Bergstra, J.A.; Bethke, I.
2002-01-01
Molecular dynamics is a model for the structure and meaning of object based programming systems. In molecular dynamics the memory state of a system is modeled as a fluid consisting of a collection of molecules. Each molecule is a collection of atoms with bindings between them. A computation is
Molecular dynamics modeling of structural battery components
Verners, O.; Van Duin, A.C.T.; Wagemaker, M.; Simone, A.
2015-01-01
A crosslinked polymer based solid electrolyte prototype material –poly(propylene glycol) diacrylate– is studied using the reactive molecular dynamics force field ReaxFF. The focus of the study is the evaluation of the effects of equilibration and added plasticizer (ethylene carbonate) or anion
Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E.
2010-01-01
As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…
Active site modeling in copper azurin molecular dynamics simulations
Rizzuti, B; Swart, M; Sportelli, L; Guzzi, R
Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the
A stochastic phase-field model determined from molecular dynamics
von Schwerin, Erik
2010-03-17
The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.
Metal cluster fission: jellium model and Molecular dynamics simulations
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia
2004-01-01
Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18...
Molecular dynamics modeling and characterization of graphene/polymer nanocomposites
Rahman, Rezwanur
The current work focuses on the characterization of graphene based nanocomposites using molecular dynamic simulation and multiscale modeling approaches. Both graphene-epoxy and graphene-cellulose nanocomposites were considered in this study. A hierarchical multiscale modeling approach has been proposed using peridynamics and molecular dynamics simulation. Firstly, the mechanical properties of crosslinked graphene/epoxy (G-Ep) nanocomposites were investigated by molecular mechanics (MM) and molecular dynamics (MD) simulations. The influence of graphene's weight concentration, aspect ratio and dispersion on stress-strain response and elastic properties were studied. The results show significant improvement in Young's modulus and shear modulus for the G-Ep system in comparison to the neat epoxy resin. It appears that the RDF, molecular energy and aspect ratios are influenced by both graphene concentrations and aspect ratios. The graphene concentrations in the range of 1-3% are seen to improve Young's modulus and shorter graphenes are observed to be more effective than larger ones. In addition, the dispersed graphene system is more promising in enhancing in-plane elastic modulus than the agglomerated graphene system. The cohesive and pullout forces versus displacements data were plotted under normal and shear modes in order to characterize interfacial properties. The cohesive force is significantly improved by attaching the graphene with a chemical bond at the graphene-epoxy interface. In the second part of the work, cellulose was considered to study the mechanical properties of graphene-cellulose bionanocomposite. Similar to graphene-epoxy systems, the effect of graphene dispersion and agglomeration were studied in the stress-strain plots of graphene-cellulose system. A pcff forcefield was used to define intermolecular and intramolecular interactions. The effect of graphene's aspect ratio and weight concentration on the structural property of each unitcell was
Yi, Zheng; Lindner, Benjamin; Prinz, Jan-Hendrik; Noé, Frank; Smith, Jeremy C
2013-11-07
Neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.
Structural modeling and molecular dynamics simulation of the actin filament.
Splettstoesser, Thomas; Holmes, Kenneth C; Noé, Frank; Smith, Jeremy C
2011-07-01
Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized. Copyright © 2011 Wiley-Liss, Inc.
First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations
Kastner, Oliver
2012-01-01
Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and covers thermodynamical, micro-mechanical and crystallographical aspects. It addresses scientists in these research fields and thei...
Biomembrane modeling: molecular dynamics simulation of phospholipid monolayers
Energy Technology Data Exchange (ETDEWEB)
Thompson, T.R.
1979-01-01
As a first step toward a computer model of a biomembrane-like bilayer, a dynamic, deterministric model of a phospholipid monolayer has been constructed. The model moves phospholipid-like centers of force according to an integrated law of motion in finite difference form. Forces on each phospholipid analogue are derived from the gradient of the local potential, itself the sum of Coulombic and short-range terms. The Coulombic term is approximated by use of a finite-difference form of Poisson's equation, while the short-range term results from finite-radius, pairwise summation of a Lennard-Jones potential. Boundary potentials are treated in such a way that the model is effectively infinite in extent in the plane of the monolayer. The two-dimensional virial theorem is used to find the surface pressure of the monolayer as a function of molecular area. Pressure-versus-area curves for simulated monolayers are compared to those of real monolayers. Dependence of the simulator's behavior on Lennard-Jones parameters and the specific geometry of the molecular analogue is discussed. Implications for the physical theory of phospholipid monolayers and bilayers are developed.
A dynamic styrofoam-ball model for simulating molecular motion
Mak, Se-yuen; Cheung, Derek
2001-01-01
In this paper we introduce a simple styrofoam-ball model that can be used for simulating molecular motion in all three states. As the foam balls are driven by a vibrator that is in turn driven by a signal generator, the frequency and the amplitude of vibration can be adjusted independently. Thus, the model is appropriate for simulating molecular motion in the liquid state, which is a combination of vibration and meandering motion.
Modeling of aging in plutonium by molecular dynamics
Pochet, P
2003-01-01
The origin of aging in plutonium lies in the extra formation of defects due to self-decay of sup 2 sup 3 sup 9 Pu. The modeling of the formation of these defects is achieved by molecular dynamics (MD). In this work a simple EAM potential has been used to study defects formation in fcc plutonium and a 2 keV cascade is analyzed. A large pressure wave is generated around the cascade core. In the used MD code the pressure wave is not absorbed at the box boundaries and due to the periodic boundary conditions, the use of a very large box is crucial in order to avoid interaction of the cascade with itself. More than 800 000 atoms are needed to deal with this small 2 keV cascade without any artifacts. This effect comes from the very low bulk modulus of fcc Pu. The relative long time to achieve the annealing is also connected to the bulk modulus. These results are discussed in terms of large pressure wave: alloying effects are predicted using that viewpoint.
Spectra modelling combining molecular dynamics and quantum mechanics
Czech Academy of Sciences Publication Activity Database
Novák, Vít; Bouř, Petr
2015-01-01
Roč. 22, č. 1 (2015), s. 48 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] R&D Projects: GA ČR GAP208/11/0105; GA ČR GA15-09072S Grant - others:GA MŠk(CZ) LM2010005; GA MŠk(CZ) ED3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : Raman scattering * molecular dynamics * autocorrelation function Subject RIV: CF - Physical ; Theoretical Chemistry
Molecular Modeling of Enzyme Dynamics Towards Understanding Solvent Effects
DEFF Research Database (Denmark)
Wedberg, Nils Hejle Rasmus Ingemar
) in water and organic solvents. The effects of solvent on structural and dynamical enzyme properties are studied, and special attention is given to how enzyme properties in organic solvents are affected by the hydration level, which is shown to be related to the water activity. In experimental studies...... of enzyme kinetics in non-aqueous media, it has been a fruitful approach to fix the enzyme hydration level by controlling the water activity of the medium. In this work, a protocol is therefore developed for determining the water activity in non-aqueous protein simulations. The method relies on determining......This thesis describes the development of a molecular simulation methodology to study properties of enzymes in non-aqueous media at fixed thermodynamic water activities. The methodology is applied in a molecular dynamics study of the industrially important enzyme Candida antarctica lipase B (CALB...
Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis.
Li, Wu; Zhu, Yan-ming; Wang, Geoff; Wang, Yang; Liu, Yu
2015-08-01
Vitrinite in coal, the mainly generating methane maceral, plays an important role in hydrocarbon generation of coal. This study aims at obtaining products formation mechanism of vitrinite pyrolysis, and hence determining the chemical bond, molecular liquefaction activity, and reactions mechanism of methane and C2-4 during pyrolysis. The ReaxFF molecular dynamics (MD) simulation was carried out at temperature of 1500 K in order to investigate the mechanism of vitrinite pyrolysis. Initially, a minimum energy conformational structure model was constrained by a combination of elemental and carbon-13 nuclear magnetic resonance ((13)C NMR) literature data. The model analysis shows the chemical and physical parameters of vitrinite pyrolysis are broadly consistent with the experimental data. Based on the molecular model, ReaxFF MD simulations further provide information of unimolecule such as bond length, and chemical shift, and hence the total population and energy of main products. Molecules bond and pyrolysis fragments, based on active bond analyzed, revealed pyrolysis products of single vitrinite molecule with aliphatic C-C bond, especially ring and chain aliphatic as liquefaction activity. The molecular cell whose density is 0.9 g/cm(3) with lowest energy accords with the experimental density 1.33 g/cm(3). The content of main products after pyrolysis, classifying as CH4, H2O, and H2, was changed along with the increasing temperature. The gas molecule, fragments and generation pathways of CO2, H2, CH4, and C2H6 were also elucidated. These results show agreement with experimental observations, implying that MD simulation can provide reasonable explanation for the reaction processes involved in coal vitrinite pyrolysis. Thus the mechanism of coal hydrocarbon generation was revealed at the molecular level.
Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers
Energy Technology Data Exchange (ETDEWEB)
Mercer, Brian Scott [Univ. of California, Berkeley, CA (United States)
2016-05-19
In this work, molecular dynamics modeling is used to study the mechanical properties of PPTA crystallites, which are the fundamental microstructural building blocks of polymer aramid bers such as Kevlar. Particular focus is given to constant strain rate axial loading simulations of PPTA crystallites, which is motivated by the rate-dependent mechanical properties observed in some experiments with aramid bers. In order to accommodate the covalent bond rupture that occurs in loading a crystallite to failure, the reactive bond order force eld ReaxFF is employed to conduct the simulations. Two major topics are addressed: The rst is the general behavior of PPTA crystallites under strain rate loading. Constant strain rate loading simulations of crystalline PPTA reveal that the crystal failure strain increases with increasing strain rate, while the modulus is not a ected by the strain rate. Increasing temperature lowers both the modulus and the failure strain. The simulations also identify the C N bond connecting the aromatic rings as weakest primary bond along the backbone of the PPTA chain. The e ect of chain-end defects on PPTA micromechanics is explored, and it is found that the presence of a chain-end defect transfers load to the adjacent chains in the hydrogen-bonded sheet in which the defect resides, but does not in uence the behavior of any other chains in the crystal. Chain-end defects are found to lower the strength of the crystal when clustered together, inducing bond failure via stress concentrations arising from the load transfer to bonds in adjacent chains near the defect site. The second topic addressed is the nature of primary and secondary bond failure in crystalline PPTA. Failure of both types of bonds is found to be stochastic in nature and driven by thermal uctuations of the bonds within the crystal. A model is proposed which uses reliability theory to model bonds under constant strain rate loading as components with time-dependent failure rate
International Nuclear Information System (INIS)
Cui, S.T.; Cummings, P.T.; Cochran, H.D.
1999-01-01
We study the effect of wall endash fluid interactions on the state conditions and the effective properties of a model dodecane fluid confined between parallel solid walls. A significant increase in the effective density of the confined fluid is observed with increasing strength of the wall endash fluid interaction. The effect of the wall endash fluid interaction on the rotational relaxation and diffusional relaxation of the fluid is seen in the significant slowing down of the relaxation with increasing wall endash fluid interaction strength. The difference between the confined fluid and the three-dimensional bulk fluid is demonstrated by the strong anisotropy of the dynamical properties, the molecular rotation, and self-diffusion. The viscosity of the confined fluid shows a large difference between weak and strong wall endash fluid interactions, and a significant difference from bulk fluid at low shear rate. copyright 1999 American Institute of Physics
Substructured multibody molecular dynamics.
Energy Technology Data Exchange (ETDEWEB)
Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.
2006-11-01
We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.
Nonequilibrium molecular dynamics
Wm.G.Hoover; C.G.Hoover
2005-01-01
Nonequilibrium Molecular Dynamics is a powerful simulation tool. Like its equilibrium cousin, nonequilibrium molecular dynamics is based on time-reversible equations of motion. But unlike conventional mechanics, nonequilibrium molecular dynamics provides a consistent microscopic basis for the irreversible macroscopic Second Law of Thermodynamics. We recall here how fast computers led to the development of nonequilibrium molecular dynamics from the statistical mechanics of the 1950s. Computer-...
Energy Technology Data Exchange (ETDEWEB)
Barbante, Paolo [Dipartimento di Matematica, Politecnico di Milano - Piazza Leonardo da Vinci 32 - 20133 Milano (Italy); Frezzotti, Aldo; Gibelli, Livio [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa 34 - 20156 Milano (Italy)
2014-12-09
The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.
Molecular dynamics modelling of EGCG clusters on ceramide bilayers
Energy Technology Data Exchange (ETDEWEB)
Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 (Singapore)
2015-12-31
A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.
On the parameterization of rigid base and basepair models of DNA from molecular dynamics simulations
Czech Academy of Sciences Publication Activity Database
Lankaš, Filip; Gonzalez, O.; Heffler, L. M.; Stoll, G.; Moakher, M.; Maddocks, J. H.
2009-01-01
Roč. 11, č. 45 (2009), s. 10565-10588 ISSN 1463-9076 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : molecular dynamics * coarse-grained models * DNA mechanical properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.116, year: 2009
Modeling and molecular dynamics simulation of PR-1 protein from ...
African Journals Online (AJOL)
Pathogenesis-related (PR) proteins are considered as major weapons in plant's defense tactics against pathogens. The PR-1protein of Solanum tuberosum forms an integral part of the host defense system. We present here the 3D structure of PR-1 protein of S. tuberosum based on homology modeling technique.
Dixit, Anshuman; Verkhivker, Gennady M
2012-01-01
Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be
Directory of Open Access Journals (Sweden)
Anshuman Dixit
Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected
Modeling ramp compression experiments using large-scale molecular dynamics simulation.
Energy Technology Data Exchange (ETDEWEB)
Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)
2011-10-01
Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.
Molecular dynamics simulations.
Lindahl, Erik
2015-01-01
Molecular dynamics has evolved from a niche method mainly applicable to model systems into a cornerstone in molecular biology. It provides us with a powerful toolbox that enables us to follow and understand structure and dynamics with extreme detail-literally on scales where individual atoms can be tracked. However, with great power comes great responsibility: Simulations will not magically provide valid results, but it requires a skilled researcher. This chapter introduces you to this, and makes you aware of some potential pitfalls. We focus on the two basic and most used methods; optimizing a structure with energy minimization and simulating motion with molecular dynamics. The statistical mechanics theory is covered briefly as well as limitations, for instance the lack of quantum effects and short timescales. As a practical example, we show each step of a simulation of a small protein, including examples of hardware and software, how to obtain a starting structure, immersing it in water, and choosing good simulation parameters. You will learn how to analyze simulations in terms of structure, fluctuations, geometrical features, and how to create ray-traced movies for presentations. With modern GPU acceleration, a desktop can perform μs-scale simulations of small proteins in a day-only 15 years ago this took months on the largest supercomputer in the world. As a final exercise, we show you how to set up, perform, and interpret such a folding simulation.
Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.
Takada, Shoji; Kanada, Ryo; Tan, Cheng; Terakawa, Tsuyoshi; Li, Wenfei; Kenzaki, Hiroo
2015-12-15
Due to hierarchic nature of biomolecular systems, their computational modeling calls for multiscale approaches, in which coarse-grained (CG) simulations are used to address long-time dynamics of large systems. Here, we review recent developments and applications of CG modeling methods, focusing on our methods primarily for proteins, DNA, and their complexes. These methods have been implemented in the CG biomolecular simulator, CafeMol. Our CG model has resolution such that ∼10 non-hydrogen atoms are grouped into one CG particle on average. For proteins, each amino acid is represented by one CG particle. For DNA, one nucleotide is simplified by three CG particles, representing sugar, phosphate, and base. The protein modeling is based on the idea that proteins have a globally funnel-like energy landscape, which is encoded in the structure-based potential energy function. We first describe two representative minimal models of proteins, called the elastic network model and the classic Go̅ model. We then present a more elaborate protein model, which extends the minimal model to incorporate sequence and context dependent local flexibility and nonlocal contacts. For DNA, we describe a model developed by de Pablo's group that was tuned to well reproduce sequence-dependent structural and thermodynamic experimental data for single- and double-stranded DNAs. Protein-DNA interactions are modeled either by the structure-based term for specific cases or by electrostatic and excluded volume terms for nonspecific cases. We also discuss the time scale mapping in CG molecular dynamics simulations. While the apparent single time step of our CGMD is about 10 times larger than that in the fully atomistic molecular dynamics for small-scale dynamics, large-scale motions can be further accelerated by two-orders of magnitude with the use of CG model and a low friction constant in Langevin dynamics. Next, we present four examples of applications. First, the classic Go̅ model was used to
The nonequilibrium molecular dynamics
International Nuclear Information System (INIS)
Hoover, W.G.
1992-03-01
MOLECULAR DYNAMICS has been generalized in order to simulate a variety of NONEQUILIBRIUM systems. This generalization has been achieved by adopting microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress. Some of the problems already treated include rapid plastic deformation, intense heat conduction, strong shockwaves simulation, and far-from-equilibrium phase transformations. Continuing advances in technique and in the modeling of interatomic forces, coupled with qualitative improvements in computer hardware, are enabling such simulations to approximate real-world microscale and nanoscale experiments
Molecular dynamics and binary collision modeling of the primary damage state of collision cascades
DEFF Research Database (Denmark)
Heinisch, H.L.; Singh, B.N.
1992-01-01
Quantitative information on defect production in cascades in copper obtained from recent molecular dynamics simulations is compared to defect production information determined earlier with a model based on the binary collision approximation (BCA). The total numbers of residual defects, the fracti...... that is practical for simulating much higher energies and longer times than MD alone can achieve. The extraction of collisional phase information from MD simulations and the correspondence of MD and BCA versions of the collisional phase is demonstrated at low energy.......Quantitative information on defect production in cascades in copper obtained from recent molecular dynamics simulations is compared to defect production information determined earlier with a model based on the binary collision approximation (BCA). The total numbers of residual defects...
Interactive molecular dynamics
Schroeder, Daniel V.
2015-03-01
Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.
Bayesian comparison of Markov models of molecular dynamics with detailed balance constraint
Bacallado, Sergio; Chodera, John D.; Pande, Vijay
2009-07-01
Discrete-space Markov models are a convenient way of describing the kinetics of biomolecules. The most common strategies used to validate these models employ statistics from simulation data, such as the eigenvalue spectrum of the inferred rate matrix, which are often associated with large uncertainties. Here, we propose a Bayesian approach, which makes it possible to differentiate between models at a fixed lag time making use of short trajectories. The hierarchical definition of the models allows one to compare instances with any number of states. We apply a conjugate prior for reversible Markov chains, which was recently introduced in the statistics literature. The method is tested in two different systems, a Monte Carlo dynamics simulation of a two-dimensional model system and molecular dynamics simulations of the terminally blocked alanine dipeptide.
Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics.
Yang, Qian; Sing-Long, Carlos A; Reed, Evan J
2017-08-01
We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.
Lang, Katharina M H; Kittelmann, Jörg; Dürr, Cathrin; Osberghaus, Anna; Hubbuch, Jürgen
2015-02-13
In downstream processing, the underlying adsorption mechanism of biomolecules to adsorbent material are still subject of extensive research. One approach to more mechanistic understanding is simulating this adsorption process and hereby the possibility to identify the parameters with strongest impact. So far this method was applied with all-atom molecular dynamics simulations of two model proteins on one cation exchanger. In this work we developed a molecular dynamics tool to simulate protein-adsorber interaction for various proteins on an anion exchanger and ran gradient elution experiments to relate the simulation results to experimental data. We were able to show that simulation results yield similar results as experimental data regarding retention behavior as well as binding orientation. We could identify arginines in case of cation exchangers and aspartic acids in case of anion exchangers as major contributors to binding. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular Dynamics Simulations of a Powder Model of the Intrinsically Disordered Protein Tau.
Fichou, Yann; Heyden, Matthias; Zaccai, Giuseppe; Weik, Martin; Tobias, Douglas J
2015-10-01
The tau protein, whose aggregates are involved in Alzheimer's disease, is an intrinsically disordered protein (IDP) that regulates microtubule activity in neurons. An IDP lacks a single, well-defined structure and, rather, constantly exchanges among multiple conformations. In order to study IDP dynamics, the combination of experimental techniques, such as neutron scattering, and computational techniques, such as molecular dynamics (MD) simulations, is a powerful approach. Amorphous hydrated powder samples have been very useful for studying protein internal dynamics experimentally, e.g., using neutron scattering. Thus, there is demand for realistic in silico models of hydrated protein powders. Here we present an MD simulation analysis of a powder hydrated at 0.4 g water/g protein of the IDP tau in the temperature range 20-300 K. By comparing with neutron scattering data, we identify the protein-water interface as the predominant feature determining IDP dynamics. The so-called protein dynamical transition is shown to be attenuated, but not suppressed, in the parts of the protein that are not exposed to the solvent. In addition, we find similarities in the mean-squared displacements of the core of a globular protein and "dry" clusters formed by the IDP in hydrated powders. Thus, the ps to ns dynamics of proteins in hydrated powders originate mainly from those residues in contact with solvent. We propose that by measuring the dynamics of protein assemblies, such as aggregates, one might assess qualitatively their state of hydration.
Nonequilibrium molecular dynamics
Directory of Open Access Journals (Sweden)
Wm.G.Hoover
2005-01-01
Full Text Available Nonequilibrium Molecular Dynamics is a powerful simulation tool. Like its equilibrium cousin, nonequilibrium molecular dynamics is based on time-reversible equations of motion. But unlike conventional mechanics, nonequilibrium molecular dynamics provides a consistent microscopic basis for the irreversible macroscopic Second Law of Thermodynamics. We recall here how fast computers led to the development of nonequilibrium molecular dynamics from the statistical mechanics of the 1950s. Computer-based theories facilitated revolutionary breakthroughs in understanding during the 1970s and 1980s. The new idea key to the nonequilibrium development was the replacement of the external thermodynamic environment by internal control variables. The new variables can control temperature, or pressure, or energy, or stress, or heat flux. These thermostat, barostat, ergostat, ... variables can control and maintain nonequilibrium states. We illustrate the methods with a simple example well-suited to student exploration, a thermostatted harmonic oscillator exposed to a temperature gradient.
Nonequilibrium molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Hoover, W.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA))
1990-11-01
The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.
Structure of Li, Be And B isotopes studied with quantum molecular dynamic model
International Nuclear Information System (INIS)
Abdel-Hafiez, A.; Saleh, Z.A.
2000-01-01
Quantum molecular dynamics (QMD) is applied to study the ground state properties of Li, Be and B isotopes. The model Hamiltonian includes both two-and three-body density dependent interactions, a Coulomb term, and a momentum dependent Pauli potential. With parameters which guarantee the infinite nuclear matter properties, the QMD model can only reproduce the binding energies for Be and B isotopes. The experimental root mean square radii of the Li, Be and B isotopes are not sufficiently reproduced by these parameters. It is shown, however, that the binding energies and root mean square radii of these isotopes can simultaneously be reproduced in the lower density limit of the potential parameters
Coarse-graining to the meso and continuum scales with molecular-dynamics-like models
Plimpton, Steve
Many engineering-scale problems that industry or the national labs try to address with particle-based simulations occur at length and time scales well beyond the most optimistic hopes of traditional coarse-graining methods for molecular dynamics (MD), which typically start at the atomic scale and build upward. However classical MD can be viewed as an engine for simulating particles at literally any length or time scale, depending on the models used for individual particles and their interactions. To illustrate I'll highlight several coarse-grained (CG) materials models, some of which are likely familiar to molecular-scale modelers, but others probably not. These include models for water droplet freezing on surfaces, dissipative particle dynamics (DPD) models of explosives where particles have internal state, CG models of nano or colloidal particles in solution, models for aspherical particles, Peridynamics models for fracture, and models of granular materials at the scale of industrial processing. All of these can be implemented as MD-style models for either soft or hard materials; in fact they are all part of our LAMMPS MD package, added either by our group or contributed by collaborators. Unlike most all-atom MD simulations, CG simulations at these scales often involve highly non-uniform particle densities. So I'll also discuss a load-balancing method we've implemented for these kinds of models, which can improve parallel efficiencies. From the physics point-of-view, these models may be viewed as non-traditional or ad hoc. But because they are MD-style simulations, there's an opportunity for physicists to add statistical mechanics rigor to individual models. Or, in keeping with a theme of this session, to devise methods that more accurately bridge models from one scale to the next.
Xu, Yu; Wang, Yuhong; Meng, Xuan-Yu; Zhang, Mei; Jiang, Min; Cui, Meng; Tseng, Gea-Ny
2013-12-03
The slow delayed rectifier (I(KS)) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of I(KS)-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in I(KS) channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Molecular modeling of the conformational dynamics of the cellular prion protein
Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia
2014-03-01
Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.
Directory of Open Access Journals (Sweden)
Trullàs J.
2011-05-01
Full Text Available Molecular dynamics simulations of molten NaI at 995 K have been carried out using polarizable ion models based on rigid ion pair potentials to which the anion induced dipole polarization is added. The polarization is added in such a way that point dipoles are induced on the anions by both local electric field and deformation short-range damping interactions that oppose the electrically induced dipole moments. The structure and self-diffusion results are compared with those obtained by Galamba and Costa Cabral using first principles Hellmann-Feynman molecular dynamics simulations and using classical molecular dynamics of a shell model which allows only the iodide polarization
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking. Rama Rao Nadendla. General Article Volume 9 Issue 5 May 2004 pp 51-60. Fulltext. Click here to view fulltext PDF. Permanent link:
Xiang, T X; Anderson, B D
1994-03-01
A mean-field statistical mechanical theory has been developed to describe molecular distributions in interphases. The excluded volume interaction has been modeled in terms of a reversible work that is required to create a cavity of the solute size against a pressure tensor exerted by the surrounding interphase molecules. The free energy change associated with this compression process includes the configuration entropy as well as the change in conformational energy of the surrounding chain molecules. The lateral pressure profile in a model lipid bilayer (30.5 A2/chain molecule) has been calculated as a function of depth in the bilayer interior by molecular dynamics simulation. The lateral pressure has a plateau value of 309 +/- 48 bar in the highly ordered region and decreases abruptly in the center of the bilayer. Model calculations have shown that for solute molecules with ellipsoidal symmetry, the orientational order increases with the ratio of the long to short molecular axes at a given solute volume and increases with solute volume at a given axial ratio, in accordance with recent experimental data. Increased lateral pressure (p perpendicular) results in higher local order and exclusion of solute from the interphase, in parallel with the effect of surface density on the partitioning and local order. The logarithm of the interphase/water partition coefficient for spherical solutes decreases linearly with solute volume. This is also an excellent approximation for elongated solutes because of the relatively weak dependence of solute partitioning on molecular shape. The slope is equal to (2p perpendicular - p parallel)/3KBT, where p parallel is the normal pressure component, and different from that predicted by the mean-field lattice theory. Finally, the lattice theory has been extended herein to incorporate an additional constraint on chain packing in the interphase and to account for the effect of solute size on partitioning.
Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
Zhang, Linfeng; Han, Jiequn; Wang, Han; Car, Roberto; E, Weinan
2018-04-01
We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.
International Nuclear Information System (INIS)
Pizzirusso, Antonio; De Nicola, Antonio; Milano, Giuseppe; Brasiello, Antonio; Marangoni, Alejandro G
2015-01-01
The first simulation study of the crystallisation of a binary mixture of triglycerides using molecular dynamics simulations is reported. Coarse-grained models of tristearin (SSS) and tripalmitin (PPP) molecules have been considered. The models have been preliminarily tested in the crystallisation of pure SSS and PPP systems. Two different quenching procedures have been tested and their performances have been analysed. The structures obtained from the crystallisation procedures show a high orientation order and a high content of molecules in the tuning fork conformation, comparable with the crystalline α phase. The behaviour of melting temperatures for the α phase of the mixture SSS/PPP obtained from the simulations is in qualitative agreement with the behaviour that was experimentally determined. (paper)
Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding
Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.
2017-12-01
Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.
Exciton model and quantum molecular dynamics in inclusive nucleon-induced reactions
International Nuclear Information System (INIS)
Bevilacqua, Riccardo; Pomp, Stephan; Watanabe, Yukinobu
2011-01-01
We compared inclusive nucleon-induced reactions with two-component exciton model calculations and Kalbach systematics; these successfully describe the production of protons, whereas fail to reproduce the emission of composite particles, generally overestimating it. We show that the Kalbach phenomenological model needs to be revised for energies above 90 MeV; agreement improves introducing a new energy dependence for direct-like mechanisms described by the Kalbach model. Our revised model calculations suggest multiple preequilibrium emission of light charged particles. We have also compared recent neutron-induced data with quantum molecular dynamics (QMD) calculations complemented by the surface coalescence model (SCM); we observed that the SCM improves the predictive power of QMD. (author)
Polymer friction Molecular Dynamics
DEFF Research Database (Denmark)
Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.
We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....
Open-boundary Ehrenfest molecular dynamics: towards a model of current induced heating in nanowires
International Nuclear Information System (INIS)
Horsfield, Andrew P; Bowler, D R; Fisher, A J
2004-01-01
We present a time-dependent method based on the single-particle electron density matrix that allows the electronic and ionic degrees of freedom to be modelled within the Ehrenfest approximation in the presence of open boundaries. We describe a practical implementation using tight binding, and use it to investigate steady-state conduction through a single-atom device and to perform molecular dynamics. We find that in the Ehrenfest approximation an electric current allows both ionic heating and cooling to take place, depending on the bias. (letter to the editor)
Structural modeling of dahlia-type single-walled carbon nanohorn aggregates by molecular dynamics.
Hawelek, L; Brodka, A; Dore, John C; Hannon, Alex C; Iijima, S; Yudasaka, M; Ohba, T; Kaneko, K; Burian, A
2013-09-19
The structure of dahlia-type single-walled carbon nanohorn aggregates has been modeled by classical molecular dynamics simulations, and the validity of the model has been verified by neutron diffraction. Computer-generated models consisted of an outer part formed from single-walled carbon nanohorns with diameters of 20-50 Å and a length of 400 Å and an inner turbostratic graphite-like core with a diameter of 130 Å. The diffracted intensity and the pair correlation function computed for such a constructed model are in good agreement with the neutron diffraction experimental data. The proposed turbostratic inner core explains the occurrence of the additional (002) and (004) graphitic peaks in the diffraction pattern of the studied sample and provides information about the interior structure of the dahlia-type aggregates.
Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol
Usacheva, T. M.
2018-05-01
Linear relationships are established between the experimental equilibrium correlation factor and the molecular dynamics (MD) mean value of the O-H···O bond angle and the longitudinal component of the unit vector of the mean statistical dipole moment of the cluster in liquid 1,2-ethanediol (12ED). The achievements of modern MD models in describing the experimental dispersion of the permittivity of 12ED by both continuous and discrete relaxation time spectra are analyzed. The advantage computer MD experiments have over dielectric spectroscopy for calculating relaxation time and determining the molecular diffusion mechanisms of the rearrangement of the network 12ED structure, which is more complex than water, is demonstrated.
Li, DaLei; Lou, Yu-Qing; Esimbek, Jarken
2018-01-01
We study self-similar hydrodynamics of spherical symmetry using a general polytropic (GP) equation of state and derive the GP dynamic Lane-Emden equation (LEE) with a radial inertial force. In reference to Lou & Cao, we solve the GP dynamic LEE for both polytropic index γ = 1 + 1/n and the isothermal case n → +∞; our formalism is more general than the conventional polytropic model with n = 3 or γ = 4/3 of Goldreich & Weber. For proper boundary conditions, we obtain an exact constant solution for arbitrary n and analytic variable solutions for n = 0 and n = 1, respectively. Series expansion solutions are derived near the origin with the explicit recursion formulae for the series coefficients for both the GP and isothermal cases. By extensive numerical explorations, we find that there is no zero density at a finite radius for n ≥ 5. For 0 ≤ n 0 for monotonically decreasing density from the origin and vanishing at a finite radius for c being less than a critical value Ccr. As astrophysical applications, we invoke our solutions of the GP dynamic LEE with central finite boundary conditions to fit the molecular cloud core Barnard 68 in contrast to the static isothermal Bonnor-Ebert sphere by Alves et al. Our GP dynamic model fits appear to be sensibly consistent with several more observations and diagnostics for density, temperature and gas pressure profiles.
Directory of Open Access Journals (Sweden)
Hui Yao
2017-01-01
Full Text Available This Molecular Dynamics (MD simulation paper presents a physical property comparison study between exfoliated graphite nanoplatelets (xGNP modified and control asphalt models, including density, glass transition temperature, viscosity and thermal conductivity. The three-component control asphalt model consists of asphaltenes, aromatics, and saturates based on previous references. The xGNP asphalt model was built by incorporating an xGNP and control asphalt model and controlling mass ratios to represent the laboratory prepared samples. The Amber Cornell Extension Force Field (ACEFF was used with assigned molecular electro-static potential (ESP charge from NWChem analysis. After optimization and ensemble relaxation, the properties of the control and xGNP modified asphalt models were computed and analyzed using the MD method. The MD simulated results have a similar trend as the test results. The property analysis showed that: (1 the density of the xGNP modified model is higher than that of the control model; (2 the glass transition temperature of the xGNP modified model is closer to the laboratory data of the Strategic Highway Research Program (SHRP asphalt binders than that of the control model; (3 the viscosities of the xGNP modified model at different temperatures are higher than those of the control model, and it coincides with the trend in the laboratory data; (4 the thermal conductivities of the xGNP modified asphalt model are higher than those of the control asphalt model at different temperatures, and it is consistent with the trend in the laboratory data.
Multiscale modeling of complex molecular structure and dynamics with MBN Explorer
Solov’yov, Ilia A; Solov’yov, Andrey V
2017-01-01
This book introduces readers to MesoBioNano (MBN) Explorer – a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface – the MBN Studio – which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science – ranging from the nano- to the meso-scale. MBN Explorer is particularly suited to computing the system’s energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potenti...
Application of JAERI quantum molecular dynamics model for collisions of heavy nuclei
Directory of Open Access Journals (Sweden)
Ogawa Tatsuhiko
2016-01-01
Full Text Available The quantum molecular dynamics (QMD model incorporated into the general-purpose radiation transport code PHITS was revised for accurate prediction of fragment yields in peripheral collisions. For more accurate simulation of peripheral collisions, stability of the nuclei at their ground state was improved and the algorithm to reject invalid events was modified. In-medium correction on nucleon-nucleon cross sections was also considered. To clarify the effect of this improvement on fragmentation of heavy nuclei, the new QMD model coupled with a statistical decay model was used to calculate fragment production cross sections of Ag and Au targets and compared with the data of earlier measurement. It is shown that the revised version can predict cross section more accurately.
Directory of Open Access Journals (Sweden)
M. Druchok
2013-01-01
Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.
Burov, S V; Shchekin, A K
2010-12-28
General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.
Inhibition of Mycobacterium-RmlA by Molecular Modeling, Dynamics Simulation, and Docking
Directory of Open Access Journals (Sweden)
N. Harathi
2016-01-01
Full Text Available The increasing resistance to anti-tb drugs has enforced strategies for finding new drug targets against Mycobacterium tuberculosis (Mtb. In recent years enzymes associated with the rhamnose pathway in Mtb have attracted attention as drug targets. The present work is on α-D-glucose-1-phosphate thymidylyltransferase (RmlA, the first enzyme involved in the biosynthesis of L-rhamnose, of Mtb cell wall. This study aims to derive a 3D structure of RmlA by using a comparative modeling approach. Structural refinement and energy minimization of the built model have been done with molecular dynamics. The reliability assessment of the built model was carried out with various protein checking tools such as Procheck, Whatif, ProsA, Errat, and Verify 3D. The obtained model investigates the relation between the structure and function. Molecular docking interactions of Mtb-RmlA with modified EMB (ethambutol ligands and natural substrate have revealed specific key residues Arg13, Lys23, Asn109, and Thr223 which play an important role in ligand binding and selection. Compared to all EMB ligands, EMB-1 has shown better interaction with Mtb-RmlA model. The information thus discussed above will be useful for the rational design of safe and effective inhibitors specific to RmlA enzyme pertaining to the treatment of tuberculosis.
An Atomistic Carbide-Derived Carbon Model Generated Using ReaxFF-Based Quenched Molecular Dynamics
Directory of Open Access Journals (Sweden)
Matthew W. Thompson
2017-10-01
Full Text Available We report a novel atomistic model of carbide-derived carbons (CDCs, which are nanoporous carbons with high specific surface areas, synthesis-dependent degrees of graphitization, and well-ordered, tunable porosities. These properties make CDCs viable substrates in several energy-relevant applications, such as gas storage media, electrochemical capacitors, and catalytic supports. These materials are heterogenous, non-ideal structures and include several important parameters that govern their performance. Therefore, a realistic model of the CDC structure is needed in order to study these systems and their nanoscale and macroscale properties with molecular simulation. We report the use of the ReaxFF reactive force field in a quenched molecular dynamics routine to generate atomistic CDC models. The pair distribution function, pore size distribution, and adsorptive properties of this model are reported and corroborated with experimental data. Simulations demonstrate that compressing the system after quenching changes the pore size distribution to better match the experimental target. Ring size distributions of this model demonstrate the prevalence of non-hexagonal carbon rings in CDCs. These effects may contrast the properties of CDCs against those of activated carbons with similar pore size distributions and explain higher energy densities of CDC-based supercapacitors.
Dynamic, mechanistic, molecular-level modelling of cyanobacteria: Anabaena and nitrogen interaction.
Hellweger, Ferdi L; Fredrick, Neil D; McCarthy, Mark J; Gardner, Wayne S; Wilhelm, Steven W; Paerl, Hans W
2016-09-01
Phytoplankton (eutrophication, biogeochemical) models are important tools for ecosystem research and management, but they generally have not been updated to include modern biology. Here, we present a dynamic, mechanistic, molecular-level (i.e. gene, transcript, protein, metabolite) model of Anabaena - nitrogen interaction. The model was developed using the pattern-oriented approach to model definition and parameterization of complex agent-based models. It simulates individual filaments, each with individual cells, each with genes that are expressed to yield transcripts and proteins. Cells metabolize various forms of N, grow and divide, and differentiate heterocysts when fixed N is depleted. The model is informed by observations from 269 laboratory experiments from 55 papers published from 1942 to 2014. Within this database, we identified 331 emerging patterns, and, excluding inconsistencies in observations, the model reproduces 94% of them. To explore a practical application, we used the model to simulate nutrient reduction scenarios for a hypothetical lake. For a 50% N only loading reduction, the model predicts that N fixation increases, but this fixed N does not compensate for the loading reduction, and the chlorophyll a concentration decreases substantially (by 33%). When N is reduced along with P, the model predicts an additional 8% reduction (compared to P only). © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Aarti Sharma
2009-01-01
Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.
Determining the shear viscosity of model liquids from molecular dynamics simulations
Hess, B
2002-01-01
Several methods are available for calculating shear viscosities of liquids from molecular dynamics simulations. There are equilibrium methods based on pressure or momentum fluctuations and several nonequilibrium methods. For the nonequilibrium method using a periodic shear flow, all relevant
Solhjoo, Soheil; Vakis, Antonis I.
