity and less variable and milder temperatures than on the snow-free land. Under these conditions, the amount of PAR available is likely to be the limiting factor for plant growth. Current methods for determining net primary productivity (NPP) of tundra ecosystems do not account for this plant growth beneath snowpack, apparently resulting in underestimating plant production there. We are currently in the process of estimating the magnitude of this early growth beneath snow for tundra ecosystems. Our method includes a radiative transfer model that simulates diffuse and direct PAR penetrating snowpack based on downwelling PAR values and snow depth data from global satellite databases. These PAR levels are convolved with plant growth for vegetation that thrives beneath snowpacks, such as lichen. We expect to present the net primary production for Cladonia species (a common Arctic lichen) that has the capability of photosynthesizing at low temperatures beneath snowpack. This method may also be used to study photosynthesis beneath snowpacks in other hardy plants. Lichens are used here as they are common in snow-covered regions, flourish under snowpack, and provide an important food source for tundra herbivores (e.g. caribou). In addition, lichens are common in arctic-alpine environments and our results can be applied to these ecosystems as well. Finally, the NPP of lichen beneath snowpack is relatively well understood compared to other plants, making it ideal vegetation for this first effort at estimating the potential importance of photosynthesis at large scales. We are examining other candidate plants for their photosynthetic potential beneath snowpack at this time; however, little research has been done on this topic. We

  18. ASAS centennial paper: net energy systems for beef cattle--concepts, application, and future models.

    Science.gov (United States)

    Ferrell, C L; Oltjen, J W

    2008-10-01

    Development of nutritional energetics can be traced to the 1400s. Lavoisier established relationships among O(2) use, CO(2) production and heat production in the late 1700s, and the laws of thermodynamics and law of Hess were discovered during the 1840s. Those discoveries established the fundamental bases for nutritional energetics and enabled the fundamental entity ME = retained energy + heat energy to be established. Objectives became: 1) to establish relationships between gas exchange and heat energy, 2) to devise bases for evaluation of foods that could be related to energy expenditures, and 3) to establish causes of energy expenditures. From these endeavors, the basic concepts of energy partitioning by animals were developed, ultimately resulting in the development of feeding systems based on NE concepts. The California Net Energy System, developed for finishing beef cattle, was the first to be based on retained energy as determined by comparative slaughter and the first to use 2 NE values (NE(m) and NE(g)) to describe feed and animal requirements. The system has been broadened conceptually to encompass life cycle energy requirements of beef cattle and modified by the inclusion of numerous adjustments to address factors known to affect energy requirements and value of feed to meet those needs. The current NE system remains useful but is empirical and static in nature and thus fails to capture the dynamics of energy utilization by diverse animals as they respond to changing environmental conditions. Consequently, efforts were initiated to develop dynamic simulation models that captured the underlying biology and thus were sensitive to variable genetic and environmental conditions. Development of a series of models has been described to show examples of the conceptual evolution of dynamic, mechanistic models and their applications. Generally with each new system, advances in prediction accuracy came about by adding new terms to conceptually validated models

  19. IRON PRECIPITATION AND ARSENIC ATTENUATION - ASSESSMENT OF ARSENIC NATURAL ATTENUATION OF THE SUBSURFACE USING A GEOCHEMICAL MODEL (PHREEQC)

    Science.gov (United States)

    Laboratory experiments show that amorphous and poorly crystallized ferric iron hydroxides have much greater capacity to attenuate arsenic compared to clays and other aluminosilicate minerals. Studies (e.g., Lin and Qvarfort, 1996) showed that a sudden change in geochemical condit...

  20. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions - Using multivariate statistics and geochemical modeling approaches.

    Science.gov (United States)

    Liu, Pu; Hoth, Nils; Drebenstedt, Carsten; Sun, Yajun; Xu, Zhimin

    2017-12-01

    Groundwater is an important drinking water resource that requires protection in North China. Coal mining industry in the area may influence the water quality evolution. To provide primary characterization of the hydrogeochemical processes and paths that control the water quality evolution, a complex multi-layer groundwater system in a coal mining area is investigated. Multivariate statistical methods involving hierarchical cluster analysis (HCA) and principal component analysis (PCA) are applied, 6 zones and 3 new principal components are classified as major reaction zones and reaction factors. By integrating HCA and PCA with hydrogeochemical correlations analysis, potential phases, reactions and connections between various zones are presented. Carbonates minerals, gypsum, clay minerals as well as atmosphere gases - CO 2 , H 2 O and NH 3 are recognized as major reactants. Mixtures, evaporation, dissolution/precipitation of minerals and cation exchange are potential reactions. Inverse modeling is finally used, and it verifies the detailed processes and diverse paths. Consequently, 4 major paths are found controlling the variations of groundwater chemical properties. Shallow and deep groundwater is connected primarily by the flow of deep groundwater up through fractures and faults into the shallow aquifers. Mining does not impact the underlying aquifers that represent the most critical groundwater resource. But controls should be taken to block the mixing processes from highly polluted mine water. The paper highlights the complex hydrogeochemical evolution of a multi-layer groundwater system under mining impact, which could be applied to further groundwater quality management in the study area, as well as most of the other coalfields in North China. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Estimation and Analysis of Spatiotemporal Dynamics of the Net Primary Productivity Integrating Efficiency Model with Process Model in Karst Area

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2017-05-01

    Full Text Available Estimates of regional net primary productivity (NPP are useful in modeling regional and global carbon cycles, especially in karst areas. This work developed a new method to study NPP characteristics and changes in Chongqing, a typical karst area. To estimate NPP accurately, the model which integrated an ecosystem process model (CEVSA with a light use efficiency model (GLOPEM called GLOPEM-CEVSA was applied. The fraction of photosynthetically active radiation (fPAR was derived from remote sensing data inversion based on moderate resolution imaging spectroradiometer atmospheric and land products. Validation analyses showed that the PAR and NPP values, which were simulated by the model, matched the observed data well. The values of other relevant NPP models, as well as the MOD17A3 NPP products (NPP MOD17, were compared. In terms of spatial distribution, NPP decreased from northeast to southwest in the Chongqing region. The annual average NPP in the study area was approximately 534 gC/m2a (Std. = 175.53 from 2001 to 2011, with obvious seasonal variation characteristics. The NPP from April to October accounted for 80.1% of the annual NPP, while that from June to August accounted for 43.2%. NPP changed with the fraction of absorbed PAR, and NPP was also significantly correlated to precipitation and temperature at monthly temporal scales, and showed stronger sensitivity to interannual variation in temperature.

  2. Appliance of geochemical engineering in radioactive waste disposal

    International Nuclear Information System (INIS)

    Li Shuang; Zhang Chengjiang; Ni Shijun; Li Kuanliang

    2008-01-01

    The basic foundation of applying geochemical engineering to control environment, common engineering models of disposal radioactive waste and the functions of the engineering barriers are introduced in this paper. The authors take the geochemical engineering barrier materiel research of a radioactive waste repository as an example to explain the appliance of geochemical engineering in the disposal of radioactive waste. And the results show that it can enhance the security of the nuclear waste repository if we use geochemical engineering barrier. (authors)

  3. Modeling and Solving the Three Seaside Operational Problems Using an Object-Oriented and Timed Predicate/Transition Net

    Directory of Open Access Journals (Sweden)

    Hsien-Pin Hsu

    2017-02-01

    Full Text Available Container terminals (CTs play an essential role in the global transportation system. To deal with growing container shipments, a CT needs to better solve the three essential seaside operational problems; berth allocation problem (BAP, quay crane assignment problem (QCAP, and quay crane scheduling problem (QCSP, which affect the performance of a CT considerably. In past studies, the three seaside operational problems have often been solved individually or partially, which is likely to result in poor overall system performance. However, solving the three seaside operational problems simultaneously is in fact a very complicated task. In this research, we dealt with the three seaside operational problems at the same time by using a novel high-level Petri net, termed an Object-Oriented and Timed Predicate/Transition Net (OOTPr/Tr net. After defining the three seaside operational problems formally, we integrated them as a three-level framework that was further transformed into an OOTPr/Tr net model. Then, using the Prolog programming language, we implemented this model as a simulation tool to find the best solution based on the various combinations of heuristic rules used.

  4. Inconsistencies in net radiation estimates from use of several models of instruments in a desert environment

    International Nuclear Information System (INIS)

    Kustas, W.P.; Prueger, J.H.; Hipps, L.E.; Hatfield, J.L.; Meek, D.

    1998-01-01

    Studies of surface energy and water balance generally require an accurate estimate of net radiation and its spatial distribution. A project quantifying both short term and seasonal water use of shrub and grass vegetation in the Jornada Experimental Range in New Mexico prompted a study to compare net radiation observations using two types of net radiometers currently being used in research. A set of 12 REBS net radiometers were compared with each other and one Swissteco, over wet and dry surfaces in an arid landscape under clear skies. The set of REBS exhibited significant differences in output over both surfaces. However, they could be cross calibrated to yield values within 10 W m −2 , on average. There was also a significant bias between the REBS and Swissteco over a dry surface, but not over a wet one. The two makes of instrument could be made to agree under the dry conditions by using regression or autoregression techniques. However, the resulting equations would induce bias for the wet surface condition. Thus, it is not possible to cross calibrate these two makes of radiometer over the range of environmental conditions observed. This result indicates that determination of spatial distribution of net radiation over a variable surface should be made with identical instruments which have been cross calibrated. The need still exists for development of a radiometer and calibration procedures which will produce accurate and consistent measurements over a range of surface conditions. (author)

  5. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  6. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...

  7. Combination of a crop model and a geochemical model as a new approach to evaluate the sustainability of an intensive agriculture system.

    Science.gov (United States)

    Mohammed, Gihan; Trolard, Fabienne; Gillon, Marina; Cognard-Plancq, Anne-Laure; Chanzy, André; Bourrié, Guilhem

    2017-10-01

    By combining a crop model (STICS) and a geochemical model (PHREEQC), a new approach to assess the sustainability of agrosystems is proposed. It is based upon aqueous geochemistry and the stepwise modifications of soil solution during its transfer from the surface till aquifer. Meadows of Crau (SE France), irrigated since the 16th century, were field monitored (2012-2015) and modelled. Except for N, the mineral requirements of hay are largely covered by dissolved elements brought by irrigation water with only slight deficits in K and P, which are compensated by P-K fertilizers and the winter pasture by sheep. N cycle results in a very small nitrate leakage. The main determinants of the chemical composition changes of water are: concentration by evaporation, equilibration with soil pCO 2 , mineral nutrition of plants, input of fertilizers, sheep grazing, mineral-solution interactions in superficial formations till the aquifer, including ion exchange. Inverse modelling with PHREEQC allows for quantifying these processes. For groundwater, measured composition fit statistically very well with those computed, validating thus this approach. This long-term established agrosystem protects both soil and water resources: soil nutritional status remains constant with even some P and (minor) K fixation in soils; long-term decarbonatation occurs but it is greatly slowed by saturation of irrigation water by carbonate; P fixation in soil protects groundwater from eutrophication. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Perspectives on geochemical proxies: The impact of model and parameter selection on the quantification of carbonate recrystallization rates

    Science.gov (United States)

    Huber, Christian; Druhan, Jennifer L.; Fantle, Matthew S.

    2017-11-01

    Diagenetic reactions in marine sediments, such as the recrystallization of carbonates, can impact the accuracy of paleo-environmental and paleo-climatic reconstructions by geochemical proxies. The extent to which the recrystallization of carbonates affects the chemistry of sedimentary archives depends on the reaction rate, extent of isotopic disequilibrium, and duration of reaction. The reaction rate, which is obviously critical, can be constrained by the elemental and isotopic compositions of pore fluids. Such constraints are affected by assumptions regarding the temperature in the sedimentary column relative to the temperature of formation, the burial rate, pore fluid advection, the composition of the sediments (carbonate-rich versus siliciclastic), and the porosity of the sediment column. In this study, we use a steady-state analytical solution to the diagenetic equations to constrain depth-dependent reaction rates (and extents of recrystallization) based on the Ca isotopic compositions of pore fluids in sedimentary columns at multiple ocean drilling sites (Sites 807, 984, 1170, and 1171), which encompass a diverse range of sedimentary compositions and conditions. We find that carbonates in siliciclastic sediments are generally less altered by diagenesis than their carbonate-rich counterparts. The discrepancy in recrystallization rates between siliciclastic and carbonate-rich sedimentary sections is, however, significantly smaller than previously estimated, suggesting that siliciclastic archives are not immune to diagenetic effects. While we find that diagenesis can decouple contemporaneous proxies of sea surface temperature (Mg/Ca and δ18O), our calculations also reveal that δ18O-based temperature estimates are more robust in siliciclastic sections relative to carbonate-rich sections. Sensitivity tests of the calculated extent of recrystallization suggest that uncertainties in porosity and burial rate are generally the greatest sources of error to proxy

  9. Modeling and performance analysis of a closed-loop supply chain using first-order hybrid Petri nets

    Directory of Open Access Journals (Sweden)

    Imane Outmal

    2016-05-01

    Full Text Available Green or closed-loop supply chain had been the focus of many manufacturers during the last decade. The application of closed-loop supply chain in today’s manufacturing is not only due to growing environmental concerns and the recognition of its benefits in reducing greenhouse gas emissions, energy consumption, and meeting a more strict environmental regulations but it also offers economic competitive advantages if appropriately managed. First-order hybrid Petri nets represent a powerful graphical and mathematical formalism to map and analyze the dynamics of complex systems such as closed-loop supply chain networks. This article aims at illustrating the use of first-order hybrid Petri nets to model a closed-loop supply chain network and evaluate its operational, financial, and environmental performance measures under different management policies. Actual data from auto manufacturer in the United States are used to validate network’s performance under both tactical and strategic decision-making, namely, (1 tactical decision—production policies: increase of recovered versus new components and (2 strategic decision—closed-loop supply chain network structure: manufacturer internal recovery process or recovery process done by a third-party collection and recovery center. The work presented in this article is an extension of the use of first-order hybrid Petri nets as a modeling and performance analysis tool from supply chain to closed-loop supply chain. The modularity property of first-order hybrid Petri nets has been used in the modeling process, and the simulation and analysis of the modeled network are done in MATLAB® environment. The results of the experiments depict that first-order hybrid Petri nets are a powerful modeling and analysis formalism for closed-loop supply chain networks and can be further used as an efficient decision-making tool at both tactical and strategic levels. Unlike other researches on modeling supply chain

  10. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes

    OpenAIRE

    Kulik D. A.; Wagner T.; Dmytrieva S. V.; Kosakowski G.; Hingerl F. F.; Chudnenko K. V.; Berner U. R.

    2013-01-01

    Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility chemical kinetics and RMT in general. Efficient RMT simulations can be based on the operator splitting approach where the solver of chemical equilibria is called by the mass transport part for each control volume whose composition temperature or press...

  11. Modeling landscape net ecosystem productivity (LandNEP) under alternative management regimes

    Science.gov (United States)

    Eugenie S. Euskirchen; Jiquan Chen; Harbin Li; Eric J. Gustafson; Thomas R. Crow

    2002-01-01

    Forests have been considered as a major carbon sink within the global carbon budget. However, a fragmented forest landscape varies significantly in its composition and age structure, and the amount of carbon sequestered at this level remains generally unknown to the scientific community. More precisely, the temporal dynamics and spatial distribution of net ecosystem...

  12. A Web-Based Electronic Book (e-book) Library: The netLibrary Model.

    Science.gov (United States)

    Connaway, Lynn Silipigni

    2001-01-01

    Identifies elements that are important for academic libraries to use in evaluating electronic books, including content; acquisition and collection development; software and hardware standards and protocols; digital rights management; access; archiving; privacy; the market and pricing; and enhancements and ideal features. Describes netLibrary, a…

  13. Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling

    Science.gov (United States)

    Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.

    2009-04-01

    Net radiation (Rn) is one of the most important variables for the estimation of surface energy budget and is used for various applications including agricultural meteorology, climate monitoring and weather prediction. Moreover, net radiation is an essential input variable for potential as well as actual evapotranspiration modeling. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute net radiation at regional scales in a feasible way. In this study we present a regional scale estimation of the daily Rn on clear days, (Catalonia, NE of the Iberian Peninsula), using a set of 22 Landsat images (17 Landsat-5 TM and 5 Landsat-7 ETM+) and 171 TERRA/AQUA images MODIS from 2000 to 2007 period. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected three different types of products which contain the remote sensing data we have used to model daily Rn: daily LST product, daily calibrated reflectances product and daily atmospheric water vapour product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994), which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009) and the land surface emissivity computed by means of the methodology proposed by Sobrino and Raissouni (2000). Rn has been estimated through the

  14. Reaction of Topopah Spring tuff with J-13 water: a geochemical modeling approach using the EQ3/6 reaction path code

    International Nuclear Information System (INIS)

    Delany, J.M.

    1985-01-01

    EQ3/6 geochemical modeling code package was used to investigate the interaction of the Topopah Spring Tuff and J-13 water at high temperatures. EQ3/6 input parameters were obtained from the results of laboratory experiments using USW G-1 core and J-13 water. Laboratory experiments were run at 150 and 250 0 C for 66 days using both wafer-size and crushed tuff. EQ3/6 modeling reproduced results of the 150 0 C experiments except for a small increase in the concentration of potassium that occurs in the first few days of the experiments. At 250 0 C, the EQ3/6 modeling reproduced the major water/rock reactions except for a small increase in potassium, similar to that noted above, and an overall increase in aluminum. The increase in potassium concentration cannot be explained at this time, but the increase in A1 concentration is believed to be caused by the lack of thermodynamic data in the EQ3/6 data base for dachiardite, a zeolite observed as a run product at 250 0 C. The ability to reproduce the majority of the experimental rock/water interactions at 150 0 C validates the use of EQ3/6 as a geochemical modeling tool that can be used to theoretically investigate physical/chemical environments in support of the Waste Package Task of NNWSI

  15. Reaction of Topopah Spring tuff with J-13 water: a geochemical modeling approach using the EQ3/6 reaction path code

    Energy Technology Data Exchange (ETDEWEB)

    Delany, J.M.

    1985-11-25

    EQ3/6 geochemical modeling code package was used to investigate the interaction of the Topopah Spring Tuff and J-13 water at high temperatures. EQ3/6 input parameters were obtained from the results of laboratory experiments using USW G-1 core and J-13 water. Laboratory experiments were run at 150 and 250{sup 0}C for 66 days using both wafer-size and crushed tuff. EQ3/6 modeling reproduced results of the 150{sup 0}C experiments except for a small increase in the concentration of potassium that occurs in the first few days of the experiments. At 250{sup 0}C, the EQ3/6 modeling reproduced the major water/rock reactions except for a small increase in potassium, similar to that noted above, and an overall increase in aluminum. The increase in potassium concentration cannot be explained at this time, but the increase in A1 concentration is believed to be caused by the lack of thermodynamic data in the EQ3/6 data base for dachiardite, a zeolite observed as a run product at 250{sup 0}C. The ability to reproduce the majority of the experimental rock/water interactions at 150{sup 0}C validates the use of EQ3/6 as a geochemical modeling tool that can be used to theoretically investigate physical/chemical environments in support of the Waste Package Task of NNWSI.

  16. Use of environmental isotope techniques in studying surface and groundwaters in the Damascus basin (Al-Ghotta): A case study of geochemical modeling of elements and pollutants transport

    International Nuclear Information System (INIS)

    Kattan, Z.

    2004-09-01

    This work discuses in details the hydrochemical and isotopic characteristics of surface and groundwaters in the Damascus Ghotta basin. In addition, it deals with the chemical and isotopic compositions of rainfall of some surrounding stations (Damascus, Bloudan, Arneh, Al-Kounietra, Izraa, Al-Souweida, Homs and Tartous). The objective of this research was to make new assessment of the available water resources in this basin, together with conducting essays to model geochemically the elements and pollutants transport in the groundwater, by the use of PHREEQM code.(author)

  17. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Directory of Open Access Journals (Sweden)

    Kelin Zhuang

    2017-01-01

    Full Text Available A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land–sea–ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  18. The Measurement of the Relationship between Taiwan’s Bond Funds’ Net Flow and the Investment Risk -Threshold Autoregressive Model

    OpenAIRE

    Wo-Chiang Lee; Joe-Ming Lee

    2014-01-01

    This article applies the threshold autoregressive model to investigate the relationship between bond funds’ net flow and investment risk in Taiwan. Our empirical findings show that bond funds’ investors are concerned about the investment return and neglect the investment risk. In particular, when expanding the size of the bond funds, fund investors believe that the fund cannot lose any money on investment products. In order to satisfy investors, bond fund managers only target short-term retur...

  19. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  20. State Token Petri Net modeling method for formal verification of computerized procedure including operator's interruptions of procedure execution flow

    International Nuclear Information System (INIS)

    Kim, Yun Goo; Seong, Poong Hyun

    2012-01-01

    The Computerized Procedure System (CPS) is one of the primary operating support systems in the digital Main Control Room. The CPS displays procedure on the computer screen in the form of a flow chart, and displays plant operating information along with procedure instructions. It also supports operator decision making by providing a system decision. A procedure flow should be correct and reliable, as an error would lead to operator misjudgement and inadequate control. In this paper we present a modeling for the CPS that enables formal verification based on Petri nets. The proposed State Token Petri Nets (STPN) also support modeling of a procedure flow that has various interruptions by the operator, according to the plant condition. STPN modeling is compared with Coloured Petri net when they are applied to Emergency Operating Computerized Procedure. A converting program for Computerized Procedure (CP) to STPN has been also developed. The formal verification and validation methods of CP with STPN increase the safety of a nuclear power plant and provide digital quality assurance means that are needed when the role and function of the CPS is increasing.

  1. Decoding recent mud-volcano activity in the westernmost Mediterranean: Evidence from sediment/porewater data and geochemical modeling

    Science.gov (United States)

    López-Rodríguez, Carmina; Martínez-Ruíz, Francisca; Mogollón, José M.; Comas, Menchu; Nieto, Fernando; Böning, Philipp; Pahnke, Katharina; Sapart, Célia; De Lange, Gert J.

    2017-04-01

    Recent studies have demonstrated the occurrence of active mud volcanism in the West Alboran Basin. Though most of the mud volcanoes (MVs) discovered in this region are dormant, a few structures evidence active hydrocarbon venting, as Carmen MV. This study focuses on sedimentological and geochemical investigations on one piston core, GP05PC, recovered from the summit of Carmen MV during the Gasalb-Pelagia cruise (2011). Although the full core consists of mud breccia sediments, a dramatic change occurs between enhanced methane concentrations in its lowermost and dissolved SO42- in its uppermost sediments. At the boundary of 150 cm, methane is oxidized and sulphate reduced. In the lowermost interval, the depletion of major elements (i.e., Ca2+ and Mg2+), the enrichment of trace species (i.e., Li+ and B) and the radiogenic 87Sr all point to a deep fluid source. The δ18Opw and δDpw compositions of pore water (5.7‰ and -10‰ VSMOW, respectively) together with the mineralogical results (presence of randomly insterstrafied (R0) illite-smectite minerals (I/S) to more illitic (>50% I) and ordered ones (R1-R3)) indicate smectite to illite transformation at greater depth and support smectite dehydration as the main porewater freshening mechanism. Water formation temperatures calculated through the application of empirical geo-thermometers (K-Na, K-Mg and K-Ca) together with the presence from I/S mixed layers (R3) suggest that fluids were generated at temperatures 100-200°C. This temperature indicates that, under a regional geothermal gradient, the fluid source originates from 8 km depth. From an adjacent borehole it is known that sedimentary units of Early to Middle Miocene age occur at that depth (Jurado and Comas et al., 1992). The δ13Cmethane and δDmethane composition of methane (-59‰ VPDB and -184‰ VSMOW, respectively) of the deepest sample also may be associated to a thermogenic origin. The absence of hemipelagic sediment draping, the distinctive seawater

  2. TreeWatch.net: A Water and Carbon Monitoring and Modeling Network to Assess Instant Tree Hydraulics and Carbon Status.

    Science.gov (United States)

    Steppe, Kathy; von der Crone, Jonas S; De Pauw, Dirk J W

    2016-01-01

    TreeWatch.net is an initiative that has been developed to watch trees grow and function in real-time. It is a water- and carbon-monitoring and modeling network, in which high-quality measurements of sap flow and stem diameter variation are collected on individual trees. Automated data processing using a cloud service enables instant visualization of water movement and radial stem growth. This can be used to demonstrate the sensitivity of trees to changing weather conditions, such as drought, heat waves, or heavy rain showers. But TreeWatch.net's true innovation lies in its use of these high-precision harmonized data to also parameterize process-based tree models in real-time, which makes displaying the much-needed mechanisms underlying tree responses to climate change possible. Continuous simulation of turgor to describe growth processes and long-term time series of hydraulic resistance to assess drought-vulnerability in real-time are only a few of the opportunities our approach offers. TreeWatch.net has been developed with the view to be complementary to existing forest monitoring networks and with the aim to contribute to existing dynamic global vegetation models. It provides high-quality data and real-time simulations in order to advance research on the impact of climate change on the biological response of trees and forests. Besides its application in natural forests to answer climate-change related scientific and political questions, we also envision a broader societal application of TreeWatch.net by selecting trees in nature reserves, public areas, cities, university areas, schoolyards, and parks to teach youngsters and create public awareness on the effects of changing weather conditions on trees and forests in this era of climate change.

  3. Catamaran Nets

    Science.gov (United States)

    1990-01-01

    West Coast Netting, Inc.'s net of Hyperester twine, is made of three strands of fiber twisted together by a company-invented sophisticated twisting machine and process that maintain precisely the same tension on each strand. The resulting twine offers higher strength and improved abrasion resistance. The technology that created the Hyperester supertwine has found spinoff applications, first as an extra-efficient seine for tuna fishing, then as a capture net for law enforcement agencies. The newest one is as a deck for racing catamarans. Hyperester twine net has been used on most of the high performance racing catamarans of recent years, including the America's Cup Challenge boats. They are tough and hold up well in the continual exposure to sunlight and saltwater.

  4. Validation of Empirical and Semi-empirical Net Radiation Models versus Observed Data for Cold Semi-arid Climate Condition

    Directory of Open Access Journals (Sweden)

    aliakbar sabziparvar

    2017-03-01

    Full Text Available Introduction: Solar Net Radiation (Rn is one of the most important component which influences soil heat flux, evapotranspiration rate and hydrological cycle. This parameter (Rn is measured based on the difference between downward and upward shortwave (SW and longwave (LW irradiances reaching the Earth’s surface. Field measurements of Rn are scarce, expensive and difficult due to the instrumental maintenance. As a result, in most research cases, Rn is estimated by the empirical, semi-empirical and physical radiation models. Almorox et al. (2008 suggested a net radiation model based on a linear regression model by using global solar radiation (Rs and sunshine hours. Alados et al. (2003 evaluated the relation between Rn and Rs for Spain. They showed that the models based on shortwave radiation works perfect in estimating solar net radiation. In another work, Irmak et al. (2003 presented two empirical Rn models, which worked with the minimum numbers of weather parameters. They evaluated their models for humid, dry, inland and coastal regions of the United States. They concluded that both Rn models work better than FAO-56 Penman-Monteith model. Sabziparvar et al. (2016 estimated the daily Rn for four climate types in Iran. They examined various net radiation models namely: Wright, Basic Regression Model (BRM, Linacre, Berliand, Irmak, and Monteith. Their results highlighted that on regional averages, the linear BRM model has the superior performance in generating the most accurate daily ET0. They also showed that for 70% of the study sites, the linear Rn models can be reliable candidates instead of sophisticated nonlinear Rn models. Having considered the importance of Rn in determining crop water requirement, the aim of this study is to obtain the best performance Rn model for cold semi-arid climate of Hamedan. Materials and Methods: We employed hourly and daily weather data and Rn data, which were measured during December 2011 to June 2013 in

  5. The applicability and limitations of the geochemical models and tools used in simulating radionuclide behaviour in natural waters. Lessons learned from the Blind Predictive Modelling exercises performed in conjunction with Natural Analogue studies

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Duro, L.; Grive, M. [QuantiSci SL, Parc Tecnologic del Valles (Spain)

    2001-07-01

    One of the key applications of Natural Analogue studies to the Performance Assessment (PA) of nuclear waste disposal has been the possibility to test the geochemical models and tools to be used in describing the migration of radionuclides in a future radioactive waste repository system. To this end, several geochemical modelling testing exercises (commonly denoted as Blind Predictive Modelling), have formed an integral part of Natural Analogue Studies over the last decade. Consequently, we thought that this is a timely occasion to make an evaluation of the experience gained and lessons learnt. We have reviewed, discussed and compared the results obtained from the Blind Prediction Modelling (BPM) exercises carried out within 7 Natural Analogue Studies: Oman, Pocos de Caldas, Cigar Lake, Maqarin, El Berrocal, Oklo and Palmottu. To make this comparison meaningful, we present the main geochemical characteristics of each site in order to highlight the most relevant mineralogical and hydrochemical differences. From the complete list of elements studied at all the investigated sites we have made a selection based on the relevance of a given element from a PA viewpoint and on the frequency this element has been included in the BPM exercises. The elements selected for discussion are: Sr, Ba, Sn, Pb, Se, Ni, Zn, REEs, Th and U. We have based our discussion on the results obtained from the speciation as well as solubility calculations. From the comparison of the results it is concluded that we can differentiate between three element categories: 1. Elements whose geochemical behaviour can be fairly well described by assuming solubility control exerted by pure solid phases of the given element (i.e. Th, U under reducing conditions and U in some sites under oxidising conditions); 2. Elements for which the association to major geochemical components of the system must be considered in order to explain their concentrations in groundwaters (i.e. Sr, Ba, Zn, Se, REEs and U under

  6. Petri nets as a modeling tool for discrete concurrent tasks of the human operator. [describing sequential and parallel demands on human operators

    Science.gov (United States)

    Schumacher, W.; Geiser, G.

    1978-01-01

    The basic concepts of Petri nets are reviewed as well as their application as the fundamental model of technical systems with concurrent discrete events such as hardware systems and software models of computers. The use of Petri nets is proposed for modeling the human operator dealing with concurrent discrete tasks. Their properties useful in modeling the human operator are discussed and practical examples are given. By means of and experimental investigation of binary concurrent tasks which are presented in a serial manner, the representation of human behavior by Petri nets is demonstrated.

  7. Mathematical modeling of the influence of the ecosystem s structural arrangement on the net primary production

    Science.gov (United States)

    Sirobokova, I.; Pechurkin, N.

    In order to estimate the state and functioning of ecosystems it is essential to study the principal parameters of the production process. Thus, the net primary production (NPP) is taken as the integrated parameter of the functioning of the whole system. A variation in the primary biological production of ecosystems has significant consequences for the maintenance of the biosphere's homeostasis. This value is one of the basic quantitative parameters of the material cycling and the cycling of energy fluxes in natural ecosystems. It is determined by the quantity of organic matter synthesized by autotrophic organisms per unit time on unit area. We investigated variations in the net primary production under the effect of outer disturbance (an increase in the inflow substrate concentration) for ecosystems with various lengths of trophic chains (from three to seven trophic links), various degrees of cycling closure, and various types of regulation (bottom-up, top-down). It has been found that the net primary production more effectively increases in ecosystems with the bottom-up regulation, i.e. in ecosystems with a resource control. Ecosystems controlled by the predator from above (the top-down regulation) feature a less noticeable increase in the net primary production with the increase in the input concentration of the limiting substance. Thus, ecosystems with the bottom-up regulation can more efficiently use the additional energy flow input, while the stationary (residual) concentration of the limiting substance remains the same. Besides, in both the ecosystems with the bottom-up regulation and those with the top-down control the NPP increases with a longer trophic chain and a greater degree of the cycling closure.

  8. Application of the Forhyd model to simulate net precipitation and intercepted water evaporation in forest canopies in Colombian amazonia

    International Nuclear Information System (INIS)

    Tellez Guio, Patricia; Boschell Villamarin, Francisco; Tobon Marin, Conrado

    2005-01-01

    Hydrologic simulation is a technique, which allows us to understand the relationships among hydrological, biological and ecological variables in an ecosystem. In this research, the FORHYD model is used to simulate the net precipitation and the water intercepted by the canopies of a mature forest, a 30-year old secondary forest, an 18-year old secondary forest, a 5-year old secondary forest, and a shifting cultivation plot, all located in Colombia's amazonia. The model calculates the water budget of the canopy by using the precipitation rates, canopy drainage and evaporation of the water intercepted by the canopy. This paper is the second one in a series of papers reporting the results of the research on the simulation of the hydrological fluxes in three different land use types of Colombian amazonia. The research was carried out in middle Caqueta of Colombian amazonia (northwest amazon basin). The FORHYD model was calibrated and validated by using field observations of the climate, net precipitation (PT), thoughtful (TH) and stem flow (ST), which were monitored during a period of 15 months from March 2001 to June 2002. These observations were used as both input variables and diagnostic variables to probe the model's precision to simulate field observations. Results showed that FORHYD simulates with a good precision the net precipitation and the evaporation of the water intercepted by the canopy. However, the model's precision depends on a good parameterization, which in turn depends on a good database of field observations. The model is a good tool for simulating the hydrological cycle and can be used to simulate critical scenarios of climate variability

  9. FILTER-NET STRUCTURE AND PUMPING ACTIVITY IN THE POLYCHAETE NEREIS-DIVERSICOLOR - EFFECTS OF TEMPERATURE AND PUMP-MODELING

    DEFF Research Database (Denmark)

    Riisgård, H.U.; Vedel, A.; Boye, H.

    1992-01-01

    on water processing were measured as clearance of suspended algal cells or measured directly. Pumping activity (undulating body movements of worms kept in glass tubes) was monitored using an infrared phototransducer technique. In the temperature interval from 5 to about 15-degrees-C there was a linear...... and a halving of the net cycle length. At low temperatures a tendency towards an extended pause between pumping periods was noticed. The N. diversicolor pump was modelled as a positive displacement leaking unit, and earlier data on back pressure characteristics were examined in light of the proposed model....... diversicolor muscular positive displacement pump (unlike for viscous ciliary pumps)....

  10. The study of the influence of micro-environmental signals on macrophage differentiation using a quantitative Petri net based model

    Directory of Open Access Journals (Sweden)

    Rżosińska Katarzyna

    2017-06-01

    Full Text Available The complexity of many biological processes, which, thanks to the development of many fields of science, becomes for us more and more obvious, makes these processes extremely interesting for further analysis. In this paper a quantitative model of the process of macrophage differentiation, which is essential for many phenomena occurring in the human body, is proposed and analyzed. The model is expressed in the language of Petri net theory on the basis of one of the three hypotheses concerning macrophage differentiation existing in the literature. The performed analysis allowed to find an importance of individual factors in the studied phenomenon.

  11. Modelling M/G/1 queueing systems with server vacations using stochastic Petri nets

    Directory of Open Access Journals (Sweden)

    K Ramanath

    2006-12-01

    Full Text Available The theory of non-Markovian stochastic Petri nets is employed in this paper to derive an alternative method for studying the steady state behaviour of the M/G/1 vacation queueing system with a limited service discipline. Three types of vacation schemes are considered, and sytems with both a finite population and those with an infinite population (but finite capacity are considered. Simple numerical examples are also provided to illustrate the functionality of the methods and some useful performance measures for the system are obtained.

  12. Grassland and cropland net ecosystem production of the U.S. Great Plains: Regression tree model development and comparative analysis

    Science.gov (United States)

    Wylie, Bruce K.; Howard, Daniel; Dahal, Devendra; Gilmanov, Tagir; Ji, Lei; Zhang, Li; Smith, Kelcy

    2016-01-01

    This paper presents the methodology and results of two ecological-based net ecosystem production (NEP) regression tree models capable of up scaling measurements made at various flux tower sites throughout the U.S. Great Plains. Separate grassland and cropland NEP regression tree models were trained using various remote sensing data and other biogeophysical data, along with 15 flux towers contributing to the grassland model and 15 flux towers for the cropland model. The models yielded weekly mean daily grassland and cropland NEP maps of the U.S. Great Plains at 250 m resolution for 2000–2008. The grassland and cropland NEP maps were spatially summarized and statistically compared. The results of this study indicate that grassland and cropland ecosystems generally performed as weak net carbon (C) sinks, absorbing more C from the atmosphere than they released from 2000 to 2008. Grasslands demonstrated higher carbon sink potential (139 g C·m−2·year−1) than non-irrigated croplands. A closer look into the weekly time series reveals the C fluctuation through time and space for each land cover type.

  13. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  14. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  15. Synthetic well test modelling in a high net-to-gross outcrop system for turbidite reservoir description

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, E.; Corbett, P.W.M. [Heriot-Watt Univ., Dept. of Petroleum Engineering, Edinburgh (United Kingdom); Hurst, A.; Satur, N.; Cronin, B.T. [Aberdeen Univ., Dept. of Petroleum Geology, Aberdeen (United Kingdom)

    2002-07-01

    Synthetic well tests have been produced using a 3D model of an outcropping turbidite sandstone unit from the Cingoz region in southern Turkey. The model contains realistic sand sheet, tongue, lobe and background sand facies architecture (i.e. geometry and stacking) mapped from an outcrop study. The geometric information is useful as an analogue for high net-to-gross turbidite oil fields. The facies have been assigned petrophysical properties from a subsurface analogue. There is little shale in this system. Well test responses were then derived from the high net-to-gross tubidite model using various architectural, porosity-permeability scenarios and completion strategies. The impact on well test derivatives of various sand body geometries and permeability contrasts could then be determined. Two completion strategies - partial penetration and fully perforated intervals - were assessed for the applicability in the high net-to-gross system. The geological model is effectively a sandbox, and shows a very uniform testing response from the rather uniform property distributions. However, when the level of permeability heterogeneity is increased by populating the model with varying contrasts of permeability and porosity, the sand body geometry can be seen to influence the well tests. Partial completions in sand bodies are particularly effective in detecting sand body geometry. The geometry controls the flow regimes in a well test response despite variations in the permeability contrasts. The effect of varying geometry is illustrated and an external linear flow regime is identified. Where there is sufficient sand body thickness, partial perforation results in spherical flow, from which a vertical permeability can be obtained. In the model, the vertical permeability thus obtained is a local (to the volume investigated) effective permeability of stacked isotropic facies. This work was undertaken to give guidance on the description of hydrocarbon reservoirs by well testing. If

  16. A new net primary production estimating model using NOAA-AVHRR applied to the Haihe Basin, China

    Science.gov (United States)

    Xu, Xingang; Wu, Bingfang; Li, Qiangzi; Meng, Jihua; Zhang, Fengli

    2006-10-01

    Terrestrial net primary production (NPP), as an important component of carbon cycle on land, not only indicates directly the production level of vegetation community on land, but also shows the status of terrestrial ecosystem. What's more, NPP is also a determinant of carbon sinks on land and a key regulator of ecological processes, including interactions among tropic levels. In the study, three existing models are combined with each other to assess net primary production in Haihe Basin, China. The photosynthetically active radiation (PAR) model of Monteith is used for the calculation of absorbed photosynthetically active radiation (APAR), the light utilization efficiency model of Potter et al. is used for determining the light utilization efficiency, and the surface energy balance system (SEBS) of Su is used into Potter's model to describe water stress in land wetness conditions. To assess NPP, We use NOAA-AVHRR data from November 2003 to September 2004 and the corresponding daily data of temperature and hours of sunshine obtained from meteorological stations in Haihe Basin, China. After atmospheric, geometrical and radiant corrections, every ten days NOAA data are processed to become an image of NDVI by means of the maximal value composition method (MVC) in order to eliminate some noises. Using these data, we compute NPP in spring season and spring season of 2004 in Haihe Basin, China. The result shows, in Haihe Basin, NPP for spring season is averaged to 336.10gC•m -2, and 709.16 gC•m -2 for autumn season. In spatial distribution, NPP is greater in both ends than in middle for spring season, and decrease increasingly from north to south for autumn season. Future work should rely on the integration of high and low resolution images to assess net primary production, which will probably have more accurately estimation.