Abstract Using classical molecular dynamics, atomic scale simulations of normal contact between a nominally flat substrate and different atomistic and non-atomistic spherical particles were performed to investigate the applicability of classical contact theories at the nanoscale, and further
Wu, Shuai; Zhan, Hai-yi; Wang, Hong-ming; Ju, Yan
2012-04-01
The secondary structure of different Iβ cellulose was analyzed by a molecular dynamics simulation with MARTINI coarse-grained force field, where each chain of the cellulose includes 40 D-glucoses units. Calculation gives a satisfied description about the secondary structure of the cellulose. As the chain number increasing, the cellulose becomes the form of a helix, with the diameter of screw growing and spiral rising. Interestingly, the celluloses with chain number N 4 of 6, 24 and 36 do show right-hand twisting. On the contrast, the celluloses with N 8 of 12, 16 chains are left-hand twisting. These simulations indicate that the cellulose with chain number larger than 36 will break down to two parts. Besides, the result indicates that 36-chains cellulose model is the most stable among all models. Furthermore, the Lennard-Jones potential determines the secondary structure. In addition, an equation was set up to analyze the twisting structure.
Molecular dynamics and binary collisions modeling of the primary damage state of collision cascades
International Nuclear Information System (INIS)
Heinisch, H.L.; Singh, B.N.
1992-01-01
The objective of this work is to determine the spectral dependence of defect production and microstructure evolution for the development of fission-fusion correlations. Quantitative information on defect production in cascades in copper obtained from recent molecular dynamics (MD) simulations is compared to defect production information determined earlier with a model based on the binary collision approximation (BCA). The total numbers of residual defects, the fractions of them that are mobile, and the sizes of immobile clusters compare favorably, especially when the termination conditions of the two simulations are taken into account. A strategy is laid out for integrating the details of the cascade quenching phase determined by MD into a BCA-based model that is practical for simulating much higher energies and longer times than MD alone can achieve. The extraction of collisional phase information from MD simulations and the correspondence of MD and BCA versions of the collisional phase demonstrated at low energy
Bao, Kai
2013-01-01
The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems
Molecular Dynamics Simulation of Coarse-Grain Model of Silicon Functionalized Graphene
Directory of Open Access Journals (Sweden)
Hui Zhixin
2015-01-01
Full Text Available The electronic transport, the storage capacity and the service life of the anode material for lithium ion batteries will be reduced seriously in the event of the material layering or cracking, so the anode material must have strong mechanical reliability. Firstly, in view of the traditional molecular dynamics (MD limited by the geometric scales of the model of Silicon functionalized graphenen (SFG as lithium ion batteries anode material, some full atomic models of SFG were established using Tersoff potential and Lennard-Jones potential, and used to calculate the modulus and the adhesion properties. What’s more, the assertion of mechanical equilibrium condition and energy conservation between full atomic and coarse-grain models through elastic strain energy were enforced to arrive at model parameters. The model of SFG coarse-grain bead-spring elements and its system energy function were obtained via full atomic simulations. Finally, the validity of the SFG coarse-grain model was verified by comparing the tensile property of coarse-grain model with full atoms model.
A History of constitutive modeling via molecular dynamics: Shock waves in fluids and gases
Directory of Open Access Journals (Sweden)
Holian B.L.
2011-01-01
Full Text Available From its inception in the mid-Fifties, the method of molecular-dynamics (MD computer simulations has been used to probe the foundations of statistical mechanics, first for equilibrium equation-of-state averages, and then for transport properties from equilibrium fluctuations. Traditional statistical mechanical theoreticians were shocked to see that this new-fangled computational physics approach was feasible, even with incredibly tiny samples (on the order of a hundred atoms. When direct measurement of transport coefficients by non-equilibrium molecular dynamics (NEMD was proposed in the early Seventies, even greater resistance was encountered from the traditionalists – though evidence for convergence with the equilibrium fluctuation method gradually accumulated. In the late Seventies and early Eighties, shock-wave simulations by NEMD made it possible to test directly the principal continuum constitutive theory for fluids, namely, Navier-Stokes viscous flow and Fourier’s Law of heat conduction. To everyone’s surprise – and the consternation of many – NEMD, once again, demonstrated that continuum theory applies at embarrassingly small (atomistic time and length scales. We pursue this early line of work into the modern era, showing how NEMD shock-wave simulations can still provide surprising insights and improvements upon our understanding of constitutive modeling.
State-Dependent Molecular Dynamics
Directory of Open Access Journals (Sweden)
Ciann-Dong Yang
2014-10-01
Full Text Available This paper proposes a new mixed quantum mechanics (QM—molecular mechanics (MM approach, where MM is replaced by quantum Hamilton mechanics (QHM, which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.
State-dependent molecular dynamics.
Yang, Ciann-Dong; Weng, Hung-Jen
2014-10-09
This paper proposes a new mixed quantum mechanics (QM)-molecular mechanics (MM) approach, where MM is replaced by quantum Hamilton mechanics (QHM), which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.
High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling
Energy Technology Data Exchange (ETDEWEB)
Gygi, Francois [Univ. of California, Davis, CA (United States). Dept. of Computer Science; Galli, Giulia [Univ. of Chicago, IL (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-12-03
This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solar energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems
Gheribi, Aïmen E.; Chartrand, Patrice
2016-02-01
A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.
Gheribi, Aïmen E; Chartrand, Patrice
2016-02-28
A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.
Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation
Rajkumar, V. B.; Chen, Sinn-wen
2017-04-01
Ag-Ni is a simple and important system with immiscible liquids and (Ag,Ni) phases. Previously, this system has been thermodynamically modeled utilizing certain thermochemical and phase equilibria information based on conjecture. An attempt is made in this study to determine the missing information which are difficult to measure experimentally. The boundaries of the liquid miscibility gap at high temperatures are determined using a pyrometer. The temperature of the liquid ⇌ (Ag) + (Ni) eutectic reaction is measured using differential thermal analysis. Tie-lines of the Ag-Ni system at 1023 K and 1473 K are measured using a conventional metallurgical method. The enthalpy of mixing of the liquid at 1773 K and the (Ag,Ni) at 973 K is calculated by molecular dynamics simulation using a large-scale atomic/molecular massively parallel simulator. These results along with literature information are used to model the Gibbs energy of the liquid and (Ag,Ni) by a calculation of phase diagrams approach, and the Ag-Ni phase diagram is then calculated.
Directory of Open Access Journals (Sweden)
Aarti Sharma
2009-12-01
Full Text Available
Modeling the liquid-liquid interface and the transfer of a solute by molecular dynamics simulation
International Nuclear Information System (INIS)
Hayoun, Marc
1990-11-01
Molecular Dynamics method and Lennard-Jones potential functions have been employed to model Liquid-Liquid Interfaces. The variation of the miscibilities between the two liquids is obtained by changing the interaction between the two atomic species. The resulting interfaces have a thickness of about three atomic diameters and are stable on the time scale of the simulation. They have been characterized by the density and pressure profiles. The interfacial tension has also been computed and is of the order of magnitude of experimental values. The diffusion process is anisotropic in the interfacial region: the transverse diffusion coefficient (parallelly to the interface) is higher than the normal one. A qualitative explanation of this behaviour is suggested by considering the pressure tensor. The second part of this work, performed by Molecular Dynamics in the canonical ensemble, is devoted to the kinetic study of the transfer of a solute through the interface. A model of a symmetric interface with an atomic solute has been used. The interaction potential between the solute and the solvents has been built in order to obtain an activation barrier to the transfer. We have computed the mean force exerted by the solvent on the solute as a function of its distance to the interface. The resulting mean force potential corresponds to a free energy difference. The height of the energy barrier involved is about 4 kT. The potential energy and entropy profiles have also been calculated and discussed. The diffusion coefficient of the solute has been computed by equilibrium and non-equilibrium methods. We deduced the friction coefficient of the solvent, which is essential to determine the Kramers transmission coefficient. This coefficient is compared to the one obtained by simulation. Finally, the solute transfer rate constant has been calculated. (author) [fr
Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu
2016-02-28
Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.
Knox, Craig K.
Experimental elucidation of the nanoscale structure of hydrated Nafion, the most popular polymer electrolyte or proton exchange membrane (PEM) to date, and its influence on macroscopic proton conductance is particularly challenging. While it is generally agreed that hydrated Nafion is organized into distinct hydrophilic domains or clusters within a hydrophobic matrix, the geometry and length scale of these domains continues to be debated. For example, at least half a dozen different domain shapes, ranging from spheres to cylinders, have been proposed based on experimental SAXS and SANS studies. Since the characteristic length scale of these domains is believed to be ˜2 to 5 nm, very large molecular dynamics (MD) simulations are needed to accurately probe the structure and morphology of these domains, especially their connectivity and percolation phenomena at varying water content. Using classical, all-atom MD with explicit hydronium ions, simulations have been performed to study the first-ever hydrated Nafion systems that are large enough (~2 million atoms in a ˜30 nm cell) to directly observe several hydrophilic domains at the molecular level. These systems consisted of six of the most significant and relevant morphological models of Nafion to-date: (1) the cluster-channel model of Gierke, (2) the parallel cylinder model of Schmidt-Rohr, (3) the local-order model of Dreyfus, (4) the lamellar model of Litt, (5) the rod network model of Kreuer, and (6) a 'random' model, commonly used in previous simulations, that does not directly assume any particular geometry, distribution, or morphology. These simulations revealed fast intercluster bridge formation and network percolation in all of the models. Sulfonates were found inside these bridges and played a significant role in percolation. Sulfonates also strongly aggregated around and inside clusters. Cluster surfaces were analyzed to study the hydrophilic-hydrophobic interface. Interfacial area and cluster volume
Energy Technology Data Exchange (ETDEWEB)
Garrido, J. M. [Departamento de Ingeniería Química, Universidad de Concepción, POB 160-C Concepción (Chile); Algaba, J.; Blas, F. J., E-mail: felipe@uhu.es [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Física Aplicada, Universidad de Huelva, 21007 Huelva (Spain); Míguez, J. M. [Laboratoire des Fluides Complexes et Leurs Reservoirs, Université de Pau et des Pays de l’Adour, CNRS, TOTAL–UMR 5150, Avenue de l’Université, B.P. 1155, Pau F-64013 (France); Departamento de Física Aplicada, Universidade de Vigo, E36310 Vigo (Spain); Mendiboure, B. [Laboratoire des Fluides Complexes et Leurs Reservoirs, Université de Pau et des Pays de l’Adour, CNRS, TOTAL–UMR 5150, Avenue de l’Université, B.P. 1155, Pau F-64013 (France); Moreno-Ventas Bravo, A. I. [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Geología, Universidad de Huelva, 21007 Huelva (Spain); Piñeiro, M. M. [Departamento de Física Aplicada, Universidade de Vigo, E36310 Vigo (Spain)
2016-04-14
We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable parameters potential functions approach proposed by Chandrasekhar and Jorgensen [J. Chem. Phys. 77, 5073 (1982)] and a new parametrization of the TraPPE force fields for cyclic alkanes and ethers [S. J. Keasler et al., J. Phys. Chem. B 115, 11234 (2012)]. In both cases, dispersive and coulombic intermolecular interactions are explicitly taken into account. In the second case, THF is modeled as a single sphere, a diatomic molecule, and a ring formed from three Mie monomers according to the SAFT-γ Mie top-down approach [V. Papaioannou et al., J. Chem. Phys. 140, 054107 (2014)]. Simulations were performed in the molecular dynamics canonical ensemble and the vapor-liquid surface tension is evaluated from the normal and tangential components of the pressure tensor along the simulation box. In addition to the surface tension, we have also obtained density profiles, coexistence densities, critical temperature, density, and pressure, and interfacial thickness as functions of temperature, paying special attention to the comparison between the estimations obtained from different models and literature experimental data. The simulation results obtained from the three CG models as described by the SAFT-γ Mie approach are able to predict accurately the vapor-liquid phase envelope of THF, in excellent agreement with estimations obtained from TraPPE model and experimental data in the whole range of coexistence. However, Chandrasekhar and Jorgensen model presents significant deviations from experimental results. We also compare the predictions for surface tension as obtained from simulation results for all the models with
Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models
Mehta, Neil A.; Levin, Deborah A.
2018-03-01
Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.
Molecular Dynamics Modeling of Carbon Nanotube Composite Fracture Using ReaxFF
Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.
2016-01-01
Carbon nanotube (CNT) fiber reinforced composites with specific tensile strengths and moduli approaching those of aerospace grade carbon fiber composites have recently been reported. This achievement was enabled by the emerging availability of high N/tex yarns in kilometer-scale quantities. While the production of this yarn is an impressive advance, its strength is still much lower than that of the individual CNTs comprising the yarn. Closing this gap requires understanding load transfer between CNTs at the nanometer dimensional scale. This work uses reactive molecular dynamics simulations to gain an understanding at the nanometer scale of the key factors that determine CNT nanocomposite mechanical performance, and to place more realistic upper bounds on the target properties. While molecular dynamics simulations using conventional force fields can predict elastic properties, the ReaxFF reactive forcefield can also model fracture behavior because of its ability to accurately describe bond breaking and formation during a simulation. The upper and lower bounds of CNT composite properties are investigated by comparing systems composed of CNTs continuously connected across the periodic boundary with systems composed of finite length CNTs. These lengths, effectively infinite for the continuous tubes and an aspect ratio of 13 for the finite length case, result from practical limitations on the number of atoms that can be included in a simulation. Experimentally measured aspect ratios are typically on the order of 100,000, so the calculated results should represent upper and lower limits on experimental mechanical properties. Finally, the effect of various degrees of covalent crosslinking between the CNTs and amorphous carbon matrix is considered to identify the amount of CNT-matrix covalent bonding that maximizes overall composite properties.
Three-stage classical molecular dynamics model for simulation of heavy-ion fusion
Directory of Open Access Journals (Sweden)
Godre Subodh S.
2015-01-01
Full Text Available A three-stage Classical Molecular Dynamics (3S-CMD approach for heavy-ion fusion is developed. In this approach the Classical Rigid-Body Dynamics simulation for heavy-ion collision involving light deformed nucleus is initiated on their Rutherford trajectories at very large initial separation. Collision simulation is then followed by relaxation of the rigid-body constrains for one or both the colliding nuclei at distances close to the barrier when the trajectories of all the nucleons are obtained in a Classical Molecular Dynamics approach. This 3S-CMD approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but also the internal vibrational excitations of one or both the nuclei at distances close to the barrier. The results of the dynamical simulation for 24Mg+208Pb collision show significant modification of the fusion barrier and calculated fusion cross sections due to internal excitations.
Chikalov, Igor
2011-02-15
Background: Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. They form and break while a protein deforms, for instance during the transition from a non-functional to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor.Methods: This paper describes inductive learning methods to train protein-independent probabilistic models of H-bond stability from molecular dynamics (MD) simulation trajectories of various proteins. The training data contains 32 input attributes (predictors) that describe an H-bond and its local environment in a conformation c and the output attribute is the probability that the H-bond will be present in an arbitrary conformation of this protein achievable from c within a time duration ?. We model dependence of the output variable on the predictors by a regression tree.Results: Several models are built using 6 MD simulation trajectories containing over 4000 distinct H-bonds (millions of occurrences). Experimental results demonstrate that such models can predict H-bond stability quite well. They perform roughly 20% better than models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a conformation. In most tests, about 80% of the 10% H-bonds predicted as the least stable are actually among the 10% truly least stable. The important attributes identified during the tree construction are consistent with previous findings.Conclusions: We use inductive learning methods to build protein-independent probabilistic models to study H-bond stability, and demonstrate that the models perform better than H-bond energy alone. 2011 Chikalov et al; licensee BioMed Central Ltd.
International Nuclear Information System (INIS)
Li, Longqiu; Xu, Ming; Song, Wenping; Ovcharenko, Andrey; Zhang, Guangyu; Jia, Ding
2013-01-01
Empirical potentials have a strong effect on the hybridization and structure of amorphous carbon and are of great importance in molecular dynamics (MD) simulations. In this work, amorphous carbon at densities ranging from 2.0 to 3.2 g/cm 3 was modeled by a liquid quenching method using Tersoff, 2nd REBO, and ReaxFF empirical potentials. The hybridization, structure and radial distribution function G(r) of carbon atoms were analyzed as a function of the three potentials mentioned above. The ReaxFF potential is capable to model the change of the structure of amorphous carbon and MD results are in a good agreement with experimental results and density function theory (DFT) at low density of 2.6 g/cm 3 and below. The 2nd REBO potential can be used when amorphous carbon has a very low density of 2.4 g/cm 3 and below. Considering the computational efficiency, the Tersoff potential is recommended to model amorphous carbon at a high density of 2.6 g/cm 3 and above. In addition, the influence of the quenching time on the hybridization content obtained with the three potentials is discussed.
Bhattacharjee, Bipasha; Pathaw, Neeta; Chrungoo, Nikhil K; Bhattacharjee, Atanu
2017-03-30
Chitinases are varied sized proteins which have the ability to degrade chitin and are present in a huge range of organisms like fungi, yeasts, arthropods, humans etc. and have been getting increased attention due to their biocontrol properties. In silico analysis sheds light on the extensive properties of this plant protein. In this paper, a particular antifungal protein Chitinase sourced from Sechium edule from East Khasi Hills, Meghalaya was characterized using an array of bioinformatics tools. The modelled protein showed conserved domains characteristic to glycosyl hydrolase, family 18 superfamily. Likewise, a part of the conserved domain area fits in with xylanase inhibitor Xip-1 and the class ΙΙΙ plant chitinases, for example, concanavalin B, hevamine, which have a GH18 area. The modelled wild type protein exhibited secondary characteristics comprising of 48.8% helix, 62.2% sheets and 13.8% turns, displaying an aliphatic index of 80.53 and instability index of 48.88 inferring upon the fact that the protein is relatively unstable without its appropriate environment. The paper functions as the first attempt to portray molecular dynamics simulation of Chitinase from Sechium edule reinforced by modelling and thorough characteristic analysis of the protein by employing parameters like Ramachandran Plot, Chou and Fasman Secondary Structure prediction, ProtParam etc. Further approaches like protein engineering and activity analysis suggested. Copyright © 2016 Elsevier B.V. All rights reserved.
The mechanical properties modeling of nano-scale materials by molecular dynamics
Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.
2012-01-01
We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,
Khalansky, D.; Popova, E.; Gladyshev, P.; Dushanov, E.; Kholmurodov, Kh.
2014-12-01
Aqueous electrolyte solutions play an important role in many electrophysical and chemical processes in aerospace technology and industrial applications. As noncovalent interactions, the interactions between ions are crucially important for biomolecular structures as well (protein structure folding, molecular level processes followed by ionic pair correlations, the formation of flexible hydrate shells, and so on). Specifically, ions (cations and anions with the same valence charges) can form stable pairs if their sizes match. The formation of ionic pairs can substantially affect the thermodynamic stabilities of proteins in the alkali salts physiologically present in the human body. Research aims and problems impose severe demands on readjustments of the ionic force fields and potential parameters developed to describe aqueous solutions and electrolytic systems. Ionic solutions and their interaction with biomolecules have been observed for over 100 years [1], but the behavior of such solutions remains poorly studied today. New data obtained in this work deals with parameterization strategies and adjustments for the ionic force fields of the alkali cations and halide anions that should be helpful in biomolecular research. Using molecular dynamics (MD) models, four electrolytic systems (HCl-H2O, LiCl-H2O, NaCl-H2O, and KCl-H2O) are investigated as binary mixtures of water and cations and anions, respectively. The intermolecular interaction parameters are varied for two of the four model electrolytes (HCl-H2O and NaCl-H2O) to simulate the possibility of different ionic shells forming during interaction with water. It is found that varying the potential parameters strongly affects the dynamic and structural characteristics of electrolyte systems. MD simulations are performed in the temperature range of 300 to 600 K with a step of 50 K. MD simulations for all electrolyte models (HCl-H2O, LiCl-H2O, NaCl-H2O, KCl-H2O) are also conducted for different molar fractions of
Dissect the Dynamic Molecular Circuits of Cell Cycle Control through Network Evolution Model
Directory of Open Access Journals (Sweden)
Yang Peng
2017-01-01
Full Text Available The molecular circuits of cell cycle control serve as a key hub to integrate from endogenous and environmental signals into a robust biological decision driving cell growth and division. Dysfunctional cell cycle control is highlighted in a wide spectrum of human cancers. More importantly the mainstay anticancer treatment such as radiation therapy and chemotherapy targets the hallmark of uncontrolled cell proliferation in cancer cells by causing DNA damage, cell cycle arrest, and cell death. Given the functional importance of cell cycle control, the regulatory mechanisms that drive the cell division have been extensively investigated in a huge number of studies by conventional single-gene approaches. However the complexity of cell cycle control renders a significant barrier to understand its function at a network level. In this study, we used mathematical modeling through modern graph theory and differential equation systems. We believe our network evolution model can help us understand the dynamic cell cycle control in tumor evolution and optimizing dosing schedules for radiation therapy and chemotherapy targeting cell cycle.
Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy.
Klocke, Michael; Wolf, Dietrich E
2016-01-01
A molecular dynamics model is presented, which adds harmonic potentials to the atomic interactions to mimic the elastic properties of an AFM cantilever. It gives new insight into the correlation between the experimentally monitored frequency shift and cantilever damping due to the interaction between tip atoms and scanned surface. Applying the model to ionic crystals with rock salt structure two damping mechanisms are investigated, which occur separately or simultaneously depending on the tip position. These mechanisms are adhesion hysteresis on the one hand and lateral excitations of the cantilever on the other. We find that the short range Lennard-Jones part of the atomic interaction alone is sufficient for changing the predominant mechanism. When the long range ionic interaction is switched off, the two damping mechanisms occur with a completely different pattern, which is explained by the energy landscape for the apex atom of the tip. In this case the adhesion hysteresis is always associated with a distinct lateral displacement of the tip. It is shown how this may lead to a systematic shift between the periodic patterns obtained from the frequency and from the damping signal, respectively.
Modeling Coloration of a Radiochromic Film with Molecular Dynamics-Coupled Finite Element Method
Directory of Open Access Journals (Sweden)
Mehrdad Shahmohammadi Beni
2017-10-01
Full Text Available Radiochromic films change color upon exposures to radiation doses as a result of solid-state polymerization (SSP. Commercially available radiochromic films are primarily designed for, and have become widely used in, clinical X-ray dosimetry. However, many intriguing properties of radiochromic films are not yet fully understood. The present work aimed at developing a theoretical model at both atomic and macroscopic scales to provide a platform for future works to understand these intriguing properties. Despite the fact that radiochromic films were primarily designed for clinical X-ray dosimetry, dose-response curves for the Gafchromic EBT3 film obtained for ultraviolet (UV radiation were employed to develop our model in order to avoid complications of ionization, non-uniform energy deposition, as well as dispersed doses caused by secondary electrons set in motion by the indirectly ionizing X-ray photons, which might introduce added uncertainties to the model and overshadow the basic SSP processes. The active layer in the EBT3 film consisted of diacetylene (DA pentacosa-10,12-diynoate monomers, which were modelled using molecular dynamics (MD. The degrees of SSP in the atomic scale upon different UV exposures were obtained to determine the absorption coefficients of the active layer, which were then input into the finite element method (FEM. The classical steady-state Helmholtz equation was engaged to model the reflection from the active layer using the FEM technique. The multifrontal massively parallel sparse direct solver (MUMPS was employed to solve the present numerical problem. Very good agreement between experimentally and theoretically obtained coloration in terms of net reflective optical density was achieved for different UV exposures. In particular, for UV exposures larger than ~40 J/cm2, the reflected light intensity decreased at a lower rate when compared to other UV exposure values, which was explained by the densely cross
International Nuclear Information System (INIS)
Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes; Lopez, Pedro
2007-01-01
In this paper, we present classical molecular dynamics results about the formation of amorphous pockets in silicon for energy transfers below the displacement threshold. While in binary collision simulations ions with different masses generate the same number of Frenkel pairs for the same deposited nuclear energy, in molecular dynamics simulations the amount of damage and its complexity increase with ion mass. We demonstrate that low-energy transfers to target atoms are able to generate complex damage structures. We have determined the conditions that have to be fulfilled to produce amorphous pockets, showing that the order-disorder transition depends on the particular competition between melting and heat diffusion processes. We have incorporated these molecular dynamics results in an improved binary collision model that is able to provide a good description of damage with a very low computational cost
Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai
2011-01-01
The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...
Chikalov, Igor
2011-04-02
Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. H-bonds involving atoms from residues that are close to each other in the main-chain sequence stabilize secondary structure elements. H-bonds between atoms from distant residues stabilize a protein’s tertiary structure. However, H-bonds greatly vary in stability. They form and break while a protein deforms. For instance, the transition of a protein from a nonfunctional to a functional state may require some H-bonds to break and others to form. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. Other local interactions may reinforce (or weaken) an H-bond. This paper describes inductive learning methods to train a protein-independent probabilistic model of H-bond stability from molecular dynamics (MD) simulation trajectories. The training data describes H-bond occurrences at successive times along these trajectories by the values of attributes called predictors. A trained model is constructed in the form of a regression tree in which each non-leaf node is a Boolean test (split) on a predictor. Each occurrence of an H-bond maps to a path in this tree from the root to a leaf node. Its predicted stability is associated with the leaf node. Experimental results demonstrate that such models can predict H-bond stability quite well. In particular, their performance is roughly 20% better than that of models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a given conformation. The paper discusses several extensions that may yield further improvements.
Kanou, Kazuhiko; Iwadate, Mitsuo; Hirata, Tomoko; Terashi, Genki; Umeyama, Hideaki; Takeda-Shitaka, Mayuko
2009-12-01
The prediction of a protein three-dimensional (3D) structure is one of the most important challenges in computational structural biology. We have developed an automatic protein 3D structure prediction method called FAMSD. FAMSD is based on a comparative modeling method which consists of the following four steps: (1) generating and selecting sequence alignments between target and template proteins; (2) constructing 3D structure models based on each selected alignment; (3) selecting the best 3D structure model and (4) refining the selected model. In the FAMSD method, sequence alignment programs such as a series of BLAST programs, SP3 and SPARKS2 programs, the homology modeling program FAMS (Full Automatic Modeling System), the model quality estimation program CIRCLE and the molecular dynamics program APRICOT were used in combination to construct high quality protein models. To assess the FAMSD method we have participated in the 8th Critical Assessment of Techniques for Protein Structure Prediction (CASP8) experiment. The results of our original assessment indicate that the FAMSD method offers excellent capability in packing side-chains with the correct torsion angles while avoiding the formation of atom-atom collisions. Since side-chain packing plays a significant role in defining the biological function of proteins, this method is a valuable resource in biological, pharmaceutical and medicinal research efforts.
A study of internal energy relaxation in shocks using molecular dynamics based models
International Nuclear Information System (INIS)
Li, Zheng; Parsons, Neal; Levin, Deborah A.
2015-01-01
Recent potential energy surfaces (PESs) for the N 2 + N and N 2 + N 2 systems are used in molecular dynamics (MD) to simulate rates of vibrational and rotational relaxations for conditions that occur in hypersonic flows. For both chemical systems, it is found that the rotational relaxation number increases with the translational temperature and decreases as the rotational temperature approaches the translational temperature. The vibrational relaxation number is observed to decrease with translational temperature and approaches the rotational relaxation number in the high temperature region. The rotational and vibrational relaxation numbers are generally larger in the N 2 + N 2 system. MD-quasi-classical trajectory (QCT) with the PESs is also used to calculate the V-T transition cross sections, the collision cross section, and the dissociation cross section for each collision pair. Direct simulation Monte Carlo (DSMC) results for hypersonic flow over a blunt body with the total collision cross section from MD/QCT simulations, Larsen-Borgnakke with new relaxation numbers, and the N 2 dissociation rate from MD/QCT show a profile with a decreased translational temperature and a rotational temperature close to vibrational temperature. The results demonstrate that many of the physical models employed in DSMC should be revised as fundamental potential energy surfaces suitable for high temperature conditions become available
Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong
2016-04-05
Thrombin-binding aptamer (TBA) with the sequence 5'GGTTGGTGTGGTTGG3' could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.
Molecular dynamics of model compounds of polymers with chlorocyclohexyl groups in their structure
Saiz, Enrique; Riande, Evaristo
1995-09-01
The conformational mobility of 2-chlorocyclohexyl isobutyrate (CCHI), a model compound for the repeating unit of vinyl polymers containing chlorocyclohexane residues as side groups, is analyzed employing molecular dynamics (MD) procedures. Close to room temperature (ca. 300 K), the interconversion between axial (i.e., both chlorine atom and ester group in axial positions) and equatorial (both substituents in equatorial orientations) is not observed within the total time of 5 ns allowed to the MD trajectories. The analysis was then performed at temperatures in the range 1000 to 1500 K and the results extrapolated to lower temperatures. These extrapolations give energetic barriers of 5.72 and 8.15 kcal/mol, respectively for axial→equatorial and equatorial→axial transformations, with life times of τax≊9.6 and τeq≊46.3 ns for these two conformations at 300 K. The same procedure applied to unsubstituted cyclohexane gives an energetic barrier of 10.6 kcal/mol for the chair to chair interconversion, in excellent agreement with literature values. Further extrapolation to the temperatures at which the β subglass relaxation processes take place indicate that this interconversion is practically forbidden and therefore could not be invoked to explain the absorptions exhibited by this kind of polymers. The dipole moment of CCHI is also measured and calculated. Concordance between experimental (2.9±0.1 D) and calculated (2.7 D) values is very good.
Directory of Open Access Journals (Sweden)
Filippo Pullara
2015-10-01
Full Text Available Standard Molecular Dynamics simulations (MD are usually performed under periodic boundary conditions using the well-established “Ewald summation”. This implies that the distance among each element in a given lattice cell and its corresponding element in another cell, as well as their relative orientations, are constant. Consequently, protein-protein interactions between proteins in different cells—important in many biological activities, such as protein cooperativity and physiological/pathological aggregation—are severely restricted, and features driven by protein-protein interactions are lost. The consequences of these restrictions, although conceptually understood and mentioned in the literature, have not been quantitatively studied before. The effect of protein-protein interactions on the free energy landscape of a model system, dialanine, is presented. This simple system features a free energy diagram with well-separated minima. It is found that, in the case of absence of peptide-peptide (p-p interactions, the ψ = 150° dihedral angle determines the most energetically favored conformation (global free-energy minimum. When strong p-p interactions are induced, the global minimum switches to the ψ = 0° conformation. This shows that the free-energy landscape of an individual molecule is dramatically affected by the presence of other freely interacting molecules of its same type. Results of the study suggest how taking into account p-p interactions in MD allows having a more realistic picture of system activity and functional conformations.
Modeling quantum processes in classical molecular dynamics simulations of dense plasmas
Hau-Riege, S. P.; Weisheit, J.; Castor, J. I.; London, R. A.; Scott, H.; Richards, D. F.
2013-01-01
We present a method for treating quantum processes in a classical molecular dynamics (MD) simulation. The computational approach, called ‘Small Ball’ (SB), was originally introduced to model emission and absorption of free-free radiation. Here, we extend this approach to handle ionization/recombination reactions as well as nuclear fusion events. This method exploits the short-range nature of screened-particle interactions in a dense plasma to restrict consideration of quantum processes to a small region about a given ion, and carefully accounts for the effects of the plasma environment on two-particle interaction rates within that region. The use of a reduced set of atomic rates, corresponding to the bottleneck approximation, simplifies their implementation within an MD code. We validate the extended MD code against a collisional-radiative code for model systems under two scenarios: (i) solid-density carbon at conditions encountered in recent experiments, and (ii) high-density Xe-doped hydrogen relevant for laser fusion. We find good agreement for the time-dependent ionization evolution for both systems. We also simulate fast protons stopping in warm, dense carbon plasmas. Here, reasonable agreement with recent experimental data requires contributions from both bound electrons, as modeled by SB in the extended MD code, and free electrons; for the latter, use of the classical random phase approximation (RPA) formula instead of the MD prediction yields better agreement with the experiment, a result that can be attributed to the use of modified Coulomb potentials in MD simulations of electron-ion plasmas. Finally, we confirm that the fusion reaction rate obtained from an MD simulation agrees with analytical expressions for the reaction rate in a weakly screened plasma.
International Nuclear Information System (INIS)
Milano, Giuseppe; De Nicola, Antonio; Kawakatsu, Toshihiro
2013-01-01
This paper gives an overview of the coarse-grained models of phospholipids recently developed by the authors in the frame of a hybrid particle–field molecular dynamics technique. This technique employs a special class of coarse-grained models that are gaining popularity because they allow simulations of large scale systems and, at the same time, they provide sufficiently detailed chemistry for the mapping scheme adopted. The comparison of the computational costs of our approach with standard molecular dynamics simulations is a function of the system size and the number of processors employed in the parallel calculations. Due to the low amount of data exchange, the larger the number of processors, the better are the performances of the hybrid particle–field models. This feature makes these models very promising ones in the exploration of several problems in biophysics. (paper)
Thakar, Juilee; Albert, Réka
The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References
Bao, Kai
2015-10-26
The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems. In this framework, a parallel reservoir simulator, reservoir-simulation toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, whereas the MD simulations are performed to provide the required physical parameters. Technologies from several different fields are used to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large-scale CO2 sequestration for long-term storage in subsurface geological formations, such as depleted oil and gas reservoirs and deep saline aquifers, which has been proposed as one of the few attractive and practical solutions to reduce CO2 emissions and address the global-warming threat. Fine grids and accurate prediction of the properties of fluid mixtures under geological conditions are essential for accurate simulations. In this work, CO2 sequestration is presented as a first example for coupling reservoir simulation and MD, although the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical processes in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability is observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well-demonstrated with several experiments with hundreds of millions to one billion cells. To the best of our knowledge, the present work represents the first attempt to couple reservoir simulation and molecular simulation for large-scale modeling. Because of the complexity of
Multiscale Reactive Molecular Dynamics
2012-08-15
as a linear combination of several possible bond- ing topologies ( diabatic states) that are coupled to one an- other through the off-diagonal elements...adapts and dynamically identifies bonding topolo- gies to include as the simulation progresses. These bonding topologies form a basis of diabatic ...the original geometric factor. The diabatic correction term, VCORR , used here was labeled in previous MS-EVB models as a repulsive interaction, VREP
Jafari, Mohieddin; Ansari-Pour, Naser; Azimzadeh, Sadegh; Mirzaie, Mehdi
It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.
Respectful Modeling: Addressing Uncertainty in Dynamic System Models for Molecular Biology.
Tsigkinopoulou, Areti; Baker, Syed Murtuza; Breitling, Rainer
2017-06-01
Although there is still some skepticism in the biological community regarding the value and significance of quantitative computational modeling, important steps are continually being taken to enhance its accessibility and predictive power. We view these developments as essential components of an emerging 'respectful modeling' framework which has two key aims: (i) respecting the models themselves and facilitating the reproduction and update of modeling results by other scientists, and (ii) respecting the predictions of the models and rigorously quantifying the confidence associated with the modeling results. This respectful attitude will guide the design of higher-quality models and facilitate the use of models in modern applications such as engineering and manipulating microbial metabolism by synthetic biology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.
Banerjee, Rahul; Cukier, Robert I
2014-03-20
Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ
Multiscale Modeling using Molecular Dynamics and Dual Domain Material Point Method
Energy Technology Data Exchange (ETDEWEB)
Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division. Fluid Dynamics and Solid Mechanics Group, T-3; Rice Univ., Houston, TX (United States)
2016-07-07
For problems involving large material deformation rate, the material deformation time scale can be shorter than the material takes to reach a thermodynamical equilibrium. For such problems, it is difficult to obtain a constitutive relation. History dependency become important because of thermodynamic non-equilibrium. Our goal is to build a multi-scale numerical method which can bypass the need for a constitutive relation. In conclusion, multi-scale simulation method is developed based on the dual domain material point (DDMP). Molecular dynamics (MD) simulation is performed to calculate stress. Since the communication among material points is not necessary, the computation can be done embarrassingly parallel in CPU-GPU platform.
Demontis, Pierfranco; Gulín-Gonzalez, Jorge; Suffritti, Giuseppe B
2006-04-13
To test a new interaction potential, molecular dynamics simulations of zeolite natrolite were performed for the structures under ambient conditions hydrated by perdeuterated water and at high pressure (1.87 GPa) in the superhydrated phase, which were recently studied by neutron diffraction. The experimental structures were reproduced with reasonable accuracy, and the hydrogen bond features are discussed. As in ordinary natrolite, a flip motion of water molecules around the HOH bisector is found, which, together with translational oscillations, gives rise to transient hydrogen bonds between water molecules, which do not appear from experimental equilibrium coordinates. The dynamics of water molecules can explain some problems encountered in refining the experimental structure. Vibrational spectra of natrolite containing perdeuterated water, which are not yet measured, were simulated, and their qualitative trend is discussed.
Molecular dynamics simulations of large integral membrane proteins with an implicit membrane model.
Tanizaki, Seiichiro; Feig, Michael
2006-01-12
The heterogeneous dielectric generalized Born (HDGB) methodology is an the extension of the GBMV model for the simulation of integral membrane proteins with an implicit membrane environment. Three large integral membrane proteins, the bacteriorhodopsin monomer and trimer and the BtuCD protein, were simulated with the HDGB model in order to evaluate how well thermodynamic and dynamic properties are reproduced. Effects of the truncation of electrostatic interactions were examined. For all proteins, the HDGB model was able to generate stable trajectories that remained close to the starting experimental structures, in excellent agreement with explicit membrane simulations. Dynamic properties evaluated through a comparison of B-factors are also in good agreement with experiment and explicit membrane simulations. However, overall flexibility was slightly underestimated with the HDGB model unless a very large electrostatic cutoff is employed. Results with the HDGB model are further compared with equivalent simulations in implicit aqueous solvent, demonstrating that the membrane environment leads to more realistic simulations.
Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer
DEFF Research Database (Denmark)
Solov'yov, Ilia A.; Korol, Andrei V.; Solov'yov, Andrey V.
This book introduces readers to MesoBioNano (MBN) Explorer - a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface - the MBN Studio - which enables the set......-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science...... practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational...
Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer
DEFF Research Database (Denmark)
Solov'yov, Ilia A.; Korol, Andrei V.; Solov'yov, Andrey V.
, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science - ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system's energy, to optimizing molecular structure, and to exploring the various facets......This book introduces readers to MesoBioNano (MBN) Explorer - a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface - the MBN Studio - which enables the set......-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science...
Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer
DEFF Research Database (Denmark)
Solov'yov, Ilia A.; Korol, Andrei V.; Solov'yov, Andrey V.
, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science - ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system's energy, to optimizing molecular structure, and to exploring the various facets...... practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational...... efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer...
Perovskite Quantum Dots Modeled Using ab Initio and Replica Exchange Molecular Dynamics
Buin, Andrei
2015-06-18
© 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention at both the experimental and theoretical levels. Much of this work has been dedicated to bulk material studies, yet recent experimental work has shown the formation of highly efficient quantum-confined nanocrystals with tunable band edges. Here we investigate perovskite quantum dots from theory, predicting an upper bound of the Bohr radius of 45 Å that agrees well with literature values. When the quantum dots are stoichiometric, they are trap-free and have nearly symmetric contributions to confinement from the valence and conduction bands. We further show that surface-associated conduction bandedge states in perovskite nanocrystals lie below the bulk states, which could explain the difference in Urbach tails between mesoporous and planar perovskite films. In addition to conventional molecular dynamics (MD), we implement an enhanced phase-space sampling algorithm, replica exchange molecular dynamics (REMD). We find that in simulation of methylammonium orientation and global minima, REMD outperforms conventional MD. To the best of our knowledge, this is the first REMD implementation for realistic-sized systems in the realm of DFT calculations.