  17. Geochemical modelling of the weathering zone of the 'Mina Fe' U deposit (Spain): A natural analogue for nuclear spent fuel alteration and stability processes in radwaste disposal

    International Nuclear Information System (INIS)

    Arcos, D.; Perez del Villar, L.; Bruno, J.; Domenech, C.

    2008-01-01

    The 'Mina Fe' U deposit (Salamanca, Spain) has been studied in the context of Enresa's programme for U-mine sites restoration and also as a natural analogue for processes in high-level nuclear waste (HLNW) geological disposal. The investigations encompassed an array of geoscience disciplines, such as structural geology, mineralogy, hydrogeology and elemental and isotopic geochemistry and hydrogeochemistry of the site. Based on the obtained results, a conceptual mineralogical and geochemical model was performed integrating the main geochemical processes occurring at the site: the interaction between oxidised and slightly acidic water with pyrite, pitchblende, calcite and dolomite, as essential minerals of the U fracture-filling mineralisation, and hydroxyapatite from the host rock, as the main source of P. This conceptual model has been tested in a systematic numerical model, which includes the main kinetic (pyrite and pitchblende dissolution) and equilibrium processes (carbonate mineral dissolution, and goethite, schoepite and autunite secondary precipitation). The results obtained from the reactive-transport model satisfactorily agree with the conceptual model previously established. The assumption of the precipitation of coffinite as a secondary mineral in the system cannot be correctly evaluated due to the lack of hydrochemical data from the reducing zone of the site and valid thermodynamic and kinetic data for this hydrated U(IV)-silicate. This precipitation can also be hampered by the probable existence of dissolved U(IV)-organic matter and/or uranyl carbonate complexes, which are thermodynamically stable under the alkaline and reducing conditions that prevail in the reducing zone of the system. Finally, the intense downwards oxic and acidic alteration in the upper part of the system is of no relevance for the performance assessment of a HLNW disposal. However, the acidic and oxidised conditions are quickly buffered to neutral-alkaline and reducing at very

  18. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    , to location-based social networks and games, such as Foursquare and facebook. Warns of the threats these technologies, such as data surveillance, present to our sense of privacy, while also outlining the opportunities for pro-social developments. Provides a theory of the web in the context of the history......Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...

  19. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  20. Geochemical modelling of water-rock interactions at the Osamu Utsumi mine and Morro do Ferro analogue study sites, Pocos de Caldas, Brazil

    International Nuclear Information System (INIS)

    Nordstrom, D.K.; Puigdomenech, I.; McNutt, R.H.

    1990-01-01

    Geochemical processes involving water-rock interactions have been modelled using groundwater composition, mineralogical data, ion plots and computations of speciation, non-thermodynamic mass balance and thermodynamic mass transfer for two natural analogue sites near Pocos de Caldas, Brazil: the Osamu Utsumi mine and Morro do Ferro. The main rock type is an alkaline igneous complex composed of volcanic and sub-volcanic phonolites that have been hydrothermally altered and highly weathered. This altered rock mass grades from a laterite at the surface to a saprolite and finally to unweathered, hydrothermally altered bedrock at depth. The mine site contains high concentrations of uranium and Morro do Ferro contains high concentrations of thorium and rare-earths. The reaction models can reproduce the water chemistry and mineral occurences and they were validated by predicting the masses of minerals precipitated and the pH of the final water. The model computations can also reproduce the pH and iron concentrations of the water samples during CO 2 degassing and iron(II) oxidation from exposure to air. The results from the geochemical reaction models reveal that the dominant processes are production of CO 2 in the soil zone through aerobic decay of organic matter, dissolution of fluorite, calcite, K-feldspar, albite and manganese oxides, oxidation of pyrite and sphalerite and precipitation of ferric oxides, silica and kaolinite. Recharge waters are undersaturated with respect to barite and discharging waters and deeper groundwaters are saturated to supersaturated with respect to barite, demonstrating a strong equilibrium solubility control. Strontium isotope data demonstrate that sources other than calcium-bearing minerals are required to account for the dissolved strontium in the ground. These may include K-feldspar, smectite-chlorite mixed-layer clays and goyazite. (author) 24 figs., 4 tabs., 18 refs

  1. Is different better? Models of teaching and their influence on the net financial outcome for general practice teaching posts

    Science.gov (United States)

    2011-01-01

    Background In Australia, training for general practice (GP) occurs within private practices and their involvement in teaching can have significant financial costs. At the same time there are growing demands for clinical places for all disciplines and for GP there is concern that there are insufficient teaching practices to meet the demand at the medical student, prevocational and vocational training levels. One option to address this may be to change how teaching occurs in the practice. A question that arises in posing such an option is whether different models of teaching change the costs for a teaching practice. The aim of this study is to determine the net financial outcome of teaching models in private GP. Methods Modelling the financial implications for a range of teaching options using a costing framework developed from a survey of teaching practices in South Australia. Each option was compared with the traditional model of teaching where one GP supervisor is singularly responsible for one learner. The main outcome measure was net financial outcome per week. Decisions on the model cost parameters were made by the study's Steering Group which comprised of experienced GP supervisors. Four teaching models are presented. Model 1 investigates the gains from teaching multiple same level learners, Models 2 and 3, the benefits of vertically integrated teaching using different permutations, and Model 4 the concept of a GP teacher who undertakes all the teaching. Results There was a significant increase in net benefits of Aus$547 per week (95% confidence intervals $459, $668) to the practice when a GP taught two same level learners (Model 1) and when a senior registrar participated in teaching a prevocational doctor (Model 3, Aus$263, 95% confidence intervals $80, $570). For Model 2, a practice could significantly reduce the loss if a registrar was involved in vertically integrated teaching which included the training of a medical student (Aus$551, 95% confidence

  2. Model to Counter the Threats in the Data Transmission System PLC-based Technology with the Use of Petri Nets

    Directory of Open Access Journals (Sweden)

    A. A. Balaev

    2010-06-01

    Full Text Available In the article the most important aspects of information security technology Power Line Communica tions, namely the provision of conditions accessibility and integrity, are considered. It is shown that these aspects of the PLC-Technology has some internal “potential” counter, at least, such a widespread threat to both natural disturbances and/or artificial origin. The possibility of such an implementation using the simplified mathematical model of the PLC-based technologies of the theory of Petri nets is presented.

  3. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/09/0044-0052. Author Affiliations. Y Narahari ...

  4. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52 ... Author Affiliations. Y Narahari1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  5. Bio-inspired Artificial Intelligence: А Generalized Net Model of the Regularization Process in MLP

    Directory of Open Access Journals (Sweden)

    Stanimir Surchev

    2013-10-01

    Full Text Available Many objects and processes inspired by the nature have been recreated by the scientists. The inspiration to create a Multilayer Neural Network came from human brain as member of the group. It possesses complicated structure and it is difficult to recreate, because of the existence of too many processes that require different solving methods. The aim of the following paper is to describe one of the methods that improve learning process of Artificial Neural Network. The proposed generalized net method presents Regularization process in Multilayer Neural Network. The purpose of verification is to protect the neural network from overfitting. The regularization is commonly used in neural network training process. Many methods of verification are present, the subject of interest is the one known as Regularization. It contains function in order to set weights and biases with smaller values to protect from overfitting.

  6. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates

    Science.gov (United States)

    Atchley, Adam L.; Navarre-Sitchler, Alexis K.; Maxwell, Reed M.

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb2 +) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb2 + concentrations within the plume. Dissimilarities between ensemble Pb2 + concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb2 + concentrations are the same for all three

  7. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates.

    Science.gov (United States)

    Atchley, Adam L; Navarre-Sitchler, Alexis K; Maxwell, Reed M

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb(2+)) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb(2+) concentrations within the plume. Dissimilarities between ensemble Pb(2+) concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb(2+) concentrations are the same for all

  8. Modeling, Analysis and Simulation of Simple One Machine-Two Product System Using Petri Nets = Basit Bir Makine-İki Ürün Sisteminin Petri Ağları Kullanılarak Modellenmesi, Analizi ve Simulasyonu

    Directory of Open Access Journals (Sweden)

    Özgür ARMANERİ

    2006-01-01

    Full Text Available As in many engineering fields, the design of manufacturing systems can be carried out using models. Petri nets have been used extensively to model and analyze manufacturing systems. Petri Nets, as graphical and mathematical tools, provide a uniform environment for modeling, format analysis and design of discrete event systems. The modeling, simulation and analysis of simple one machine-two product systems using Petri nets will be presented in this paper. Behavioral and structural properties of the Petri net model will be considered in details. Then, the Petri net model of one machine-two product system will be simulated using a simulation program.

  9. Modeling Net Growth of Phaeocystis antarctica Based on Physiological and Optical Responses to Light and Temperature Co-limitation

    Directory of Open Access Journals (Sweden)

    Tiffany A. Moisan

    2018-02-01

    Full Text Available Temperature and light are fundamental environmental variables which regulate phytoplankton growth rates when nutrients are in excess. For polar coastal oceans that are undergoing changes in sea ice cover and warming, light, and temperature are particularly important for bloom dynamics. Using colonial Phaeocystis antarctica cultures grown at steady-state, we assessed the combined effect of these two environmental controls on net growth rate (μn, chlorophyll-specific absorption of light (aph* (λ, and quantum yields for growth (ϕμ. Specific net growth rates (μn varied from 0.04 to 0.34 day−1 within a matrix of light and temperature ranging from 14 to 542 μmol quanta m−2 s−1 and −1.5 to 4°C. Values of aph* (λ varied significantly with light but only slightly with temperature. Values of ϕμ ranged from 0.003 to 0.09 mol C (mol quanta absorbed−1 with highest values at low light and 4°C. For excess irradiances or low temperatures where growth rate is inhibited, quantum yields were low. The low ϕμ values are attributed both to increased absorption by photoprotective pigments compared to photosynthetic pigments and thermodynamic control of dark reaction enzymes. The systematic changes in photophysiological properties of P. antarctica in relation to temperature and light were used to develop a series of nested light- and temperature-dependent models for μn, aph* (λ, and ϕμ. A model for aph* (300–700 nm was developed that takes into account the systematic changes in aph* (λ due to pigment packaging effects and cellular concentrations of chlorophylls and photoprotective pigments. Also, a model for ϕμ was developed based on a cumulative one-hit Poisson probability function. These model parameterizations for absorption and quantum yield are combined into an overall model of net growth that can be applied easily to P. antarctica bloom dynamics using remote sensing data for temperature, light, and chlorophyll a. Furthermore

  10. Methods for geochemical analysis

    Science.gov (United States)

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  11. A unified and efficient framework for court-net sports video analysis using 3D camera modeling

    Science.gov (United States)

    Han, Jungong; de With, Peter H. N.

    2007-01-01

    The extensive amount of video data stored on available media (hard and optical disks) necessitates video content analysis, which is a cornerstone for different user-friendly applications, such as, smart video retrieval and intelligent video summarization. This paper aims at finding a unified and efficient framework for court-net sports video analysis. We concentrate on techniques that are generally applicable for more than one sports type to come to a unified approach. To this end, our framework employs the concept of multi-level analysis, where a novel 3-D camera modeling is utilized to bridge the gap between the object-level and the scene-level analysis. The new 3-D camera modeling is based on collecting features points from two planes, which are perpendicular to each other, so that a true 3-D reference is obtained. Another important contribution is a new tracking algorithm for the objects (i.e. players). The algorithm can track up to four players simultaneously. The complete system contributes to summarization by various forms of information, of which the most important are the moving trajectory and real-speed of each player, as well as 3-D height information of objects and the semantic event segments in a game. We illustrate the performance of the proposed system by evaluating it for a variety of court-net sports videos containing badminton, tennis and volleyball, and we show that the feature detection performance is above 92% and events detection about 90%.

  12. Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial Modeling of Geophysical, Geochemical, and Geological Data

    Science.gov (United States)

    Magalhães, Lucíola Alves; Souza Filho, Carlos Roberto

    2012-03-01

    This paper reports the application of weights-of-evidence, artificial neural networks, and fuzzy logic spatial modeling techniques to generate prospectivity maps for gold mineralization in the neighborhood of the Amapari Au mine, Brazil. The study area comprises one of the last Brazilian mineral exploration frontiers. The Amapari mine is located in the Maroni-Itaicaiúnas Province, which regionally hosts important gold, iron, manganese, chromite, diamond, bauxite, kaolinite, and cassiterite deposits. The Amapari Au mine is characterized as of the orogenic gold deposit type. The highest gold grades are associated with highly deformed rocks and are concentrated in sulfide-rich veins mainly composed of pyrrhotite. The data used for the generation of gold prospectivity models include aerogeophysical and geological maps as well as the gold content of stream sediment samples. The prospectivity maps provided by these three methods showed that the Amapari mine stands out as an area of high potential for gold mineralization. The prospectivity maps also highlight new targets for gold exploration. These new targets were validated by means of detailed maps of gold geochemical anomalies in soil and by fieldwork. The identified target areas exhibit good spatial coincidence with the main soil geochemical anomalies and prospects, thus demonstrating that the delineation of exploration targets by analysis and integration of indirect datasets in a geographic information system (GIS) is consistent with direct prospecting. Considering that work of this nature has never been developed in the Amazonian region, this is an important example of the applicability and functionality of geophysical data and prospectivity analysis in regions where geologic and metallogenetic information is scarce.

  13. Distribution, microfabric, and geochemical characteristics of siliceous rocks in central orogenic belt, China: implications for a hydrothermal sedimentation model.

    Science.gov (United States)

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian--Ordovician, and Carboniferous--Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08-95.30%), Ba (42.45-503.0 ppm), and ΣREE (3.28-19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb) N, and (La/Ce) N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  14. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    Directory of Open Access Journals (Sweden)

    Hongzhong Li

    2014-01-01

    Full Text Available Marine siliceous rocks are widely distributed in the central orogenic belt (COB of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%, Ba (42.45–503.0 ppm, and ΣREE (3.28–19.75 ppm suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn, Sc/Th, (La/YbN, and (La/CeN ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  15. Systems Execution Modeling Technologies for Large-Scale Net-Centric Department of Defense Systems

    Science.gov (United States)

    2011-12-01

    problem, the design groups may use different constraint specific models, such as Ptolemy , RT-Maude, Excel, or UML, to model design constraints and...different types. For example, one group may use a Ptolemy model for analyzing fault tolerance requirements while another person may use an Excel model for

  16. Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control.

    Directory of Open Access Journals (Sweden)

    Laith Yakob

    Full Text Available Integrated vector management for malaria control has received a lot of recent interest. Attacking multiple points in the transmission cycle is hoped to act synergistically and improve upon current single-tool interventions based on the use of insecticide-treated bed nets (ITNs. In the present study, we theoretically examined the application of larval habitat source reduction with ITNs in reducing malaria transmission. We selected this type of environmental management to complement ITNs because of a potential secondary mode of action that both control strategies share. In addition to increasing vector mortality, ITNs reduce the rate at which female mosquitoes locate human hosts for blood feeding, thereby extending their gonotrophic cycle. Similarly, while reducing adult vector emergence and abundance, source reduction of larval habitats may prolong the cycle duration by extending delays in locating oviposition sites. We found, however, that source reduction of larval habitats only operates through this secondary mode of action when habitat density is below a critical threshold. Hence, we illustrate how this strategy becomes increasingly effective when larval habitats are limited. We also demonstrate that habitat source reduction is better suited to human populations of higher density and in the presence of insecticide resistance or when the insecticidal properties of ITNs are depleted.

  17. Nearly Net-Zero Exergy Districts as Models for Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Şiir Kilkiş

    2017-03-01

    Full Text Available The planning of urban settlements requires a targeted approach towards more sustainable energy, water, and environment systems. This research work analyses the city of Uppsala and a district that is an urban renewal project at the site of former high voltage power lines, namely Östra Sala backe, which will have a new energy concept. The latter is analysed based on proposals for two phases that aim to reach a net-zero district target based on the quality of energy (exergy. An indicator set with five main categories is introduced based on per capita values to enable a comparable basis between the scales of the city and the district, including exergy per capita as a new indicator. The present status of Uppsala is further analysed based on Sankey diagrams to provide insight into the present urban metabolism of the city. The results indicate that the best practice values of Östra Sala backe based on phase two can achieve significant savings in per capita values, which include 5.5 MWh of energy usage, 6.1 MWh of exergy consumption, 33 m3 of water consumption, 22 kg of waste generation, and 4.2 tonnes of carbon dioxide (CO2 emissions. Additional scenarios for Uppsala indicate that the district can be about 10 years ahead of the city’s existing performance.

  18. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  19. Performance of the Net Reclassification Improvement for Non-nested Models and a Novel Percentile-based Alternative.

    Science.gov (United States)

    McKearnan, Shannon B; Wolfson, Julian; Vock, David M; Vazquez-Benitez, Gabriela; O'Connor, Patrick J

    2018-01-03

    The Net Reclassification Improvement (NRI) is a widely used metric used to assess the relative ability of two risk models to distinguish between low- and high-risk individuals. However, the validity and usefulness of the NRI have been questioned. Criticism of the NRI focuses on its use comparing nested risk models, whereas in practice it is often used to compare non-nested risk models derived from distinct data sources. In this study, we evaluated the performance of the NRI in a non-nested context by using it to compare competing cardiovascular risk prediction models. We explored the NRI's sensitivity to variations in risk categories and to the calibration of the compared models. We found that the NRI was very sensitive to changes in the definition of risk categories, especially when at least one model was mis-calibrated. To address these shortcomings, we describe a novel alternative to the usual NRI that uses percentiles of risk instead of cut-offs based on absolute risk. This percentile-based NRI demonstrates the relative ability of two models to rank patient risk. It displays more stable behavior, and we recommend its use when there are no established risk categories or when models are mis-calibrated. © The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. A Novel Grey Prediction Model Combining Markov Chain with Functional-Link Net and Its Application to Foreign Tourist Forecasting

    Directory of Open Access Journals (Sweden)

    Yi-Chung Hu

    2017-10-01

    Full Text Available Grey prediction models for time series have been widely applied to demand forecasting because only limited data are required for them to build a time series model without any statistical assumptions. Previous studies have demonstrated that the combination of grey prediction with neural networks helps grey prediction perform better. Some methods have been presented to improve the prediction accuracy of the popular GM(1,1 model by using the Markov chain to estimate the residual needed to modify a predicted value. Compared to the previous Grey-Markov models, this study contributes to apply the functional-link net to estimate the degree to which a predicted value obtained from the GM(1,1 model can be adjusted. Furthermore, the troublesome number of states and their bounds that are not easily specified in Markov chain have been determined by a genetic algorithm. To verify prediction performance, the proposed grey prediction model was applied to an important grey system problem—foreign tourist forecasting. Experimental results show that the proposed model provides satisfactory results compared to the other Grey-Markov models considered.

  1. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt

    2009-01-01

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  2. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data

    Science.gov (United States)

    Liu, J.; Chen, J. M.; Cihlar, J.; Chen, W.

    1999-11-01

    The purpose of this paper is to upscale tower measurements of net primary productivity (NPP) to the Boreal Ecosystem-Atmosphere Study (BOREAS) study region by means of remote sensing and modeling. The Boreal Ecosystem Productivity Simulator (BEPS) with a new daily canopy photosynthesis model was first tested in one coniferous and one deciduous site. The simultaneous CO2 flux measurements above and below the tree canopy made it possible to isolate daily net primary productivity of the tree canopy for model validation. Soil water holding capacity and gridded daily meteorological data for the region were used as inputs to BEPS, in addition to 1 km resolution land cover and leaf area index (LAI) maps derived from the advanced very high resolution radiometer (AVHRR) data. NPP statistics for the various cover types in the BOREAS region and in the southern study area (SSA) and the northern study area (NSA) are presented. Strong dependence of NPP on LAI was found for the three major cover types: coniferous forest, deciduous forest and cropland. Since BEPS can compute total photosynthetically active radiation absorbed by the canopy in each pixel, light use efficiencies for NPP and gross primary productivity could also be analyzed. From the model results, the following area-averaged statistics were obtained for 1994: (1) mean NPP for the BOREAS region of 217 g C m-2 yr-1; (2) mean NPP of forests (excluding burnt areas in the region) equal to 234 g C m-2 yr-1; (3) mean NPP for the SSA and the NSA of 297 and 238 g C m-2 yr-1, respectively; and (4) mean light use efficiency for NPP equal to 0.40, 0.20, and 0.33 g C (MJ APAR)-1 for deciduous forest, coniferous forest, and crops, respectively.

  3. Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs.

    Science.gov (United States)

    Stoeber, Miriam; Schellenberger, Pascale; Siebert, C Alistair; Leyrat, Cedric; Helenius, Ari; Grünewald, Kay

    2016-12-13

    Caveolae are invaginated plasma membrane domains involved in mechanosensing, signaling, endocytosis, and membrane homeostasis. Oligomers of membrane-embedded caveolins and peripherally attached cavins form the caveolar coat whose structure has remained elusive. Here, purified Cavin1 60S complexes were analyzed structurally in solution and after liposome reconstitution by electron cryotomography. Cavin1 adopted a flexible, net-like protein mesh able to form polyhedral lattices on phosphatidylserine-containing vesicles. Mutating the two coiled-coil domains in Cavin1 revealed that they mediate distinct assembly steps during 60S complex formation. The organization of the cavin coat corresponded to a polyhedral nano-net held together by coiled-coil segments. Positive residues around the C-terminal coiled-coil domain were required for membrane binding. Purified caveolin 8S oligomers assumed disc-shaped arrangements of sizes that are consistent with the discs occupying the faces in the caveolar polyhedra. Polygonal caveolar membrane profiles were revealed in tomograms of native caveolae inside cells. We propose a model with a regular dodecahedron as structural basis for the caveolae architecture.

  4. Dynamic Scalable Stochastic Petri Net: A Novel Model for Designing and Analysis of Resource Scheduling in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Hua He

    2016-01-01

    Full Text Available Performance evaluation of cloud computing systems studies the relationships among system configuration, system load, and performance indicators. However, such evaluation is not feasible by dint of measurement methods or simulation methods, due to the properties of cloud computing, such as large scale, diversity, and dynamics. To overcome those challenges, we present a novel Dynamic Scalable Stochastic Petri Net (DSSPN to model and analyze the performance of cloud computing systems. DSSPN can not only clearly depict system dynamic behaviors in an intuitive and efficient way but also easily discover performance deficiencies and bottlenecks of systems. In this study, we further elaborate some properties of DSSPN. In addition, we improve fair scheduling taking into consideration job diversity and resource heterogeneity. To validate the improved algorithm and the applicability of DSSPN, we conduct extensive experiments through Stochastic Petri Net Package (SPNP. The performance results show that the improved algorithm is better than fair scheduling in some key performance indicators, such as average throughput, response time, and average completion time.

  5. Estimation Terrestrial Net Primary Productivity Based on CASA Model: a Case Study in Minnan Urban Agglomeration, China

    International Nuclear Information System (INIS)

    Hua, L Z; Liu, H; Zhang, X L; Zheng, Y; Man, W; Yin, K

    2014-01-01

    Net Primary Productivity (NPP) is a key component of the terrestrial carbon cycle. The research of net primary productivity will help in understanding the amount of carbon fixed by terrestrial vegetation and its influencing factors. Model simulation is considered as a cost-effective and time-efficient method for the estimation of regional and global NPP. In the paper, a terrestrial biosphere model, CASA (Carnegie Ames Stanford Approach), was applied to estimate monthly NPP in Minnan urban agglomeration (i.e. Xiamen, Zhangzhou and Quanzhou cities) of Fujian province, China, in 2009 and 2010, by incorporating satellite observation of SPOT Vegetation NDVI data together with other climatic parameters and landuse map. The model estimates average annual terrestrial NPP of Minnan area as 16.3 million Mg C. NPP decreased from southwest to the northeast. The higher NPP values exceeding 720 gC·m − 2 ·a −1 showed in North Zhangzhou city and lower values under 500 gC·m − 2 ·a −1 showed in the some areas of northeast Quanzhou city. Seasonal variations of NPP were large. It was about 45% of the total annual NPP in the three months in summer, and the NPP values were very low in winter. From 2009 to 2010, the value of annual NPP showed a slightly decrease trend, approximately 7.8% because the annual temperature for 2010 decline 13.6% compared with 2009 in despite of an increase in rainfall of about 34.3%. The results indicate that temperature was a main limiting factor on vegetation growth, but water is not a limiting factor in the rainy area

  6. Prediction of the net radon emission from a model open pit uranium mine

    International Nuclear Information System (INIS)

    Nielson, K.K.; Perkins, R.W.; Schwendiman, L.C.; Enderlin, W.I.

    1979-04-01

    Radon emission from a model open pit uranium mining operation has been estimated by applying radon exhalation fluxes measured in an open pit uranium mine to the various areas of the model mine. The model mine was defined by averaging uranium concentrations and production and procedural statistics for eight major open pit uranium mines in the Casper, Wyoming area. The resulting emission rates were 740 Ci/AFR during mining operations and 33 Ci/AFR/yr after abandonment of the mine

  7. Formal Requirements Modeling with Executable Use Cases and Coloured Petri Nets

    OpenAIRE

    Jørgensen, Jens Bæk; Tjell, Simon; Fernandes, Joao Miguel

    2009-01-01

    This paper presents executable use cases (EUCs), which constitute a model-based approach to requirements engineering. EUCs may be used as a supplement to model-driven development (MDD) and can describe and link user-level requirements and more technical software specifications. In MDD, user-level requirements are not always explicitly described, since usually it is sufficient that one provides a specification, or platform-independent model, of the software that is to be developed. Th...

  8. Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models

    Science.gov (United States)

    Lee, Younjoo J.; Matrai, Patricia A.; Friedrichs, Marjorie A. M.; Saba, Vincent S.; Aumont, Olivier; Babin, Marcel; Buitenhuis, Erik T.; Chevallier, Matthieu; de Mora, Lee; Dessert, Morgane; Dunne, John P.; Ellingsen, Ingrid H.; Feldman, Doron; Frouin, Robert; Gehlen, Marion; Gorgues, Thomas; Ilyina, Tatiana; Jin, Meibing; John, Jasmin G.; Lawrence, Jon; Manizza, Manfredi; Menkes, Christophe E.; Perruche, Coralie; Le Fouest, Vincent; Popova, Ekaterina E.; Romanou, Anastasia; Samuelsen, Annette; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tjiputra, Jerry; Tremblay, L. Bruno; Ueyoshi, Kyozo; Vichi, Marcello; Yool, Andrew; Zhang, Jinlun

    2016-12-01

    The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Zeu), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling.

  9. Geochemical prospecting in Guiana

    International Nuclear Information System (INIS)

    Coulomb, R.

    1957-01-01

    During the last few years geochemical prospecting techniques have become common usage in the field of mineral deposit prospecting. The real scope of these methods lies in their use in the prospecting of large areas. The most promising use of the geochemistry and hydro-geochemistry of uranium is in heavily forested tropical territories, with few outcrops, where radiometry is strongly handicapped. (author) [fr

  10. Reconnaissance Geochemical Study

    African Journals Online (AJOL)

    Geochemical exploration of Orle district within the Igarra schist belt in southwestern Nigeria was carried out using reconnaissance ... The occurrence of pathfinder elements such as As and W; and of rock units, such as amphibolites and pegmatites, within the schist belt that ...... house for national prosperity. Inaugural.

  11. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  12. Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Smith, Benjamin; Løfgren, Anders

    2009-01-01

    and the Beer-Lambert law. LAI estimates were compared with satellite-extrapolated field estimates of LAI, and the results were generally acceptable. NPP estimates directly from the dynamic vegetation model and estimates obtained by combining the model estimates with remote sensing information were, on average...

  13. DEVELOPMENT OF CAPE-OPEN COMPLIANT PROCESS MODELING COMPONENTS IN MICROSOFT .NET

    Science.gov (United States)

    The CAPE-OPEN middleware standards were created to allow process modeling components (PMCs) developed by third parties to be used in any process modeling environment (PME) utilizing these standards. The CAPE-OPEN middleware specifications were based upon both Microsoft's Compone...

  14. The geochemical atlas of Alaska, 2016

    Science.gov (United States)

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  15. High-level Petri Nets

    DEFF Research Database (Denmark)

    High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...... of some of the most important papers on the application and theory of high-level Petri nets. In this way it makes the relevant literature more available. It is our hope that the book will be a useful source of information and that, e.g., it can be used in the organization of Petri net courses. To make...

  16. BOREAS Follow-On DSP-05 Process-Modeled Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The BOREAS DSP-5 team generated a NPP image over the BOREAS region from a process-based ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS). The NPP...

  17. BOREAS Follow-On DSP-05 Process-Modeled Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The BOREAS DSP-5 team generated a NPP image over the BOREAS region from a process-based ecosystem model, the Boreal Ecosystem Productivity Simulator...

  18. Quantitative modeling of gene networks of biological systems using fuzzy Petri nets and fuzzy sets

    Directory of Open Access Journals (Sweden)

    Raed I. Hamed

    2018-01-01

    Full Text Available Quantitative demonstrating of organic frameworks has turned into an essential computational methodology in the configuration of novel and investigation of existing natural frameworks. Be that as it may, active information that portrays the framework's elements should be known keeping in mind the end goal to get pertinent results with the routine displaying strategies. This information is frequently robust or even difficult to get. Here, we exhibit a model of quantitative fuzzy rational demonstrating approach that can adapt to obscure motor information and hence deliver applicable results despite the fact that dynamic information is fragmented or just dubiously characterized. Besides, the methodology can be utilized as a part of the blend with the current cutting edge quantitative demonstrating strategies just in specific parts of the framework, i.e., where the data are absent. The contextual analysis of the methodology suggested in this paper is performed on the model of nine-quality genes. We propose a kind of FPN model in light of fuzzy sets to manage the quantitative modeling of biological systems. The tests of our model appear that the model is practical and entirely powerful for information impersonation and thinking of fuzzy expert frameworks.

  19. Research of G3-PLC net self-organization processes in the NS-3 modeling framework

    Science.gov (United States)

    Pospelova, Irina; Chebotayev, Pavel; Klimenko, Aleksey; Myakochin, Yuri; Polyakov, Igor; Shelupanov, Alexander; Zykov, Dmitriy

    2017-11-01

    When modern infocommunication networks are designed, the combination of several data transfer channels is widely used. It is necessary for the purposes of improvement in quality and robustness of communication. Communication systems based on more than one data transfer channel are named heterogeneous communication systems. For the design of a heterogeneous network, the most optimal solution is the use of mesh technology. Mesh technology ensures message delivery to the destination under conditions of unpredictable interference environment situation in each of two channels. Therewith, one of the high-priority problems is the choice of a routing protocol when the mesh networks are designed. An important design stage for any computer network is modeling. Modeling allows us to design a few different variants of design solutions and also to compute all necessary functional specifications for each of these solutions. As a result, it allows us to reduce costs for the physical realization of a network. In this article the research of dynamic routing in the NS3 simulation modeling framework is presented. The article contains an evaluation of simulation modeling applicability in solving the problem of heterogeneous networks design. Results of modeling may be afterwards used for physical realization of this kind of networks.

  20. Prediction of the net radon emission from a model open pit uranium mine

    International Nuclear Information System (INIS)

    Nielson, K.K.; Perkins, R.W.; Schwendiman, L.C.; Enderlin, W.I.

    1979-09-01

    Radon emission from a model open pit uranium mining operation has been estimated by applying radon exhalation fluxes measured in an open pit uranium mine to the various areas of the model mine. The model mine was defined by averaging uranium concentrations, mine dimensions, production and procedural statistics for eight major open pit uranium mines in the Casper, Wyoming area. The resulting emission rates were 630 Ci/RRY (1 RRY one = 1000-MW(e) reactor operating for 1 year) during mining operations and 26 Ci/RRY/y after abandoment of the mine assuming 100% recovery of U 3 O 8 from the ore, or 700 Ci/RRY and 29 Ci/RRY/y assuming 90.5% recovery

  1. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    Science.gov (United States)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  2. Introduktion til udvikling af bayesianske net

    DEFF Research Database (Denmark)

    Aagaard, Morten

    2007-01-01

    Bogen introducerer på let og uformelt de centrale grundbegreber i bayesianske net og introducerer til en udviklingsmetode for software, som inkluderer bayesianske net. Metoden kaldes BNAD og inkluderer aktiviteterne preprojekt, kvalitativ modellering, kvantitativ modellering samt...... applikationsudvikling og test....

  3. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model

    Science.gov (United States)

    Schultz, L.; Koons, P. O.; Schauffler, M.

    2009-12-01

    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  4. Interval Abstraction Refinement for Model Checking of Timed-Arc Petri Nets

    DEFF Research Database (Denmark)

    Viesmose, Sine Lyhne; Jacobsen, Thomas Stig; Jensen, Jacob Jon

    2014-01-01

    can be considerably faster but it does not in general guarantee conclusive answers. We implement the algorithms within the open-source model checker TAPAAL and demonstrate on a number of experiments that our approximation techniques often result in a significant speed-up of the verification....

  5. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    Science.gov (United States)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  6. Modeling Views for Semantic Web Using eXtensible Semantic (XSemantic) Nets

    NARCIS (Netherlands)

    Rajugan, R.; Chang, E.; Feng, L.; Dillon, T.; meersman, R; Tari, Z; herrero, p; Méndez, G.; Cavedon, L.; Martin, D.; Hinze, A.; Buchanan, G.

    2005-01-01

    The emergence of Semantic Web (SW) and the related technologies promise to make the web a meaningful experience. Yet, high level modeling, design and querying techniques proves to be a challenging task for organizations that are hoping utilize the SW paradigm for their industrial applications, which

  7. Integrating System Dynamics with Object-Role Modeling and Petri Nets

    NARCIS (Netherlands)

    Tulinayo, F.P.; Hoppenbrouwers, S.J.B.A.; Bommel, P. van; Proper, H.A.; Mendling, J.; Rinderle-Ma, S.; Esswein, W.

    2009-01-01

    The art of System Dynamics (SD) modeling lies in discovering and repre- senting the feedback processes and other elements that determine the dynamics of a system. However, SD shows a lack of means for discovering and expressing precise, language-based concepts in domains. Therefore, we choose to use

  8. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...

  9. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism an...

  10. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  11. F-Nets and Software Cabling: Deriving a Formal Model and Language for Portable Parallel Programming

    Science.gov (United States)

    DiNucci, David C.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Parallel programming is still being based upon antiquated sequence-based definitions of the terms "algorithm" and "computation", resulting in programs which are architecture dependent and difficult to design and analyze. By focusing on obstacles inherent in existing practice, a more portable model is derived here, which is then formalized into a model called Soviets which utilizes a combination of imperative and functional styles. This formalization suggests more general notions of algorithm and computation, as well as insights into the meaning of structured programming in a parallel setting. To illustrate how these principles can be applied, a very-high-level graphical architecture-independent parallel language, called Software Cabling, is described, with many of the features normally expected from today's computer languages (e.g. data abstraction, data parallelism, and object-based programming constructs).

  12. Modeling Enterprise Architecture Using Timed Colored PETRI Net: Single Processor Scheduling

    OpenAIRE

    Pashazadeh, Saied; Niyari, Elham Abdolrahimi

    2014-01-01

    The purpose of modeling enterprise architecture and analysis of it is to ease decision making about architecture of information systems. Planning is one of the most important tasks in an organization and has a major role in increasing the productivity of it. Scope of this paper is scheduling processes in the enterprise architecture. Scheduling is decision making on execution start time of processes that are used in manufacturing and service systems. Different methods and tools have been propo...

  13. Modeled dosage-response relationship on the net photosynthetic rate for the sensitivity to acid rain of 21 plant species.

    Science.gov (United States)

    Deng, Shihuai; Gou, Shuzhen; Sun, Baiye; Lv, Wenlin; Li, Yuanwei; Peng, Hong; Xiao, Hong; Yang, Gang; Wang, Yingjun

    2012-08-01

    This study investigated the sensitivity of plant species to acid rain based on the modeled dosage-response relationship on the net photosynthetic rate (P (N)) of 21 types of plant species, subjected to the exposure of simulated acid rain (SAR) for 5 times during a period of 50 days. Variable responses of P (N) to SAR occurred depending on the type of plant. A majority (13 species) of the dosage-response relationship could be described by an S-shaped curve and be fitted with the Boltzmann model. Model fitting allowed quantitative evaluation of the dosage-response relationship and an accurate estimation of the EC(10), termed as the pH of the acid rain resulting in a P (N) 10 % lower than the reference value. The top 9 species (Camellia sasanqua, Cinnamomum camphora, etc. EC(10) ≤ 3.0) are highly endurable to very acid rain. The rare, relict plant Metasequoia glyptostroboides was the most sensitive species (EC(10) = 5.1) recommended for protection.

  14. Modeling user navigation behavior in web by colored Petri nets to determine the user's interest in recommending web pages

    Directory of Open Access Journals (Sweden)

    Mehdi Sadeghzadeh

    2013-01-01

    Full Text Available One of existing challenges in personalization of the web is increasing the efficiency of a web in meeting the users' requirements for the contents they require in an optimal state. All the information associated with the current user behavior following in web and data obtained from pervious users’ interaction in web can provide some necessary keys to recommend presentation of services, productions, and the required information of the users. This study aims at presenting a formal model based on colored Petri nets to identify the present user's interest, which is utilized to recommend the most appropriate pages ahead. In the proposed design, recommendation of the pages is considered with respect to information obtained from pervious users' profile as well as the current session of the present user. This model offers the updated proposed pages to the user by clicking on the web pages. Moreover, an example of web is modeled using CPN Tools. The results of the simulation show that this design improves the precision factor. We explain, through evaluation where the results of this method are more objective and the dynamic recommendations demonstrate that the results of the recommended method improve the precision criterion 15% more than the static method.