Assessment of Molecular Modeling & Simulation
Energy Technology Data Exchange (ETDEWEB)
None
2002-01-03
This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.
Yang, B. J.; Shin, H.; Lee, H. K.; Kim, H.
2013-12-01
We introduce a multiscale framework based on molecular dynamic (MD) simulation, micromechanics, and finite element method (FEM). A micromechanical model, which considers influences of the interface properties, nanoparticle (NP) size, and microcracks, is developed. Then, we perform MD simulations to characterize the mechanical properties of the nanocomposite system (silica/nylon 6) with varying volume fraction and size of NPs. By comparing the MD with micromechanics results, intrinsic physical properties at interfacial region are derived. Finally, we implement the developed model in the FEM code with the derived interfacial parameters, and predict the mechanical behavior of the nanocomposite at the macroscopic scale.
Physical adsorption and molecular dynamics
International Nuclear Information System (INIS)
Cohan, N.V.
1981-01-01
Some aspects of noble gases adsorption (except He) on graphite substracts are reviewed. Experimental results from this adsorption are analyzed and compared with molecular dynamics calculations. (L.C.) [pt
Programming an interpreter using molecular dynamics
Bergstra, J.A.; Middelburg, C.A.
2007-01-01
PGA (ProGram Algebra) is an algebra of programs which concerns programs in their simplest form: sequences of instructions. Molecular dynamics is a simple model of computation developed in the setting of \\PGA, which bears on the use of dynamic data structures in programming. We consider the
Isberg, Vignir; Balle, Thomas; Sander, Tommy; Jørgensen, Flemming Steen; Gloriam, David E
2011-02-28
A 5-HT(2A) receptor model was constructed by homology modeling based on the β(2)-adrenergic receptor and the G protein-bound opsin crystal structures. The 5-HT(2A) receptor model was transferred into an active conformation by an agonist ligand and a G(αq) peptide in four subsequent steered molecular dynamics (MD) simulations. The driving force for the transformation was the addition of several known intermolecular and receptor interhelical hydrogen bonds enforcing the necessary helical and rotameric movements. Subsquent MD simulations without constraints confirmed the stability of the activated receptor model as well as revealed new information about stabilizing residues and bonds. The active 5-HT(2A) receptor model was further validated by retrospective ligand screening of more than 9400 compounds, whereof 182 were known ligands. The results show that the model can be used in drug discovery for virtual screening and structure-based ligand design as well as in GPCR activation studies.
Itteboina, Ramesh; Ballu, Srilata; Sivan, Sree Kanth; Manga, Vijjulatha
2017-10-01
Janus kinase 1 (JAK 1) belongs to the JAK family of intracellular nonreceptor tyrosine kinase. JAK-signal transducer and activator of transcription (JAK-STAT) pathway mediate signaling by cytokines, which control survival, proliferation and differentiation of a variety of cells. Three-dimensional quantitative structure activity relationship (3 D-QSAR), molecular docking and molecular dynamics (MD) methods was carried out on a dataset of Janus kinase 1(JAK 1) inhibitors. Ligands were constructed and docked into the active site of protein using GLIDE 5.6. Best docked poses were selected after analysis for further 3 D-QSAR analysis using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methodology. Employing 60 molecules in the training set, 3 D-QSAR models were generate that showed good statistical reliability, which is clearly observed in terms of r 2 ncv and q 2 loo values. The predictive ability of these models was determined using a test set of 25 molecules that gave acceptable predictive correlation (r 2 Pred ) values. The key amino acid residues were identified by means of molecular docking, and the stability and rationality of the derived molecular conformations were also validated by MD simulation. The good consonance between the docking results and CoMFA/CoMSIA contour maps provides helpful clues about the reasonable modification of molecules in order to design more efficient JAK 1 inhibitors. The developed models are expected to provide some directives for further synthesis of highly effective JAK 1 inhibitors.
Energy Technology Data Exchange (ETDEWEB)
Chiba, Satoshi; Iwamoto, Osamu; Fukahori, Tokio; Niita, Koji; Maruyama, Toshiki; Maruyama, Tomoyuki; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
The production cross sections of various fragments from proton-induced reactions on {sup 56}Fe and {sup 27}Al have been analyzed by the Quantum Molecular Dynamics (QMD) plus Statistical Decay Model (SDM). It was found that the mass and charge distributions calculated with and without the statistical decay have very different shapes. These results also depend strongly on the impact parameter, showing an importance of the dynamical treatment as realized by the QMD approach. The calculated results were compared with experimental data in the energy region from 50 MeV to 5 GeV. The QMD+SDM calculation could reproduce the production cross sections of the light clusters and intermediate-mass to heavy fragments in a good accuracy. The production cross section of {sup 7}Be was, however, underpredicted by approximately 2 orders of magnitude, showing the necessity of another reaction mechanism not taken into account in the present model. (author)
Molecular potentials and relaxation dynamics
International Nuclear Information System (INIS)
Karo, A.M.
1981-01-01
The use of empirical pseudopotentials, in evaluating interatomic potentials, provides an inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. Recent calculations of the X 1 Σ + and a 3 Σ + states of LiH, NaH, KH, RbH, and CsH and the X 2 Σ + states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, higly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000 cm -1 over most of the potential curves) with the difference curves being considerably more accurate. In the method of computer molecular dynamics, the force acting on each particle is the resultant of all interactions with other atoms in the neighborhood and is obtained as the derivative of an effective many-body potential. Exploiting the pseudopotential approach, in obtaining the appropriate potentials may be very fruitful in the future. In the molecular dynamics example considered here, the conventional sum-of-pairwise-interatomic-potentials (SPP) approximation is used with the potentials derived either from experimental spectroscopic data or from Hartree-Fock calculations. The problem is the collisional de-excitation of vibrationally excited molecular hydrogen at an Fe surface. The calculations have been carried out for an initial vibrotational state v = 8, J = 1 and a translational temperature corresponding to a gas temperature of 500 0 K. Different angles of approach and different initial random impact points on the surface have been selected. For any given collision with the wall, the molecule may pick up or lose vibrotatonal and translational energy
Molecular dynamics for irradiation driven chemistry
DEFF Research Database (Denmark)
Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.
2016-01-01
that describe the classical MD of complex molecular systems under irradiation. The proposed irradiation driven molecular dynamics (IDMD) methodology is designed for the molecular level description of the irradiation driven chemistry. The IDMD approach is implemented into the MBN Explorer software package......A new molecular dynamics (MD) approach for computer simulations of irradiation driven chemical transformations of complex molecular systems is suggested. The approach is based on the fact that irradiation induced quantum transformations can often be treated as random, fast and local processes...... capable to operate with a large library of classical potentials, many-body force fields and their combinations. IDMD opens a broad range of possibilities for modelling of irradiation driven modifications and chemistry of complex molecular systems ranging from radiotherapy cancer treatments to the modern...
Directory of Open Access Journals (Sweden)
Mohieddin Jafari
Full Text Available It is nearly half a century past the age of the introduction of the Central Dogma (CD of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.
Dong, Lili; Feng, Ruirui; Bi, Jiawei; Shen, Shengqiang; Lu, Huizhe; Zhang, Jianjun
2018-03-06
Human sodium-dependent glucose co-transporter 2 (hSGLT2) is a crucial therapeutic target in the treatment of type 2 diabetes. In this study, both comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to generate three-dimensional quantitative structure-activity relationship (3D-QSAR) models. In the most accurate CoMFA-based and CoMSIA-based QSAR models, the cross-validated coefficients (r 2 cv ) were 0.646 and 0.577, respectively, while the non-cross-validated coefficients (r 2 ) were 0.997 and 0.991, respectively, indicating that both models were reliable. In addition, we constructed a homology model of hSGLT2 in the absence of a crystal structure. Molecular docking was performed to explore the bonding mode of inhibitors to the active site of hSGLT2. Molecular dynamics (MD) simulations and binding free energy calculations using MM-PBSA and MM-GBSA were carried out to further elucidate the interaction mechanism. With regards to binding affinity, we found that hydrogen-bond interactions of Asn51 and Glu75, located in the active site of hSGLT2, with compound 40 were critical. Hydrophobic and electrostatic interactions were shown to enhance activity, in agreement with the results obtained from docking and 3D-QSAR analysis. Our study results shed light on the interaction mode between inhibitors and hSGLT2 and may aid in the development of C-aryl glucoside SGLT2 inhibitors.
Stirling, András; Nair, Nisanth N; Lledós, Agustí; Ujaque, Gregori
2014-07-21
We present here a review of the mechanistic studies of the Wacker process stressing the long controversy about the key reaction steps. We give an overview of the previous experimental and theoretical studies on the topic. Then we describe the importance of the most recent Ab Initio Molecular Dynamics (AIMD) calculations in modelling organometallic reactivity in water. As a prototypical example of homogeneous catalytic reactions, the Wacker process poses serious challenges to modelling. The adequate description of the multiple role of the water solvent is very difficult by using static quantum chemical approaches including cluster and continuum solvent models. In contrast, such reaction systems are suitable for AIMD, and by combining with rare event sampling techniques, the method provides reaction mechanisms and the corresponding free energy profiles. The review also highlights how AIMD has helped to obtain a novel understanding of the mechanism and kinetics of the Wacker process.
Energy Technology Data Exchange (ETDEWEB)
Korotkin, Ivan, E-mail: i.korotkin@qmul.ac.uk; Karabasov, Sergey; Markesteijn, Anton [The School of Engineering and Material Science, Queen Mary University of London, Mile End Road, E1 4NS London (United Kingdom); Nerukh, Dmitry; Scukins, Arturs [Institute of Systems Analytics, Aston University, Birmingham B4 7ET (United Kingdom); Farafonov, Vladimir [Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkiv (Ukraine); Pavlov, Evgen [Institute of Systems Analytics, Aston University, Birmingham B4 7ET (United Kingdom); Faculty of Physics, Kiev National Taras Shevchenko University, Prospect Acad. Glushkova 4, Kiev 03127 (Ukraine)
2015-07-07
A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.
Directory of Open Access Journals (Sweden)
J. Gujt
2017-12-01
Full Text Available Isothermal-isobaric molecular dynamics simulations have been performed to examine a broad set of properties of the model water-1,2-dimethoxyethane (DME mixture as a function of composition. The SPC-E and TIP4P-Ew water models and the modified TraPPE model for DME were applied. Our principal focus was to explore the trends of behaviour of the structural properties in terms of the radial distribution functions, coordination numbers and number of hydrogen bonds between molecules of different species, and of conformations of DME molecules. Thermodynamic properties, such as density, molar volume, enthalpy of mixing and heat capacity at constant pressure have been examined. Finally, the self-diffusion coefficients of species and the dielectric constant of the system were calculated and analyzed.
Gade, Deepak Reddy; Makkapati, Amareswararao; Yarlagadda, Rajesh Babu; Peters, Godefridus J; Sastry, B S; Rajendra Prasad, V V S
2018-02-24
Overexpression of P-glycoprotein (P-gp) leads to the emergence of multidrug resistance (MDR) in cancer treatment. Acridones have the potential to reverse MDR and sensitize cells. In the present study, we aimed to elucidate the chemosensitization potential of acridones by employing various molecular modelling techniques. Pharmacophore modeling was performed for the dataset of chemosensitizing acridones earlier proved for cytotoxic activity against MCF7 breast cancer cell line. Gaussian-based QSAR studies also performed to predict the favored and disfavored region of the acridone molecules. Molecular dynamics simulations were performed for compound 10 and human P-glycoprotein (obtained from Homology modeling). An efficient pharmacophore containing 2 hydrogen bond acceptors and 3 aromatic rings (AARRR.14) was identified. NCI 2012 chemical database was screened against AARRR.14 CPH and identified 25 best-fit molecules. Potential regions of the compound were identified through Field (Gaussian) based QSAR. Regression analysis of atom-based QSAR resulted in r 2 of 0.95 and q 2 of 0.72, whereas, regression analysis of field-based QSAR resulted in r 2 of 0.92 and q 2 of 0.87 along with r 2 cv as 0.71. The fate of the acridone molecule (compound 10) in the P-glycoprotein environment is analyzed through analyzing the conformational changes occurring during the molecular dynamics simulations. Combined data of different in silico techniques provided basis for deeper understanding of structural and mechanistic insights of interaction phenomenon of acridones with P-glycoprotein and also as strategic basis for designing more potent molecules for anti-cancer and multidrug resistance reversal activities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamics and Thermodynamics of Molecular Machines
DEFF Research Database (Denmark)
Golubeva, Natalia
2014-01-01
mechanics. The first part focuses on noninteracting molecular machines described by a paradigmatic continuum model with the aim of comparing and contrasting such a description to the one offered by the widely used discrete models. Many molecular motors, for example, kinesin involved in cellular cargo......Molecular machines, or molecular motors, are small biophysical devices that perform a variety of essential metabolic processes such as DNA replication, protein synthesis and intracellular transport. Typically, these machines operate by converting chemical energy into motion and mechanical work. Due...... to their microscopic size, molecular motors are governed by principles fundamentally different from those describing the operation of man-made motors such as car engines. In this dissertation the dynamic and thermodynamic properties of molecular machines are studied using the tools of nonequilibrium statistical...
A sampling of molecular dynamics
Sindhikara, Daniel Jon
The sheer vastness of the number of computations required to simulate a biological molecule puts incredible pressure on algorithms to be efficient while maintaining sufficient accuracy. This dissertation summarizes various projects whose purposes address the large span of types of problems in molecular dynamics simulations of biological systems including: increasing efficiency, measuring convergence, avoiding pitfalls, and an application and analysis of a biological system. Chapters 3 and 4 deal with an enhanced sampling algorithm called "replica exchange molecular dynamics" which is designed to speed-up molecular dynamics simulations. The optimization of a key parameter of these simulations is analyzed. In these successive projects, it was found conclusively that maximizing "exchange attempt frequency" is the most efficient way to run a replica exchange molecular dynamics simulation. Chapter 5 describes an enhanced metric for convergence in parallel simulations called the normalized ergodic measure. The metric is applied to several properties for several replica exchange simulations. Advantages of this metric over other methods are described. Chapter 6 describes the implementation and optimization of an enhanced sampling algorithm similar to replica exchange molecular dynamics called multicanonical algorithm replica exchange molecular dynamics. The algorithm was implemented into a biomolecular simulation suite called AMBER. Additionally several parameters were analyzed and optimized. In Chapter 7, a pitfall in molecular dynamics is observed in biological systems that is caused by negligent use of a simulation's "thermostat". It was found that if the same pseudorandom number seed were used for multiple systems, they eventually synchronize. In this project, synchronization was observed in biological molecules. Various negative effects including corruption of data are pointed out. Chapter 8 describes molecular dynamics simulation of NikR, a homotetrameric nickel
Directory of Open Access Journals (Sweden)
Pradeepkiran JA
2015-03-01
Full Text Available Jangampalli Adi Pradeepkiran,1 Konidala Kranthi Kumar,1 Yellapu Nanda Kumar,2 Matcha Bhaskar11Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, 2Biomedical Informatics Centre, Vector Control Research Centre, Indian Council of Medical Research, Pondicherry, India Abstract: The zoonotic disease brucellosis, a chronic condition in humans affecting renal and cardiac systems and causing osteoarthritis, is caused by Brucella, a genus of Gram-negative, facultative, intracellular pathogens. The mode of transmission and the virulence of the pathogens are still enigmatic. Transcription regulatory elements, such as rho proteins, play an important role in the termination of transcription and/or the selection of genes in Brucella. Adverse effects of the transcription inhibitors play a key role in the non-successive transcription challenges faced by the pathogens. In the investigation presented here, we computationally predicted the transcription termination factor rho (TtFRho inhibitors against Brucella melitensis 16M via a structure-based method. In view the unknown nature of its crystal structure, we constructed a robust three-dimensional homology model of TtFRho’s structure by comparative modeling with the crystal structure of the Escherichia coli TtFRho (Protein Data Bank ID: 1PVO as a template in MODELLER (v 9.10. The modeled structure was optimized by applying a molecular dynamics simulation for 2 ns with the CHARMM (Chemistry at HARvard Macromolecular Mechanics 27 force field in NAMD (NAnoscale Molecular Dynamics program; v 2.9 and then evaluated by calculating the stereochemical quality of the protein. The flexible docking for the interaction phenomenon of the template consists of ligand-related inhibitor molecules from the ZINC (ZINC Is Not Commercial database using a structure-based virtual screening strategy against minimized TtFRho. Docking simulations revealed two inhibitors compounds – ZINC
Balupuri, Anand; Sobhia, M. Elizabeth
2014-04-01
Chemokine receptor 2 (CCR2) is a G-protein coupled receptor (GPCR) and a crucial target for various inflammation-driven diseases. In the present study, molecular docking and molecular dynamics simulations were performed on a CCR2 homology model. This work includes the comparative MD simulations of uncomplexed and ‘antagonist-complexed’ CCR2 models. These simulations yield insights into the binding mechanism of antagonist TAK779 and improve the understanding of various structural changes induced by the ligand in the CCR2 protein. Here, one 20 ns MD simulation was carried out on the uncomplexed CCR2 model in lipid bilayer to explore the effects of lipid membrane on the protein. Another 20 ns MD simulation was performed under the similar conditions on the docked CCR2-TAK779 complex. An alteration in the position and orientation of the ligand in binding site was observed after the simulation. Examination of protein-ligand complex suggested that TAK779 produced a greater structural change on the TM-III, TM-IV, TM-V and TM-VI than TM-I, TM-II and TM-VII. Interaction networks involving the conserved residues of uncomplexed and ‘antagonist-complexed’ CCR2 models were also examined. The major difference was observed to be the role of conserved residues of the DRY motif of TM-III and the NPxxY motif of TM-VII of CCR2.
Marson, Ryan; Spellings, Matthew; Anderson, Joshua; Glotzer, Sharon
2014-03-01
Faceted shapes, such as polyhedra, are commonly created in experimental systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystalline nucleation and growth, vacancy motion, and glassy dynamics, are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We report the first implementation of DEM MD intended for thermodynamic nanoscale simulation. Our method is implemented in parallel on the GPU within the HOOMD-Blue framework. By decomposing the force calculation into its components, this implementation can take advantage of massive data parallelism, enabling optimal use of the GPU for even relatively small systems while achieving a speedup of 60 times over a single CPU core. This method is a natural extension of classical molecular dynamics into the realm of faceted particles, and allows simulation of disparate size scales ranging from the nanoscale to granular particulates, all within the same framework.
Zharifah, A.; Kusumowardani, E.; Saputro, A.; Sarwinda, D.
2017-07-01
According to data from GLOBOCAN (IARC) at 2012, breast cancer was the highest rated of new cancer case by 43.3 % (after controlled by age), with mortality rated as high as 12.9 %. Oncology is a major field which focusing on improving the development of drug and therapeutics cancer in pharmaceutical and biotechnology companies. Nowadays, many researchers lead to computational chemistry and bioinformatic for pharmacophore generation. A pharmacophore describes as a group of atoms in the molecule which is considered to be responsible for a pharmacological action. Prediction of biological function from chemical structure in silico modeling reduces the use of chemical reagents so the risk of environmental pollution decreased. In this research, we proposed QSAR model to analyze the composition of cancer drugs which assumed to be homogenous in character and treatment. Atomic interactions which analyzed are learned through parameters such as log p as descriptors hydrophobic, n_poinas descriptor contour strength and molecular structure, and also various concentrations inhibitor (micromolar and nanomolar) from NCBI drugs bank. The differences inhibitor activity was observed by the presence of IC 50 residues value from inhibitor substances at various concentration. Then, we got a general overview of the state of safety for drug stability seen from its IC 50 value. In our study, we also compared between micromolar and nanomolar inhibitor effect from QSAR model results. The QSAR model analysis shows that the drug concentration with nanomolar is better than micromolar, related with the content of inhibitor substances concentration. This QSAR model got the equation: Log 1/IC50 = (0.284) (±0.195) logP + (0.02) (±0.012) n_poin + (-0.005) (±0.083) Inhibition10.2nanoM + (0.1) (±0.079) Inhibition30.5nanoM + (-0.016) (±0.045) Inhibition91.5nanoM + (-2.572) (±1.570) (n = 13; r = 0.813; r2 = 0.660; s = 0.764; F = 2.720; q2 = 0.660).
Control of Mechanotransduction by Molecular Clutch Dynamics.
Elosegui-Artola, Alberto; Trepat, Xavier; Roca-Cusachs, Pere
2018-02-26
The linkage of cells to their microenvironment is mediated by a series of bonds that dynamically engage and disengage, in what has been conceptualized as the molecular clutch model. Whereas this model has long been employed to describe actin cytoskeleton and cell migration dynamics, it has recently been proposed to also explain mechanotransduction (i.e., the process by which cells convert mechanical signals from their environment into biochemical signals). Here we review the current understanding on how cell dynamics and mechanotransduction are driven by molecular clutch dynamics and its master regulator, the force loading rate. Throughout this Review, we place a specific emphasis on the quantitative prediction of cell response enabled by combined experimental and theoretical approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Molecular dynamics algorithms for quantum Monte Carlo methods
Miura, Shinichi
2009-11-01
In the present Letter, novel molecular dynamics methods compatible with corresponding quantum Monte Carlo methods are developed. One is a variational molecular dynamics method that is a molecular dynamics analog of quantum variational Monte Carlo method. The other is a variational path integral molecular dynamics method, which is based on the path integral molecular dynamics method for finite temperature systems by Tuckerman et al. [M. Tuckerman, B.J. Berne, G.J. Martyna, M.L. Klein, J. Chem. Phys. 99 (1993) 2796]. These methods are applied to model systems including the liquid helium-4, demonstrated to work satisfactorily for the tested ground state calculations.
Directory of Open Access Journals (Sweden)
H. Dominguez
2017-12-01
Full Text Available Isothermal-isobaric molecular dynamics simulations have been performed to examine an ample set of properties of the model water-N,N-dimethylformamide (DMF mixture as a function of composition. The SPC-E and TIP4P-Ew water models together with two united atom models for DMF [Chalaris M., Samios J., J. Chem. Phys., 2000, 112, 8581; Cordeiro J., Int. J. Quantum Chem., 1997, 65, 709] were used. Our principal analyses concern the behaviour of structural properties in terms of radial distribution functions, and the number of hydrogen bonds between molecules of different species as well as thermodynamic properties. Namely, we explore the density, excess mixing molar volume and enthalpy, the heat capacity and excess mixing heat capacity. Finally, the self-diffusion coefficients of species and the dielectric constant of the system are discussed. In addition, surface tension of water-DMF mixtures has been calculated and analyzed.
Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations
Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei
2017-02-01
Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.
A Long-Range Electric Field Solver for Molecular Dynamics Based on Atomistic-to-Continuum Modeling.
Templeton, Jeremy A; Jones, Reese E; Lee, Jonathan W; Zimmerman, Jonathan A; Wong, Bryan M
2011-06-14
Understanding charge transport processes at a molecular level is currently hindered by a lack of appropriate models for incorporating nonperiodic, anisotropic electric fields in molecular dynamics (MD) simulations. In this work, we develop a model for including electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and the algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. Our model represents the electric potential on a FE mesh satisfying a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagate to each atom through modified forces. The method is verified using simulations where analytical solutions are known or comparisons can be made to existing techniques. In addition, a calculation of a salt water solution in a silicon nanochannel is performed to demonstrate the method in a target scientific application in which ions are attracted to charged surfaces in the presence of electric fields and interfering media.
Filizola, Marta; Wang, Simon X.; Weinstein, Harel
2006-08-01
Based on the growing evidence that G-protein coupled receptors (GPCRs) form homo- and hetero-oligomers, models of GPCR signaling are now considering macromolecular assemblies rather than monomers, with the homo-dimer regarded as the minimal oligomeric arrangement required for functional coupling to the G-protein. The dynamic mechanisms of such signaling assemblies are unknown. To gain some insight into properties of GPCR dimers that may be relevant to functional mechanisms, we study their current structural prototype, rhodopsin. We have carried out nanosecond time-scale molecular dynamics (MD) simulations of a rhodopsin dimer and compared the results to the monomer simulated in the same type of bilayer membrane model composed of an equilibrated unit cell of hydrated palmitoyl-oleoyl-phosphatidyl choline (POPC). The dynamic representation of the homo-dimer reveals the location of structural changes in several regions of the monomeric subunits. These changes appear to be more pronounced at the dimerization interface that had been shown to be involved in the activation process [Proc Natl Acad Sci USA 102:17495, 2005]. The results are consistent with a model of GPCR activation that involves allosteric modulation through a single GPCR subunit per dimer.
Radford, Isolde H; Fersht, Alan R; Settanni, Giovanni
2011-06-09
Atomistic molecular dynamics simulations of the TZ1 beta-hairpin peptide have been carried out using an implicit model for the solvent. The trajectories have been analyzed using a Markov state model defined on the projections along two significant observables and a kinetic network approach. The Markov state model allowed for an unbiased identification of the metastable states of the system, and provided the basis for commitment probability calculations performed on the kinetic network. The kinetic network analysis served to extract the main transition state for folding of the peptide and to validate the results from the Markov state analysis. The combination of the two techniques allowed for a consistent and concise characterization of the dynamics of the peptide. The slowest relaxation process identified is the exchange between variably folded and denatured species, and the second slowest process is the exchange between two different subsets of the denatured state which could not be otherwise identified by simple inspection of the projected trajectory. The third slowest process is the exchange between a fully native and a partially folded intermediate state characterized by a native turn with a proximal backbone H-bond, and frayed side-chain packing and termini. The transition state for the main folding reaction is similar to the intermediate state, although a more native like side-chain packing is observed.
Ypma, R.J.F.
2013-01-01
To prevent infectious diseases from spreading, it is often very valuable to know how, when, where and between whom transmissions occur: the dynamics of the disease. These dynamics can be quantified using observations of illness, such as time of symptom onset. A relatively new source of information
Molecular dynamics simulation of a phospholipid membrane
Egberts, Egbert; Marrink, Siewert-Jan; Berendsen, Herman J.C.
We present the results of molecular dynamics (MD) simulations of a phospholipid membrane in water, including full atomic detail. The goal of the simulations was twofold: first we wanted to set up a simulation system which is able to reproduce experimental results and can serve as a model membrane in
Molecular dynamics simulation of impact test
Energy Technology Data Exchange (ETDEWEB)
Akahoshi, Y. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Schmauder, S.; Ludwig, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt
1998-11-01
This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)
Molecular dynamics simulation of impact test
International Nuclear Information System (INIS)
Akahoshi, Y.; Schmauder, S.; Ludwig, M.
1998-01-01
This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)
Reaction dynamics in polyatomic molecular systems
Energy Technology Data Exchange (ETDEWEB)
Miller, W.H. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.
Molecular dynamics simulations of weak detonations.
Am-Shallem, Morag; Zeiri, Yehuda; Zybin, Sergey V; Kosloff, Ronnie
2011-12-01
Detonation of a three-dimensional reactive nonisotropic molecular crystal is modeled using molecular dynamics simulations. The detonation process is initiated by an impulse, followed by the creation of a stable fast reactive shock wave. The terminal shock velocity is independent of the initiation conditions. Further analysis shows supersonic propagation decoupled from the dynamics of the decomposed material left behind the shock front. The dependence of the shock velocity on crystal nonlinear compressibility resembles solitary behavior. These properties categorize the phenomena as a weak detonation. The dependence of the detonation wave on microscopic potential parameters was investigated. An increase in detonation velocity with the reaction exothermicity reaching a saturation value is observed. In all other respects the model crystal exhibits typical properties of a molecular crystal.
Thomas-Fermi molecular dynamics
International Nuclear Information System (INIS)
Clerouin, J.; Pollock, E.L.; Zerah, G.
1992-01-01
A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)], the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker [Phys. Rev. A 38, 2205 (1988)]. As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated
Polwaththe-Gallage, Hasitha-Nayanajith; Sauret, Emilie; Nguyen, Nam-Trung; Saha, Suvash C.; Gu, YuanTong
2018-01-01
Liquid marbles are liquid droplets coated with superhydrophobic powders whose morphology is governed by the gravitational and surface tension forces. Small liquid marbles take spherical shapes, while larger liquid marbles exhibit puddle shapes due to the dominance of gravitational forces. Liquid marbles coated with hydrophobic magnetic powders respond to an external magnetic field. This unique feature of magnetic liquid marbles is very attractive for digital microfluidics and drug delivery systems. Several experimental studies have reported the behavior of the liquid marbles. However, the complete behavior of liquid marbles under various environmental conditions is yet to be understood. Modeling techniques can be used to predict the properties and the behavior of the liquid marbles effectively and efficiently. A robust liquid marble model will inspire new experiments and provide new insights. This paper presents a novel numerical modeling technique to predict the morphology of magnetic liquid marbles based on coarse grained molecular dynamics concepts. The proposed model is employed to predict the changes in height of a magnetic liquid marble against its width and compared with the experimental data. The model predictions agree well with the experimental findings. Subsequently, the relationship between the morphology of a liquid marble with the properties of the liquid is investigated. Furthermore, the developed model is capable of simulating the reversible process of opening and closing of the magnetic liquid marble under the action of a magnetic force. The scaling analysis shows that the model predictions are consistent with the scaling laws. Finally, the proposed model is used to assess the compressibility of the liquid marbles. The proposed modeling approach has the potential to be a powerful tool to predict the behavior of magnetic liquid marbles serving as bioreactors.
Dynamics and Thermodynamics of Molecular Machines
DEFF Research Database (Denmark)
Golubeva, Natalia
2014-01-01
Molecular machines, or molecular motors, are small biophysical devices that perform a variety of essential metabolic processes such as DNA replication, protein synthesis and intracellular transport. Typically, these machines operate by converting chemical energy into motion and mechanical work. Due...... to their microscopic size, molecular motors are governed by principles fundamentally different from those describing the operation of man-made motors such as car engines. In this dissertation the dynamic and thermodynamic properties of molecular machines are studied using the tools of nonequilibrium statistical...... transport, move on crowded tracks where they can encounter other motors, a phenomenon referred to as molecular motor traffic. In the second part, traffic models of kinesin motors under an external mechanical load are considered, and the efficiency at maximum power (EMP) is calculated as a convenient measure...
Molecular dynamics simulation of ribosome jam
Matsumoto, Shigenori
2011-09-01
We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We estimated the influence of the temperature and concentration of molecules on the hopping probability used in the ASEP model. Our model can also treat environmental effects on the translation process that cannot be explained by such cellular automaton models. © 2010 Elsevier B.V. All rights reserved.
Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics
International Nuclear Information System (INIS)
Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.
1992-09-01
Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs
Molecular Modeling of the Catalytic Domain of CyaA Deepened the Knowledge of Its Functional Dynamics
Directory of Open Access Journals (Sweden)
Thérèse E Malliavin
2017-06-01
Full Text Available Although CyaA has been studied for over three decades and revealed itself to be a very good prototype for developing various biotechnological applications, only a little is known about its functional dynamics and about the conformational landscape of this protein. Molecular dynamics simulations helped to clarify the view on these points in the following way. First, the model of interaction between AC and calmodulin (CaM has evolved from an interaction centered on the surface between C-CaM hydrophobic patch and the α helix H of AC, to a more balanced view, in which the C-terminal tail of AC along with the C-CaM Calcium loops play an important role. This role has been confirmed by the reduction of the affinity of AC for calmodulin in the presence of R338, D360 and N347 mutations. In addition, enhanced sampling studies have permitted to propose a representation of the conformational space for the isolated AC. It remains to refine this representation using structural low resolution information measured on the inactive state of AC. Finally, due to a virtual screening study on another adenyl cyclase from Bacillus anthracis, weak inhibitors of AC have been discovered.
International Nuclear Information System (INIS)
Kazanc, S.; Ozgen, S.; Adiguzel, O.
2003-01-01
The solid-solid phase transitions in NiAl alloys occur by the temperature changes and application of a pressure on the system. Both types of transitions are called martensitic transformation and have displacive and thermoelastic characters. Pressure effects on thermoelastic transformation in Ni 62.5 Al 37.5 alloy model have been studied by means of molecular dynamics method proposed by Parrinello-Rahman. Interaction forces between atoms in the model system were calculated by Lennard-Jones potential energy function. Thermodynamics and structural analysis of the martensitic transformations under hydrostatic pressure during the quenching processes have been performed. The simulation runs have been carried out in different hydrostatic pressures changing from zero to 40.65 GPa during the quenching process of the model alloy. At the zero and nonzero pressures, the system with B2-type ordered structure undergoes the product phase with L1 0 -type ordered structure by Bain distortion in the first step of martensitic transformation under the quenching process. The increase in hydrostatic pressure causes decrease in the formation time of the product phase, and twin-like lattice distortion is observed in low temperature L1 0 phase
Sahmani, S; Fattahi, A M
2017-08-01
New ceramic materials containing nanoscaled crystalline phases create a main object of scientific interest due to their attractive advantages such as biocompatibility. Zirconia as a transparent glass ceramic is one of the most useful binary oxides in a wide range of applications. In the present study, a new size-dependent plate model is constructed to predict the nonlinear axial instability characteristics of zirconia nanosheets under axial compressive load. To accomplish this end, the nonlocal continuum elasticity of Eringen is incorporated to a refined exponential shear deformation plate theory. A perturbation-based solving process is put to use to derive explicit expressions for nonlocal equilibrium paths of axial-loaded nanosheets. After that, some molecular dynamics (MD) simulations are performed for axial instability response of square zirconia nanosheets with different side lengths, the results of which are matched with those of the developed nonlocal plate model to capture the proper value of nonlocal parameter. It is demonstrated that the calibrated nonlocal plate model with nonlocal parameter equal to 0.37nm has a very good capability to predict the axial instability characteristics of zirconia nanosheets, the accuracy of which is comparable with that of MD simulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Amirkhanov, I V; Zemlyanaya, E V; Polanski, A; Puzynina, T P; Uzhinsky, V V
2004-01-01
Combinations of the QMD model with various models of nuclear residual de-excitation are considered. The QMD model parameters are fitted; neutron spectra in hadron-nucleus interactions are calculated. The numerical results were compared with analogous calculations by the cascade-evaporation model and with experimental data. The comparison shows that the numerical results are in agreement between each other and with the experimental data for the energies of projectile particles lower than 200-300 MeV for fast neutrons. Cross-sections of isotope yields in the neutron interactions with radioactive iodine, americium, plutonium and others isotopes have been calculated.
Rheology via nonequilibrium molecular dynamics
International Nuclear Information System (INIS)
Hoover, W.G.
1982-10-01
The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference
Maldonado, E; Roth, M W; Gray, Paul A
2009-06-01
We present and discuss the results of molecular dynamics computer simulations of crude oil confined between graphene planes. The crude oil is represented as a mixture of alkanes having 6 method of separating alkane mixtures at temperatures significantly different from those of conventional refining processes.
Wolthers, M.; Di Tommaso, D.; Du, Zhimei; de Leeuw, Nora H.
2013-01-01
It is generally accepted that cation dehydration is the rate-limiting step to crystal growth from aqueous solution. Here we employ classical molecular dynamics simulations to show that the water exchange frequency at structurally distinct calcium sites in the calcite surface varies by about two
Konstantinou, Konstantinos; Sushko, Peter V; Duffy, Dorothy M
2016-09-21
The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO 2 ) 57.5 -(B 2 O 3 ) 10 -(Na 2 O) 15 -(CaO) 15 -(MoO 3 ) 2.5 and (SiO 2 ) 57.3 -(B 2 O 3 ) 20 -(Na 2 O) 6.8 -(Li 2 O) 13.4 -(MoO 3 ) 2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na 2 MoO 4 and CaMoO 4 ). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations.
Gómez Santiago, Carla; Paci, Emanuele; Donnelly, Dan
2018-03-29
The receptor for glucagon-like peptide 1 (GLP-1R) is a validated drug target for the treatment of type 2 diabetes and obesity. Recently the first three structures of GLP-1R were published - an X-ray structure of the apo transmembrane domain in the inactive conformation; an X-ray structure of the full-length receptor bound to a truncated peptide agonist; and a cryo-EM structure of the full-length receptor bound with GLP-1 and coupled to the G protein G s . Since the inactive structure was incomplete, and the two active-state structures shared significant differences, we utilised all available knowledge to build hybrid models of the full length active and inactive state receptors. The two models were simulated using molecular dynamics and the output trajectories analysed and compared to reveal insights into the mechanism for agonist-mediated receptor activation. His-7, Glu-9 and Asp-15 of GLP-1 act together to destabilise transmembrane helix 6 and extracellular loop 3 in order to generate an active conformation of GLP-1R. Copyright © 2018 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Sanjib C. Chowdhury
2017-02-01
Full Text Available Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used in protective armor systems. The influence of multiaxial loading on fiber failure is not well understood. Experiments show reduction in the tensile strength of these fibers after axial and transverse compression. In this paper, we use molecular dynamics (MD simulations to explain and develop a fundamental understanding of this experimental observation since the property reduction mechanism evolves from the atomistic level. An all-atom MD method is used where bonded and non-bonded atomic interactions are described through a state-of-the-art reactive force field. Monotonic tension simulations in three principal directions of the models are conducted to determine the anisotropic elastic and strength properties. Then the models are subjected to multi-axial loads—axial compression, followed by axial tension and transverse compression, followed by axial tension. MD simulation results indicate that pre-compression distorts the crystal structure, inducing preloading of the covalent bonds and resulting in lower tensile properties.
Efficient 3D Kinetic Monte Carlo Method for Modeling of Molecular Structure and Dynamics
DEFF Research Database (Denmark)
Panshenskov, Mikhail; Solov'yov, Ilia; Solov'yov, Andrey V.
2014-01-01
Self-assembly of molecular systems is an important and general problem that intertwines physics, chemistry, biology, and material sciences. Through understanding of the physical principles of self-organization, it often becomes feasible to control the process and to obtain complex structures with...... the kinetic Monte Carlo approach in a three-dimensional space. We describe the computational side of the developed code, discuss its efficiency, and apply it for studying an exemplary system....... with tailored properties, for example, bacteria colonies of cells or nanodevices with desired properties. Theoretical studies and simulations provide an important tool for unraveling the principles of self-organization and, therefore, have recently gained an increasing interest. The present article features...... an extension of a popular code MBN EXPLORER (MesoBioNano Explorer) aiming to provide a universal approach to study self-assembly phenomena in biology and nanoscience. In particular, this extension involves a highly parallelized module of MBN EXPLORER that allows simulating stochastic processes using...
Baron, R; de Vries, AH; Hunenberger, PH; van Gunsteren, WF
2006-01-01
Molecular liquids can be modeled at different levels of spatial resolution. In atomic-level (AL) models, all (heavy) atoms can be explicitly simulated. In coarse-grained (CG) models, particles (beads) that represent groups of covalently bound atoms are used as elementary units. Ideally, a CG model
Molecular dynamics study of silver
International Nuclear Information System (INIS)
Akhter, J.I.; Yaldram, K.; Ahmad, W.; Khan, M.K.; Rehman, T.S.