  15. The effect of cigarette smoking on endothelial damage and atherosclerosis development – modeled and analyzed using Petri nets

    Directory of Open Access Journals (Sweden)

    Chmielewska Kaja

    2017-06-01

    Full Text Available Atherosclerosis as one of the crucial causes of cardiovascular diseases (CVD is the leading reason of death worldwide. One of the contributing factors to this phenomenon is endothelial dysfunction, which is associated with the impact of various agents and their interactions. Tobacco smoke is one of the well known factors here. For better understanding of its significance a model of its impact on atherosclerotic plaque formation has been proposed. The model contains selected aspects of the influence of tobacco smoke, dual function of nitric oxide (NO (influence of various mechanisms on NO bioavailability, oxidative stress which promotes low density lipoproteins oxidation, macrophages significance and other mechanisms leading to an aggravation of the endothelial disturbances. The model has been built using Petri nets theory and the analysis has been based on t-invariants. This approach allowed to confirm the important role of inflammation and oxidative stress in atherosclerosis development and moreover it has shown the considerable influence of the cigarette smoke.

  16. Calibration of a PHREEQC-based geochemical model to predict surface water discharge from an operating uranium mill in the Athabasca Basin

    International Nuclear Information System (INIS)

    Mahoney, J.; Ryan, F.

    2014-01-01

    A PHREEQC based geochemical model has been developed to predict impacts from the McClean Lake Mill discharges through three lakes in the Athabasca Basin, Saskatchewan, Canada. The model is primarily a mixing calculation that uses site specific water balances and water compositions from five sources: 1) two water treatment plants, 2) waters from pit dewatering wells, 3) run-off into the lakes from surface waters, 4) ambient lake compositions, and 5) precipitation (rain and snow) onto the pit lake surface. The model allows for the discharge of these waters into the first lake, which then flows into another nearby lake and finally into a third larger lake. Water losses through evaporation and the impact of subsequent evapoconcentration processes are included in the model. PHREEQC has numerous mass transfer options including mixing, user specified reactions, equilibration with gas and solid phases, and surface complexation. Thus this program is ideally suited to this application. Preparation of such a complicated model is facilitated by an EXCEL Spreadsheet, which converts the water balance into appropriately formatted mixing proportions and to prepare portions of the PHREEQC input file in a format directly useable by PHREEQC. This allows for a high level of flexibility, while reducing transcription errors. For each scenario, the model path involves mixing of the waters in the first lake, followed by evapoconcentration, equilibration of the resulting solution with gas phases, including carbon dioxide and oxygen and with minerals and surfaces. The resultant composition is mixed in the second lake with more surface water, lake water and precipitation, and then re-equilibrated. This water represents the flow into the final lake; further mixing/dilution is accommodated; chemical equilibration may also occur. Because of the numerous steps and processes that define the pathway, each annual step requires approximately 200 lines of input in PHREEQC. Models used in the initial

  17. [Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model].

    Science.gov (United States)

    He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong

    2016-02-01

    Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect.

  18. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, Laura Mie; Markussen, Bo; Nielsen, N. I.

    2016-01-01

    (CINE; min/MJ of NE). Furthermore, we studied the forage-to-concentrate substitution rate in this new NEI model. To calibrate the model on a diverse set of situations, we built a database of mean intake from 14 production experiments with a total of 986 primi- and multiparous lactating dairy cows...... of different breeds fed 136 different diets ad libitum. The NEI were estimated by the Nordic feed evaluation system. The CINE value of diets was estimated from the intake of concentrate, intake of forage neutral detergent fiber (NDFf), particle length of forage, indigestible NDFf/NDFf, body weight, NDFf....../body weight, and the content of NE in DM. We show that the slope values in this regression are proportional to the squared intercepts, giving the nonlinear equation NEI=NEI0-k×NEI0(a)×CINE, where the parameter k represents the decline in NEI with the increasing CINE of the diet and a was estimated to have...

  19. Initial CAD investigations for NET

    International Nuclear Information System (INIS)

    Katz, F.; Leinemann, K.; Ludwig, A.; Marek, U.; Olbrich, W.; Schlechtendahl, E.G.

    1985-11-01

    This report summarizes the work done under contract no. 164/84-7/FU-D-/NET between the Commission of the European Communities and KfK during the period from June 1, 1984, through May 31, 1985. The following topics are covered in this report: Initial modelling of NET version NET2A, CAD system extension for remote handling studies, analysis of the CAD information structure, work related to the transfer of CAD information between KfK and the NET team. (orig.) [de

  20. An examination of the factors controlling net methylation in estuarine sediments: Results from measurements and models

    Directory of Open Access Journals (Sweden)

    Schartup A. T.

    2013-04-01

    Full Text Available An examination of the distribution of mercury and methylmercury across estuarine ecosystems in the northeast USA was completed under a number of projects. Sites ranged from Maine to the Chesapeake Bay and included both pristine and contaminated sites. In addition to measurements of bulk sediment and porewater, methylation and demethylation rates were also measured. Results showed that the relationships between sediment-porewater partitioning and methylation potential with sediment organic content are complex and that sediment organic content alone is not always a good predictor of the potential for a system to produce methylmercury. Modeling and correlations between variables suggest that the sulfur content of the system needs to be considered and for high organic content sediments, both sulfur and organic content.

  1. Inverse Geochemical Reaction Path Modelling and the Impact of Climate Change on Hydrologic Structure in Snowmelt-Dominated Catchments in the Southwestern USA

    Science.gov (United States)

    Driscoll, J. M.; Meixner, T.; Molotch, N. P.; Sickman, J. O.; Williams, M. W.; McIntosh, J. C.; Brooks, P. D.

    2011-12-01

    Snowmelt from alpine catchments provides 70-80% of the American Southwest's water resources. Climate change threatens to alter the timing and duration of snowmelt in high elevation catchments, which may also impact the quantity and the quality of these water resources. Modelling of these systems provides a robust theoretical framework to process the information extracted from the sparse physical measurement available in these sites due to their remote locations. Mass-balance inverse geochemical models (via PHREEQC, developed by the USGS) were applied to two snowmelt-dominated catchments; Green Lake 4 (GL4) in the Rockies and Emerald Lake (EMD) in the Sierra Nevada. Both catchments primarily consist of granite and granodiorite with a similar bulk geochemistry. The inputs for the models were the initial (snowpack) and final (catchment output) hydrochemistry and a catchment-specific suite of mineral weathering reactions. Models were run for wet and dry snow years, for early and late time periods (defined hydrologically as 1/2 of the total volume for the year). Multiple model solutions were reduced to a representative suite of reactions by choosing the model solution with the fewest phases and least overall phase change. The dominant weathering reactions (those which contributed the most solutes) were plagioclase for GL4 and albite for EMD. Results for GL4 show overall more plagioclase weathering during the dry year (214.2g) than wet year (89.9g). Both wet and dry years show more weathering in the early time periods (63% and 56%, respectively). These results show that the snowpack and outlet are chemically more similar during wet years than dry years. A possible hypothesis to explain this difference is a change in contribution from subsurface storage; during the wet year the saturated catchment reduces contact with surface materials that would result in mineral weathering reactions by some combination of reduced infiltration and decreased subsurface transit time. By

  2. Petri Net-Based Model of Helicobacter pylori Mediated Disruption of Tight Junction Proteins in Stomach Lining during Gastric Carcinoma

    Directory of Open Access Journals (Sweden)

    Anam Naz

    2017-09-01

    Full Text Available Tight junctions help prevent the passage of digestive enzymes and microorganisms through the space between adjacent epithelial cells lining. However, Helicobacter pylori encoded virulence factors negatively regulate these tight junctions and contribute to dysfunction of gastric mucosa. Here, we have predicted the regulation of important tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in the presence of pathogenic proteins. Molecular events such as post translational modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation and methylation are explored which may compromise the integrity of these tight junction proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases, proteins and post-translational modifications are reviewed to design an abstracted computational model showing the situation-dependent dynamic behaviors of these biological processes and entities. A qualitative hybrid Petri Net model is therefore constructed showing the altered host pathways in the presence of virulence factor cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The model is qualitative logic-based, which does not depend on any kinetic parameter and quantitative data and depends on knowledge derived from experiments. The designed model provides insights into the tight junction disruption and disease progression. Model is then verified by the available experimental data, nevertheless formal in vitro experimentation is a promising way to ensure its validation. The major findings propose that H. pylori activated kinases are responsible to trigger specific post translational modifications within tight junction proteins, at specific sites. These modifications may favor alterations in gastric barrier and provide a route to bacterial invasion into host cells.

  3. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  4. Estimating Trends and Variation of Net Biome Productivity in India for 1980-2012 Using a Land Surface Model

    Science.gov (United States)

    Gahlot, Shilpa; Shu, Shijie; Jain, Atul K.; Baidya Roy, Somnath

    2017-11-01

    In this paper we explore the trend in net biome productivity (NBP) over India for the period 1980-2012 and quantify the impact of different environmental factors, including atmospheric CO2 concentrations ([CO2]), land use and land cover change, climate, and nitrogen deposition on carbon fluxes using a land surface model, Integrated Science Assessment Model. Results show that terrestrial ecosystems of India have been a carbon sink for this period. Driven by a strong CO2 fertilization effect, magnitude of NBP increased from 27.17 TgC/yr in the 1980s to 34.39 TgC/yr in the 1990s but decreased to 23.70 TgC/yr in the 2000s due to change in climate. Adoption of forest conservation, management, and reforestation policies in the past decade has promoted carbon sequestration in the ecosystems, but this effect has been offset by loss of carbon from ecosystems due to rising temperatures and decrease in precipitation.

  5. Designing a course model for distance-based online bioinformatics training in Africa: The H3ABioNet experience.

    Directory of Open Access Journals (Sweden)

    Kim T Gurwitz

    2017-10-01

    Full Text Available Africa is not unique in its need for basic bioinformatics training for individuals from a diverse range of academic backgrounds. However, particular logistical challenges in Africa, most notably access to bioinformatics expertise and internet stability, must be addressed in order to meet this need on the continent. H3ABioNet (www.h3abionet.org, the Pan African Bioinformatics Network for H3Africa, has therefore developed an innovative, free-of-charge "Introduction to Bioinformatics" course, taking these challenges into account as part of its educational efforts to provide on-site training and develop local expertise inside its network. A multiple-delivery-mode learning model was selected for this 3-month course in order to increase access to (mostly African, expert bioinformatics trainers. The content of the course was developed to include a range of fundamental bioinformatics topics at the introductory level. For the first iteration of the course (2016, classrooms with a total of 364 enrolled participants were hosted at 20 institutions across 10 African countries. To ensure that classroom success did not depend on stable internet, trainers pre-recorded their lectures, and classrooms downloaded and watched these locally during biweekly contact sessions. The trainers were available via video conferencing to take questions during contact sessions, as well as via online "question and discussion" forums outside of contact session time. This learning model, developed for a resource-limited setting, could easily be adapted to other settings.

  6. Designing a course model for distance-based online bioinformatics training in Africa: The H3ABioNet experience.

    Science.gov (United States)

    Gurwitz, Kim T; Aron, Shaun; Panji, Sumir; Maslamoney, Suresh; Fernandes, Pedro L; Judge, David P; Ghouila, Amel; Domelevo Entfellner, Jean-Baka; Guerfali, Fatma Z; Saunders, Colleen; Mansour Alzohairy, Ahmed; Salifu, Samson P; Ahmed, Rehab; Cloete, Ruben; Kayondo, Jonathan; Ssemwanga, Deogratius; Mulder, Nicola

    2017-10-01

    Africa is not unique in its need for basic bioinformatics training for individuals from a diverse range of academic backgrounds. However, particular logistical challenges in Africa, most notably access to bioinformatics expertise and internet stability, must be addressed in order to meet this need on the continent. H3ABioNet (www.h3abionet.org), the Pan African Bioinformatics Network for H3Africa, has therefore developed an innovative, free-of-charge "Introduction to Bioinformatics" course, taking these challenges into account as part of its educational efforts to provide on-site training and develop local expertise inside its network. A multiple-delivery-mode learning model was selected for this 3-month course in order to increase access to (mostly) African, expert bioinformatics trainers. The content of the course was developed to include a range of fundamental bioinformatics topics at the introductory level. For the first iteration of the course (2016), classrooms with a total of 364 enrolled participants were hosted at 20 institutions across 10 African countries. To ensure that classroom success did not depend on stable internet, trainers pre-recorded their lectures, and classrooms downloaded and watched these locally during biweekly contact sessions. The trainers were available via video conferencing to take questions during contact sessions, as well as via online "question and discussion" forums outside of contact session time. This learning model, developed for a resource-limited setting, could easily be adapted to other settings.

  7. Designing a course model for distance-based online bioinformatics training in Africa: The H3ABioNet experience

    Science.gov (United States)

    Panji, Sumir; Fernandes, Pedro L.; Judge, David P.; Ghouila, Amel; Salifu, Samson P.; Ahmed, Rehab; Kayondo, Jonathan; Ssemwanga, Deogratius

    2017-01-01

    Africa is not unique in its need for basic bioinformatics training for individuals from a diverse range of academic backgrounds. However, particular logistical challenges in Africa, most notably access to bioinformatics expertise and internet stability, must be addressed in order to meet this need on the continent. H3ABioNet (www.h3abionet.org), the Pan African Bioinformatics Network for H3Africa, has therefore developed an innovative, free-of-charge “Introduction to Bioinformatics” course, taking these challenges into account as part of its educational efforts to provide on-site training and develop local expertise inside its network. A multiple-delivery–mode learning model was selected for this 3-month course in order to increase access to (mostly) African, expert bioinformatics trainers. The content of the course was developed to include a range of fundamental bioinformatics topics at the introductory level. For the first iteration of the course (2016), classrooms with a total of 364 enrolled participants were hosted at 20 institutions across 10 African countries. To ensure that classroom success did not depend on stable internet, trainers pre-recorded their lectures, and classrooms downloaded and watched these locally during biweekly contact sessions. The trainers were available via video conferencing to take questions during contact sessions, as well as via online “question and discussion” forums outside of contact session time. This learning model, developed for a resource-limited setting, could easily be adapted to other settings. PMID:28981516

  8. Brine Migration from a Flooded Salt Mine in the Genesee Valley, Livingston County, New York: Geochemical Modeling and Simulation of Variable-Density Flow

    Science.gov (United States)

    Yager, Richard M.; Misut, Paul E.; Langevin, Christian D.; Parkhurst, David L.

    2009-01-01

    The Retsof salt mine in upstate New York was flooded from 1994 to 1996 after two roof collapses created rubble chimneys in overlying bedrock that intersected a confined aquifer in glacial sediments. The mine now contains about 60 billion liters of saturated halite brine that is slowly being displaced as the weight of overlying sediments causes the mine cavity to close, a process that could last several hundred years. Saline water was detected in the confined aquifer in 2002, and a brine-mitigation project that includes pumping followed by onsite desalination was implemented in 2006 to prevent further migration of saline water from the collapse area. A study was conducted by the U.S. Geological Survey using geochemical and variable-density flow modeling to determine sources of salinity in the confined aquifer and to assess (1) processes that control movement and mixing of waters in the collapse area, (2) the effect of pumping on salinity, and (3) the potential for anhydrite dissolution and subsequent land subsidence resulting from mixing of waters induced by pumping. The primary source of salinity in the collapse area is halite brine that was displaced from the flooded mine and transported upward by advection and dispersion through the rubble chimneys and surrounding deformation zone. Geochemical and variable-density modeling indicate that salinity in the upper part of the collapse area is partly derived from inflow of saline water from bedrock fracture zones during water-level recovery (January 1996 through August 2006). The lateral diversion of brine into bedrock fracture zones promoted the upward migration of mine water through mixing with lower density waters. The relative contributions of mine water, bedrock water, and aquifer water to the observed salinity profile within the collapse area are controlled by the rates of flow to and from bedrock fracture zones. Variable-density simulations of water-level recovery indicate that saline water has probably not

  9. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  10. Geophysical and geochemical regional evaluation and geophysical model for uranium exploration in the western part of Yanliao region

    International Nuclear Information System (INIS)

    Liu Tengyao; Cui Huanmin; Chen Guoliang; Zhai Yugui

    1992-01-01

    The western part of Yanliao region is an important uranium metallogenic region. This paper summarizes the regional geophysical model for uranium exploration composed of prediction model for favourable area of mineralization and evaluation model for anomalies on the basis of aeromagnetic and aeroradiometric data interpretation and analysis of the data from carborane and ground gamma spectrometric survey, high accurate magnetic survey, VLF survey and α-collected film survey in mult-displiary research work. The prospective prediction for uranium metallogenesis in this region was also conducted

  11. Modeling the Metabolism of Arabidopsis thaliana: Application of Network Decomposition and Network Reduction in the Context of Petri Nets

    Directory of Open Access Journals (Sweden)

    Ina Koch

    2017-06-01

    Full Text Available Motivation:Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem.Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs.Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the

  12. Updating the Cornell Net Carbohydrate and Protein System feed library and analyzing model sensitivity to feed inputs.

    Science.gov (United States)

    Higgs, R J; Chase, L E; Ross, D A; Van Amburgh, M E

    2015-09-01

    The Cornell Net Carbohydrate and Protein System (CNCPS) is a nutritional model that evaluates the environmental and nutritional resources available in an animal production system and enables the formulation of diets that closely match the predicted animal requirements. The model includes a library of approximately 800 different ingredients that provide the platform for describing the chemical composition of the diet to be formulated. Each feed in the feed library was evaluated against data from 2 commercial laboratories and updated when required to enable more precise predictions of dietary energy and protein supply. A multistep approach was developed to predict uncertain values using linear regression, matrix regression, and optimization. The approach provided an efficient and repeatable way of evaluating and refining the composition of a large number of different feeds against commercially generated data similar to that used by CNCPS users on a daily basis. The protein A fraction in the CNCPS, formerly classified as nonprotein nitrogen, was reclassified to ammonia for ease and availability of analysis and to provide a better prediction of the contribution of metabolizable protein from free AA and small peptides. Amino acid profiles were updated using contemporary data sets and now represent the profile of AA in the whole feed rather than the insoluble residue. Model sensitivity to variation in feed library inputs was investigated using Monte Carlo simulation. Results showed the prediction of metabolizable energy was most sensitive to variation in feed chemistry and fractionation, whereas predictions of metabolizable protein were most sensitive to variation in digestion rates. Regular laboratory analysis of samples taken on-farm remains the recommended approach to characterizing the chemical components of feeds in a ration. However, updates to the CNCPS feed library provide a database of ingredients that are consistent with current feed chemistry information and

  13. Time-dependent structural transformation analysis to high-level Petri net model with active state transition diagram

    Directory of Open Access Journals (Sweden)

    Saito Ayumu

    2010-04-01

    Full Text Available Abstract Background With an accumulation of in silico data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells. Investigating the dynamic features of current computational models promises a deeper understanding of complex cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simulation time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in understanding the variations of system mechanisms. Results We propose a novel method for constructing and analyzing a so-called active state transition diagram (ASTD by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms. The first algorithm extracts a series of subnets (called temporal subnets reflecting biological components contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is demonstrated by the analysis of the underlying model for circadian rhythms in Drosophila. Conclusions Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be applied to obtain new insights into not only systematic mechanisms but also dynamics.