1995-03-01
We present results of molecular dynamics study using the embedded atom potential to examine the equilibrium bulk properties of Ag. We calculate the total energy and the lattice parameters as a function of temperature. From these we determine the specific heat and linear coefficient of thermal expansion. The comparison with experimental results of these two quantities is found to be excellent. We have also calculated the mean square displacement of the atoms in the three directions. As expected because of symmetry the displacements in the three directions are comparable and increase with increasing temperature. (author) 5 figs
Siqueira, Andrei Santos; Lima, Alex Ranieri Jerônimo; Dall'Agnol, Leonardo Teixeira; de Azevedo, Juliana Simão Nina; da Silva Gonçalves Vianez, João Lídio; Gonçalves, Evonnildo Costa
2016-03-01
Rubisco catalyzes the first step reaction in the carbon fixation pathway, bonding atmospheric CO2/O2 to ribulose 1,5-bisphosphate; it is therefore considered one of the most important enzymes in the biosphere. Genetic modifications to increase the carboxylase activity of rubisco are a subject of great interest to agronomy and biotechnology, since this could increase the productivity of biomass in plants, algae and cyanobacteria and give better yields in crops and biofuel production. Thus, the aim of this study was to characterize in silico the catalytic domain of the rubisco large subunit (rbcL gene) of Cyanobium sp. CACIAM14, and identify target sites to improve enzyme affinity for ribulose 1,5-bisphosphate. A three-dimensional model was built using MODELLER 9.14, molecular dynamics was used to generate a 100 ns trajectory by AMBER12, and the binding free energy was calculated using MM-PBSA, MM-GBSA and SIE methods with alanine scanning. The model obtained showed characteristics of form-I rubisco, with 15 beta sheets and 19 alpha helices, and maintained the highly conserved catalytic site encompassing residues Lys175, Lys177, Lys201, Asp203, and Glu204. The binding free energy of the enzyme-substrate complexation of Cyanobium sp. CACIAM14 showed values around -10 kcal mol(-1) using the SIE method. The most important residues for the interaction with ribulose 1,5-bisphosphate were Arg295 followed by Lys334. The generated model was successfully validated, remaining stable during the whole simulation, and demonstrated characteristics of enzymes with high carboxylase activity. The binding analysis revealed candidates for directed mutagenesis sites to improve rubisco's affinity.
Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi
2013-04-01
Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes. Copyright © 2013
Kostritskii, Andrei Yu; Kondinskaia, Diana A; Nesterenko, Alexey M; Gurtovenko, Andrey A
2016-10-11
Although synthetic cationic polymers represent a promising class of effective antibacterial agents, the molecular mechanisms behind their antimicrobial activity remain poorly understood. To this end, we employ atomic-scale molecular dynamics simulations to explore adsorption of several linear cationic polymers of different chemical structure and protonation (polyallylamine (PAA), polyethylenimine (PEI), polyvinylamine (PVA), and poly-l-lysine (PLL)) on model bacterial membranes (4:1 mixture of zwitterionic phosphatidylethanolamine (PE) and anionic phosphatidylglycerol (PG) lipids). Overall, our findings show that binding of polycations to the anionic membrane surface effectively neutralizes its charge, leading to the reorientation of water molecules close to the lipid/water interface and to the partial release of counterions to the water phase. In certain cases, one has even an overcharging of the membrane, which was shown to be a cooperative effect of polymer charges and lipid counterions. Protonated amine groups of polycations are found to interact preferably with head groups of anionic lipids, giving rise to formation of hydrogen bonds and to a noticeable lateral immobilization of the lipids. While all the above findings are mostly defined by the overall charge of a polymer, we found that the polymer architecture also matters. In particular, PVA and PEI are able to accumulate anionic PG lipids on the membrane surface, leading to lipid segregation. In turn, PLL whose charge twice exceeds charges of PVA/PEI does not induce such lipid segregation due to its considerably less compact architecture and relatively long side chains. We also show that partitioning of a polycation into the lipid/water interface is an interplay between its protonation level (the overall charge) and hydrophobicity of the backbone. Therefore, a possible strategy in creating highly efficient antimicrobial polymeric agents could be in tuning these polycation's properties through proper
Rayevsky, A V; Sharifi, M; Tukalo, M A
2017-09-01
Aminoacyl-tRNA synthetases (aaRSs) play important roles in maintaining the accuracy of protein synthesis. Some aaRSs accomplish this via editing mechanisms, among which leucyl-tRNA synthetase (LeuRS) edits non-cognate amino acid norvaline mainly by post-transfer editing. However, the molecular basis for this pathway for eukaryotic and archaeal LeuRS remain unclear. In this study, a complex of archaeal P. horikoshii LeuRS (PhLeuRS) with misacylated tRNA Leu was modeled wherever tRNA's acceptor stem was oriented directly into the editing site. To understand the distinctive features of organization we reconstructed a complex of PhLeuRS with tRNA and visualize post-transfer editing interactions mode by performing molecular dynamics (MD) simulation studies. To study molecular basis for substrate selectivity by PhLeuRS's editing site we utilized MD simulation of the entire LeuRS complexes using a diverse charged form of tRNAs, namely norvalyl-tRNA Leu and isoleucyl-tRNA Leu . In general, the editing site organization of LeuRS from P.horikoshii has much in common with bacterial LeuRS. The MD simulation results revealed that the post-transfer editing substrate norvalyl-A76, binds more strongly than isoleucyl-A76. Moreover, the branched side chain of isoleucine prevents water molecules from being closer and hence the hydrolysis reaction slows significantly. To investigate a possible mechanism of the post-transfer editing reaction, by PhLeuRS we have determined that two water molecules (the attacking and assisting water molecules) are localized near the carbonyl group of the amino acid to be cleaved off. These water molecules approach the substrate from the opposite side to that observed for Thermus thermophilus LeuRS (TtLeuRS). Based on the results obtained, it was suggested that the post-transfer editing mechanism of PhLeuRS differs from that of prokaryotic TtLeuRS. Copyright © 2017 Elsevier Inc. All rights reserved.
Henriques, João; Skepö, Marie
2016-07-12
Here, we first present a follow-up to a previous work by our group on the problematic of molecular dynamics simulations of intrinsically disordered proteins (IDPs) [ Henriques et al. J. Chem. Theory Comput. 2015 , 11 , 3420 - 3431 ], using the recently developed TIP4P-D water model. When used in conjunction with the standard AMBER ff99SB-ILDN force field and applied to the simulation of Histatin 5, our IDP model, we obtain results which are in excellent agreement with the best performing IDP-suitable force field from the earlier study and with experiment. We then assess the representativeness of the IDP models used in these and similar studies, finding that most are too short in comparison to the average IDP and contain a bias toward hydrophilic amino acid residues. Moreover, several key order- and disorder-promoting residues are also found to be misrepresented. It seems appropriate for future studies to address these issues.
Kalidindi, Surya R; Gomberg, Joshua A; Trautt, Zachary T; Becker, Chandler A
2015-08-28
Structure quantification is key to successful mining and extraction of core materials knowledge from both multiscale simulations as well as multiscale experiments. The main challenge stems from the need to transform the inherently high dimensional representations demanded by the rich hierarchical material structure into useful, high value, low dimensional representations. In this paper, we develop and demonstrate the merits of a data-driven approach for addressing this challenge at the atomic scale. The approach presented here is built on prior successes demonstrated for mesoscale representations of material internal structure, and involves three main steps: (i) digital representation of the material structure, (ii) extraction of a comprehensive set of structure measures using the framework of n-point spatial correlations, and (iii) identification of data-driven low dimensional measures using principal component analyses. These novel protocols, applied on an ensemble of structure datasets output from molecular dynamics (MD) simulations, have successfully classified the datasets based on several model input parameters such as the interatomic potential and the temperature used in the MD simulations.
International Nuclear Information System (INIS)
Kalidindi, Surya R; Gomberg, Joshua A; Trautt, Zachary T; Becker, Chandler A
2015-01-01
Structure quantification is key to successful mining and extraction of core materials knowledge from both multiscale simulations as well as multiscale experiments. The main challenge stems from the need to transform the inherently high dimensional representations demanded by the rich hierarchical material structure into useful, high value, low dimensional representations. In this paper, we develop and demonstrate the merits of a data-driven approach for addressing this challenge at the atomic scale. The approach presented here is built on prior successes demonstrated for mesoscale representations of material internal structure, and involves three main steps: (i) digital representation of the material structure, (ii) extraction of a comprehensive set of structure measures using the framework of n-point spatial correlations, and (iii) identification of data-driven low dimensional measures using principal component analyses. These novel protocols, applied on an ensemble of structure datasets output from molecular dynamics (MD) simulations, have successfully classified the datasets based on several model input parameters such as the interatomic potential and the temperature used in the MD simulations. (paper)
Wood, Irene; Martini, M. Florencia; Pickholz, Mónica
2013-08-01
In this work, we report a molecular dynamics (MD) simulations study of relevant biological molecules as serotonin (neutral and protonated) and its precursors, tryptophan and 5-hydroxy-tryptophan, in a fully hydrated bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC). The simulations were carried out at the fluid lamellar phase of POPC at constant pressure and temperature conditions. Two guest molecules of each type were initially placed at the water phase. We have analyzed, the main localization, preferential orientation and specific interactions of the guest molecules within the bilayer. During the simulation run, the four molecules were preferentially found at the water-lipid interphase. We found that the interactions that stabilized the systems are essentially hydrogen bonds, salt bridges and cation-π. None of the guest molecules have access to the hydrophobic region of the bilayer. Besides, zwitterionic molecules have access to the water phase, while protonated serotonin is anchored in the interphase. Even taking into account that these simulations were done using a model membrane, our results suggest that the studied molecules could not cross the blood brain barrier by diffusion. These results are in good agreement with works that show that serotonin and Trp do not cross the BBB by simple diffusion.
Beckstein, Oliver; Dotson, David L.; Lee, Chiara; Yashiro, Shoko; Uzdavinys, Povilas; von Ballmoos, Christoph; Drew, David; Cameron, Alexander D.
2015-03-01
Na+/H+ antiporters are membrane proteins that are vital for cell homeostasis but the mechanistic details of their transport mechanism remain unclear, in particular, how Na+ and protons bind to the transporter. We recently solved X-ray crystal structures for two such antiporters (NhaA and NapA) in two different conformations of the transport cycle. All-atom molecular dynamics (MD) simulations (for a total simulated time > 10 μ s), indicate that sodium binding is dependent on the charge states of two conserved aspartate residues. A conserved lysine forms a previously unidentified salt bridge with one of the asparates. Under simulated physiological pH the presence of a Na+ ion disrupts and breaks the salt bridge in NhaA. To quantify proton binding, we then performed heuristic pKa calculations on our ensemble of simulations. The calculations support our novel hypothesis that the conserved lysine in these antiporter binds protons in a sodium-dependent manner and thus acts as part of the transport machinery. In conjunction with simulations of the conformational transition we propose a new mechanistic model of ion binding for the CPA2 class of antiporters within the larger framework of the alternating access mechanism of transmembrane transport.
A concurrent multiscale micromorphic molecular dynamics
International Nuclear Information System (INIS)
Li, Shaofan; Tong, Qi
2015-01-01
In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation
Wu, Xiaojie; Li, Xiantao
2015-01-01
Results from molecular dynamics simulations often need to be further processed to understand the physics on a larger scale. This paper considers the definitions of momentum and energy fluxes obtained from a control-volume approach. To assess the validity of these defined quantities, two consistency criteria are proposed. As examples, the embedded atom potential and the Tersoff potential are considered. The consistency is verified using analytical and numerical methods.
Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A
2014-10-14
Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.
Chen, Yunjie; Roux, Benoît
2015-08-11
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up
Mohammadi, Kianoosh; Mahinzare, Mohammad; Rajabpour, Ali; Ghadiri, Majid
2017-03-01
In this article, the free vibration analysis of a thin conical nanotube resting on an elastic foundation is investigated for the first time by means of the modified couple stress theory (MCST) and molecular dynamics (MD) simulation. The proposed model in the MCST framework, its equations of motion and boundary conditions are derived by Hamilton's principle based on the thin shell model of Love. The differential quadrature method (DQM) is applied to discretize the equations of motion. Molecular dynamics (MD) simulation is performed via the AIREBO potential function, which is recommended in vibrational studies. The accuracy of the presented model is verified for previous studies with both methods. The novelty of the current study is reporting a specified length scale parameter of MCST which has a good conformity with MD results. This value is exclusively related to the proposed model of the present study. The effect of the elastic foundation stiffness is investigated with molecular dynamics for the first time as well. The results can have many applications, such as in modeling of scanning probe microscopy and biomedical microsystems.
Theoretical Concepts in Molecular Photodissociation Dynamics
DEFF Research Database (Denmark)
Henriksen, Niels Engholm
1995-01-01
This chapter contains sections titled: Introduction Quantum Dynamics of Molecular Photofragmentation The Total Reaction Probability Final Product Distributions Time-Independent Approach, Stationary Scattering States Gaussian Wave Packet Dynamics Wigner Phase Space Representation The Diatomic...
Myers, Stephanie A.
2003-04-01
The Molecular Model Game is used to review Lewis structures and VSEPR theory. In this game, teams of students compete to complete problems quickly. Variations with other types of problems involving stoichiometry or equilibria are also possible.
Nguyen, Ba Nghiep; Gao, Fei; Henager, Charles H.; Kurtz, Richard J.
2014-05-01
This article proposes a new method to estimate the thermal conductivity of SiC/SiC composites subjected to neutron irradiation. The modeling method bridges different scales from the atomic scale to the scale of a 2D SiC/SiC composite. First, it computes the irradiation-induced point defects in perfect crystalline SiC using molecular dynamics (MD) simulations to compute the defect thermal resistance as a function of vacancy concentration and irradiation dose. The concept of defect thermal resistance is explored explicitly in the MD data using vacancy concentrations and thermal conductivity decrements due to phonon scattering. Point defect-induced swelling for chemical vapor deposited (CVD) SiC as a function of irradiation dose is approximated by scaling the corresponding MD results for perfect crystal β-SiC to experimental data for CVD-SiC at various temperatures. The computed thermal defect resistance, thermal conductivity as a function of grain size, and definition of defect thermal resistance are used to compute the thermal conductivities of CVD-SiC, isothermal chemical vapor infiltrated (ICVI) SiC and nearly-stoichiometric SiC fibers. The computed fiber and ICVI-SiC matrix thermal conductivities are then used as input for an Eshelby-Mori-Tanaka approach to compute the thermal conductivities of 2D SiC/SiC composites subjected to neutron irradiation within the same irradiation doses. Predicted thermal conductivities for an irradiated Tyranno-SA/ICVI-SiC composite are found to be comparable to available experimental data for a similar composite ICVI-processed with these fibers.
Molecular dynamics studies of superionic conductors
International Nuclear Information System (INIS)
Rahman, A.; Vashishta, P.
1983-01-01
Structural and dynamical properties of superionic conductors AgI and CuI are studied using molecular dynamics (MD) techniques. The model of these superionic conductors is based on the use of effective pair potentials. To determine the constants in these potentials, cohesive energy and bulk modulus are used as input: in addition one uses notions of ionic size based on the known crystal structure. Salient features of the MD technique are outlined. Methods of treating long range Coulomb forces are discussed in detail. This includes the manner of doing Ewald sum for MD cells of arbitrary shape. Features that can be incorporated to expedite the MD calculations are also discussed. A novel MD technique which allows for a dynamically controlled variation of the shape and size of the MD cell is described briefly. The development of this novel technique has made it possible to study structural phase transitions in superionic conductors. 68 references, 17 figures, 2 tables
Kaminska, E; Tarnacka, M; Wlodarczyk, P; Jurkiewicz, K; Kolodziejczyk, K; Dulski, M; Haznar-Garbacz, D; Hawelek, L; Kaminski, K; Wlodarczyk, A; Paluch, M
2015-08-03
Molecular dynamics of pure nifedipine and its solid dispersions with modified carbohydrates as well as the crystallization kinetics of active pharmaceutical ingredient (API) above and below the glass transition temperature were studied in detail by means of broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction method. It was found that the activation barrier of crystallization increases in molecular dispersions composed of acetylated disaccharides, whereas it slightly decreases in those consisting of modified monocarbohydrates for the experiments carried out above the glass transition temperature. As shown by molecular dynamics simulations it can be related to the strength, character, and structure of intermolecular interactions between API and saccharides, which vary dependently on the excipient. Long-term physical stability studies showed that, in solid dispersions consisting of acetylated maltose and acetylated sucrose, the crystallization of nifedipine is dramatically slowed down, although it is still observable for a low concentration of excipients. With increasing content of modified carbohydrates, the crystallization of API becomes completely suppressed. This is most likely due to additional barriers relating to the intermolecular interactions and diffusion of nifedipine that must be overcome to trigger the crystallization process.
Konovalenko S., Iv.; Psakhie, S. G.
2017-12-01
Using the molecular dynamics method, we simulated the atomic scale butt friction stir welding on two crystallites and varied the onset FSW tool plunge depth. The effects of the plunge depth value on the thermomechanical evolution of nanosized crystallites and mass transfer in the course of FSW have been studied. The increase of plunge depth values resulted in more intense heating and reducing the plasticized metal resistance to the tool movement. The mass transfer intensity was hardly dependent on the plunge depth value. The plunge depth was recommended to be used as a FSW process control parameter in addition to the commonly used ones.
Open source molecular modeling.
Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan
2016-09-01
The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Mavioso, I C V C; de Andrade, V C R; Palace Carvalho, A J; Martins do Canto, A M T
2017-09-01
T-2410 and T-2429 are HIV fusion inhibitor peptides (FI) designed to present a higher efficiency even against HIV strains that developed resistance against other FIs. Similar peptides were shown to interact with model membranes both in the liquid disordered phase and in the liquid ordered state. Those results indicated that such interaction is important to function and could be correlated with their effectiveness. Extensive molecular dynamics simulations were carried out to investigate the interactions between both T-2410 and T-2429 with bilayers of pure 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and a mixture of POPC/cholesterol (Chol) (1:1). It was observed that both peptides interact strongly with both membrane systems, especially with the POPC/Chol systems, where these peptides show the highest number of H-bonds observed so far. T-2410 and T-2429 showed higher extent of interaction with bilayers when compared to T-20 or T-1249 in previous studies. This is most notable in POPC/Chol membranes where, although able to form H-bonds with Chol, they do so to a lesser extent than T-1249 does, the latter being the only FI peptide so far that was observed to form H-bonds with Chol. This behavior suggests that interaction of FI peptides with rigid Chol rich membranes may not be as dependent from peptide/Chol H-bond formation as previous results of T-1249 behavior led to believe. As in other similar peptides, the higher ability to interact with membranes shown by T-2410 and T2429 is probably correlated with its higher inhibitory efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Suzuki, Kimichi; Kayanuma, Megumi; Tachikawa, Masanori; Ogawa, Hiroshi; Nishihara, Hirotomo; Kyotani, Takashi; Nagashima, Umpei
2011-01-01
Research highlights: → The stable hydrogen adsorption sites on C 36 H 12 were evaluated at 300 K using path integral molecular dynamics. → In the static MO calculation and conventional MD simulation, five stable adsorption sites of hydrogen atom were found. → In path integral simulation, only four stable adsorption sites were obtained. → The thermal and nuclear quantum effects are key role to settle the hydrogen adsorption sites on carbon materials. - Abstract: To settle the hydrogen adsorption sites on buckybowl C 36 H 12 , which is picked up from zeolite-templated carbon (ZTC), we have performed path integral molecular dynamics (PIMD) simulation including thermal and nuclear quantum fluctuations under semi-empirical PM3 method. In the static PM3 calculation and classical simulation the five stable adsorption sites of hydrogen atom are optimized inside a buckybowl C 36 H 12 , which are labeled as α-, β 1 -, β 2 -, γ-, and δ-carbons from edge to innermost carbon. In PIMD simulation, meanwhile, stable adsorption site is not appeared on δ-carbon, but on only α-, β 1 -, β 2 -, and γ-carbons. This result is due to the fact that the adsorbed hydrogen atom can easily go over the barrier for hydrogen transferring from δ- to β 1 -carbons by thermal and nuclear quantum fluctuations. The thermal and nuclear quantum effects are key role to settle the hydrogen adsorption sites on carbon materials.
Classical molecular dynamics simulation of nuclear fuels
International Nuclear Information System (INIS)
Devanathan, R.; Krack, M.; Bertolus, M.
2015-01-01
Molecular dynamics simulation using forces calculated from empirical potentials, commonly called classical molecular dynamics, is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermomechanical properties. This enables one to obtain insights into fundamental mechanisms governing the behaviour of nuclear fuel, as well as parameters that can be used as inputs for mesoscale models. The interaction potentials used for the force calculations are generated by fitting properties of interest to experimental data and electronic structure calculations (see Chapter 12). We present here the different types of potentials currently available for UO 2 and illustrations of applications to the description of the behaviour of this material under irradiation. The results obtained from the present generation of potentials for UO 2 are qualitatively similar, but quantitatively different. There is a need to refine these existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, develop models that are equipped to handle deviations from stoichiometry, and validate the models and assumptions used. (authors)
Artificial surface-mounted molecular rotors: Molecular dynamics simulations
Czech Academy of Sciences Publication Activity Database
Vacek, Jaroslav; Michl, Josef
2007-01-01
Roč. 17, č. 5 (2007), s. 730-739 ISSN 1616-301X R&D Projects: GA AV ČR IAA400550616; GA MŠk ME 857 Institutional research plan: CEZ:AV0Z40550506 Keywords : molecular dynamics * molecular machines * nanomaterials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.496, year: 2007
Thermally driven molecular linear motors - A molecular dynamics study
DEFF Research Database (Denmark)
Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard Lawrence
2009-01-01
We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube. The simulations indicate that the motion of the capsule can be controlled...
Directory of Open Access Journals (Sweden)
Nagasundaram N
Full Text Available The cyclin-dependent kinase 4 (CDK4-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1 and protein-ligand (CDK4-flavopiridol interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment.
Chirality in molecular collision dynamics
Lombardi, Andrea; Palazzetti, Federico
2018-02-01
Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.
Simin, A. A.; Fridman, A. M.; Haud, U. A.
1991-09-01
A Galaxy model in which the surface density of the gas component has a sharp (two orders of magnitude) jump in the region of the outer radius of the molecular ring is constructed on the basis of observational data. This model is used to calculate the contributions of each population to the model curve of Galactic rotation. The value of the dimensionless increment of hydrodynamical instability for the gas component, being much less than 1, coincides with a similar magnitude for the same gas in the gravity field of the entire Galaxy. It is concluded that the unstable gas component of the Galaxy lies near the limit of the hydrodynamical instability, which is in accordance with the Le Chatelier principle. The stellar populations of the Galaxy probably do not affect the generation of the spiral structure in the gaseous component.
Visualizing Energy on Target: Molecular Dynamics Simulations
2017-12-01
ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target
Molecular dynamics in high electric fields
Energy Technology Data Exchange (ETDEWEB)
Apostol, M., E-mail: apoma@theory.nipne.ro; Cune, L.C.
2016-06-15
Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.
Molecular dynamics in high electric fields
International Nuclear Information System (INIS)
Apostol, M.; Cune, L.C.
2016-01-01
Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.
Molecular dynamics of a proguanil derivative
African Journals Online (AJOL)
pc
ABSTRACT. Proguanil is a prophylactic antimalarial drug t stopping the malaria parasites from reprod molecular dynamics of a derivative of Progua benzene ring of the molecule of Proguanil derivative. The molecular geometries of chemical calculations at the Restricted Hatre. 31G(d,p) and 6-31++G. Also, Density Func.
Molecular ions, Rydberg spectroscopy and dynamics
International Nuclear Information System (INIS)
Jungen, Ch.
2015-01-01
Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering
Molecular ions, Rydberg spectroscopy and dynamics
Energy Technology Data Exchange (ETDEWEB)
Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)
2015-01-22
Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.
Molecular-dynamics analysis of the diffusion of molecular hydrogen in all-silica sodalite
Van den Berg, A.W.C.; Bromley, S.T.; Flikkema, E.; Wojdel, J.; Maschmeyer, T.; Jansen, J.C.
2004-01-01
In order to investigate the technical feasibility of crystalline porous silicates as hydrogen storage materials, the self-diffusion of molecular hydrogen in all-silica sodalite is modeled using large-scale classical molecular-dynamics simulations employing full lattice flexibility. In the
Multiple grid methods for classical molecular dynamics.
Skeel, Robert D; Tezcan, Ismail; Hardy, David J
2002-04-30
Presented in the context of classical molecular mechanics and dynamics are multilevel summation methods for the fast calculation of energies/forces for pairwise interactions, which are based on the hierarchical interpolation of interaction potentials on multiple grids. The concepts and details underlying multigrid interpolation are described. For integration of molecular dynamics the use of different time steps for different interactions allows longer time steps for many of the interactions, and this can be combined with multiple grids in space. Comparison is made to the fast multipole method, and evidence is presented suggesting that for molecular simulations multigrid methods may be superior to the fast multipole method and other tree methods.
Osmosis : a molecular dynamics computer simulation study
Lion, Thomas
Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..
Directory of Open Access Journals (Sweden)
Haiyan Qian
2016-09-01
Full Text Available 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 is a potential target for the treatment of numerous human disorders, such as diabetes, obesity, and metabolic syndrome. In this work, molecular modeling studies combining molecular docking, 3D-QSAR, MESP, MD simulations and free energy calculations were performed on pyridine amides and 1,2,4-triazolopyridines as 11β-HSD1 inhibitors to explore structure-activity relationships and structural requirement for the inhibitory activity. 3D-QSAR models, including CoMFA and CoMSIA, were developed from the conformations obtained by docking strategy. The derived pharmacophoric features were further supported by MESP and Mulliken charge analyses using density functional theory. In addition, MD simulations and free energy calculations were employed to determine the detailed binding process and to compare the binding modes of inhibitors with different bioactivities. The binding free energies calculated by MM/PBSA showed a good correlation with the experimental biological activities. Free energy analyses and per-residue energy decomposition indicated the van der Waals interaction would be the major driving force for the interactions between an inhibitor and 11β-HSD1. These unified results may provide that hydrogen bond interactions with Ser170 and Tyr183 are favorable for enhancing activity. Thr124, Ser170, Tyr177, Tyr183, Val227, and Val231 are the key amino acid residues in the binding pocket. The obtained results are expected to be valuable for the rational design of novel potent 11β-HSD1 inhibitors.
Qian, Haiyan; Chen, Jiongjiong; Pan, Youlu; Chen, Jianzhong
2016-09-19
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a potential target for the treatment of numerous human disorders, such as diabetes, obesity, and metabolic syndrome. In this work, molecular modeling studies combining molecular docking, 3D-QSAR, MESP, MD simulations and free energy calculations were performed on pyridine amides and 1,2,4-triazolopyridines as 11β-HSD1 inhibitors to explore structure-activity relationships and structural requirement for the inhibitory activity. 3D-QSAR models, including CoMFA and CoMSIA, were developed from the conformations obtained by docking strategy. The derived pharmacophoric features were further supported by MESP and Mulliken charge analyses using density functional theory. In addition, MD simulations and free energy calculations were employed to determine the detailed binding process and to compare the binding modes of inhibitors with different bioactivities. The binding free energies calculated by MM/PBSA showed a good correlation with the experimental biological activities. Free energy analyses and per-residue energy decomposition indicated the van der Waals interaction would be the major driving force for the interactions between an inhibitor and 11β-HSD1. These unified results may provide that hydrogen bond interactions with Ser170 and Tyr183 are favorable for enhancing activity. Thr124, Ser170, Tyr177, Tyr183, Val227, and Val231 are the key amino acid residues in the binding pocket. The obtained results are expected to be valuable for the rational design of novel potent 11β-HSD1 inhibitors.
Spin-diffusions and diffusive molecular dynamics
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
Directory of Open Access Journals (Sweden)
Yann Bouret
Full Text Available We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.
Bouret, Yann; Argentina, Médéric; Counillon, Laurent
2014-01-01
We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.
Molecular Dynamics Simulations for Predicting Surface Wetting
Directory of Open Access Journals (Sweden)
Jing Chen
2014-06-01
Full Text Available The investigation of wetting of a solid surface by a liquid provides important insights; the contact angle of a liquid droplet on a surface provides a quantitative measurement of this interaction and the degree of attraction or repulsion of that liquid type by the solid surface. Molecular dynamics (MD simulations are a useful way to examine the behavior of liquids on solid surfaces on a nanometer scale. Thus, we surveyed the state of this field, beginning with the fundamentals of wetting calculations to an examination of the different MD methodologies used. We highlighted some of the advantages and disadvantages of the simulations, and look to the future of computer modeling to understand wetting and other liquid-solid interaction phenomena.
Variational methods in molecular modeling
2017-01-01
This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal dispersions, liquid crystals, polymer blends, lipid membranes, microemulsions, magnetic materials and high-temperature superconductors. All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical unders...
Structure of hydrogenated amorphous silicon from ab initio molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))
1991-09-15
We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.
Advances in molecular vibrations and collision dynamics molecular clusters
Bacic, Zatko
1998-01-01
This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...
International Nuclear Information System (INIS)
Kakalis, L.T.
1989-01-01
The potential of high-resolution 13 C NMR for the characterization of soybean storage proteins was explored. The spectra of a commercial soy protein isolate as well as those of alkali-denatured 7S and 11S soybean globulins were well resolved and tentatively assigned. Relaxation measurements indicated fast motion for several side chains and the protein backbone. Protein fractions (11S and 7S) were also investigated at various states of molecular association. The large size of the multisubunit soybean storage proteins affected adversely both the resolution and the sensitivity of their 13 C NMR spectra. A comparison of 17 O and 2 H NMR relaxation rates of water in solutions of lysozyme (a model system) as a function of concentration, pH and magnetic field suggested that only 17 O monitors directly the hydration of lysozyme. Analysis of 17 O NMR lysozyme hydration data in terms of a two-state, fast-exchange, anisotropic model resulted in hydration parameters which are consistent with the protein's physico-chemical properties. The same model was applied to the calculation of the amount and mobility of bound water in soy protein dispersions by means of 17 O NMR relaxation measurements as a function of protein concentration. The protein concentration dependences of 1 H transverse NMR relaxation measurements at various pH and ionic strength values were fitted by a viral expansion. The interpretation of the data was based on the effects of protein aggregation, salt binding and protein group ionization on the NMR measurements. In all cases, relaxation rates showed a linear dependence on protein activity
McGill, S; Gulabivala, K; Mordan, N; Ng, Y-L
2008-07-01
To compare the efficacy of three irrigation protocols using an established ex vivo bio-molecular film model. Thirty human teeth with single straight canals were randomly allocated to three groups [static, manual-dynamic, automated-dynamic (RinsEndo]; each with a sub-group (n = 5) for needle position at 4 or 10 mm short of the working length (WL). The root canals were prepared to apical size 40, taper 0.08. The teeth were split longitudinally into two halves and a standard coat of stained-collagen was applied to the canal surfaces. The re-assembled teeth were irrigated using one of the protocols with the irrigation needle at one of two positions. Digital images of the canal surfaces, before and after irrigation with 18 mL of 2.5% NaOCl, were used to score surface coverage with stained-collagen using image-analyses (ipWin4). The data were analysed using linear regression models. The canal area covered with stained-collagen was significantly (P irrigation (manual/automated) compared with static irrigation; but automated-dynamic irrigation was significantly (P = 0.037) less effective than manual-dynamic irrigation. The 'orientation of needle port', 'corono-apical level of canal' and 'apical extent of needle placement' were significant (P irrigation. Residual collagen was most evident in the coronal third. Deeper penetration of the needle tip resulted in significantly (P irrigation was significantly more effective (16%) than static irrigation but significantly less effective (5%) than manual-dynamic irrigation. Irrigation was more effective (7%) when the needle was placed closer to WL.
Scalable Molecular Dynamics for Large Biomolecular Systems
Directory of Open Access Journals (Sweden)
Robert K. Brunner
2000-01-01
Full Text Available We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.
Theory and application of quantum molecular dynamics
Zeng Hui Zhang, John
1999-01-01
This book provides a detailed presentation of modern quantum theories for treating the reaction dynamics of small molecular systems. Its main focus is on the recent development of successful quantum dynamics theories and computational methods for studying the molecular reactive scattering process, with specific applications given in detail for a number of benchmark chemical reaction systems in the gas phase and the gas surface. In contrast to traditional books on collision in physics focusing on abstract theory for nonreactive scattering, this book deals with both the development and the appli
First-principles molecular dynamics for metals
International Nuclear Information System (INIS)
Fernando, G.W.; Qian, G.; Weinert, M.; Davenport, J.W.
1989-01-01
A Car-Parrinello-type first-principles molecular-dynamics approach capable of treating the partial occupancy of electronic states that occurs at the Fermi level in a metal is presented. The algorithms used to study metals are both simple and computationally efficient. We also discuss the connection between ordinary electronic-structure calculations and molecular-dynamics simulations as well as the role of Brillouin-zone sampling. This extension should be useful not only for metallic solids but also for solids that become metals in their liquid and/or amorphous phases
Ultrafast molecular dynamics illuminated with synchrotron radiation
International Nuclear Information System (INIS)
Bozek, John D.; Miron, Catalin
2015-01-01
Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.
Nonadiabatic electron wavepacket dynamics behind molecular autoionization
Matsuoka, Takahide; Takatsuka, Kazuo
2018-01-01
A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.
International Nuclear Information System (INIS)
Samsonov, V.M.; Murav'ev, S.D.; Pushkar', M.Yu.
2005-01-01
The process of nanodrop crystallization in the field of solid surface was investigated on the basis of the isothermal molecular dynamics. The initial stage of the process corresponds to the spreading under a constant cooling rate. The crystallization resulted in the formation of layered pyramid-like structures. A comparative analysis of forms and conditions was made, which yielded the pyramid-like structure formation in molecular dynamics simulation and in the experiments with Ge/Si systems [ru
Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong
2012-10-01
East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Zhou, Shuangyan; Wang, Qianqian; Wang, Yuwei; Yao, Xiaojun; Han, Wei; Liu, Huanxiang
2017-05-10
The structural transition of prion proteins from a native α-helix (PrP C ) to a misfolded β-sheet-rich conformation (PrP Sc ) is believed to be the main cause of a number of prion diseases in humans and animals. Understanding the molecular basis of misfolding and aggregation of prion proteins will be valuable for unveiling the etiology of prion diseases. However, due to the limitation of conventional experimental techniques and the heterogeneous property of oligomers, little is known about the molecular architecture of misfolded PrP Sc and the mechanism of structural transition from PrP C to PrP Sc . The prion fragment 127-147 (PrP127-147) has been reported to be a critical region for PrP Sc formation in Gerstmann-Straussler-Scheinker (GSS) syndrome and thus has been used as a model for the study of prion aggregation. In the present study, we employ molecular dynamics (MD) simulation techniques to study the conformational change of this fragment that could be relevant to the PrP C -PrP Sc transition. Employing extensive replica exchange molecular dynamics (REMD) and conventional MD simulations, we sample a huge number of conformations of PrP127-147. Using the Markov state model (MSM), we identify the metastable conformational states of this fragment and the kinetic network of transitions between the states. The resulting MSM reveals that disordered random-coiled conformations are the dominant structures. A key metastable folded state with typical extended β-sheet structures is identified with Pro137 being located in a turn region, consistent with a previous experimental report. Conformational analysis reveals that intrapeptide hydrophobic interaction and two key residue interactions, including Arg136-His140 and Pro137-His140, contribute a lot to the formation of ordered extended β-sheet states. However, network pathway analysis from the most populated disordered state indicates that the formation of extended β-sheet states is quite slow (at the millisecond
Quantum spin dynamics in molecular magnets
International Nuclear Information System (INIS)
Leuenberger, M.N.; Meier, F.; Loss, D.
2003-01-01
The detailed theoretical understanding of quantum spin dynamics in various molecular magnets is an important step on the roadway to technological applications of these systems. Quantum effects in both ferromagnetic and antiferromagnetic molecular clusters are, by now, theoretically well understood. Ferromagnetic molecular clusters allow one to study the interplay of incoherent quantum tunneling and thermally activated transitions between states with different spin orientation. The Berry phase oscillations found in Fe 8 are signatures of the quantum mechanical interference of different tunneling paths. Antiferromagnetic molecular clusters are promising candidates for the observation of coherent quantum tunneling on the mesoscopic scale. Although challenging, application of molecular magnetic clusters for data storage and quantum data processing are within experimental reach already with present day technology. Refs. 77 (author)
Burnham, Christian J.; Futera, Zdenek; English, Niall J.
2018-03-01
The force-matching method has been applied to parameterise an empirical potential model for water-water and water-hydrogen intermolecular interactions for use in clathrate-hydrate simulations containing hydrogen guest molecules. The underlying reference simulations constituted ab initio molecular dynamics (AIMD) of clathrate hydrates with various occupations of hydrogen-molecule guests. It is shown that the resultant model is able to reproduce AIMD-derived free-energy curves for the movement of a tagged hydrogen molecule between the water cages that make up the clathrate, thus giving us confidence in the model. Furthermore, with the aid of an umbrella-sampling algorithm, we calculate barrier heights for the force-matched model, yielding the free-energy barrier for a tagged molecule to move between cages. The barrier heights are reasonably large, being on the order of 30 kJ/mol, and are consistent with our previous studies with empirical models [C. J. Burnham and N. J. English, J. Phys. Chem. C 120, 16561 (2016) and C. J. Burnham et al., Phys. Chem. Chem. Phys. 19, 717 (2017)]. Our results are in opposition to the literature, which claims that this system may have very low barrier heights. We also compare results to that using the more ad hoc empirical model of Alavi et al. [J. Chem. Phys. 123, 024507 (2005)] and find that this model does very well when judged against the force-matched and ab initio simulation data.
Molecular dynamics simulations and quantum chemical calculations ...
African Journals Online (AJOL)
Molecular dynamic simulation results indicate that the imidazoline derivative molecules uses the imidazoline ring to effectively adsorb on the surface of iron, with the alkyl hydrophobic tail forming an n shape (canopy like covering) at geometry optimization and at 353 K. The n shape canopy like covering to a large extent may ...
An ab initio molecular dynamics study
Indian Academy of Sciences (India)
Abstract. The hydration structure and translocation of an excess proton in hydrogen bonded water clusters of two different sizes are investigated by means of finite tempera- ture quantum simulations. The simulations are performed by employing the method of. Car–Parrinello molecular dynamics where the forces on the ...
Molecular dynamics simulations of RNA motifs
Czech Academy of Sciences Publication Activity Database
Csaszar, K.; Špačková, Naďa; Šponer, Jiří; Leontis, N. B.
2002-01-01
Roč. 223, - (2002), s. 154 ISSN 0065-7727. [Annual Meeting of the American Chemistry Society /223./. 07.04.2002-11.04.2002, Orlando ] Institutional research plan: CEZ:AV0Z5004920 Keywords : molecular dynamics * RNA * hydration Subject RIV: BO - Biophysics
Molecular dynamics simulation on the interaction mechanism ...
Indian Academy of Sciences (India)
Investigation on the microscopic interaction between polymer inhibitors and calcium phosphate contributes to the understanding of their scale inhibition mechanism. The results obtained may provide a theoretical guidance to developing new scale inhibitors. In this study, molecular dynamics simulations have been ...
Nanotribology investigations with classical molecular dynamics
Solhjoo, Soheil
2017-01-01
This thesis presents a number of nanotribological problems investigated by means of classical molecular dynamics (MD) simulations, within the context of the applicability of continuum mechanics contact theories at the atomic scale. Along these lines, three different themes can be recognized herein:
Ab Initio molecular dynamics with excited electrons
Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.
1994-01-01
A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.
DEFF Research Database (Denmark)
Knudsen, Torben
2011-01-01
model structure suggested by University of Lund the WP4 leader. This particular model structure has the advantages that it fits better into the control design frame work used by WP3-4 compared to the model structures previously developed in WP2. The different model structures are first summarised....... Then issues dealing with optimal experimental design is considered. Finally the parameters are estimated in the chosen static and dynamic models and a validation is performed. Two of the static models, one of them the additive model, explains the data well. In case of dynamic models the suggested additive...
State-to-state dynamics of molecular energy transfer
Energy Technology Data Exchange (ETDEWEB)
Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)
1993-12-01
The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.
Molecular potentials and relaxation dynamics
International Nuclear Information System (INIS)
Karo, A.M.
1981-01-01
The use of empirical pseudopotentials, in evaluating interatomic potentials, provides an inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. As an example, recent calculations of the chi 1 Σ + and a 3 Σ + states of LiH, NaH, KH, RbH, and CsH and the chi 2 Σ + states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, highly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000 cm -1 over most of the potential curves) with the difference curves being considerably more accurate
Dynamical quenching of tunneling in molecular magnets
International Nuclear Information System (INIS)
José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.
2015-01-01
It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation
Energy Technology Data Exchange (ETDEWEB)
Kothandan, Gugan; Gadhe, Changdev G.; Cho, Seung Joo [Chosun Univ., Gwangju (Korea, Republic of)
2013-11-15
Chemokine receptor (CCR2) is a G protein-coupled receptor that contains seven transmembrane helices. Recent pharmaceutical research has focused on the antagonism of CCR2 and candidate drugs are currently undergoing clinical studies for the treatment of diseases like arthritis, multiple sclerosis, and type 2 diabetes. In this study, we analyzed the time dependent behavior of CCR2 docked with a potent 4-azetidinyl-1-aryl-cyclohexane (4AAC) derivative using molecular dynamics simulations (MDS) for 20 nanoseconds (ns). Homology modeling of CCR2 was performed and the 4AAC derivative was docked into this binding site. The docked model of selected conformations was then utilized to study the dynamic behavior of the 4AAC enzyme complexes inside lipid membrane. MDS of CCR2-16b of 4AAC complexes allowed us to refine the system since binding of an inhibitor to a receptor is a dynamic process and identify stable structures and better binding modes. Structure activity relationships (SAR) for 4AAC derivatives were investigated and reasons for the activities were determined. Probable binding pose for some CCR2 antagonists were determined from the perspectives of binding site. Initial modeling showed that Tyr49, Trp98, Ser101, Glu291, and additional residues are crucial for 4AAC binding, but MDS analysis showed that Ser101 may not be vital. 4AAC moved away from Ser101 and the hydrogen bonding between 4AAC and Ser101 vanished. The results of this study provide useful information regarding the structure-based drug design of CCR2 antagonists and additionally suggest key residues for further study by mutagenesis.
Molecular dynamics study on the relaxation properties of bilayered ...
Indian Academy of Sciences (India)
2017-08-31
Aug 31, 2017 ... Abstract. The influence of defects on the relaxation properties of bilayered graphene (BLG) has been studied by molecular dynamics simulation in nanometre sizes. Type and position of defects were taken into account in the calculated model. The results show that great changes begin to occur in the ...
Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations
Bulacu, Monica; Goga, Nicolae; Zhao, Wei; Rossi, Giulia; Monticelli, Luca; Periole, Xavier; Tieleman, D. Peter; Marrink, Siewert J.
Potentials routinely used in atomistic molecular dynamics simulations are not always suitable for modeling systems at coarse-grained resolution. For example, in the calculation of traditional torsion angle potentials, numerical instability is often encountered in the case of very flexible molecules.
Energy Technology Data Exchange (ETDEWEB)
Ganster, P
2004-10-15
A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)
Hindel, Stefan; Papanastasiou, Giorgos; Wust, Peter; Maaß, Marc; Söhner, Anika; Lüdemann, Lutz
2018-06-01
Pharmacokinetic models for perfusion quantification with a low-molecular-weight contrast agent (LMCA) in skeletal muscle using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were evaluated. Tissue perfusion was measured in seven regions of interest (ROIs) placed in the total hind leg supplied by the femoral artery in seven female pigs. DCE-MRI was performed using a 3D gradient echo sequence with k-space sharing. The sequence was acquired twice, first after LMCA and then after blood pool contrast agent injection. Blood flow was augmented by continuous infusion of the vasodilator adenosine into the femoral artery, resulting in up to four times increased blood flow. The results obtained with several LMCA models were compared with those of a two-compartment blood pool model (2CBPM) consisting of a capillary and an arteriolar compartment. Measurements performed with a Doppler flow probe placed at the femoral artery served as ground truth. The two-compartment exchange model extended by an arteriolar compartment (E2CXM) showed the highest fit quality of all LMCA models and the most significant correlation with the Doppler measurements, r = 0.78 (P Reson Med 79:3154-3162, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Dynamic Latent Classification Model
DEFF Research Database (Denmark)
Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre
Monitoring a complex process often involves keeping an eye on hundreds or thousands of sensors to determine whether or not the process is under control. We have been working with dynamic data from an oil production facility in the North sea, where unstable situations should be identified as soon...... as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...... in the process as well as modeling dependences between attributes....
Directory of Open Access Journals (Sweden)
Ranghino Graziella
2008-06-01
Full Text Available Abstract Background GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor were then modeled on the receptor. Results Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255. The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Conclusion Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist
Folding very short peptides using molecular dynamics.
Directory of Open Access Journals (Sweden)
Bosco K Ho
2006-04-01
Full Text Available Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides, the structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained backbone description. In particular, all seven of the beta hairpins in the native structures contain a fragment in the turn that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments.
Orthonormal Wavelet Bases for Quantum Molecular Dynamics
International Nuclear Information System (INIS)
Tymczak, C.; Wang, X.
1997-01-01
We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society
Kumar, Sivakumar Prasanth; Patel, Chirag N; Jha, Prakash C; Pandya, Himanshu A
2017-12-01
The identification of isatin sulfonamide as a potent small molecule inhibitor of caspase-3 had fuelled the synthesis and characterization of the numerous sulfonamide class of inhibitors to optimize for potency. Recent works that relied on the ligand-based approaches have successfully shown the regions of optimizations for sulfonamide scaffold. We present here molecular dynamics-based pharmacophore modeling of caspase-3-isatin sulfonamide crystal structure, to elucidate the essential non-covalent contacts and its associated pharmacophore features necessary to ensure caspase-3 optimal binding. We performed 20ns long dynamics of this crystal structure to extract global conformation states and converted into structure-based pharmacophore hypotheses which were rigorously validated using an exclusive focussed library of experimental actives and inactives of sulfonamide class by Receiver Operating Characteristic (ROC) statistic. Eighteen structure-based pharmacophore hypotheses with better sensitivity and specificity measures (>0.6) were chosen which collectively showed the role of pocket residues viz. Cys163 (S 1 sub-site; required for covalent and H bonding with Michael acceptor of inhibitors), His121 (S 1 ; π stack with bicyclic isatin moiety), Gly122 (S 1 ; H bond with carbonyl oxygen) and Tyr204 (S 2 ; π stack with phenyl group of the isatin sulfonamide molecule) as stringent binding entities for enabling caspase-3 optimal binding. The introduction of spatial pharmacophore site points obtained from dynamics-based pharmacophore models in a virtual screening strategy will be helpful to screen and optimize molecules belonging to sulfonamide class of caspase-3 inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rybakova, K.N.; Tomaszewska, A.; Mourik, van S.; Blom, Joke; Westerhoff, H.V.; Carlberg, C.; Bruggeman, F.J.
2015-01-01
Changes in transcription factor levels, epigenetic status, splicing kinetics and mRNA degradation can each contribute to changes in the mRNA dynamics of a gene. We present a novel method to identify which of these processes is changed in cells in response to external signals or as a result of a
Wu, Jinhong; Rong, Yuzhi; Wang, Zhengwu; Zhou, Yanfu; Wang, Shaoyun; Zhao, Bo
2015-05-01
This study aimed to isolate and characterise a novel sericin antifreeze peptide and investigate its ice-binding molecular mechanism. The thermal hysteresis activity of ice-binding sericin peptides (I-SP) was measured and their activity reached as high as 0.94 °C. A P4 fraction, with high hypothermia protective activity and inhibition activity of ice recrystallisation, was obtained from I-SP, and a purified sericin peptide, named SM-AFP, with the sequence of TTSPTNVSTT and a molecular weight of 1009.50 Da was then isolated from the P4 fraction. Treatment of Lactobacillus delbrueckii Subsp. bulgaricus LB340 LYO with 100 μg/ml synthetic SM-AFP led to 1.4-fold increased survival (p Sericin peptides could be developed into beneficial cryoprotectants and used in frozen food processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Excited-state molecular photoionization dynamics
International Nuclear Information System (INIS)
Pratt, S.T.
1995-01-01
This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)
Towards the molecular bases of polymerase dynamics
International Nuclear Information System (INIS)
Chela Flores, J.
1991-03-01
One aspect of the strong relationship that is known to exist between the processes of DNA replication and transcription is manifest in the coupling of the rates of movement of the replication fork (r f ) and RNA polymerase (r t ). We address two issues concerning the largely unexplored area of polymerase dynamics: (i) The validity of an approximate kinematic formula linking r f and r t suggested by experiments in which transcription is initiated in some prokaryotes with the antibiotic streptolydigin, and (ii) What are the molecular bases of the kinematic formula? An analysis of the available data suggests possible molecular bases for polymerase dynamics. In particular, we are led to a hypothesis: In active chromatin r t may depend on the length (λ t ) of the transcript of the primary messenger RNA (pre-mRNA). This new effect is subject to experimental verification. We discuss possible experiments that may be performed in order to test this prediction. (author). Refs, 6 tabs
Molecular quantum dynamics. From theory to applications
International Nuclear Information System (INIS)
Gatti, Fabien
2014-01-01
An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible introduction. Although the
Levashov, V A
2014-09-28
We report on a further investigation of a new method that can be used to address vibrational dynamics and propagation of stress waves in liquids. The method is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the atomic level stress correlation functions. This decomposition, as was demonstrated previously for a model liquid studied in molecular dynamics simulations, reveals the presence of stress waves propagating over large distances and a structure that resembles the pair density function. In this paper, by performing the Fourier transforms of the atomic level stress correlation functions, we elucidate how the lifetimes of the stress waves and the ranges of their propagation depend on their frequency, wavevector, and temperature. These results relate frequency and wavevector dependence of the generalized viscosity to the character of propagation of the shear stress waves. In particular, the results suggest that an increase in the value of the frequency dependent viscosity at low frequencies with decrease of temperature is related to the increase in the ranges of propagation of the stress waves of the corresponding low frequencies. We found that the ranges of propagation of the shear stress waves of frequencies less than half of the Einstein frequency extend well beyond the nearest neighbor shell even above the melting temperature. The results also show that the crossover from quasilocalized to propagating behavior occurs at frequencies usually associated with the Boson peak.
Molecular dynamics simulations of nanobubbles and nanodrops
Maheshwari, Shantanu
2018-01-01
Understanding of bubbles and drops at the nanoscale is of primary importance to many technological applications. Although lot of theoretical understanding has been developed in the last few decades for larger size bubbles and drops, fundamental understanding of nanobubbles and nanodrops in some aspects is still inadequate. In this thesis we revealed and explained a few phenomena related to the stability and growth/dissolution of nanobubbles and nanodrops with the help from molecular dynamics ...
Molecular dynamics simulation of a chemical reaction
International Nuclear Information System (INIS)
Gorecki, J.; Gryko, J.
1988-06-01
Molecular dynamics is used to study the chemical reaction A+A→B+B. It is shown that the reaction rate constant follows the Arrhenius law both for Lennard-Jones and hard sphere interaction potentials between substrate particles. A. For the denser systems the reaction rate is proportional to the value of the radial distribution function at the contact point of two hard spheres. 10 refs, 4 figs
Visualizing Energy on Target: Molecular Dynamics Simulations
2017-12-01
from the increased number of intermolecular interactions at the higher mass densities . This may also be why the size of the hot spot increases with...of energy deposition by a shocked diatomic gas into a stationary target is studied as a function of multiple variables including gas density , impact...into the vibrational channels of the gas is a function of the density . 15. SUBJECT TERMS molecular dynamics, energy deposition, rovibrational
Molecular Dynamics with Helical Periodic Boundary Conditions
Czech Academy of Sciences Publication Activity Database
Kessler, Jiří; Bouř, Petr
2014-01-01
Roč. 35, č. 21 (2014), s. 1552-1559 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:GA AV ČR(CZ) M200551205; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : periodic boundary conditions * helical symmetry * molecular dynamics * protein structure * amyloid fibrils Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.589, year: 2014
Prior, Christopher; Oganesyan, Vasily S
2017-09-21
We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of the motional electron paramagnetic resonance (EPR) spectra of lyotropic liquid crystals in different aggregation states doped with a paramagnetic spin probe. The purpose of this study is twofold. First, given that EPR spectra are highly sensitive to the motions and order of the spin probes doped within lyotropic aggregates, simulation of EPR line shapes from the results of MD modelling provides an ultimate test bed for the force fields currently employed to model such systems. Second, the EPR line shapes are simulated using the motional parameters extracted from MD trajectories using the Model-Free (MF) approach. Thus a combined MD-EPR methodology allowed us to test directly the validity of the application of the MF approach to systems with multi-component molecular motions. All-atom MD simulations using the General AMBER Force Field (GAFF) have been performed on sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium chloride (DTAC) liquid crystals. The resulting MD trajectories were used to predict and interpret the EPR spectra of pre-micellar, micellar, rod and lamellar aggregates. The predicted EPR spectra demonstrate good agreement with most of experimental line shapes thus confirming the validity of both the force fields employed and the MF approach for the studied systems. At the same time simulation results confirm that GAFF tends to overestimate the packing and the order of the carbonyl chains of the surfactant molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonequilibrium molecular dynamics theory, algorithms and applications
Todd, Billy D
2017-01-01
Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...
DEFF Research Database (Denmark)
Ísberg, Vignir; Balle, Thomas; Sander, Tommy
2011-01-01
A 5-HT(2A) receptor model was constructed by homology modeling based on the ß(2)-adrenergic receptor and the G protein-bound opsin crystal structures. The 5-HT(2A) receptor model was transferred into an active conformation by an agonist ligand and a G(aq) peptide in four subsequent steered...
Coulomb interactions via local dynamics: a molecular-dynamics algorithm
International Nuclear Information System (INIS)
Pasichnyk, Igor; Duenweg, Burkhard
2004-01-01
We derive and describe in detail a recently proposed method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. We focus on the molecular dynamics version of the method and show that it is intimately related to the Car-Parrinello approach, while being equivalent to solving Maxwell's equations with a freely adjustable speed of light. Unphysical self-energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green function. The method can be straightforwardly parallelized using standard domain decomposition. Some preliminary benchmark results are presented
Molecular Models: Construction of Models with Magnets
Directory of Open Access Journals (Sweden)
Kalinovčić P.
2015-07-01
Full Text Available Molecular models are indispensable tools in teaching chemistry. Beside their high price, commercially available models are generally too small for classroom demonstration. This paper suggests how to make space-filling (callote models from Styrofoam with magnetic balls as connectors and disc magnets for showing molecular polarity
Las Palmeras Molecular Dynamics: A flexible and modular molecular dynamics code
Davis, Sergio; Loyola, Claudia; González, Felipe; Peralta, Joaquín
2010-12-01
Las Palmeras Molecular Dynamics (LPMD) is a highly modular and extensible molecular dynamics (MD) code using interatomic potential functions. LPMD is able to perform equilibrium MD simulations of bulk crystalline solids, amorphous solids and liquids, as well as non-equilibrium MD (NEMD) simulations such as shock wave propagation, projectile impacts, cluster collisions, shearing, deformation under load, heat conduction, heterogeneous melting, among others, which involve unusual MD features like non-moving atoms and walls, unstoppable atoms with constant-velocity, and external forces like electric fields. LPMD is written in C++ as a compromise between efficiency and clarity of design, and its architecture is based on separate components or plug-ins, implemented as modules which are loaded on demand at runtime. The advantage of this architecture is the ability to completely link together the desired components involved in the simulation in different ways at runtime, using a user-friendly control file language which describes the simulation work-flow. As an added bonus, the plug-in API (Application Programming Interface) makes it possible to use the LPMD components to analyze data coming from other simulation packages, convert between input file formats, apply different transformations to saved MD atomic trajectories, and visualize dynamical processes either in real-time or as a post-processing step. Individual components, such as a new potential function, a new integrator, a new file format, new properties to calculate, new real-time visualizers, and even a new algorithm for handling neighbor lists can be easily coded, compiled and tested within LPMD by virtue of its object-oriented API, without the need to modify the rest of the code. LPMD includes already several pair potential functions such as Lennard-Jones, Morse, Buckingham, MCY and the harmonic potential, as well as embedded-atom model (EAM) functions such as the Sutton-Chen and Gupta potentials. Integrators to
Emission of water clusters: molecular dynamic simulation
International Nuclear Information System (INIS)
Kutliev, U.O.; Kalandarov, K.S.
2006-01-01
Full text: Secondary ion mass spectrometry (SIMS) is a wonderful technique for providing mass spectrometric information of molecules on surfaces. Theoretical studies of the keV bombardment of organic films on metallic surfaces have contributed to our understanding of the mechanisms governing these processes. Many experiments of keV bombardment, however, are performed both thick and thin organic targets [1]. Molecular systems investigated experimentally by SIMS include adsorbed films on a metal substrate, molecular solids, polymers, or even biological cells. In this account, we focus on thin organic layers on metal substrates as they are used for analytical purposes, are intriguing from a fundamental viewpoint, and are computationally tractable [2]. There are we present molecular dynamics (MD) simulations aimed at obtaining such a microscopic picture and mass spectrum of sputtering particles. Because of the importance of H 2 O in many of the experiments, we have chosen it as our system. Water is also attractive as a system because of the extensive literature available on its physical properties. The interaction potentials available for MD simulations of H 2 O are sufficiently reliable such that a quantitative analysis of the simulation results can be directly related to the parameters of water. From the variety of substrate materials used in different experiments, we have chosen to perform our simulations using Au. This substance is chosen to match preliminary experiments with the selective killing of cells by inserted Au nanoparticles and because of the availability of good interaction potentials for gold. In the simulations, we bombarded by ions Ar the surface Au(III) covered by ice film. The interaction potential employed to describe the H 2 O-H 2 O interaction is the simple-point-charge (SPC) water potential developed by Berendsen et al. [3]. This potential has been used extensively to study the properties of H 2 O as a solid [4, 5]. It has been shown that the
Vepuri, Suresh B.; Devarajegowda, H. C.; Soliman, Mahmoud E.
2016-02-01
Hydrochloride salt formation for Active Pharmaceutical Ingredients (APIs) is the primary choice to impart aqueous solubility and to promote dissolution. Dipyridamole (DIP) is a cardiovascular drug which is practically insoluble in water. We discovered a new form of DIP called as dipyridamole hydrochloride trihydrate (DIPHT), which was prepared by an unusual method of reacting the DIP with hydrated hydrochloric acid (HCl) that was liberated in situ by the reaction of ferric chloride with water. The liberated HCl was consumed as reagent in situ by the scavenger (API) and was converted to a hydrochloride trihydrate. The product was characterized by FTIR, mass spectroscopy, PXRD and DSC. Supramolecular structure of this novel DIPHT was revealed by single crystal XRD. A sustained intramolecular hydrogen bond alliance was found in DIP and the DIPHT. Stability of this hydrogen bond was further evaluated by means of molecular modelling studies. We performed electron calculations using quantum mechanics (QM) on both the base and salt structures to compare their geometry and molecular orbital energy levels. Molecular Dynamics (MD) simulations were also conducted in explicit solvent models to provide more insights into the hydrogen bond strength and conformational preferences of the base and salt structure. Together with QM and MD, we were able to explain the influence of hydrogen bonds on proton uptake activity of DIP and stability of DIP and DIPHT. DIPHT which can dissolve faster than DIP in water may enhance the dissolution and bioavailability of the drug. As the current drug development research is shifting to repurpose the existing drugs in order to subside the untoward risks in new drug development, we believe that DIPHT with its intrinsic aqueous solubility could bring more application for DIP and generate interest within the pharmaceutical industry.
Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation
2014-01-01
Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585
Czech Academy of Sciences Publication Activity Database
Mikulášek, K.; Jaroň, Kamil S.; Kulhánek, P.; Bittová, M.; Havliš, J.
2016-01-01
Roč. 1469, October (2016), s. 88-95 ISSN 0021-9673 Institutional support: RVO:68081766 Keywords : Sequence-dependent separation * Ion-interaction reversed-phase liquid chromatography * Trinucleotides * Oligonucleotide sequence isomers * QSRR * Molecular dynamics Subject RIV: CE - Biochemistry Impact factor: 3.981, year: 2016
Czech Academy of Sciences Publication Activity Database
Melicherčík, Milan; Holúbeková, A.; Hianik, T.; Urban, J.
2013-01-01
Roč. 19, č. 11 (2013), s. 4723-4730 ISSN 1610-2940 Institutional support: RVO:67179843 Keywords : Bilayer lipid membranes * Helical peptides * Molecular dynamics simulations * Phase transitions Subject RIV: BO - Biophysics Impact factor: 1.867, year: 2013
A general-purpose coarse-grained molecular dynamics program
Aoyagi, Takeshi; Sawa, Fumio; Shoji, Tatsuya; Fukunaga, Hiroo; Takimoto, Jun-ichi; Doi, Masao
2002-05-01
In this article, we describe a general-purpose coarse-grained molecular dynamics program COGNAC ( COarse Grained molecular dynamics program by NAgoya Cooperation). COGNAC has been developed for general molecular dynamics simulation, especially for coarse-grained polymer chain models. COGNAC can deal with general molecular models, in which each molecule consists of coarse-grained atomic units connected by chemical bonds. The chemical bonds are specified by bonding potentials for the stretching, bending and twisting of the bonds, each of which are the functions of the position coordinates of the two, three and four atomic units. COGNAC can deal with both isotropic and anisotropic interactions between the non-bonded atomic units. As an example, the Gay-Berne potential is implemented. New potential functions can be added to the list of existing potential functions by users. COGNAC can do simulations for various situations such as under constant temperature, under constant pressure, under shear and elongational deformation, etc. Some new methods are implemented in COGNAC for modeling multiphase structures of polymer blends and block copolymers. A density biased Monte Carlo method and a density biased potential method can generate equilibrium chain configurations from the results of the self-consistent field calculations. Staggered reflective boundary conditions can generate interfacial structures with smaller system size compared with those of periodic boundary conditions.
Markov state models and molecular alchemy
Schütte, Christof; Nielsen, Adam; Weber, Marcus
2015-01-01
In recent years, Markov state models (MSMs) have attracted a considerable amount of attention with regard to modelling conformation changes and associated function of biomolecular systems. They have been used successfully, e.g. for peptides including time-resolved spectroscopic experiments, protein function and protein folding , DNA and RNA, and ligand-receptor interaction in drug design and more complicated multivalent scenarios. In this article, a novel reweighting scheme is introduced that allows to construct an MSM for certain molecular system out of an MSM for a similar system. This permits studying how molecular properties on long timescales differ between similar molecular systems without performing full molecular dynamics simulations for each system under consideration. The performance of the reweighting scheme is illustrated for simple test cases, including one where the main wells of the respective energy landscapes are located differently and an alchemical transformation of butane to pentane where the dimension of the state space is changed.
Directory of Open Access Journals (Sweden)
Suri Moonsamy
2014-04-01
Full Text Available Using integrated in-silico computational techniques, including homology modeling, structure-based and pharmacophore-based virtual screening, molecular dynamic simulations, per-residue energy decomposition analysis and atom-based 3D-QSAR analysis, we proposed ten novel compounds as potential CCR5-dependent HIV-1 entry inhibitors. Via validated docking calculations, binding free energies revealed that novel leads demonstrated better binding affinities with CCR5 compared to maraviroc, an FDA-approved HIV-1 entry inhibitor and in clinical use. Per-residue interaction energy decomposition analysis on the averaged MD structure showed that hydrophobic active residues Trp86, Tyr89 and Tyr108 contributed the most to inhibitor binding. The validated 3D-QSAR model showed a high cross-validated rcv2 value of 0.84 using three principal components and non-cross-validated r2 value of 0.941. It was also revealed that almost all compounds in the test set and training set yielded a good predicted value. Information gained from this study could shed light on the activity of a new series of lead compounds as potential HIV entry inhibitors and serve as a powerful tool in the drug design and development machinery.
Hydrogen Bond Dynamics in Aqueous Solutions: Ab initio Molecular ...
Indian Academy of Sciences (India)
Rate equation for the decay of CHB(t) · Definition of Hydrogen Bonds · Results of Molecular Dynamics · Dynamics of anion-water and water-water hydrogen bonds · Structural relaxation of anion-water & water-water H-bonds · Ab initio Molecular Dynamics : · Slide 14 · Dynamics of hydrogen bonds : CPMD results · Slide 16.
Orbital free molecular dynamics; Approche sans orbitale des plasmas denses
Energy Technology Data Exchange (ETDEWEB)
Lambert, F
2007-08-15
The microscopic properties of hot and dense plasmas stay a field essentially studied thanks to classical theories like the One Component Plasma, models which rely on free parameters, particularly ionization. In order to investigate these systems, we have used, in this PhD work, a semi-classical model, without free parameters, that is based on coupling consistently classical molecular dynamics for the nuclei and orbital free density functional theory for the electrons. The electronic fluid is represented by a free energy entirely determined by the local density. This approximation was validated by a comparison with an ab initio technique, quantum molecular dynamics. This one is identical to the previous except for the description of the free energy that depends on a quantum-independent-particle model. Orbital free molecular dynamics was then used to compute equation of state of boron and iron plasmas in the hot and dense regime. Furthermore, comparisons with classical theories were performed on structural and dynamical properties. Finally, equation of state and transport coefficients mixing laws were studied by direct simulation of a plasma composed of deuterium and copper. (author)
Emulating Molecular Orbitals and Electronic Dynamics with Ultracold Atoms
Directory of Open Access Journals (Sweden)
Dirk-Sören Lühmann
2015-08-01
Full Text Available In recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly correlated phases and complex phenomena in solid-state systems. Here, we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated π electron system with special regard to localization and spin order. The dynamical time scales of ultracold atom simulators are on the order of milliseconds, which allows for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated π system of the artificial benzene molecule.
Molecular dynamics simulation of supercritical fluids
Branam, Richard D.
Axisymmetric injectors appear in a multitude of applications ranging from rocket engines to biotechnology. While experimentation is limited to larger injectors, much interest has been shown in the micro- and nano-scales as well. Experimentation at these scales can be cost prohibitive if even possible. Often, the operating regime involves supercritical fluids or complex geometries. Molecular dynamics modeling provides a unique way to explore these flow regimes, calculate hard to measure flow parameters accurately, and determine the value of potential improvements before investing in costly experiments or manufacturing. This research effort modeled sub- and supercritical fluid flow in a cylindrical tube being injected into a quiescent chamber. The ability of four wall models to provide an accurate simulation was compared. The simplest model, the diffuse wall, proved useful in getting results quickly but the results for the higher density cases are questionable, especially with respect to velocity profiles and density distributions. The one zone model, three layers of an fcc solid tethered to the lattice sites with a spring, proved very useful for this research primarily because it did not need as many CPU hours to equilibrate. The two zone wall uses springs as a two body potential and has a second stationary zone to hold the wall in place. The most complicated, the three zone wall, employed a reactionary zone, a stochastic zone and a stationary zone using a Lennard-Jones two body potential. Jet simulations were conducted on argon and nitrogen for liquid tube diameters from 20 to 65 A at both sub and supercritical temperatures (Ar: 130 K and 160 K, N2: 120 K and 130 K). The simulations focused on pressures above the critical pressure (Ar: 6 MPa, N2: 4 MPa). The diffusive wall showed some variation from the analytical velocity profile in the tube while the atomistically modeled walls performed very well. The walls were all able to maintain system temperature to reach
Bresme, F; Armstrong, J
2014-01-07
We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the "local" thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation.
Magnetohydrodynamic Models of Molecular Tornadoes
Energy Technology Data Exchange (ETDEWEB)
Au, Kelvin; Fiege, Jason D., E-mail: fiege@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba Winnipeg, MB R3T 2N2 (Canada)
2017-07-10
Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.
Magnetohydrodynamic Models of Molecular Tornadoes
Au, Kelvin; Fiege, Jason D.
2017-07-01
Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.
Molecular dynamic results on transport properties
Energy Technology Data Exchange (ETDEWEB)
Alder, B.J.; Alley, W.E.
1978-06-01
Following a broad discussion of generalized hydrodynamics, three examples are given to illustrate how useful this approach is in extending hydrodynamics to nearly the scale of molecular dimensions and the time between collisions, principally by including viscoelastic effects. The three examples concern the behavior of the velocity autocorrelation function, the decay of fluctuations in a resonating system, and the calculation of the dynamic structure factor obtained from neutron scattering. In the latter case the molecular dynamics results are also compared to the predictions of generalized kinetic theory. Finally it is shown how to implement generalized hydrodynamics both on a microscopic and macroscopic level. Hydrodynamics is unable to account for the long time tails in the velocity autocorrelation functions and the divergent Burnett coefficients observed for the Lorentz gas. Instead, the long time behavior of the Burnett coefficient and the distribution of displacements (the self part of the dynamic structure factor) can be accounted for by a random walk with a waiting time distribution which is chosen to give the correct velocity autocorrelation function. This random walk predicts, in agreement with the observations, that this displacement distribution is Gaussian at long times for the Lorentz gas, while for hard disks it has been found not to be so.
International Nuclear Information System (INIS)
Nishimura, Hiroshi.
1993-05-01
Object-Oriented Programming has been used extensively to model the LBL Advanced Light Source 1.5 GeV electron storage ring. This paper is on the present status of the class library construction with emphasis on a dynamic modeling
Models for Dynamic Applications
DEFF Research Database (Denmark)
Sales-Cruz, Mauricio; Morales Rodriguez, Ricardo; Heitzig, Martina
2011-01-01
This chapter covers aspects of the dynamic modelling and simulation of several complex operations that include a controlled blending tank, a direct methanol fuel cell that incorporates a multiscale model, a fluidised bed reactor, a standard chemical reactor and finally a polymerisation reactor...
Bun, M.J.G.; Sarafidis, V.
2013-01-01
This Chapter reviews the recent literature on dynamic panel data models with a short time span and a large cross-section. Throughout the discussion we considerlinear models with additional endogenous covariates. First we give a broad overview of available inference methods placing emphasis on GMM.
Salinelli, Ernesto
2014-01-01
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economic...
Ghanem, Bernard
2013-01-01
This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.
Molecular Dynamics: New Frontier in Personalized Medicine.
Sneha, P; Doss, C George Priya
2016-01-01
The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine. © 2016 Elsevier Inc. All rights reserved.
Analysis of the Time Reversible Born-Oppenheimer Molecular Dynamics
Lin, Lin; Lu, Jianfeng; Shao, Sihong
2013-01-01
We analyze the time reversible Born-Oppenheimer molecular dynamics (TRBOMD) scheme, which preserves the time reversibility of the Born-Oppenheimer molecular dynamics even with non-convergent self-consistent field iteration. In the linear response regime, we derive the stability condition as well as the accuracy of TRBOMD for computing physical properties such as the phonon frequency obtained from the molecular dynamic simulation. We connect and compare TRBOMD with the Car-Parrinello molecular...
Mattsson, Thomas R.; Jones, Reese; Ward, Donald; Spataru, Catalin; Shulenburger, Luke; Benedict, Lorin X.
2015-06-01
Window materials are ubiquitous in shock physics and with high energy density drivers capable of reaching multi-Mbar pressures the use of LiF is increasing. Velocimetry and temperature measurements of a sample through a window are both influenced by the assumed index of refraction and thermal conductivity, respectively. We report on calculations of index of refraction using the many-body theory GW and thermal ionic conductivity using linear response theory and model potentials. The results are expected to increase the accuracy of a broad range of high-pressure shock- and ramp compression experiments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Molecular Dynamics: from basic techniques to applications (A Molecular Dynamics Primer)
Hernández, E. R.
2008-11-01
It is now 50 years since the first papers describing the use of Molecular Dynamics (MD) were published by Alder and Wainright, and since then, together with Monte Carlo (MC) techniques, MD has become an essential tool in the theoretical study of materials properties at finite temperatures. In its early days, MD was used in combination with simple yet general models, such as hard spheres or Lennard-Jones models of liquids, systems which, though simple, were nevertheless not amenable to an analytical statistical mechanical treatment. Nowadays, however, MD is most frequently used in combination with rather sophisticated models, ranging all the way between empirical force fields to first-principles methods, with the aim of describing as accurately as possible any given material. From a computational aid in statistical mechanics and many-body physics, MD has evolved to become a widely used tool in physical chemistry, condensed matter physics, biology, geology and materials science. The aim of this course is to describe the basic algorithms of MD, and to provide attendees with the necessary theoretical background in order to enable them to use MD simulations in their research work. Also, examples of the use of MD in different scientific disciplines will be provided, with the aim of illustrating the the many possibilities and the wide spread use of MD simulation techniques in scientific research today.
International Nuclear Information System (INIS)
Hostert, C; Music, D; Schneider, J M; Bednarcik, J; Keckes, J; Kapaklis, V; Hjörvarsson, B
2011-01-01
Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm -3 for Co 43 Fe 20 Ta 5.5 B 31.5 and 8.42 g cm -3 for Co 45.5 Fe 24 Ta 6 B 24.5 , as well as the Young’s moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness. (paper)
Chen, Gong; Kong, Xian; Lu, Diannan; Wu, Jianzhong; Liu, Zheng
2017-05-10
Molecular dynamics (MD) simulations, in combination with the Markov-state model (MSM), were applied to probe CO 2 diffusion from an aqueous solution into the active site of human carbonic anhydrase II (hCA-II), an enzyme useful for enhanced CO 2 capture and utilization. The diffusion process in the hydrophobic pocket of hCA-II was illustrated in terms of a two-dimensional free-energy landscape. We found that CO 2 diffusion in hCA-II is a rate-limiting step in the CO 2 diffusion-binding-reaction process. The equilibrium distribution of CO 2 shows its preferential accumulation within a hydrophobic domain in the protein core region. An analysis of the committors and reactive fluxes indicates that the main pathway for CO 2 diffusion into the active site of hCA-II is through a binding pocket where residue Gln 136 contributes to the maximal flux. The simulation results offer a new perspective on the CO 2 hydration kinetics and useful insights toward the development of novel biochemical processes for more efficient CO 2 sequestration and utilization.
Thermal Conductivity of Supercooled Water: An Equilibrium Molecular Dynamics Exploration.
English, Niall J; Tse, John S
2014-11-06
The thermal conductivity of both supercooled and ambient-temperature water at atmospheric pressure has been computed over the 140-270 K temperature range for three popular water models via equilibrium molecular dynamics in the Green-Kubo setting. No strong temperature dependence of thermal conductivity was observed. The underlying phonon modes contributing to thermal conduction processes have been examined in the present work, and it has been established that (translational) acoustic modes dominate in supercooled water.
DEFF Research Database (Denmark)
Borregaard, Michael K.; Matthews, Thomas J.; Whittaker, Robert James
2016-01-01
Aim: Island biogeography focuses on understanding the processes that underlie a set of well-described patterns on islands, but it lacks a unified theoretical framework for integrating these processes. The recently proposed general dynamic model (GDM) of oceanic island biogeography offers a step...... towards this goal. Here, we present an analysis of causality within the GDM and investigate its potential for the further development of island biogeographical theory. Further, we extend the GDM to include subduction-based island arcs and continental fragment islands. Location: A conceptual analysis...... dynamics of distinct island types are predicted to lead to markedly different evolutionary dynamics. This sets the stage for a more predictive theory incorporating the processes governing temporal dynamics of species diversity on islands....
Accelerated molecular dynamics simulations of protein folding.
Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew
2015-07-30
Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies. © 2015 Wiley Periodicals, Inc.
Gillespie, Ronald J; Robinson, Edward A
2005-05-01
Although the structure of almost any molecule can now be obtained by ab initio calculations chemists still look for simple answers to the question "What determines the geometry of a given molecule?" For this purpose they make use of various models such as the VSEPR model and qualitative quantum mechanical models such as those based on the valence bond theory. The present state of such models, and the support for them provided by recently developed methods for analyzing calculated electron densities, are reviewed and discussed in this tutorial review.
Molecular models and simulations of layered materials
International Nuclear Information System (INIS)
Kalinichev, Andrey G.; Cygan, Randall Timothy; Heinz, Hendrik; Greathouse, Jeffery A.
2008-01-01
The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites
Simplistic Coulomb Forces in Molecular Dynamics
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt; Schrøder, Thomas; Dyre, J. C.
2012-01-01
salt model the SF approximation overall reproduces the structural and dynamical properties as accurately as does the Wolf method. It is shown that the optimal Wolf damping parameter depends on the property in focus and that neither the potential energy nor the radial distribution function are useful...
Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal
2017-07-01
The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.
Zheng, Wenjun
2017-01-10
Dynactin, a large multiprotein complex, binds with the cytoplasmic dynein-1 motor and various adaptor proteins to allow recruitment and transportation of cellular cargoes toward the minus end of microtubules. The structure of the dynactin complex is built around an actin-like minifilament with a defined length, which has been visualized in a high-resolution structure of the dynactin filament determined by cryo-electron microscopy (cryo-EM). To understand the energetic basis of dynactin filament assembly, we used molecular dynamics simulation to probe the intersubunit interactions among the actin-like proteins, various capping proteins, and four extended regions of the dynactin shoulder. Our simulations revealed stronger intersubunit interactions at the barbed and pointed ends of the filament and involving the extended regions (compared with the interactions within the filament), which may energetically drive filament termination by the capping proteins and recruitment of the actin-like proteins by the extended regions, two key features of the dynactin filament assembly process. Next, we modeled the unknown binding configuration among dynactin, dynein tails, and a number of coiled-coil adaptor proteins (including several Bicaudal-D and related proteins and three HOOK proteins), and predicted a key set of charged residues involved in their electrostatic interactions. Our modeling is consistent with previous findings of conserved regions, functional sites, and disease mutations in the adaptor proteins and will provide a structural framework for future functional and mutational studies of these adaptor proteins. In sum, this study yielded rich structural and energetic information about dynactin and associated adaptor proteins that cannot be directly obtained from the cryo-EM structures with limited resolutions.
Directory of Open Access Journals (Sweden)
Becka M Warfield
Full Text Available RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are
Molecular Dynamics and Electron Density Studies of Siderophores and Peptides.