  14. From intervention to impact: modelling the potential mortality impact achievable by different long-lasting, insecticide-treated net delivery strategies

    Directory of Open Access Journals (Sweden)

    Okell Lucy C

    2012-09-01

    Full Text Available Abstract Background The current target of universal access to long-lasting, insecticide-treated nets (LLIN is 80% coverage to reduce malaria deaths by 75% by 2015. So far, campaigns have been the main channel for large-scale delivery of LLINs, however the World Health Organization has recommended that equal priority should be given to delivery via routine antenatal care (ANC and immunization systems (EPI to target pregnant women and children from birth. These various channels of LLIN delivery are targeted to children of different ages. Since risk of mortality varies with child age and LLIN effectiveness declines with net age, it was hypothesized that the age at which a child receives a new LLIN, and therefore the delivery channel, is important in optimizing the health impact of a net. Methods A simple dynamic mathematical model was developed of delivery and impact of LLINs among children under five years of age and their household members, incorporating data on age-specific malaria death rates, net use by household structure, and net efficacy over time. Results The presented analysis finds that supplementing a universal mass campaign with extra ANC delivery would achieve a 1.4 times higher mortality reduction than campaign delivery alone, reflecting that children born in the years between campaigns would otherwise have access to old nets or no nets at an age of high risk. The relative advantage of supplementary ANC delivery is still present though smaller if malaria transmission levels are lower or if there is a strong mass effect achieved by mass campaigns. Conclusion These results indicate that LLIN delivery policies must take into account the age of greatest malaria risk. Emphasis should be placed on supporting routine delivery of LLINs to young children as well as campaigns.

  15. Alligator Rivers Analogue project. Geochemical Data Bases

    International Nuclear Information System (INIS)

    Bennett, D.G.; Read, D.

    1992-01-01

    The Koongarra uranium deposit in the Northern Territory of Australia is being studied to evaluate the processes involved in the geochemical alteration of the ore body and the formation of the uranium dispersion fan. A broad range of research is being undertaken into the geochemistry and hydrology of the site with the aim of understanding the transport of radionuclides through the system. During the project a range of geochemical and hydrogeochemical models have been developed to account for measured data from the site and with which to predict site evolution. The majority of these models are based on the premise of thermodynamic chemical equilibrium and employ fundamental thermodynamic data to characterise the chemistry of the system. From the differences which exist between the thermodynamic data bases (Appendices I and II) it is possible to gain a view of the level of uncertainty associated with thermodynamic data in each set of calculations. This report gives a brief introduction to the geochemical processes underlying the models, and details the equations used to quantify the more common of these processes (e.g. aqueous speciation and mineral solubility). A description is given of the computer codes (EQ3/6, PHREEQE, MINTEQ) most commonly used during the project for geochemical modelling. Their key features are highlighted and comparisons made. It is concluded that the degree of uncertainty in geochemical modelling studies arising as a result of using one code rather than another is relatively insignificant when compared to that related to differences in the underlying data bases. 73 refs., 3 figs

  16. Modeling the geochemical distribution of rare earth elements (REEs using multivariate statistics in the eastern part of Marvast placer, the Yazd province

    Directory of Open Access Journals (Sweden)

    Amin Hossein Morshedy

    2017-07-01

    Full Text Available Introduction Nowadays, exploration of rare earth element (REE resources is considered as one of the strategic priorities, which has a special position in the advanced and intelligent industries (Castor and Hedrick, 2006. Significant resources of REEs are found in a wide range of geological settings, including primary deposits associated with igneous and hydrothermal processes (e.g. carbonatite, (per alkaline-igneous rocks, iron-oxide breccia complexes, scarns, fluorapatite veins and pegmatites, and secondary deposits concentrated by sedimentary processes and weathering (e.g. heavy-mineral sand deposits, fluviatile sandstones, unconformity-related uranium deposits, and lignites (Jaireth et al., 2014. Recent studies on various parts of Iran led to the identification of promising potential of these elements, including Central Iran, alkaline rocks in the Eslami Peninsula, iron and apatite in the Hormuz Island, Kahnouj titanium deposit, granitoid bodies in Yazd, Azerbaijan, and Mashhad and associated dikes, and finally placers related to the Shemshak formation in Marvast, Kharanagh, and Ardekan indicate high concentration of REE in magmatogenic iron–apatite deposits in Central Iran and placers in Marvast area in Yazd (Ghorbani, 2013. Materials and methods In the present study, the geochemical behavior of rare earth elements is modeled by using multivariate statistical methods in the eastern part of the Marvast placer. Marvast is located 185 km south of the city of Yazd in central Iran between Yazd and Mehriz. This area lies within the southeastern part of the Sanandaj-Sirjan Zone (Alipour-Asll et al., 2012. The samples of 53 wells were analyzed for Whole-rock trace-element concentrations (including REE by inductively coupled plasma-mass spectrometry (ICP-MS (GSI, 2004. The clustering techniques such as multivariate statistical analysis technique can be employed to find appropriate groups in data sets. One of the main objectives of data clustering

  17. Adjustments in the Almod 3W2 code models for reproducing the net load trip test in Angra I nuclear power plant

    International Nuclear Information System (INIS)

    Camargo, C.T.M.; Madeira, A.A.; Pontedeiro, A.C.; Dominguez, L.

    1986-09-01

    The recorded traces got from the net load trip test in Angra I NPP yelded the oportunity to make fine adjustments in the ALMOD 3W2 code models. The changes are described and the results are compared against plant real data. (Author) [pt

  18. A consistent geochemical modelling approach for the leaching and reactive transport of major and trace elements in MSWI bottom ash

    NARCIS (Netherlands)

    Dijkstra, J.J.; Meeussen, J.C.L.; Sloot, van der H.A.; Comans, R.N.J.

    2008-01-01

    To improve the long-term environmental risk assessment of waste applications, a predictive "multi-surface" modelling approach has been developed to simultaneously predict the leaching and reactive transport of a broad range of major and trace elements (i.e., pH, Na, Al, Fe, Ca, SO4, Mg, Si, PO4,

  19. Leaching, geochemical modelling and field verification of a municipal solid waste and a predominantly non-degradable waste landfill.

    Science.gov (United States)

    van der Sloot, H A; Kosson, D S; van Zomeren, A

    2017-05-01

    In spite of the known heterogeneity, wastes destined for landfilling can be characterised for their leaching behaviour by the same protocols as soil, contaminated soil, sediments, sludge, compost, wood, waste and construction products. Characterisation leaching tests used in conjunction with chemical speciation modelling results in much more detailed insights into release controlling processes and factors than single step batch leaching tests like TCLP (USEPA) and EN12457 (EU Landfill Directive). Characterisation testing also can provide the potential for mechanistic impact assessments by making use of a chemical speciation fingerprint (CSF) derived from pH dependence leaching test results. This CSF then forms the basis for subsequent chemical equilibrium and reactive transport modelling to assess environmental impact in a landfill scenario under relevant exposure conditions, including conditions not readily evaluated through direct laboratory testing. This approach has been applied to municipal solid waste (MSW) and predominantly non-degradable waste (PNW) that is representative of a significant part of waste currently being landfilled. This work has shown that a multi-element modelling approach provides a useful description of the release from each of these matrices because relevant release controlling properties and parameters (mineral dissolution/precipitation, sorption on Fe and Al oxides, clay interaction, interaction with dissolved and particulate organic carbon and incorporation in solid solutions) are taken into consideration. Inclusion of dissolved and particulate organic matter in the model is important to properly describe release of the low concentration trace constituents observed in the leachate. The CSF allows the prediction of release under different redox and degradation conditions in the landfill by modifying the redox status and level of dissolved and particulate organic matter in the model runs. The CSF for MSW provides a useful starting point

  20. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites

    Science.gov (United States)

    Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2017-03-01

    The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.

  1. A livelock control policy for a flexible manufacturing system modeling with a subclass of generalized Petri nets

    Directory of Open Access Journals (Sweden)

    C.Q. Hou

    2014-12-01

    Full Text Available Livelocks, like deadlocks, can result in the serious problems in running process of flexible manufacturing systems (FMSs as well. Current deadlock control policies based on the approaches of siphon detection and control, cannot cope with livelocks in a system of sequential systems with shared resources (S4R, a typical subclass of Petri nets that can model FMSs. On the basis of the mixed integer programming method, this study proposes a livelock control policy (LCP that can not only solve the new smart siphons (NSSs associated with livelocks or deadlocks in an S4R system directly, but also make the solved NSSs max′-controlled by adding the corresponding control places (CPs. As a result, an original S4R system with livelocks or deadlocks can be turned into the live controlled one in which no NSSs can be found. The related theoretical analysis and several examples are given to demonstrate the proposed LCP. Compared with the existing methods in the literature, the proposed one is more general and powerful.

  2. AirMOSS: L4 Daily Modeled Net Ecosystem Exchange (NEE), AirMOSS sites, 2012-2014

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides Level 4 daily estimates of Net Ecosystem Exchange (NEE) of CO2 at a spatial resolution of 30 arc-seconds (~1 km) for seven of the sites...

  3. Geophysical and Geochemical Aspects of Pressure and CO2 Saturation Modeling due to Migration of Fluids into the Above Zone Monitoring Interval of a Geologic Carbon Storage Site

    Science.gov (United States)

    Zhang, L.; Namhata, A.; Dilmore, R. M.; Bromhal, G. S.

    2016-12-01

    An increasing emphasis on the industrial scale implementation of CO2 storage into geological formations has led to the development of whole-system models to evaluate performance of candidate geologic storage sites, and the environmental risk associated with them. The components of that engineered geologic system include the storage reservoir, primary and secondary seals, and the overlying formations above primary and secondary seals (above-zone monitoring interval, AZMI). Leakage of CO2 and brine through the seal to the AZMI may occur due to the presence of natural or induced fractures in the seal. In this work, an AZMI model that simulates pressure and CO2 saturation responses through time to migration of fluids (here, CO2 and brine) from the primary seal to the AZMI is developed. A hypothetical case is examined wherein CO2 is injected into a storage reservoir for 30 years and a heterogeneous primary seal exists above the reservoir with some permeable zones. The total simulation period is 200 years (30 years of CO2 injection period and 170 years of post CO2 injection period). Key geophysical parameters such as permeability of the AZMI, thickness of the AZMI and porosity of the AZMI have significant impact on pressure evolution in the AZMI. arbitrary Polynomial Chaos (aPC) Expansion analysis shows that permeability of the AZMI has the most significant impact on pressure build up in the AZMI above the injection well at t=200 years, followed by thickness of the AZMI and porosity of the AZMI. Geochemical reactions have no impact on pressure and CO2 saturation evolution in the AZMI during the CO2 injection period. After the CO2 injection stops, precipitation of secondary minerals (e.g., amorphous silica and kaolinite) at the CO2 plume/brine interface in the AZMI formation may cause permeability reduction of the AZMI, which restrains horizontal migration of CO2 in the AZMI.

  4. A geochemical modelling study of the evolution of the chemical composition of seawater linked to a "snowball" glaciation

    Directory of Open Access Journals (Sweden)

    G. Le Hir

    2008-02-01

    Full Text Available The Snowball Earth theory initially proposed by Kirschvink (1992 to explain the Neoproterozoic glacial episodes, suggested that the Earth was fully ice-covered at 720 Ma (Sturtian episode and 640 Ma (Marinoan episode. This succession of extreme climatic crises induced environmental perturbations which are considered as a strong selective pressure on the evolution of life (Hoffman et al., 1998. Using a numerical model of carbon-alkalinity global cycles, we quantify environmental stresses caused by a global glaciation. According to our results, we suggest that during global glaciations, the ocean becomes acidic (pH~6, and undersaturated with respect to carbonate minerals. Moreover the quick transition from ice-house to greenhouse conditions implies an abrupt and large shift of the oceanic surface temperature which causes an extended hypoxia. The intense continental weathering, in the aftermath of the glaciation, deeply affects the seawater composition inducing rapid changes in terms of pH and alkalinity. We also propose a new timing for post glacial perturbations and for the cap carbonates deposition, ~2 Myr instead of 200 kyr as suggested in a previous modelling study. In terms of Precambrian life sustainability, seawater pH modifications appear drastic all along the glaciation, but we suggest that the buffering action of the oceanic crust dissolution avoids a total collapse of biological productivity. But short-lived and large post-glacial perturbations are more critical and may have played the role of an environmental filter proposed in the classic snowball Earth theory. Although the link between environmental changes and life sustainability cannot be modelled accurately, we suggest that only a permissive life (Knoll, 2003 may explain the relative continuity in microfossils diversity observed before, during and after Neoproterozoic glaciation events.

  5. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  6. Use of chlorine-36 and other geochemical data to test a groundwater flow model for Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Wolfsberg, A.V.; Fabryka-Martin, J.T.; Levy, S.S.

    1998-01-01

    Defining the spatial distribution and timing of subsurface fluid percolation is one of the most important factors determining long term performance of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. The nonwelded interval of the Paintbrush Group (PTn), which overlies most of the potential repository, has high matrix porosities and permeabilities and is mostly unfractured. The Exploratory Studies Facility (ESF) is a 8-km long, 7.6-m diameter, tunnel excavated beneath Yucca Mountain to the level of the potential repository horizon in order to provide access for characterization of these rocks. Several samples collected within the ESF have measured 36 Cl/Cl ratios that record anthropogenic 36 Cl (bomb-pulse 36 Cl), indicating that at least some fraction of the water has traversed the overlying PTn in 40 years or less and that flow is not confined to the matrix of that unit. The presence of a fast path transmitting bomb-pulse 36 Cl to depth appears to require the simultaneous presence of a structure (such as a fault) cutting the PTn and sufficiently high magnitude to surface infiltration to initiate and sustain at least a small component of fracture flow along the connected fracture path associated with the structure. The 36 Cl data have been simulated using the flow and transport model FEHM in order to establish bounds on infiltration rates at the site and to provide greater confidence in the understanding of unsaturated flow processes at the site by showing consistency between the observed and simulated data sets. An analogous effort simulating the distribution of porewater chloride concentrations is providing an independent means for confirming the conceptual model

  7. Pairing Coral Geochemical Analyses with an Ecosystem Services Model to Assess Drivers and Impacts of Sediment Delivery within Micronesia's Largest Estuary, Ngeremeduu Bay

    Science.gov (United States)

    Lewis, S.; Dunbar, R. B.; Mucciarone, D.; Barkdull, M.

    2017-12-01

    Scientific tools assessing impacts to watershed and coastal ecosystem services, like those from land-use land conversion (LULC), are critical for sustainable land management strategies. Small island nations are particularly vulnerable to LULC threats, especially sediment delivery, given their small spatial size and reliance on natural resources. In the Republic of Palau, a small Pacific island country, three major land-use activities—construction, fires, and agriculture— have increased sediment delivery to important estuarine and coastal habitats (i.e., rivers, mangroves, coral reefs) over the past 30 years. This project examines the predictive capacity of an ecosystem services model, Natural Capital Project's InVEST, for sediment delivery using historic land-use and coral geochemical analysis. These refined model projections are used to assess ecosystem services tradeoffs under different future land development and management scenarios. Coral cores (20-41cm in length) were sampled along a high-to-low sedimentation gradient (i.e., near major rivers (high-impact) and ocean (low-impact)) in Micronesia's largest estuary, Ngeremeduu Bay. Isotopic indicators of seasonality (δ18O and δ13C values (% VPDB)) were used to construct the age model for each core. Barium, Manganese, and Yttrium were used as trace metal proxies for sedimentation and measured in each core using a laser ablation ICP-MS. Finally, the Natural Capital Project's InVEST sediment delivery model was paired with Geospatial data to examine the drivers of sediment delivery (i.e., construction, farms and fires) within these two watersheds. A thirty-year record of trace metal to calcium ratios in coral skeletons show a peak in sedimentation during 2006 and 2007, and in 2012. These results suggest historic peaks in sediment delivery correlating to large-scale road construction and support previous findings that Ngeremeduu Bay has reached a tipping point of retaining sediment. Natural Capital's project In

  8. Programed oil generation of the Zubair Formation, Southern Iraq oil fields: Results from Petromod software modeling and geochemical analysis

    Science.gov (United States)

    Al-Ameri, T. K.; Pitman, Janet K.; Naser, M.E.; Zumberge, J.; Al-Haydari, H. A.

    2011-01-01

    1D petroleum system modeling was performed on wells in each of four oil fields in South Iraq, Zubair (well Zb-47), Nahr Umr (well NR-9), West Qurna (well WQ-15 and 23), and Majnoon (well Mj-8). In each of these fields, deposition of the Zubair Formation was followed by continuous burial, reaching maximum temperatures of 100°C (equivalent to 0.70%Ro) at depths of 3,344–3,750 m of well Zb-47 and 3,081.5–3,420 m of well WQ-15, 120°C (equivalent to 0.78%Ro) at depths of 3,353–3,645 m of well NR-9, and 3,391–3,691.5 m of well Mj-8. Generation of petroleum in the Zubair Formation began in the late Tertiary, 10 million years ago. At present day, modeled transformation ratios (TR) indicate that 65% TR of its generation potential has been reached in well Zb-47, 75% TR in well NR-9 and 55-85% TR in West Qurna oil field (wells WQ-15 and WQ-23) and up to 95% TR in well Mj-8, In contrast, younger source rocks are immature to early mature (petroleum potential of 0.4–9.98 of good hydrocarbon generation, which is consistent with 55–95% hydrocarbon efficiency. These generated hydrocarbons had charged (in part) the Cretaceous and Tertiary reservoirs, especially the Zubair Formation itself, in the traps formed by Alpine collision that closed the Tethys Ocean between Arabian and Euracian Plates and developed folds in Mesopotamian Basin 15–10 million years ago. These traps are mainly stratigraphic facies of sandstones with the shale that formed during the deposition of the Zubair Formation in transgression and regression phases within the main structural folds of the Zubair, Nahr Umr, West Qurna and Majnoon Oil fields. Oil biomarkers of the Zubair Formation Reservoirs are showing source affinity with mixed oil from the Upper Jurassic and Lower Cretaceous strata, including Zubair Formation organic matters, based on presentation of GC and GC-MS results on diagrams of global petroleum systems.

  9. Geochemical modelling of the evolution of a granite-concrete-water system around a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Fritz, B.; Made, B.; Tardy, Y.

    1988-04-01

    The interactions between a granitic rock and concrete due to the natural solutions circulating around a repository for spent nuclear fuel has been simulated considering the dissolution of Ca(OH) 2 as the major source of alkalinity due to the concrete. This study follows a previous one considering the same interaction without concrete at 25, 60 and 100 deg C. The temperature range has been extended to 150 deg C. The results of the modelling are considered as following: - evolution of the water chemistry due to detected pssible chemical reactions. - minerals produced and dissolved. The calculations give mass transfers and volumic consequences (opening or closing tendencies). The conclusions of this yearly report are mainly the following: (1) the extent of the temperature range for the storage (up to 150 deg C) does not change the tendencies previously detected in the same conditions without any particular alkaline effect due to concrete dissolution, the reactions occurring tend to decrease the porosity of the rock by a sealing effect due to calcite precipitation and clays formation. (2) The effect of an alkaline concrete dissolution is clearly important, pH may reach very high values in closed system, and the volumic consequence is found in favour of an opening of the porosity, at the stage of saturation of the portlandite. This is probably an important point considering the security of natural barriers around such a repository. (authors)

  10. Evaluation of CO2-Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale Geochemical Simulations

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2017-01-01

    Full Text Available Recent studies suggest that using supercritical CO2 (scCO2 instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS” compared to those for water as a working fluid (H2O-EGS are needed. The primary objectives of this study are (1 constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2 comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.

  11. Asphalt Volcanism as a Model to Understand the Geochemical Nature of Pitch Lake, a Planetary Analog for Titan and the Implications towards Methane Flux into Earth's Atmosphere.

    Science.gov (United States)

    Khan, A.