Fidelis, Krzysztof Andrzej
1990-08-01
The dissertation comprises three separate studies of siderophores and peptides. In the first of these studies the relative potential energies for a series of diastereomers of a siderophore neocoprogen I are evaluated with molecular mechanics force field methods. Charges on the hydroxamate moiety are determined with a synthetic model siderophore compound using valence population refinements, and alternatively, with the theoretical ab initio/ESP calculations. The single diastereomer found in the crystal structure is among four characterized by the low potential energy, while prevalence of Delta vs. Lambda configuration about the iron is found to be a property of the entire series. In the second study the crystal structure of a ferrichrome siderophore ferrirhodin is reported. The crystal structure conformation of the molecular backbone as well as the iron coordination geometry compare well with other ferrichrome structures. The differences between the acyl groups of ferrirubin and ferrirhodin are explored using the methods of molecular mechanics. The third study a 300 ps, 300 K, in vacuo molecular dynamics simulation of didemnin A and B yields distinct molecular conformers, which are different from the one found in the crystal structure or modeled in solution, using the Nuclear Overhauser Effect data. Evaluations of the relative potential energy are performed with short 10 ps simulations in solution. Didemnins are natural depsipeptides isolated from a Caribbean tunicate and characterized by particularly potent antiproliferative and immunomodulatory activity. Conformationally rigid and flexible regions of the molecule are described. A short review of the molecular mechanics methodology is given in the introduction.
Machine learning molecular dynamics for the simulation of infrared spectra.
Gastegger, Michael; Behler, Jörg; Marquetand, Philipp
2017-10-01
Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.
Reliable Approximation of Long Relaxation Timescales in Molecular Dynamics
Directory of Open Access Journals (Sweden)
Wei Zhang
2017-07-01
Full Text Available Many interesting rare events in molecular systems, like ligand association, protein folding or conformational changes, occur on timescales that often are not accessible by direct numerical simulation. Therefore, rare event approximation approaches like interface sampling, Markov state model building, or advanced reaction coordinate-based free energy estimation have attracted huge attention recently. In this article we analyze the reliability of such approaches. How precise is an estimate of long relaxation timescales of molecular systems resulting from various forms of rare event approximation methods? Our results give a theoretical answer to this question by relating it with the transfer operator approach to molecular dynamics. By doing so we also allow for understanding deep connections between the different approaches.
Molecular dynamics simulation of laser shock phenomena
Energy Technology Data Exchange (ETDEWEB)
Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).
2001-10-01
Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)
Nonequilibrium molecular dynamics: The first 25 years
International Nuclear Information System (INIS)
Hoover, W.G.
1992-08-01
Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments
On the parallelization of molecular dynamics codes
Trabado, G. P.; Plata, O.; Zapata, E. L.
2002-08-01
Molecular dynamics (MD) codes present a high degree of spatial data locality and a significant amount of independent computations. However, most of the parallelization strategies are usually based on the manual transformation of sequential programs either by completely rewriting the code with message passing routines or using specific libraries intended for writing new MD programs. In this paper we propose a new library-based approach (DDLY) which supports parallelization of existing short-range MD sequential codes. The novelty of this approach is that it can directly handle the distribution of common data structures used in MD codes to represent data (arrays, Verlet lists, link cells), using domain decomposition. Thus, the insertion of run-time support for distribution and communication in a MD program does not imply significant changes to its structure. The method is simple, efficient and portable. It may be also used to extend existing parallel programming languages, such as HPF.
Molecular dynamics of ultradian glucocorticoid receptor action.
Conway-Campbell, Becky L; Pooley, John R; Hager, Gordon L; Lightman, Stafford L
2012-01-30
In recent years it has become evident that glucocorticoid receptor (GR) action in the nucleus is highly dynamic, characterized by a rapid exchange at the chromatin template. This stochastic mode of GR action couples perfectly with a deterministic pulsatile availability of endogenous ligand in vivo. The endogenous glucocorticoid hormone (cortisol in man and corticosterone in rodent) is secreted from the adrenal gland with an ultradian rhythm made up of pulses at approximately hourly intervals. These two components - the rapidly fluctuating ligand and the rapidly exchanging receptor - appear to have evolved to establish and maintain a system that is exquisitely responsive to the physiological demands of the organism. In this review, we discuss recent and innovative work that questions the idea of steady state, static hormone receptor responses, and replaces them with new concepts of stochastic mechanisms and oscillatory activity essential for optimal function in molecular and cellular systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Molecular dynamic simulation study of molten cesium
Directory of Open Access Journals (Sweden)
Yeganegi Saeid
2017-01-01
Full Text Available Molecular dynamics simulations were performed to study thermodynamics and structural properties of expanded caesium fluid. Internal pressure, radial distribution functions (RDFs, coordination numbers and diffusion coefficients have been calculated at temperature range 700–1600 K and pressure range 100–800 bar. We used the internal pressure to predict the metal–non-metal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first peak of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various temperatures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature.
Fiber lubrication: A molecular dynamics simulation study
Liu, Hongyi
Molecular and mesoscopic level description of friction and lubrication remains a challenge because of difficulties in the phenomenological understanding of to the behaviors of solid-liquid interfaces during sliding. Fortunately, there is the computational simulation approach opens an opportunity to predict and analyze interfacial phenomena, which were studied with molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) simulations. Polypropylene (PP) and cellulose are two of most common polymers in textile fibers. Confined amorphous surface layers of PP and cellulose were built successfully with xenon crystals which were used to compact the polymers. The physical and surface properties of the PP and cellulose surface layers were investigated by MD simulations, including the density, cohesive energy, volumetric thermal expansion, and contact angle with water. The topology method was employed to predict the properties of poly(alkylene glycol) (PAG) diblock copolymers and Pluronic triblock copolymers used as lubricants on surfaces. Density, zero shear viscosity, shear module, cohesive energy and solubility parameter were predicted with each block copolymer. Molecular dynamics simulations were used to study the interaction energy per unit contact area of block copolymer melts with PP and cellulose surfaces. The interaction energy is defined as the ratio of interfacial interaction energy to the contact area. Both poly(proplene oxide) (PPO) and poly(ethylene oxide) (PEO) segments provided a lipophilic character to both PP and cellulose surfaces. The PPO/PEO ratio and the molecular weight were found to impact the interaction energy on both PP and cellulose surfaces. In aqueous solutions, the interaction energy is complicated due to the presence of water and the cross interactions between the multiple molecular components. The polymer-water-surface (PWS) calculation method was proposed to calculate such complex systems. In a contrast with a vacuum condition, the presence
Directory of Open Access Journals (Sweden)
Jitendra Maharana
Full Text Available Nucleotide-binding oligomerization domain-containing protein 1 (NOD1 and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved 'Lysine' at Walker A formed hydrogen bonds (H-bonds and Aspartic acid (Walker B formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. 'Proline' of GxP motif (Pro386 of NOD1 and Pro464 of NOD2 interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2.
Riccardi, E; Wang, J-C; Liapis, A I
2009-02-26
A molecular dynamics modeling and simulation approach is presented and employed to construct porous dextran polymer ion-exchange adsorbent media. Both the activation step of the surface of the pores of the dextran polymer layer grafted on an agarose surface and the immobilization of charged ligands on the activated surface of the porous dextran polymer layer are considered. For the systems studied in this work, the activation step modifies slightly the pore structure of the base, nonactivated porous dextran polymer, while the immobilization of the ligands on the activated pore surface of the dextran layer changes significantly the pore structure of the activated dextran layer. The density distributions of the counterions and immobilized charged ligands along the direction of net transport in the adsorbent media constructed in this study are found to be nonuniform. The variables that affect the shape and magnitude of the density distributions of the counterions and immobilized charged ligands as well as the total number of charged ligands that can be immobilized on the activated porous dextran layer are identified and presented in this work. Furthermore, the data clearly show that there is local nonelectroneutrality in the porous dextran polymer ion-exchange adsorbent media, and this result has very important practical implications for the operation and performance of separation systems involving ion-exchange adsorbent media (e.g., ion-exchange chromatography systems). Also, the results of this work suggest approaches for (1) controlling the immobilization process of charged ligands and (2) constructing and studying the behavior of chromatographic polymeric monoliths and packed bed columns having a gradient of density of functionalities along the axis of the chromatographic polymeric monolith or packed bed column.
Dynamic wake meandering modeling
DEFF Research Database (Denmark)
Larsen, Gunner Chr.; Madsen Aagaard, Helge; Bingöl, Ferhat
We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however......, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed......, concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power– and load aspects can be treated simultaneously. This capability is a direct...
Molecular beam studies of reaction dynamics
Energy Technology Data Exchange (ETDEWEB)
Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.
Molecular dynamics simulations and novel drug discovery.
Liu, Xuewei; Shi, Danfeng; Zhou, Shuangyan; Liu, Hongli; Liu, Huanxiang; Yao, Xiaojun
2018-01-01
Molecular dynamics (MD) simulations can provide not only plentiful dynamical structural information on biomacromolecules but also a wealth of energetic information about protein and ligand interactions. Such information is very important to understanding the structure-function relationship of the target and the essence of protein-ligand interactions and to guiding the drug discovery and design process. Thus, MD simulations have been applied widely and successfully in each step of modern drug discovery. Areas covered: In this review, the authors review the applications of MD simulations in novel drug discovery, including the pathogenic mechanisms of amyloidosis diseases, virtual screening and the interaction mechanisms between drugs and targets. Expert opinion: MD simulations have been used widely in investigating the pathogenic mechanisms of diseases caused by protein misfolding, in virtual screening, and in investigating drug resistance mechanisms caused by mutations of the target. These issues are very difficult to solve by experimental methods alone. Thus, in the future, MD simulations will have wider application with the further improvement of computational capacity and the development of better sampling methods and more accurate force fields together with more efficient analysis methods.
International Nuclear Information System (INIS)
Colanero, K.; Chu, M.-C.
2002-01-01
We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results
Kenward, M; Slater, G W
2006-06-01
We present a study of the dynamics of single polymers colliding with molecular obstacles using Molecular-dynamics simulations. In concert with these simulations we present a generalized polymer-obstacle collision model which is applicable to a number of collision scenarios. The work focusses on three specific problems: i) a polymer driven by an external force colliding with a fixed microscopic post; ii) a polymer driven by a (plug-like) fluid flow colliding with a fixed microscopic post; and iii) a polymer driven by an external force colliding with a free polymer. In all three cases, we present a study of the length-dependent dynamics of the polymers involved. The simulation results are compared with calculations based on our generalized collision model. The generalized model yields analytical results in the first two instances (cases i) and ii)), while in the polymer-polymer collision example (case iii)) we obtain a series solution for the system dynamics. For the case of a polymer-polymer collision we find that a distinct V-shaped state exists as seen in experimental systems, though normally associated with collisions with multiple polymers. We suggest that this V-shaped state occurs due to an effective hydrodynamic counter flow generated by a net translational motion of the two-chain system.
Approximation of quantum observables by molecular dynamics simulations
Sandberg, Mattias
2016-01-06
In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.
Glaese, John R.; Tobbe, Patrick A.
1986-01-01
The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.
Molecular modeling of inorganic compounds
National Research Council Canada - National Science Library
Comba, Peter; Hambley, Trevor W; Martin, Bodo
2009-01-01
... mechanics to inorganic and coordination compounds. Initially, simple metal complexes were modeled, but recently the field has been extended to include organometallic compounds, catalysis and the interaction of metal ions with biological macromolecules. The application of molecular mechanics to coordination compounds is complicated by the numbe...
Kinetic distance and kinetic maps from molecular dynamics simulation.
Noé, Frank; Clementi, Cecilia
2015-10-13
Characterizing macromolecular kinetics from molecular dynamics (MD) simulations requires a distance metric that can distinguish slowly interconverting states. Here, we build upon diffusion map theory and define a kinetic distance metric for irreducible Markov processes that quantifies how slowly molecular conformations interconvert. The kinetic distance can be computed given a model that approximates the eigenvalues and eigenvectors (reaction coordinates) of the MD Markov operator. Here, we employ the time-lagged independent component analysis (TICA). The TICA components can be scaled to provide a kinetic map in which the Euclidean distance corresponds to the kinetic distance. As a result, the question of how many TICA dimensions should be kept in a dimensionality reduction approach becomes obsolete, and one parameter less needs to be specified in the kinetic model construction. We demonstrate the approach using TICA and Markov state model (MSM) analyses for illustrative models, protein conformation dynamics in bovine pancreatic trypsin inhibitor and protein-inhibitor association in trypsin and benzamidine. We find that the total kinetic variance (TKV) is an excellent indicator of model quality and can be used to rank different input feature sets.
Molecular dynamics algorithms for path integrals at constant pressure
Martyna, Glenn J.; Hughes, Adam; Tuckerman, Mark E.
1999-02-01
Extended system path integral molecular dynamics algorithms have been developed that can generate efficiently averages in the quantum mechanical canonical ensemble [M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein, J. Chem. Phys. 99, 2796 (1993)]. Here, the corresponding extended system path integral molecular dynamics algorithms appropriate to the quantum mechanical isothermal-isobaric ensembles with isotropic-only and full system cell fluctuations are presented. The former ensemble is employed to study fluid systems which do not support shear modes while the latter is employed to study solid systems. The algorithms are constructed by deriving appropriate dynamical equations of motions and developing reversible multiple time step algorithms to integrate the equations numerically. Effective parallelization schemes for distributed memory computers are presented. The new numerical methods are tested on model (a particle in a periodic potential) and realistic (liquid and solid para-hydrogen and liquid butane) systems. In addition, the methodology is extended to treat the path integral centroid dynamics scheme, [J. Cao and G. A. Voth, J. Chem. Phys. 99, 10070 (1993)], a novel method which is capable of generating semiclassical approximations to quantum mechanical time correlation functions.
MDVRY: a polarizable classical molecular dynamics package for biomolecules
Souaille, M.; Loirat, H.; Borgis, D.; Gaigeot, M. P.
2009-02-01
The MDVRY classical molecular dynamics package is presented for the study of biomolecules in the gas and liquid phase. Electrostatic polarization has been implemented in the formalism of point induced dipoles following the model of Thole. Two schemes have been implemented for the calculation of induced dipoles, i.e. resolution of the self-consistent equations and a 'Car-Parrinello' dynamical approach. In this latter, the induced dipoles are calculated at each time step of the dynamics through the dynamics of additional degrees of freedom associated with the dipoles. This method saves computer time and allows to study polarized solvated proteins at a very low CPU cost. The program is written in C-language and runs on LINUX machines. A detailed manual of the code is given. The main features of the package are illustrated taking on examples of proteins in the gas phase or immersed in liquid water. Program summaryProgram title: MDVRY Catalogue identifier: AEBY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 39 156 No. of bytes in distributed program, including test data, etc.: 277 197 Distribution format: tar.bz2 Programming language: C Computer: Linux machines with FFTW Fourier Transform package installed Operating system: Linux machines, SUSE & RedHat distributions Classification: 3, 16.13, 23 External routines: FFTW ( http://www.fftw.org/) Nature of problem: Molecular Dynamics Software package. Solution method: Velocity Verlet algorithm. The implemented force field is composed of intra-molecular interactions and inter-molecular interactions (electrostatics, polarization, van der Waals). Polarization is accounted through induced point dipoles at each atomic site. Supplementary degrees of freedom are
Investigating Ebola virus pathogenicity using molecular dynamics.
Pappalardo, Morena; Collu, Francesca; Macpherson, James; Michaelis, Martin; Fraternali, Franca; Wass, Mark N
2017-08-11
Ebolaviruses have been known to cause deadly disease in humans for 40 years and have recently been demonstrated in West Africa to be able to cause large outbreaks. Four Ebolavirus species cause severe disease associated with high mortality in humans. Reston viruses are the only Ebolaviruses that do not cause disease in humans. Conserved amino acid changes in the Reston virus protein VP24 compared to VP24 of other Ebolaviruses have been suggested to alter VP24 binding to host cell karyopherins resulting in impaired inhibition of interferon signalling, which may explain the difference in human pathogenicity. Here we used protein structural analysis and molecular dynamics to further elucidate the interaction between VP24 and KPNA5. As a control experiment, we compared the interaction of wild-type and R137A-mutant (known to affect KPNA5 binding) Ebola virus VP24 with KPNA5. Results confirmed that the R137A mutation weakens direct VP24-KPNA5 binding and enables water molecules to penetrate at the interface. Similarly, Reston virus VP24 displayed a weaker interaction with KPNA5 than Ebola virus VP24, which is likely to reduce the ability of Reston virus VP24 to prevent host cell interferon signalling. Our results provide novel molecular detail on the interaction of Reston virus VP24 and Ebola virus VP24 with human KPNA5. The results indicate a weaker interaction of Reston virus VP24 with KPNA5 than Ebola virus VP24, which is probably associated with a decreased ability to interfere with the host cell interferon response. Hence, our study provides further evidence that VP24 is a key player in determining Ebolavirus pathogenicity.
First principles molecular dynamics of molten NaCl
Galamba, N.; Costa Cabral, B. J.
2007-03-01
First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.
International Nuclear Information System (INIS)
Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide
2016-01-01
In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH • radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH • radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.
Intrinsically dynamic population models
Directory of Open Access Journals (Sweden)
Robert Schoen
2005-03-01
Full Text Available Intrinsically dynamic models (IDMs depict populations whose cumulative growth rate over a number of intervals equals the product of the long term growth rates (that is the dominant roots or dominant eigenvalues associated with each of those intervals. Here the focus is on the birth trajectory produced by a sequence of population projection (Leslie matrices. The elements of a Leslie matrix are represented as straightforward functions of the roots of the matrix, and new relationships are presented linking the roots of a matrix to its Net Reproduction Rate and stable mean age of childbearing. Incorporating mortality changes in the rates of reproduction yields an IDM when the subordinate roots are held constant over time. In IDMs, the birth trajectory generated by any specified sequence of Leslie matrices can be found analytically. In the Leslie model with 15 year age groups, the constant subordinate root assumption leads to reasonable changes in the age pattern of fertility, and equations (27 and (30 provide the population size and structure that result from changing levels of net reproduction. IDMs generalize the fixed rate stable population model. They can characterize any observed population, and can provide new insights into dynamic demographic behavior, including the momentum associated with gradual or irregular paths to zero growth.
Accelerating molecular dynamics simulations by linear prediction of time series
Brutovsky, B.; Mülders, T.; Kneller, G. R.
2003-04-01
We present a molecular dynamics simulation scheme which allows to speed up molecular dynamics simulations by linear prediction of force time series. The explicit calculation of nonbonding forces is periodically replaced by linear prediction from past values. Applying our method to liquid oxygen consisting of flexible molecules we obtained real speedups between 5.4 and 6.5, compared to conventional molecular dynamics simulations. Here only the bond-stretching forces were calculated at each time step. We demonstrate that essential dynamical quantities, such as the mean-square displacement and the velocity autocorrelation function, are preserved.
Static and dynamic properties of grafted ring polymer: Molecular dynamics simulation
He, Su-Zhen; Holger, Merlitz; Su, Chan-Fei; Wu, Chen-Xu
2013-01-01
The static and dynamic properties of a system of end-grafted flexible ring polymer chains grafted to a flat substrate and exposed to a good solvent are studied by using a molecular dynamics method. The monomers are described by a coarse-grained bead-spring model. Varying the grafting density ρ and the degree of polymerization or chain length N, we obtain the density profiles of monomers, study the structural properties of the chain (radius of gyration, bond orientational parameters, etc.), and also present the dynamic characteristics such as chain energy and bond force. Compared with a linear polymer brush, the ring polymer brush exhibits different static and dynamic properties for moderate or short chain length, while it behaves like linear polymer brush in the regime of long chain length.
Ti and Zr surfaces studied by molecular dynamics
International Nuclear Information System (INIS)
Pascuet, Maria I.; Passianot, Roberto C.; Monti, Ana M.
2003-01-01
The interaction between point defects technique and the (0001), (1-210), (10-10) surfaces in Ti and Zr is studied by the molecular dynamics technique. Both of metals are in the hexagonal structure and within a temperature range of 100 to 900 K. The atomic interactions are modeled by EAM-type many-body potentials, that were used previously in static simulations. New migration mechanisms are unraveled and others are verified with respect to those already proposed in the static studies. Also included is an analysis of the vacancy stability in the sub-surface layers of the prismatic surfaces. (author)
The density functional theory and the charged fluid molecular dynamics
International Nuclear Information System (INIS)
Hansen, J.P.; Zerah, G.
1993-01-01
Car and Parrinello had the idea of combining the density functional theory (Hohenberg, Kohn and Sham) to the 'molecular dynamics' numerical modelling method, in order to simulate metallic or co-valent solids and liquids from the first principles. The objective of this paper is to present a simplified version of this method ab initio, applicable to classical and quantal charged systems. The method is illustrated with recent results on charged colloidal suspensions and highly correlated electron-proton plasmas. 1 fig., 21 refs
Porting of serial molecular dynamics code on MIMD platforms
International Nuclear Information System (INIS)
Celino, M.
1995-05-01
A molecular Dynamics (MD) code, utilized for the study of atomistic models of metallic systems has been parallelized for MIMD (Multiple Instructions Multiple Data) parallel platforms by means of the Parallel Virtual Machine (PVM) message passing library. Since the parallelization implies modifications of the sequential algorithms, these are described from the point of view of the Statistical Mechanics theory. Furthermore, techniques and parallelization strategies utilized and the MD parallel code are described in detail. Benchmarks on several MIMD platforms (IBM SP1 and SP2, Cray T3D, Cluster of workstations) allow performances evaluation of the code versus the different characteristics of the parallel platforms
Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics
Jakse, N.; Pasturel, A.
2014-05-01
Ab initio molecular dynamics simulations are used to describe the diffusion of hydrogen in liquid aluminum at different temperatures. Quasi-instantaneous jumps separating periods of localized vibrations around a mean position are found to characterize the hydrogen motion at the microscopic scale. The hydrogen motion is furthermore analyzed using the van Hove function. We highlight a non-Fickian behavior for the hydrogen diffusion due to a large spatial distribution of hydrogen jumps. We show that a generalized continuous time random walk (CTRW) model describes the experimental diffusion coefficients in a satisfactory manner. Finally, the impact of impurities and alloying elements on hydrogen diffusion in aluminum is discussed.
Molecular dynamics studies of protein folding and aggregation
Ding, Feng
This thesis applies molecular dynamics simulations and statistical mechanics to study: (i) protein folding; and (ii) protein aggregation. Most small proteins fold into their native states via a first-order-like phase transition with a major free energy barrier between the folded and unfolded states. A set of protein conformations corresponding to the free energy barrier, Delta G >> kBT, are the folding transition state ensemble (TSE). Due to their evasive nature, TSE conformations are hard to capture (probability ∝ exp(-DeltaG/k BT)) and characterize. A coarse-grained discrete molecular dynamics model with realistic steric constraints is constructed to reproduce the experimentally observed two-state folding thermodynamics. A kinetic approach is proposed to identify the folding TSE. A specific set of contacts, common to the TSE conformations, is identified as the folding nuclei which are necessary to be formed in order for the protein to fold. Interestingly, the amino acids at the site of the identified folding nuclei are highly conserved for homologous proteins sharing the same structures. Such conservation suggests that amino acids that are important for folding kinetics are under selective pressure to be preserved during the course of molecular evolution. In addition, studies of the conformations close to the transition states uncover the importance of topology in the construction of order parameter for protein folding transition. Misfolded proteins often form insoluble aggregates, amyloid fibrils, that deposit in the extracellular space and lead to a type of disease known as amyloidosis. Due to its insoluble and non-crystalline nature, the aggregation structure and, thus the aggregation mechanism, has yet to be uncovered. Discrete molecular dynamics studies reveal an aggregate structure with the same structural signatures as in experimental observations and show a nucleation aggregation scenario. The simulations also suggest a generic aggregation mechanism
Molecular Dynamics Simulations of Clathrate Hydrates on Specialised Hardware Platforms
Directory of Open Access Journals (Sweden)
Christian R. Trott
2012-09-01
Full Text Available Classical equilibrium molecular dynamics (MD simulations have been performed to investigate the computational performance of the Simple Point Charge (SPC and TIP4P water models applied to simulation of methane hydrates, and also of liquid water, on a variety of specialised hardware platforms, in addition to estimation of various equilibrium properties of clathrate hydrates. The FPGA-based accelerator MD-GRAPE 3 was used to accelerate substantially the computation of non-bonded forces, while GPU-based platforms were also used in conjunction with CUDA-enabled versions of the LAMMPS MD software packages to reduce computational time dramatically. The dependence of molecular system size and scaling with number of processors was also investigated. Considering performance relative to power consumption, it is seen that GPU-based computing is quite attractive.
MOLECULAR DYNAMICS SIMULATION OF LYSINE DENDRIMER AND SEMAX PEPTIDES INTERACTION
Directory of Open Access Journals (Sweden)
E. V. Popova
2016-07-01
Full Text Available The paper deals with the possibility of complex formation of therapeutic Semax peptides with lysine dendrimer by molecular modeling methods. Dendrimers are often used for delivery of drugs and biological molecules (e.g., DNA, peptides and polysaccharides. Since lysine dendrimers are less toxic than conventional synthetic dendrimers (e.g., polyamidoamine (PAMAM dendrimer, we chose them and studied two systems containing dendrimer and the different number of Semax peptides. The study was carried out by molecular dynamics method. It was obtained that the stable complexes were formed in both cases. The equilibrium structures of these complexes were investigated. These complexes can be used in the future in therapy of various diseases as Semax peptides have significant antioxidant, antihypoxic and neuroprotecting action.
Prediction of purification of biopharmeceuticals with molecular dynamics
Ustach, Vincent; Faller, Roland
Purification of biopharmeceuticals remains the most expensive part of protein-based drug production. In ion exchange chromatography (IEX), prediction of the elution ionic strength of host cell and target proteins has the potential to reduce the parameter space for scale-up of protein production. The complex shape and charge distribution of proteins and pores complicates predictions of the interactions in these systems. All-atom molecular dynamics methods are beyond the scope of computational limits for mass transport regimes. We present a coarse-grained model for proteins for prediction of elution pH and ionic strength. By extending the raspberry model for colloid particles to surface shapes and charge distributions of proteins, we can reproduce the behavior of proteins in IEX. The average charge states of titratatable amino acid residues at relevant pH values are determined by extrapolation from all-atom molecular dynamics at pH 7. The pH specific all-atom electrostatic field is then mapped onto the coarse-grained surface beads of the raspberry particle. The hydrodynamics are reproduced with the lattice-Boltzmann scheme. This combination of methods allows very long simulation times. The model is being validated for known elution procedures by comparing the data with experiments. Defense Threat Reduction Agency (Grant Number HDTRA1-15-1-0054).
Simulation of a lipid monolayer using molecular dynamics
Kox, A. J.; Michels, J. P. J.; Wiegel, F. W.
1980-09-01
Numerical simulation is often a useful tool f or investigating the behaviour of complex systems with many degrees of freedom. Of the two major methods in this field, the Monte Carlo method and the molecular dynamics method, only the first has been applied to realistic models of lipid monolayers1-5. The term lipid monolayer is used here to describe a class of systems consisting of chain molecules on a liquid substrate, the characteristic properties of which can be summarized as follows. (1) The constituent molecules are amphipathic, that is they consist of a hydrophilic (polar) head group and one or more hydrophobic hydrocarbon chains. (2) Due to the amphipathic character of the molecules, the head groups are constrained to the plane of the substrate, whereas the tails are directed outwards from this plane. (3) The collective properties of the molecules are determined by their short-range repulsive and long-range attractive interactions and by the steric repulsion of the tails. We now present what we believe to be the first molecular dynamics simulation of a realistic model of a lipid monolayer. The model system, which has all three properties enumerated above, shows a first order phase transition from an ordered fluid-like state to a disordered, gas-like state.
Sharma, Om Prakash; Agrawal, Sonali; Kumar, M Suresh
2013-12-01
Nematodes represent the second largest phylum in the animal kingdom. It is the most abundant species (500,000) in the planet. It causes chronic, debilitating infections worldwide such as ascariasis, trichuriasis, hookworm, enterobiasis, strongyloidiasis, filariasis and trichinosis, among others. Molecular modeling tools can play an important role in the identification and structural investigation of molecular targets that can act as a vital candidate against filariasis. In this study, sequence analysis of NAS-36 from H. contortus (Heamonchus contortus), B. malayi (Brugia malayi) and C. elegans (Ceanorhabditis elegans) has been performed, in order to identify the conserved residues. Tertiary structure was developed for an insight into the molecular structure of the enzyme. Molecular Dynamics Simulation (MDS) studies have been carried out to analyze the stability and the physical properties of the proposed enzyme models in the H. contortus, B. malayi and C. elegans. Moreover, the drug binding sites have been mapped for inhibiting the function of NAS-36 enzyme. The molecular identity of this protease could eventually demonstrate how ex-sheathment is regulated, as well as provide a potential target of anthelmintics for the prevention of nematode infections.
GIS and dynamic phenomena modeling
Czech Academy of Sciences Publication Activity Database
Klimešová, Dana
2006-01-01
Roč. 4, č. 4 (2006), s. 11-15 ISSN 0139-570X Institutional research plan: CEZ:AV0Z10750506 Keywords : dynamic modelling * temporal analysis * dynamics evaluation * temporal space Subject RIV: BC - Control Systems Theory
Molecular dynamics studies of superionic conductors
International Nuclear Information System (INIS)
Rahman, A.
1979-01-01
Over the last fifteen years computer modeling of liquids and solids has become a useful method of understanding the structural and dynamical correlations in these systems. Some characteristics of the method are presented with an example from work on homogeneous nucleation in monoatomic liquids; the interaction potential determines the structure: a Lennard--Jones system nucleates a close packed structure while an alkali metal potential nucleates a bcc packing. In the study of ionic systems like CaF 2 the Coulomb interaction together with the short range repulsion is enough to produce a satisfactory model for the motion of F - ions in CaF 2 at approx. 1600 0 K. Analysis of this motion shows that F - ions reside at their fluorite sites for about 6 x 10 -12 s and that the diffusion is mainly due to F - jumps in the 100 direction. The motion can be analyzed in terms of the generation and annihilation of anti-Frenkel pairs. The temperature dependence of the F - diffusion constant at two different densities has also been calculated. The computer model does not correspond with experiment in this regard
International Nuclear Information System (INIS)
Bresme, F.; Armstrong, J.
2014-01-01
We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation
Molecular dynamics simulations of temperature equilibration in dense hydrogen
Glosli, J. N.; Graziani, F. R.; More, R. M.; Murillo, M. S.; Streitz, F. H.; Surh, M. P.; Benedict, L. X.; Hau-Riege, S.; Langdon, A. B.; London, R. A.
2008-08-01
The temperature equilibration rate between electrons and protons in dense hydrogen has been calculated with molecular dynamics simulations for temperatures between 10 and 600eV and densities between 1020cm-3to1024cm-3 . Careful attention has been devoted to convergence of the simulations, including the role of semiclassical potentials. We find that for Coulomb logarithms L≳1 , a model by Gericke-Murillo-Schlanges (GMS) [D. O. Gericke , Phys. Rev. E 65, 036418 (2002)] based on a T -matrix method and the approach by Brown-Preston-Singleton [L. S. Brown , Phys. Rep. 410, 237 (2005)] agrees with the simulation data to within the error bars of the simulation. For smaller Coulomb logarithms, the GMS model is consistent with the simulation results. Landau-Spitzer models are consistent with the simulation data for L>4 .
Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan
2017-10-18
We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore
Thermal transport in semicrystalline polyethylene by molecular dynamics simulation
Lu, Tingyu; Kim, Kyunghoon; Li, Xiaobo; Zhou, Jun; Chen, Gang; Liu, Jun
2018-01-01
Recent research has highlighted the potential to achieve high-thermal-conductivity polymers by aligning their molecular chains. Combined with other merits, such as low-cost, corrosion resistance, and light weight, such polymers are attractive for heat transfer applications. Due to their quasi-one-dimensional structural nature, the understanding on the thermal transport in those ultra-drawn semicrystalline polymer fibers or films is still lacking. In this paper, we built the ideal repeating units of semicrystalline polyethylene and studied their dependence of thermal conductivity on different crystallinity and interlamellar topology using the molecular dynamics simulations. We found that the conventional models, such as the Choy-Young's model, the series model, and Takayanagi's model, cannot accurately predict the thermal conductivity of the quasi-one-dimensional semicrystalline polyethylene. A modified Takayanagi's model was proposed to explain the dependence of thermal conductivity on the bridge number at intermediate and high crystallinity. We also analyzed the heat transfer pathways and demonstrated the substantial role of interlamellar bridges in the thermal transport in the semicrystalline polyethylene. Our work could contribute to the understanding of the structure-property relationship in semicrystalline polymers and shed some light on the development of plastic heat sinks and thermal management in flexible electronics.
Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions
Czech Academy of Sciences Publication Activity Database
Zobač, Vladimír; Lewis, J.P.; Jelínek, Pavel
2016-01-01
Roč. 27, č. 28 (2016), 1-8, č. článku 285202. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : non-adiabatic molecular dynamics * molecular junctions * molecular switches * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2016
Molecular Modeling: A Powerful Tool for Drug Design and Molecular ...
Indian Academy of Sciences (India)
Molecular modeling has become a valuable and essential tool to medicinal chemists in the drug design process. Molecular modeling describes the generation, manipula- tion or representation of three-dimensional structures of molecules and associated physico-chemical properties. It involves a range of computerized ...
Molecular dynamics using quasielastic neutron scattering
Mitra, S
2003-01-01
Quasielastic neutron scattering (QENS) technique is well suited to study the molecular motions (rotations and translations) in solids or liquids. It offers a unique possibility of analysing spatial dimensions of atomic or molecular processes in their development over time. We describe here some of the systems studied using the QENS spectrometer, designed, developed and commissioned at Dhruva reactor in Trombay. We have studied a variety of systems to investigate the molecular motion, for example, simple molecular solids, molecules adsorbed in confined medium like porous systems or zeolites, monolayer-protected nano-sized metal clusters, water in Portland cement as it cures with time, etc. (author)
Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations
Baoukina, Svetlana; Monticelli, Luca; Marrink, Siewert J.; Tieleman, D. Peter
2007-01-01
We calculated the pressure-area isotherm of a dipalmitoyl-phosphatidylcholine (DPPC) lipid monolayer from molecular dynamics simulations using a coarse-grained molecular model. We characterized the monolayer structure, geometry, and phases directly from the simulations and compared the calculated
Modelling dynamic roughness during floods
Paarlberg, Andries; Dohmen-Janssen, Catarine M.; Hulscher, Suzanne J.M.H.; Termes, A.P.P.
2007-01-01
In this paper, we present a dynamic roughness model to predict water levels during floods. Hysteresis effects of dune development are explicitly included. It is shown that differences between the new dynamic roughness model, and models where the roughness coefficient is calibrated, are most
Business models and dynamic capabilities
Teece, DJ
2017-01-01
© 2017 The Author. Business models, dynamic capabilities, and strategy are interdependent. The strength of a firm's dynamic capabilities help shape its proficiency at business model design. Through its effect on organization design, a business model influences the firm's dynamic capabilities and places bounds on the feasibility of particular strategies. While these relationships are understood at a theoretical level, there is a need for future empirical work to flesh out the details. In parti...
Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein
Asafi, M. S.; Yildirim, A.; Tekpinar, M.
2016-04-01
Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated.
Molecular modeling of fentanyl analogs
Directory of Open Access Journals (Sweden)
LJILJANA DOSEN-MICOVIC
2004-11-01
Full Text Available Fentanyl is a highly potent and clinically widely used narcotic analgesic. A large number of its analogs have been synthesized, some of which (sufentanil and alfentanyl are also in clinical use. Theoretical studies, in recent years, afforded a better understanding of the structure-activity relationships of this class of opiates and allowed insight into the molecular mechanism of the interactions of fentanyl analogs with their receptors. An overview of the current computational techniques for modeling fentanyl analogs, their receptors and ligand-receptor interactions is presented in this paper.
Dynamic modeling for pandemic influenza
Postma, M.J.
It is now widely agreed upon that most infectious diseases require a dynamic approach to validly analyze infectious disease control. Given the size of the spread and the potential impact, pandemic influenza certainly presents an area where dynamic modeling is much needed. In this article, a dynamic
Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting
National Research Council Canada - National Science Library
Low, Tammy K
2006-01-01
.... Our research goals consisted of employing olefin metathesis in the synthesis of peptidomimetics, and studying the feasibility of this method in dynamic combinatorial chemistry and molecular imprinting of nerve agents...
Crystal structure and pair potentials: A molecular-dynamics study
Energy Technology Data Exchange (ETDEWEB)
Parrinello, M.; Rahman, A.
1980-10-06
With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.
Molecular Dynamics Simulation of Spinodal Decomposition in Three-Dimensional Binary Fluids
DEFF Research Database (Denmark)
Laradji, Mohamed; Toxvaerd, Søren; Mouritsen, Ole G.
1996-01-01
Using large-scale molecular dynamics simulations of a two-component Lennard-Jones model in three dimensions, we show that the late-time dynamics of spinodal decomposition in concentrated binary fluids reaches a viscous scaling regime with a growth exponent n = 1, in agreement with experiments...
Dynamical analysis of highly excited molecular spectra
Energy Technology Data Exchange (ETDEWEB)
Kellman, M.E. [Univ. of Oregon, Eugene (United States)
1993-12-01
The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.
Energy Technology Data Exchange (ETDEWEB)
Pan, Jianjun [University of South Florida, Tampa (USF); Cheng, Xiaolin [ORNL; Monticelli, Luca [Institut National de la Santé et de la Recherche Médicale (INSERM) and INTS, France; Heberle, Frederick A [ORNL; Kucerka, Norbert [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,; Tieleman, D. Peter [University of Calgary, ALberta, Canada; Katsaras, John [ORNL
2014-01-01
Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.
Combining optimal control theory and molecular dynamics for protein folding.
Arkun, Yaman; Gur, Mert
2012-01-01
A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the Cα atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the Cα atoms. In turn, MD simulation provides an all-atom conformation whose Cα positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the Cα atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization-MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages.
Combining optimal control theory and molecular dynamics for protein folding.
Directory of Open Access Journals (Sweden)
Yaman Arkun
Full Text Available A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD. In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the Cα atoms of a Coarse-Grained (CG protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the Cα atoms. In turn, MD simulation provides an all-atom conformation whose Cα positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the Cα atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization-MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages.
Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations.
Bulacu, Monica; Goga, Nicolae; Zhao, Wei; Rossi, Giulia; Monticelli, Luca; Periole, Xavier; Tieleman, D Peter; Marrink, Siewert J
2013-08-13
Potentials routinely used in atomistic molecular dynamics simulations are not always suitable for modeling systems at coarse-grained resolution. For example, in the calculation of traditional torsion angle potentials, numerical instability is often encountered in the case of very flexible molecules. To improve the stability and accuracy of coarse-grained molecular dynamics simulations, we propose two approaches. The first makes use of improved forms for the angle potentials: the restricted bending (ReB) potential prevents torsion angles from visiting unstable or unphysical configurations and the combined bending-torsion (CBT) potential smoothly flattens the interactions when such configurations are sampled. In the second approach, dummy-assisted dihedral (DAD), the torsion potential is applied differently: instead of acting directly on the beads, it acts on virtual beads, bound to the real ones. For simple geometrical reasons, the unstable region is excluded from the accessible conformational space. The benefits of the new approaches are demonstrated in simulations of polyethylene glycol (PEG), polystyrene (PS), and polypeptide molecules described by the MARTINI coarse-grained force field. The new potentials are implemented in an in-house version of the Gromacs package, publicly available.