    2016-12-01

    Pitch Lake is located in the southwest peninsula of the island near La Brea in Trinidad and Tobago, covering an area of approximately 46 hectares. It was discovered in the year 1595 and is the largest of three natural asphalt lakes that exist on Earth. Pitch Lake is a large oval shaped reservoir composed of dominantly hydrocarbon compounds, but also includes minor amounts of clay and muddy water. It is a natural liquid asphalt desert, which is nourished by a form of petroleum consisting of mostly asphaltines from the surrounding oil-rich region. The hydrocarbons mix with mud and gases under high pressure during upward seepage, and the lighter portion evaporates or is volatilized, which produces a high-viscosity liquid asphalt residue. The residue on and near the surface is a hydrocarbon matrix, which poses extremely challenging environmental conditions to microorganisms characterized by an average low water activity in the range of 0.49 to 0.75, recalcitrant carbon substrates, and toxic chemical compounds. Nevertheless, an active microbial community of archaea and bacteria, many of them novel strains, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical analyses of minerals, done by our team, which revealed sulfates, sulfides, silicates, and metals, normally associated with deep-water hydrothermal vents leads to our new hypothetical model to describe the origins of Pitch Lake and its importance to atmospheric and earth sciences. Pitch Lake is likely the terrestrial equivalent of an offshore submarine asphalt volcano just as La Brea Tar Pits are in some ways an on-land version of the asphalt volcanoes discovered off shore of Santa Barbara by Valentine et al. in 2010. Asphalt volcanism possibly also creates the habitat for chemosynthetic life that is widespread in this lake, as reported by Schulze-Makuch et al. in 2011 and Meckenstock et al. in 2014.

  12. Contribution to the modelling and analysis of logistics system performance by Petri nets and simulation models: Application in a supply chain

    Science.gov (United States)

    Azougagh, Yassine; Benhida, Khalid; Elfezazi, Said

    2016-02-01

    In this paper, the focus is on studying the performance of complex systems in a supply chain context by developing a structured modelling approach based on the methodology ASDI (Analysis, Specification, Design and Implementation) by combining the modelling by Petri nets and simulation using ARENA. The linear approach typically followed in conducting of this kind of problems has to cope with a difficulty of modelling due to the complexity and the number of parameters of concern. Therefore, the approach used in this work is able to structure modelling a way to cover all aspects of the performance study. The modelling structured approach is first introduced before being applied to the case of an industrial system in the field of phosphate. Results of the performance indicators obtained from the models developed, permitted to test the behaviour and fluctuations of this system and to develop improved models of the current situation. In addition, in this paper, it was shown how Arena software can be adopted to simulate complex systems effectively. The method in this research can be applied to investigate various improvements scenarios and their consequences before implementing them in reality.

  13. Petri Nets

    Indian Academy of Sciences (India)

    The primary motivation behind. Petri's work was to model concurrency and asynchronism in distributed systems through a formalism more powerful than finite state automata. Petri's pathbreaking work came to the attention of A W Holt in the mid-1960s. Holt led the Information System Theory project of Applied Data Research ...

  14. Capturing the DSM-5 Alternative Personality Disorder Model Traits in the Five-Factor Model's Nomological Net.

    Science.gov (United States)

    Suzuki, Takakuni; Griffin, Sarah A; Samuel, Douglas B

    2017-04-01

    Several studies have shown structural and statistical similarities between the Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5) alternative personality disorder model and the Five-Factor Model (FFM). However, no study to date has evaluated the nomological network similarities between the two models. The relations of the Revised NEO Personality Inventory (NEO PI-R) and the Personality Inventory for DSM-5 (PID-5) with relevant criterion variables were examined in a sample of 336 undergraduate students (M age  = 19.4; 59.8% female). The resulting profiles for each instrument were statistically compared for similarity. Four of the five domains of the two models have highly similar nomological networks, with the exception being FFM Openness to Experience and PID-5 Psychoticism. Further probing of that pair suggested that the NEO PI-R domain scores obscured meaningful similarity between PID-5 Psychoticism and specific aspects and lower-order facets of Openness. The results support the notion that the DSM-5 alternative personality disorder model trait domains represent variants of the FFM domains. Similarities of Openness and Psychoticism domains were supported when the lower-order aspects and facets of Openness domain were considered. The findings support the view that the DSM-5 trait model represents an instantiation of the FFM. © 2015 Wiley Periodicals, Inc.

  15. Electrical Conductivity Model of the Mantle Lithosphere of the Slave Craton (NW Canada) and its tectonic interpretation in the context of Geochemical Results

    Science.gov (United States)

    Lezaeta, P.; Chave, A.; Evans, R.; Jones, A. G.; Ferguson, I.

    2002-12-01

    The Slave Craton, northwestern Canada, contains the oldest known rocks on Earth, with exposed outcrop over an area of about 600x400 km2. The discovery of economic diamondiferous kimberlite pipes during the early 1990s motivated extensive research in the region. Over the last six years, four types of deep-probing magnetotelluric (MT) surveys were conducted within the framework of diverse geoscientific programs, aimed at determining the regional-scale electrical structures of the craton. Two of the surveys involved novel acquisition; one through frozen lake ice along ice roads during winter, and the second deploying ocean-bottom instrumentation from float planes during summer. The latter surveys required one year of recording between summers, thus allowing long period transfer functions that lead to mantle penetration depths of over 300 km. Two-dimensional modeling of the MT data from along the winter road showed the existence of a high conductivity zone at depths of 80-120 km beneath the central Slave craton. This anomalous region is spatially coincident with an ultradepleted harzburgitic layer in the upper mantle that was interpreted by others to be related to a subducted slab emplaced during the mid-Archean. A 3-D electrical conductivity model of the Slave lithosphere has been obtained, by trial and error, to fit the magnetic transfer and MT response functions from the lake experiments. This 3-D model traces the central Slave conductor as a NE-SW oriented mantle structure. Its NE-SW orientation coincides with that of a late fold belt system, with the first phase of craton-wide plutonism at ca 2630-2590 Ma, three-part subdivision of the craton based on SKS results, and with a G10 (garnet) geochemical mantle boundaries. All of these highlight a NE-SW structural grain to the lithospheric mantle of the craton, in sharp contrast to the N-S grain of the crust. Constraints on the depth range and lateral extension of the electrical conductive structure are obtained

  16. Geochemical and Thermodinamic Modeling of Segara Anak Lake and the 2009 Eruption of Rinjani Volcano, Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    Akhmad Solikhin

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i4.106Rinjani is the second highest volcano in Indonesia with an elevation of 3726 m above sea level. The steep and highest cone of Rinjani consists mainly of loose pyroclastic ejecta and contains a crater with a few solfataras. The West of this cone is Segara Anak caldera. The western side of the caldera is occupied by a 230 m deep lake, covering an area of 11 km² and its volume was (before the 2009 eruption estimated 1.02 km3. This is probably the largest hot volcanic lake in the world.The lake water is neutral (pH: 7-8 and its chemistry dominated by chlorides and sulfates with a relatively high TDS (Total Dissolved Solids: 2640 mg/l. This unusual TDS as well as the lake surface temperatures (20 - 22°C well above ambient temperatures (14 - 15°C for this altitude, reflect a strong input of hydrothermal fluids. Numerous hot springs are located along the shore at the foot of Barujari volcanic cone. Bathymetric profiles show also several areas with columns of gas bubbles escaping from the lake floor indicating a significant discharge of CO gas into the lake. The mass and energy balance model of Rinjani Crater Lake produce total heat lost value on the average of 1700 MW. Most of the heating periods of the lake occurred when the heat released by the surface of the lake to the atmosphere was lower than the heat supplied from the hydrothermal system. Peaks of heat losses correspond to period of strong winds. Crater lake monitoring can provide a basic information about deep magmatic activity and surface processes that occur in the volcano. The monitoring also contributes to predict the next eruption in order to improve mitigation of volcanic eruption. Precursory signals of the May 2009 eruption can be seen from significant changes in the temperature and chemistry of some of the hot springs, the increase of Fe concentrations in spring #54, chemical plume of low pH and dissolved oxygen, acidification of Segara

  17. Differences in Net Ecosystem Exchange for an intensely managed watershed using a lumped, regional model and a mechanistic, hillslope-scale model

    Science.gov (United States)

    Wilson, C. G.; Wacha, K.; Papanicolaou, T.; Stanier, C. O.; Jamroensan, A.

    2014-12-01

    In this study, Net Ecosystem Exchange (NEE), and its components Gross Ecosystem Exchange (GEE) and Ecosystem Respiration (RESP), were compared from a lumped, regional model and a mechanistic, hillslope-scale model to determine if the effects of land management on the carbon cycle are captured by larger-scale biosphere models that determine CO2 sources and sinks. WRF-VPRM (Weather Research & Forecasting - Vegetation Photosynthesis & Respiration Model) is a regional-scale model that uses simulated downward shortwave radiation and surface temperatures, along with satellite-derived land cover indices and eddy flux tower-derived parameters to estimate biosphere CO2 fluxes with empirical equations. The DAYCENT biogeochemical model coupled with the Watershed Erosion Prediction Project model (WEPP), which simulates changes in soil carbon stocks due to different land management and the resulting enhanced erosion, can also quantify biosphere CO2 fluxes. Both models (i.e., WRF-VPRM and WEPP-DAYCENT) were used to quantify GEE, RESP, and NEE for the summer of 2008 in the IML-CZO Clear Creek watershed of the U.S. Midwest to examine the role of land management heterogeneity in CO2 exchanges between the biosphere and atmosphere. Comparing average daily GEE rates from WRF-VPRM (-11.0 ± 5.2 g C/m2/d) with WEPP-DAYCENT average values weighted per land use area in the watershed (-10.2 ± 1.5 g C/m2/d) showed no significant differences (t-test; p=0.08). In contrast, daily RESP values were different between the two models. Daily respiration rates were relatively constant for WRF-VPRM (6.0 ± 0.8 g C/m2/d), while WEPP-DAYCENT values for each management practice were significantly greater (7.2 ± 1.8 g C/m2/d; t-test, pmanagement and net erosion/deposition on total SOC stocks and tillage impacts on respiration by increasing decomposition from the breaking of soil aggregates and enhanced mineralization. In WRF-VPRM, respiration is calculated with a regression equation based on air

  18. Changes of net primary productivity in China during recent 11 years detected using an ecological model driven by MODIS data

    Science.gov (United States)

    Liu, Yibo; Ju, Weimin; He, Honglin; Wang, Shaoqiang; Sun, Rui; Zhang, Yuandong

    2013-03-01

    Net primary productivity (NPP) is an important component of the terrestrial carbon cycle. Accurately mapping the spatial-temporal variations of NPP in China is crucial for global carbon cycling study. In this study the process-based Boreal Ecosystem Productivity Simulator (BEPS) was employed to study the changes of NPP in China's ecosystems for the period from 2000 to 2010. The BEPS model was first validated using gross primary productivity (GPP) measured at typical flux sites and forest NPP measured at different regions. Then it was driven with leaf area index (LAI) inversed from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance and land cover products and meteorological data interpolated from observations at 753 national basic meteorological stations to simulate NPP at daily time steps and a spatial resolution of 500 m from January 1, 2000 to December 31, 2010. Validations show that BEPS is able to capture the seasonal variations of tower-based GPP and the spatial variability of forest NPP in different regions of China. Estimated national total of annual NPP varied from 2.63 to 2.84Pg C·yr-1, averaging 2.74 Pg C·yr-1 during the study period. Simulated terrestrial NPP shows spatial patterns decreasing from the east to the west and from the south to the north, in association with land cover types and climate. South-west China makes the largest contribution to the national total of NPP while NPP in the North-west account for only 3.97% of the national total. During the recent 11 years, the temporal changes of NPP were heterogamous. NPP increased in 63.8% of China's landmass, mainly in areas north of the Yangtze River and decreased in most areas of southern China, owing to the low temperature freezing in early 2008 and the severe drought in late 2009.

  19. Calculating net primary productivity of forest ecosystem with G4M model: case study on South Korea

    Science.gov (United States)

    Sung, S.; Forsell, N.; Kindermann, G.; Lee, D. K.

    2015-12-01

    Net primary productivity (NPP) is considered as an important indicator for forest ecosystem since the role of forest is highlighted as a stepping stone for mitigating climate change. Especially rapidly urbanizing countries which have high carbon dioxide emission have large interest in calculating forest NPP under climate change. Also maximizing carbon sequestration in forest sector has became a global goal to minimize the impacts of climate change. Therefore, the objective of this research is estimating carbon stock change under the different climate change scenarios by using G4M (Global Forestry Model) model in South Korea. We analyzed four climate change scenarios in different Representative Concentration Pathway (RCP). In this study we used higher resolution data (1kmx1km) to produce precise estimation on NPP from regionalized four climate change scenarios in G4M model. Finally, we set up other environmental variables for G4M such as water holding capacity, soil type and elevation. As a result of this study, temperature showed significant trend during 2011 to 2100. Average annual temperature increased more than 5℃ in RCP 8.5 scenario while 1℃ increased in RCP 2.6 scenario. Each standard deviation of the annual average temperature showed similar trend. Average annual precipitation showed similarity within four scenarios. However the standard deviation of average annual precipitation is higher in RCP8.5 scenario which indicates the ranges of precipitation is wider in RCP8.5 scenario. These results present that climate indicators such as temperature and precipitation have uncertainties in climate change scenarios. NPP has changed from 5-13tC/ha/year in RCP2.6 scenario to 9-21 tC/ha/year in RCP8.5 scenario in 2100. In addition the spatial distribution of NPP presented different trend among the scenarios. In conclusion we calculated differences in temperature and precipitation and NPP change in different climate change scenarios. This study can be applied for

  20. Regional Climate Responses To Planetary-Scale Geoengineering Activities, as Modeled Using climateprediction.net/HadCM3L

    Science.gov (United States)

    Ricke, K.

    2009-12-01

    Concerns that climate mitigation is occurring too slowly, or that there may be a rapid "climate surprise," have lead to renewed dialogue within the scientific community about cooling the planet through geoengineering, specifically stratospheric albedo modification (SAM). There is little consensus about regional hydrological effects of such activities despite a recent spate of climate modeling studies looking at its potential impacts. Here we present the results from one large-ensemble experiment that used Hadley Centre Coupled Model, version 3 with reduced resolution over the ocean (HadCM3L), implemented through climateprediction.net. The analysis examines 54 globally-uniform stratospheric optical depth modification scenarios designed to stabilize global temperatures under SRES A1B. We present normalized regional temperature anomalies versus normalized regional precipitation and subsurface runoff anomalies (for example, see Figure 1) and the results of regression analyses to quantify the relationships between level of stratospheric optical property modification (i.e., geoengineering) and regional hydrology. Results show that while such shortwave compensations for longwave anthropogenic forcings does generally return regional climates to closer to their baseline climate states than the no-geoengineering, business-as-usual scenarios, the magnitudes and sensitivities of regional responses to this type of activity, as modeled in HadCM3L, are highly variable. Regions, such as Eastern China and India, migrate away from their baseline climate states in different ways, illustrating the impossibility of simultaneous stabilization of regional climates. The linearity of the effect of incrementally increasing stratospheric optical depth also varies regionally. Figure 1: Normalized regional temperature and precipitation anomalies (- and -) in units of baseline standard deviations for each region). Each grayscale point in-series near the origin represents data from 60

  1. Geochemical Survey of Pernambuco

    International Nuclear Information System (INIS)

    Horowitz, A.; Duarte, P.J.; Almeida, M.G. de; Medeiros, M.O.

    1988-01-01

    The area studied i this work is located in a triangle formed by the Sibiro and Boca da Mata Sugar-Mills and Serinhaem country. In the Cabo Formation the search determinated conglomerates, arcos and clays. Although the highest geochemical activity have been done in the decomposed crystalin, and the values from Cabo Formation don't be encourager, this formation has lithology compatible with uranium mineralization. The Cabo Formation's sediments presents lithologic variations very expressives, with conglomerates, arcoses and clay silts, which determinate the choise of the area. This area presented favorable to uranium prospecting and to others elements interesting to ragional geochemistry. The atomic absorption analysis, fluorimetry and spectrometry were done for the following elements: Zn, V, Ti, Ni, Pb, Mn, Ga, Cu, Co, Bi, Ag, B, Mo, and U. (C.D.G.) [pt

  2. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model.

    Science.gov (United States)

    Andersen, Lykke E; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990-2000 and 2000-2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990-2000 to about 93 million tons per year during 2000-2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions.

  3. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  4. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...... and the immense number of possible execution sequences. In this textbook, Jensen and Kristensen introduce the constructs of the CPN modelling language and present the related analysis methods in detail. They also provide a comprehensive road map for the practical use of CPN by showcasing selected industrial case...... website that offers additional material such as slides, exercises and project proposals....

  5. Net savings

    International Nuclear Information System (INIS)

    Roche, P.

    2001-01-01

    commissioned by Alberta Energy Company ; as of January 2001 participants also include PanCanadian, Talisman, Nexen, Suncor Energy and Anadarko Canada Corporation. The betting is that the most successful model is likely to blend traditional business models with electronic leverage, as opposed to the pure electronic plays

  6. Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data

    Science.gov (United States)

    Scott V. Ollinger; Marie-Louise Smith

    2005-01-01

    Understanding spatial patterns of net primary production (NPP) is central to the study of terrestrial ecosystems, but efforts are frequently hampered by a lack of spatial information regarding factors such as nitrogen availability and site history. Here, we examined the degree to which canopy nitrogen can serve as an indicator of patterns of NPP at the Bartlett...

  7. Model estimates of net primary productivity, evaportranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States

    Science.gov (United States)

    Hanqin Tian; Guangsheng Chen; Mingliang Liu; Chi Zhang; Ge Sun; Chaoqun Lu; Xiaofeng Xu; Wei Ren; Shufen Pan; Arthur. Chappelka

    2010-01-01

    The effects of global change on ecosystem productivity and water resources in the southern United States (SUS), a traditionally ‘water-rich’ region and the ‘timber basket’ of the country, are not well quantified. We carried out several simulation experiments to quantify ecosystem net primary productivity (NPP), evapotranspiration (ET)...

  8. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5.

    Science.gov (United States)

    Van Amburgh, M E; Collao-Saenz, E A; Higgs, R J; Ross, D A; Recktenwald, E B; Raffrenato, E; Chase, L E; Overton, T R; Mills, J K; Foskolos, A

    2015-09-01

    New laboratory and animal sampling methods and data have been generated over the last 10 yr that had the potential to improve the predictions for energy, protein, and AA supply and requirements in the Cornell Net Carbohydrate and Protein System (CNCPS). The objectives of this study were to describe updates to the CNCPS and evaluate model performance against both literature and on-farm data. The changes to the feed library were significant and are reported in a separate manuscript. Degradation rates of protein and carbohydrate fractions were adjusted according to new fractionation schemes, and corresponding changes to equations used to calculate rumen outflows and postrumen digestion were presented. In response to the feed-library changes and an increased supply of essential AA because of updated contents of AA, a combined efficiency of use was adopted in place of separate calculations for maintenance and lactation to better represent the biology of the cow. Four different data sets were developed to evaluate Lys and Met requirements, rumen N balance, and milk yield predictions. In total 99 peer-reviewed studies with 389 treatments and 15 regional farms with 50 different diets were included. The broken-line model with plateau was used to identify the concentration of Lys and Met that maximizes milk protein yield and content. Results suggested concentrations of 7.00 and 2.60% of metabolizable protein (MP) for Lys and Met, respectively, for maximal protein yield and 6.77 and 2.85% of MP for Lys and Met, respectively, for maximal protein content. Updated AA concentrations were numerically higher for Lys and 11 to 18% higher for Met compared with CNCPS v6.0, and this is attributed to the increased content of Met and Lys in feeds that were previously incorrectly analyzed and described. The prediction of postruminal flows of N and milk yield were evaluated using the correlation coefficient from the BLUP (R(2)BLUP) procedure or model predictions (R(2)MDP) and the

  9. Statistical interpretation of geochemical data

    International Nuclear Information System (INIS)

    Carambula, M.

    1990-01-01

    Statistical results have been obtained from a geochemical research from the following four aerial photographies Zapican, Carape, Las Canias, Alferez. They have been studied 3020 samples in total, to 22 chemical elements using plasma emission spectrometry methods.

  10. How small bugs tie down big rocks: Measuring and modeling the forces acting between nets spun by Caddisfly larvae (Hydropsychidae) and gravel particles at the onset of motion

    Science.gov (United States)

    Mclaughlin, M. K.; Tumolo, B.; Sklar, L. S.; Albertson, L.; Daniels, M.

    2017-12-01

    The influence of life on geomorphic processes is commonly inferred from correlations between the size and abundance of individual organisms and the change in process thresholds and rates from abiotic conditions. However, to understand and model the underlying mechanisms, it is helpful to make direct measurements of the forces acting between organisms and the earth materials they inhabit. For example, flume studies have found that the presence of net-spinning caddisfly larvae (Trichoptera: Hydropsychidae) can increase the shear stress required to initiate particle motion by more than a factor of two, with potentially significant implications for the timing and magnitude of bedload sediment transport in gravel-bedded rivers. To explore the underlying mechanics we conducted flume experiments at the Stroud Water Research center in Avonadale, Pennsylvania, using strain gages to measure the forces acting between caddisfly nets and sediment particles of various sizes, during the process of initial particle motion. We combine these measurements with high-speed video images to document for the first time, the three dimensional dynamics of net stretching, tearing, and detachment that govern the magnitude of the increase in critical shear stress. We are using these data and insights to substantially improve a previously published theoretical model for the mechanics of sediment stabilization by caddisfly larvae. In particular, we seek to constrain the range of particle sizes potentially stabilized by caddisfly larvae and explain mechanistically why the effect of caddisfly nets varies with particle size. These predictions have implications for understanding feedbacks between bed stabilization by caddisflies, insect density, inter-specific niche partitioning, and the movement of sediment that shapes gravel-bed channels.

  11. Growth rates and geochemical proxies in Late Campanian bivalves - New insights from micro-X-ray Fluorescence mapping and numerical growth modelling

    Science.gov (United States)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2017-04-01

    surfaces is combined with high-precision point measurements and linescans to characterize different carbonate facies within the shell and to model changes in proxy data in three dimensions. Comparison of sub-annual variations in growth rate and shell geometry with proxy data sheds light on the degree to which observed seasonal variations in geochemical proxies are dependent on internal mechanisms of shell growth as opposed to external mechanisms such as climatic and environmental change. The use of three different species of bivalve from the same paleoenvironment allows the examination of species-specific responses to environmental change. This study attempts to determine which proxies in which species of bivalve are suitable for paleoenvironmental reconstruction and will aid future paleoseasonality studies in interpreting seasonally resolved multi-proxy records. References 1 DeConto R.M., et al. Cambridge University Press; 2000. 2 Elliot M, et al., PPP 2009. 3 Steuber T. Geology. 1996. 4 R core team, 2004, www.R-project.org

  12. Development of a near-net-shape casting technology for the U-6Nb alloy. Part 1: Materials characterization, experiment design, and model construction

    International Nuclear Information System (INIS)

    Taylor, M.J.; Keeney, J.A.; Wendel, M.W.; Demint, A.L.

    1997-01-01

    The Oak Ridge Y-12 Plant (Y-12) is conducting highly coupled experimental and numerical studies to develop the technology needed to produce near-net-shape (NNS)-cast uranium-6 wt% niobium (U-6Nb) components which have a controlled carbon content. Current activities are focused on defining mechanical and metallurgical properties of cast material; experimental studies to define NNS casting, carbide particle flotation, and immersion-quench physics; and developing the numerical models needed to support the optimized design of NNS components. This paper summarizes the material characterization, experiment design, and model development activities

  13. IntNetDB v1.0: an integrated protein-protein interaction network database generated by a probabilistic model

    Directory of Open Access Journals (Sweden)

    Han Jing-Dong J

    2006-11-01

    Full Text Available Abstract Background Although protein-protein interaction (PPI networks have been explored by various experimental methods, the maps so built are still limited in coverage and accuracy. To further expand the PPI network and to extract more accurate information from existing maps, studies have been carried out to integrate various types of functional relationship data. A frequently updated database of computationally analyzed potential PPIs to provide biological researchers with rapid and easy access to analyze original data as a biological network is still lacking. Results By applying a probabilistic model, we integrated 27 heterogeneous genomic, proteomic and functional annotation datasets to predict PPI networks in human. In addition to previously studied data types, we show that phenotypic distances and genetic interactions can also be integrated to predict PPIs. We further built an easy-to-use, updatable integrated PPI database, the Integrated Network Database (IntNetDB online, to provide automatic prediction and visualization of PPI network among genes of interest. The networks can be visualized in SVG (Scalable Vector Graphics format for zooming in or out. IntNetDB also provides a tool to extract topologically highly connected network neighborhoods from a specific network for further exploration and research. Using the MCODE (Molecular Complex Detections algorithm, 190 such neighborhoods were detected among all the predicted interactions. The predicted PPIs can also be mapped to worm, fly and mouse interologs. Conclusion IntNetDB includes 180,010 predicted protein-protein interactions among 9,901 human proteins and represents a useful resource for the research community. Our study has increased prediction coverage by five-fold. IntNetDB also provides easy-to-use network visualization and analysis tools that allow biological researchers unfamiliar with computational biology to access and analyze data over the internet. The web interface of

  14. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States

    Science.gov (United States)

    Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi; Bliss, Norman B.; Young, Claudia J.; West, Tristram O.; Ogle, Stephen M.

    2014-01-01

    Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m−2 yr−1and total NPP in the range of 318–490 Tg C yr−1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m−2 yr−1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m−2 yr−1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. We suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.

  15. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    Rose, A.W.

    1977-01-01

    The processes and types of dispersion that produce anomalies in stream water, stream sediment, and ground water, and the factors that must be considered in planning and interpreting geochemical surveys are reviewed. Examples of surveys near known deposits show the types of results to be expected. Background values depend mainly on the content of U in rocks of the drainage area. In igneous rocks, U tends to increase with potassium from ultramafic rocks (0.01 ppM) to granitic rocks (1 to 5 ppM). Some alkalic rocks have unusually high contents of U (15 to 100 ppM). Uranium-rich provinces marked by igneous rocks unusually rich in U are recognized in several areas and appear to have a deep crustal or mantle origin. In western U.S., many tertiary tuffaceous rocks have a high U content. Sandstones, limestones, and many shales approximate the crustal abundance at 0.5 to 4 ppM, but black shales, phosphates, and some organic materials are notably enriched in U. Uranium is very soluble in most oxidizing waters at the earth's surface, but is precipitated by reducing agents (organic matter, H 2 S) and adsorbed by organic material and some Fe oxides. In most surface and ground waters, U correlates approximately with the total dissolved solids, conductivity, and bicarbonate concentration of the water, and with the U content of rocks it comes into contact with. Most surveys of stream water near known districts show distinct anomalies extending a few km to tens of km downstream. A complication with water is the large variability with time, up to x 50, as a result of changes in the ratio of ground water to direct runoff, and changes in rate of oxidation and leaching. Collection and analysis of water samples also pose some difficulties

  16. Geochemical model of a geothermal system: an approach on the analytical uncertainty; Modelo geoquimico de sistema geotermico: un enfoque sobre la incertidumbre analitica

    Energy Technology Data Exchange (ETDEWEB)

    Pal Verma, Mahendra [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-07-01

    A procedure was developed to consider the analytical uncertainty in each parameter of geochemical analysis of geothermal fluid. The estimation of the uncertainty is based on the results of the geochemical analyses of geothermal fluids (numbered from the 0 to the 14), obtained within the framework of the comparisons program among the geochemical laboratories in the last 30 years. Also the propagation of the analytical uncertainty was realized in the calculation of the parameters of the geothermal fluid in the reservoir, through the methods of interval of uncertainty and GUM (Guide to the expression of Uncertainty of Measurement). The application of the methods is illustrated in the pH calculation of the geothermal fluid in the reservoir, considering samples 10 and 11 as separated waters at atmospheric conditions. [Spanish] Se desarrollo un procedimiento para estimar la incertidumbre analitica en cada parametro de analisis geoquimico de fluido geotermico. La estimacion de la incertidumbre esta basada en los resultados de los analisis geoquimicos de fluidos geotermicos (numerados del 0 al 14), obtenidos en el marco del programa de comparaciones entre los laboratorios geoquimicos en los ultimos 30 anos. Tambien se realizo la propagacion de la incertidumbre analitica en el calculo de los parametros del fluido geotermico en el yacimiento, a traves de los metodos de intervalo de incertidumbre y GUM (Guide to the expression of Uncertainty of Measurement). La aplicacion de los metodos se ilustra en el calculo de pH del fluido geotermico en el yacimiento, considerando las muestras 10 y 11 como aguas separadas a las condiciones atmosfericas.

  17. A Novel Petri Nets-Based Modeling Method for the Interaction between the Sensor and the Geographic Environment in Emerging Sensor Networks.

    Science.gov (United States)

    Zhang, Feng; Xu, Yuetong; Chou, Jarong

    2016-09-25

    The service of sensor device in Emerging Sensor Networks (ESNs) is the extension of traditional Web services. Through the sensor network, the service of sensor device can communicate directly with the entity in the geographic environment, and even impact the geographic entity directly. The interaction between the sensor device in ESNs and geographic environment is very complex, and the interaction modeling is a challenging problem. This paper proposed a novel Petri Nets-based modeling method for the interaction between the sensor device and the geographic environment. The feature of the sensor device service in ESNs is more easily affected by the geographic environment than the traditional Web service. Therefore, the response time, the fault-tolerant ability and the resource consumption become important factors in the performance of the whole sensor application system. Thus, this paper classified IoT services as Sensing services and Controlling services according to the interaction between IoT service and geographic entity, and classified GIS services as data services and processing services. Then, this paper designed and analyzed service algebra and Colored Petri Nets model to modeling the geo-feature, IoT service, GIS service and the interaction process between the sensor and the geographic enviroment. At last, the modeling process is discussed by examples.

  18. A Novel Petri Nets-Based Modeling Method for the Interaction between the Sensor and the Geographic Environment in Emerging Sensor Networks

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2016-09-01

    Full Text Available The service of sensor device in Emerging Sensor Networks (ESNs is the extension of traditional Web services. Through the sensor network, the service of sensor device can communicate directly with the entity in the geographic environment, and even impact the geographic entity directly. The interaction between the sensor device in ESNs and geographic environment is very complex, and the interaction modeling is a challenging problem. This paper proposed a novel Petri Nets-based modeling method for the interaction between the sensor device and the geographic environment. The feature of the sensor device service in ESNs is more easily affected by the geographic environment than the traditional Web service. Therefore, the response time, the fault-tolerant ability and the resource consumption become important factors in the performance of the whole sensor application system. Thus, this paper classified IoT services as Sensing services and Controlling services according to the interaction between IoT service and geographic entity, and classified GIS services as data services and processing services. Then, this paper designed and analyzed service algebra and Colored Petri Nets model to modeling the geo-feature, IoT service, GIS service and the interaction process between the sensor and the geographic enviroment. At last, the modeling process is discussed by examples.

  19. Planning of nets

    International Nuclear Information System (INIS)

    Carberry, M

    1996-01-01

    The paper is about the planning of nets in areas of low density like it is the case of the rural areas. The author includes economic and technological aspects, planning of nets, demands and management among others

  20. Sharp fronts within geochemical transport problems

    International Nuclear Information System (INIS)

    Grindrod, P.

    1995-01-01

    The authors consider some reactive geochemical transport problems in groundwater systems. When incoming fluid is in disequilibrium with the mineralogy sharp transition fronts may develop. They show that this is a generic property for a class of systems where the timescales associated with reaction and diffusion phenomena are much shorter than those associated with advective transport. Such multiple timescale problems are relevant to a variety of processes in natural systems: mathematically methods of singular perturbation theory reduce the dimension of the problems to be solved locally. Furthermore, they consider how spatial heterogeneous mineralogy can impact upon the propagation of sharp geochemical fronts. The authors developed an asymptotic approach in which they solve equations for the evolving geometry of the front and indicate how the non-smooth perturbations due to natural heterogeneity of the mineralogy on underlying ground water flow field are balanced against the smoothing effect of diffusion/dispersive processes. Fronts are curvature damped, and the results here indicate the generic nature of separate front propagation within both model (idealized) and natural (heterogeneous) geochemical systems

  1. Synthesizing Earth's geochemical data for hydrogeochemical analysis

    Science.gov (United States)

    Brantley, S. L.; Kubicki, J.; Miller, D.; Richter, D.; Giles, L.; Mitra, P.

    2007-12-01

    For over 200 years, geochemical, microbiological, and chemical data have been collected to describe the evolution of the surface earth. Many of these measurements are data showing variations in time or in space. To forward predict hydrologic response to changing tectonic, climatic, or anthropogenic forcings requires synthesis of these data and utilization in hydrogeochemical models. Increasingly, scientists are attempting to synthesize such data in order to make predictions for new regions or for future time periods. However, to make such complex geochemical data accessible requires development of sophisticated cyberinfrastructures that both invite uploading as well as usage of data. Two such cyberinfrastructure (CI) initiatives are currently developing, one to invite and promote the use of environmental kinetics data (laboratory time course data) through ChemxSeer, and the other to invite and promote the use of spatially indexed geochemical data for the Earth's Critical Zone through CZEN.org. The vision of these CI initiatives is to provide cyber-enhanced portals that encourage domain scientists to upload their data before publication (in private cyberspace), and to make these data eventually publicly accessible (after an embargo period). If the CI can be made to provide services to the domain specialist - e.g. to provide data analysis services or data comparison services - we envision that scientists will upload data. In addition, the CI can promote the use and comparison of datasets across disciplines. For example, the CI can facilitate the use of spatially indexed geochemical data by scientists more accustomed to dealing with time-course data for hydrologic flow, and can provide user-friendly interfaces with CI established to facilitate the use of hydrologic data. Examples of the usage of synthesized data to predict soil development over the last 13ky and its effects on active hydrological flow boundaries in surficial systems will be discussed for i) a N

  2. Epistemic Uncertainty in Evaluation of Evapotranspiration and Net Infiltration Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    B. Faybishenko

    2006-01-01

    Uncertainty is typically defined as a potential deficiency in the modeling of a physical process, owing to a lack of knowledge. Uncertainty can be categorized as aleatoric (inherent uncertainty caused by the intrinsic randomness of the system) or epistemic (uncertainty caused by using various model simplifications and their parameters). One of the main reasons for model simplifications is a limited amount of meteorological data. This paper is devoted to the epistemic uncertainty quantification involved in two components of the hydrologic balance-evapotranspiration and net infiltration for interglacial (present day), and future monsoon, glacial transition, and glacial climates at Yucca Mountain, using the data from analogue meteorological stations. In particular, the author analyzes semi-empirical models used for evaluating (1) reference-surface potential evapotranspiration, including temperature-based models (Hargreaves-Samani, Thornthwaite, Hamon, Jensen-Haise, and Turc) and radiation-based models (Priestly-Taylor and Penman), and (2) surface-dependent potential evapotranspiration (Penman-Monteith and Shuttleworth-Wallace models). Evapotranspiration predictions are then used as inputs for the evaluation of net infiltration using the semi-empirical models of Budyko, Fu, Milly, Turc-Pike, and Zhang. Results show that net infiltration ranges are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The propagation of uncertainties through model predictions for different climates is characterized using statistical measures. Predicted evapotranspiration ranges are reasonably corroborated against the data from Class A pan evaporometers (taking into account evaporation-pan adjustment coefficients), and ranges of net infiltration predictions are corroborated against the geochemical and temperature-based estimates of groundwater recharge and percolation rates through the unsaturated

  3. Epistemic Uncertainty in Evalustion of Evapotranspiration and Net Infiltration Using Analogue Meteorological Data

    Energy Technology Data Exchange (ETDEWEB)

    B. Faybishenko

    2006-09-01

    Uncertainty is typically defined as a potential deficiency in the modeling of a physical process, owing to a lack of knowledge. Uncertainty can be categorized as aleatoric (inherent uncertainty caused by the intrinsic randomness of the system) or epistemic (uncertainty caused by using various model simplifications and their parameters). One of the main reasons for model simplifications is a limited amount of meteorological data. This paper is devoted to the epistemic uncertainty quantification involved in two components of the hydrologic balance-evapotranspiration and net infiltration for interglacial (present day), and future monsoon, glacial transition, and glacial climates at Yucca Mountain, using the data from analogue meteorological stations. In particular, the author analyzes semi-empirical models used for evaluating (1) reference-surface potential evapotranspiration, including temperature-based models (Hargreaves-Samani, Thornthwaite, Hamon, Jensen-Haise, and Turc) and radiation-based models (Priestly-Taylor and Penman), and (2) surface-dependent potential evapotranspiration (Penman-Monteith and Shuttleworth-Wallace models). Evapotranspiration predictions are then used as inputs for the evaluation of net infiltration using the semi-empirical models of Budyko, Fu, Milly, Turc-Pike, and Zhang. Results show that net infiltration ranges are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The propagation of uncertainties through model predictions for different climates is characterized using statistical measures. Predicted evapotranspiration ranges are reasonably corroborated against the data from Class A pan evaporometers (taking into account evaporation-pan adjustment coefficients), and ranges of net infiltration predictions are corroborated against the geochemical and temperature-based estimates of groundwater recharge and percolation rates through the unsaturated

  4. Nitrogen Fertilization Effects on Net Ecosystem and Net Primary Productivities as Determined from Flux Tower, Biometric, and Model Estimates for a Coastal Douglas-fir Forest in British Columbia

    Science.gov (United States)

    Trofymow, J. A.; Metsaranta, J. M.; Black, T. A.; Jassal, R. S.; Filipescu, C.

    2013-12-01

    In coastal BC, 6,000-10,000 ha of public and significant areas of private forest land are annually fertilized with nitrogen, with or without thinning, to increase merchantable wood and reduce rotation age. Fertilization has also been viewed as a way to increase carbon (C) sequestration in forests and obtain C offsets. Such offset projects must demonstrate additionality with reference to a baseline and include monitoring to verify net C gains over the project period. Models in combination with field-plot measurements are currently the accepted methods for most C offset protocols. On eastern Vancouver Island, measurements of net ecosystem production (NEP), ecosystem respiration (Re) and gross primary productivity (GPP) using the eddy-covariance (EC) technique as well as component C fluxes and stocks have been made since 1998 in an intermediate-aged Douglas-fir dominated forest planted in 1949. In January 2007 an area around the EC flux tower was aerially fertilized with 200 kg urea-N ha-1. Ground plots in the fertilized area and an adjacent unfertilized control area were also monitored for soil (Rs) and heterotrophic (Rh) respiration, litterfall, and tree growth. To determine fertilization effects on whole tree growth, sample trees were felled in both areas for the 4-year (2003-06) pre- and the 4-year (2007-10) post-fertilization periods and were compared with EC NEP estimates and tree-ring based NEP estimates from Carbon Budget Model - Canadian Forest Sector (CBM-CFS3) for the same periods. Empirical equations using climate and C fluxes from 1998-2006 were derived to estimate what the EC fluxes would have been in 2007-10 for the fertilized area had it been unfertilized. Mean EC NEP for 2007-10 was 561 g C m2 y-1 , a 64% increase above pre-fertilization NEP (341 g C m2 y-1) or 28% increase above estimated unfertilized NEP (438 g C m2 y-1). Most of the increase was attributed to increased tree C uptake (i.e., GPP), with little change in Re. In 2007 fertilization

  5. A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition

    Science.gov (United States)

    Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.

    2017-12-01

    Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background a