A new parallel molecular dynamics algorithm for organic systems
International Nuclear Information System (INIS)
Plimpton, S.; Hendrickson, B.; Heffelfinger, G.
1993-01-01
A new parallel algorithm for simulating bonded molecular systems such as polymers and proteins by molecular dynamics (MD) is presented. In contrast to methods that extract parallelism by breaking the spatial domain into sub-pieces, the new method does not require regular geometries or uniform particle densities to achieve high parallel efficiency. For very large, regular systems spatial methods are often the best choice, but in practice the new method is faster for systems with tens-of-thousands of atoms simulated on large numbers of processors. It is also several times faster than the techniques commonly used for parallelizing bonded MD that assign a subset of atoms to each processor and require all-to-all communication. Implementation of the algorithm in a CHARMm-like MD model with many body forces and constraint dynamics is discussed and timings on the Intel Delta and Paragon machines are given. Example calculations using the algorithm in simulations of polymers and liquid-crystal molecules will also be briefly discussed
Dynamic control of function by light-driven molecular motors
van Leeuwen, Thomas; Lubbe, Anouk S.; Stacko, Peter; Wezenberg, Sander J.; Feringa, Ben L.
2017-01-01
The field of dynamic functional molecular systems has progressed enormously over the past few decades. By coupling the mechanical properties of molecular switches and motors to chemical and biological processes, exceptional control of function has been attained. Overcrowded alkene-based light-driven
Molecular Dynamics Investigation of Efficient SO2 Absorption by ...
Indian Academy of Sciences (India)
ANIRBAN MONDAL
TMG][L]) that absorbs an equimolar amount of SO2 through chemisorption.12 Subsequently, a sig- ...... Visual molecular dynamics J. Mol. Graphics 14 33. 83. Fiorin G, Klein M L and Hénin J 2013 Using collective variables to drive molecular ...
Modeling molecular mechanisms in the axon
de Rooij, R.; Miller, K.E.; Kuhl, E.
2016-01-01
Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena–both in isolation and in interaction–to explore emergent cellular-level features under physiological and pathological conditions. PMID:28603326
Nucleation of Salt Crystals in Clay Minerals: Molecular Dynamics Simulation.
Dashtian, Hassan; Wang, Haimeng; Sahimi, Muhammad
2017-07-20
Nucleation of salt crystals in confined media occurs in many processes of high importance, such as injection of CO 2 in geological formations for its sequestration. In particular, salt precipitation in clays, a main component of sedimentary rock, is an important phenomenon. The crystals precipitate on the pores' surface, modify the pore space morphology, and reduce its flow and transport properties. Despite numerous efforts to understand the mechanisms of nucleation of salt crystals in confined media, the effect of the clay's chemistry on the growth, distribution, and properties of the crystals is not well understood. We report the results of extensive molecular dynamics simulation of nucleation and growth of NaCl crystals in a clay pore using molecular models of two types of clay minerals, Na-montmorillonite and kaolinite. Clear evidence is presented for the nucleation of the salt crystals that indicates that the molecular structure of clay minerals affects their spatial distribution, although the nucleation mechanism is the same in both types of clays.
Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations
DEFF Research Database (Denmark)
Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing
2007-01-01
Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included...
Dynamic Characteristics and Models
DEFF Research Database (Denmark)
Pedersen, Lars
2007-01-01
, sitting or standing posture, and that these persons influence the dynamic characteristics of the floor (floor frequency and floor damping) is demonstrated in the paper. The mechanism of the dynamic interaction between the floor mass and the mass of stationary persons is generally not well understood...
Structural dynamic modifications via models
Indian Academy of Sciences (India)
of structural dynamic optimization techniques. A review of structural optimization in vibratory environments is given by Rao (1989). 2. SDM techniques. SDM methods may be broadly divided into two groups. Those which employ a model of the structure and those that use dynamic test data directly. The model used by the ...
Energy conservation in molecular dynamics simulations of classical systems
DEFF Research Database (Denmark)
Toxværd, Søren; Heilmann, Ole; Dyre, J. C.
2012-01-01
Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...
Molecular dynamics study of two- and three-dimensional classical ...
Indian Academy of Sciences (India)
Abstract. We have carried out a molecular dynamics simulation of two- and three- dimensional double Yukawa fluids near the triple point. We have compared some of the static and dynamic correlation functions with those of Lennard–Jones, when parameters occurring in double Yukawa potential are chosen to fit ...
Interfacial Properties of an Ionic Liquid by Molecular Dynamics
Heggen, B.; Zhao, W.; Leroy, F.; Dammers, A.T.; Müller-Plathe, F.
2010-01-01
We studied the influence of a liquid-vapor interface on dynamic properties like reorientation and diffusion as well as the surface tension of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) by molecular dynamics simulations. In the interfacial region, reorientation of
On the Dynamics of the Fermi-Bose model
DEFF Research Database (Denmark)
Ögren, Magnus
In this talk we formulate and prove results for the exponential matrix representing the dynamics of the Fermi-Bose model in an undepleted bosonic field approximation. A recent application of this model is molecular dimmers dissociating into its atomic compounds. The problem is solved in D spatial...... molecular Bose-Einstein condensate....
Molecular Modeling: A Powerful Tool for Drug Design and Molecular ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking. Rama Rao Nadendla. General Article Volume 9 Issue 5 May 2004 pp 51-60. Fulltext. Click here to view fulltext PDF. Permanent link:
Medišauskas, Lukas; Morales, Felipe; Palacios, Alicia; González-Castrillo, Alberto; Plimak, Lev; Smirnova, Olga; Martín, Fernando; Ivanov, Misha Yu
2015-05-01
We present an analytical model based on the time-dependent WKB approximation to reproduce the photoionization spectra of an H2 molecule in the autoionization region. We explore the nondissociative channel, which is the major contribution after one-photon absorption, and we focus on the features arising in the energy differential spectra due to the interference between the direct and the autoionization pathways. These features depend on both the timescale of the electronic decay of the autoionizing state and the time evolution of the vibrational wavepacket created in this state. With full ab initio calculations and with a one-dimensional approach that only takes into account the nuclear wavepacket associated to the few relevant electronic states we compare the ground state, the autoionizing state, and the background continuum electronic states. Finally, we illustrate how these features transform from molecular-like to atomic-like by increasing the mass of the system, thus making the electronic decay time shorter than the nuclear wavepacket motion associated with the resonant state. In other words, autoionization then occurs faster than the molecular dissociation into neutrals.
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Simple model for molecular scattering
Mehta, Nirav; Ticknor, Christopher; Hazzard, Kaden
2017-04-01
The collisions of ultracold molecules are qualitatively different from the collisions of ultracold atoms due to the high density of bimolecular resonances near the collision energy. We present results from a simple N-channel scattering model with square-well channel potentials and constant channel couplings (inside the well) designed to reproduce essential features of chaotic molecular scattering. The potential depths and channel splittings are tuned to reproduce the appropriate density of states for the short-range bimolecular collision complex (BCC), which affords a direct comparison of the resulting level-spacing distribution to that expected from random matrix theory (RMT), namely the so-called Wigner surmise. The density of states also sets the scale for the rate of dissociation from the BCC to free molecules, as approximated by transition state theory (TST). Our model affords a semi-analytic solution for the scattering amplitude in the open channel, and a determinantal equation for the eigenenergies of the short-ranged BCC. It is likely the simplest finite-ranged scattering model that can be compared to expectations from the approximations of RMT, and TST. The validity of these approximations has implications for the many-channel Hubbard model recently developed. This research was funded in part by the National Science Foundation under Grant No. NSF PHY-1125915.
Molecular modeling of protein A affinity chromatography.
Salvalaglio, Matteo; Zamolo, Laura; Busini, Valentina; Moscatelli, Davide; Cavallotti, Carlo
2009-12-11
The properties of the complex between fragment B of Protein A and the Fc domain of IgG were investigated adopting molecular dynamics with the intent of providing useful insight that might be exploited to design mimetic ligands with properties similar to those of Protein A. Simulations were performed both for the complex in solution and supported on an agarose surface, which was modeled as an entangled structure constituted by two agarose double chains. The energetic analysis was performed by means of the molecular mechanics Poisson Boltzmann surface area (MM/PBSA), molecular mechanics generalized Born surface area (MM/GBSA), and the linear interaction energy (LIE) approaches. An alanine scan was performed to determine the relative contribution of Protein A key amino acids to the complex interaction energy. It was found that three amino acids play a dominant role: Gln 129, Phe 132 and Lys 154, though also four other residues, Tyr 133, Leu 136, Glu 143 and Gln 151 contribute significantly to the overall binding energy. A successive molecular dynamics analysis of Protein A re-organization performed when it is not in complex with IgG has however shown that Phe 132 and Tyr 133 interact among themselves establishing a significant pi-pi interaction, which is disrupted upon formation of the complex with IgG and thus reduces consistently their contribution to the protein-antibody bond. The effect that adsorbing fragment B of Protein A on an agarose support has on the stability of the protein-antibody bond was investigated using a minimal molecular model and compared to a similar study performed for a synthetic ligand. It was found that the interaction with the surface does not hinder significantly the capability of Protein A to interact with IgG, while it is crucial for the synthetic ligand. These results indicate that ligand-surface interactions should be considered in the design of new synthetic affinity ligands in order to achieve results comparable to those of Protein A
On Atomistic Models for Molecular Oxygen
DEFF Research Database (Denmark)
Javanainen, Matti; Vattulainen, Ilpo; Monticelli, Luca
2017-01-01
Molecular oxygen (O2) is key to all life on earth, as it is constantly cycled via photosynthesis and cellular respiration. Substantial scientific effort has been devoted to understanding every part of this cycle. Classical molecular dynamics (MD) simulations have been used to study some of the key...
Optimal control of molecular motion expressed through quantum fluid dynamics
Dey, Bijoy K.; Rabitz, Herschel; Askar, Attila
2000-04-01
A quantum fluid-dynamic (QFD) control formulation is presented for optimally manipulating atomic and molecular systems. In QFD the control quantum system is expressed in terms of the probability density ρ and the quantum current j. This choice of variables is motivated by the generally expected slowly varying spatial-temporal dependence of the fluid-dynamical variables. The QFD approach is illustrated for manipulation of the ground electronic state dynamics of HCl induced by an external electric field.
Invariant molecular-dynamics approach to structural phase transitions
International Nuclear Information System (INIS)
Wentzcovitch, R.M.
1991-01-01
Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics
International Nuclear Information System (INIS)
Lv Chen; Wang Xiaojing; Agalya, Govindasamy; Koyama, Michihisa; Kubo, Momoji; Miyamoto, Akira
2005-01-01
The clarification of the excited states dynamics on TiO 2 surface is important subject for the design of the highly active photocatalysts. In the present study, we applied our novel tight-binding quantum chemical molecular dynamics method to the investigation on the photocatalytic oxidation dynamics of acetone by photogenerated OH radicals on the hydrated anatase TiO 2 surface. The elucidated photocatalytic reaction mechanism strongly supports the previous experimental proposal and finally the effectiveness of our new approach for the clarification of the photocatalytic reaction dynamics employing the large simulation model was confirmed
Numerical Simulations for Large Deformation of Geomaterials Using Molecular Dynamics
Directory of Open Access Journals (Sweden)
Ziyang Zhao
2018-01-01
Full Text Available From the microperspective, this paper presents a model based on a new type of noncontinuous theoretical mechanical method, molecular dynamics (MD, to simulate the typical soil granular flow. The Hertzian friction formula and viscous damping force are introduced in the MD governing equations to model the granular flow. To show the validity of the proposed approach, a benchmark problem of 2D viscous material flow is simulated. The calculated final flow runout distance of the viscous material agrees well with the result of constrained interpolated profile (CIP method as reported in the literature. Numerical modeling of the propagation of the collapse of three-dimensional axisymmetric sand columns is performed by the application of MD models. Comparison of the MD computational runout distance and the obtained distance by experiment shows a high degree of similarity. This indicates that the proposed MD model can accurately represent the evolution of the granular flow. The model developed may thus find applications in various problems involving dense granular flow and large deformations, such as landslides and debris flow. It provides a means for predicting fluidization characteristics of soil large deformation flow disasters and for identification and design of appropriate protective measures.
Molecular dynamics with deterministic and stochastic numerical methods
Leimkuhler, Ben
2015-01-01
This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications. Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method...
Dynamics of molecular superrotors in an external magnetic field
Korobenko, Aleksey; Milner, Valery
2015-08-01
We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.
Dynamics of molecular superrotors in an external magnetic field
International Nuclear Information System (INIS)
Korobenko, Aleksey; Milner, Valery
2015-01-01
We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin–rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation. (paper)
Enhanced molecular dynamics for simulating porous interphase layers in batteries.
Energy Technology Data Exchange (ETDEWEB)
Zimmerman, Jonathan A.; Wong, Bryan Matthew; Jones, Reese E.; Templeton, Jeremy Alan; Lee, Jonathan (Rice University, Houston, TX)
2009-10-01
Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anistropic electric fields in molecular dynamics (MD) simulations. An important technological example is ion transport through solid-electrolyte interphase (SEI) layers that form in many common types of batteries. These layers regulate the rate at which electro-chemical reactions occur, affecting power, safety, and reliability. In this work, we develop a model for incorporating electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. In this application, the electric potential is represented on a FE mesh and is calculated from a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagates to each atom through modified forces. The method is verified using simulations where analytical or theoretical solutions are known. Calculations of salt water solutions in complex domains are performed to understand how ions are attracted to charged surfaces in the presence of electric fields and interfering media.
First principles molecular dynamics without self-consistent field optimization
International Nuclear Information System (INIS)
Souvatzis, Petros; Niklasson, Anders M. N.
2014-01-01
We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations
Molecular dynamics simulations on the melting of gold nanoparticles
Qiao, Zhiwei; Feng, Haijun; Zhou, Jian
2014-01-01
Molecular dynamics is employed to study the melting of bulk gold and gold nanoparticles. PCFF, Sutton-Chen and COMPASS force fields are adopted to study the melting point of bulk gold and we find out that the Sutton-Chen force field is the most accurate model in predicting the melting point of bulk gold. Consequently, the Sutton-Chen force field is applied to study the melting points of spherical gold nanoparticles with different diameters. Variations of diffusion coefficient, potential energy and translational order parameter with temperature are analyzed. The simulated melting points of gold nanoparticles are between 615∼1115 K, which are much lower than that of bulk gold (1336 K). As the diameter of gold nanoparticle drops, the melting point also descends. The melting mechanism is also analyzed for gold nanoparticles.
Molecular dynamics simulation of gold cluster growth during sputter deposition
Energy Technology Data Exchange (ETDEWEB)
Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)
2016-05-14
We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.
Interactions in charged colloidal suspensions: A molecular dynamics simulation study
Padidela, Uday Kumar; Behera, Raghu Nath
2017-07-01
Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.
Isomorphic phase transformation in shocked cerium using molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Dupont, Virginie [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Chen, Shao - Ping [Los Alamos National Laboratory
2010-08-12
Cerium (Ce) undergoes a significant ({approx}16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.
Coding considerations for standalone molecular dynamics simulations of atomistic structures
Ocaya, R. O.; Terblans, J. J.
2017-10-01
The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.
Molecular dynamic simulations of the sputtering of multilayer organic systems
Postawa, Z; Piaskowy, J; Krantzman, K; Winograd, N; Garrison, B J
2003-01-01
Sputtering of organic overlayers has been modeled using molecular dynamics computer simulations. The investigated systems are composed of benzene molecules condensed into one, two and three layers on an Ag left brace 1 1 1 right brace surface. The formed organic overlayers were bombarded with 4 keV Ar projectiles at normal incidence. The development of the collision cascade in the organic overlayer was investigated. The sputtering yield, mass, internal and kinetic energy distributions of ejected particles have been analyzed as a function of the thickness of the organic layer. The results show that all emission characteristics are sensitive to the variation of layer thickness. Although most of the ejected intact benzene molecules originate from the topmost layer, the emission of particles located initially in second and third layers is significant. The analysis indicates that the metallic substrate plays a dominant role in the ejection of intact organic molecules.
Transient Changes in Molecular Geometries and How to Model Them
DEFF Research Database (Denmark)
Dohn, Asmus Ougaard
by the solvent. The simulations has also served as benchmarks on this newly developed implementation First, we establish that the chosen model provides a trustworthy description of the systems; since transition metals are heavier than purely organic systems, we test a range of approximations to relativistic...... changes in molecular structure, vibrations and solvation. In this thesis, we employ our recently developed Quantum-/Molecular -Mechanical Direct Dynamics method to do simulations of transition metal complexes in solution, to uncover their energy dissipation channels, and how they are affected...... quantum mechanic descriptions, to ascertain the accuracy of the quantum model in the Direct Dynamics simulations. We then test - and improve - the framework for calculating the experimental X-ray Diffuse Scattering Difference signal from (any kind of) Molecular Dynamics (MD) simulations. Comparisons...
Automated adaptive inference of phenomenological dynamical models
Daniels, Bryan
Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.
Classical molecular dynamics simulation on the dynamical properties of H2 on silicene layer
Directory of Open Access Journals (Sweden)
Casuyac Miqueas
2016-01-01
Full Text Available This study investigates the diffusion of hydrogen molecule physisorbed on the surface of silicene nanoribbon (SiNRusing the classical molecular dynamic (MD simulation in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator. The interactions between silicon atoms are modeled using the modified Tersoff potential, the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO potential for hydrogen – hydrogen interaction and the Lennard – Jones potential for the physisorbed H2 on SiNR. By varying the temperatures (60 K Δ 130 K, we observed that the Δxdisplacement of H2 on the surface SiNR shows a Brownian motion on a Lennard-Jones potential and a Gaussian probability distribution can be plotted describing the diffusion of H2. The calculated mean square displacement (MSD was approximately increasing in time and the activation energy barrier for diffusion has been found to be 43.23meV.
Human Skin Barrier Structure and Function Analyzed by Cryo-EM and Molecular Dynamics Simulation.
Lundborg, Magnus; Narangifard, Ali; Wennberg, Christian L; Lindahl, Erik; Daneholt, Bertil; Norlén, Lars
2018-04-24
In the present study we have analyzed the molecular structure and function of the human skin's permeability barrier using molecular dynamics simulation validated against cryo-electron microscopy data from near native skin. The skin's barrier capacity is located to an intercellular lipid structure embedding the cells of the superficial most layer of skin - the stratum corneum. According to the splayed bilayer model (Iwai et al., 2012) the lipid structure is organized as stacked bilayers of ceramides in a splayed chain conformation with cholesterol associated with the ceramide sphingoid moiety and free fatty acids associated with the ceramide fatty acid moiety. However, knowledge about the lipid structure's detailed molecular organization, and the roles of its different lipid constituents, remains circumstantial. Starting from a molecular dynamics model based on the splayed bilayer model, we have, by stepwise structural and compositional modifications, arrived at a thermodynamically stable molecular dynamics model expressing simulated electron microscopy patterns matching original cryo-electron microscopy patterns from skin extremely closely. Strikingly, the closer the individual molecular dynamics models' lipid composition was to that reported in human stratum corneum, the better was the match between the models' simulated electron microscopy patterns and the original cryo-electron microscopy patterns. Moreover, the closest-matching model's calculated water permeability and thermotropic behaviour were found compatible with that of human skin. The new model may facilitate more advanced physics-based skin permeability predictions of drugs and toxicants. The proposed procedure for molecular dynamics based analysis of cellular cryo-electron microscopy data might be applied to other biomolecular systems. Copyright © 2018. Published by Elsevier Inc.
VUV studies of molecular photofragmentation dynamics
Energy Technology Data Exchange (ETDEWEB)
White, M.G. [Brookhaven National Laboratory, Upton, NY (United States)
1993-12-01
State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.
The study of dynamics heterogeneity and slow down of silica by molecular dynamics simulation
International Nuclear Information System (INIS)
San, L T; Hung, P K; Hue, H V
2016-01-01
We have numerically studied the diffusion in silica liquids via the SiO x → SiO x±1 , OSi y → OSi y±1 reactions and coordination cells (CC). Five models with temperatures from 1000 to 3500 K have been constructed by molecular dynamics simulation. We reveal that the reactions happen not randomly in the space. In addition, the reactions correlated strongly with the mobility of CC atom. Further we examine the clustering of atoms having unbroken bonds and restored bonds. The time evolution of these clusters under temperature is also considered. The simulation shows that both slow down and dynamic heterogeneity (DH) is related not only to the percolation of restored-rigid clusters near glass transition but also to their long lifetime. (paper)
Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1.
Directory of Open Access Journals (Sweden)
Min-Sun Park
Full Text Available Glucose transporters (GLUTs provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and cancer. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE, a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM domains and the intracellular helices (ICH domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states.
The structure of molecular liquids. Neutron diffraction and molecular dynamics simulations
International Nuclear Information System (INIS)
Bianchi, L.
2000-05-01
Neutron diffraction (ND) measurements on liquid methanol (CD 3 OD, CD 3 O(H/D), CD 3 OH) under ambient conditions were performed to obtain the distinct (intra- + inter-molecular), G dist (r) and inter-molecular, G inter (r) radial distribution functions (rdfs) for the three samples. The H/D substitution on hydroxyl-hydrogen (Ho) has been used to extract the partial distribution functions, G XHo (r) (X=C, O, and H - a methyl hydrogen) and G XX (r) at both the distinct and inter-molecular levels from the difference techniques of ND. The O-Ho bond length, which has been the subject of controversy in the past, is found purely from the distinct partial distribution function, G XHo (r) to be 0.98 ± 0.01 A. The C-H distance obtained from the distinct G XX (r) partial is 1.08 ± 0.01 A. These distances determined by fitting an intra-molecular model to the total distinct structure functions are 0.961 ± 0.001 A and 1.096 ± 0.001 A, respectively. The inter-molecular G XX (r) function, dominated by contributions from the methyl groups, apart from showing broad oscillations extending up to ∼14 A is featureless, mainly because of cancellation effects from six contributing pairs. The Ho-Ho partial pair distribution function (pdf), g HoHo (r), determined from the second order difference, shows that only one other Ho atom can be found within a mean Ho-Ho separation of 2.36 A. The average position of the O-Ho hydrogen bond determined for the first time purely from experimental inter-molecular G XHo (r) partial distribution function is found to be at 1.75 ± 0.03 A. The experimental structural results at the partial distribution level are compared with those obtained from molecular dynamics (MD) simulations performed in NVE ensemble by using both 3- and 6-site force field models for the first time in this study. The MD simulations with both the models reproduce the ND rdfs rather well. However, discrepancies begin to appear between the simulated and the experimental partial
Molecular modeling of nucleic Acid structure: electrostatics and solvation.
Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E
2014-12-19
This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. Copyright © 2014 John Wiley & Sons, Inc.
Sader, Safaa; Wu, Chun
2017-03-01
Amsacrine is an effective topoisomerase II enzyme inhibitor in acute lymphatic leukemia. Previous experimental studies have successfully identified two important mutations (R487K and E571K) conferring 100 and 25 fold resistance to Amsacrine respectively. Although the reduction of the cleavage ligand-DNA-protein ternary complex has been well thought as the major cause of drug resistance, the detailed energetic, structural and dynamic mechanisms remain to be elusive. In this study, we constructed human topoisomerase II alpha (hTop2α) homology model docked with Amsacrine based on crystal structure of human Top2β in complex with etoposide. This wild type complex was used to build the ternary complex with R487K and E571K mutants. Three 500ns molecular dynamics simulations were performed on complex systems of wild type and two mutants. The detailed energetic, structural and dynamic analysis were performed on the simulation data. Our binding data indicated a significant impairment of Amsacrine binding energy in the two mutants compared with the wild type. The order of weakening (R487K>E571K) was in agreement with the order of experimental drug resistance fold (R489K>E571K). Our binding energy decomposition further indicated that weakening of the ligand-protein interaction rather than the ligand-DNA interaction was the major contributor of the binding energy difference between R487K and E571K. In addition, key residues contributing to the binding energy (ΔG) or the decrease of the binding energy (ΔΔG) were identified through the energy decomposition analysis. The change in ligand binding pose, dynamics of protein, DNA and ligand upon the mutations were thoroughly analyzed and discussed. Deciphering the molecular basis of drug resistance is crucial to overcome drug resistance using rational drug design. Copyright © 2017 Elsevier Inc. All rights reserved.
3D Printing of Molecular Models
Gardner, Adam; Olson, Arthur
2016-01-01
Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…
Molecular Modeling of Nafion Permselective Membranes
National Research Council Canada - National Science Library
Vishnyakov, Aleksey M; Neimark, Alexander V
2005-01-01
.... We developed molecular models for Nafion and nerve agent simulant DMMP and explored microphase segregation and mechanisms of DMMP sorption and transport in hydrated membranes with K+ counterion...
Application of Connection in Molecular Dynamics
Sun, Xin
2018-03-01
The evolution of electronic states in molecule has two origins: dynamical one produced by Schrödinger equation and kinematical one caused by base transformation due to nuclear motion. In current theories, the former gets analytic expression; the latter depends on heavy numerical calculation, which contains uncertainty. By using connection of fiber bundles, this paper establishes an analytic formula for the latter, and the numerical work is simplified. It shows the mathematical structure of molecule is fiber bundle.
Molecular dynamics simulation of thermophysical properties of undercooled liquid cobalt
International Nuclear Information System (INIS)
Han, X J; Wang, J Z; Chen, M; Guo, Z Y
2004-01-01
Molecular dynamics simulations with two different embedded-atom-method (EAM) potentials are applied to calculate the density, specific heat and self-diffusion coefficient of liquid cobalt at temperatures above and below the melting temperature. Simulation shows that Pasianot's EAM model of cobalt constructed on the basis of a hcp structure is more successful than Stoop's EAM model in the framework of a fcc structure in predicting the thermophysical properties of liquid cobalt. Simulations with Pasianot's EAM model indicate that the density fits into ρ = 7.49-9.17 x 10 -4 (T- T m ) g cm -3 , and the self-diffusion coefficient is given by D = 1.291 x 10 -7 exp(-48 795.71/RT) m 2 s -1 . Dissimilar to the linear dependence of the density and the Arrhenius dependence of the self-diffusion coefficient on temperature, the specific heat shows almost a constant value of 38.595 ± 0.084 J mol -1 K -1 within the temperature range of simulation. The simulated properties of liquid cobalt are compared with experimental data available. Comparisons show reasonable agreements between the simulated results from Pasianot's EAM model and experimental data
Sensitivity of molecular vibrational dynamics to energy exchange rate constants
International Nuclear Information System (INIS)
Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P
2003-01-01
The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments
Multiscale molecular dynamics using the matched interface and boundary method
International Nuclear Information System (INIS)
Geng Weihua; Wei, G.W.
2011-01-01
The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems.
Atomistic Molecular Dynamics Simulations of the Electrical Double
Li, Zifeng; Milner, Scott; Fichthorn, Kristen
2015-03-01
The electrical double layer (EDL) near the polymer/water interface plays a key role in the colloidal stability of latex paint. To elucidate the structure of the EDL at the molecular level, we conducted an all-atom molecular dynamics simulations. We studied two representative surface charge groups in latex, the ionic surfactant sodium dodecyl sulfate (SDS) and the grafted short polyelectrolyte charged by dissociated methyl methacrylic acid (MAA) monomers. Our results confirm that the Poisson-Boltzmann theory works well outside the Stern layer. Our calculated electrostatic potential at the Outer Helmholtz Plane (OHP) is close to the zeta potential measured experimentally, which suggests that the potential at the OHP is a good estimate of the zeta potential. We found that the position of the OHP for the MAA polyelectrolyte system extends much further into the aqueous phase than that in the SDS system, resulting in a Stern layer that is twice as thick. This model will allow for future investigations of the interactions of the surface with different surfactants and rheology modifiers, which may serve as a guide to tune the rheology of latex formulations. We thank Dow Chemical Company for financial support.
Atomistic interactions of clusters on surfaces using molecular dynamics and hyper molecular dynamics
International Nuclear Information System (INIS)
Sanz-Navarro, Carlos F.
2002-01-01
The work presented in this thesis describes the results of Molecular Dynamics (MD) simulations applied to the interaction of silver clusters with graphite surfaces and some numerical and theoretical methods concerning the extension of MD simulations to longer time scales (hyper-MD). The first part of this thesis studies the implantation of clusters at normal incidence onto a graphite surface in order to determine the scaling of the penetration depth (PD) against the impact energy. A comparison with experimental results is made with good agreement. The main physical observations of the impact process are described and analysed. It is shown that there is a threshold impact velocity above which the linear dependence on PD on impact energy changes to a linear dependence on velocity. Implantation of silver clusters at oblique incidence is also considered. The second part of this work analyses the validity and feasibility of the three minimisation methods for the hyper-MD simulation method whereby time scales of an MD simulation can be extended. A correct mathematical basis for the iterative method is derived. It is found that one of the iterative methods, upon which hyper-lD is based, is very likely to fail in high-dimensional situations because it requires a too expensive convergence. Two new approximations to the hyper-MD approach are proposed, which reduce the computational effort considerably. Both approaches, although not exact, can help to search for some of the most likely transitions in the system. Some examples are given to illustrate this. (author)
Molecular dynamics study of atomic displacements in disordered solid alloys
Puzyrev, Yevgeniy S.
The effects of atomic displacements on the energetics of alloys plays important role in the determining the properties of alloys. We studied the atomic displacements in disordered solid alloys using molecular dynamics and Monte-Carlo methods. The diffuse scattering of pure materials, copper, gold, nickel, and palladium was calculated. The experimental data for pure Cu was obtained from diffuse scattering intensity of synchrotron x-ray radiation. The comparison showed the advantages of molecular dynamics method for calculating the atomic displacements in solid alloys. The individual nearest neighbor separations were calculated for Cu 50Au50 alloy and compared to the result of XAFS experiment. The molecular dynamics method provided theoretical predictions of nearest neighbor pair separations in other binary alloys, Cu-Pd and Cu-Al for wide range of the concentrations. We also experimentally recovered the diffuse scattering maps for the Cu47.3Au52.7 and Cu85.2Al14.8 alloy.
Dynamic programming models and applications
Denardo, Eric V
2003-01-01
Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.
Energy Technology Data Exchange (ETDEWEB)
Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)
2015-06-28
In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible
Understanding ion association states and molecular dynamics using infrared spectroscopy
Masser, Hanqing
microphase separates from the PEO-rich microphase, and ionic groups are preferentially solvated by PEO chains and reside in the PEO-rich microphase. As the ratio of PTMO increases, the fraction of aggregates increases, resulting in more highly coordinated aggregation states. Results on ion association states are in good agreement with previous results on ion conductivity, polymer dynamics and morphology. The effects of ion content, cation type and ionic side chain structure on ion association states are systemically studied in a series of ionomers with short ethylene oxide and ionic sulfonated styrene side chains, and then correlated to the ion and polymer dynamic characterization. It is found that ionomers with modest ion content, large cation and styrene ionic side chain have the most "free ions" and ion pairs, and highest ion conductivity. Ion conduction in ionomers is optimized by systematically changing their chemical structures. In addition to knowledge of ion association states, a IR band shape also contains information on molecular dynamics. In companion investigation, the vibrational relaxation and dynamic transitions of conformationally insensitive normal modes in two different polymer systems (atactic polystyrene and deuterated poly(methyl methacrylate)) are studied. The information on vibrational relaxations is resolved by conducting precisely controlled FTIR experiments, applying specialized curve resolving data analysis, and calculating time correlation functions through numerical Fourier transformation. The vibrational relaxations of these modes can be described by a two process model: a fast process on the time scale of 0.01 ps, which is inhomogeneously broadened by a slow process on the time scale of picoseconds.
Dynamical models of the Galaxy
Directory of Open Access Journals (Sweden)
McMillan P.J.
2012-02-01
Full Text Available I discuss the importance of dynamical models for exploiting survey data, focusing on the advantages of “torus” models. I summarize a number of applications of these models to the study of the Milky Way, including the determination of the peculiar Solar velocity and investigation of the Hyades moving group.
DEFF Research Database (Denmark)
Andreasen, Martin Møller; Meldrum, Andrew
pricing factors using the sequential regression approach. Our findings suggest that the two models largely provide the same in-sample fit, but loadings from ordinary and risk-adjusted Campbell-Shiller regressions are generally best matched by the shadow rate models. We also find that the shadow rate...... models perform better than the QTSMs when forecasting bond yields out of sample....
Studying Interactions by Molecular Dynamics Simulations at High Concentration
Directory of Open Access Journals (Sweden)
Federico Fogolari
2012-01-01
Full Text Available Molecular dynamics simulations have been used to study molecular encounters and recognition. In recent works, simulations using high concentration of interacting molecules have been performed. In this paper, we consider the practical problems for setting up the simulation and to analyse the results of the simulation. The simulation of beta 2-microglobulin association and the simulation of the binding of hydrogen peroxide by glutathione peroxidase are provided as examples.
Multiscale Molecular Dynamics Approach to Energy Transfer in Nanomaterials.
Espinosa-Duran, John M; Sereda, Yuriy V; Abi-Mansour, Andrew; Ortoleva, Peter
2018-02-13
After local transient fluctuations are dissipated, in an energy transfer process, a system evolves to a state where the energy density field varies slowly in time relative to the dynamics of atomic collisions and vibrations. Furthermore, the energy density field remains strongly coupled to the atomic scale processes (collisions and vibrations), and it can serve as the basis of a multiscale theory of energy transfer. Here, a method is introduced to capture the long scale energy density variations as they coevolve with the atomistic state in a way that yields insights into the basic physics and implies an efficient algorithm for energy transfer simulations. The approach is developed based on the N-atom Liouville equation and an interatomic force field and avoids the need for conjectured phenomenological equations for energy transfer and other processes. The theory is demonstrated for sodium chloride and silicon dioxide nanoparticles immersed in a water bath via molecular dynamics simulations of the energy transfer between a nanoparticle and its aqueous host fluid. The energy density field is computed for different sets of symmetric grid densities, and the multiscale theory holds when slowly varying energy densities at the nodes are obtained. Results strongly depend on grid density and nanoparticle constituent material. A nonuniform temperature distribution, larger thermal fluctuations in the nanoparticle than in the bath, and enhancement of fluctuations at the surface, which are expressed due to the atomic nature of the systems, are captured by this method rather than by phenomenological continuum energy transfer models.
Polymorphic transitions in single crystals: A new molecular dynamics method
Energy Technology Data Exchange (ETDEWEB)
Parrinello, M.; Rahman, A.
1981-12-01
A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stress. In this formulation the MD cell shape and size can change according to dynamical equations given by this Lagrangian. This new MD technique is well suited to the study of structural transformations in solids under external stress and at finite temperature. As an example of the use of this technique we show how a single crystal of Ni behaves under uniform uniaxial compressive and tensile loads. This work confirms some of the results of static (i.e., zero temperature) calculations reported in the literature. We also show that some results regarding the stress-strain relation obtained by static calculations are invalid at finite temperature. We find that, under compressive loading, our model of Ni shows a bifurcation in its stress-strain relation; this bifurcation provides a link in configuration space between cubic and hexagonal close packing. It is suggested that such a transformation could perhaps be observed experimentally under extreme conditions of shock.
The coexistence temperature of hydrogen clathrates: A molecular dynamics study
Luis, D. P.; Romero-Ramirez, I. E.; González-Calderón, A.; López-Lemus, J.
2018-03-01
Extensive molecular dynamics simulations in the equilibrium isobaric-isothermal (NPT) ensemble were developed to determine the coexistence temperatures of the water hydrogen mixture using the direct coexistence method. The water molecules were modeled using the four-site TIP4P/Ice analytical potential, and the hydrogen molecules were described using a three-site potential. The simulations were performed at different pressures (p = 900, 1500, 3000, and 4000 bars). At each pressure, a series of simulations were developed at different temperatures (from 230 to 270 K). Our results followed a line parallel to the experimental coexistence temperatures and underestimated these temperatures by approximately 25 K in the investigated range. The final configurations could or could not contain a fluid phase depending on the pressure, in accordance with the phase diagram. In addition, we explored the dynamics of the H2 molecules through clathrate hydrate cages and observed different behaviors of the H2 molecules in the small cages and the large cages of the sII structure.
Driving Ordering Processes in Molecular-Dynamics Simulations
Dittmar, Harro; Kusalik, Peter G.
2014-05-01
Self-organized criticality describes the emergence of complexity in dynamical nonequilibrium systems. In this paper we introduce a unique approach whereby a driven energy conversion is utilized as a sampling bias for ordered arrangements in molecular dynamics simulations of atomic and molecular fluids. This approach gives rise to dramatically accelerated nucleation rates, by as much as 30 orders of magnitude, without the need of predefined order parameters, which commonly employed rare-event sampling methods rely on. The measured heat fluxes suggest how the approach can be generalized.
Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.
Cawkwell, M J; Niklasson, Anders M N
2012-10-07
Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.
Femtochemistry and femtobiology ultrafast dynamics in molecular science
Douhal, Abderrazzak
2002-01-01
This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological mol
Dynamic Modeling of ALS Systems
Jones, Harry
2002-01-01
The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.
Enhanced Molecular Dynamics Methods Applied to Drug Design Projects.
Ziada, Sonia; Braka, Abdennour; Diharce, Julien; Aci-Sèche, Samia; Bonnet, Pascal
2018-01-01
Nobel Laureate Richard P. Feynman stated: "[…] everything that living things do can be understood in terms of jiggling and wiggling of atoms […]." The importance of computer simulations of macromolecules, which use classical mechanics principles to describe atom behavior, is widely acknowledged and nowadays, they are applied in many fields such as material sciences and drug discovery. With the increase of computing power, molecular dynamics simulations can be applied to understand biological mechanisms at realistic timescales. In this chapter, we share our computational experience providing a global view of two of the widely used enhanced molecular dynamics methods to study protein structure and dynamics through the description of their characteristics, limits and we provide some examples of their applications in drug design. We also discuss the appropriate choice of software and hardware. In a detailed practical procedure, we describe how to set up, run, and analyze two main molecular dynamics methods, the umbrella sampling (US) and the accelerated molecular dynamics (aMD) methods.
Model describes subsea control dynamics
Energy Technology Data Exchange (ETDEWEB)
1988-02-01
A mathematical model of the hydraulic control systems for subsea completions and their umbilicals has been developed and applied successfully to Jabiru and Challis field production projects in the Timor Sea. The model overcomes the limitations of conventional linear steady state models and yields for the hydraulic system an accurate description of its dynamic response, including the valve shut-in times and the pressure transients. Results of numerical simulations based on the model are in good agreement with measurements of the dynamic response of the tree valves and umbilicals made during land testing.
Ratchet models of molecular motors
Jaster, Nicole
2003-09-01
Transport processes in and of cells are of major importance for the survival of the organism. Muscles have to be able to contract, chromosomes have to be moved to opposing ends of the cell during mitosis, and organelles, which are compartments enclosed by membranes, have to be transported along molecular tracks. Molecular motors are proteins whose main task is moving other molecules.For that purpose they transform the chemical energy released in the hydrolysis of ATP into mechanical work. The motors of the cytoskeleton belong to the three super families myosin, kinesin and dynein. Their tracks are filaments of the cytoskeleton, namely actin and the microtubuli. Here, we examine stochastic models which are used for describing the movements of these linear molecular motors. The scale of the movements comprises the regime of single steps of a motor protein up to the directed walk along a filament. A single step bridges around 10 nm, depending on the protein, and takes about 10 ms, if there is enough ATP available. Our models comprise M states or conformations the motor can attain during its movement along a one-dimensional track. At K locations along the track transitions between the states are possible. The velocity of the protein depending on the transition rates between the single states can be determined analytically. We calculate this velocity for systems of up to four states and locations and are able to derive a number of rules which are helpful in estimating the behaviour of an arbitrary given system. Beyond that we have a look at decoupled subsystems, i.e., one or a couple of states which have no connection to the remaining system. With a certain probability a motor undergoes a cycle of conformational changes, with another probability an independent other cycle. Active elements in real transport processes by molecular motors will not be limited to the transitions between the states. In distorted networks or starting from the discrete Master equation of the
Molecular Dynamics Simulations of Poly(dimethylsiloxane) Properties
Czech Academy of Sciences Publication Activity Database
Fojtíková, J.; Kalvoda, L.; Sedlák, Petr
2015-01-01
Roč. 128, č. 4 (2015), s. 637-639 ISSN 0587-4246 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : molecular dynamics * poly(dimethylsiloxane) * dissipative particle dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.525, year: 2015 http://przyrbwn.icm.edu.pl/APP/PDF/128/a128z4p40.pdf
Electron trapping in amorphous silicon: A quantum molecular dynamics study
Energy Technology Data Exchange (ETDEWEB)
Yang, Lin H.; Kalia, R.K.; Vashishta, P.
1990-12-01
Quantum molecular dynamics (QMD) simulations provide the real-time dynamics of electrons and ions through numerical solutions of the time-dependent Schrodinger and Newton equations, respectively. Using the QMD approach we have investigated the localization behavior of an excess electron in amorphous silicon at finite temperatures. For time scales on the order of a few picoseconds, we find the excess electron is localized inside a void of radius {approximately}3 {Angstrom} at finite temperatures. 12 refs.
Directory of Open Access Journals (Sweden)
Ranasinghe P. K. C. Malmini
2008-09-01
Full Text Available We model the price prediction in Sri Lankan stock market using Ising model and some recent developments in statistical physics techniques. In contrast to usual agent-models, the influence does not flow inward from the surrounding neighbors to the centre, but spreads outward from the center to the neighbors. Monte Carlo simulations were used to study this problem. The analysis was based on All share price index, Milanka price index in Colombo Stock Exchange and Simulated Price Process. The monthly and daily influences of the above indices to the Sri Lankan economy were also investigated. The model thus describes the spread of opinions traders.
A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations
Neumann, Philipp
2012-06-01
We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.
Teaching Molecular Geometry with the VSEPR Model
Gillespie, Ronald J.
2004-01-01
The first introduction to molecular geometry should be through the simple and easily understood VSEPR model, as the Valence Bond Theory and MO Theory suffer from limitations as far as understanding molecular geometry is concerned. The VSEPR model gives a perfectly satisfactory description of the bonding that follows directly from the Lewis model…
Theoretical studies of lipid bilayer electroporation using molecular dynamics simulations
Levine, Zachary Alan
Computer simulations of physical, chemical, and biological systems have improved tremendously over the past five decades. From simple studies of liquid argon in the 1960s to fully atomistic simulations of entire viruses in the past few years, recent advances in high-performance computing have continuously enabled simulations to bridge the gap between scientific theory and experiment. Molecular dynamics simulations in particular have allowed for the direct observation of spatial and temporal events which are at present inaccessible to experiments. For this dissertation I employ all-atom molecular dynamics simulations to study the transient, electric field-induced poration (or electroporation) of phospholipid bilayers at MV/m electric fields. Phospholipid bilayers are the dominant constituents of cell membranes and act as both a barrier and gatekeeper to the cell interior. This makes their structural integrity and susceptibility to external perturbations an important topic for study, especially as the density of electromagnetic radiation in our environment is increasing steadily. The primary goal of this dissertation is to understand the specific physical and biological mechanisms which facilitate electroporation, and to connect our simulated observations to experiments with live cells and to continuum models which seek to describe the underlying biological processes of electroporation. In Chapter 1 I begin with a brief introduction to phospholipids and phospholipid bilayers, followed by an extensive overview of electroporation and atomistic molecular dynamics simulations. The following chapters will then focus on peer-reviewed and published work we performed, or on existing projects which are currently being prepared for submission. Chapter 2 looks at how external electric fields affect both oxidized and unoxidized lipid bilayers as a function of oxidation concentration and oxidized lipid type. Oxidative damage to cell membranes represents a physiologically relevant
Molecular circuits for dynamic noise filtering.
Zechner, Christoph; Seelig, Georg; Rullan, Marc; Khammash, Mustafa
2016-04-26
The invention of the Kalman filter is a crowning achievement of filtering theory-one that has revolutionized technology in countless ways. By dealing effectively with noise, the Kalman filter has enabled various applications in positioning, navigation, control, and telecommunications. In the emerging field of synthetic biology, noise and context dependency are among the key challenges facing the successful implementation of reliable, complex, and scalable synthetic circuits. Although substantial further advancement in the field may very well rely on effectively addressing these issues, a principled protocol to deal with noise-as provided by the Kalman filter-remains completely missing. Here we develop an optimal filtering theory that is suitable for noisy biochemical networks. We show how the resulting filters can be implemented at the molecular level and provide various simulations related to estimation, system identification, and noise cancellation problems. We demonstrate our approach in vitro using DNA strand displacement cascades as well as in vivo using flow cytometry measurements of a light-inducible circuit in Escherichia coli.
Modeling Propellant Tank Dynamics
National Aeronautics and Space Administration — The main objective of my work will be to develop accurate models of self-pressurizing propellant tanks for use in designing hybrid rockets. The first key goal is to...
Liquid-particle model for nuclear dynamics
International Nuclear Information System (INIS)
Strutinsky, V.; Magner, A.
1983-01-01
The liquid-particle model for nuclear dynamics is discussed. Combined liquid-quantum dynamics is described. In solving the dynamic problem the nuclear surface as a dynamic variable is introduced. The giant zeroth-sound resonances are studied
Determining Equilibrium Constants for Dimerization Reactions from Molecular Dynamics Simulations
De Jong, Djurre H.; Schafer, Lars V.; De Vries, Alex H.; Marrink, Siewert J.; Berendsen, Herman J. C.; Grubmueller, Helmut
2011-01-01
With today's available computer power, free energy calculations from equilibrium molecular dynamics simulations "via counting" become feasible for an increasing number of reactions. An example is the dimerization reaction of transmembrane alpha-helices. If an extended simulation of the two helices
Molecular dynamics simulations of oscillatory flows in microfluidic channels
DEFF Research Database (Denmark)
Hansen, J.S.; Ottesen, Johnny T.
2006-01-01
In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, hi...
Hydration of Cd(II): molecular dynamics study | M. Mohammed ...
African Journals Online (AJOL)
The inclusion of the three-body correction was found to be crucial for the description of the system, and results thus obtained are in good agreement with experimental values. Radial ... KEY WORDS: Molecular dynamics, Umbrella sampling, Hydration structure, Cd(II), Water exchange, Three-body corrections. Bull. Chem.
Projector augmented wave method: ab initio molecular dynamics ...
Indian Academy of Sciences (India)
Unknown
The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. .... In that case the muffin–tin approximation is used solely to define the basis set. ..... functions probe the local character of the auxiliary wave function in the atomic region. Examples ...
CF3+ etching silicon surface: A molecular dynamics study
Zhao, C.; Lu, X.; He, P.; Zhang, P.; Sun, W.; Zhang, Jingwei; Chen, F.; Gou, F.
2012-01-01
In this study, a molecular dynamics simulation method has been employed to investigate CF3 + ions, bombarding Si surface with the energy of 100, 200, 300 and 400 eV and an incident angle of 45 degrees with respect to the normal. The simulation results show that when CF3+ ions approach the Si surface
Molecular Dynamics and Bioactivity of a Novel Mutated Human ...
African Journals Online (AJOL)
version 3.5,. Accelrys Inc., San Diego, CA) was used for protein design and molecular dynamics simulation. The analysis of the MD data was made using Origin Pro (version 9.0). Mean ± standard error of mean (SEM) of the data were computed.
Molecular dynamics simulations and free energy profile of ...
Indian Academy of Sciences (India)
Molecular dynamics simulations and free energy profile of Paracetamol in DPPC and DMPC lipid bilayers. YOUSEF NADEMIa, SEPIDEH AMJAD IRANAGHb, ABBAS YOUSEFPOURa,. SEYEDEH ZAHRA MOUSAVIa and HAMID MODARRESSa,∗. aDepartment of Chemical Engineering, bDepartment of Chemistry, ...
Molecular Dynamics and Bioactivity of a Novel Mutated Human ...
African Journals Online (AJOL)
Purpose: To design and evaluate a novel human parathyroid hormone (hPTH) analog. Methods: Mutation stability prediction was processed on hPTH, docked the mutant hPTH with its receptor, and then proceeded with molecular dynamics using Discovery Studio 3.5 software package for the complex. The bioactivity of the ...
Stability mechanisms of a thermophilic laccase probed by molecular dynamics
DEFF Research Database (Denmark)
Christensen, Niels Johan; Kepp, Kasper Planeta
2013-01-01
Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD) was applied to a Trametes versicolor laccase in response...
Thermodynamics of small clusters of atoms: A molecular dynamics simulation
DEFF Research Database (Denmark)
Damgaard Kristensen, W.; Jensen, E. J.; Cotterill, Rodney M J
1974-01-01
The thermodynamic properties of clusters containing 55, 135, and 429 atoms have been calculated using the molecular dynamics method. Structural and vibrational properties of the clusters were examined at different temperatures in both the solid and the liquid phase. The nature of the melting...
A molecular dynamics study of SiSe2 glass
International Nuclear Information System (INIS)
Antonio, G.A.; Kalia, R.K.; Vashishta, P.
1988-10-01
We report the results of a molecular dynamics study of molten and glassy SiSe 2 using an effective interparticle interaction. Results for the partial pair-correlation functions, partial structure factors, bond-angle distributions and statistics of rings are reported. Results are in good agreement with the neutron diffraction experiments. 11 refs., 6 figs
Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics
Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de
1997-01-01
The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting
Molecular Dynamics Investigation of Efficient SO₂ Absorption by ...
Indian Academy of Sciences (India)
Ionic liquids are appropriate candidates for the absorption of acid gases such as SO₂. Six anion functionalized ionic liquids with different basicities have been studied for SO₂ absorption capacity by employing quantum chemical calculations and molecular dynamics (MD) simulations. Gas phase quantum calculations ...
Molecular dynamics simulations of phase transformations in niti bicrystals
Srinivasan, P.; Nicola, L.; Simone, A.; Floryan, J.M.; Tvergaard, V.; van Campen, D.
2016-01-01
The influence of grain boundaries and grain misorientation on the nucleation and growth of martensite in an equi-atomic nickeltitanium (NiTi) shape memory alloy (SMA) is investigated by performing molecular dynamics (MD) simulations on bicrystals with a modified embedded atom method (MEAM)
Molecular dynamics simulations of lipid vesicle fusion in atomic detail
Knecht, Volker; Marrink, Siewert-Jan
The fusion of a membrane-bounded vesicle with a target membrane is a key step in intracellular trafficking, exocytosis, and drug delivery. Molecular dynamics simulations have been used to study the fusion of small unilamellar vesicles composed of a dipalmitoyl-phosphatidylcholine (DPPC)/palmitic
Molecular dynamics of the structure and thermodynamics of dusty ...
African Journals Online (AJOL)
The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...
Coarse – grained molecular dynamics simulation of cross – linking ...
African Journals Online (AJOL)
Coarse – grained molecular dynamics simulation of cross – linking of DGEBA epoxy resin and estimation of the adhesive strength. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...
Dynamical photo-induced electronic properties of molecular junctions
Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.
2018-03-01
Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Tringe, J.W., E-mail: tringe2@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Ileri, N. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Levie, H.W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Stroeve, P.; Ustach, V.; Faller, R. [Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Renaud, P. [Swiss Federal Institute of Technology, Lausanne, (EPFL) (Switzerland)
2015-08-18
Highlights: • WGA proteins in nanochannels modeled by Molecular Dynamics and Monte Carlo. • Protein surface coverage characterized by atomic force microscopy. • Models indicate transport characteristics depend strongly on surface coverage. • Results resolve of a four orders of magnitude difference in diffusion coefficient values. - Abstract: We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.
Elucidating Cellular Population Dynamics by Molecular Density Function Perturbations
Directory of Open Access Journals (Sweden)
Thanneer Malai Perumal
2018-01-01
Full Text Available Studies performed at single-cell resolution have demonstrated the physiological significance of cell-to-cell variability. Various types of mathematical models and systems analyses of biological networks have further been used to gain a better understanding of the sources and regulatory mechanisms of such variability. In this work, we present a novel sensitivity analysis method, called molecular density function perturbation (MDFP, for the dynamical analysis of cellular heterogeneity. The proposed analysis is based on introducing perturbations to the density or distribution function of the cellular state variables at specific time points, and quantifying how such perturbations affect the state distribution at later time points. We applied the MDFP analysis to a model of a signal transduction pathway involving TRAIL (tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in HeLa cells. The MDFP analysis shows that caspase-8 activation regulates the timing of the switch-like increase of cPARP (cleaved poly(ADP-ribose polymerase, an indicator of apoptosis. Meanwhile, the cell-to-cell variability in the commitment to apoptosis depends on mitochondrial outer membrane permeabilization (MOMP and events following MOMP, including the release of Smac (second mitochondria-derived activator of caspases and cytochrome c from mitochondria, the inhibition of XIAP (X-linked inhibitor of apoptosis by Smac, and the formation of the apoptosome.
Neutron-rich B isotopes studied with antisymmetrized molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Kanada-En`yo, Y.; Horiuchi, H. [Department of Physics, Kyoto University, Kyoto 606-01 (Japan)
1995-08-01
Structure of odd-even B isotopes up to the neutron dripline is studied systematically with the antisymmetrized molecular dynamics (AMD). The AMD method has already proved to be a powerful theoretical approach for the systematic study of nuclear structure in extensive region including exotic neutron-rich nuclei as well as ordinary nuclei. It is owing to its flexible nature free from any model assumptions such as the existence of clusters. The energies and other observed data of B isotopes are reproduced well. Especially very good reproduction of electromagnetic properties is obtained. The systematic behavior of the electromagnetic properties is explained in relation to the drastic change between clustering structure and shell-model-like structure. This explanation gives us an important indication that clustering structure in neutron-rich B nuclei is strongly suggested by the experimental data. It is shown that the structure change with increase of the neutron number is largely governed by the shell effect of neutron orbits. Exotic structure with new type of clustering is suggested to evolve in neutron-rich nuclei near the dripline.
Close-packed (polytypic) structures in molecular-dynamics simulations
International Nuclear Information System (INIS)
Moody, M.; Ray, J.R.; Rahman, A.
1987-01-01
Molecular-dynamics (MD) computer-simulation studies are used to study close-packed structures found in solid-phase atomic systems interacting via a Morse potential (parametrized to model Ni). A graphical display of particle positions [a (112-bar0) projection] within the parallelepiped forming the MD cell is illustrated. Such a graphic projection allows accurate, complete, and readily visual recognition of the stacking order of close-packed planes and is a much more effective way of identifying polytypes than a study of the pair-distribution function for the structure. These illustrations demonstrate the polytypic nature of previously and newly recognized MD close-packed structures. When assuming compatibility with periodic boundary conditions, as is conventional in MD, only certain polytypes are allowed for an MD simulation system. A discussion of compatibility between close-packed structures and the periodic boundary conditions is presented. The pair coordination numbers, geometrical structure-factor intensities, and potential-energy lattice sums are then calculated for some of these compatible structures. This paper concludes that, through careful consideration, a considerable variety of close-packed physical systems may be appropriately modeled with use of MD computer simulation. Conversely, proper interpretation of the data obtained during such studies may require awareness of the findings presented here
Elastic constants of diamond from molecular dynamics simulations
International Nuclear Information System (INIS)
Gao Guangtu; Van Workum, Kevin; Schall, J David; Harrison, Judith A
2006-01-01
The elastic constants of diamond between 100 and 1100 K have been calculated for the first time using molecular dynamics and the second-generation, reactive empirical bond-order potential (REBO). This version of the REBO potential was used because it was redesigned to be able to model the elastic properties of diamond and graphite at 0 K while maintaining its original capabilities. The independent elastic constants of diamond, C 11 , C 12 , and C 44 , and the bulk modulus were all calculated as a function of temperature, and the results from the three different methods are in excellent agreement. By extrapolating the elastic constant data to 0 K, it is clear that the values obtained here agree with the previously calculated 0 K elastic constants. Because the second-generation REBO potential was fit to obtain better solid-state force constants for diamond and graphite, the agreement with the 0 K elastic constants is not surprising. In addition, the functional form of the second-generation REBO potential is able to qualitatively model the functional dependence of the elastic constants and bulk modulus of diamond at non-zero temperatures. In contrast, reactive potentials based on other functional forms do not reproduce the correct temperature dependence of the elastic constants. The second-generation REBO potential also correctly predicts that diamond has a negative Cauchy pressure in the temperature range examined
Effective particle size from molecular dynamics simulations in fluids
Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.
2018-04-01
We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.
Green’s function molecular dynamics meets discrete dislocation plasticity
Venugopalan, Syam P.; Müser, Martin H.; Nicola, Lucia
2017-09-01
Metals deform plastically at the asperity level when brought in contact with a counter body even when the nominal contact pressure is small. Modeling the plasticity of solids with rough surfaces is challenging due to the multi-scale nature of surface roughness and the length-scale dependence of plasticity. While discrete-dislocation plasticity (DDP) simulations capture size-dependent plasticity by keeping track of the motion of individual dislocations, only simple two-dimensional surface geometries have so far been studied with DDP. The main computational bottleneck in contact problems modeled by DDP is the calculation of the dislocation image fields. We address this issue by combining two-dimensional DDP with Green’s function molecular dynamics. The resulting method allows for an efficient boundary-value-method based treatment of elasticity in the presence of dislocations. We demonstrate that our method captures plasticity quantitatively from single to many dislocations and that it scales more favorably with system size than conventional methods. We also derive the relevant Green’s functions for elastic slabs of finite width allowing arbitrary boundary conditions on top and bottom surface to be simulated.
Effective particle size from molecular dynamics simulations in fluids
Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.
2017-12-01
We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.
Modeling Internet Topology Dynamics
Haddadi, H.; Uhlig, S.; Moore, A.; Mortier, R.; Rio, M.
Despite the large number of papers on network topology modeling and inference, there still exists ambiguity about the real nature of the Internet AS and router level topology. While recent findings have illustrated the inaccuracies in maps inferred from BGP peering and traceroute measurements,
Structure and dynamics of alkali borate glasses: a molecular dynamics study
Verhoef, A.H; den Hartog, H. W.
Structural and dynamical properties of lithium, cesium and mixed alkali (i.e., lithium and cesium) borate glasses have been studied by the molecular dynamics method. The calculations yield glass structures consisting of planar BO3 triangles and BO4 tetrahedrons with no sixfold ring structures at
Vibrational frequencies in Car-Parrinello molecular dynamics.
Ong, Sheau Wei; Tok, Eng Soon; Kang, Hway Chuan
2010-12-07
Car-Parrinello molecular dynamics (CPMD) are widely used to investigate the dynamical properties of molecular systems. An important issue in such applications is the dependence of dynamical quantities such as molecular vibrational frequencies upon the fictitious orbital mass μ. Although it is known that the correct Born-Oppenheimer dynamics are recovered at zero μ, it is not clear how these dynamical quantities are to be rigorously extracted from CPMD calculations. Our work addresses this issue for vibrational frequencies. We show that when the system is sufficiently close to the ground state the calculated ionic vibrational frequencies are ω(M) = ω(0M)[1 -C(μ/M)] for small μ/M, where ω(0M) is the Born-Oppenheimer ionic frequency, M the ionic mass, and C a constant that depends upon the ion-orbital coupling force constants. Our analysis also provides a quantitative understanding of the orbital oscillation amplitudes, leading to a relationship between the adiabaticity of a system and the ion-orbital coupling constants. In particular, we show that there is a significant systematic dependence of calculated vibrational frequencies upon how close the CPMD trajectory is to the Born-Oppenheimer surface. We verify our analytical results with numerical simulations for N(2), Sn(2), and H/Si(100)-(2×1).
Modelling group dynamic animal movement
DEFF Research Database (Denmark)
Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.
2014-01-01
in non-ideal scenarios, we show that generally the estimation of models of this type is both feasible and ecologically informative. We illustrate the approach using real movement data from 11 reindeer (Rangifer tarandus). Results indicate a directional bias towards a group centroid for reindeer......Group dynamic movement is a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognised, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However......, to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual...
Molecular Modeling: A Powerful Tool for Drug Design and Molecular ...
Indian Academy of Sciences (India)
data. GENERAL I ARTICLE of programmable calculators (starting around 1956 with the introduction of Fortran), computers as visualization aids (around. 1970) .... ous applications of computer assisted molecular modeling tech- niques are .... thods are less complicated, fast, and are able to handle very large systems ...
Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method
Energy Technology Data Exchange (ETDEWEB)
Gao, N.; Yang, L.; Gao, F.; Kurtz, R. J.; West, D.; Zhang, S.
2017-02-27
A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly different time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.
Vehicle dynamics modeling and simulation
Schramm, Dieter; Bardini, Roberto
2014-01-01
The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.
Farantos, Stavros C
2014-01-01
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.
Molecular modeling of amorphous, non-woven polymer networks.
Krausse, Constantin A; Milek, Theodor; Zahn, Dirk
2015-10-01
We outline a simple and efficient approach to generating molecular models of amorphous polymer networks. Similar to established techniques of preparing woven polymer networks from quenching high-temperature molecular simulation runs, we use a molecular dynamics simulations of a generic melt as starting points. This generic melt is however only used to describe parts of the polymers, namely the cross-linker units which positions are adopted from particle positions of the quenched melt. Specific degrees of network connectivity are tuned by geometric criteria for linker-linker connections and by suitable multi-body interaction potentials applied to the generic melt simulations. Using this technique we demonstrate adjusting fourfold linker coordination in amorphous polymer networks comprising 10-20% under-coordinated linkers. Graphical Abstract Molecular modeling of amorphous, non-woven polymer networks.
Utilization of the molecular dynamic to study the effect of hydrogen in the stress corrosion
International Nuclear Information System (INIS)
Arnoux, P.
2007-01-01
Many microscopic and theoretical models of stress corrosion have been proposed, in particularly to explain the grain boundary cracking of stainless steels and nickel base. In this work calculus of molecular dynamic have been used to propose a mechanism of stress corrosion at the atomic scale. The author aims to reproduce, by molecular dynamic, the mechanism of an open crack in irradiated stainless steel in PWR reactor and show that the growth of the oxide at the crack back produce hydrogen. (A.L.B.)
Lazutin, A. A.; Glagolev, M. K.; Vasilevskaya, V. V.; Khokhlov, A. R.
2014-04-01
An algorithm involving classical molecular dynamics simulations with mapping and reverse mapping procedure is here suggested to simulate the crosslinking of the polystyrene dissolved in dichloroethane by monochlorodimethyl ether. The algorithm comprises consecutive stages: molecular dynamics atomistic simulation of a polystyrene solution, the mapping of atomistic structure onto coarse-grained model, the crosslink formation, the reverse mapping, and finally relaxation of the structure dissolved in dichloroethane and in dry state. The calculated values of the specific volume and the elastic modulus are in reasonable quantitative correspondence with experimental data.
Development of molecular dynamics potential for uranium silicide fuels
Energy Technology Data Exchange (ETDEWEB)
Yu, Jianguo; Zhang, Yongfeng; Hales, Jason D.
2016-09-01
Use of uranium–silicide (U-Si) in place of uranium dioxide (UO2) is one of the promising concepts being proposed to increase the accident tolerance of nuclear fuels. This is due to a higher thermal conductivity than UO2 that results in lower centerline temperatures. U-Si also has a higher fissile density, which may enable some new cladding concepts that would otherwise require increased enrichment limits to compensate for their neutronic penalty. However, many critical material properties for U-Si have not been determined experimentally. For example, silicide compounds (U3Si2 and U3Si) are known to become amorphous under irradiation. There was clear independent experimental evidence to support a crystalline to amorphous transformation in those compounds. However, it is still not well understood how the amorphous transformation will affect on fuel behavior. It is anticipated that modeling and simulation may deliver guidance on the importance of various properties and help prioritize experimental work. In order to develop knowledge-based models for use at the engineering scale with a minimum of empirical parameters and increase the predictive capabilities of the developed model, inputs from atomistic simulations are essential. First-principles based density functional theory (DFT) calculations will provide the most reliable information. However, it is probably not possible to obtain kinetic information such as amorphization under irradiation directly from DFT simulations due to size and time limitations. Thus, a more feasible way may be to employ molecular dynamics (MD) simulation. Unfortunately, so far no MD potential is available for U-Si to discover the underlying mechanisms. Here, we will present our recent progress in developing a U-Si potential from ab initio data. This work is supported by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program funded by the U.S. Department of Energy, Office of Nuclear Energy.
Large-scale molecular dynamics simulations of self-assembling systems.
Klein, Michael L; Shinoda, Wataru
2008-08-08
Relentless increases in the size and performance of multiprocessor computers, coupled with new algorithms and methods, have led to novel applications of simulations across chemistry. This Perspective focuses on the use of classical molecular dynamics and so-called coarse-grain models to explore phenomena involving self-assembly in complex fluids and biological systems.
Molecular-dynamics of water transport through membranes - water from solvent to solute
BERENDSEN, HJC; MARRINK, SJ
1993-01-01
An application of Molecular Dynamics computer simulation (MD) to the process of transport of water through a lipid bilayer membrane is described. The permeation process is far too slow to be modeled by straightforward MD. In stead the inverse of the permeability coefficient is expressed as an
Sprik, M.; Meijer, E.M.
1998-01-01
Ab initio molecular dynamics methods have been used to study the reaction mechanism of acidcatalyzed addition of water to formaldehyde in a model system of an aqueous solution of sulfuric acid. Using the method of constraints we find that an H
Molecular electron recollision dynamics in intense circularly polarized laser pulses
Bandrauk, André D.; Yuan, Kai-Jun
2018-04-01
Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.
A molecular dynamics algorithm for simulation of field theories in the canonical ensemble
International Nuclear Information System (INIS)
Kogut, J.B.; Sinclair, D.K.
1986-01-01
We add a single scalar degree of freedom (''demon'') to the microcanonical ensemble which converts its molecular dynamics into a simulation method for the canonical ensemble (euclidean path integral) of the underlying field theory. This generalization of the microcanonical molecular dynamics algorithm simulates the field theory at fixed coupling with a completely deterministic procedure. We discuss the finite size effects of the method, the equipartition theorem and ergodicity. The method is applied to the planar model in two dimensions and SU(3) lattice gauge theory with four species of light, dynamical quarks in four dimensions. The method is much less sensitive to its discrete time step than conventional Langevin equation simulations of the canonical ensemble. The method is a straightforward generalization of a procedure introduced by S. Nose for molecular physics. (orig.)
Chinnasamy, Sathishkumar; Chinnasamy, Selvakkumar; Nagamani, Selvaraman; Muthusamy, Karthikeyan
2015-01-01
Snake venom metalloproteinase (SVMP) (Echis coloratus (Carpet viper) is a multifunctional enzyme that is involved in producing several symptoms that follow a snakebite, such as severe local hemorrhage, nervous system effects and tissue necrosis. Because the three-dimensional (3D) structure of SVMP is not known, models were constructed, and the best model was selected based on its stereo-chemical quality. The stability of the modeled protein was analyzed through molecular dynamics (MD) simulation studies. Structure-based virtual screening was performed, and 15 potential molecules with the highest binding energies were selected. Further analysis was carried out with induced fit docking, Prime/MM-GBSA (ΔGBind calculations), quantum-polarized ligand docking, and density functional theory calculations. Further, the stability of the lead molecules in the SVMP-active site was examined using MD simulation. The results showed that the selected lead molecules were highly stable in the active site of SVMP. Hence, these molecules could potentially be selective inhibitors of SVMP. These lead molecules can be experimentally validated, and their backbone structural scaffold could serve as building blocks in designing drug-like molecules for snake antivenom.
Jójárt, Balázs; Márki, Arpád
2007-01-01
In this study, we performed a molecular docking and dynamics simulation for a benzoxazinone-human oxytocin receptor system to determine the possible hydrophobic and electrostatic interaction points in the dynamic complex. After the homology modeling, the ligand was docked into the putative active using AutoDock 3.05. After the application of energetic and structural filters, the complexes obtained were further refined with a simulated annealing protocol (AMBER8) to remove steric clashes. Three complexes were selected for subjection to the molecular dynamics simulation (5 ns), and the results on the occurrence of average anchor points showed a stable complex between the benzoxazinone derivative and the receptor. The complex could be used as a good starting point for further analysis with site-directed mutagenesis, or further computational research.
A dynamical model of terrorism
Directory of Open Access Journals (Sweden)
Firdaus Udwadia
2006-01-01
Full Text Available This paper develops a dynamical model of terrorism. We consider the population in a given region as being made up of three primary components: terrorists, those susceptible to both terrorist and pacifist propaganda, and nonsusceptibles, or pacifists. The dynamical behavior of these three populations is studied using a model that incorporates the effects of both direct military/police intervention to reduce the terrorist population, and nonviolent, persuasive intervention to influence the susceptibles to become pacifists. The paper proposes a new paradigm for studying terrorism, and looks at the long-term dynamical evolution in time of these three population components when such interventions are carried out. Many important features—some intuitive, others not nearly so—of the nature of terrorism emerge from the dynamical model proposed, and they lead to several important policy implications for the management of terrorism. The different circumstances in which nonviolent intervention and/or military/police intervention may be beneficial, and the specific conditions under which each mode of intervention, or a combination of both, may be useful, are obtained. The novelty of the model presented herein is that it deals with the time evolution of terrorist activity. It appears to be one of the few models that can be tested, evaluated, and improved upon, through the use of actual field data.
Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.
2014-02-01
The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.
MOLECULAR DYNAMICS STUDY OF CYTOCHROME C – LIPID COMPLEXES
Directory of Open Access Journals (Sweden)
V. Trusova
2017-10-01
Full Text Available The interactions between a mitochondrial hemoprotein cytochrome c (cyt c and the model lipid membranes composed of zwitterionic lipid phosphatidylcholine (PC and anionic lipids phosphatidylglycerol (PG, phosphatidylserine (PS or cardiolipin (CL were studied using the method of molecular dynamics. It was found that cyt c structure remains virtually unchanged in the protein complexes with PC/PG or PC/PS bilayers. In turn, protein binding to PC/CL bilayer is followed by the rise in cyt c radius of gyration and root-mean-square fluctuations. The magnitude of these changes was demonstrated to increase with the anionic lipid content. The revealed effect was interpreted in terms of the partial unfolding of polypeptide chain in the region Ala15-Leu32, widening of the heme crevice and enhancement of the conformational fluctuations in the region Pro76-Asp93 upon increasing the CL molar fraction from 5 to 25%. The results obtained seem to be of utmost importance in the context of amyloidogenic propensity of cyt c.
Unraveling Mg2+-RNA binding with atomistic molecular dynamics.
Cunha, Richard A; Bussi, Giovanni
2017-05-01
Interaction with divalent cations is of paramount importance for RNA structural stability and function. We report here a detailed molecular dynamics study of all the possible binding sites for Mg 2+ on an RNA duplex, including both direct (inner sphere) and indirect (outer sphere) binding. In order to tackle sampling issues, we develop a modified version of bias-exchange metadynamics, which allows us to simultaneously compute affinities with previously unreported statistical accuracy. Results correctly reproduce trends observed in crystallographic databases. Based on this, we simulate a carefully chosen set of models that allows us to quantify the effects of competition with monovalent cations, RNA flexibility, and RNA hybridization. Our simulations reproduce the decrease and increase of Mg 2+ affinity due to ion competition and hybridization, respectively, and predict that RNA flexibility has a site-dependent effect. This suggests a nontrivial interplay between RNA conformational entropy and divalent cation binding. © 2017 Cunha and Bussi; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
MOLECULAR DYNAMICS SIMULATIONS OF DISPLACEMENT CASCADES IN MOLYBDENUM
International Nuclear Information System (INIS)
Smith, Richard Whiting
2003-01-01
Molecular dynamics calculations have been employed to simulate displacement cascades in neutron irradiated Mo. A total of 90 simulations were conducted for PKA energies between 1 and 40 keV and temperatures from 298 to 923K. The results suggest very little effect of temperature on final defect count and configuration, but do display a temperature effect on peak defect generation prior to cascade collapse. Cascade efficiency, relative to the NRT model, is computed to lie between 1/4 and 1/3 in agreement with simulations performed on previous systems. There is a tendency for both interstitials and vacancies to cluster together following cascade collapse producing vacancy rich regions surrounded by interstitials. Although coming to rest in close proximity, the point defects comprising the clusters generally do not lie within the nearest neighbor positions of one another, except for the formation of dumbbell di-interstitials. Cascades produced at higher PKA energies (20 or 40 keV) exhibit the formation of subcascades
Mechanical properties of irradiated nanowires – A molecular dynamics study
Energy Technology Data Exchange (ETDEWEB)
Figueroa, Emilio [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800002 (Chile); Tramontina, Diego [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina); Instituto de Bioingeniería, Universidad de Mendoza, 5500 Mendoza (Argentina); Gutiérrez, Gonzalo, E-mail: gonzalo@fisica.ciencias.uchile.cl [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Bringa, Eduardo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina)
2015-12-15
In this work we study, by means of molecular dynamics simulation, the change in the mechanical properties of a gold nanowire with pre-existing radiation damage. The gold nanowire is used as a simple model for a nanofoam, made of connected nanowires. Radiation damage by keV ions leads to the formation of a stacking fault tetrahedron (SFT), and this defect leads to a reduced plastic threshold, as expected, when the nanowire is subjected to tension. We quantify dislocation and twin density during the deformation, and find that the early activation of the SFT as a dislocation source leads to reduced dislocation densities compared to the case without radiation damage. In addition, we observed a total destruction of the SFT, as opposed to a recent simulation study where it was postulated that SFTs might act as self-generating dislocation sources. The flow stress at large deformation is also found to be slightly larger for the irradiated case, in agreement with recent experiments. - Highlights: • Stacking Fault Tetrahedra (SFT) formation proceeds by cascades, containing typically a vacancy cluster and interstitials. • Applied tension leads to the destruction of the SFT, in contrast to a recently reported case of a SFT which soften the NW. • After the initial dislocation activity, strength is controlled by a few surviving dislocations.
mdFoam+: Advanced molecular dynamics in OpenFOAM
Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.
2018-03-01
This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.
Stresses and elastic constants of crystalline sodium, from molecular dynamics
International Nuclear Information System (INIS)
Schiferl, S.K.
1985-02-01
The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the results to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs
Wave packet molecular dynamics simulations of warm dense hydrogen
Knaup, M; Toepffer, C; Zwicknagel, G
2003-01-01
Recent shock-wave experiments with deuterium in a regime where a plasma phase-transition has been predicted and their theoretical interpretation are the matter of a controversial discussion. In this paper, we apply 'wave packet molecular dynamics' (WPMD) simulations to investigate warm dense hydrogen. The WPMD method was originally used by Heller for a description of the scattering of composite particles such as simple atoms and molecules; later it was applied to Coulomb systems by Klakow et al. In the present version of our model the protons are treated as classical point-particles, whereas the electrons are represented by a completely anti-symmetrized Slater sum of periodic Gaussian wave packets. We present recent results for the equation of state of hydrogen at constant temperature T = 300 K and of deuterium at constant Hugoniot E - E sub 0 + 1/2(1/n - 1/n sub 0)(p + p sub 0) = 0, and compare them with the experiments and several theoretical approaches.
Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron
International Nuclear Information System (INIS)
Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.
2010-01-01
Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.
Molecular dynamics of TBP and DBP studied by neutron transmission
International Nuclear Information System (INIS)
Salles Filho, J.B.V.; Refinetti, M.E.; Fulfaro, R.; Vinhas, L.A.
1984-04-01
Differences between the properties of TBP and DBP, concerning the uranium extraction processes, may be related to certain characteristics of the molecular dynamics of each compound. In order to investigate the dynamical behaviour of hydrogen in these molecules, neutron transmission of TBP and DBP has been measured as a function of neutron wavelenght in the range 4.0 - 6.0 A, at room temperature. Scattering cross sections per hydrogen atom have been obtained. From the comparison with results previously obtained for n-butanol, similar dynamical behaviour of butyl radicals in these compounds could be observed. This similarity indicates that the presence of two or three butyl radicals in butylphosphate molecules does not exert influence in the hydrogen motion of methyl and methylene groups. This suggests that the different chemical behaviour between TBP and DBP is related to the dynamics of the hydrogen directly bound to the DBP phosphate group.(Author) [pt
Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron
Energy Technology Data Exchange (ETDEWEB)
Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.
2010-03-14
Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.
Accelerating convergence of molecular dynamics-based structural relaxation
DEFF Research Database (Denmark)
Christensen, Asbjørn
2005-01-01
We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...... the influence of spectral properties and dimensionality of the molecular system on the algorithm efficiency. We test two algorithms, the MinMax and Lanczos, for spectral estimation from an MD trajectory, and use this to derive a practical scheme of time step adaptation in MD relaxation algorithms to improve...
Stretching siloxanes: An ab initio molecular dynamics study
Lupton, E. M.; Nonnenberg, C.; Frank, I.; Achenbach, F.; Weis, J.; Bräuchle, C.
2005-10-01
We present an ab initio molecular dynamics study of siloxane elastomers placed under tensile stress for comparison with single molecule AFM experiments. Of particular interest is stress-induced chemical bond breaking in the high force regime, where a description of the molecular electronic structure is essential to determine the rupture mechanism. We predict an ionic mechanism for the bond breaking process with a rupture force of 4.4 nN for an isolated siloxane decamer pulled at a rate of 27.3 m/s and indicate lower values at experimental polymer lengths and pulling rates.
Molecular dynamics simulations of bubble nucleation in dark matter detectors.
Denzel, Philipp; Diemand, Jürg; Angélil, Raymond
2016-01-01
Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.
Shen, Lin; Yang, Weitao
2018-03-13
Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
The dynamics of coastal models
Hearn, Clifford J.
2008-01-01
Coastal basins are defined as estuaries, lagoons, and embayments. This book deals with the science of coastal basins using simple models, many of which are presented in either analytical form or Microsoft Excel or MATLAB. The book introduces simple hydrodynamics and its applications, from the use of simple box and one-dimensional models to flow over coral reefs. The book also emphasizes models as a scientific tool in our understanding of coasts, and introduces the value of the most modern flexible mesh combined wave-current models. Examples from shallow basins around the world illustrate the wonders of the scientific method and the power of simple dynamics. This book is ideal for use as an advanced textbook for graduate students and as an introduction to the topic for researchers, especially those from other fields of science needing a basic understanding of the basic ideas of the dynamics of coastal basins.